WO2021261120A1 - Optical multilayer body, optical multilayer body with adhesive layer, and image display device - Google Patents

Optical multilayer body, optical multilayer body with adhesive layer, and image display device Download PDF

Info

Publication number
WO2021261120A1
WO2021261120A1 PCT/JP2021/018806 JP2021018806W WO2021261120A1 WO 2021261120 A1 WO2021261120 A1 WO 2021261120A1 JP 2021018806 W JP2021018806 W JP 2021018806W WO 2021261120 A1 WO2021261120 A1 WO 2021261120A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive layer
optical
optical laminate
optical member
glass plate
Prior art date
Application number
PCT/JP2021/018806
Other languages
French (fr)
Japanese (ja)
Inventor
岳仁 淵田
俊樹 大峰
恵太 家原
孝伸 矢野
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020194694A external-priority patent/JP2022007904A/en
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to KR1020227045461A priority Critical patent/KR20230027078A/en
Priority to CN202180045136.2A priority patent/CN115916526A/en
Publication of WO2021261120A1 publication Critical patent/WO2021261120A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10018Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising only one glass sheet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/022Mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10431Specific parts for the modulation of light incorporated into the laminated safety glass or glazing
    • B32B17/1044Invariable transmission
    • B32B17/10458Polarization selective transmission
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10779Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing polyester
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/42Polarizing, birefringent, filtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/08Dimensions, e.g. volume
    • B32B2309/10Dimensions, e.g. volume linear, e.g. length, distance, width
    • B32B2309/105Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/206Organic displays, e.g. OLED

Definitions

  • the present invention relates to an optical laminate provided with a glass plate, an optical laminate with an adhesive layer, and an image display device.
  • an optical laminate including a cover window material, an adhesive layer, and an optical member is provided in an image display device.
  • an optical laminate including a glass plate as a cover window material, an adhesive layer, and a polyethylene terephthalate (PET) film as an optical member has been proposed (see, for example, Patent Document 1 below).
  • the glass plate has excellent optical properties but low impact resistance. Impact resistance is a property of suppressing damage such as cracks in the glass plate when the glass plate is impacted.
  • the bending resistance of the optical laminate is improved by joining the glass plate and the polyethylene terephthalate film with an adhesive layer. Bending resistance is a property of suppressing damage such as cracks in the glass plate when the optical laminate is bent.
  • the present invention provides an optical laminate having excellent impact resistance and bending resistance, an optical laminate with an adhesive layer, and an image display device.
  • the inventors of the present application have found that the impact resistance and bending resistance of the optical laminate can be improved by hardening the optical member and further hardening the adhesive layer.
  • a glass plate, an adhesive layer, and an optical member are provided in order toward one side in the thickness direction, and the adhesive layer is provided on one side in the thickness direction of the glass plate and the thickness of the optical member.
  • the optical member is in contact with the other surface in the direction, the thickness of the optical member is 70 ⁇ m or less, the optical member does not contain an adhesive layer, and the rigidity of the optical member obtained according to the method A described in JIS L 1096 (2010).
  • the present invention (2) includes the optical laminate according to (1), wherein the thickness of the adhesive layer is 5 ⁇ m or less.
  • the present invention (3) includes the optical laminate according to (1) or (2), wherein the thickness of the glass plate is 100 ⁇ m or less.
  • the present invention (4) is an optical laminate provided with a glass plate, an adhesive layer, and an optical member in order toward one side in the thickness direction, and the adhesive layer is one surface in the thickness direction of the glass plate.
  • the optical member is in contact with the other surface in the thickness direction of the optical member, and the thickness of the optical member is 70 ⁇ m or less.
  • the pen drop test in which a 0.7 mm ballpoint pen is dropped, the glass plate is not cracked, the pencil hardness of the optical laminate is 5H or more, and the following flexibility test is 100,000 times or more. Includes laminate.
  • the present invention (5) includes the optical laminate according to any one of (1) to (4) and an adhesive layer arranged on one side of the optical member of the optical laminate in the thickness direction. Includes an optical laminate with an adhesive layer, wherein the optical member has a stiffness of 45 mm or more and the indentation elastic modulus of the adhesive layer at 25 ° C. measured by the nanoindenter method is less than 1 GPa. ..
  • the present invention (6) is the optical laminate with an adhesive layer according to (5), wherein the optical member has a rigidity of 50 mm or more.
  • the present invention (7) is bendable and is the optical laminate according to any one of (1) to (4), or the optical laminate with an adhesive layer according to (5) or (6). And an image display member, the image display member and the image display member are provided in order toward one side in the thickness direction.
  • the rigidity of the optical member is increased to make the optical member harder, and the indentation elasticity of the adhesive layer is also increased to increase the adhesive layer. Since it is made hard, the optical member can be made thin, and the bending resistance of the optical laminate can be improved, while the impact resistance can also be improved.
  • the image display device of the present invention includes an optical laminate having excellent impact resistance and bending resistance or an optical laminate with an adhesive layer, it is bendable but has excellent impact resistance.
  • FIG. 1 is a cross-sectional view of an embodiment of the optical laminate of the present invention.
  • FIG. 2 is a cross-sectional view of an organic electroluminescence display device including the optical laminate shown in FIG. 3A to 3B are perspective views illustrating the 45 ° cantilever method, FIG. 3A shows a state in which the sample is placed on the upper surface, and FIG. 3B shows a state in which the sample is extruded to one side in the horizontal direction.
  • FIG. 4 is a cross-sectional view of a modified example of the optical laminate.
  • FIG. 5 is a cross-sectional view of a modified example of the optical laminate with an adhesive layer.
  • FIG. 6 is a cross-sectional view of a modified example of the optical laminate with an adhesive layer.
  • the optical laminate 1 has, for example, a flat plate shape extending in a plane direction orthogonal to the thickness direction.
  • the optical laminate 1 is configured to be bendable around a bent portion 33 located between two sides 30 facing each other with a space between them in the plane direction, and more preferably, the optical laminate 1 is foldable.
  • the optical laminate 1 includes a glass plate 2, an adhesive layer 3, and an optical member 4 in order toward one side in the thickness direction.
  • the optical laminate 1 includes only a glass plate 2, an adhesive layer 3, and an optical member 4.
  • the glass plate 2 extends in the plane direction.
  • the glass plate 2 forms the other surface in the thickness direction of the optical laminate 1.
  • the thickness of the glass plate 2 is, for example, 15 ⁇ m or more, preferably 30 ⁇ m or more, and for example, 150 ⁇ m or less, preferably 100 ⁇ m or less, and more preferably 75 ⁇ m or less.
  • the thickness of the glass plate 2 is equal to or greater than the above-mentioned lower limit, the impact resistance of the optical laminate 1 can be ensured.
  • the thickness of the glass plate 2 is not more than the above-mentioned upper limit, the optical laminated body 1 can be thinned, and the bending resistance of the optical laminated body 1 is excellent.
  • the glass plate 2 is referred to as a thin glass plate.
  • the total light transmittance of the glass plate 2 is, for example, 80% or more, preferably 85% or more, and for example, 99% or less.
  • the glass plate 2 a commercially available product can be used, and for example, the G-leaf series (registered trademark, manufactured by Nippon Electric Glass Co., Ltd.) can be used.
  • the adhesive layer 3 extends in the plane direction.
  • the adhesive layer 3 is in contact with one side of the glass plate 2 in the thickness direction.
  • the adhesive layer 3 is not a pressure-sensitive adhesive layer (pressure-sensitive adhesive layer) made of a pressure-sensitive adhesive (pressure-sensitive adhesive), but a cured product of a curable adhesive.
  • the adhesive layer 3 is not a pressure-sensitive adhesive layer whose adhesive strength does not substantially change with time, but a cured product of a curable adhesive that undergoes a curing reaction by irradiation with active energy rays or heating.
  • the curable adhesive is a curing raw material for the adhesive layer 3, and examples thereof include an active energy curing type and a thermosetting type, and an active energy curing type is preferable.
  • examples of the curable adhesive include an acrylic adhesive composition, an epoxy adhesive composition, a silicone adhesive composition, and the like, and from the viewpoint of translucency, an acrylic adhesive composition can be mentioned. Be done.
  • the acrylic adhesive composition contains, for example, a monomer component containing a functional group-containing (meth) acrylic ester monomer containing a functional group and a copolymerizable monomer.
  • the functional group-containing (meth) acrylic ester monomer is a functional group-containing methacrylic ester monomer and / or a functional group-containing acrylic ester monomer.
  • the definition of (meta) is the same as follows.
  • the functional group include a hydroxyl group, an amino group, a heterocyclic group, a lactone ring group and the like.
  • the functional group-containing (meth) acrylic ester monomer contains a hydroxyl group such as 2-hydroxyethyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, and 4-hydroxybutyl (meth) acrylate.
  • Amino group-containing (meth) acrylic ester monomers such as (meth) acrylic ester monomers, such as dimethylaminoethyl (meth) acrylates, dimethylaminopropyl (meth) acrylates, diethylaminoethyl (meth) acrylates, such as tetrahydrofurfuryl (meth).
  • Heterocyclic group-containing (meth) acrylic ester monomers such as acrylates, glycidyl (meth) acrylates, pentamethylpiperidinyl (meth) acrylates, tetramethylpiperidinyl (meth) acrylates, such as ⁇ -butyrolactone (meth) acrylates.
  • Examples thereof include a lactone ring group-containing (meth) acrylic ester monomer such as a monomer. Preferred are hydroxyl group-containing (meth) acrylic ester monomers.
  • the ratio of the functional group-containing (meth) acrylic ester monomer in the monomer component is, for example, 5% by mass or more, preferably 10% by mass or more, and for example, 60% by mass or less, preferably 40% by mass or less. be.
  • the copolymerizable monomer is a vinyl monomer copolymerizable with the functional group-containing (meth) acrylic ester monomer.
  • the copolymerizable monomer include cyano group-containing vinyl monomers such as (meth) acrylonitrile, for example, (meth) acrylamide, dimethyl (meth) acrylamide, dimethylaminopropyl (meth) acrylamide, isopropyl (meth) acrylamide, and diethyl (meth).
  • Examples thereof include amide group-containing vinyl monomers such as acrylamide and (meth) acryloylmorpholine. Preferred are amide group-containing vinyl monomers.
  • the amide group-containing vinyl monomer may have a hydroxyl group, and examples of such an amide group-containing vinyl monomer include N- (2-hydroxyethyl) (meth) acrylamide and N- (2-hydroxy).
  • Examples thereof include hydroxyalkyl (meth) acrylamides such as -hydroxybutyl) (meth) acrylamide and N- (4-hydroxybutyl) (meth) acrylamide.
  • N- (2-hydroxyethyl) (meth) acrylamide Preferred are N- (2-hydroxyethyl) (meth) acrylamide.
  • the proportion of the copolymerizable monomer in the monomer component is, for example, 40% by mass or more, preferably 60% by mass or more, and for example, 95% by mass or less, preferably 90% by mass or less.
  • the number of parts by mass of the copolymerizable monomer with respect to 100 parts by mass of the functional group-containing (meth) acrylic ester monomer is, for example, 50 parts by mass or more, preferably 200 parts by mass or more, and for example, 1,000 parts by mass or less. It is preferably 500 parts by mass or less.
  • the acrylic adhesive composition may contain a known polymerization initiator.
  • the number of parts by mass of the polymerization initiator with respect to 100 parts by mass of the monomer component is, for example, 0.3 parts by mass or more and 3 parts by mass or less.
  • acrylic adhesive composition and a cured product thereof (curable adhesive) are described in, for example, Japanese Patent Application Laid-Open No. 2013-077006.
  • the thickness of the adhesive layer 3 is, for example, 0.1 ⁇ m or more, and is, for example, 10 ⁇ m or less, preferably 5 ⁇ m or less, and more preferably 3 ⁇ m or less.
  • the thickness of the adhesive layer 3 is equal to or greater than the above-mentioned lower limit, the glass plate 2 and the optical member 4 can be reliably adhered to each other.
  • the thickness of the adhesive layer 3 is not more than the above-mentioned upper limit, the optical laminate 1 can be thinned, and the optical laminate 1 has excellent bending resistance.
  • the total light transmittance of the adhesive layer 3 is, for example, 80% or more, preferably 85% or more, and for example, 99% or less.
  • the indentation elastic modulus of the adhesive layer 3 at 25 ° C. measured by the nanoindenter method is 1 GPa or more, preferably 2 GPa or more, more preferably 3 GPa or more, still more preferably 4 GPa or more, and also. For example, it is 100 GPa or less. If the indentation elastic modulus of the adhesive layer 3 is less than 1 GPa, the impact resistance is lowered.
  • the method of determining the indentation elastic modulus of the adhesive layer 3 at 25 ° C. measured by the nanoindenter method will be described in detail in a later example.
  • the tensile storage elastic modulus E'of the adhesive layer 3 at 25 ° C. is, for example, 1 GPa or more, preferably 2 GPa or more, more preferably 3 GPa or more, still more preferably 4 GPa or more, and for example, 100 GPa or more. It is as follows. If the tensile storage elastic modulus E'of the adhesive layer 3 is less than 1 GPa, the impact resistance is lowered.
  • the tensile storage elastic modulus E'of the adhesive layer 3 at 25 ° C. is obtained by measuring the dynamic viscoelasticity in a temperature dispersion mode under the conditions of a frequency of 1 Hz and a heating rate of 5 ° C./min.
  • the optical member 4 forms one side of the optical laminate 1 in the thickness direction.
  • the optical member 4 is located on the opposite side of the glass plate 2 with respect to the adhesive layer 3.
  • the optical member 4 extends in the plane direction.
  • the optical member 4 is in contact with one surface of the adhesive layer 3 in the thickness direction.
  • the adhesive layer 3 is in contact with one surface of the glass plate 2 in the thickness direction and the other surface of the optical member 4 in the thickness direction, and the glass plate 2 and the optical member 4 are bonded (bonded) to each other.
  • the optical member 4 includes, for example, a polarizing element protective film 5, a polarizing element 6, and an optical compensation layer 7 in order toward one side in the thickness direction.
  • the optical member 4 is a laminated body as described above, and does not include an adhesive layer whose adhesive strength does not substantially change with time.
  • the polarizing element protective film 5 forms the other surface of the optical member 4 in the thickness direction.
  • the polarizing element protective film 5 extends in the plane direction.
  • the polarizing element protective film 5 protects the polarizing element 6 described below from the other side in the thickness direction.
  • the polarizing element protective film 5 has isotropic properties.
  • Examples of the material of the polarizing element protective film 5 include an acrylic resin.
  • the acrylic resin preferably includes a (meth) acrylic resin having a lactone ring structure from the viewpoint of obtaining high mechanical strength.
  • Examples of the (meth) acrylic resin having a lactone ring structure include JP-A-2000-230016, JP-A-2001-151814, JP-A-2002-120326, JP-A-2002-254544, and JP-A-2005. It is described in JP-A-146804, JP-A-2008-170717, and JP-A-2017-102443.
  • the thickness of the polarizing element protective film 5 is, for example, 10 ⁇ m or more, and is, for example, 60 ⁇ m or less, preferably 55 ⁇ m or less, and more preferably 50 ⁇ m or less.
  • the polarizing element 6 is in contact with one side of the polarizing element protective film 5 in the thickness direction.
  • the extruder 6 extends in the plane direction.
  • the splitter 6 include a film obtained by dyeing and stretching a hydrophilic film such as a PVA film, a film obtained by dehydrating a hydrophilic film, and a film obtained by dehydroxating a polyvinyl chloride film.
  • the thickness of the polarizing element 6 is, for example, 1 ⁇ m or more, preferably 3 ⁇ m or more, and for example, 15 ⁇ m or less, preferably 10 ⁇ m or less.
  • the physical characteristics of the decoder 6 and the like are described in, for example, JP-A-2016-151696 and JP-A-2017-102443.
  • the optical compensation layer 7 is in contact with one surface of the polarizing element 6 in the thickness direction.
  • the optical compensation layer 7 extends in the plane direction.
  • the optical compensation layer 7 is, for example, a retardation film, and specifically functions as a ⁇ / 4 plate.
  • the polarizing film 8 composed of the polarizing element 6 and the optical compensation layer 7 has circular dichroism.
  • the material of the optical compensation layer 7 include materials having the above-mentioned optical properties, and examples thereof include polycarbonate resin, polyvinyl acetal resin, cycloolefin resin, acrylic resin, and cellulose ester resin. A polycarbonate resin is preferable.
  • polycarbonate resin examples include a structural unit derived from a fluorene-based dihydroxy compound, a structural unit derived from an isosorbide-based dihydroxy compound, an alicyclic diol, an alicyclic dimethanol, di, tri or polyethylene glycol, and an alkylene. Includes structural units derived from at least one dihydroxy compound selected from the group consisting of glycols or spiroglycols.
  • the composition, physical properties, manufacturing method, and the like of the optical compensation layer 7 are described in detail in, for example, Japanese Patent Application Laid-Open No. 2017-102443.
  • the optical compensation layer 7 may be a laminated body, and although not shown, for example, a first liquid crystal alignment layer and a second liquid crystal alignment layer are provided in order toward the back side.
  • the first liquid crystal oriented solidified layer functions as a ⁇ / 2 plate.
  • the in-plane phase difference Re (550) of the first liquid crystal oriented solidified layer when measured with light having a wavelength of 550 nm is, for example, 180 nm to 320 nm.
  • nx is the refractive index in the slow axis direction in the in-plane direction.
  • ny is the refractive index in the phase-advancing axis direction in the in-plane direction.
  • nz is the refractive index in the thickness direction.
  • the angle formed by the slow axis of the first liquid crystal oriented solidified layer and the absorption axis of the polarizing element 6 is, for example, 10 ° to 20 °.
  • the thickness of the first liquid crystal oriented solidifying layer is, for example, 0.05 ⁇ m or more, and for example, 7 ⁇ m or less.
  • the first liquid crystal alignment solidified layer is oriented with rod-shaped liquid crystal materials arranged in a predetermined direction, for example. A slow-phase axis appears in the orientation direction of the liquid crystal material. Examples of the liquid crystal material include a liquid crystal polymer and a liquid crystal monomer.
  • the surface of a predetermined base material is subjected to an orientation treatment, and a coating liquid containing a liquid crystal material is applied to the surface to make the liquid crystal material in a direction corresponding to the orientation treatment. Orientation is performed and the alignment state is fixed.
  • the second liquid crystal oriented solidified layer functions as, for example, a ⁇ / 4 plate.
  • the optical compensation layer 7 has excellent circularly polarized light characteristics because the first liquid crystal oriented solidified layer functions as a ⁇ / 2 plate and the second liquid crystal oriented solidified layer functions as a ⁇ / 4 plate.
  • the in-plane phase difference Re (550) of the second liquid crystal oriented solidified layer when measured with light having a wavelength of 550 nm is, for example, 100 nm to 180 nm.
  • the angle formed by the slow axis of the second liquid crystal oriented solidified layer and the absorption axis of the polarizing element 6 is, for example, 65 ° to 85 °.
  • the thickness of the second liquid crystal oriented solidified layer is, for example, 0.5 ⁇ m or more and 2 ⁇ m or less.
  • the materials, properties, manufacturing methods, etc. of the second liquid crystal oriented solidified layer are the same as those of the first liquid crystal oriented solidified layer.
  • the laminate composed of the first and second liquid crystal oriented solidified layers described above is described in, for example, Japanese Patent Application Laid-Open No. 2017-102443.
  • the thickness of the optical compensation layer 7 is, for example, 0.1 ⁇ m or more, for example, 10 ⁇ m or less, preferably 5 ⁇ m or less, and more preferably 3 ⁇ m or less.
  • optical member 4 having the polarizing element protective film 5, the polarizing element 6, and the optical compensation layer 7 is described in detail in Japanese Patent Application Laid-Open No. 2017-102443.
  • the thickness of the optical member 4 is 70 ⁇ m or less, preferably 65 ⁇ m or less.
  • the thickness of the optical member 4 is, for example, 10 ⁇ m or more, preferably 30 ⁇ m or more. If the thickness of the optical member 4 exceeds 70 ⁇ m, the optical laminated body 1 cannot be thinned, and the bending resistance of the optical laminated body 1 is lowered. If the thickness of the optical member 4 is at least the above-mentioned lower limit, the impact resistance can be improved.
  • the total light transmittance of the optical member 4 is, for example, 80% or more, preferably 85% or more, and for example, 99% or less.
  • the rigidity of the optical member 4 obtained according to the method A described in JIS L 1096 (2010) is 30 mm or more.
  • the method A described in JIS L 1096 (2010) is a 45 ° cantilever method.
  • a testing machine 20 having a lower surface 21, an upper surface 22, and a slope 23 is used.
  • the lower surface 21 and the upper surface 22 are horizontal and are spaced apart in the vertical direction.
  • the slope 23 connects one side of the lower surface 21 and one side of the upper surface 22.
  • the angle formed by the slope 23 and the lower surface 21 is 45 °.
  • the upper surface 22 and the slope 23 form a ridge line 24.
  • the optical member 4 is externally processed to a size of 150 mm in length and 20 mm in width to prepare a sample 25.
  • the sample 25 is placed on the upper surface 22.
  • the side surface 26 of one of the samples 25 is aligned with the ridge line 24 of the testing machine 20.
  • the first position 31, which is the position of the other side 27 of the sample 25, is recorded. This test is carried out at a temperature of 25 ° C.
  • the sample 25 is gradually pushed out to one side in the horizontal direction in which one side 26 faces the slope 23.
  • the extrusion speed is 5 mm / sec.
  • the second position 32 which is the position of the other side side 27 when one side side 26 comes into contact with the slope 23, is recorded.
  • the tip portion including one side side 26 is curved downward.
  • the distance L between the first position 31 and the second position 32 is measured, and this is obtained as the rigidity.
  • the rigidity of the optical member 4 is less than 30 mm, the optical member 4 is soft, so that the impact resistance of the optical laminate 1 is lowered.
  • the rigidity of the optical member 4 is preferably 35 mm or more, more preferably 40 mm or more, still more preferably 45 mm or more, and for example, 100 mm or less.
  • one side of the glass plate 2 in the thickness direction and / or the other side of the optical member 4 in the thickness direction is brought into contact with the curable adhesive. Subsequently, the curable adhesive is sandwiched between the glass plate 2 and the optical member 4.
  • the curable adhesive is cured.
  • the curable adhesive is an active energy curable type
  • the curable adhesive is irradiated with active energy such as ultraviolet rays.
  • the curable adhesive is irradiated with ultraviolet rays from the glass plate 2 side.
  • the curable adhesive is thermosetting, heat the curable adhesive. As a result, the adhesive layer 3 that firmly adheres the glass plate 2 and the optical member 4 is formed.
  • the optical laminate 1 is used for various optical applications, and is provided in, for example, an image display device such as an organic electroluminescence display device (hereinafter, simply abbreviated as "organic EL display device").
  • an image display device such as an organic electroluminescence display device (hereinafter, simply abbreviated as "organic EL display device”).
  • the organic EL display device 10 has a flat plate shape extending in the plane direction.
  • the organic EL display device 10 is configured to be bendable around the bent portion 33, and more specifically, is configured to be foldable. Further, since the organic EL display device 10 includes the conductive film 13 described below, it functions as a touch panel type input display device.
  • the organic EL display device 10 includes an optical laminate 1, a pressure-sensitive adhesive layer 12, a conductive film 13, a second pressure-sensitive adhesive layer 14, and an image display member 15.
  • the upper side of the paper surface is the user's visual recognition side, which is the front side (corresponding to the other side in the thickness direction of FIG. 1), and the lower side of the paper surface is the back side (one side in the thickness direction of FIG. 1). Equivalent to).
  • the pressure-sensitive adhesive layer 12 is arranged on the back surface (corresponding to one surface in the thickness direction) of the optical member 4. Specifically, the pressure-sensitive adhesive layer 12 is in contact with the back surface of the optical member 4.
  • the adhesive strength of the pressure-sensitive adhesive layer 12 does not substantially change over time and is stable.
  • the material of the pressure-sensitive adhesive layer 12 include an acrylic pressure-sensitive adhesive, a rubber-based pressure-sensitive adhesive, a vinyl alkyl ether-based pressure-sensitive adhesive, a silicone-based pressure-sensitive adhesive, a polyester-based pressure-sensitive adhesive, a polyamide-based pressure-sensitive adhesive, a urethane-based pressure-sensitive adhesive, and a fluorine-based pressure-sensitive adhesive.
  • Examples thereof include a pressure-sensitive adhesive, an epoxy-based pressure-sensitive adhesive, a polyether-based pressure-sensitive adhesive, and the like, preferably an acrylic-based pressure-sensitive adhesive.
  • a pressure-sensitive adhesive an epoxy-based pressure-sensitive adhesive, a polyether-based pressure-sensitive adhesive, and the like, preferably an acrylic-based pressure-sensitive adhesive.
  • the physical properties, dimensions, and the like of the pressure-sensitive adhesive layer 12 are described in detail in, for example, Japanese Patent Application Laid-Open No. 2018-28873.
  • the pressure-sensitive adhesive layer 12 is provided in the optical laminate 9 with a pressure-sensitive adhesive layer together with the optical member 4. Details of the optical laminate 9 with an adhesive layer will be described later.
  • the conductive film 13 includes a conductive layer 16 and a base material layer 17 in order toward the back side.
  • the conductive layer 16 has a predetermined pattern. The surface and sides of the conductive layer 16 come into contact with the pressure-sensitive adhesive layer 12.
  • Examples of the material of the conductive layer 16 include metal oxides, conductive fibers (fibers), and metals.
  • the metal oxide include indium zinc composite oxide (IZO), indium gallium zinc composite oxide (IGZO), indium gallium composite oxide (IGO), indium tin composite oxide (ITO), and antimonth tin composite oxide. Examples thereof include composite oxides such as (ATO).
  • Examples of conductive fibers include metal nanowires and carbon nanotubes. Examples of the metal include gold, platinum, silver, copper and the like.
  • the conductive layer 16 integrally has a sensor electrode portion 18 located in the central portion in the plane direction and a drawer wiring portion 19 located in the periphery of the sensor electrode portion 18. Details of the conductive layer 16 are described in, for example, JP-A-2017-102443, JP-A-2014-113705, JP-A-2014-219667 and the like.
  • the base material layer 17 is arranged on the back surface of the conductive layer 16 and the back surface of the pressure-sensitive adhesive layer 12.
  • the base material layer 17 extends in the plane direction.
  • the base material layer 17 is, for example, a resin layer.
  • the material of the base material layer 17 includes, for example, an olefin resin such as polyethylene, polypropylene, and a cycloolefin polymer (COP), for example, a polyester resin such as polyethylene terephthalate (PET), polybutylene terephthalate, and polyethylene naphthalate, for example, poly (.
  • Examples of the (meth) acrylic resin such as meta) acrylate include resins such as polycarbonate resin, polyether sulfone resin, polyarylate resin, melamine resin, polyamide resin, polyimide resin, cellulose resin and polystyrene resin. Details of the base material layer 17 are described in, for example, Japanese Patent Application Laid-Open No. 2018-181722.
  • the second pressure-sensitive adhesive layer 14 is arranged on the back surface of the conductive film 13. Specifically, the second pressure-sensitive adhesive layer 14 is in contact with the back surface of the conductive film 13. The material of the second pressure-sensitive adhesive layer 14 is the same as the material of the pressure-sensitive adhesive layer 12.
  • the image display member 15 forms the back surface of the organic EL display device 10.
  • the image display member 15 is arranged on the back side of the conductive film 13 via the second pressure-sensitive adhesive layer 14.
  • the image display member 15 extends in the plane direction.
  • the image display member 15 is an organic EL element.
  • the image display member 15 includes a display substrate, two electrodes, an organic EL layer sandwiched between the two electrodes, and a sealing layer.
  • the configuration, physical properties, and the like of the image display member 15 are described in detail in, for example, Japanese Patent Application Laid-Open No. 2018-28873.
  • the rigidity of the optical member 4 is set to 30 mm or more to make the optical member 4 hard, and the indentation elastic modulus of the adhesive layer 3 is increased to 1 GPa or more to increase the adhesive layer 3 to the adhesive layer 3. Therefore, the optical member 4 can be made thin, and the flexibility of the optical laminate 1 can be improved, while the impact resistance can also be improved.
  • the optical laminated body 1 if the thickness of the adhesive layer 3 is 5 ⁇ m or less, the optical laminated body 1 can be made thin, and the optical laminated body 1 is excellent in bending resistance.
  • the optical laminated body 1 if the thickness of the glass plate 2 is 100 ⁇ m or less, the optical laminated body 1 can be made thin, and the bending resistance of the optical laminated body 1 is excellent.
  • the organic EL display device 10 includes an optical laminate 1 having excellent impact resistance and bending resistance, it is bendable but has excellent impact resistance.
  • the optical laminate 1 of the above-described embodiment satisfies each of the rigidity of the adhesive layer 3 and the indentation elastic modulus of the adhesive layer 3, but for example, instead of the above-mentioned physical properties, the optical laminate 1 is an optical laminate. It is also possible to solve the problem of the present invention by satisfying each of the pen drop test, the pencil hardness, and the flexibility test.
  • ⁇ Pen drop test> As shown in FIG. 1, the optical laminate 1 is placed on the surface of the stainless steel horizontal table 34 so that the glass plate 2 faces upward. Next, a pen drop test is performed in which a 7 g pen 29 is dropped from a height of 5 cm from the glass plate 2. The above-mentioned height is the distance between one side of the glass plate 2 in the thickness direction and the tip portion 35 of the pen 29. The tip 35 faces downward and is pointed.
  • the pen 29 is a ballpoint pen manufactured by Pentel, has a model number "BK407 black", and has a ball diameter of 0.7 mm.
  • the height of the pen drop test becomes 5 cm. If the glass plate 2 does not crack, raise the height by 1 cm. This operation is repeated until the glass plate 2 is broken.
  • the glass plate 2 was not cracked in the pen drop test with a height of 5 cm.
  • a pen drop test in which a 7 g pen 29 is dropped from a height of 5 cm from the glass plate 2, if the glass plate 2 is cracked, the impact resistance of the optical laminate 1 is lowered.
  • the glass plate 2 is not cracked, and more preferably, a 7 g pen 29 is dropped from a height of 15 cm from the glass plate 2. In the pen drop test of dropping, the glass plate 2 is not cracked.
  • ⁇ Pencil hardness> The pencil hardness of the optical laminate 1 is 5H or more. On the other hand, when the pencil hardness of the optical laminate 1 is 4H or less, the scratch resistance of the optical laminate 1 is lowered. Pencil hardness is measured according to JIS K 5600-5-4 (1999).
  • the pencil hardness of the optical laminate 1 is preferably 6H or more, more preferably 7H or more, still more preferably 8H or more, and particularly preferably 9H or more.
  • the glass plate 2 is bent 180 ° so that the bending radius is 3 mm in the concave direction, and then stretched again as one set, and 43 sets per minute.
  • the operation is performed at a high speed, the number of sets until a crack is generated in the optical laminate 1 is measured.
  • the bending test of the optical laminate 1 is less than 100,000 times, the bending resistance is lowered.
  • the flexibility test of the optical laminate 1 is preferably 1,000 or more times.
  • the optical laminate 1 of another modification satisfies each of the rigidity of the adhesive layer 3 and the indentation elastic modulus of the adhesive layer 3, and in addition, the pen drop test, the pencil hardness, and the like. Satisfy each with the flexibility test. As a result, the optical laminate 1 is further excellent in impact resistance and bending resistance.
  • the optical member 4 includes three layers of a polarizing element protective film 5, a polarizing element 6, and an optical compensation layer 7, but the number of layers of the optical member 4 is not limited. It may be a single layer (see FIG. 4), two layers, four layers or more.
  • the optical member 4 has two layers, for example, a polarizing element 6 and an optical compensation layer 7 are provided, although not shown.
  • the optical member 4 can further include a second adhesive layer interposed between the polarizing element protective film 5 and the polarizing element 6. Further, the optical member 4 can further include a third adhesive layer interposed between the polarizing element 6 and the optical compensation layer 7.
  • the materials of the second adhesive layer and the third adhesive layer are, for example, the same as the materials of the adhesive layer 3 described above.
  • the thickness of each of the second adhesive layer and the third adhesive layer is, for example, 0.1 ⁇ m or more, and for example, 2 ⁇ m or less.
  • FIG. 4 shows a modified example in which the optical member 4 is a single layer.
  • the optical member 4 is a film 40.
  • the film 40 include a polyester film and a cell roll film.
  • the polyester film include polyethylene terephthalate film (PET), polybutylene terephthalate (PBT) film, and polyethylene naphthalate (PEN) film.
  • the cell roll film include acetyl cell roll fill, and specific examples thereof include a triacetyl cell roll (TAC) film.
  • TAC triacetyl cell roll
  • As the film 40 a polyester film is mentioned, and more preferably, a PET film is mentioned from the viewpoint of improving the impact resistance of the optical laminate 1.
  • the thickness of the film 40 is the same as the thickness of the optical member 4 described above.
  • the pressure-sensitive adhesive layer 12 can be attached to the optical layered body 1 to manufacture the optical laminated body 9 with the pressure-sensitive adhesive layer.
  • the optical laminate 9 with an adhesive layer includes an optical laminate 1 and an adhesive layer 12 arranged on one side of the optical laminate 1 in the thickness direction.
  • the pressure-sensitive adhesive layer 12 forms one side in the thickness direction of the optical laminate 9 with the pressure-sensitive adhesive layer.
  • the pressure-sensitive adhesive layer 12 is arranged on one side of the optical member 4 in the thickness direction. Specifically, the pressure-sensitive adhesive layer 12 is in contact with one side of the optical member 4 in the thickness direction.
  • the optical laminate 9 with an adhesive layer includes a glass plate 2, an adhesive layer 3, an optical member 4, and an adhesive layer 12 in order toward one side in the thickness direction.
  • the pressure-sensitive adhesive layer 12 is a pressure-sensitive adhesive body that adheres pressure-sensitively without a curing reaction.
  • the material of the pressure-sensitive adhesive layer 12 is the same as that of the pressure-sensitive adhesive layer 12 exemplified in the optical laminate 1.
  • the indentation elastic modulus of the pressure-sensitive adhesive layer 12 at 25 ° C. measured by the nanoindenter method is less than 1 GPa, preferably 0.2 GPa or less, and is, for example, 0.01 MPa or more. If the indentation elastic modulus of the pressure-sensitive adhesive layer 12 is equal to or higher than the above-mentioned upper limit, the pressure-sensitive adhesive layer 12 cannot adhere to the conductive film 13.
  • the thickness of the pressure-sensitive adhesive layer 12 is, for example, 5 ⁇ m or more, preferably 10 ⁇ m or more, and for example, 50 ⁇ m or less, preferably 25 ⁇ m or less.
  • the thickness of the optical laminate 9 with the pressure-sensitive adhesive layer is, for example, 30 ⁇ m or more, and is, for example, 250 ⁇ m or less.
  • the optical laminate 9 with an adhesive layer is provided in the organic EL display device 10.
  • the optical laminate 1 is attached to the conductive film 13 via the pressure-sensitive adhesive layer 12.
  • the rigidity of the optical member 4 is 45 mm or more. If the rigidity of the optical member 4 is less than 45 mm, the impact resistance of the optical laminate 9 with the adhesive layer is lowered.
  • the rigidity of the optical member 4 is preferably 50 mm or more, more preferably 55 mm or more. When the rigidity and softness of the optical member 4 is equal to or higher than the above-mentioned lower limit, the impact resistance of the optical laminate 9 with the pressure-sensitive adhesive layer can be improved.
  • the optical laminate 9 with an adhesive layer includes the above-mentioned optical laminate 1, and the rigidity of the optical member 4 is set to 45 mm or more to make the optical member 4 hard, so that the impact resistance can also be improved. can. Further, since the optical laminate 9 with the pressure-sensitive adhesive layer includes the pressure-sensitive adhesive layer 12, it can be easily attached to the conductive film 13, and the organic EL display device 10 can be easily manufactured.
  • the optical laminate 1 of one embodiment has an optical member 4 having a rigidity of 30 mm or more and is excellent in impact resistance.
  • the optical laminate 1 is advantageous over the optical laminate 9 with an adhesive layer in that the optical member 4 having a lower rigidity and softness can be mastered.
  • the rigidity of the optical member 4 is 50 mm or more, the impact resistance of the optical laminate 9 with the adhesive layer can be further improved.
  • FIG. 6 shows an optical laminate 9 with an adhesive layer including an optical member 4 made of a film 40 and an adhesive layer 12.
  • the optical laminate 9 with an adhesive layer includes a glass plate 2, an adhesive layer 3, an optical member 4 made of a film 40, and an adhesive layer 12 in order toward one side in the thickness direction.
  • the optical laminate 1 may further include a functional layer 37 arranged on the other side (back surface) of the glass plate 2 in the thickness direction.
  • the functional layer 37 include a hard coat layer, a shatterproof layer, an antifouling layer, and an antireflection layer. These may be a single layer or a plurality of laminated layers.
  • Example 1 A glass plate 2 (G-leaf) having a thickness of 50 ⁇ m was prepared. Further, 20 parts by mass of 4-hydroxybutyl acrylate, 80 parts by mass of N- (2-hydroxyethyl) acrylamide, and 0.5 parts by mass of a photopolymerization initiator (Irgacure 819, manufactured by BASF) are blended and bonded to acrylic. An agent composition was prepared. The acrylic adhesive composition was applied to the glass plate 2, and then the acrylic adhesive composition was sandwiched between the glass plate 2 and the optical member 4.
  • a photopolymerization initiator Irgacure 819, manufactured by BASF
  • the optical member 4 includes a polarizing element protective film 5, a polarizing element 6, and an optical compensation layer 7. Further, the optical member 4 has a second adhesive layer interposed between the polarizing element protective film 5 and the polarizing element 6, and a third adhesive layer interposed between the polarizing element 6 and the optical compensation layer 7. Further prepare.
  • the polarizing element protective film 5 is a (meth) acrylic resin film having a lactone ring structure described in Example 1 of JP-A-2008-170717.
  • the polarizing element 6 is the stretched PVA film described in Example 1 of JP-A-2017-102443.
  • the optical compensation layer 7 is the ⁇ / 4 plate and the ⁇ / 2 plate described in Example 4 of JP-A-2017-102443.
  • the thickness of the polarizing element protective film 5 is 40 ⁇ m
  • the thickness of the second adhesive layer is 1 ⁇ m
  • the thickness of the polarizing element 6 is 5 ⁇ m
  • the thickness of the third adhesive layer is 1 ⁇ m
  • the thickness of the optical compensation layer 7 is 4 ⁇ m.
  • the thickness of the optical laminate 1 was 51 ⁇ m.
  • the curable adhesive was irradiated with ultraviolet rays from the glass plate 2 side.
  • an adhesive layer 3 made of a cured body that firmly adheres the glass plate 2 and the optical member 4 was formed.
  • an optical laminate 1 having a glass plate 2, an adhesive layer 3, and an optical member 4 in order toward one side in the thickness direction was produced.
  • Comparative Example 1 An optical laminate 1 was produced in the same manner as in Example 1 except that the adhesive layer was placed on the optical laminate 1 instead of the adhesive layer 3 and was not irradiated with ultraviolet rays.
  • the pressure-sensitive adhesive layer was prepared as follows.
  • a monomer composition was prepared by blending 0.015 parts by mass of "Irgacure 184" manufactured by BASF as an initiator. The monomer composition was irradiated with ultraviolet rays to polymerize the monomers to obtain a prepolymer composition (polymerization rate; about 10%).
  • the above-mentioned photocurable pressure-sensitive adhesive composition was applied to the surface of the optical member 4 so as to have a thickness of 25 ⁇ m to form a coating layer.
  • the glass plate 2 was attached to this coating layer.
  • This photo-curable pressure-sensitive adhesive composition is photo-cured by irradiating it with ultraviolet rays from the glass plate 2 side with a black light whose position is adjusted so that the irradiation intensity on the irradiation surface directly under the lamp is 5 mW / cm 2.
  • a 25 ⁇ m pressure-sensitive adhesive layer was formed.
  • an optical laminate 1 having a glass plate 2, an adhesive layer, and an optical member 4 in order toward one side in the thickness direction was produced.
  • Comparative Example 2 An optical laminate 1 was produced in the same manner as in Example 1 except that the polarizing element protective film 5 was changed to a cycloolefin polymer film (ZT-12 manufactured by Nippon Zeon Corporation, thickness 13 ⁇ m).
  • Example 2 A pressure-sensitive adhesive layer 12 having a thickness of 15 ⁇ m was placed on one surface of the optical laminate 1 of Example 1 in the thickness direction by transfer. As a result, an optical laminate 9 with an adhesive layer including the optical laminate 1 and the adhesive layer 12 was manufactured.
  • the pressure-sensitive adhesive layer 12 was prepared as follows.
  • LA lauryl acrylate
  • EHA 2-ethylhexyl acrylate
  • HBA 4-hydroxybutyl acrylate
  • NDP N-vinyl-2-pyrrolidone
  • BASF BASF
  • DCPMA dicyclopentanyl methacrylate
  • MMA methyl methacrylate
  • ⁇ -thioglycerol 100 parts by mass of toluene
  • reaction solution was heated to 130 ° C., and toluene, the chain transfer agent and the unreacted monomer were dried and removed to obtain a solid acrylic oligomer.
  • the weight average molecular weight of the acrylic oligomer was 5100.
  • the glass transition temperature (Tg) was 130 ° C.
  • the pressure-sensitive adhesive composition is applied to the surface of a release sheet made of PET film (Mitsubishi Chemical "Diafoil MRF75”), and then a release sheet made of another PET film (Mitsubishi Chemical "Diafoil MRF75”) is applied. It was attached to the film. Then, the coating film was irradiated with ultraviolet rays to prepare an adhesive layer 12 having a thickness of 15 ⁇ m.
  • the pressure-sensitive adhesive layer 12 at 25 ° C. measured by the nanoindenter method was 0.00011 GPa.
  • Comparative Example 3 The pressure-sensitive adhesive layer 12 of Example 2 was placed on one side of the optical laminate 1 of Comparative Example 1 in the thickness direction by transfer to produce an optical laminate 9 with a pressure-sensitive adhesive layer.
  • Comparative Example 4 The pressure-sensitive adhesive layer 12 of Example 2 was placed on one side of the optical laminate 1 of Comparative Example 2 in the thickness direction by transfer to produce an optical laminate 9 with a pressure-sensitive adhesive layer.
  • Example 3 An optical laminate 9 with an adhesive layer was manufactured in the same manner as in Example 2. However, as the optical member 4, a film 40 (Diafoil S100, manufactured by Mitsubishi Chemical Corporation) made of a polyethylene terephthalate film having a thickness of 50 ⁇ m was used.
  • a film 40 (Diafoil S100, manufactured by Mitsubishi Chemical Corporation) made of a polyethylene terephthalate film having a thickness of 50 ⁇ m was used.
  • Example 4 An optical laminate 9 with an adhesive layer was manufactured in the same manner as in Example 2. However, as the optical member 4, a triacetyl cellulose film (KC4UYW, manufactured by Konica Minolta) having a thickness of 40 ⁇ m was used.
  • a triacetyl cellulose film (KC4UYW, manufactured by Konica Minolta) having a thickness of 40 ⁇ m was used.
  • Comparative Example 5 An optical laminate 9 with an adhesive layer was manufactured in the same manner as in Example 2. However, as the film 40, an acrylic film obtained by forming a methacrylic resin pellet having a glutarimide ring unit into a film by extrusion molding and then stretching the film was used. The thickness of the acrylic film was 40 ⁇ m.
  • the indentation elastic modulus of the adhesive layer 3 at 25 ° C. in Examples 1 to 4, Comparative Example 2, Comparative Example 4 and Comparative Example 5 was measured based on the nanoindenter method.
  • the measurement target is the adhesive layer 3 arranged between the glass plate 2 and the optical member 4.
  • the measurement conditions of the nanoindenter method are as follows. As a result, the indentation elastic modulus of the adhesive layer 3 at 25 ° C. was 5 GPa.
  • the indentation elastic modulus of the pressure-sensitive adhesive layer in Comparative Example 1 and Comparative Example 3 was measured based on the nanoindenter method.
  • the measurement target is an adhesive layer arranged between the glass plate 2 and the optical member 4.
  • the measurement conditions of the nanoindenter method are the same as above.
  • the indentation depth was set to 1500 nm.
  • the indentation elastic modulus of the pressure-sensitive adhesive layer at 25 ° C. was 0.00011 GPa (0.11 MPa).
  • the acrylic adhesive composition used in Examples 1 to 4, Comparative Example 2, Comparative Example 4 and Comparative Example 5 was applied to the surface of the release film, and then irradiated with ultraviolet rays to prepare a film (cured body). did.
  • the film was peeled from the release film.
  • the tensile storage elastic modulus E'of the film was determined by measuring the dynamic viscoelasticity of the film in a temperature dispersion mode under the conditions of a frequency of 1 Hz and a heating rate of 5 ° C./min. As a result, the tensile storage elastic modulus E'of the adhesive layer 3 at 25 ° C. was 3.4 GPa.
  • the acrylic adhesive used in Comparative Example 1 and Comparative Example 3 was externally processed into a disk shape, sandwiched between parallel plates, and dynamically viscoelastic under the following conditions using "Advanced Rheometric Expansion System (ARES)” manufactured by Rheometric Scientific.
  • the shear storage elastic modulus G'at 25 ° C. of the pressure-sensitive adhesive layer was determined by the elastic measurement.
  • the shear storage elastic modulus G'of the pressure-sensitive adhesive layer at 25 ° C. was 0.00003 GPa (0.03 MPa).
  • the optical laminate is provided in the image display device.

Abstract

This optical multilayer body 1 is provided with a glass plate 2, an adhesive layer 3 and an optical member 4 sequentially toward one side in the thickness direction. The adhesive layer 3 is in contact with a surface of the glass plate 2, said surface being on one side in the thickness direction, and a surface of the optical member 4, said surface being on the other side in the thickness direction. The optical member 4 has a thickness of 70 μm or less. The optical member 4 does not contain an adhesive layer. The bending resistance of the optical member 4 as obtained in accordance with the method A that is set forth in JIS L 1096 (2010) is 30 mm or more. The indentation elastic modulus of the adhesive layer 3 at 25°C as determined by a nanoindentation method is 1 GPa or more.

Description

光学積層体、粘着剤層付き光学積層体および画像表示装置Optical laminate, optical laminate with adhesive layer and image display device
 本発明は、ガラス板を備える光学積層体、粘着剤層付き光学積層体および画像表示装置に関する。 The present invention relates to an optical laminate provided with a glass plate, an optical laminate with an adhesive layer, and an image display device.
 従来、カバーウインドウ材と、接着剤層と、光学部材とを備える光学積層体が画像表示装置に備えられることが知られている。 Conventionally, it is known that an optical laminate including a cover window material, an adhesive layer, and an optical member is provided in an image display device.
 例えば、カバーウインドウ材としてのガラス板と、接着剤層と、光学部材としてのポリエチレンテレフタレート(PET)フィルムとを備える光学積層体が提案されている(例えば、下記特許文献1参照。)。ガラス板は、光学特性に優れる一方、耐衝撃性が低い。耐衝撃性は、ガラス板が衝撃を受けたときに、ガラス板にクラックなどの損傷を抑制する性質である。 For example, an optical laminate including a glass plate as a cover window material, an adhesive layer, and a polyethylene terephthalate (PET) film as an optical member has been proposed (see, for example, Patent Document 1 below). The glass plate has excellent optical properties but low impact resistance. Impact resistance is a property of suppressing damage such as cracks in the glass plate when the glass plate is impacted.
 特許文献1では、ガラス板とポリエチレンテレフタレートフィルムとを接着剤層によって接合することによって、光学積層体の耐屈曲性を向上している。耐屈曲性は、光学積層体を折り曲げたときにガラス板にクラックなどの損傷を抑制する性質である。 In Patent Document 1, the bending resistance of the optical laminate is improved by joining the glass plate and the polyethylene terephthalate film with an adhesive layer. Bending resistance is a property of suppressing damage such as cracks in the glass plate when the optical laminate is bent.
特開2019-25899号公報Japanese Unexamined Patent Publication No. 2019-25899
 しかし、特許文献1に記載の光学積層体では、光学部材の剛軟度についての示唆はなく、そのため、衝撃性が十分ではない。 However, in the optical laminate described in Patent Document 1, there is no suggestion about the rigidity and softness of the optical member, and therefore the impact resistance is not sufficient.
 本発明は、耐衝撃性および耐屈曲性に優れる光学積層体、粘着剤層付き光学積層体および画像表示装置を提供する。 The present invention provides an optical laminate having excellent impact resistance and bending resistance, an optical laminate with an adhesive layer, and an image display device.
 そこで、本願発明者らは、鋭意検討した結果、光学部材を硬くし、さらに、接着剤層を硬くすることによって、光学積層体の耐衝撃性および耐屈曲性を向上できることを見出した。 Therefore, as a result of diligent studies, the inventors of the present application have found that the impact resistance and bending resistance of the optical laminate can be improved by hardening the optical member and further hardening the adhesive layer.
 本発明(1)は、ガラス板と、接着剤層と、光学部材とを厚み方向一方側に向かって順に備え、前記接着剤層は、前記ガラス板の厚み方向一方面および前記光学部材の厚み方向他方面と接触し、前記光学部材の厚みが、70μm以下であり、前記光学部材は、粘着剤層を含まず、JIS L 1096(2010)に記載のA法に従って求められる前記光学部材の剛軟度が、30mm以上であり、ナノインデンター法で測定される25℃における前記接着剤層の押し込み弾性率が、1GPa以上である、光学積層体を含む。 In the present invention (1), a glass plate, an adhesive layer, and an optical member are provided in order toward one side in the thickness direction, and the adhesive layer is provided on one side in the thickness direction of the glass plate and the thickness of the optical member. The optical member is in contact with the other surface in the direction, the thickness of the optical member is 70 μm or less, the optical member does not contain an adhesive layer, and the rigidity of the optical member obtained according to the method A described in JIS L 1096 (2010). Includes an optical laminate having a softness of 30 mm or more and an indentation elasticity of the adhesive layer at 25 ° C. as measured by the nanoindenter method of 1 GPa or more.
 本発明(2)は、前記接着剤層の厚みは、5μm以下である、(1)に記載の光学積層体を含む。 The present invention (2) includes the optical laminate according to (1), wherein the thickness of the adhesive layer is 5 μm or less.
 本発明(3)は、前記ガラス板の厚みが、100μm以下である、(1)または(2)に記載の光学積層体を含む。 The present invention (3) includes the optical laminate according to (1) or (2), wherein the thickness of the glass plate is 100 μm or less.
 本発明(4)は、ガラス板と、接着剤層と、光学部材とを厚み方向一方側に向かって順に備える光学積層体であって、前記接着剤層は、前記ガラス板の厚み方向一方面および前記光学部材の厚み方向他方面と接触し、前記光学部材の厚みが、70μm以下であり、前記光学部材は、粘着剤層を含まず、前記ガラス板から5cmの高さから7g、ボール径0.7mmのボールペンを落下させるペンドロップ試験で、前記ガラス板に割れがなく、前記光学積層体の鉛筆硬度が、5H以上で、下記の屈曲性試験は、100,000回以上である、光学積層体を含む。 The present invention (4) is an optical laminate provided with a glass plate, an adhesive layer, and an optical member in order toward one side in the thickness direction, and the adhesive layer is one surface in the thickness direction of the glass plate. The optical member is in contact with the other surface in the thickness direction of the optical member, and the thickness of the optical member is 70 μm or less. In the pen drop test in which a 0.7 mm ballpoint pen is dropped, the glass plate is not cracked, the pencil hardness of the optical laminate is 5H or more, and the following flexibility test is 100,000 times or more. Includes laminate.
 屈曲性試験:前記光学積層体を伸ばした状態から、ガラス板の表面が凹となる方向に屈曲半径が3mmとなるように180°折り曲げ、再び伸ばす動作を1セットとし、1分間に43セットの速さで前記動作を実施したときに、前記光学積層体にクラックが生じるまでのセット数を測定する。 Flexibility test: From the stretched state of the optical laminate, bend 180 ° so that the bending radius is 3 mm in the direction in which the surface of the glass plate becomes concave, and stretch it again as one set, and 43 sets per minute. When the operation is performed at a high speed, the number of sets until cracks occur in the optical laminate is measured.
 本発明(5)は、(1)~(4)のいずれか一項に記載の光学積層体と、前記光学積層体の前記光学部材の厚み方向一方面に配置される粘着剤層とを備え、前記光学部材の剛軟度が、45mm以上であり、ナノインデンター法で測定される25℃における前記粘着剤層の押し込み弾性率が、1GPa未満である、粘着剤層付き光学積層体を含む。 The present invention (5) includes the optical laminate according to any one of (1) to (4) and an adhesive layer arranged on one side of the optical member of the optical laminate in the thickness direction. Includes an optical laminate with an adhesive layer, wherein the optical member has a stiffness of 45 mm or more and the indentation elastic modulus of the adhesive layer at 25 ° C. measured by the nanoindenter method is less than 1 GPa. ..
 本発明(6)は、前記光学部材の剛軟度が、50mm以上である、(5)に記載の粘着剤層付き光学積層体。 The present invention (6) is the optical laminate with an adhesive layer according to (5), wherein the optical member has a rigidity of 50 mm or more.
 本発明(7)は、折曲げ可能であって、(1)~(4)のいずれか一項の光学積層体、または、(5)または(6)に記載の粘着剤層付き光学積層体と、画像表示部材とを厚み方向一方側に向かって順に備える、画像表示装置を含む。 The present invention (7) is bendable and is the optical laminate according to any one of (1) to (4), or the optical laminate with an adhesive layer according to (5) or (6). And an image display member, the image display member and the image display member are provided in order toward one side in the thickness direction.
 本発明の光学積層体および粘着剤層付き光学積層体では、光学部材の剛軟度を高くし、光学部材を硬くしつつ、さらに、接着剤層の押し込み弾性率を高くして接着剤層も硬くするので、光学部材を薄くして、光学積層体の耐屈曲性を向上させることができながら、耐衝撃性も向上させることができる。 In the optical laminate and the optical laminate with an adhesive layer of the present invention, the rigidity of the optical member is increased to make the optical member harder, and the indentation elasticity of the adhesive layer is also increased to increase the adhesive layer. Since it is made hard, the optical member can be made thin, and the bending resistance of the optical laminate can be improved, while the impact resistance can also be improved.
 本発明の画像表示装置は、耐衝撃性および耐屈曲性に優れる光学積層体または粘着剤層付き光学積層体を備えるので、折曲げ可能でありながら、耐衝撃性に優れる。 Since the image display device of the present invention includes an optical laminate having excellent impact resistance and bending resistance or an optical laminate with an adhesive layer, it is bendable but has excellent impact resistance.
図1は、本発明の光学積層体の一実施形態の断面図である。FIG. 1 is a cross-sectional view of an embodiment of the optical laminate of the present invention. 図2は、図1に示す光学積層体を備える有機エレクトロルミネセンス表示装置の断面図である。FIG. 2 is a cross-sectional view of an organic electroluminescence display device including the optical laminate shown in FIG. 図3A~図3Bは、45°カンチレバー法を説明する斜視図であり、図3Aが、サンプルを上面に配置した状態、図3Bが、サンプルを水平方向一方側に押し出した状態を示す。3A to 3B are perspective views illustrating the 45 ° cantilever method, FIG. 3A shows a state in which the sample is placed on the upper surface, and FIG. 3B shows a state in which the sample is extruded to one side in the horizontal direction. 図4は、光学積層体の変形例の断面図である。FIG. 4 is a cross-sectional view of a modified example of the optical laminate. 図5は、粘着剤層付き光学積層体の変形例の断面図である。FIG. 5 is a cross-sectional view of a modified example of the optical laminate with an adhesive layer. 図6は、粘着剤層付き光学積層体の変形例の断面図である。FIG. 6 is a cross-sectional view of a modified example of the optical laminate with an adhesive layer.
 <光学積層体>
 本発明の光学積層体の一実施形態を、図1を参照して説明する。
<Optical laminate>
An embodiment of the optical laminate of the present invention will be described with reference to FIG.
 この光学積層体1は、例えば、厚み方向に直交する面方向に延びる平板形状を有する。光学積層体1は、例えば、面方向に間隔を隔てて対向する2つの辺30の間に位置する屈曲部33を中心にして折り曲げ可能(bendable)に構成され、より好ましくは、折り畳み可能(foldable)に構成されている。光学積層体1は、ガラス板2と、接着剤層3と、光学部材4とを厚み方向一方側に向かって順に備える。好ましくは、この光学積層体1は、ガラス板2と、接着剤層3と、光学部材4とのみを備える。 The optical laminate 1 has, for example, a flat plate shape extending in a plane direction orthogonal to the thickness direction. The optical laminate 1 is configured to be bendable around a bent portion 33 located between two sides 30 facing each other with a space between them in the plane direction, and more preferably, the optical laminate 1 is foldable. ). The optical laminate 1 includes a glass plate 2, an adhesive layer 3, and an optical member 4 in order toward one side in the thickness direction. Preferably, the optical laminate 1 includes only a glass plate 2, an adhesive layer 3, and an optical member 4.
 <ガラス板>
 ガラス板2は、面方向に延びる。ガラス板2は、光学積層体1における厚み方向他方面を形成する。ガラス板2の厚みは、例えば、15μm以上、好ましくは、30μm以上であり、また、例えば、150μm以下、好ましくは、100μm以下、より好ましくは、75μm以下である。ガラス板2の厚みが上記した下限以上であれば、光学積層体1の耐衝撃性を確保できる。ガラス板2の厚みが上記した上限以下であれば、光学積層体1を薄くでき、光学積層体1の耐屈曲性に優れる。また、ガラス板2の厚みが上記した上限以下であれば、ガラス板2は、薄ガラス板と称呼される。ガラス板2の全光線透過率は、例えば、80%以上、好ましくは、85%以上であり、また、例えば、99%以下である。ガラス板2は、市販品を用いることができ、例えば、G-leafシリーズ(登録商標、日本電気硝子社製)を用いることができる。
<Glass plate>
The glass plate 2 extends in the plane direction. The glass plate 2 forms the other surface in the thickness direction of the optical laminate 1. The thickness of the glass plate 2 is, for example, 15 μm or more, preferably 30 μm or more, and for example, 150 μm or less, preferably 100 μm or less, and more preferably 75 μm or less. When the thickness of the glass plate 2 is equal to or greater than the above-mentioned lower limit, the impact resistance of the optical laminate 1 can be ensured. When the thickness of the glass plate 2 is not more than the above-mentioned upper limit, the optical laminated body 1 can be thinned, and the bending resistance of the optical laminated body 1 is excellent. Further, if the thickness of the glass plate 2 is equal to or less than the above-mentioned upper limit, the glass plate 2 is referred to as a thin glass plate. The total light transmittance of the glass plate 2 is, for example, 80% or more, preferably 85% or more, and for example, 99% or less. As the glass plate 2, a commercially available product can be used, and for example, the G-leaf series (registered trademark, manufactured by Nippon Electric Glass Co., Ltd.) can be used.
 <接着剤層>
 接着剤層3は、面方向に延びる。接着剤層3は、ガラス板2の厚み方向一方面に接触している。接着剤層3は、粘着剤(感圧接着剤)からなる粘着剤層(感圧接着剤層)ではなく、硬化型接着剤の硬化体である。詳しくは、接着剤層3は、粘着力が経時的に実質的に変動しない粘着剤層ではなく、活性エネルギー線の照射または加熱よって硬化反応する硬化型接着剤の硬化体である。
<Adhesive layer>
The adhesive layer 3 extends in the plane direction. The adhesive layer 3 is in contact with one side of the glass plate 2 in the thickness direction. The adhesive layer 3 is not a pressure-sensitive adhesive layer (pressure-sensitive adhesive layer) made of a pressure-sensitive adhesive (pressure-sensitive adhesive), but a cured product of a curable adhesive. Specifically, the adhesive layer 3 is not a pressure-sensitive adhesive layer whose adhesive strength does not substantially change with time, but a cured product of a curable adhesive that undergoes a curing reaction by irradiation with active energy rays or heating.
 硬化型接着剤は、接着剤層3の硬化原料であって、活性エネルギー硬化型、熱硬化型などが挙げられ、好ましくは、活性エネルギー硬化型が挙げられる。具体的には、硬化型接着剤としては、例えば、アクリル接着剤組成物、エポキシ接着剤組成物、シリコーン接着剤組成物などが挙げられ、透光性の観点から、アクリル接着剤組成物が挙げられる。 The curable adhesive is a curing raw material for the adhesive layer 3, and examples thereof include an active energy curing type and a thermosetting type, and an active energy curing type is preferable. Specifically, examples of the curable adhesive include an acrylic adhesive composition, an epoxy adhesive composition, a silicone adhesive composition, and the like, and from the viewpoint of translucency, an acrylic adhesive composition can be mentioned. Be done.
 アクリル接着剤組成物は、例えば、官能基を含有する官能基含有(メタ)アクリルエステルモノマーと、共重合性モノマーとを含むモノマー成分を含む。 The acrylic adhesive composition contains, for example, a monomer component containing a functional group-containing (meth) acrylic ester monomer containing a functional group and a copolymerizable monomer.
 官能基含有(メタ)アクリルエステルモノマーは、官能基含有メタクリルエステルモノマーおよび/または官能基含有アクリルエステルモノマーである。(メタ)の定義は、以下同様である。官能基としては、例えば、ヒドロキシル基、アミノ基、複素環基、ラクトン環基などが挙げられる。具体的には、官能基含有(メタ)アクリルエステルモノマーとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレートなどのヒドロキシル基含有(メタ)アクリルエステルモノマー、例えば、ジメチルアミノエチル(メタ)アクリレート、ジメチルアミノプロピル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレートなどのアミノ基含有(メタ)アクリルエステルモノマー、例えば、テトラヒドロフルフリル(メタ)アクリレート、グリシジル(メタ)アクリレート、ペンタメチルピペリジニル(メタ)アクリレート、テトラメチルピペリジニル(メタ)アクリレートなどの複素環基含有(メタ)アクリルエステルモノマー、例えば、γ-ブチロラクトン(メタ)アクリレートモノマーなどのラクトン環基含有(メタ)アクリルエステルモノマーなどが挙げられる。好ましくは、ヒドロキシル基含有(メタ)アクリルエステルモノマーが挙げられる。モノマー成分における官能基含有(メタ)アクリルエステルモノマーの割合は、例えば、5質量%以上、好ましくは、10質量%以上であり、また、例えば、60質量%以下、好ましくは、40質量%以下である。 The functional group-containing (meth) acrylic ester monomer is a functional group-containing methacrylic ester monomer and / or a functional group-containing acrylic ester monomer. The definition of (meta) is the same as follows. Examples of the functional group include a hydroxyl group, an amino group, a heterocyclic group, a lactone ring group and the like. Specifically, the functional group-containing (meth) acrylic ester monomer contains a hydroxyl group such as 2-hydroxyethyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, and 4-hydroxybutyl (meth) acrylate. Amino group-containing (meth) acrylic ester monomers such as (meth) acrylic ester monomers, such as dimethylaminoethyl (meth) acrylates, dimethylaminopropyl (meth) acrylates, diethylaminoethyl (meth) acrylates, such as tetrahydrofurfuryl (meth). ) Heterocyclic group-containing (meth) acrylic ester monomers such as acrylates, glycidyl (meth) acrylates, pentamethylpiperidinyl (meth) acrylates, tetramethylpiperidinyl (meth) acrylates, such as γ-butyrolactone (meth) acrylates. Examples thereof include a lactone ring group-containing (meth) acrylic ester monomer such as a monomer. Preferred are hydroxyl group-containing (meth) acrylic ester monomers. The ratio of the functional group-containing (meth) acrylic ester monomer in the monomer component is, for example, 5% by mass or more, preferably 10% by mass or more, and for example, 60% by mass or less, preferably 40% by mass or less. be.
 共重合性モノマーは、官能基含有(メタ)アクリルエステルモノマーと共重合可能なビニルモノマーである。共重合性モノマーとしては、(メタ)アクリロニトリルなどのシアノ基含有ビニルモノマー、例えば、(メタ)アクリルアミド、ジメチル(メタ)アクリルアミド、ジメチルアミノプロピル(メタ)アクリルアミド、イソプロピル(メタ)アクリルアミド、ジエチル(メタ)アクリルアミド、(メタ)アクリロイルモルホリンなどのアミド基含有ビニルモノマーなどが挙げられる。好ましくは、アミド基含有ビニルモノマーが挙げられる。なお、アミド基含有ビニルモノマーは、ヒドロキシル基を有してもよく、そのようなアミド基含有ビニルモノマーとしては、例えば、N-(2-ヒドロキシエチル)(メタ)アクリルアミド、N-(2-ヒドロキシプロピル)(メタ)アクリルアミド、N-(1-ヒドロキシプロピル)(メタ)アクリルアミド、N-(3-ヒドロキシプロピル)(メタ)アクリルアミド、N-(2-ヒドロキシブチル)(メタ)アクリルアミド、N-(3-ヒドロキシブチル)(メタ)アクリルアミド、N-(4-ヒドロキシブチル)(メタ)アクリルアミドなどのヒドロキシアルキル(メタ)アクリルアミドが挙げられる。好ましくは、N-(2-ヒドロキシエチル)(メタ)アクリルアミドが挙げられる。モノマー成分における共重合性モノマーの割合は、例えば、40質量%以上、好ましくは、60質量%以上であり、また、例えば、95質量%以下、好ましくは、90質量%以下である。官能基含有(メタ)アクリルエステルモノマー100質量部に対する共重合性モノマーの質量部数は、例えば、50質量部以上、好ましくは、200質量部以上であり、また、例えば、1,000質量部以下、好ましくは、500質量部以下である。 The copolymerizable monomer is a vinyl monomer copolymerizable with the functional group-containing (meth) acrylic ester monomer. Examples of the copolymerizable monomer include cyano group-containing vinyl monomers such as (meth) acrylonitrile, for example, (meth) acrylamide, dimethyl (meth) acrylamide, dimethylaminopropyl (meth) acrylamide, isopropyl (meth) acrylamide, and diethyl (meth). Examples thereof include amide group-containing vinyl monomers such as acrylamide and (meth) acryloylmorpholine. Preferred are amide group-containing vinyl monomers. The amide group-containing vinyl monomer may have a hydroxyl group, and examples of such an amide group-containing vinyl monomer include N- (2-hydroxyethyl) (meth) acrylamide and N- (2-hydroxy). Propyl) (meth) acrylamide, N- (1-hydroxypropyl) (meth) acrylamide, N- (3-hydroxypropyl) (meth) acrylamide, N- (2-hydroxybutyl) (meth) acrylamide, N- (3) Examples thereof include hydroxyalkyl (meth) acrylamides such as -hydroxybutyl) (meth) acrylamide and N- (4-hydroxybutyl) (meth) acrylamide. Preferred are N- (2-hydroxyethyl) (meth) acrylamide. The proportion of the copolymerizable monomer in the monomer component is, for example, 40% by mass or more, preferably 60% by mass or more, and for example, 95% by mass or less, preferably 90% by mass or less. The number of parts by mass of the copolymerizable monomer with respect to 100 parts by mass of the functional group-containing (meth) acrylic ester monomer is, for example, 50 parts by mass or more, preferably 200 parts by mass or more, and for example, 1,000 parts by mass or less. It is preferably 500 parts by mass or less.
 なお、アクリル接着剤組成物は、公知の重合開始剤を含むことができる。モノマー成分100質量部に対する重合開始剤の質量部数は、例えば、0.3質量部以上、3質量部以下である。 The acrylic adhesive composition may contain a known polymerization initiator. The number of parts by mass of the polymerization initiator with respect to 100 parts by mass of the monomer component is, for example, 0.3 parts by mass or more and 3 parts by mass or less.
 また、上記したアクリル接着剤組成物およびその硬化体(硬化型接着剤)は、例えば、特開2013-077006号公報などに説明される。 Further, the above-mentioned acrylic adhesive composition and a cured product thereof (curable adhesive) are described in, for example, Japanese Patent Application Laid-Open No. 2013-077006.
 接着剤層3の厚みは、例えば、0.1μm以上であり、また、例えば、10μm以下、好ましくは、5μm以下、より好ましくは、3μm以下である。接着剤層3の厚みが上記した下限以上であれば、ガラス板2と光学部材4とを確実に接着できる。接着剤層3の厚みが上記した上限以下であれば、光学積層体1を薄くでき、光学積層体1の耐屈曲性に優れる。 The thickness of the adhesive layer 3 is, for example, 0.1 μm or more, and is, for example, 10 μm or less, preferably 5 μm or less, and more preferably 3 μm or less. When the thickness of the adhesive layer 3 is equal to or greater than the above-mentioned lower limit, the glass plate 2 and the optical member 4 can be reliably adhered to each other. When the thickness of the adhesive layer 3 is not more than the above-mentioned upper limit, the optical laminate 1 can be thinned, and the optical laminate 1 has excellent bending resistance.
 接着剤層3の全光線透過率は、例えば、80%以上、好ましくは、85%以上であり、また、例えば、99%以下である。 The total light transmittance of the adhesive layer 3 is, for example, 80% or more, preferably 85% or more, and for example, 99% or less.
 ナノインデンター法で測定される25℃における接着剤層3の押し込み弾性率は、1GPa以上であり、好ましくは、2GPa以上、より好ましくは、3GPa以上、さらに好ましくは、4GPa以上であり、また、例えば、100GPa以下である。接着剤層3の押し込み弾性率が1GPa未満であれば、耐衝撃性が低下する。ナノインデンター法で測定される25℃における接着剤層3の押し込み弾性率の求め方は、後の実施例で詳述する。 The indentation elastic modulus of the adhesive layer 3 at 25 ° C. measured by the nanoindenter method is 1 GPa or more, preferably 2 GPa or more, more preferably 3 GPa or more, still more preferably 4 GPa or more, and also. For example, it is 100 GPa or less. If the indentation elastic modulus of the adhesive layer 3 is less than 1 GPa, the impact resistance is lowered. The method of determining the indentation elastic modulus of the adhesive layer 3 at 25 ° C. measured by the nanoindenter method will be described in detail in a later example.
 25℃における接着剤層3の引張貯蔵弾性率E’は、例えば、1GPa以上であり、好ましくは、2GPa以上、より好ましくは、3GPa以上、さらに好ましくは、4GPa以上であり、また、例えば、100GPa以下である。接着剤層3の引張貯蔵弾性率E’が1GPa未満であれば、耐衝撃性が低下する。25℃における接着剤層3の引張貯蔵弾性率E’は、周波数1Hz、昇温速度5℃/分の条件の温度分散モードで動的粘弾性を測定することにより得られる。 The tensile storage elastic modulus E'of the adhesive layer 3 at 25 ° C. is, for example, 1 GPa or more, preferably 2 GPa or more, more preferably 3 GPa or more, still more preferably 4 GPa or more, and for example, 100 GPa or more. It is as follows. If the tensile storage elastic modulus E'of the adhesive layer 3 is less than 1 GPa, the impact resistance is lowered. The tensile storage elastic modulus E'of the adhesive layer 3 at 25 ° C. is obtained by measuring the dynamic viscoelasticity in a temperature dispersion mode under the conditions of a frequency of 1 Hz and a heating rate of 5 ° C./min.
 <光学部材>
 光学部材4は、光学積層体1の厚み方向一方面を形成する。光学部材4は、接着剤層3に対するガラス板2の反対側に位置する。光学部材4は、面方向に延びる。光学部材4は、接着剤層3の厚み方向一方面に接触している。これによって、接着剤層3は、ガラス板2の厚み方向一方面、および、光学部材4の厚み方向他方面に接触し、ガラス板2と光学部材4とを接着(接合)している。
<Optical member>
The optical member 4 forms one side of the optical laminate 1 in the thickness direction. The optical member 4 is located on the opposite side of the glass plate 2 with respect to the adhesive layer 3. The optical member 4 extends in the plane direction. The optical member 4 is in contact with one surface of the adhesive layer 3 in the thickness direction. As a result, the adhesive layer 3 is in contact with one surface of the glass plate 2 in the thickness direction and the other surface of the optical member 4 in the thickness direction, and the glass plate 2 and the optical member 4 are bonded (bonded) to each other.
 この実施形態では、光学部材4は、例えば、偏光子保護フィルム5と、偏光子6と、光学補償層7とを厚み方向一方側に向かって順に備える。光学部材4は、上記したような積層体であり、粘着力が経時的に実質的に変動しない粘着剤層を含まない。 In this embodiment, the optical member 4 includes, for example, a polarizing element protective film 5, a polarizing element 6, and an optical compensation layer 7 in order toward one side in the thickness direction. The optical member 4 is a laminated body as described above, and does not include an adhesive layer whose adhesive strength does not substantially change with time.
 <偏光子保護フィルム>
 偏光子保護フィルム5は、光学部材4の厚み方向他方面を形成する。偏光子保護フィルム5は、面方向に延びる。偏光子保護フィルム5は、次に説明する偏光子6を厚み方向他方側から保護する。偏光子保護フィルム5は、等方性を有する。偏光子保護フィルム5の材料は、例えば、アクリル樹脂が挙げられる。アクリル樹脂としては、好ましくは、高い機械強度を得る観点から、ラクトン環構造を有する(メタ)アクリル樹脂が挙げられる。
 ラクトン環構造を有する(メタ)アクリル樹脂は、例えば、特開2000-230016号公報、特開2001-151814号公報、特開2002-120326号公報、特開2002-254544号公報、特開2005-146084号公報、特開2008-170717号公報、特開2017-102443号公報に記載される。偏光子保護フィルム5の厚みは、例えば、10μm以上であり、また、例えば、60μm以下、好ましくは、55μm以下、より好ましくは、50μm以下である。
<Polarizer protective film>
The polarizing element protective film 5 forms the other surface of the optical member 4 in the thickness direction. The polarizing element protective film 5 extends in the plane direction. The polarizing element protective film 5 protects the polarizing element 6 described below from the other side in the thickness direction. The polarizing element protective film 5 has isotropic properties. Examples of the material of the polarizing element protective film 5 include an acrylic resin. The acrylic resin preferably includes a (meth) acrylic resin having a lactone ring structure from the viewpoint of obtaining high mechanical strength.
Examples of the (meth) acrylic resin having a lactone ring structure include JP-A-2000-230016, JP-A-2001-151814, JP-A-2002-120326, JP-A-2002-254544, and JP-A-2005. It is described in JP-A-146804, JP-A-2008-170717, and JP-A-2017-102443. The thickness of the polarizing element protective film 5 is, for example, 10 μm or more, and is, for example, 60 μm or less, preferably 55 μm or less, and more preferably 50 μm or less.
<偏光子>
 偏光子6は、偏光子保護フィルム5の厚み方向一方面に接触している。偏光子6は、面方向に延びる。偏光子6としては、例えば、PVAフィルムなどの親水性フィルムを染色処理および延伸処理されたフィルムや、親水性フィルムを脱水処理したフィルム、ポリ塩化ビニルフィルムを脱塩酸処理したフィルムなどが挙げられる。偏光子6の厚みは、例えば、1μm以上、好ましくは、3μm以上であり、また、例えば、15μm以下、好ましくは、10μm以下である。偏光子6の物性などは、例えば、特開2016-151696号公報、特開2017-102443号公報に記載される。
<Polarizer>
The polarizing element 6 is in contact with one side of the polarizing element protective film 5 in the thickness direction. The extruder 6 extends in the plane direction. Examples of the splitter 6 include a film obtained by dyeing and stretching a hydrophilic film such as a PVA film, a film obtained by dehydrating a hydrophilic film, and a film obtained by dehydroxating a polyvinyl chloride film. The thickness of the polarizing element 6 is, for example, 1 μm or more, preferably 3 μm or more, and for example, 15 μm or less, preferably 10 μm or less. The physical characteristics of the decoder 6 and the like are described in, for example, JP-A-2016-151696 and JP-A-2017-102443.
<光学補償層>
 光学補償層7は、偏光子6の厚み方向一方面に接触している。光学補償層7は、面方向に延びる。光学補償層7は、例えば、位相差フィルムであって、具体的には、λ/4板として機能する。これによって、偏光子6および光学補償層7から構成される偏光フィルム8が、円偏光性を有する。光学補償層7の材料としては、上記の光学特性を有する材料が挙げられ、例えば、ポリカーボネート樹脂、ポリビニルアセタール樹脂、シクロオレフィン樹脂、アクリル樹脂、セルロースエステル樹脂などが挙げられる。好ましくは、ポリカーボネート樹脂である。ポリカーボネート樹脂としては、例えば、フルオレン系ジヒドロキシ化合物に由来する構造単位と、イソソルビド系ジヒドロキシ化合物に由来する構造単位と、脂環式ジオール、脂環式ジメタノール、ジ、トリまたはポリエチレングリコール、ならびに、アルキレングリコールまたはスピログリコールからなる群から選択される少なくとも1つのジヒドロキシ化合物に由来する構造単位と、を含む。光学補償層7の組成、物性、製造方法などは、例えば、特開2017-102443号公報に詳述される。
<Optical optics layer>
The optical compensation layer 7 is in contact with one surface of the polarizing element 6 in the thickness direction. The optical compensation layer 7 extends in the plane direction. The optical compensation layer 7 is, for example, a retardation film, and specifically functions as a λ / 4 plate. As a result, the polarizing film 8 composed of the polarizing element 6 and the optical compensation layer 7 has circular dichroism. Examples of the material of the optical compensation layer 7 include materials having the above-mentioned optical properties, and examples thereof include polycarbonate resin, polyvinyl acetal resin, cycloolefin resin, acrylic resin, and cellulose ester resin. A polycarbonate resin is preferable. Examples of the polycarbonate resin include a structural unit derived from a fluorene-based dihydroxy compound, a structural unit derived from an isosorbide-based dihydroxy compound, an alicyclic diol, an alicyclic dimethanol, di, tri or polyethylene glycol, and an alkylene. Includes structural units derived from at least one dihydroxy compound selected from the group consisting of glycols or spiroglycols. The composition, physical properties, manufacturing method, and the like of the optical compensation layer 7 are described in detail in, for example, Japanese Patent Application Laid-Open No. 2017-102443.
 また、光学補償層7は、積層体であってもよく、図示しないが、例えば、第1の液晶配向層と、第2の液晶配向層とを、裏側に向かって順に備える。 Further, the optical compensation layer 7 may be a laminated body, and although not shown, for example, a first liquid crystal alignment layer and a second liquid crystal alignment layer are provided in order toward the back side.
 第1の液晶配向固化層は、具体的には、λ/2板として機能する。波長550nmの光で測定したときの第1の液晶配向固化層の面内位相差Re(550)は、例えば、180nm~320nmである。第1の液晶配向固化層の屈折率は、例えば、nx>ny=nzの関係を示す。nxは、面内方向における遅相軸方向の屈折率である。nyは、面内方向における進相軸方向の屈折率である。nzは、厚み方向の屈折率である。第1の液晶配向固化層の遅相軸と偏光子6の吸収軸とのなす角度は、例えば、10°~20°である。第1の液晶配向固化層の厚みは、例えば、0.05μm以上、また、例えば、7μm以下である。第1の液晶配向固化層は、例えば、棒状の液晶材料が所定の方向に並んだ状態で配向している。液晶材料の配向方向に遅相軸が発現する。液晶材料としては、例えば、液晶ポリマーや液晶モノマーが挙げられる。第1の液晶配向固化層を形成するには、所定の基材の表面に配向処理を施し、当該表面に液晶材料を含む塗布液を塗布して当該液晶材料を上記配向処理に対応する方向に配向させ、当該配向状態を固定する。 Specifically, the first liquid crystal oriented solidified layer functions as a λ / 2 plate. The in-plane phase difference Re (550) of the first liquid crystal oriented solidified layer when measured with light having a wavelength of 550 nm is, for example, 180 nm to 320 nm. The refractive index of the first liquid crystal oriented solidified layer shows, for example, the relationship of nx> ny = nz. nx is the refractive index in the slow axis direction in the in-plane direction. ny is the refractive index in the phase-advancing axis direction in the in-plane direction. nz is the refractive index in the thickness direction. The angle formed by the slow axis of the first liquid crystal oriented solidified layer and the absorption axis of the polarizing element 6 is, for example, 10 ° to 20 °. The thickness of the first liquid crystal oriented solidifying layer is, for example, 0.05 μm or more, and for example, 7 μm or less. The first liquid crystal alignment solidified layer is oriented with rod-shaped liquid crystal materials arranged in a predetermined direction, for example. A slow-phase axis appears in the orientation direction of the liquid crystal material. Examples of the liquid crystal material include a liquid crystal polymer and a liquid crystal monomer. In order to form the first liquid crystal alignment solidifying layer, the surface of a predetermined base material is subjected to an orientation treatment, and a coating liquid containing a liquid crystal material is applied to the surface to make the liquid crystal material in a direction corresponding to the orientation treatment. Orientation is performed and the alignment state is fixed.
 第2の液晶配向固化層は、例えば、λ/4板として機能する。第1の液晶配向固化層がλ/2板として機能し、第2の液晶配向固化層がλ/4板として機能することにより、光学補償層7は、優れた円偏光特性を有する。波長550nmの光で測定したときの第2の液晶配向固化層の面内位相差Re(550)は、例えば、100nm~180nmである。第2の液晶配向固化層の屈折率は、例えば、nx>ny=nzの関係を示す。第2の液晶配向固化層の遅相軸と偏光子6の吸収軸とのなす角度は、例えば、65°~85°である。第2の液晶配向固化層の厚みは、例えば、0.5μm以上、2μm以下である。第2の液晶配向固化層の材料、特性、製造方法等は、第1の液晶配向固化層のそれらと同様である。 The second liquid crystal oriented solidified layer functions as, for example, a λ / 4 plate. The optical compensation layer 7 has excellent circularly polarized light characteristics because the first liquid crystal oriented solidified layer functions as a λ / 2 plate and the second liquid crystal oriented solidified layer functions as a λ / 4 plate. The in-plane phase difference Re (550) of the second liquid crystal oriented solidified layer when measured with light having a wavelength of 550 nm is, for example, 100 nm to 180 nm. The refractive index of the second liquid crystal oriented solidified layer shows, for example, the relationship of nx> ny = nz. The angle formed by the slow axis of the second liquid crystal oriented solidified layer and the absorption axis of the polarizing element 6 is, for example, 65 ° to 85 °. The thickness of the second liquid crystal oriented solidified layer is, for example, 0.5 μm or more and 2 μm or less. The materials, properties, manufacturing methods, etc. of the second liquid crystal oriented solidified layer are the same as those of the first liquid crystal oriented solidified layer.
 上記した第1および第2の液晶配向固化層からなる積層体は、例えば、特開2017-102443号公報に記載される。 The laminate composed of the first and second liquid crystal oriented solidified layers described above is described in, for example, Japanese Patent Application Laid-Open No. 2017-102443.
 光学補償層7の厚みは、例えば、0.1μm以上であり、例えば、10μm以下、好ましくは、5μm以下、より好ましくは、3μm以下である。 The thickness of the optical compensation layer 7 is, for example, 0.1 μm or more, for example, 10 μm or less, preferably 5 μm or less, and more preferably 3 μm or less.
 なお、偏光子保護フィルム5と、偏光子6と、光学補償層7とを有する光学部材4は、特開2017-102443号公報に詳述される。 The optical member 4 having the polarizing element protective film 5, the polarizing element 6, and the optical compensation layer 7 is described in detail in Japanese Patent Application Laid-Open No. 2017-102443.
 光学部材4の厚みは、70μm以下であり、好ましくは、65μm以下である。また、光学部材4の厚みは、例えば、10μm以上、好ましくは、30μm以上である。光学部材4の厚みが70μmを越えると、光学積層体1を薄くできず、光学積層体1の耐屈曲性が低下する。光学部材4の厚みが上記した下限以上であれば、耐衝撃性を向上できる。 The thickness of the optical member 4 is 70 μm or less, preferably 65 μm or less. The thickness of the optical member 4 is, for example, 10 μm or more, preferably 30 μm or more. If the thickness of the optical member 4 exceeds 70 μm, the optical laminated body 1 cannot be thinned, and the bending resistance of the optical laminated body 1 is lowered. If the thickness of the optical member 4 is at least the above-mentioned lower limit, the impact resistance can be improved.
 光学部材4の全光線透過率は、例えば、80%以上、好ましくは、85%以上であり、また、例えば、99%以下である。 The total light transmittance of the optical member 4 is, for example, 80% or more, preferably 85% or more, and for example, 99% or less.
 JIS L 1096(2010)に記載のA法に従って求められる光学部材4の剛軟度は、30mm以上である。 The rigidity of the optical member 4 obtained according to the method A described in JIS L 1096 (2010) is 30 mm or more.
 JIS L 1096(2010)に記載のA法は、45°カンチレバー法である。図3Aおよび図3Bに示すように、45°カンチレバー法では、下面21と、上面22と、斜面23とを備える試験機20が用いられる。下面21と上面22とは、水平であり、上下方向に間隔が隔てられる。斜面23は、下面21の一辺と、上面22の一辺とを連絡する。斜面23と下面21との成す角度は、45°である。上面22と斜面23とは、稜線24を形成する。 The method A described in JIS L 1096 (2010) is a 45 ° cantilever method. As shown in FIGS. 3A and 3B, in the 45 ° cantilever method, a testing machine 20 having a lower surface 21, an upper surface 22, and a slope 23 is used. The lower surface 21 and the upper surface 22 are horizontal and are spaced apart in the vertical direction. The slope 23 connects one side of the lower surface 21 and one side of the upper surface 22. The angle formed by the slope 23 and the lower surface 21 is 45 °. The upper surface 22 and the slope 23 form a ridge line 24.
 45°カンチレバー法では、まず、光学部材4を、縦150mm、横20mmの大きさに外形加工して、サンプル25を作製する。次いで、サンプル25を上面22に配置する。サンプル25の一の横辺26を試験機20の稜線24に合わせる。このとき、サンプル25の他の横辺27の位置である第1位置31を記録する。なお、この試験は、温度25℃で実施される。 In the 45 ° cantilever method, first, the optical member 4 is externally processed to a size of 150 mm in length and 20 mm in width to prepare a sample 25. Next, the sample 25 is placed on the upper surface 22. The side surface 26 of one of the samples 25 is aligned with the ridge line 24 of the testing machine 20. At this time, the first position 31, which is the position of the other side 27 of the sample 25, is recorded. This test is carried out at a temperature of 25 ° C.
 次いで、サンプル25を、一の横辺26が斜面23に対向する水平方向一方側に徐々に押し出す。押出速度は、5mm/秒である。そして、一の横辺26が斜面23に接触する時の他の横辺27の位置である第2位置32を記録する。サンプル25において一の横辺26を含む先端部は、下側に湾曲する。 Next, the sample 25 is gradually pushed out to one side in the horizontal direction in which one side 26 faces the slope 23. The extrusion speed is 5 mm / sec. Then, the second position 32, which is the position of the other side side 27 when one side side 26 comes into contact with the slope 23, is recorded. In the sample 25, the tip portion including one side side 26 is curved downward.
 そして、第1位置31と第2位置32との間の距離Lを測定し、これを剛軟度として得る。剛軟度の値が高いほど、光学部材4が硬く、逆に、剛軟度の値が低いほど、光学部材4が軟らかいことを意味する。 Then, the distance L between the first position 31 and the second position 32 is measured, and this is obtained as the rigidity. The higher the value of rigidity and softness, the harder the optical member 4, and conversely, the lower the value of rigidity and softness, the softer the optical member 4.
 光学部材4の剛軟度は、30mmに満たない場合には、光学部材4が軟らかいため、光学積層体1の耐衝撃性が低下する。 When the rigidity of the optical member 4 is less than 30 mm, the optical member 4 is soft, so that the impact resistance of the optical laminate 1 is lowered.
 光学部材4の剛軟度は、好ましくは、35mm以上、より好ましくは、40mm以上、さらに好ましくは、45mm以上であり、また、例えば、100mm以下である。 The rigidity of the optical member 4 is preferably 35 mm or more, more preferably 40 mm or more, still more preferably 45 mm or more, and for example, 100 mm or less.
 <光学積層体の製造方法>
 光学積層体1の製造方法を説明する。
<Manufacturing method of optical laminate>
A method for manufacturing the optical laminate 1 will be described.
 図1が参照されるように、この方法では、例えば、まず、ガラス板2の厚み方向一方面および/または光学部材4の厚み方向他方面を硬化型接着剤に接触させる。続いて、ガラス板2および光学部材4で、硬化型接着剤を挟み込む。 As shown in FIG. 1, in this method, for example, first, one side of the glass plate 2 in the thickness direction and / or the other side of the optical member 4 in the thickness direction is brought into contact with the curable adhesive. Subsequently, the curable adhesive is sandwiched between the glass plate 2 and the optical member 4.
 その後、硬化型接着剤を硬化させる。硬化型接着剤が活性エネルギー硬化型であれば、紫外線などの活性エネルギーを硬化型接着剤に照射する。具体的には、紫外線を、ガラス板2側から硬化型接着剤に照射する。硬化型接着剤が熱硬化型であれば、硬化型接着剤を加熱する。これにより、ガラス板2および光学部材4を強固に接着する接着剤層3を形成する。 After that, the curable adhesive is cured. If the curable adhesive is an active energy curable type, the curable adhesive is irradiated with active energy such as ultraviolet rays. Specifically, the curable adhesive is irradiated with ultraviolet rays from the glass plate 2 side. If the curable adhesive is thermosetting, heat the curable adhesive. As a result, the adhesive layer 3 that firmly adheres the glass plate 2 and the optical member 4 is formed.
 <光学積層体の用途>
 光学積層体1は、各種光学用途に用いられ、例えば、有機エレクトロルミネセンス表示装置(以下、単に「有機EL表示装置」と略称する。)などの画像表示装置に備えられる。
<Use of optical laminate>
The optical laminate 1 is used for various optical applications, and is provided in, for example, an image display device such as an organic electroluminescence display device (hereinafter, simply abbreviated as "organic EL display device").
 次に、光学積層体1を備える有機EL表示装置10を、図2を参照して説明する。 Next, the organic EL display device 10 including the optical laminate 1 will be described with reference to FIG.
<有機EL表示装置>
 有機EL表示装置10は、面方向に延びる平板形状を有する。有機EL表示装置10は、屈曲部33を中心にして折り曲げ可能(bendable)に構成され、詳しくは、折り畳み可能(foldable)に構成されている。また、有機EL表示装置10は、次に説明する導電性フィルム13を備えることから、タッチパネル型入力表示装置として機能する。有機EL表示装置10は、光学積層体1と、粘着剤層12と、導電性フィルム13と、第2粘着剤層14と、画像表示部材15とを備える。なお、この有機EL表示装置10では、紙面上側が、ユーザーの視認側であって、表側(図1の厚み方向他方側に相当)であり、紙面下側が、裏側(図1の厚み方向一方側に相当)である。
<Organic EL display device>
The organic EL display device 10 has a flat plate shape extending in the plane direction. The organic EL display device 10 is configured to be bendable around the bent portion 33, and more specifically, is configured to be foldable. Further, since the organic EL display device 10 includes the conductive film 13 described below, it functions as a touch panel type input display device. The organic EL display device 10 includes an optical laminate 1, a pressure-sensitive adhesive layer 12, a conductive film 13, a second pressure-sensitive adhesive layer 14, and an image display member 15. In the organic EL display device 10, the upper side of the paper surface is the user's visual recognition side, which is the front side (corresponding to the other side in the thickness direction of FIG. 1), and the lower side of the paper surface is the back side (one side in the thickness direction of FIG. 1). Equivalent to).
<粘着剤層>
 粘着剤層12は、光学部材4の裏面(厚み方向一方面に相当)に配置されている。具体的には、粘着剤層12は、光学部材4の裏面に接触している。粘着剤層12は、粘着力が経時的に実質的に変動せず、安定している。粘着剤層12の材料としては、例えば、アクリル系粘着剤、ゴム系粘着剤、ビニルアルキルエーテル系粘着剤、シリコーン系粘着剤、ポリエステル系粘着剤、ポリアミド系粘着剤、ウレタン系粘着剤、フッ素系粘着剤、エポキシ系粘着剤、ポリエーテル系粘着剤などが挙げられ、好ましくは、アクリル系粘着剤が挙げられる。粘着剤層12の物性、寸法等は、例えば、特開2018-28573号公報に詳述される。
<Adhesive layer>
The pressure-sensitive adhesive layer 12 is arranged on the back surface (corresponding to one surface in the thickness direction) of the optical member 4. Specifically, the pressure-sensitive adhesive layer 12 is in contact with the back surface of the optical member 4. The adhesive strength of the pressure-sensitive adhesive layer 12 does not substantially change over time and is stable. Examples of the material of the pressure-sensitive adhesive layer 12 include an acrylic pressure-sensitive adhesive, a rubber-based pressure-sensitive adhesive, a vinyl alkyl ether-based pressure-sensitive adhesive, a silicone-based pressure-sensitive adhesive, a polyester-based pressure-sensitive adhesive, a polyamide-based pressure-sensitive adhesive, a urethane-based pressure-sensitive adhesive, and a fluorine-based pressure-sensitive adhesive. Examples thereof include a pressure-sensitive adhesive, an epoxy-based pressure-sensitive adhesive, a polyether-based pressure-sensitive adhesive, and the like, preferably an acrylic-based pressure-sensitive adhesive. The physical properties, dimensions, and the like of the pressure-sensitive adhesive layer 12 are described in detail in, for example, Japanese Patent Application Laid-Open No. 2018-28873.
 粘着剤層12は、光学部材4とともに、粘着剤層付き光学積層体9に備えられる。粘着剤層付き光学積層体9の詳細は、後述する。 The pressure-sensitive adhesive layer 12 is provided in the optical laminate 9 with a pressure-sensitive adhesive layer together with the optical member 4. Details of the optical laminate 9 with an adhesive layer will be described later.
<導電性フィルム>
 導電性フィルム13は、導電層16と、基材層17とを裏側に向かって順に備える。
<Conductive film>
The conductive film 13 includes a conductive layer 16 and a base material layer 17 in order toward the back side.
<導電層>
 導電層16は、所定パターンを有する。導電層16の表面および側面は、粘着剤層12に接触する。導電層16の材料としては、例えば、金属酸化物、導電性繊維(繊維)、金属などが挙げられる。金属酸化物としては、例えば、インジウム亜鉛複合酸化物(IZO)、インジウムガリウム亜鉛複合酸化物(IGZO)、インジウムガリウム複合酸化物(IGO)、インジウムスズ複合酸化物(ITO)、アンチモンスズ複合酸化物(ATO)などの複合酸化物などが挙げられる。導電性繊維としては、例えば、金属ナノワイヤ、カーボンナノチューブなどが挙げられる。金属としては、例えば、金、白金、銀、銅などが挙げられる。導電層16は、面方向中央部に位置するセンサ電極部18と、センサ電極部18に周辺に位置する引出し配線部19とを一体的に有する。導電層16の詳細は、例えば、特開2017-102443号公報、特開2014-113705号公報、特開2014-219667号公報などに記載される。
<Conductive layer>
The conductive layer 16 has a predetermined pattern. The surface and sides of the conductive layer 16 come into contact with the pressure-sensitive adhesive layer 12. Examples of the material of the conductive layer 16 include metal oxides, conductive fibers (fibers), and metals. Examples of the metal oxide include indium zinc composite oxide (IZO), indium gallium zinc composite oxide (IGZO), indium gallium composite oxide (IGO), indium tin composite oxide (ITO), and antimonth tin composite oxide. Examples thereof include composite oxides such as (ATO). Examples of conductive fibers include metal nanowires and carbon nanotubes. Examples of the metal include gold, platinum, silver, copper and the like. The conductive layer 16 integrally has a sensor electrode portion 18 located in the central portion in the plane direction and a drawer wiring portion 19 located in the periphery of the sensor electrode portion 18. Details of the conductive layer 16 are described in, for example, JP-A-2017-102443, JP-A-2014-113705, JP-A-2014-219667 and the like.
<基材層>
 基材層17は、導電層16の裏面、および、粘着剤層12の裏面に配置されている。基材層17は、面方向に延びる。基材層17は、例えば、樹脂層である。基材層17の材料としては、例えば、ポリエチレン、ポリプロピレン、シクロオレフィンポリマー(COP)などのオレフィン樹脂、例えば、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリエチレンナフタレートなどのポリエステル樹脂、例えば、ポリ(メタ)アクリレートなどの(メタ)アクリル樹脂、例えば、ポリカーボネート樹脂、ポリエーテルスルフォン樹脂、ポリアリレート樹脂、メラミン樹脂、ポリアミド樹脂、ポリイミド樹脂、セルロース樹脂、ポリスチレン樹脂などの樹脂が挙げられる。基材層17の詳細は、例えば、特開2018-181722号公報などに記載される。
<Base layer>
The base material layer 17 is arranged on the back surface of the conductive layer 16 and the back surface of the pressure-sensitive adhesive layer 12. The base material layer 17 extends in the plane direction. The base material layer 17 is, for example, a resin layer. The material of the base material layer 17 includes, for example, an olefin resin such as polyethylene, polypropylene, and a cycloolefin polymer (COP), for example, a polyester resin such as polyethylene terephthalate (PET), polybutylene terephthalate, and polyethylene naphthalate, for example, poly (. Examples of the (meth) acrylic resin such as meta) acrylate include resins such as polycarbonate resin, polyether sulfone resin, polyarylate resin, melamine resin, polyamide resin, polyimide resin, cellulose resin and polystyrene resin. Details of the base material layer 17 are described in, for example, Japanese Patent Application Laid-Open No. 2018-181722.
<第2粘着剤層>
 第2粘着剤層14は、導電性フィルム13の裏面に配置されている。具体的には、第2粘着剤層14は、導電性フィルム13の裏面に接触している。第2粘着剤層14の材料は、粘着剤層12の材料と同様である。
<Second adhesive layer>
The second pressure-sensitive adhesive layer 14 is arranged on the back surface of the conductive film 13. Specifically, the second pressure-sensitive adhesive layer 14 is in contact with the back surface of the conductive film 13. The material of the second pressure-sensitive adhesive layer 14 is the same as the material of the pressure-sensitive adhesive layer 12.
<画像表示部材>
 画像表示部材15は、有機EL表示装置10の裏面を形成する。画像表示部材15は、導電性フィルム13の裏側に第2粘着剤層14を介して配置されている。画像表示部材15は、面方向に延びる。画像表示部材15は、具体的には、有機EL素子である。例えば、画像表示部材15は、図示しないが、表示基板と、2つの電極と、2つの電極に挟まれる有機EL層と、封止層とを含む。なお、画像表示部材15の構成、物性などは、例えば、特開2018-28573号公報に詳述される。
<Image display member>
The image display member 15 forms the back surface of the organic EL display device 10. The image display member 15 is arranged on the back side of the conductive film 13 via the second pressure-sensitive adhesive layer 14. The image display member 15 extends in the plane direction. Specifically, the image display member 15 is an organic EL element. For example, although not shown, the image display member 15 includes a display substrate, two electrodes, an organic EL layer sandwiched between the two electrodes, and a sealing layer. The configuration, physical properties, and the like of the image display member 15 are described in detail in, for example, Japanese Patent Application Laid-Open No. 2018-28873.
<一実施形態の作用効果>
 この光学積層体1では、光学部材4の剛軟度を30mm以上にして、光学部材4を硬くしつつ、さらに、接着剤層3の押し込み弾性率を1GPa以上と高くして、接着剤層3を硬くするので、光学部材4を薄くし、光学積層体1の屈曲性を向上させることができながら、耐衝撃性も向上させることができる。
<Action and effect of one embodiment>
In this optical laminate 1, the rigidity of the optical member 4 is set to 30 mm or more to make the optical member 4 hard, and the indentation elastic modulus of the adhesive layer 3 is increased to 1 GPa or more to increase the adhesive layer 3 to the adhesive layer 3. Therefore, the optical member 4 can be made thin, and the flexibility of the optical laminate 1 can be improved, while the impact resistance can also be improved.
 また、この光学積層体1では、接着剤層3の厚みが5μm以下であれば、光学積層体1を薄くでき、光学積層体1の耐屈曲性に優れる。 Further, in this optical laminated body 1, if the thickness of the adhesive layer 3 is 5 μm or less, the optical laminated body 1 can be made thin, and the optical laminated body 1 is excellent in bending resistance.
 また、この光学積層体1では、ガラス板2の厚みが100μm以下であれば、光学積層体1を薄くでき、光学積層体1の耐屈曲性に優れる。 Further, in this optical laminated body 1, if the thickness of the glass plate 2 is 100 μm or less, the optical laminated body 1 can be made thin, and the bending resistance of the optical laminated body 1 is excellent.
 また、有機EL表示装置10は、耐衝撃性および耐屈曲性に優れる光学積層体1を備えるので、折曲げ可能でありながら、耐衝撃性に優れる。 Further, since the organic EL display device 10 includes an optical laminate 1 having excellent impact resistance and bending resistance, it is bendable but has excellent impact resistance.
<変形例>
 以下の各変形例において、上記した一実施形態と同様の部材および工程については、同一の参照符号を付し、その詳細な説明を省略する。また、各変形例は、特記する以外、一実施形態態と同様の作用効果を奏することができる。さらに、一実施形態およびその変形例を適宜組み合わせることができる。
<Modification example>
In each of the following modifications, the same members and processes as those in the above-described embodiment are designated by the same reference numerals, and detailed description thereof will be omitted. In addition, each modification can exhibit the same effect as that of the embodiment, except for special mention. Further, one embodiment and a modification thereof can be appropriately combined.
 上記した一実施形態の光学積層体1は、接着剤層3の剛軟度と、接着剤層3の押し込み弾性率とのそれぞれを満足するが、例えば、上記した物性に代えて、光学積層体1が、ペンドロップ試験と、鉛筆硬度と、屈曲性試験とのそれぞれを満足することによって、本発明の課題を解決することもできる。 The optical laminate 1 of the above-described embodiment satisfies each of the rigidity of the adhesive layer 3 and the indentation elastic modulus of the adhesive layer 3, but for example, instead of the above-mentioned physical properties, the optical laminate 1 is an optical laminate. It is also possible to solve the problem of the present invention by satisfying each of the pen drop test, the pencil hardness, and the flexibility test.
<ペンドロップ試験>
 図1に示すように、ガラス板2が上側を向くように、光学積層体1をステンレス製の水平台34の表面に置く。次いで、ガラス板2から5cmの高さから7gのペン29を落下させるペンドロップ試験を実施する。上記した高さは、ガラス板2の厚み方向一方面と、ペン29の先端部35との距離である。先端部35は、下側を向き、尖っている。具体的には、ペン29は、Pentel社製のボールペンであり、型番「BK407黒」であり、ボール径が0.7mmである。この光学積層体1では、ペン29の上記した落下で、ガラス板2に割れが発生すれば、ペンドロップ試験の高さは、5cmとなる。ガラス板2に割れが発生しなければ、1cmずつ高さを引き上げる。この操作を、ガラス板2が割れるまで繰り返す。
<Pen drop test>
As shown in FIG. 1, the optical laminate 1 is placed on the surface of the stainless steel horizontal table 34 so that the glass plate 2 faces upward. Next, a pen drop test is performed in which a 7 g pen 29 is dropped from a height of 5 cm from the glass plate 2. The above-mentioned height is the distance between one side of the glass plate 2 in the thickness direction and the tip portion 35 of the pen 29. The tip 35 faces downward and is pointed. Specifically, the pen 29 is a ballpoint pen manufactured by Pentel, has a model number "BK407 black", and has a ball diameter of 0.7 mm. In this optical laminate 1, if the glass plate 2 is cracked by the above-mentioned drop of the pen 29, the height of the pen drop test becomes 5 cm. If the glass plate 2 does not crack, raise the height by 1 cm. This operation is repeated until the glass plate 2 is broken.
 この光学積層体1では、高さ5cmのペンドロップ試験で、ガラス板2に割れがない。他方、ガラス板2から5cmの高さから7gのペン29を落下させるペンドロップ試験で、ガラス板2に割れがあれば、光学積層体1の耐衝撃性が低下する。 In this optical laminate 1, the glass plate 2 was not cracked in the pen drop test with a height of 5 cm. On the other hand, in a pen drop test in which a 7 g pen 29 is dropped from a height of 5 cm from the glass plate 2, if the glass plate 2 is cracked, the impact resistance of the optical laminate 1 is lowered.
 好ましくは、ガラス板2から10cmの高さから7gのペン29を落下させるペンドロップ試験で、ガラス板2に割れがなく、より好ましくは、ガラス板2から15cmの高さから7gのペン29を落下させるペンドロップ試験で、ガラス板2に割れがない。 Preferably, in a pen drop test in which a 7 g pen 29 is dropped from a height of 10 cm from the glass plate 2, the glass plate 2 is not cracked, and more preferably, a 7 g pen 29 is dropped from a height of 15 cm from the glass plate 2. In the pen drop test of dropping, the glass plate 2 is not cracked.
<鉛筆硬度>
 光学積層体1の鉛筆硬度は、5H以上である。他方、光学積層体1の鉛筆硬度が4H以下であれば、光学積層体1の耐擦傷性が低下する。鉛筆硬度は、JIS K 5600-5-4(1999)に準じて測定される。
<Pencil hardness>
The pencil hardness of the optical laminate 1 is 5H or more. On the other hand, when the pencil hardness of the optical laminate 1 is 4H or less, the scratch resistance of the optical laminate 1 is lowered. Pencil hardness is measured according to JIS K 5600-5-4 (1999).
 光学積層体1の鉛筆硬度は、好ましくは、6H以上、より好ましくは、7H以上、さらに好ましくは、8H以上、とりわけ好ましくは、9H以上である。 The pencil hardness of the optical laminate 1 is preferably 6H or more, more preferably 7H or more, still more preferably 8H or more, and particularly preferably 9H or more.
<屈曲性試験>
 下記の光学積層体1の屈曲性試験は、100,000回以上である。
<Flexibility test>
The flexibility test of the following optical laminate 1 is 100,000 times or more.
 屈曲性試験では、光学積層体1を伸ばした状態から、ガラス板2が凹となる方向に屈曲半径が3mmとなるように180°折り曲げ、再び伸ばす動作を1セットとし、1分間に43セットの速さで前記動作を実施したときに、光学積層体1にクラックが生じるまでのセット数を測定する。 In the flexibility test, from the stretched state of the optical laminate 1, the glass plate 2 is bent 180 ° so that the bending radius is 3 mm in the concave direction, and then stretched again as one set, and 43 sets per minute. When the operation is performed at a high speed, the number of sets until a crack is generated in the optical laminate 1 is measured.
 他方、光学積層体1の屈曲性試験は、100,000回未満であれば、耐屈曲性が低下する。 On the other hand, if the bending test of the optical laminate 1 is less than 100,000 times, the bending resistance is lowered.
 光学積層体1の屈曲性試験は、好ましくは、1,000、000回以上である。 The flexibility test of the optical laminate 1 is preferably 1,000 or more times.
 また、別の変形例の光学積層体1は、接着剤層3の剛軟度と、接着剤層3の押し込み弾性率とのそれぞれを満足し、加えて、ペンドロップ試験と、鉛筆硬度と、屈曲性試験とのそれぞれを満足する。これによって、光学積層体1は、耐衝撃性および耐屈曲性により一層優れる。 Further, the optical laminate 1 of another modification satisfies each of the rigidity of the adhesive layer 3 and the indentation elastic modulus of the adhesive layer 3, and in addition, the pen drop test, the pencil hardness, and the like. Satisfy each with the flexibility test. As a result, the optical laminate 1 is further excellent in impact resistance and bending resistance.
 <他の変形例>
 一実施形態では、光学部材4は、偏光子保護フィルム5と、偏光子6と、光学補償層7との3層を備えるが、光学部材4の層数は、限定されない。単層(図4参照)、2層、4層以上でもよい。
<Other variants>
In one embodiment, the optical member 4 includes three layers of a polarizing element protective film 5, a polarizing element 6, and an optical compensation layer 7, but the number of layers of the optical member 4 is not limited. It may be a single layer (see FIG. 4), two layers, four layers or more.
 光学部材4が2層である場合には、図示しないが、例えば、偏光子6と、光学補償層7とを備える。 When the optical member 4 has two layers, for example, a polarizing element 6 and an optical compensation layer 7 are provided, although not shown.
 図示しないが、光学部材4は、偏光子保護フィルム5と、偏光子6との間に介在する第2接着剤層をさらに備えることができる。さらに、光学部材4は、偏光子6と光学補償層7との間に介在する第3接着剤層をさらに備えることができる。第2接着剤層および第3接着剤層の材料は、例えば、上記した接着剤層3の材料と同一である。第2接着剤層および第3接着剤層のそれぞれの厚みは、例えば、0.1μm以上、また、例えば、2μm以下である。 Although not shown, the optical member 4 can further include a second adhesive layer interposed between the polarizing element protective film 5 and the polarizing element 6. Further, the optical member 4 can further include a third adhesive layer interposed between the polarizing element 6 and the optical compensation layer 7. The materials of the second adhesive layer and the third adhesive layer are, for example, the same as the materials of the adhesive layer 3 described above. The thickness of each of the second adhesive layer and the third adhesive layer is, for example, 0.1 μm or more, and for example, 2 μm or less.
 図4は、光学部材4が単層である変形例を示す。この変形例では、光学部材4は、フィルム40である。フィルム40としては、例えば、ポリエステルフィルム、および、セルロールフィルムが挙げられる。ポリエステルフィルムとしては、例えば、ポリエチレンテレフタレートフィルム(PET)、ポリブチレンテレフタレート(PBT)フィルム、および、ポリエチレンナフタレート(PEN)フィルムが挙げられる。セルロールフィルムとしては、例えば、アセチルセルロールフィルが挙げられ、具体的には、トリアセチルセルロール(TAC)フィルムが挙げられる。フィルム40として、光学積層体1の耐衝撃性を向上させる観点から、ポリエステルフィルムが挙げられ、より好ましくは、PETフィルムが挙げられる。 FIG. 4 shows a modified example in which the optical member 4 is a single layer. In this modification, the optical member 4 is a film 40. Examples of the film 40 include a polyester film and a cell roll film. Examples of the polyester film include polyethylene terephthalate film (PET), polybutylene terephthalate (PBT) film, and polyethylene naphthalate (PEN) film. Examples of the cell roll film include acetyl cell roll fill, and specific examples thereof include a triacetyl cell roll (TAC) film. As the film 40, a polyester film is mentioned, and more preferably, a PET film is mentioned from the viewpoint of improving the impact resistance of the optical laminate 1.
 フィルム40の厚みは、上記した光学部材4の厚みと同様である。 The thickness of the film 40 is the same as the thickness of the optical member 4 described above.
<粘着剤層および粘着剤層付き光学積層体>
 図5に示すように、光学積層体1に粘着剤層12を貼付して粘着剤層付き光学積層体9を製造できる。粘着剤層付き光学積層体9は、光学積層体1と、光学積層体1の厚み方向一方面に配置される粘着剤層12とを備える。粘着剤層12は、粘着剤層付き光学積層体9における厚み方向一方面を形成する。粘着剤層12は、光学部材4の厚み方向一方面に配置される。具体的には、粘着剤層12は、光学部材4の厚み方向一方側に接触している。つまり、粘着剤層付き光学積層体9は、ガラス板2と、接着剤層3と、光学部材4と、粘着剤層12とを厚み方向一方側に向かって順に備える。粘着剤層12は、硬化反応を伴わず、感圧接着する粘着体である。
<Adhesive layer and optical laminate with adhesive layer>
As shown in FIG. 5, the pressure-sensitive adhesive layer 12 can be attached to the optical layered body 1 to manufacture the optical laminated body 9 with the pressure-sensitive adhesive layer. The optical laminate 9 with an adhesive layer includes an optical laminate 1 and an adhesive layer 12 arranged on one side of the optical laminate 1 in the thickness direction. The pressure-sensitive adhesive layer 12 forms one side in the thickness direction of the optical laminate 9 with the pressure-sensitive adhesive layer. The pressure-sensitive adhesive layer 12 is arranged on one side of the optical member 4 in the thickness direction. Specifically, the pressure-sensitive adhesive layer 12 is in contact with one side of the optical member 4 in the thickness direction. That is, the optical laminate 9 with an adhesive layer includes a glass plate 2, an adhesive layer 3, an optical member 4, and an adhesive layer 12 in order toward one side in the thickness direction. The pressure-sensitive adhesive layer 12 is a pressure-sensitive adhesive body that adheres pressure-sensitively without a curing reaction.
 粘着剤層12の材料は、光学積層体1で例示した粘着剤層12のそれらと同一である。ナノインデンター法で測定される25℃における粘着剤層12の押し込み弾性率は、1GPa未満、好ましくは、0.2GPa以下であり、また、例えば、0.01MPa以上である。粘着剤層12の押し込み弾性率が上記した上限以上であれば、粘着剤層12が導電性フィルム13に粘着できない。粘着剤層12の厚みは、例えば、5μm以上、好ましくは、10μm以上であり、また、例えば、50μm以下、好ましくは、25μm以下である。 The material of the pressure-sensitive adhesive layer 12 is the same as that of the pressure-sensitive adhesive layer 12 exemplified in the optical laminate 1. The indentation elastic modulus of the pressure-sensitive adhesive layer 12 at 25 ° C. measured by the nanoindenter method is less than 1 GPa, preferably 0.2 GPa or less, and is, for example, 0.01 MPa or more. If the indentation elastic modulus of the pressure-sensitive adhesive layer 12 is equal to or higher than the above-mentioned upper limit, the pressure-sensitive adhesive layer 12 cannot adhere to the conductive film 13. The thickness of the pressure-sensitive adhesive layer 12 is, for example, 5 μm or more, preferably 10 μm or more, and for example, 50 μm or less, preferably 25 μm or less.
 粘着剤層付き光学積層体9の厚みは、例えば、30μm以上であり、また、例えば、250μm以下である。 The thickness of the optical laminate 9 with the pressure-sensitive adhesive layer is, for example, 30 μm or more, and is, for example, 250 μm or less.
 粘着剤層付き光学積層体9は、図2に示すように、有機EL表示装置10に備えられる。光学積層体1が粘着剤層12を介して導電性フィルム13に貼着される。 As shown in FIG. 2, the optical laminate 9 with an adhesive layer is provided in the organic EL display device 10. The optical laminate 1 is attached to the conductive film 13 via the pressure-sensitive adhesive layer 12.
 粘着剤層付き光学積層体9では、光学部材4の剛軟度が、45mm以上である。光学部材4の剛軟度が45mm未満であれば、粘着剤層付き光学積層体9の耐衝撃性が低下する。好ましくは、光学部材4の剛軟度が、好ましくは、50mm以上、より好ましくは、55mm以上である。光学部材4の剛軟度が上記した下限以上であれば、粘着剤層付き光学積層体9の耐衝撃性を向上できる。 In the optical laminate 9 with an adhesive layer, the rigidity of the optical member 4 is 45 mm or more. If the rigidity of the optical member 4 is less than 45 mm, the impact resistance of the optical laminate 9 with the adhesive layer is lowered. The rigidity of the optical member 4 is preferably 50 mm or more, more preferably 55 mm or more. When the rigidity and softness of the optical member 4 is equal to or higher than the above-mentioned lower limit, the impact resistance of the optical laminate 9 with the pressure-sensitive adhesive layer can be improved.
 <粘着剤層付き光学積層体の作用効果>
 粘着剤層付き光学積層体9は、上記した光学積層体1を備え、かつ、光学部材4の剛軟度を45mm以上にして、光学部材4を硬くするので、耐衝撃性も向上させることができる。さらに、粘着剤層付き光学積層体9は、粘着剤層12を備えるので、導電性フィルム13に容易に貼着でき、有機EL表示装置10を簡便に製造できる。
<Action and effect of optical laminate with adhesive layer>
The optical laminate 9 with an adhesive layer includes the above-mentioned optical laminate 1, and the rigidity of the optical member 4 is set to 45 mm or more to make the optical member 4 hard, so that the impact resistance can also be improved. can. Further, since the optical laminate 9 with the pressure-sensitive adhesive layer includes the pressure-sensitive adhesive layer 12, it can be easily attached to the conductive film 13, and the organic EL display device 10 can be easily manufactured.
 一方、一実施形態の光学積層体1は、光学部材4の剛軟度を30mm以上にして、耐衝撃性に優れる。より低い剛軟度を有する光学部材4を使いこなせる点で、粘着剤層付き光学積層体9に対して、光学積層体1が有利である。 On the other hand, the optical laminate 1 of one embodiment has an optical member 4 having a rigidity of 30 mm or more and is excellent in impact resistance. The optical laminate 1 is advantageous over the optical laminate 9 with an adhesive layer in that the optical member 4 having a lower rigidity and softness can be mastered.
 光学部材4の剛軟度が、50mm以上であれば、粘着剤層付き光学積層体9の耐衝撃性をより一層向上できる。 When the rigidity of the optical member 4 is 50 mm or more, the impact resistance of the optical laminate 9 with the adhesive layer can be further improved.
 図6は、フィルム40からなる光学部材4と、粘着剤層12とを備える粘着剤層付き光学積層体9を示す。この粘着剤層付き光学積層体9は、ガラス板2と、接着剤層3と、フィルム40からなる光学部材4と、粘着剤層12とを、厚み方向一方側に向かって順に備える。 FIG. 6 shows an optical laminate 9 with an adhesive layer including an optical member 4 made of a film 40 and an adhesive layer 12. The optical laminate 9 with an adhesive layer includes a glass plate 2, an adhesive layer 3, an optical member 4 made of a film 40, and an adhesive layer 12 in order toward one side in the thickness direction.
 図1、図2、図4~図6の仮想線で示すように、光学積層体1は、ガラス板2の厚み方向他方面(裏面)に配置される機能層37をさらに備えてよい。機能層37としては、例えば、ハードコート層、飛散防止層、防汚層、反射防止層などが挙げられる。これらは、単層または複数積層されていてもよい。 As shown by the virtual lines of FIGS. 1, 2 and 4 to 6, the optical laminate 1 may further include a functional layer 37 arranged on the other side (back surface) of the glass plate 2 in the thickness direction. Examples of the functional layer 37 include a hard coat layer, a shatterproof layer, an antifouling layer, and an antireflection layer. These may be a single layer or a plurality of laminated layers.
 以下の記載において用いられる配合割合(含有割合)、物性値、パラメータなどの具体的数値は、上記の「発明を実施するための形態」において記載されている、それらに対応する配合割合(含有割合)、物性値、パラメータなど該当記載の上限値(「以下」、「未満」として定義されている数値)または下限値(「以上」、「超過」として定義されている数値)に代替することができる。また、以下の記載において特に言及がない限り、「部」および「%」は質量基準である。 Specific numerical values such as the compounding ratio (content ratio), physical property values, parameters, etc. used in the following description are the compounding ratios (content ratios) corresponding to those described in the above-mentioned "mode for carrying out the invention". ), Physical property values, parameters, etc., can be replaced with the upper limit value (value defined as "less than or equal to" or "less than") or the lower limit value (value defined as "greater than or equal to" or "excess"). can. In addition, unless otherwise specified in the following description, "part" and "%" are based on mass.
  実施例1
 厚み50μmのガラス板2(G-leaf)を準備した。また、4-ヒドロキシブチルアクリレート20質量部と、N-(2-ヒドロキシエチル)アクリルアミド80質量部と、光重合開始剤(イルガキュア819、BASF社製)0.5質量部とを配合してアクリル接着剤組成物を調製した。アクリル接着剤組成物をガラス板2に塗布し、その後、アクリル接着剤組成物をガラス板2と光学部材4とで挟み込んだ。
Example 1
A glass plate 2 (G-leaf) having a thickness of 50 μm was prepared. Further, 20 parts by mass of 4-hydroxybutyl acrylate, 80 parts by mass of N- (2-hydroxyethyl) acrylamide, and 0.5 parts by mass of a photopolymerization initiator (Irgacure 819, manufactured by BASF) are blended and bonded to acrylic. An agent composition was prepared. The acrylic adhesive composition was applied to the glass plate 2, and then the acrylic adhesive composition was sandwiched between the glass plate 2 and the optical member 4.
 光学部材4は、偏光子保護フィルム5と、偏光子6と、光学補償層7とを備える。さらに、光学部材4は、偏光子保護フィルム5と偏光子6との間に介在する第2接着剤層と、偏光子6と光学補償層7との間に介在する第3接着剤層とをさらに備える。偏光子保護フィルム5は、特開2008-170717号公報の実施例1に記載のラクトン環構造を有する(メタ)アクリル樹脂フィルムである。偏光子6は、特開2017-102443号公報の実施例1に記載の延伸PVAフィルムである。光学補償層7は、特開2017-102443号公報の実施例4に記載のλ/4板およびλ/2板である。偏光子保護フィルム5の厚みが40μm、第2接着剤層の厚みが1μm、偏光子6の厚みが5μm、第3接着剤層の厚みが1μm、光学補償層7の厚みが4μmである。光学積層体1の厚みは、51μmであった。 The optical member 4 includes a polarizing element protective film 5, a polarizing element 6, and an optical compensation layer 7. Further, the optical member 4 has a second adhesive layer interposed between the polarizing element protective film 5 and the polarizing element 6, and a third adhesive layer interposed between the polarizing element 6 and the optical compensation layer 7. Further prepare. The polarizing element protective film 5 is a (meth) acrylic resin film having a lactone ring structure described in Example 1 of JP-A-2008-170717. The polarizing element 6 is the stretched PVA film described in Example 1 of JP-A-2017-102443. The optical compensation layer 7 is the λ / 4 plate and the λ / 2 plate described in Example 4 of JP-A-2017-102443. The thickness of the polarizing element protective film 5 is 40 μm, the thickness of the second adhesive layer is 1 μm, the thickness of the polarizing element 6 is 5 μm, the thickness of the third adhesive layer is 1 μm, and the thickness of the optical compensation layer 7 is 4 μm. The thickness of the optical laminate 1 was 51 μm.
 その後、紫外線を、ガラス板2側から硬化型接着剤に照射した。これにより、ガラス板2および光学部材4を強固に接着する硬化体からなる接着剤層3を形成した。これによって、ガラス板2と、接着剤層3と、光学部材4とを厚み方向一方側に向かって順に備える光学積層体1を作製した。 After that, the curable adhesive was irradiated with ultraviolet rays from the glass plate 2 side. As a result, an adhesive layer 3 made of a cured body that firmly adheres the glass plate 2 and the optical member 4 was formed. As a result, an optical laminate 1 having a glass plate 2, an adhesive layer 3, and an optical member 4 in order toward one side in the thickness direction was produced.
  比較例1
 接着剤層3に代えて、粘着剤層を光学積層体1に配置し、また、紫外線照射を施さなかった以外は、実施例1と同様にして、光学積層体1を作製した。粘着剤層は、以下の通り、調製した。
Comparative Example 1
An optical laminate 1 was produced in the same manner as in Example 1 except that the adhesive layer was placed on the optical laminate 1 instead of the adhesive layer 3 and was not irradiated with ultraviolet rays. The pressure-sensitive adhesive layer was prepared as follows.
 ラウリルアクリレート(LA)35質量部、2-エチルヘキシルアクリレート(2EHA)49質量部、4-ヒドロキシブチルアクリレート(4HBA)7質量部、およびN-ビニル-2-ピロリドン(NVP)9質量部、ならびに光重合開始剤としてBASF製「イルガキュア184」0.015質量部を配合して、モノマー組成物を調製した。モノマー組成物に紫外線を照射して、モノマーを重合させ、プレポリマー組成物(重合率;約10%)を得た。 35 parts by mass of lauryl acrylate (LA), 49 parts by mass of 2-ethylhexyl acrylate (2EHA), 7 parts by mass of 4-hydroxybutyl acrylate (4HBA), and 9 parts by mass of N-vinyl-2-pyrrolidone (NVP), and photopolymerization. A monomer composition was prepared by blending 0.015 parts by mass of "Irgacure 184" manufactured by BASF as an initiator. The monomer composition was irradiated with ultraviolet rays to polymerize the monomers to obtain a prepolymer composition (polymerization rate; about 10%).
 別途、メタクリル酸ジシクロペンタニル60質量部およびメタクリル酸メチル40質量部、α-チオグリセロール3.5質量部、および、トルエン100質量部を混合し、窒素雰囲気下にて70℃で1時間撹拌した。次に、2,2’-アゾビスイソブチロニトリル0.2質量部を投入し、70℃で2時間反応させた後、80℃に昇温して2時間反応させた。その後、反応液を130℃に加熱して、トルエン、α-チオグリセロールおよび未反応モノマーを乾燥除去して、固形状のアクリルオリゴマーを得た。アクリルオリゴマーの重量平均分子量は5100、ガラス転移温度(Tg)は130℃であった。 Separately, 60 parts by mass of dicyclopentanyl methacrylate, 40 parts by mass of methyl methacrylate, 3.5 parts by mass of α-thioglycerol, and 100 parts by mass of toluene are mixed and stirred at 70 ° C. for 1 hour under a nitrogen atmosphere. did. Next, 0.2 parts by mass of 2,2'-azobisisobutyronitrile was added, and the mixture was reacted at 70 ° C. for 2 hours, then heated to 80 ° C. and reacted for 2 hours. Then, the reaction solution was heated to 130 ° C., and toluene, α-thioglycerol and unreacted monomers were dried and removed to obtain a solid acrylic oligomer. The weight average molecular weight of the acrylic oligomer was 5100, and the glass transition temperature (Tg) was 130 ° C.
 プレポリマー組成物100質量部に、1,6-ヘキサンジオールジアクリレート(HDDA)0.07質量部、上記のアクリルオリゴマー3質量部、および、シランカップリング剤(信越化学製「KBM403」)0.3質量部を添加した後、これらを均一に混合して、硬化性粘着剤組成物を調製した。 In 100 parts by mass of the prepolymer composition, 0.07 parts by mass of 1,6-hexanediol diacrylate (HDDA), 3 parts by mass of the above acrylic oligomer, and a silane coupling agent (“KBM403” manufactured by Shin-Etsu Chemical Co., Ltd.) 0. After adding 3 parts by mass, these were uniformly mixed to prepare a curable pressure-sensitive adhesive composition.
 光学部材4の表面に上記の光硬化性粘着剤組成物を厚み25μmになるように塗布して塗布層を形成した。この塗布層に、ガラス板2を貼り合わせた。この光硬化性粘着剤組成物に、ガラス板2側から、ランプ直下の照射面における照射強度が5mW/cmになるように位置調節したブラックライトにより、紫外線を照射して光硬化させ、厚み25μmの粘着剤層を形成した。これにより、ガラス板2と、粘着剤層と、光学部材4とを厚み方向一方側に向かって順に備える光学積層体1を作製した。 The above-mentioned photocurable pressure-sensitive adhesive composition was applied to the surface of the optical member 4 so as to have a thickness of 25 μm to form a coating layer. The glass plate 2 was attached to this coating layer. This photo-curable pressure-sensitive adhesive composition is photo-cured by irradiating it with ultraviolet rays from the glass plate 2 side with a black light whose position is adjusted so that the irradiation intensity on the irradiation surface directly under the lamp is 5 mW / cm 2. A 25 μm pressure-sensitive adhesive layer was formed. As a result, an optical laminate 1 having a glass plate 2, an adhesive layer, and an optical member 4 in order toward one side in the thickness direction was produced.
  比較例2
 偏光子保護フィルム5をシクロオレフィンポリマーフィルム(日本ゼオン社製ZT-12、厚み13μm)に変更した以外は、実施例1と同様にして、光学積層体1を作製した。
Comparative Example 2
An optical laminate 1 was produced in the same manner as in Example 1 except that the polarizing element protective film 5 was changed to a cycloolefin polymer film (ZT-12 manufactured by Nippon Zeon Corporation, thickness 13 μm).
  実施例2
 実施例1の光学積層体1の厚み方向一方面に、厚み15μmの粘着剤層12を転写により配置した。これにより、光学積層体1と、粘着剤層12とを備える粘着剤層付き光学積層体9を製造した。粘着剤層12は下記の通りに調製した。
Example 2
A pressure-sensitive adhesive layer 12 having a thickness of 15 μm was placed on one surface of the optical laminate 1 of Example 1 in the thickness direction by transfer. As a result, an optical laminate 9 with an adhesive layer including the optical laminate 1 and the adhesive layer 12 was manufactured. The pressure-sensitive adhesive layer 12 was prepared as follows.
 ラウリルアクリレート(LA)43質量部、2-エチルヘキシルアクリレート(2EHA)44質量部、4-ヒドロキシブチルアクリレート(4HBA)6質量部、N-ビニル-2-ピロリドン(NVP)7質量部、および、BASF製「イルガキュア184」0.015質量部を配合し、紫外線を照射して重合し、ベースポリマー組成物(重合率:約10%)を得た。 43 parts by mass of lauryl acrylate (LA), 44 parts by mass of 2-ethylhexyl acrylate (2EHA), 6 parts by mass of 4-hydroxybutyl acrylate (4HBA), 7 parts by mass of N-vinyl-2-pyrrolidone (NVP), and BASF. 0.015 parts by mass of "Irgacure 184" was blended and polymerized by irradiating with ultraviolet rays to obtain a base polymer composition (polymerization rate: about 10%).
 別途、メタクリル酸ジシクロペンタニル(DCPMA)60質量部、メタクリル酸メチル(MMA)40質量部、α-チオグリセロール3.5質量部、および、トルエン100質量部を混合し、窒素雰囲気下にて70℃で1時間撹拌した。次に、2,2’-アゾビスイソブチロニトリル(AIBN)0.2質量部を投入し、70℃で2時間反応させた後、80℃に昇温して2時間反応させた。その後、反応液を130℃に加熱して、トルエン、連鎖移動剤および未反応モノマーを乾燥除去して、固形状のアクリル系オリゴマーを得た。アクリル系オリゴマーの重量平均分子量は5100であった。ガラス転移温度(Tg)は130℃であった。 Separately, 60 parts by mass of dicyclopentanyl methacrylate (DCPMA), 40 parts by mass of methyl methacrylate (MMA), 3.5 parts by mass of α-thioglycerol, and 100 parts by mass of toluene are mixed and subjected to a nitrogen atmosphere. The mixture was stirred at 70 ° C. for 1 hour. Next, 0.2 parts by mass of 2,2'-azobisisobutyronitrile (AIBN) was added and reacted at 70 ° C. for 2 hours, then heated to 80 ° C. and reacted for 2 hours. Then, the reaction solution was heated to 130 ° C., and toluene, the chain transfer agent and the unreacted monomer were dried and removed to obtain a solid acrylic oligomer. The weight average molecular weight of the acrylic oligomer was 5100. The glass transition temperature (Tg) was 130 ° C.
 ベースポリマー組成物の固形分100質量部に対して、1,6-ヘキサンジオールジアクリレート(HDDA)0.07質量部、アクリル系オリゴマー1質量部、シランカップリング剤(信越化学製「KBM403」)0.3質量部を添加した後、これらを均一に混合して、粘着剤組成物を調製した。 0.07 parts by mass of 1,6-hexanediol diacrylate (HDDA), 1 part by mass of acrylic oligomer, silane coupling agent ("KBM403" manufactured by Shin-Etsu Chemical Co., Ltd.) with respect to 100 parts by mass of the solid content of the base polymer composition. After adding 0.3 parts by mass, these were uniformly mixed to prepare a pressure-sensitive adhesive composition.
 粘着剤組成物を、PETフィルム(三菱ケミカル製「ダイアホイルMRF75」)からなる剥離シートの表面に塗布し、その後、別のPETフィルム(三菱ケミカル製「ダイアホイルMRF75」)からなる剥離シートを塗膜に貼り合わせた。その後、塗膜に紫外線を照射して、厚み15μmの粘着剤層12を調製した。ナノインデンター法で測定される25℃における粘着剤層12は、0.00011GPaであった。 The pressure-sensitive adhesive composition is applied to the surface of a release sheet made of PET film (Mitsubishi Chemical "Diafoil MRF75"), and then a release sheet made of another PET film (Mitsubishi Chemical "Diafoil MRF75") is applied. It was attached to the film. Then, the coating film was irradiated with ultraviolet rays to prepare an adhesive layer 12 having a thickness of 15 μm. The pressure-sensitive adhesive layer 12 at 25 ° C. measured by the nanoindenter method was 0.00011 GPa.
  比較例3
 比較例1の光学積層体1の厚み方向一方面に、実施例2の粘着剤層12を転写により配置して、粘着剤層付き光学積層体9を製造した。
Comparative Example 3
The pressure-sensitive adhesive layer 12 of Example 2 was placed on one side of the optical laminate 1 of Comparative Example 1 in the thickness direction by transfer to produce an optical laminate 9 with a pressure-sensitive adhesive layer.
  比較例4
 比較例2の光学積層体1の厚み方向一方面に、実施例2の粘着剤層12を転写により配置して、粘着剤層付き光学積層体9を製造した。
Comparative Example 4
The pressure-sensitive adhesive layer 12 of Example 2 was placed on one side of the optical laminate 1 of Comparative Example 2 in the thickness direction by transfer to produce an optical laminate 9 with a pressure-sensitive adhesive layer.
  実施例3
 実施例2と同様にして、粘着剤層付き光学積層体9を製造した。但し、光学部材4として、厚み50μmのポリエチレンテレフタレートフィルムからなるフィルム40(ダイアホイルS100、三菱ケミカル社製)を用いた。
Example 3
An optical laminate 9 with an adhesive layer was manufactured in the same manner as in Example 2. However, as the optical member 4, a film 40 (Diafoil S100, manufactured by Mitsubishi Chemical Corporation) made of a polyethylene terephthalate film having a thickness of 50 μm was used.
  実施例4
 実施例2と同様にして、粘着剤層付き光学積層体9を製造した。但し、光学部材4として、厚み40μmのトリアセチルセルロースフィルム(KC4UYW、コニカミノルタ製)を用いた。
Example 4
An optical laminate 9 with an adhesive layer was manufactured in the same manner as in Example 2. However, as the optical member 4, a triacetyl cellulose film (KC4UYW, manufactured by Konica Minolta) having a thickness of 40 μm was used.
  比較例5
 実施例2と同様にして、粘着剤層付き光学積層体9を製造した。但し、フィルム40として、グルタルイミド環単位を有するメタクリル樹脂ペレットを、押し出し成形により、フィルム状に成形した後、延伸したアクリル系フィルムを用いた。アクリル系フィルムの厚みは40μmであった。
Comparative Example 5
An optical laminate 9 with an adhesive layer was manufactured in the same manner as in Example 2. However, as the film 40, an acrylic film obtained by forming a methacrylic resin pellet having a glutarimide ring unit into a film by extrusion molding and then stretching the film was used. The thickness of the acrylic film was 40 μm.
 <評価>
 実施例1~比較例5のそれぞれについて、下記の事項を評価した。その結果を表1に記載する。
<Evaluation>
The following items were evaluated for each of Examples 1 to 5. The results are shown in Table 1.
 <接着剤層および粘着剤層の押し込み弾性率>
 実施例1~実施例4、比較例2、比較例4および比較例5の25℃における接着剤層3の押し込み弾性率を、ナノインデンター法に基づいて測定した。測定対象は、ガラス板2および光学部材4の間に配置される接着剤層3である。ナノインデンター法の測定条件は、下記の通りである。その結果、25℃における接着剤層3の押し込み弾性率は、5GPaであった。
<Indentation modulus of adhesive layer and adhesive layer>
The indentation elastic modulus of the adhesive layer 3 at 25 ° C. in Examples 1 to 4, Comparative Example 2, Comparative Example 4 and Comparative Example 5 was measured based on the nanoindenter method. The measurement target is the adhesive layer 3 arranged between the glass plate 2 and the optical member 4. The measurement conditions of the nanoindenter method are as follows. As a result, the indentation elastic modulus of the adhesive layer 3 at 25 ° C. was 5 GPa.
 装置:Triboindenter(Hysitron Inc.製)
 サンプルサイズ:10×10mm
 圧子:Concial(球形圧子:曲率半径10μm)、
 測定方法:単一押し込み測定
 測定温度:25℃
 圧子の押込深さ:100nm
 温度:25℃
 解析:荷重-変位曲線に基づくOliver Pharr解析
Equipment: Triboinder (manufactured by Hybrid Inc.)
Sample size: 10 x 10 mm
Indenter: Concial (spherical indenter: radius of curvature 10 μm),
Measurement method: Single push measurement Measurement temperature: 25 ° C
Indenter indentation depth: 100 nm
Temperature: 25 ° C
Analysis: Oliver Pharr analysis based on load-displacement curve
 比較例1および比較例3における粘着剤層の押し込み弾性率を、ナノインデンター法に基づいて測定した。測定対象は、ガラス板2および光学部材4の間に配置される粘着剤層である。ナノインデンター法の測定条件は、上記と同様である。但し、圧子の押込深さを1500nmにした。その結果、25℃における粘着剤層の押し込み弾性率は、0.00011GPa(0.11MPa)であった。 The indentation elastic modulus of the pressure-sensitive adhesive layer in Comparative Example 1 and Comparative Example 3 was measured based on the nanoindenter method. The measurement target is an adhesive layer arranged between the glass plate 2 and the optical member 4. The measurement conditions of the nanoindenter method are the same as above. However, the indentation depth was set to 1500 nm. As a result, the indentation elastic modulus of the pressure-sensitive adhesive layer at 25 ° C. was 0.00011 GPa (0.11 MPa).
 <接着剤層の引張貯蔵弾性率E’、および、粘着剤層のせん断貯蔵弾性率G’>
 実施例1~実施例4、比較例2、比較例4および比較例5で用いたアクリル接着剤組成物を剥離フィルムの表面に塗布し、その後、紫外線照射して、フィルム(硬化体)を作製した。フィルムを剥離フィルムから剥離した。周波数1Hz、昇温速度5℃/分の条件の温度分散モードでフィルムを、動的粘弾性を測定することにより、フィルムの引張貯蔵弾性率E’を求めた。その結果、25℃における接着剤層3の引張貯蔵弾性率E’は、3.4GPaであった。
<Tension storage elastic modulus E'of the adhesive layer and shear storage elastic modulus G'of the adhesive layer>
The acrylic adhesive composition used in Examples 1 to 4, Comparative Example 2, Comparative Example 4 and Comparative Example 5 was applied to the surface of the release film, and then irradiated with ultraviolet rays to prepare a film (cured body). did. The film was peeled from the release film. The tensile storage elastic modulus E'of the film was determined by measuring the dynamic viscoelasticity of the film in a temperature dispersion mode under the conditions of a frequency of 1 Hz and a heating rate of 5 ° C./min. As a result, the tensile storage elastic modulus E'of the adhesive layer 3 at 25 ° C. was 3.4 GPa.
 比較例1および比較例3で用いたアクリル粘着剤を円盤状に外形加工し、パラレルプレートに挟み込み、Rheometric Scientific社製「Advanced Rheometric Expansion System(ARES)」を用いて、以下の条件の動的粘弾性測定により、粘着剤層の25℃におけるせん断貯蔵弾性率G’を求めた。 The acrylic adhesive used in Comparative Example 1 and Comparative Example 3 was externally processed into a disk shape, sandwiched between parallel plates, and dynamically viscoelastic under the following conditions using "Advanced Rheometric Expansion System (ARES)" manufactured by Rheometric Scientific. The shear storage elastic modulus G'at 25 ° C. of the pressure-sensitive adhesive layer was determined by the elastic measurement.
 [条件]
 モード:ねじり
 温度:-40℃から150℃
 昇温速度:5℃/分
 周波数:1Hz
[conditions]
Mode: Torsion temperature: -40 ° C to 150 ° C
Temperature rise rate: 5 ° C / min Frequency: 1Hz
 その結果、25℃における粘着剤層のせん断貯蔵弾性率G’は、0.00003GPa(0.03MPa)であった。 As a result, the shear storage elastic modulus G'of the pressure-sensitive adhesive layer at 25 ° C. was 0.00003 GPa (0.03 MPa).
 <光学部材の剛軟度>
 図3A~図3Bに示すように、JIS L 1096(2010)に記載のA法に基づいて、光学部材4の剛軟度を測定した。結果を表1に示す。
<Rigidity and softness of optical members>
As shown in FIGS. 3A to 3B, the rigidity and softness of the optical member 4 was measured based on the method A described in JIS L 1096 (2010). The results are shown in Table 1.
 <ペンドロップ試験>
 光学積層体1について、上記したペンドロップ試験を実施した。ペン29として、Pentel社製のボールペンを用いた。ボールペンの型番は、「BK407黒」であり、ボール径が0.7mmであった。ペンドロップ試験の結果を表1に示す。表1中の数値は、ガラス板2が割れた時の高さである。
<Pen drop test>
The above-mentioned pen drop test was carried out on the optical laminate 1. As the pen 29, a ballpoint pen manufactured by Pentel was used. The model number of the ballpoint pen was "BK407 black", and the ball diameter was 0.7 mm. The results of the pen drop test are shown in Table 1. The numerical values in Table 1 are the heights when the glass plate 2 is broken.
 <鉛筆硬度>
 光学積層体1の鉛筆硬度を、JIS K 5600-5-4(1999)の記載に基づいて、測定した。鉛筆を光学積層体1のガラス板2に接触させた。結果を表1に示す。
<Pencil hardness>
The pencil hardness of the optical laminate 1 was measured based on the description of JIS K 5600-5-4 (1999). The pencil was brought into contact with the glass plate 2 of the optical laminate 1. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001

 
Figure JPOXMLDOC01-appb-T000001

 
 なお、上記発明は、本発明の例示の実施形態として提供したが、これは単なる例示に過ぎず、限定的に解釈してはならない。当該技術分野の当業者によって明らかな本発明の変形例は、後記請求の範囲に含まれる。 Although the above invention has been provided as an exemplary embodiment of the present invention, this is merely an example and should not be construed in a limited manner. Modifications of the invention that are apparent to those skilled in the art are included in the claims below.
 光学積層体は、画像表示装置に備えられる。 The optical laminate is provided in the image display device.
1  光学積層体
2  ガラス板
3  接着剤層
4  光学部材
9  粘着剤層付き光学積層体
12 粘着剤層
10 有機EL表示装置
15 画像表示部材
1 Optical laminate 2 Glass plate 3 Adhesive layer 4 Optical member 9 Optical laminate with adhesive layer 12 Adhesive layer 10 Organic EL display device 15 Image display member

Claims (7)

  1.  ガラス板と、接着剤層と、光学部材とを厚み方向一方側に向かって順に備え、
     前記接着剤層は、前記ガラス板の厚み方向一方面および前記光学部材の厚み方向他方面と接触し、
     前記光学部材の厚みが、70μm以下であり、
     前記光学部材は、粘着剤層を含まず、
     JIS L 1096(2010)に記載のA法に従って求められる前記光学部材の剛軟度が、30mm以上であり、
     ナノインデンター法で測定される25℃における前記接着剤層の押し込み弾性率が、1GPa以上である、光学積層体。
    A glass plate, an adhesive layer, and an optical member are provided in order toward one side in the thickness direction.
    The adhesive layer is in contact with one surface in the thickness direction of the glass plate and the other surface in the thickness direction of the optical member.
    The thickness of the optical member is 70 μm or less, and the thickness is 70 μm or less.
    The optical member does not contain an adhesive layer and does not contain an adhesive layer.
    The rigidity of the optical member obtained according to the method A described in JIS L 1096 (2010) is 30 mm or more.
    An optical laminate in which the indentation elastic modulus of the adhesive layer at 25 ° C. measured by the nanoindenter method is 1 GPa or more.
  2.  前記接着剤層の厚みは、5μm以下である、請求項1に記載の光学積層体。 The optical laminate according to claim 1, wherein the thickness of the adhesive layer is 5 μm or less.
  3.  前記ガラス板の厚みが、100μm以下である、請求項1または2に記載の光学積層体。 The optical laminate according to claim 1 or 2, wherein the thickness of the glass plate is 100 μm or less.
  4.  ガラス板と、接着剤層と、光学部材とを厚み方向一方側に向かって順に備える光学積層体であって、
     前記接着剤層は、前記ガラス板の厚み方向一方面および前記光学部材の厚み方向他方面と接触し、
     前記光学部材の厚みが、70μm以下であり、
     前記光学部材は、粘着剤層を含まず、
     前記ガラス板から5cmの高さから7g、ボール径0.7mmのボールペンを落下させるペンドロップ試験で、前記ガラス板に割れがなく、
     前記光学積層体の鉛筆硬度が、5H以上で、
     下記の屈曲性試験は、100,000回以上である、光学積層体。
     屈曲性試験:前記光学積層体を伸ばした状態から、ガラス板の表面が凹となる方向に屈曲半径が3mmとなるように180°折り曲げ、再び伸ばす動作を1セットとし、1分間に43セットの速さで前記動作を実施したときに、前記光学積層体にクラックが生じるまでのセット数を測定する。
    An optical laminate comprising a glass plate, an adhesive layer, and an optical member in order toward one side in the thickness direction.
    The adhesive layer is in contact with one surface in the thickness direction of the glass plate and the other surface in the thickness direction of the optical member.
    The thickness of the optical member is 70 μm or less, and the thickness is 70 μm or less.
    The optical member does not contain an adhesive layer and does not contain an adhesive layer.
    In a pen drop test in which a ballpoint pen with a height of 5 cm to 7 g and a ball diameter of 0.7 mm was dropped from the glass plate, the glass plate was not cracked.
    When the pencil hardness of the optical laminate is 5H or more,
    The following flexibility test is an optical laminate that is 100,000 times or more.
    Flexibility test: From the stretched state of the optical laminate, bend 180 ° so that the bending radius is 3 mm in the direction in which the surface of the glass plate becomes concave, and stretch it again as one set, and 43 sets per minute. When the operation is performed at a high speed, the number of sets until cracks occur in the optical laminate is measured.
  5.  請求項1~4のいずれか一項に記載の光学積層体と、
     前記光学積層体の前記光学部材の厚み方向一方面に配置される粘着剤層とを備え、
     前記光学部材の剛軟度が、45mm以上であり、
     ナノインデンター法で測定される25℃における前記粘着剤層の押し込み弾性率が、1GPa未満である、粘着剤層付き光学積層体。
    The optical laminate according to any one of claims 1 to 4,
    The optical laminate is provided with an adhesive layer arranged on one side in the thickness direction of the optical member.
    The rigidity of the optical member is 45 mm or more, and the optical member has a rigidity of 45 mm or more.
    An optical laminate with an adhesive layer, wherein the indentation elastic modulus of the adhesive layer at 25 ° C. measured by the nanoindenter method is less than 1 GPa.
  6.  前記光学部材の剛軟度が、50mm以上である、請求項5に記載の粘着剤層付き光学積層体。 The optical laminate with an adhesive layer according to claim 5, wherein the optical member has a rigidity of 50 mm or more.
  7.  折曲げ可能であって、
     請求項1~4のいずれか一項の光学積層体、または、請求項5または6に記載の粘着剤層付き光学積層体と、
     画像表示部材とを厚み方向一方側に向かって順に備える、画像表示装置。
    It is foldable and
    The optical laminate according to any one of claims 1 to 4, or the optical laminate with an adhesive layer according to claim 5 or 6.
    An image display device including image display members in order toward one side in the thickness direction.
PCT/JP2021/018806 2020-06-24 2021-05-18 Optical multilayer body, optical multilayer body with adhesive layer, and image display device WO2021261120A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020227045461A KR20230027078A (en) 2020-06-24 2021-05-18 Optical laminate, optical laminate with pressure-sensitive adhesive layer, and image display device
CN202180045136.2A CN115916526A (en) 2020-06-24 2021-05-18 Optical laminate, optical laminate with adhesive layer, and image display device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-109057 2020-06-24
JP2020109057 2020-06-24
JP2020-194694 2020-11-24
JP2020194694A JP2022007904A (en) 2020-06-24 2020-11-24 Optical multilayer body, optical multilayer body with adhesive layer, and image display device

Publications (1)

Publication Number Publication Date
WO2021261120A1 true WO2021261120A1 (en) 2021-12-30

Family

ID=79282459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/018806 WO2021261120A1 (en) 2020-06-24 2021-05-18 Optical multilayer body, optical multilayer body with adhesive layer, and image display device

Country Status (4)

Country Link
KR (1) KR20230027078A (en)
CN (1) CN115916526A (en)
TW (1) TW202202883A (en)
WO (1) WO2021261120A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3161673U (en) * 2010-05-26 2010-08-05 リンテック株式会社 IC tag
JP2013212633A (en) * 2012-04-02 2013-10-17 Nitto Denko Corp Transparent sheet and method for producing the same
JP2017209918A (en) * 2016-05-27 2017-11-30 三菱ケミカル株式会社 Method for producing glass laminate
JP2019025899A (en) * 2017-07-28 2019-02-21 株式会社ダイセル Laminate, and flexible device comprising the laminate

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007140495A (en) * 2005-10-18 2007-06-07 Toray Ind Inc Optical sheet-supporting body, backlight for liquid crystal display using same, liquid crystal display, and rear projection type display
JP5257728B2 (en) * 2006-07-31 2013-08-07 Dic株式会社 Water-based resin dispersion for paper tatami mat surface processing, and paper tatami mat table formed by coating it
JP6931518B2 (en) * 2015-09-28 2021-09-08 日東電工株式会社 Single-sided protective polarizing film, polarizing film with adhesive layer, image display device and its continuous manufacturing method
WO2017170522A1 (en) * 2016-03-29 2017-10-05 日東電工株式会社 Flexible polarizing film, manufacturing method for same and image display device
JP2018120119A (en) * 2017-01-26 2018-08-02 日東電工株式会社 Optical laminate and image display device
US20180231703A1 (en) * 2017-02-10 2018-08-16 Nitto Denko Corporation Polarizing film, image display apparatus, and method of producing polarizing film
US20200012191A1 (en) * 2017-03-28 2020-01-09 Toray Industries, Inc. Photosensitive resin composition, cured film, element equipped with cured film, organic el display device equipped with cured film, cured film production method, and organic el display device production method
JP6995527B2 (en) * 2017-08-09 2022-01-14 日東電工株式会社 Conductive film for transfer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3161673U (en) * 2010-05-26 2010-08-05 リンテック株式会社 IC tag
JP2013212633A (en) * 2012-04-02 2013-10-17 Nitto Denko Corp Transparent sheet and method for producing the same
JP2017209918A (en) * 2016-05-27 2017-11-30 三菱ケミカル株式会社 Method for producing glass laminate
JP2019025899A (en) * 2017-07-28 2019-02-21 株式会社ダイセル Laminate, and flexible device comprising the laminate

Also Published As

Publication number Publication date
TW202202883A (en) 2022-01-16
KR20230027078A (en) 2023-02-27
CN115916526A (en) 2023-04-04

Similar Documents

Publication Publication Date Title
CN109021478B (en) (meth) acrylic resin composition and (meth) acrylic resin film using same
KR20170070370A (en) Adhesive sheet and optical display apparatus comprising the same
TW201139148A (en) Heat activated optically clear adhesive for bonding display panels
KR20170003869A (en) Adhesive film and display member comprising the same
WO2022113400A1 (en) Optical laminate
JP2022007904A (en) Optical multilayer body, optical multilayer body with adhesive layer, and image display device
WO2021261101A1 (en) Optical laminate, and image display device
JP7009665B2 (en) Multi-layer structure and its manufacturing method
JP6970850B2 (en) Display device and base material laminate
WO2022113401A1 (en) Optical layered body
JP2021061141A (en) Display device and base material multilayer body
JP6934996B2 (en) Flexible image display device and optical laminate used for it
WO2021261120A1 (en) Optical multilayer body, optical multilayer body with adhesive layer, and image display device
WO2021261119A1 (en) Optical laminate
WO2021261118A1 (en) Optical laminate and adhesive layer-attached optical laminate
JP7311479B2 (en) Optical laminate and optical laminate with adhesive layer
JP7198256B2 (en) optical laminate
JP7177958B2 (en) optical laminate
JP7242934B2 (en) optical laminate
JP6903804B1 (en) Flexible image display device and optical laminate used for it
WO2023153052A1 (en) Window base material, multilayer window, multilayer window with adhesive layer, and display device including multilayer window
WO2023153051A1 (en) Window base material, multilayer window, multilayer window with adhesive layer, and display device including multilayer window
KR20230170910A (en) Protective elements and organic electroluminescence display devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21828702

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21828702

Country of ref document: EP

Kind code of ref document: A1