WO2021261119A1 - Optical laminate - Google Patents

Optical laminate Download PDF

Info

Publication number
WO2021261119A1
WO2021261119A1 PCT/JP2021/018805 JP2021018805W WO2021261119A1 WO 2021261119 A1 WO2021261119 A1 WO 2021261119A1 JP 2021018805 W JP2021018805 W JP 2021018805W WO 2021261119 A1 WO2021261119 A1 WO 2021261119A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
adhesive layer
glass plate
thickness
optical laminate
Prior art date
Application number
PCT/JP2021/018805
Other languages
French (fr)
Japanese (ja)
Inventor
孝伸 矢野
貴巳 疋田
岳仁 淵田
洪賛 趙
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020194696A external-priority patent/JP7198256B2/en
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to KR1020227042814A priority Critical patent/KR20230026309A/en
Priority to CN202180045371.XA priority patent/CN115776941A/en
Publication of WO2021261119A1 publication Critical patent/WO2021261119A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10018Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising only one glass sheet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10779Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing polyester
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/022Mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/08Dimensions, e.g. volume
    • B32B2309/10Dimensions, e.g. volume linear, e.g. length, distance, width
    • B32B2309/105Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/206Organic displays, e.g. OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • H10K59/8722Peripheral sealing arrangements, e.g. adhesives, sealants

Definitions

  • the present invention relates to an optical laminate including a glass plate.
  • An optical laminate including a glass plate, an adhesive layer, and a polyethylene terephthalate film or a triacetyl cellulose film is known (see, for example, Patent Document 1 below). ).
  • the glass plate has excellent optical properties but low impact resistance. Impact resistance is a property of suppressing damage including cracks in the glass plate when the glass plate is impacted.
  • the optical laminate described in the examples of Patent Document 1 has a three-layer laminated structure.
  • optical laminates are required to have a higher level of impact resistance.
  • the thickness of the glass plate is made very thick, the impact resistance is improved.
  • thinner glass is desirable from the viewpoint of thinning and weight reduction.
  • the present invention provides an optical laminate having excellent impact resistance.
  • the inventors of the present application have surprisingly provided a thin glass plate having a thickness of 40 ⁇ m or more and 60 ⁇ m or less in the optical laminate, and also provided a specific tan ⁇ and a specific tensile storage elastic modulus E'.
  • the impact resistance of the optical laminate can be improved by providing the optical laminate with a film having a thickness of 20 ⁇ m or less on the opposite surface to the glass plate of the film. I found it.
  • a glass plate, an adhesive layer, a film, and an adhesive layer are provided in order toward one side in the thickness direction, and the glass plate has a thickness of 40 ⁇ m or more and 60 ⁇ m or less.
  • the average tan ⁇ of the film at a frequency of 10 Hz, a heating rate of 2 ° C./min, and a dynamic viscoelasticity test in a tensile mode from -100 ° C to -50 ° C is 0.06 or more, and the dynamic viscoelasticity.
  • An optical laminate having an average tensile storage elastic modulus E'of the film at ⁇ 100 ° C. to ⁇ 50 ° C. determined by a test is 3 GPa or more and 6 GPa or less, and the pressure-sensitive adhesive layer has a thickness of 20 ⁇ m or less.
  • the optical laminate of the present invention has a glass plate having a thickness of 40 ⁇ m or more and 60 ⁇ m or less, and a film having a specific tan ⁇ and a specific tensile storage elastic modulus E'is provided via an adhesive layer, and has a thickness of 20 ⁇ m or less. Since it has an adhesive layer, it has excellent impact resistance.
  • FIG. 1 is a cross-sectional view of an embodiment of the optical laminate of the present invention.
  • FIG. 2 is a cross-sectional view of an organic electroluminescence display device including the optical laminate shown in FIG.
  • the optical laminate 1 has, for example, a flat plate shape extending in the plane direction.
  • the plane direction is orthogonal to the thickness direction of the optical laminate 1.
  • the optical laminate 1 includes a glass plate 2, an adhesive layer 3, a film 4, and an adhesive layer 12 in this order toward one side in the thickness direction.
  • the glass plate 2 extends in the plane direction.
  • the glass plate 2 forms the other surface in the thickness direction of the optical laminate 1.
  • the total light transmittance of the glass plate 2 is, for example, 80% or more, preferably 85% or more, and for example, 99% or less.
  • a commercially available product can be used, and for example, the G-leaf series (registered trademark, manufactured by Nippon Electric Glass Co., Ltd.) can be used.
  • the thickness of the glass plate 2 is 40 ⁇ m or more and 60 ⁇ m or less. If the thickness of the glass plate 2 is sufficiently thick, the impact resistance is improved. From this point of view, it is considered that the thicker the glass plate 2 is, the more the impact resistance is improved. However, when the thickness of the glass plate 2 is 40 ⁇ m or more and 60 ⁇ m or less, a specific tan ⁇ and a specific tensile storage elastic modulus E'.
  • the optical laminate 1 can be improved in impact resistance by providing the optical laminate 1 with the film 4 having the adhesive layer 3 via the adhesive layer 3 and further providing the pressure-sensitive adhesive layer 12 having a thickness of 20 ⁇ m or less.
  • the thickness of the glass plate 2 is preferably 42 ⁇ m or more, more preferably 45 ⁇ m or more, and further preferably 48 ⁇ m or more.
  • the thickness of the glass plate 2 is, for example, 58 ⁇ m or less, preferably 55 ⁇ m or less, and more preferably 52 ⁇ m or less. Since the glass plate 2 has the above-mentioned thickness, it is called a thin glass plate.
  • the adhesive layer 3 extends in the plane direction.
  • the adhesive layer 3 is arranged on one side of the glass plate 2 in the thickness direction. Specifically, the adhesive layer 3 comes into contact with one side of the glass plate 2 in the thickness direction.
  • the adhesive layer 3 is not a pressure-sensitive adhesive layer (pressure-sensitive adhesive layer) made of a pressure-sensitive adhesive (pressure-sensitive adhesive), but a cured product of a curable adhesive.
  • the adhesive layer 3 is a cured product of a curable adhesive that undergoes a curing reaction by irradiation with active energy rays or heating.
  • the curable adhesive is a curing raw material for the adhesive layer 3, and examples thereof include an active energy curing type and a thermosetting type, preferably an active energy curing type.
  • Specific examples of the curable adhesive include an acrylic adhesive composition, an epoxy adhesive composition, and a silicone adhesive composition. From the viewpoint of obtaining excellent impact resistance, an epoxy adhesive is used. The composition may be mentioned.
  • the epoxy adhesive composition contains an epoxy resin as a main ingredient.
  • the epoxy resin include a bifunctional epoxy resin containing two epoxy groups and a polyfunctional epoxy resin containing three or more epoxy groups. These can be used alone or in combination of two or more. A combination of the bifunctional epoxy resin and the polyfunctional epoxy resin is preferable.
  • the bifunctional epoxy resin examples include aromatic epoxy resins such as bisphenol type epoxy resin, novolak type epoxy resin, naphthalene type epoxy resin, fluorene type epoxy resin, and triphenylmethane type epoxy resin, for example, triepoxypropyl isocyanurate. , Hydant-in epoxy resin and other nitrogen-containing ring epoxy resins, and examples thereof include aliphatic type epoxy resins, glycidyl ether type epoxy resins, and glycidylamine type epoxy resins. As the bifunctional epoxy resin, an aliphatic type epoxy resin is preferable.
  • the aliphatic epoxy resin includes an aliphatic alicyclic epoxy resin.
  • the epoxy equivalent of the bifunctional epoxy resin is, for example, 100 g / eq. As mentioned above, preferably 120 g / eq. The above, and for example, 250 g / eq. Hereinafter, preferably, 150 g / eq. It is as follows.
  • the ratio of the bifunctional epoxy resin in the epoxy resin is, for example, 80% by mass or more, preferably 90% by mass or more, and for example, 99% by mass or less, preferably 97% by mass or less.
  • polyfunctional epoxy resin examples include phenol novolac type epoxy resin, cresol novolac type epoxy resin, trishydroxyphenylmethane type epoxy resin, tetraphenylol ethane type epoxy resin, dicyclopentadiene type epoxy resin, and trifunctional aliphatic epoxy resin.
  • polyfunctional epoxy resins having three or more functionalities such as.
  • the polyfunctional epoxy resin is preferably a trifunctional aliphatic epoxy resin.
  • the epoxy equivalent of the polyfunctional epoxy resin is, for example, 130 g / eq. As mentioned above, preferably 150 g / eq. The above, and for example, 220 g / eq. Hereinafter, preferably, 200 g / eq. It is as follows.
  • the proportion of the polyfunctional epoxy resin in the epoxy resin is, for example, 1% by mass or more, preferably 3% by mass or more, and for example, 20% by mass or less, preferably 10% by mass or less.
  • the proportion of the epoxy resin in the epoxy adhesive composition is, for example, 60% by mass or more, preferably 75% by mass or more, and for example, 90% by mass or less, preferably 80% by mass or less.
  • the epoxy resin a commercially available product can be used, and as the aliphatic alicyclic epoxy resin, seroxide 2021P (manufactured by Daicel Chemical Co., Ltd.) and EHPE3150 (manufactured by Daicel Chemical Co., Ltd.) are used as the trifunctional aliphatic epoxy resin.
  • the epoxy adhesive composition contains a photoacid generator if it is an active energy curable type.
  • the photoacid generator include triarylsulfonium salts and the like.
  • the photoacid generator a commercially available product can be used, and CPI101A (manufactured by San Afro) or the like is used as the triarylsulfonium salt.
  • the proportion of the photoacid generator in the epoxy adhesive composition is, for example, 1% by mass or more, preferably 10% by mass or more, and for example, 30% by mass or less, preferably 20% by mass or less.
  • the epoxy adhesive composition can contain additives such as an oxetane-based resin and a silane coupling agent in an appropriate ratio.
  • oxetane-based resin examples include monofunctional oxetane such as 3-ethyl-3-oxetanemethanol and 2-ethylhexyloxetane, for example, xylylenebis oxetane, 3-ethyl-3 ⁇ [(3-ethyloxetane-3-yl). ) Bifunctional oxetane such as methoxy] methyl ⁇ oxetane.
  • oxetane-based resin a commercially available product can be used, and Aron oxetane (manufactured by Toagosei Co., Ltd.) or the like is used.
  • silane coupling agent examples include an epoxy group-containing silane coupling agent such as 3-glycidoxypropyltrimethoxysilane.
  • silane coupling agent a commercially available product can be used, and examples thereof include KBM series (manufactured by Shin-Etsu Silicone Co., Ltd.).
  • the thickness of the adhesive layer 3 is not limited.
  • the thickness of the adhesive layer 3 is, for example, 0.1 ⁇ m or more, and is, for example, 10 ⁇ m or less, preferably 5 ⁇ m or less, and more preferably 3 ⁇ m or less.
  • the total light transmittance of the adhesive layer 3 is, for example, 80% or more, preferably 85% or more, and for example, 99% or less.
  • the tensile storage elastic modulus E'of the adhesive layer 3 at 25 ° C. is, for example, 1 GPa or more, preferably 2 GPa or more, more preferably 3 GPa or more, still more preferably 4 GPa or more, and for example, 100 GPa or less. be.
  • the tensile storage elastic modulus E'of the adhesive layer 3 at 25 ° C. is determined by measuring the dynamic viscoelasticity in a temperature dispersion mode under the conditions of a frequency of 1 Hz and a heating rate of 5 ° C./min.
  • measured by the nanoindenter method is, for example, 1 GPa or more, preferably 2 GPa or more, more preferably 3 GPa or more, still more preferably 4 GPa or more, and also. For example, it is 100 GPa or less.
  • the measurement conditions of the nanoindenter method are as follows.
  • the film 4 is located on the opposite side of the glass plate 2 with respect to the adhesive layer 3.
  • the film 4 extends in the plane direction.
  • the film 4 is arranged on one side of the adhesive layer 3 in the thickness direction.
  • the film 4 is in contact with one side of the adhesive layer 3 in the thickness direction.
  • the adhesive layer 3 is in contact with one surface of the glass plate 2 in the thickness direction and the other surface of the film 4 in the thickness direction, and the glass plate 2 and the film 4 are bonded (bonded) to each other.
  • ⁇ Average of tan ⁇ of film 4> The average tan ⁇ of the film 4 at -100 ° C to -50 ° C determined by the dynamic viscoelasticity test in the frequency of 10 Hz, the heating rate of 2 ° C / min, the data acquisition interval of 0.5 min, and the tensile mode is 0.06 or more. be. If the average of tan ⁇ of the film 4 from ⁇ 100 ° C. to ⁇ 50 ° C. is less than 0.06, the impact resistance of the optical laminate 1 is lowered.
  • the average of the tan ⁇ of the film 4 at ⁇ 100 ° C. to ⁇ 50 ° C. is an index showing the responsiveness when the object collides with the optical laminate 1 at high speed. If the average of tan ⁇ is high, the impact received by the glass plate 2 can be sufficiently alleviated by the film 4, and the impact resistance of the optical laminate 1 can be improved.
  • the upper limit of the average tan ⁇ of the film 4 from -100 ° C to -50 ° C is not limited.
  • the average of tan ⁇ of the film 4 from ⁇ 100 ° C. to ⁇ 50 ° C. is, for example, 0.50 or less.
  • the dynamic viscoelasticity test will be described in later examples.
  • the average tensile storage elastic modulus E'of the film 4 at -100 ° C to -50 ° C determined by a dynamic viscoelasticity test in a frequency of 10 Hz, a heating rate of 2 ° C / min, a data acquisition interval of 0.5 min, and a tensile mode is It is 3 GPa or more, preferably 4 GP or more, more preferably 5 GP or more, and 6 GPa or less.
  • the average tensile storage elastic modulus E'of the film 4 from ⁇ 100 ° C. to ⁇ 50 ° C. exceeds 6 GPa, the film 4 becomes too hard and the impact resistance of the optical laminate 1 deteriorates.
  • the film 4 is too soft, and as a result, the impact resistance of the optical laminate 1 is sufficiently improved. Can not.
  • Examples of the film 4 include a polyester film.
  • Examples of the polyester film include polyethylene terephthalate film (PET), polybutylene terephthalate (PBT) film, and polyethylene naphthalate (PEN) film.
  • PET polyethylene terephthalate film
  • PBT polybutylene terephthalate
  • PEN polyethylene naphthalate
  • the thickness of the film 4 is not limited.
  • the thickness of the film 4 is, for example, 10 ⁇ m or more, preferably 20 ⁇ m or more, more preferably 30 ⁇ m or more, still more preferably 40 ⁇ m or more, and for example, 150 ⁇ m or less, preferably 100 ⁇ m or less, preferably 75 ⁇ m. It is as follows.
  • the total light transmittance of the film 4 is, for example, 80% or more, preferably 85% or more, and for example, 99% or less.
  • the pressure-sensitive adhesive layer 12 forms one side of the film 4 in the thickness direction.
  • the pressure-sensitive adhesive layer 12 is arranged on one side of the film 4 in the thickness direction. Specifically, the pressure-sensitive adhesive layer 12 comes into contact with one side of the film 4 in the thickness direction.
  • the pressure-sensitive adhesive layer 12 is an adhesive body that is pressure-sensitively adhered without a curing reaction.
  • the material of the pressure-sensitive adhesive layer 12 is not limited.
  • Examples of the material of the pressure-sensitive adhesive layer 12 include an acrylic pressure-sensitive adhesive, a rubber-based pressure-sensitive adhesive, a vinyl alkyl ether-based pressure-sensitive adhesive, a silicone-based pressure-sensitive adhesive, a polyester-based pressure-sensitive adhesive, a polyamide-based pressure-sensitive adhesive, a urethane-based pressure-sensitive adhesive, and a fluorine-based pressure-sensitive adhesive. Examples thereof include adhesives, epoxy adhesives, and polyether adhesives. As the material, an acrylic pressure-sensitive adhesive is preferable. The formulation and physical properties of the pressure-sensitive adhesive layer 12 are described in detail in, for example, Japanese Patent Application Laid-Open No. 2018-28873.
  • the shear storage elastic modulus G'at 25 ° C. of the pressure-sensitive adhesive layer 12 is, for example, 0.01 MPa or more, and for example 0.20 MPa or less.
  • the shear storage elastic modulus G' is determined by a dynamic viscoelasticity test at a frequency of 1 Hz, a heating rate of 5 ° C./min, and a shear (twist) mode.
  • the thickness of the pressure-sensitive adhesive layer 12 is 20 ⁇ m or less. If the thickness of the pressure-sensitive adhesive layer 12 exceeds 20 ⁇ m, the impact resistance of the optical laminate 1 is lowered.
  • the thickness of the pressure-sensitive adhesive layer 12 is, for example, 5 ⁇ m or more, preferably 10 ⁇ m or more.
  • the thickness of the optical laminate 1 is, for example, 70 ⁇ m or more, and 250 ⁇ m or less, for example.
  • ⁇ Manufacturing method of optical laminate 1 A method for manufacturing the optical laminate 1 will be described.
  • a curable adhesive is placed (applied) on one side in the thickness direction of the glass plate 2 and / or the other side in the thickness direction of the film 4, and then the glass plate 2 and / or the glass plate 2 and The curable adhesive is sandwiched between the films 4.
  • the curable adhesive is cured.
  • the curable adhesive is an active energy curable type
  • the curable adhesive is irradiated with active energy including ultraviolet rays.
  • the curable adhesive is irradiated with ultraviolet rays from the glass plate 2 side.
  • the curable adhesive is thermosetting, heat the curable adhesive. As a result, the adhesive layer 3 that firmly adheres the glass plate 2 and the film 4 is formed.
  • the pressure-sensitive adhesive layer 12 is arranged on one side of the film 4 in the thickness direction.
  • a varnish containing an adhesive is applied and dried on one side of the film 4 in the thickness direction.
  • the pressure-sensitive adhesive layer 12 formed on the release sheet (not shown) can be transferred to one side of the film 4 in the thickness direction.
  • an optical laminate 1 including a glass plate 2, an adhesive layer 3, a film 4, and an adhesive layer 12 is obtained.
  • the optical laminate 1 may be provided with a release sheet (not shown).
  • the optical laminate 1 includes a glass plate 2, an adhesive layer 3, a film 4, an adhesive layer 12, and a release sheet (not shown).
  • the optical laminate 1 is used for various optical applications, and is provided in, for example, an image display device.
  • the image display device include an organic electroluminescence display device (hereinafter, simply abbreviated as “organic EL display device”).
  • the organic EL display device 10 has a flat plate shape extending in the plane direction. Since the organic EL display device 10 includes the conductive film 13 described below, it functions as a touch panel type input display device.
  • the organic EL display device 10 includes an optical laminate 1, a conductive film 13, a second pressure-sensitive adhesive layer 14, and an image display member 15.
  • the upper side of the paper surface is the user's visual recognition side, which is the front side (corresponding to the other side in the thickness direction of FIG. 1), and the lower side of the paper surface is the back side (one side in the thickness direction of FIG. 1). Equivalent to).
  • the optical laminate 1 includes a glass plate 2, an adhesive layer 3, a film 4, and an adhesive layer 12 in this order toward the back side.
  • the conductive film 13 includes a conductive layer 16 and a base material layer 17 in order toward the back side.
  • the conductive layer 16 has a predetermined pattern. The surface and sides of the conductive layer 16 come into contact with the pressure-sensitive adhesive layer 12.
  • Examples of the material of the conductive layer 16 include metal oxides, conductive fibers (fibers), and metals.
  • the metal oxide include composite oxides. Examples of the composite oxide include indium zinc composite oxide (IZO), indium gallium zinc composite oxide (IGZO), indium gallium composite oxide (IGO), indium tin composite oxide (ITO), and antimonthine composite. Oxide (ATO) can be mentioned.
  • Examples of conductive fibers include metal nanowires and carbon nanotubes. Metals include, for example, gold, platinum, silver, and copper.
  • the conductive layer 16 integrally has a sensor electrode portion 18 located in the central portion in the plane direction and a drawer wiring portion 19 located in the periphery of the sensor electrode portion 18. Details of the conductive layer 16 are described in, for example, JP-A-2017-102443, JP-A-2014-113705, and JP-A-2014-219667.
  • the base material layer 17 is arranged on the back surface of the conductive layer 16 and the back surface of the pressure-sensitive adhesive layer 12.
  • the base material layer 17 extends in the plane direction.
  • the base material layer 17 is, for example, a resin layer.
  • the material of the base material layer 17 include olefin resin, polyester resin, (meth) acrylic resin, polycarbonate resin, polyether sulfone resin, polyarylate resin, melamine resin, polyamide resin, polyimide resin, cellulose resin, and polystyrene resin. Can be mentioned.
  • the olefin resin include polyethylene, polypropylene, and cycloolefin polymer (COP).
  • the polyester resin include PET, PBT, and PEN.
  • the (meth) acrylic resin include poly (meth) acrylate resins. Details of the base material layer 17 are described in, for example, Japanese Patent Application Laid-Open No. 2018-181722.
  • the second pressure-sensitive adhesive layer 14 is arranged on the back surface of the conductive film 13. Specifically, the second pressure-sensitive adhesive layer 14 is in contact with the back surface of the conductive film 13. The material of the second pressure-sensitive adhesive layer 14 is the same as the material of the pressure-sensitive adhesive layer 12.
  • the image display member 15 forms the back surface of the organic EL display device 10.
  • the image display member 15 is arranged on the back side of the conductive film 13 via the second pressure-sensitive adhesive layer 14.
  • the image display member 15 extends in the plane direction.
  • the image display member 15 is an organic EL element.
  • the image display member 15 includes a display substrate, two electrodes, an organic EL layer sandwiched between the two electrodes, and a sealing layer. The configuration and physical properties of the image display member 15 are described in detail in, for example, Japanese Patent Application Laid-Open No. 2018-28873.
  • the optical laminate 1 has a glass plate 2 having a thickness of 40 ⁇ m or more and 60 ⁇ m or less, an adhesive layer 3, and an average of tan ⁇ from ⁇ 100 ° C. to ⁇ 50 ° C. of 0.06 or more, and ⁇ 100 ° C.
  • a film 4 having an average tensile storage elastic modulus E'at -50 ° C. of 3 GPa or more and 6 GPa or less is provided, and a pressure-sensitive adhesive layer 12 is further provided. Further, the pressure-sensitive adhesive layer 12 has a thickness of 20 ⁇ m or less. Therefore, the optical laminate 1 is excellent in impact resistance.
  • the film 4 is a single layer, but the number of layers of the film 4 is not limited.
  • the film 4 may have a plurality of layers.
  • the optical laminate of the present invention has excellent impact resistance, even a glass plate having a thickness of 40 ⁇ m or more and 60 ⁇ m or less has sufficient impact resistance. Since a glass plate having a thickness of 40 ⁇ m or more and 60 ⁇ m or less is excellent in flexibility, the optical laminate of the present invention can be suitably used for flexible displays such as foldable displays and rollable displays.
  • the optical laminate 1 can further include a functional layer 37.
  • the functional layer 37 is arranged on the other surface of the glass plate 2 in the thickness direction.
  • Examples of the functional layer 37 include a hard coat layer, an anti-scattering layer, an anti-fouling layer, and an anti-reflection layer. These may be a single layer or a plurality of these may be laminated.
  • Example 1 A glass plate 2 (G-leaf) having a thickness of 50 ⁇ m and a film 4 (Diafoil S100, manufactured by Mitsubishi Chemical Corporation) made of a polyethylene terephthalate film having a thickness of 50 ⁇ m were prepared.
  • 70 parts by mass of an aliphatic alicyclic epoxy resin (celloxide 2021P, epoxy equivalent 128 to 133 g / eq., Manufactured by Daicel Chemical Co., Ltd.), a trifunctional aliphatic epoxy resin (EHPE3150, epoxy equivalent 170 to 190 g / eq., Daicel).
  • epoxy adhesive composition was prepared by blending 2 parts by mass and 2 parts by mass of a photoacid generator (CPI101A, triarylsulfonium salt, manufactured by San Afro). This epoxy adhesive composition was sandwiched between the glass plate 2 and the film 4.
  • a photoacid generator CPI101A, triarylsulfonium salt, manufactured by San Afro. This epoxy adhesive composition was sandwiched between the glass plate 2 and the film 4.
  • the curable adhesive was irradiated with ultraviolet rays from the glass plate 2 side.
  • an adhesive layer 3 having a thickness of 1 ⁇ m made of a cured body that firmly adheres the glass plate 2 and the film 4 was formed.
  • the elastic modulus of the adhesive layer 3 at 25 ° C. measured by the nanoindenter method was 4.9 GPa.
  • the pressure-sensitive adhesive layer 12 having a thickness of 15 ⁇ m was placed on one side of the film 4 in the thickness direction by transfer.
  • the pressure-sensitive adhesive layer 12 was prepared as follows.
  • LA lauryl acrylate
  • EHA 2-ethylhexyl acrylate
  • HBA 4-hydroxybutyl acrylate
  • NDP N-vinyl-2-pyrrolidone
  • BASF BASF
  • DCPMA dicyclopentanyl methacrylate
  • MMA methyl methacrylate
  • ⁇ -thioglycerol 100 parts by mass of toluene
  • reaction solution was heated to 130 ° C., and toluene, the chain transfer agent and the unreacted monomer were dried and removed to obtain a solid acrylic oligomer.
  • the weight average molecular weight of the acrylic oligomer was 5100.
  • the glass transition temperature (Tg) was 130 ° C.
  • the pressure-sensitive adhesive composition is applied to the surface of a release sheet made of PET film (Mitsubishi Chemical "Diafoil MRF75”), and then a release sheet made of another PET film (Mitsubishi Chemical "Diafoil MRF75”) is applied. It was attached to the film. Then, the coating film was irradiated with ultraviolet rays to prepare an adhesive layer 12 having a thickness of 15 ⁇ m.
  • the shear storage elastic modulus G'at 25 ° C. of the pressure-sensitive adhesive layer 12 was 0.03 MGPa.
  • the measurement method is as follows.
  • the pressure-sensitive adhesive layer 12 is externally processed into a disk shape, sandwiched between parallel plates, and the pressure-sensitive adhesive layer 12 is measured by dynamic viscoelasticity measurement under the following conditions using "Advanced Shearometric Exhibition System (ARES)” manufactured by Shearetic Scientific.
  • the shear storage elastic modulus G'at 25 ° C. was determined.
  • an optical laminate 1 including a glass plate 2, an adhesive layer 3, a film 4, and an adhesive layer 12 was manufactured.
  • Comparative Example 1 The optical laminate 1 was manufactured in the same manner as in Example 1. However, the thickness of the pressure-sensitive adhesive layer 12 was changed to 25 ⁇ m.
  • Comparative Example 2 The optical laminate 1 was manufactured in the same manner as in Example 1. However, the thickness of the glass plate 2 was changed to 70 ⁇ m.
  • Comparative Example 3 The optical laminate 1 was manufactured in the same manner as in Example 1. However, as the film 4, a triacetyl cellulose film (KC4UYW, manufactured by Konica Minolta) having a thickness of 40 ⁇ m was used.
  • a triacetyl cellulose film (KC4UYW, manufactured by Konica Minolta) having a thickness of 40 ⁇ m was used.
  • Comparative Example 4 The optical laminate 1 was manufactured in the same manner as in Example 1. However, as the film 4, a triacetyl cellulose film (KC8UAW, manufactured by Konica Minolta) having a thickness of 80 ⁇ m was used.
  • KC8UAW triacetyl cellulose film
  • Each of the average tensile storage elastic moduli E'of the film 4 from -100 ° C to -50 ° C was calculated by dividing the sum of all the above acquired data from -100 ° C to -50 ° C by the number of data. ..
  • Each of the averages of tan ⁇ of film 4 from ⁇ 100 ° C. to ⁇ 50 ° C. was calculated by dividing the sum of all the above-mentioned acquired data from ⁇ 100 ° C. to ⁇ 50 ° C. by the number of data.
  • ⁇ Pen drop crack test> The following pen drop cracking test was carried out for the optical laminate 1 of each Example and Comparative Example. As shown by the virtual line in FIG. 1, first, the optical laminate 1 was placed on the surface of the resin film 34 so that the glass plate 2 faces upward. Specifically, the pressure-sensitive adhesive layer 12 was attached to the surface of the resin film 34.
  • the resin film 34 is a prescale (a monosheet type for prescale MS medium pressure manufactured by Fujifilm, thickness 95 ⁇ m). The resin film 34 is arranged on the surface of a horizontal table (not shown). Next, a pen drop cracking test is carried out in which a 7 g pen 29 (Pentel ballpoint pen BK407 black, ball diameter 0.7 mm) is dropped from a height of 5 cm from the glass plate 2.
  • the height of 5 cm described above is the distance between one side of the glass plate 2 in the thickness direction and the tip portion 32 of the pen 29.
  • the tip portion 32 faces downward and is sharp.
  • the height H1 of the pen drop cracking test becomes 5 cm. If the glass plate 2 does not crack, the height is gradually increased by 1 cm. As a result, the height H1 when the glass plate 2 is cracked is obtained.
  • ⁇ Comparison of each example and comparative example> ⁇ Evaluation of the thickness of the adhesive layer 12> The thickness of the pressure-sensitive adhesive layer 12 is evaluated.
  • Example 1 and Comparative Example 1 are compared.
  • the thickness of the pressure-sensitive adhesive layer 12 of Example 1 is 15 ⁇ m.
  • the thickness of the pressure-sensitive adhesive layer 12 of Comparative Example 1 is 25 ⁇ m.
  • the height H1 20 cm of the pen drop cracking test of Example 1 is higher than the height H1 10 cm of the pen drop cracking test of Comparative Example 1. Therefore, it can be seen that the impact resistance of the optical laminate 1 is improved by reducing the thickness of the pressure-sensitive adhesive layer 12 to 20 ⁇ m or less.
  • Example 1 and Comparative Example 2 are compared.
  • the thickness of the glass plate 2 of Example 1 is 50 ⁇ m.
  • the thickness of the glass plate 2 of Comparative Example 2 is 70 ⁇ m.
  • the height H1 20 cm of the pen drop cracking test of Example 1 is higher than the height H17 cm of the pen drop cracking test of Comparative Example 2. Therefore, it can be seen that the impact resistance of the optical laminate 1 is improved by reducing the thickness of the glass plate 2 to 60 cm or less.
  • Example 1, Comparative Example 3 and Comparative Example 4 are compared.
  • the average of tan ⁇ of the film 4 of Example 1 is 0.062.
  • the average of tan ⁇ of each film 4 of Comparative Example 3 and Comparative Example 4 is 0.047 ⁇ m.
  • the height H1 20 cm of the pen drop cracking test of Example 1 is higher than the height H17 cm and 10 cm of the pen drop cracking test of Comparative Example 3 and Comparative Example 4, respectively. Therefore, it can be seen that the impact resistance of the optical laminate 1 is improved by setting the average of tan ⁇ of the film 4 to 0.06 or more.
  • the optical laminate is provided in the image display device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Laminated Bodies (AREA)

Abstract

This optical laminate 1 comprises a glass plate 2, an adhesive layer 3, a film 4, and a pressure-sensitive adhesive layer 12 in the stated order toward one side in the thickness direction. The glass plate 2 has a thickness of 40-60 μm (inclusive). The average tanδ of the film 4 at a temperature from -100°C to -50°C is 0.06 or higher, said average being derived through a dynamic viscoelasticity test in a tension mode and at a frequency of 10 Hz and a warming rate of 2°C/min. The average tensile elastic modulus E' of the film at a temperature from -100°C to -50°C is 3-6 GPa (inclusive), said average being derived through the dynamic viscoelasticity test. The pressure-sensitive adhesive layer 12 has a thickness of 20 μm or less.

Description

光学積層体Optical laminate
 本発明は、ガラス板を備える光学積層体に関する。 The present invention relates to an optical laminate including a glass plate.
 ガラス板と、接着剤層と、ポリエチレンテレフタレートフィルムまたはトリアセチルセルロースフィルムとを備える光学積層体が知られている(例えば、下記特許文献1参照。
)。ガラス板は、光学特性に優れる一方、耐衝撃性が低い。耐衝撃性は、ガラス板が衝撃を受けたときに、ガラス板にクラックを含む損傷を抑制する性質である。特許文献1の実施例に記載の光学積層体は、3層積層構造を有する。
An optical laminate including a glass plate, an adhesive layer, and a polyethylene terephthalate film or a triacetyl cellulose film is known (see, for example, Patent Document 1 below).
). The glass plate has excellent optical properties but low impact resistance. Impact resistance is a property of suppressing damage including cracks in the glass plate when the glass plate is impacted. The optical laminate described in the examples of Patent Document 1 has a three-layer laminated structure.
特開2019-25899号公報Japanese Unexamined Patent Publication No. 2019-25899
 近年、光学積層体には、より高いレベルの耐衝撃性が求められる。例えばガラス板の厚みを非常に厚くすれば、耐衝撃性は向上する。しかし薄型化、軽量化の観点で、より薄いガラスが望ましい。 In recent years, optical laminates are required to have a higher level of impact resistance. For example, if the thickness of the glass plate is made very thick, the impact resistance is improved. However, thinner glass is desirable from the viewpoint of thinning and weight reduction.
 本発明は、耐衝撃性に優れる光学積層体を提供する。 The present invention provides an optical laminate having excellent impact resistance.
 そこで、本願発明者らは、鋭意検討した結果、驚くべきことに、厚みが40μm以上、60μm以下の薄いガラス板を光学積層体に備え、また、特定のtanδおよび特定の引張貯蔵弾性率E’を有するフィルムを接着剤層を介して光学積層体に備え、さらに厚みが20μm以下の粘着剤層をフィルムのガラス板とは反対面に備えることによって、光学積層体の耐衝撃性を向上できることを見出した。 Therefore, as a result of diligent studies, the inventors of the present application have surprisingly provided a thin glass plate having a thickness of 40 μm or more and 60 μm or less in the optical laminate, and also provided a specific tan δ and a specific tensile storage elastic modulus E'. The impact resistance of the optical laminate can be improved by providing the optical laminate with a film having a thickness of 20 μm or less on the opposite surface to the glass plate of the film. I found it.
 本発明(1)は、ガラス板と、接着剤層と、フィルムと、粘着剤層とを厚み方向一方側に向かって順に備え、前記ガラス板は、40μm以上、60μm以下の厚みを有し、周波数10Hz、昇温速度2℃/min、引張モードの動的粘弾性試験により求められる-100℃から-50℃における前記フィルムのtanδの平均が、0.06以上であり、前記動的粘弾性試験により求められる-100℃から-50℃における前記フィルムの引張貯蔵弾性率E’の平均が、3GPa以上、6GPa以下であり、前記粘着剤層は、20μm以下の厚みを有する、光学積層体を含む。 In the present invention (1), a glass plate, an adhesive layer, a film, and an adhesive layer are provided in order toward one side in the thickness direction, and the glass plate has a thickness of 40 μm or more and 60 μm or less. The average tan δ of the film at a frequency of 10 Hz, a heating rate of 2 ° C./min, and a dynamic viscoelasticity test in a tensile mode from -100 ° C to -50 ° C is 0.06 or more, and the dynamic viscoelasticity. An optical laminate having an average tensile storage elastic modulus E'of the film at −100 ° C. to −50 ° C. determined by a test is 3 GPa or more and 6 GPa or less, and the pressure-sensitive adhesive layer has a thickness of 20 μm or less. include.
 本発明の光学積層体は、ガラス板の厚みが40μm以上60μm以下であり、特定のtanδおよび特定の引張貯蔵弾性率E’を有するフィルムを接着剤層を介して備え、さらに20μm以下の厚みを有する粘着剤層を備えるので、耐衝撃性に優れる。 The optical laminate of the present invention has a glass plate having a thickness of 40 μm or more and 60 μm or less, and a film having a specific tan δ and a specific tensile storage elastic modulus E'is provided via an adhesive layer, and has a thickness of 20 μm or less. Since it has an adhesive layer, it has excellent impact resistance.
図1は、本発明の光学積層体の一実施形態の断面図である。FIG. 1 is a cross-sectional view of an embodiment of the optical laminate of the present invention. 図2は、図1に示す光学積層体を備える有機エレクトロルミネセンス表示装置の断面図である。FIG. 2 is a cross-sectional view of an organic electroluminescence display device including the optical laminate shown in FIG.
 <光学積層体1>
 本発明の光学積層体の一実施形態を、図1を参照して説明する。
<Optical laminate 1>
An embodiment of the optical laminate of the present invention will be described with reference to FIG.
 この光学積層体1は、例えば、面方向に延びる平板形状を有する。面方向は、光学積層体1の厚み方向に直交する。光学積層体1は、ガラス板2と、接着剤層3と、フィルム4と、粘着剤層12とを厚み方向一方側に向かって順に備える。 The optical laminate 1 has, for example, a flat plate shape extending in the plane direction. The plane direction is orthogonal to the thickness direction of the optical laminate 1. The optical laminate 1 includes a glass plate 2, an adhesive layer 3, a film 4, and an adhesive layer 12 in this order toward one side in the thickness direction.
 <ガラス板2>
 ガラス板2は、面方向に延びる。ガラス板2は、光学積層体1における厚み方向他方面を形成する。ガラス板2の全光線透過率は、例えば、80%以上、好ましくは、85%以上であり、また、例えば、99%以下である。ガラス板2は、市販品を用いることができ、例えば、G-leafシリーズ(登録商標、日本電気硝子社製)を用いることができる。
<Glass plate 2>
The glass plate 2 extends in the plane direction. The glass plate 2 forms the other surface in the thickness direction of the optical laminate 1. The total light transmittance of the glass plate 2 is, for example, 80% or more, preferably 85% or more, and for example, 99% or less. As the glass plate 2, a commercially available product can be used, and for example, the G-leaf series (registered trademark, manufactured by Nippon Electric Glass Co., Ltd.) can be used.
 <ガラス板2の厚み>
 ガラス板2の厚みは、40μm以上、60μm以下である。ガラス板2の厚みが十分に厚ければ耐衝撃性が向上する。この観点から、ガラス板2の厚みがより厚いほど、耐衝撃性もより向上すると考えられるが、ガラス板2の厚みが40μm以上、60μm以下において、特定のtanδおよび特定の引張貯蔵弾性率E’を有するフィルム4を接着剤層3を介して光学積層体1に備え、さらに20μm以下の粘着剤層12を備えることによって、光学積層体1は、耐衝撃性を向上することができる。
<Thickness of glass plate 2>
The thickness of the glass plate 2 is 40 μm or more and 60 μm or less. If the thickness of the glass plate 2 is sufficiently thick, the impact resistance is improved. From this point of view, it is considered that the thicker the glass plate 2 is, the more the impact resistance is improved. However, when the thickness of the glass plate 2 is 40 μm or more and 60 μm or less, a specific tan δ and a specific tensile storage elastic modulus E'. The optical laminate 1 can be improved in impact resistance by providing the optical laminate 1 with the film 4 having the adhesive layer 3 via the adhesive layer 3 and further providing the pressure-sensitive adhesive layer 12 having a thickness of 20 μm or less.
 ガラス板2の厚みは、好ましくは、42μm以上、より好ましくは、45μm以上、さらに好ましくは、48μm以上である。ガラス板2の厚みは、例えば、58μm以下、好ましくは、55μm以下、より好ましくは、52μm以下である。なお、ガラス板2は、上記した厚みを有するので、薄ガラス板と称呼される。 The thickness of the glass plate 2 is preferably 42 μm or more, more preferably 45 μm or more, and further preferably 48 μm or more. The thickness of the glass plate 2 is, for example, 58 μm or less, preferably 55 μm or less, and more preferably 52 μm or less. Since the glass plate 2 has the above-mentioned thickness, it is called a thin glass plate.
 <接着剤層3>
 接着剤層3は、面方向に延びる。接着剤層3は、ガラス板2の厚み方向一方面に配置されている。具体的には、接着剤層3は、ガラス板2の厚み方向一方面に接触する。接着剤層3は、粘着剤(感圧接着剤)からなる粘着剤層(感圧接着剤層)ではなく、硬化型接着剤の硬化体である。詳しくは、接着剤層3は、活性エネルギー線の照射または加熱よって硬化反応する硬化型接着剤の硬化体である。
<Adhesive layer 3>
The adhesive layer 3 extends in the plane direction. The adhesive layer 3 is arranged on one side of the glass plate 2 in the thickness direction. Specifically, the adhesive layer 3 comes into contact with one side of the glass plate 2 in the thickness direction. The adhesive layer 3 is not a pressure-sensitive adhesive layer (pressure-sensitive adhesive layer) made of a pressure-sensitive adhesive (pressure-sensitive adhesive), but a cured product of a curable adhesive. Specifically, the adhesive layer 3 is a cured product of a curable adhesive that undergoes a curing reaction by irradiation with active energy rays or heating.
 硬化型接着剤は、接着剤層3の硬化原料であって、活性エネルギー硬化型、および、熱硬化型が挙げられ、好ましくは、活性エネルギー硬化型が挙げられる。具体的には、硬化型接着剤としては、例えば、アクリル接着剤組成物、エポキシ接着剤組成物、および、シリコーン接着剤組成物が挙げられ、優れた耐衝撃性を得る観点から、エポキシ接着剤組成物が挙げられる。 The curable adhesive is a curing raw material for the adhesive layer 3, and examples thereof include an active energy curing type and a thermosetting type, preferably an active energy curing type. Specific examples of the curable adhesive include an acrylic adhesive composition, an epoxy adhesive composition, and a silicone adhesive composition. From the viewpoint of obtaining excellent impact resistance, an epoxy adhesive is used. The composition may be mentioned.
 エポキシ接着剤組成物は、エポキシ樹脂を主剤として含む。エポキシ樹脂としては、例えば、2つのエポキシ基を含有する2官能エポキシ樹脂、3つ以上エポキシ基を含有する多官能エポキシ樹脂などが挙げられる。これらは、単独使用または2種以上併用できる。好ましくは、2官能エポキシ樹脂と多官能エポキシ樹脂との併用が挙げられる。 The epoxy adhesive composition contains an epoxy resin as a main ingredient. Examples of the epoxy resin include a bifunctional epoxy resin containing two epoxy groups and a polyfunctional epoxy resin containing three or more epoxy groups. These can be used alone or in combination of two or more. A combination of the bifunctional epoxy resin and the polyfunctional epoxy resin is preferable.
 2官能エポキシ樹脂としては、例えば、ビスフェノール型エポキシ樹脂、ノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂、フルオレン型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂などの芳香族系エポキシ樹脂、例えば、トリエポキシプロピルイソシアヌレート、ヒダントインエポキシ樹脂などの含窒素環エポキシ樹脂、さらには、脂肪族型エポキシ樹脂、グリシジルエーテル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂が挙げられる。2官能エポキシ樹脂として、好ましくは、脂肪族型エポキシ樹脂が挙げられる。脂肪族型エポキシ樹脂は、脂肪族脂環式エポキシ樹脂を含む。2官能エポキシ樹脂のエポキシ当量は、例えば、100g/eq.以上、好ましくは、120g/eq.以上であり、また、例えば、250g/eq.以下、好ましくは、150g/eq.以下である。エポキシ樹脂における2官能エポキシ樹脂の割合は、例えば、80質量%以上、好ましくは、90質量%以上であり、また、例えば、99質量%以下、好ましくは、97質量%以下である。 Examples of the bifunctional epoxy resin include aromatic epoxy resins such as bisphenol type epoxy resin, novolak type epoxy resin, naphthalene type epoxy resin, fluorene type epoxy resin, and triphenylmethane type epoxy resin, for example, triepoxypropyl isocyanurate. , Hydant-in epoxy resin and other nitrogen-containing ring epoxy resins, and examples thereof include aliphatic type epoxy resins, glycidyl ether type epoxy resins, and glycidylamine type epoxy resins. As the bifunctional epoxy resin, an aliphatic type epoxy resin is preferable. The aliphatic epoxy resin includes an aliphatic alicyclic epoxy resin. The epoxy equivalent of the bifunctional epoxy resin is, for example, 100 g / eq. As mentioned above, preferably 120 g / eq. The above, and for example, 250 g / eq. Hereinafter, preferably, 150 g / eq. It is as follows. The ratio of the bifunctional epoxy resin in the epoxy resin is, for example, 80% by mass or more, preferably 90% by mass or more, and for example, 99% by mass or less, preferably 97% by mass or less.
 多官能エポキシ樹脂としては、例えば、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリスヒドロキシフェニルメタン型エポキシ樹脂、テトラフェニロールエタン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、3官能脂肪族エポキシ樹脂などの3官能以上の多官能エポキシ樹脂が挙げられる。多官能エポキシ樹脂として、好ましくは、3官能脂肪族エポキシ樹脂が挙げられる。多官能エポキシ樹脂のエポキシ当量は、例えば、130g/eq.以上、好ましくは、150g/eq.以上であり、また、例えば、220g/eq.以下、好ましくは、200g/eq.以下である。エポキシ樹脂における多官能エポキシ樹脂の割合は、例えば、1質量%以上、好ましくは、3質量%以上であり、また、例えば、20質量%以下、好ましくは、10質量%以下である。 Examples of the polyfunctional epoxy resin include phenol novolac type epoxy resin, cresol novolac type epoxy resin, trishydroxyphenylmethane type epoxy resin, tetraphenylol ethane type epoxy resin, dicyclopentadiene type epoxy resin, and trifunctional aliphatic epoxy resin. Examples thereof include polyfunctional epoxy resins having three or more functionalities such as. The polyfunctional epoxy resin is preferably a trifunctional aliphatic epoxy resin. The epoxy equivalent of the polyfunctional epoxy resin is, for example, 130 g / eq. As mentioned above, preferably 150 g / eq. The above, and for example, 220 g / eq. Hereinafter, preferably, 200 g / eq. It is as follows. The proportion of the polyfunctional epoxy resin in the epoxy resin is, for example, 1% by mass or more, preferably 3% by mass or more, and for example, 20% by mass or less, preferably 10% by mass or less.
 エポキシ接着剤組成物におけるエポキシ樹脂の割合は、例えば、60質量%以上、好ましくは、75質量%以上であり、また、例えば、90質量%以下、好ましくは、80質量%以下である。 The proportion of the epoxy resin in the epoxy adhesive composition is, for example, 60% by mass or more, preferably 75% by mass or more, and for example, 90% by mass or less, preferably 80% by mass or less.
 エポキシ樹脂は、市販品を用いることができ、脂肪族脂環式エポキシ樹脂として、セロキサイド2021P(ダイセル化学社製)、3官能脂肪族エポキシ樹脂として、EHPE3150(ダイセル化学社製)などが用いられる。 As the epoxy resin, a commercially available product can be used, and as the aliphatic alicyclic epoxy resin, seroxide 2021P (manufactured by Daicel Chemical Co., Ltd.) and EHPE3150 (manufactured by Daicel Chemical Co., Ltd.) are used as the trifunctional aliphatic epoxy resin.
 また、エポキシ接着剤組成物は、活性エネルギー硬化型であれば、光酸発生剤を含む。光酸発生剤としては、例えば、トリアリールスルホニウム塩などが挙げられる。光酸発生剤は、市販品を用いることができ、トリアリールスルホニウム塩として、CPI101A(サンアフロ社製)などが用いられる。エポキシ接着剤組成物における光酸発生剤の割合は、例えば、1質量%以上、好ましくは、10質量%以上であり、また、例えば、30質量%以下、好ましくは、20質量%以下である。 Further, the epoxy adhesive composition contains a photoacid generator if it is an active energy curable type. Examples of the photoacid generator include triarylsulfonium salts and the like. As the photoacid generator, a commercially available product can be used, and CPI101A (manufactured by San Afro) or the like is used as the triarylsulfonium salt. The proportion of the photoacid generator in the epoxy adhesive composition is, for example, 1% by mass or more, preferably 10% by mass or more, and for example, 30% by mass or less, preferably 20% by mass or less.
 さらに、エポキシ接着剤組成物は、例えば、オキセタン系樹脂、シランカップリング剤などの添加剤を適宜の割合で含むことができる。 Further, the epoxy adhesive composition can contain additives such as an oxetane-based resin and a silane coupling agent in an appropriate ratio.
 オキセタン系樹脂としては、例えば、3-エチル-3-オキセタンメタノール、2―エチルヘキシルオキセタンなどの単官能オキセタン、例えば、キシリレンビスオキセタン、3―エチル―3{[(3―エチルオキセタン―3―イル)メトキシ]メチル}オキセタンなどの2官能オキセタンが挙げられる。オキセタン系樹脂は、市販品を用いることができ、アロンオキセタン(東亞合成社製)などが用いられる。 Examples of the oxetane-based resin include monofunctional oxetane such as 3-ethyl-3-oxetanemethanol and 2-ethylhexyloxetane, for example, xylylenebis oxetane, 3-ethyl-3 {[(3-ethyloxetane-3-yl). ) Bifunctional oxetane such as methoxy] methyl} oxetane. As the oxetane-based resin, a commercially available product can be used, and Aron oxetane (manufactured by Toagosei Co., Ltd.) or the like is used.
 シランカップリング剤として、例えば、3-グリシドキシプロピルトリメトキシシランなどのエポキシ基含有シランカップリング剤などが挙げられる。シランカップリング剤は、市販品を用いることができ、KBMシリーズ(信越シリコーン社製)などが挙げられる。 Examples of the silane coupling agent include an epoxy group-containing silane coupling agent such as 3-glycidoxypropyltrimethoxysilane. As the silane coupling agent, a commercially available product can be used, and examples thereof include KBM series (manufactured by Shin-Etsu Silicone Co., Ltd.).
 接着剤層3の厚みは、限定されない。接着剤層3の厚みは、例えば、0.1μm以上であり、また、例えば、10μm以下、好ましくは、5μm以下、より好ましくは、3μm以下である。 The thickness of the adhesive layer 3 is not limited. The thickness of the adhesive layer 3 is, for example, 0.1 μm or more, and is, for example, 10 μm or less, preferably 5 μm or less, and more preferably 3 μm or less.
 接着剤層3の全光線透過率は、例えば、80%以上、好ましくは、85%以上であり、また、例えば、99%以下である。 The total light transmittance of the adhesive layer 3 is, for example, 80% or more, preferably 85% or more, and for example, 99% or less.
 25℃における接着剤層3の引張貯蔵弾性率E’は、例えば、1GPa以上、好ましくは、2GPa以上、より好ましくは、3GPa以上、さらに好ましくは、4GPa以上であり、また、例えば、100GPa以下である。25℃における接着剤層3の引張貯蔵弾性率E’は、周波数1Hz、昇温速度5℃/分の条件の温度分散モードで動的粘弾性を測定することにより求められる。また、ナノインデンター法で測定される25℃における接着剤層3の弾性率は、例えば、1GPa以上、好ましくは、2GPa以上、より好ましくは、3GPa以上、さらに好ましくは、4GPa以上であり、また、例えば、100GPa以下である。ナノインデンター法の測定条件は、下記の通りである。 The tensile storage elastic modulus E'of the adhesive layer 3 at 25 ° C. is, for example, 1 GPa or more, preferably 2 GPa or more, more preferably 3 GPa or more, still more preferably 4 GPa or more, and for example, 100 GPa or less. be. The tensile storage elastic modulus E'of the adhesive layer 3 at 25 ° C. is determined by measuring the dynamic viscoelasticity in a temperature dispersion mode under the conditions of a frequency of 1 Hz and a heating rate of 5 ° C./min. The elastic modulus of the adhesive layer 3 at 25 ° C. measured by the nanoindenter method is, for example, 1 GPa or more, preferably 2 GPa or more, more preferably 3 GPa or more, still more preferably 4 GPa or more, and also. For example, it is 100 GPa or less. The measurement conditions of the nanoindenter method are as follows.
 装置:Triboindenter(Hysitron Inc.製)
 サンプルサイズ:10×10mm
 圧子:Concial(球形圧子:曲率半径10μm)、
 測定方法:単一押し込み測定
 測定温度:25℃
 圧子の押込深さ:100nm
 温度:25℃
 解析:荷重-変位曲線に基づくOliver Pharr解析
Equipment: Triboinder (manufactured by Hybrid Inc.)
Sample size: 10 x 10 mm
Indenter: Concial (spherical indenter: radius of curvature 10 μm),
Measurement method: Single push measurement Measurement temperature: 25 ° C
Indenter indentation depth: 100 nm
Temperature: 25 ° C
Analysis: Oliver Pharr analysis based on load-displacement curve
 <フィルム4>
 フィルム4は、接着剤層3に対するガラス板2の反対側に位置する。フィルム4は、面方向に延びる。フィルム4は、接着剤層3の厚み方向一方面に配置している。なお、フィルム4は、接着剤層3の厚み方向一方面に接触している。これによって、接着剤層3は、ガラス板2の厚み方向一方面、および、フィルム4の厚み方向他方面に接触し、ガラス板2とフィルム4とを接着(接合)している。
<Film 4>
The film 4 is located on the opposite side of the glass plate 2 with respect to the adhesive layer 3. The film 4 extends in the plane direction. The film 4 is arranged on one side of the adhesive layer 3 in the thickness direction. The film 4 is in contact with one side of the adhesive layer 3 in the thickness direction. As a result, the adhesive layer 3 is in contact with one surface of the glass plate 2 in the thickness direction and the other surface of the film 4 in the thickness direction, and the glass plate 2 and the film 4 are bonded (bonded) to each other.
<フィルム4のtanδの平均>
 周波数10Hz、昇温速度2℃/min、データ取得間隔0.5min、引張モードの動的粘弾性試験により求められる-100℃から-50℃におけるフィルム4のtanδの平均は、0.06以上である。-100℃から-50℃におけるフィルム4のtanδの平均が0.06未満であれば、光学積層体1の耐衝撃性が低下する。-100℃から-50℃におけるフィルム4のtanδの平均は、物体が光学積層体1に高速で衝突したときの応答性を示す指標である。tanδの平均が高ければ、ガラス板2が受けた衝撃をフィルム4が十分に緩和でき、光学積層体1の耐衝撃性を向上できる。
<Average of tan δ of film 4>
The average tan δ of the film 4 at -100 ° C to -50 ° C determined by the dynamic viscoelasticity test in the frequency of 10 Hz, the heating rate of 2 ° C / min, the data acquisition interval of 0.5 min, and the tensile mode is 0.06 or more. be. If the average of tan δ of the film 4 from −100 ° C. to −50 ° C. is less than 0.06, the impact resistance of the optical laminate 1 is lowered. The average of the tan δ of the film 4 at −100 ° C. to −50 ° C. is an index showing the responsiveness when the object collides with the optical laminate 1 at high speed. If the average of tan δ is high, the impact received by the glass plate 2 can be sufficiently alleviated by the film 4, and the impact resistance of the optical laminate 1 can be improved.
 -100℃から-50℃におけるフィルム4のtanδの平均の上限は、限定されない。-100℃から-50℃におけるフィルム4のtanδの平均は、例えば、0.50以下である。動的粘弾性試験は、後の実施例で記載する。 The upper limit of the average tan δ of the film 4 from -100 ° C to -50 ° C is not limited. The average of tan δ of the film 4 from −100 ° C. to −50 ° C. is, for example, 0.50 or less. The dynamic viscoelasticity test will be described in later examples.
<フィルム4の引張貯蔵弾性率E’の平均>
 周波数10Hz、昇温速度2℃/min、データ取得間隔0.5min、引張モードの動的粘弾性試験により求められる-100℃から-50℃におけるフィルム4の引張貯蔵弾性率E’の平均は、3GPa以上、好ましくは、4GP以上、より好ましくは、5GP以上であり、また、6GPa以下である。-100℃から-50℃におけるフィルム4の引張貯蔵弾性率E’の平均が6GPaを越えると、フィルム4が硬くなりすぎ、光学積層体1の耐衝撃性が低下する。一方、-100℃から-50℃におけるフィルム4の引張貯蔵弾性率E’の平均が3GP未満であれば、フィルム4が柔らかすぎるため、その結果、光学積層体1の耐衝撃性を十分に向上できない。
<Average tensile storage elastic modulus E'of film 4>
The average tensile storage elastic modulus E'of the film 4 at -100 ° C to -50 ° C determined by a dynamic viscoelasticity test in a frequency of 10 Hz, a heating rate of 2 ° C / min, a data acquisition interval of 0.5 min, and a tensile mode is It is 3 GPa or more, preferably 4 GP or more, more preferably 5 GP or more, and 6 GPa or less. When the average tensile storage elastic modulus E'of the film 4 from −100 ° C. to −50 ° C. exceeds 6 GPa, the film 4 becomes too hard and the impact resistance of the optical laminate 1 deteriorates. On the other hand, if the average tensile storage elastic modulus E'of the film 4 from -100 ° C to -50 ° C is less than 3GP, the film 4 is too soft, and as a result, the impact resistance of the optical laminate 1 is sufficiently improved. Can not.
 フィルム4としては、例えば、ポリエステルフィルムが挙げられる。ポリエステルフィルムとしては、例えば、ポリエチレンテレフタレートフィルム(PET)、ポリブチレンテレフタレート(PBT)フィルム、および、ポリエチレンナフタレート(PEN)フィルムが挙げられる。フィルム4として、光学積層体1の耐衝撃性を向上させる観点から、好ましくは、PETフィルムが挙げられる。 Examples of the film 4 include a polyester film. Examples of the polyester film include polyethylene terephthalate film (PET), polybutylene terephthalate (PBT) film, and polyethylene naphthalate (PEN) film. As the film 4, a PET film is preferable from the viewpoint of improving the impact resistance of the optical laminate 1.
 フィルム4の厚みは、限定されない。フィルム4の厚みは、例えば、10μm以上、好ましくは、20μm以上、より好ましくは、30μm以上、さらに好ましくは、40μm以上であり、また、例えば、150μm以下、好ましくは、100μm以下、好ましくは、75μm以下である。 The thickness of the film 4 is not limited. The thickness of the film 4 is, for example, 10 μm or more, preferably 20 μm or more, more preferably 30 μm or more, still more preferably 40 μm or more, and for example, 150 μm or less, preferably 100 μm or less, preferably 75 μm. It is as follows.
 フィルム4の全光線透過率は、例えば、80%以上、好ましくは、85%以上であり、また、例えば、99%以下である。 The total light transmittance of the film 4 is, for example, 80% or more, preferably 85% or more, and for example, 99% or less.
<粘着剤層12>
 粘着剤層12は、フィルム4の厚み方向一方面を形成する。粘着剤層12は、フィルム4の厚み方向一方面に配置される。具体的には、粘着剤層12は、フィルム4の厚み方向一方面に接触する。粘着剤層12は、硬化反応を伴わず、感圧接着する接着体である。
<Adhesive layer 12>
The pressure-sensitive adhesive layer 12 forms one side of the film 4 in the thickness direction. The pressure-sensitive adhesive layer 12 is arranged on one side of the film 4 in the thickness direction. Specifically, the pressure-sensitive adhesive layer 12 comes into contact with one side of the film 4 in the thickness direction. The pressure-sensitive adhesive layer 12 is an adhesive body that is pressure-sensitively adhered without a curing reaction.
 粘着剤層12の材料は、限定されない。粘着剤層12の材料としては、例えば、アクリル系粘着剤、ゴム系粘着剤、ビニルアルキルエーテル系粘着剤、シリコーン系粘着剤、ポリエステル系粘着剤、ポリアミド系粘着剤、ウレタン系粘着剤、フッ素系粘着剤、エポキシ系粘着剤、および、ポリエーテル系粘着剤が挙げられる。材料としては、好ましくは、アクリル系粘着剤が挙げられる。粘着剤層12の処方および物性は、例えば、特開2018-28573号公報に詳述される。 The material of the pressure-sensitive adhesive layer 12 is not limited. Examples of the material of the pressure-sensitive adhesive layer 12 include an acrylic pressure-sensitive adhesive, a rubber-based pressure-sensitive adhesive, a vinyl alkyl ether-based pressure-sensitive adhesive, a silicone-based pressure-sensitive adhesive, a polyester-based pressure-sensitive adhesive, a polyamide-based pressure-sensitive adhesive, a urethane-based pressure-sensitive adhesive, and a fluorine-based pressure-sensitive adhesive. Examples thereof include adhesives, epoxy adhesives, and polyether adhesives. As the material, an acrylic pressure-sensitive adhesive is preferable. The formulation and physical properties of the pressure-sensitive adhesive layer 12 are described in detail in, for example, Japanese Patent Application Laid-Open No. 2018-28873.
 粘着剤層12の25℃におけるせん断貯蔵弾性率G’は、例えば、0.01MPa以上であり、また、例えば、0.20MPa以下である。せん断貯蔵弾性率G’は、周波数1Hz、昇温速度5℃/min、せん断(ひねり)モードの動的粘弾性試験により求められる。 The shear storage elastic modulus G'at 25 ° C. of the pressure-sensitive adhesive layer 12 is, for example, 0.01 MPa or more, and for example 0.20 MPa or less. The shear storage elastic modulus G'is determined by a dynamic viscoelasticity test at a frequency of 1 Hz, a heating rate of 5 ° C./min, and a shear (twist) mode.
 粘着剤層12の厚みは、20μm以下である。粘着剤層12の厚みが20μmを越えれば、光学積層体1の耐衝撃性が低下する。粘着剤層12の厚みは、例えば、5μm以上、好ましくは、10μm以上である。 The thickness of the pressure-sensitive adhesive layer 12 is 20 μm or less. If the thickness of the pressure-sensitive adhesive layer 12 exceeds 20 μm, the impact resistance of the optical laminate 1 is lowered. The thickness of the pressure-sensitive adhesive layer 12 is, for example, 5 μm or more, preferably 10 μm or more.
 光学積層体1の厚みは、例えば、70μm以上であり、また、例えば、250μm以下以下である。 The thickness of the optical laminate 1 is, for example, 70 μm or more, and 250 μm or less, for example.
 <光学積層体1の製造方法>
 光学積層体1の製造方法を説明する。光学積層体1の製造方法では、例えば、まず、ガラス板2の厚み方向一方面および/またはフィルム4の厚み方向他方面に、硬化型接着剤を配置(塗布)し続いて、ガラス板2およびフィルム4で、硬化型接着剤を挟み込む。
<Manufacturing method of optical laminate 1>
A method for manufacturing the optical laminate 1 will be described. In the method for manufacturing the optical laminate 1, for example, first, a curable adhesive is placed (applied) on one side in the thickness direction of the glass plate 2 and / or the other side in the thickness direction of the film 4, and then the glass plate 2 and / or the glass plate 2 and The curable adhesive is sandwiched between the films 4.
 その後、硬化型接着剤を硬化させる。硬化型接着剤が活性エネルギー硬化型であれば、紫外線を含む活性エネルギーを硬化型接着剤に照射する。具体的には、紫外線を、ガラス板2側から硬化型接着剤に照射する。硬化型接着剤が熱硬化型であれば、硬化型接着剤を加熱する。これにより、ガラス板2およびフィルム4を強固に接着する接着剤層3を形成する。 After that, the curable adhesive is cured. If the curable adhesive is an active energy curable type, the curable adhesive is irradiated with active energy including ultraviolet rays. Specifically, the curable adhesive is irradiated with ultraviolet rays from the glass plate 2 side. If the curable adhesive is thermosetting, heat the curable adhesive. As a result, the adhesive layer 3 that firmly adheres the glass plate 2 and the film 4 is formed.
 その後、フィルム4の厚み方向一方面に粘着剤層12を配置する。例えば、粘着剤を含むワニスをフィルム4の厚み方向一方面に塗布および乾燥する。または、図示しない剥離シートに形成した粘着剤層12をフィルム4の厚み方向一方面に転写することもできる。
 これによって、ガラス板2と、接着剤層3と、フィルム4と、粘着剤層12とを備える光学積層体1を得る。なお、図示しない剥離シートを光学積層体1に備えてもよい。その場合には、光学積層体1は、ガラス板2と、接着剤層3と、フィルム4と、粘着剤層12と、図示しない剥離シートとを備える。
After that, the pressure-sensitive adhesive layer 12 is arranged on one side of the film 4 in the thickness direction. For example, a varnish containing an adhesive is applied and dried on one side of the film 4 in the thickness direction. Alternatively, the pressure-sensitive adhesive layer 12 formed on the release sheet (not shown) can be transferred to one side of the film 4 in the thickness direction.
As a result, an optical laminate 1 including a glass plate 2, an adhesive layer 3, a film 4, and an adhesive layer 12 is obtained. The optical laminate 1 may be provided with a release sheet (not shown). In that case, the optical laminate 1 includes a glass plate 2, an adhesive layer 3, a film 4, an adhesive layer 12, and a release sheet (not shown).
 <光学積層体1の用途>
 光学積層体1は、各種光学用途に用いられ、例えば、画像表示装置に備えられる。画像表示装置としては、例えば、有機エレクトロルミネセンス表示装置(以下、単に「有機EL表示装置」と略称する。)が挙げられる。
<Use of optical laminate 1>
The optical laminate 1 is used for various optical applications, and is provided in, for example, an image display device. Examples of the image display device include an organic electroluminescence display device (hereinafter, simply abbreviated as “organic EL display device”).
 次に、光学積層体1を備える有機EL表示装置10を、図2を参照して説明する。 Next, the organic EL display device 10 including the optical laminate 1 will be described with reference to FIG.
<有機EL表示装置10>
 有機EL表示装置10は、面方向に延びる平板形状を有する。有機EL表示装置10は、次に説明する導電性フィルム13を備えることから、タッチパネル型入力表示装置として機能する。有機EL表示装置10は、光学積層体1と、導電性フィルム13と、第2粘着剤層14と、画像表示部材15とを備える。なお、この有機EL表示装置10では、紙面上側が、ユーザーの視認側であって、表側(図1の厚み方向他方側に相当)であり、紙面下側が、裏側(図1の厚み方向一方側に相当)である。
<Organic EL display device 10>
The organic EL display device 10 has a flat plate shape extending in the plane direction. Since the organic EL display device 10 includes the conductive film 13 described below, it functions as a touch panel type input display device. The organic EL display device 10 includes an optical laminate 1, a conductive film 13, a second pressure-sensitive adhesive layer 14, and an image display member 15. In the organic EL display device 10, the upper side of the paper surface is the user's visual recognition side, which is the front side (corresponding to the other side in the thickness direction of FIG. 1), and the lower side of the paper surface is the back side (one side in the thickness direction of FIG. 1). Equivalent to).
<光学積層体1>
 光学積層体1は、ガラス板2と、接着剤層3と、フィルム4と、粘着剤層12とを裏側に向かって順に備える。
<Optical laminate 1>
The optical laminate 1 includes a glass plate 2, an adhesive layer 3, a film 4, and an adhesive layer 12 in this order toward the back side.
<導電性フィルム13>
 導電性フィルム13は、導電層16と、基材層17とを裏側に向かって順に備える。
<Conductive film 13>
The conductive film 13 includes a conductive layer 16 and a base material layer 17 in order toward the back side.
<導電層16>
 導電層16は、所定パターンを有する。導電層16の表面および側面は、粘着剤層12に接触する。導電層16の材料としては、例えば、金属酸化物、導電性繊維(繊維)、および、金属が挙げられる。金属酸化物としては、複合酸化物が挙げられる。複合酸化物としては、例えば、インジウム亜鉛複合酸化物(IZO)、インジウムガリウム亜鉛複合酸化物(IGZO)、インジウムガリウム複合酸化物(IGO)、インジウムスズ複合酸化物(ITO)、および、アンチモンスズ複合酸化物(ATO)が挙げられる。導電性繊維としては、例えば、金属ナノワイヤ、および、カーボンナノチューブが挙げられる。金属としては、例えば、金、白金、銀、および、銅が挙げられる。導電層16は、面方向中央部に位置するセンサ電極部18と、センサ電極部18に周辺に位置する引出し配線部19とを一体的に有する。導電層16の詳細は、例えば、特開2017-102443号公報、特開2014-113705号公報、および、特開2014-219667号公報に記載される。
<Conductive layer 16>
The conductive layer 16 has a predetermined pattern. The surface and sides of the conductive layer 16 come into contact with the pressure-sensitive adhesive layer 12. Examples of the material of the conductive layer 16 include metal oxides, conductive fibers (fibers), and metals. Examples of the metal oxide include composite oxides. Examples of the composite oxide include indium zinc composite oxide (IZO), indium gallium zinc composite oxide (IGZO), indium gallium composite oxide (IGO), indium tin composite oxide (ITO), and antimonthine composite. Oxide (ATO) can be mentioned. Examples of conductive fibers include metal nanowires and carbon nanotubes. Metals include, for example, gold, platinum, silver, and copper. The conductive layer 16 integrally has a sensor electrode portion 18 located in the central portion in the plane direction and a drawer wiring portion 19 located in the periphery of the sensor electrode portion 18. Details of the conductive layer 16 are described in, for example, JP-A-2017-102443, JP-A-2014-113705, and JP-A-2014-219667.
<基材層17>
 基材層17は、導電層16の裏面、および、粘着剤層12の裏面に配置されている。基材層17は、面方向に延びる。基材層17は、例えば、樹脂層である。基材層17の材料としては、オレフィン樹脂、ポリエステル樹脂、(メタ)アクリル樹脂、ポリカーボネート樹脂、ポリエーテルスルフォン樹脂、ポリアリレート樹脂、メラミン樹脂、ポリアミド樹脂、ポリイミド樹脂、セルロース樹脂、および、ポリスチレン樹脂が挙げられる。オレフィン樹脂として、例えば、ポリエチレン、ポリプロピレン、および、シクロオレフィンポリマー(COP)が挙げられる。ポリエステル樹脂としては、例えば、PET、PBT、および、PENが挙げられる。(メタ)アクリル樹脂としては、例えば、ポリ(メタ)アクリレート樹脂が挙げられる。基材層17の詳細は、例えば、特開2018-181722号公報に記載される。
<Base layer 17>
The base material layer 17 is arranged on the back surface of the conductive layer 16 and the back surface of the pressure-sensitive adhesive layer 12. The base material layer 17 extends in the plane direction. The base material layer 17 is, for example, a resin layer. Examples of the material of the base material layer 17 include olefin resin, polyester resin, (meth) acrylic resin, polycarbonate resin, polyether sulfone resin, polyarylate resin, melamine resin, polyamide resin, polyimide resin, cellulose resin, and polystyrene resin. Can be mentioned. Examples of the olefin resin include polyethylene, polypropylene, and cycloolefin polymer (COP). Examples of the polyester resin include PET, PBT, and PEN. Examples of the (meth) acrylic resin include poly (meth) acrylate resins. Details of the base material layer 17 are described in, for example, Japanese Patent Application Laid-Open No. 2018-181722.
<第2粘着剤層14>
 第2粘着剤層14は、導電性フィルム13の裏面に配置されている。具体的には、第2粘着剤層14は、導電性フィルム13の裏面に接触している。第2粘着剤層14の材料は、粘着剤層12の材料と同様である。
<Second adhesive layer 14>
The second pressure-sensitive adhesive layer 14 is arranged on the back surface of the conductive film 13. Specifically, the second pressure-sensitive adhesive layer 14 is in contact with the back surface of the conductive film 13. The material of the second pressure-sensitive adhesive layer 14 is the same as the material of the pressure-sensitive adhesive layer 12.
<画像表示部材15>
 画像表示部材15は、有機EL表示装置10の裏面を形成する。画像表示部材15は、導電性フィルム13の裏側に第2粘着剤層14を介して配置されている。画像表示部材15は、面方向に延びる。画像表示部材15は、具体的には、有機EL素子である。例えば、画像表示部材15は、図示しないが、表示基板と、2つの電極と、2つの電極に挟まれる有機EL層と、封止層とを含む。なお、画像表示部材15の構成および物性は、例えば、特開2018-28573号公報に詳述される。
<Image display member 15>
The image display member 15 forms the back surface of the organic EL display device 10. The image display member 15 is arranged on the back side of the conductive film 13 via the second pressure-sensitive adhesive layer 14. The image display member 15 extends in the plane direction. Specifically, the image display member 15 is an organic EL element. For example, although not shown, the image display member 15 includes a display substrate, two electrodes, an organic EL layer sandwiched between the two electrodes, and a sealing layer. The configuration and physical properties of the image display member 15 are described in detail in, for example, Japanese Patent Application Laid-Open No. 2018-28873.
<一実施形態の作用効果>
 この光学積層体1は、40μm以上、60μm以下の厚みを有するガラス板2と、接着剤層3と、-100℃から-50℃におけるtanδの平均が、0.06以上であり、-100℃から-50℃における引張貯蔵弾性率E’の平均が、3GPa以上、6GPa以下であるフィルム4とを備え、さらに、粘着剤層12をさらに備える。また、粘着剤層12は、20μm以下の厚みを有する。そのため、光学積層体1は、耐衝撃性に優れる。
<Action and effect of one embodiment>
The optical laminate 1 has a glass plate 2 having a thickness of 40 μm or more and 60 μm or less, an adhesive layer 3, and an average of tan δ from −100 ° C. to −50 ° C. of 0.06 or more, and −100 ° C. A film 4 having an average tensile storage elastic modulus E'at -50 ° C. of 3 GPa or more and 6 GPa or less is provided, and a pressure-sensitive adhesive layer 12 is further provided. Further, the pressure-sensitive adhesive layer 12 has a thickness of 20 μm or less. Therefore, the optical laminate 1 is excellent in impact resistance.
<変形例>
 以下の変形例において、上記した一実施形態と同様の部材および工程については、同一の参照符号を付し、その詳細な説明を省略する。また、変形例は、特記する以外、一実施形態態と同様の作用効果を奏することができる。
<Modification example>
In the following modification, the same members and processes as those in the above-described embodiment are designated by the same reference numerals, and detailed description thereof will be omitted. Further, the modified example can exhibit the same action and effect as that of one embodiment, except for special mention.
 一実施形態では、フィルム4は、単層であるが、フィルム4の層数は、限定されない。
 フィルム4は、複層でもよい。
In one embodiment, the film 4 is a single layer, but the number of layers of the film 4 is not limited.
The film 4 may have a plurality of layers.
 本発明の光学積層体は耐衝撃性に優れるので、厚みが40μm以上、60μm以下のガラス板でも十分な耐衝撃性を有する。厚みが40μm以上、60μm以下のガラス板は屈曲性に優れるため、本発明の光学積層体は、フォルダブルディスプレイおよびローラブルディスプレイなどのフレキシブルディスプレイにも好適に用いることができる。 Since the optical laminate of the present invention has excellent impact resistance, even a glass plate having a thickness of 40 μm or more and 60 μm or less has sufficient impact resistance. Since a glass plate having a thickness of 40 μm or more and 60 μm or less is excellent in flexibility, the optical laminate of the present invention can be suitably used for flexible displays such as foldable displays and rollable displays.
 図1の1点破線で示すように、光学積層体1は、機能層37をさらに備えることができる。機能層37は、ガラス板2の厚み方向他方面に配置される。機能層37としては、例えば、ハードコート層、飛散防止層、防汚層、および、反射防止層が挙げられる。これらは、単層でもよく複数積層されてもよい。 As shown by the alternate long and short dash line in FIG. 1, the optical laminate 1 can further include a functional layer 37. The functional layer 37 is arranged on the other surface of the glass plate 2 in the thickness direction. Examples of the functional layer 37 include a hard coat layer, an anti-scattering layer, an anti-fouling layer, and an anti-reflection layer. These may be a single layer or a plurality of these may be laminated.
 以下の記載において用いられる配合割合(含有割合)、物性値、パラメータなどの具体的数値は、上記の「発明を実施するための形態」において記載されている、それらに対応する配合割合(含有割合)、物性値、パラメータなど該当記載の上限値(「以下」、「未満」として定義されている数値)または下限値(「以上」、「超過」として定義されている数値)に代替することができる。また、以下の記載において特に言及がない限り、「部」および「%」は質量基準である。 Specific numerical values such as the compounding ratio (content ratio), physical property values, parameters, etc. used in the following description are the compounding ratios (content ratios) corresponding to those described in the above-mentioned "mode for carrying out the invention". ), Physical property values, parameters, etc., can be replaced with the upper limit value (value defined as "less than or equal to" or "less than") or the lower limit value (value defined as "greater than or equal to" or "excess"). can. In addition, unless otherwise specified in the following description, "part" and "%" are based on mass.
  実施例1
 厚み50μmのガラス板2(G-leaf)、厚み50μmのポリエチレンテレフタレートフィルムからなるフィルム4(ダイアホイルS100、三菱ケミカル社製)を準備した。また、脂肪族脂環式エポキシ樹脂(セロキサイド2021P、エポキシ当量128~133g/eq.、ダイセル化学社製)70質量部、3官能脂肪族エポキシ樹脂(EHPE3150、エポキシ当量170~190g/eq.、ダイセル化学社製)5質量部、オキセタン系樹脂(アロンオキセタン、東亜合成社製)19質量部、シランカップリング剤(KBM-403、3-グリシドキシプロピルトリメトキシシラン、信越化学工業社製)4質量部、光酸発生剤(CPI101A、トリアリールスルホニウム塩、サンアフロ社製)2質量部を配合して、エポキシ接着剤組成物を調製した。このエポキシ接着剤組成物をガラス板2とフィルム4とで挟み込んだ。
Example 1
A glass plate 2 (G-leaf) having a thickness of 50 μm and a film 4 (Diafoil S100, manufactured by Mitsubishi Chemical Corporation) made of a polyethylene terephthalate film having a thickness of 50 μm were prepared. In addition, 70 parts by mass of an aliphatic alicyclic epoxy resin (celloxide 2021P, epoxy equivalent 128 to 133 g / eq., Manufactured by Daicel Chemical Co., Ltd.), a trifunctional aliphatic epoxy resin (EHPE3150, epoxy equivalent 170 to 190 g / eq., Daicel). Chemical Co., Ltd.) 5 parts by mass, oxetane resin (Aron Oxetane, manufactured by Toa Synthetic Co., Ltd.) 19 parts by mass, silane coupling agent (KBM-403, 3-glycidoxypropyltrimethoxysilane, manufactured by Shinetsu Chemical Industry Co., Ltd.) 4 An epoxy adhesive composition was prepared by blending 2 parts by mass and 2 parts by mass of a photoacid generator (CPI101A, triarylsulfonium salt, manufactured by San Afro). This epoxy adhesive composition was sandwiched between the glass plate 2 and the film 4.
 その後、紫外線を、ガラス板2側から硬化型接着剤に照射した。これにより、ガラス板2およびフィルム4を強固に接着する硬化体からなる厚み1μmの接着剤層3を形成した。ナノインデンター法で測定される25℃における接着剤層3の弾性率は、4.9GPaであった。 After that, the curable adhesive was irradiated with ultraviolet rays from the glass plate 2 side. As a result, an adhesive layer 3 having a thickness of 1 μm made of a cured body that firmly adheres the glass plate 2 and the film 4 was formed. The elastic modulus of the adhesive layer 3 at 25 ° C. measured by the nanoindenter method was 4.9 GPa.
 次いで、厚み15μmの粘着剤層12をフィルム4の厚み方向一方面に、転写により配置した。粘着剤層12は下記の通りに調製した。 Next, the pressure-sensitive adhesive layer 12 having a thickness of 15 μm was placed on one side of the film 4 in the thickness direction by transfer. The pressure-sensitive adhesive layer 12 was prepared as follows.
 ラウリルアクリレート(LA)43質量部、2-エチルヘキシルアクリレート(2EHA)44質量部、4-ヒドロキシブチルアクリレート(4HBA)6質量部、N-ビニル-2-ピロリドン(NVP)7質量部、および、BASF製「イルガキュア184」0.015質量部を配合し、紫外線を照射して重合し、ベースポリマー組成物(重合率:約10%)を得た。 43 parts by mass of lauryl acrylate (LA), 44 parts by mass of 2-ethylhexyl acrylate (2EHA), 6 parts by mass of 4-hydroxybutyl acrylate (4HBA), 7 parts by mass of N-vinyl-2-pyrrolidone (NVP), and BASF. 0.015 parts by mass of "Irgacure 184" was blended and polymerized by irradiating with ultraviolet rays to obtain a base polymer composition (polymerization rate: about 10%).
 別途、メタクリル酸ジシクロペンタニル(DCPMA)60質量部、メタクリル酸メチル(MMA)40質量部、α-チオグリセロール3.5質量部、および、トルエン100質量部を混合し、窒素雰囲気下にて70℃で1時間撹拌した。次に、2,2’-アゾビスイソブチロニトリル(AIBN)0.2質量部を投入し、70℃で2時間反応させた後、80℃に昇温して2時間反応させた。その後、反応液を130℃に加熱して、トルエン、連鎖移動剤および未反応モノマーを乾燥除去して、固形状のアクリル系オリゴマーを得た。アクリル系オリゴマーの重量平均分子量は5100であった。ガラス転移温度(Tg)は130℃であった。 Separately, 60 parts by mass of dicyclopentanyl methacrylate (DCPMA), 40 parts by mass of methyl methacrylate (MMA), 3.5 parts by mass of α-thioglycerol, and 100 parts by mass of toluene are mixed and subjected to a nitrogen atmosphere. The mixture was stirred at 70 ° C. for 1 hour. Next, 0.2 parts by mass of 2,2'-azobisisobutyronitrile (AIBN) was added and reacted at 70 ° C. for 2 hours, then heated to 80 ° C. and reacted for 2 hours. Then, the reaction solution was heated to 130 ° C., and toluene, the chain transfer agent and the unreacted monomer were dried and removed to obtain a solid acrylic oligomer. The weight average molecular weight of the acrylic oligomer was 5100. The glass transition temperature (Tg) was 130 ° C.
 ベースポリマー組成物の固形分100質量部に対して、1,6-ヘキサンジオールジアクリレート(HDDA)0.07質量部、アクリル系オリゴマー1質量部、シランカップリング剤(信越化学製「KBM403」)0.3質量部を添加した後、これらを均一に混合して、粘着剤組成物を調製した。 0.07 parts by mass of 1,6-hexanediol diacrylate (HDDA), 1 part by mass of acrylic oligomer, silane coupling agent ("KBM403" manufactured by Shin-Etsu Chemical Co., Ltd.) with respect to 100 parts by mass of the solid content of the base polymer composition. After adding 0.3 parts by mass, these were uniformly mixed to prepare a pressure-sensitive adhesive composition.
 粘着剤組成物を、PETフィルム(三菱ケミカル製「ダイアホイルMRF75」)からなる剥離シートの表面に塗布し、その後、別のPETフィルム(三菱ケミカル製「ダイアホイルMRF75」)からなる剥離シートを塗膜に貼り合わせた。その後、塗膜に紫外線を照射して、厚み15μmの粘着剤層12を調製した。この粘着剤層12の25℃におけるせん断貯蔵弾性率G’は、0.03MGPaであった。測定方法は、以下の通りである。粘着剤層12を円盤状に外形加工し、パラレルプレートに挟み込み、Rheometric Scientific社製「Advanced Rheometric Expansion System(ARES)」を用いて、以下の条件の動的粘弾性測定により、粘着剤層12の25℃におけるせん断貯蔵弾性率G’を求めた。 The pressure-sensitive adhesive composition is applied to the surface of a release sheet made of PET film (Mitsubishi Chemical "Diafoil MRF75"), and then a release sheet made of another PET film (Mitsubishi Chemical "Diafoil MRF75") is applied. It was attached to the film. Then, the coating film was irradiated with ultraviolet rays to prepare an adhesive layer 12 having a thickness of 15 μm. The shear storage elastic modulus G'at 25 ° C. of the pressure-sensitive adhesive layer 12 was 0.03 MGPa. The measurement method is as follows. The pressure-sensitive adhesive layer 12 is externally processed into a disk shape, sandwiched between parallel plates, and the pressure-sensitive adhesive layer 12 is measured by dynamic viscoelasticity measurement under the following conditions using "Advanced Shearometric Exhibition System (ARES)" manufactured by Shearetic Scientific. The shear storage elastic modulus G'at 25 ° C. was determined.
 [条件]
 モード:ねじり
 温度:-40℃から150℃
 昇温速度:5℃/分
 周波数:1Hz
[conditions]
Mode: Torsion temperature: -40 ° C to 150 ° C
Temperature rise rate: 5 ° C / min Frequency: 1Hz
 これにより、ガラス板2と、接着剤層3と、フィルム4と、粘着剤層12とを備える光学積層体1を製造した。 As a result, an optical laminate 1 including a glass plate 2, an adhesive layer 3, a film 4, and an adhesive layer 12 was manufactured.
  比較例1
 実施例1と同様にして、光学積層体1を製造した。但し、粘着剤層12の厚みを25μmに変更した。
Comparative Example 1
The optical laminate 1 was manufactured in the same manner as in Example 1. However, the thickness of the pressure-sensitive adhesive layer 12 was changed to 25 μm.
  比較例2
 実施例1と同様にして、光学積層体1を製造した。但し、ガラス板2の厚みを70μmに変更した。
Comparative Example 2
The optical laminate 1 was manufactured in the same manner as in Example 1. However, the thickness of the glass plate 2 was changed to 70 μm.
  比較例3
 実施例1と同様にして、光学積層体1を製造した。但し、フィルム4として、厚み40μmのトリアセチルセルロースフィルム(KC4UYW、コニカミノルタ製)を用いた。
Comparative Example 3
The optical laminate 1 was manufactured in the same manner as in Example 1. However, as the film 4, a triacetyl cellulose film (KC4UYW, manufactured by Konica Minolta) having a thickness of 40 μm was used.
  比較例4
 実施例1と同様にして、光学積層体1を製造した。但し、フィルム4として、厚み80μmのトリアセチルセルロースフィルム(KC8UAW、コニカミノルタ製)を用いた。
Comparative Example 4
The optical laminate 1 was manufactured in the same manner as in Example 1. However, as the film 4, a triacetyl cellulose film (KC8UAW, manufactured by Konica Minolta) having a thickness of 80 μm was used.
 <評価>
 各実施例および比較例について、下記の事項を測定および評価した。それらの結果を表1に記載する。
<Evaluation>
The following items were measured and evaluated for each Example and Comparative Example. The results are shown in Table 1.
 <フィルム4のtanδおよび引張貯蔵弾性率E’>
 各実施例および比較例で準備したフィルム4を動的粘弾性試験に供した。装置および条件を下に記載する。
<Tan δ of film 4 and tensile storage elastic modulus E'>
The films 4 prepared in each Example and Comparative Example were subjected to a dynamic viscoelasticity test. The equipment and conditions are described below.
 装置:日立ハイテクサイエンス社製 多機能動的粘弾性測定装置 DMS6100
 温度範囲 :-100~200℃
 昇温速度 :2℃/min
 モード :引張
 サンプル幅 :10mm
 チャック間距離 :20mm
 周波数 :10Hz
 歪振幅 :10μm
 雰囲気 :大気(250ml/min)
 データの取得間隔:0.5min(1℃毎)
Equipment: Hitachi High-Tech Science Multifunctional Dynamic Viscoelasticity Measuring Equipment DMS6100
Temperature range: -100 to 200 ° C
Temperature rise rate: 2 ° C / min
Mode: Tensile sample width: 10 mm
Distance between chucks: 20 mm
Frequency: 10Hz
Strain amplitude: 10 μm
Atmosphere: Atmosphere (250 ml / min)
Data acquisition interval: 0.5 min (every 1 ° C)
 -100℃から-50℃におけるフィルム4の引張貯蔵弾性率E’の平均のそれぞれは、-100℃から-50℃における上記した取得したすべてのデータの総和をデータの数で割って、算出した。-100℃から-50℃におけるフィルム4のtanδの平均のそれぞれは、-100℃から-50℃における上記した取得したすべてのデータの総和をデータの数で割って、算出した。 Each of the average tensile storage elastic moduli E'of the film 4 from -100 ° C to -50 ° C was calculated by dividing the sum of all the above acquired data from -100 ° C to -50 ° C by the number of data. .. Each of the averages of tan δ of film 4 from −100 ° C. to −50 ° C. was calculated by dividing the sum of all the above-mentioned acquired data from −100 ° C. to −50 ° C. by the number of data.
 <ペンドロップ割れ試験>
 各実施例および比較例の光学積層体1について、下記のペンドロップ割れ試験を実施した。図1の仮想線で示すように、まず、ガラス板2が上側を向くように、光学積層体1を樹脂フィルム34の表面に置いた。具体的には、粘着剤層12を樹脂フィルム34の表面に貼着した。樹脂フィルム34は、プレスケール(富士フィルム製 プレスケールMS中圧用モノシートタイプ、厚み95μm)である。樹脂フィルム34は、図示しない水平台の表面に配置されている。次いで、ガラス板2から5cmの高さから7gのペン29(Pentelボールペン BK407黒、ボール径0.7mm)を落下させるペンドロップ割れ試験を実施する。上記した高さ5cmは、ガラス板2の厚み方向一方面と、ペン29の先端部32との距離である。先端部32は、下側を向き、尖っている。この光学積層体1では、ペン29の上記した落下で、ガラス板2に割れが発生すれば、ペンドロップ割れ試験の高さH1は、5cmとなる。ガラス板2に割れが発生しなれば、1cmずつ高さを段階的に引き上げる。これにより、ガラス板2に割れが発生したときの高さH1を得る。
<Pen drop crack test>
The following pen drop cracking test was carried out for the optical laminate 1 of each Example and Comparative Example. As shown by the virtual line in FIG. 1, first, the optical laminate 1 was placed on the surface of the resin film 34 so that the glass plate 2 faces upward. Specifically, the pressure-sensitive adhesive layer 12 was attached to the surface of the resin film 34. The resin film 34 is a prescale (a monosheet type for prescale MS medium pressure manufactured by Fujifilm, thickness 95 μm). The resin film 34 is arranged on the surface of a horizontal table (not shown). Next, a pen drop cracking test is carried out in which a 7 g pen 29 (Pentel ballpoint pen BK407 black, ball diameter 0.7 mm) is dropped from a height of 5 cm from the glass plate 2. The height of 5 cm described above is the distance between one side of the glass plate 2 in the thickness direction and the tip portion 32 of the pen 29. The tip portion 32 faces downward and is sharp. In this optical laminate 1, if the glass plate 2 is cracked by the above-mentioned drop of the pen 29, the height H1 of the pen drop cracking test becomes 5 cm. If the glass plate 2 does not crack, the height is gradually increased by 1 cm. As a result, the height H1 when the glass plate 2 is cracked is obtained.
<各実施例および比較例の対比>
<粘着剤層12の厚みの評価>
 粘着剤層12の厚みを評価する。実施例1と比較例1とを対比する。実施例1の粘着剤層12の厚みは、15μmである。一方、比較例1の粘着剤層12の厚みは、25μmである。比較例1のペンドロップ割れ試験の高さH1 10cmに対して、実施例1のペンドロップ割れ試験の高さH1 20cmは、高い。そのため、粘着剤層12の厚みを20μm以下にすることにより、光学積層体1の耐衝撃性が向上することが分かる。
<Comparison of each example and comparative example>
<Evaluation of the thickness of the adhesive layer 12>
The thickness of the pressure-sensitive adhesive layer 12 is evaluated. Example 1 and Comparative Example 1 are compared. The thickness of the pressure-sensitive adhesive layer 12 of Example 1 is 15 μm. On the other hand, the thickness of the pressure-sensitive adhesive layer 12 of Comparative Example 1 is 25 μm. The height H1 20 cm of the pen drop cracking test of Example 1 is higher than the height H1 10 cm of the pen drop cracking test of Comparative Example 1. Therefore, it can be seen that the impact resistance of the optical laminate 1 is improved by reducing the thickness of the pressure-sensitive adhesive layer 12 to 20 μm or less.
 <ガラス板2の厚みの評価>
 ガラス板2の厚みを評価する。実施例1と比較例2とを対比する。実施例1のガラス板2の厚みは、50μmである。比較例2のガラス板2の厚みは、70μmである。比較例2のペンドロップ割れ試験の高さH1 7cmに対して、実施例1のペンドロップ割れ試験の高さH1 20cmは、高い。そのため、ガラス板2の厚みを60cm以下にすることによって、光学積層体1の耐衝撃性が向上することが分かる。
<Evaluation of the thickness of the glass plate 2>
The thickness of the glass plate 2 is evaluated. Example 1 and Comparative Example 2 are compared. The thickness of the glass plate 2 of Example 1 is 50 μm. The thickness of the glass plate 2 of Comparative Example 2 is 70 μm. The height H1 20 cm of the pen drop cracking test of Example 1 is higher than the height H17 cm of the pen drop cracking test of Comparative Example 2. Therefore, it can be seen that the impact resistance of the optical laminate 1 is improved by reducing the thickness of the glass plate 2 to 60 cm or less.
 <フィルム4のtanδの平均の評価>
 フィルム4のtanδの平均を評価する。実施例1と比較例3と比較例4とを対比する。実施例1のフィルム4のtanδの平均は、0.062である。比較例3と比較例4とのそれぞれのフィルム4のtanδの平均は、0.047μmである。比較例3と比較例4とのそれぞれのペンドロップ割れ試験の高さH1 7cmと10cmとに対して、実施例1のペンドロップ割れ試験の高さH1 20cmは、高い。そのため、フィルム4のtanδの平均を0.06以上にすることによって、光学積層体1の耐衝撃性が向上することが分かる。
Figure JPOXMLDOC01-appb-T000001
<Evaluation of the average of tan δ of film 4>
The average of tan δ of film 4 is evaluated. Example 1, Comparative Example 3 and Comparative Example 4 are compared. The average of tan δ of the film 4 of Example 1 is 0.062. The average of tan δ of each film 4 of Comparative Example 3 and Comparative Example 4 is 0.047 μm. The height H1 20 cm of the pen drop cracking test of Example 1 is higher than the height H17 cm and 10 cm of the pen drop cracking test of Comparative Example 3 and Comparative Example 4, respectively. Therefore, it can be seen that the impact resistance of the optical laminate 1 is improved by setting the average of tan δ of the film 4 to 0.06 or more.
Figure JPOXMLDOC01-appb-T000001
 なお、上記発明は、本発明の例示の実施形態として提供したが、これは単なる例示に過ぎず、限定的に解釈してはならない。当該技術分野の当業者によって明らかな本発明の変形例は、後記請求の範囲に含まれる。 Although the above invention has been provided as an exemplary embodiment of the present invention, this is merely an example and should not be construed in a limited manner. Modifications of the invention that are apparent to those skilled in the art are included in the claims below.
 光学積層体は、画像表示装置に備えられる。 The optical laminate is provided in the image display device.
1 光学積層体
2 ガラス板
3 接着剤層
4 フィルム
12 粘着剤層
1 Optical laminate 2 Glass plate 3 Adhesive layer 4 Film 12 Adhesive layer

Claims (1)

  1.  ガラス板と、接着剤層と、フィルムと、粘着剤層とを厚み方向一方側に向かって順に備え、
     前記ガラス板は、40μm以上、60μm以下の厚みを有し、
     周波数10Hz、昇温速度2℃/min、引張モードの動的粘弾性試験により求められる-100℃から-50℃における前記フィルムのtanδの平均が、0.06以上であり、
     前記動的粘弾性試験により求められる-100℃から-50℃における前記フィルムの引張貯蔵弾性率E’の平均が、3GPa以上、6GPa以下であり、
     前記粘着剤層は、20μm以下の厚みを有する、光学積層体。
    A glass plate, an adhesive layer, a film, and an adhesive layer are provided in order toward one side in the thickness direction.
    The glass plate has a thickness of 40 μm or more and 60 μm or less, and has a thickness of 40 μm or more and 60 μm or less.
    The average tan δ of the film at a frequency of 10 Hz, a heating rate of 2 ° C./min, and a dynamic viscoelasticity test in a tensile mode from -100 ° C to -50 ° C is 0.06 or more.
    The average tensile storage elastic modulus E'of the film at −100 ° C. to −50 ° C. determined by the dynamic viscoelasticity test is 3 GPa or more and 6 GPa or less.
    The pressure-sensitive adhesive layer is an optical laminate having a thickness of 20 μm or less.
PCT/JP2021/018805 2020-06-24 2021-05-18 Optical laminate WO2021261119A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020227042814A KR20230026309A (en) 2020-06-24 2021-05-18 optical stack
CN202180045371.XA CN115776941A (en) 2020-06-24 2021-05-18 Optical laminate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020109057 2020-06-24
JP2020-109057 2020-06-24
JP2020-194696 2020-11-24
JP2020194696A JP7198256B2 (en) 2020-11-24 2020-11-24 optical laminate

Publications (1)

Publication Number Publication Date
WO2021261119A1 true WO2021261119A1 (en) 2021-12-30

Family

ID=79282457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/018805 WO2021261119A1 (en) 2020-06-24 2021-05-18 Optical laminate

Country Status (3)

Country Link
KR (1) KR20230026309A (en)
CN (1) CN115776941A (en)
WO (1) WO2021261119A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023163151A1 (en) * 2022-02-28 2023-08-31 日東電工株式会社 Optical laminate for oled display device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019025899A (en) * 2017-07-28 2019-02-21 株式会社ダイセル Laminate, and flexible device comprising the laminate
WO2019087938A1 (en) * 2017-10-30 2019-05-09 日東電工株式会社 Laminate for image display devices

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019025899A (en) * 2017-07-28 2019-02-21 株式会社ダイセル Laminate, and flexible device comprising the laminate
WO2019087938A1 (en) * 2017-10-30 2019-05-09 日東電工株式会社 Laminate for image display devices

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023163151A1 (en) * 2022-02-28 2023-08-31 日東電工株式会社 Optical laminate for oled display device

Also Published As

Publication number Publication date
KR20230026309A (en) 2023-02-24
CN115776941A (en) 2023-03-10

Similar Documents

Publication Publication Date Title
WO2022113400A1 (en) Optical laminate
WO2022113401A1 (en) Optical layered body
KR20170070370A (en) Adhesive sheet and optical display apparatus comprising the same
CN110249019B (en) Adhesive composition
JP7184990B2 (en) adhesive composition
WO2021261101A1 (en) Optical laminate, and image display device
WO2021261119A1 (en) Optical laminate
JP2022007904A (en) Optical multilayer body, optical multilayer body with adhesive layer, and image display device
WO2021261118A1 (en) Optical laminate and adhesive layer-attached optical laminate
JP2022083324A (en) Optical laminate
JP2022083323A (en) Optical laminate and optical laminate having adhesive layer
JP7177958B2 (en) optical laminate
JP7242934B2 (en) optical laminate
WO2021261120A1 (en) Optical multilayer body, optical multilayer body with adhesive layer, and image display device
WO2023153051A1 (en) Window base material, multilayer window, multilayer window with adhesive layer, and display device including multilayer window
JP6721326B2 (en) Adhesive composition
WO2023153052A1 (en) Window base material, multilayer window, multilayer window with adhesive layer, and display device including multilayer window
WO2022082702A1 (en) Multifunctional sheets and laminates, articles, and methods
JP2023062652A (en) Laminate body and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21829900

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21829900

Country of ref document: EP

Kind code of ref document: A1