WO2022050229A1 - 波長変換部材、バックライトユニット、及び画像表示装置 - Google Patents

波長変換部材、バックライトユニット、及び画像表示装置 Download PDF

Info

Publication number
WO2022050229A1
WO2022050229A1 PCT/JP2021/031770 JP2021031770W WO2022050229A1 WO 2022050229 A1 WO2022050229 A1 WO 2022050229A1 JP 2021031770 W JP2021031770 W JP 2021031770W WO 2022050229 A1 WO2022050229 A1 WO 2022050229A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength conversion
meth
light
conversion member
conversion layer
Prior art date
Application number
PCT/JP2021/031770
Other languages
English (en)
French (fr)
Inventor
雄麻 吉田
雄毅 仙波
孝博 黒田
紗也香 菊池
唯史 奥田
正人 西村
Original Assignee
昭和電工マテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工マテリアルズ株式会社 filed Critical 昭和電工マテリアルズ株式会社
Publication of WO2022050229A1 publication Critical patent/WO2022050229A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters

Definitions

  • the present invention relates to a wavelength conversion member, a backlight unit, and an image display device.
  • Laminates in which a covering material such as a resin sheet is arranged on both sides of the intermediate layer are used in many technical fields.
  • a wavelength conversion member including a layer containing a quantum dot phosphor and a coating material provided on both sides thereof is known (for example, see Japanese Patent Publication No. 2013-544018 and International Publication No. 2016/0526225).
  • the wavelength conversion member including the quantum dot phosphor is arranged in, for example, the backlight unit of the image display device.
  • a wavelength conversion member including a quantum dot phosphor that emits red light and a quantum dot phosphor that emits green light is used, when the wavelength conversion member is irradiated with blue light as excitation light, the quantum dot phosphor emits light.
  • White light can be obtained from the red light and green light produced and the blue light transmitted through the wavelength conversion member.
  • one embodiment of the present disclosure provides a wavelength conversion member, a backlight unit, and an image display device capable of achieving both good image quality and sufficient brightness.
  • ⁇ 3> The wavelength conversion member according to ⁇ 1> or ⁇ 2>, wherein the thickness B of the wavelength conversion layer is 40 ⁇ m to 120 ⁇ m.
  • ⁇ 4> The wavelength conversion according to any one of ⁇ 1> to ⁇ 3>, wherein the light scattering particles having a refractive index of 2.3 or less contain silica and the product is in the range of 40 to 950.
  • ⁇ 5> The wavelength according to any one of ⁇ 1> to ⁇ 3>, wherein the light scattering particles having a refractive index of 2.3 or less contain a silicone resin and the product is in the range of 40 to 950. Conversion member.
  • the light scattering particles having a refractive index of 2.3 or less contain zirconia, zinc oxide, barium sulfate or calcium carbonate, and the product is in the range of 180 to 950, ⁇ 1> to ⁇ 3>.
  • the wavelength conversion member according to any one item. ⁇ 7> The wavelength according to any one of ⁇ 1> to ⁇ 3>, wherein the light scattering particles having a refractive index of 2.3 or less contain an acrylic resin and the product is in the range of 500 to 1200.
  • the light scattering particles having a refractive index of 2.3 or less contain alumina, the average particle diameter is 3.5 ⁇ m or less, and the product is 40 to 950.
  • ⁇ 13> The wavelength conversion member according to any one of ⁇ 1> to ⁇ 12>, wherein the wavelength conversion layer is a cured product of a composition containing a (meth) acrylic compound.
  • ⁇ 14> The wavelength conversion member according to any one of ⁇ 1> to ⁇ 13>, wherein the wavelength conversion layer is a cured product of a composition containing a thiol compound.
  • ⁇ 15> The wavelength conversion member according to any one of ⁇ 1> to ⁇ 14>, further comprising a coating material that covers at least a part of the wavelength conversion layer.
  • a backlight unit including the wavelength conversion member according to any one of ⁇ 1> to ⁇ 15> and a light source.
  • An image display device including the backlight unit according to ⁇ 16>.
  • a wavelength conversion member, a backlight unit, and an image display device capable of achieving both good image quality and sufficient brightness are provided.
  • the present invention is not limited to the following embodiments.
  • the components including element steps and the like are not essential unless otherwise specified.
  • the term "process” includes, in addition to a process independent of other processes, the process as long as the purpose of the process is achieved even if it cannot be clearly distinguished from the other process. ..
  • the numerical range indicated by using "-" includes the numerical values before and after "-" as the minimum value and the maximum value, respectively.
  • each component may contain a plurality of applicable substances.
  • the content of each component means the total content of the plurality of substances present in the composition unless otherwise specified.
  • a plurality of types of particles corresponding to each component may be contained.
  • the particle size of each component means a value for a mixture of the plurality of particles present in the composition unless otherwise specified.
  • layer or “membrane” is used only in a part of the region, in addition to the case where the layer or the membrane is formed in the entire region when the region is observed. The case where it is formed is also included.
  • laminate refers to stacking layers, and two or more layers may be bonded or the two or more layers may be removable.
  • the average thickness of the laminate or the layers constituting the laminate is an arithmetic mean value of the thicknesses of any three points measured using a micrometer, a multilayer film thickness measuring device, or the like.
  • “(meth) acryloyl group” means at least one of an acryloyl group and a methacryloyl group
  • “(meth) acrylic” means at least one of acrylic and methacrylic
  • “(meth) acrylate” means acrylate.
  • Methacrylate, and "(meth) allyl” means at least one of allyl and methacrylic.
  • the (meth) allyl compound means a compound having a (meth) allyl group in the molecule
  • the (meth) acrylic compound means a compound having a (meth) acryloyl group in the molecule.
  • the "full width at half maximum" of the wavelength spectrum means the “full width at half maximum”.
  • the wavelength conversion member according to the embodiment of the present disclosure has a wavelength conversion layer including a light scattering particle and a phosphor, and the light scattering particle includes a light scattering particle having a refractive index of 2.3 or less.
  • the product of the content A (mass%) of the light-scattering particles in the wavelength conversion layer and the thickness B ( ⁇ m) of the wavelength conversion layer is in the range of 40 to 1200.
  • a wavelength conversion layer in which the light-scattering particles include light-scattering particles having a refractive index of 2.3 or less, and the content of the light-scattering particles and the thickness of the wavelength conversion layer satisfy the above relationship. It was found that the wavelength conversion member can achieve both good image quality and sufficient brightness. In particular, it was found that good image quality and sufficient brightness can be achieved at the same time even if the thickness of the wavelength conversion layer is reduced.
  • the light-scattering particles contain light-scattering particles having a refractive index of 2.3 or less, and the product of the content A (mass%) and the thickness B ( ⁇ m) of the wavelength conversion layer is in the range of 40 to 1200.
  • the reason why the wavelength conversion member can achieve both good image quality and sufficient brightness is considered as follows, for example.
  • Light-scattering particles having a refractive index of 2.3 or less are more forward-scattered light (backlight) in the scattered light obtained by scattering light incident from the backlight than light-scattering particles having a refractive index of more than 2.3.
  • the ratio of scattered light directed to the opposite side to the side) is large. Therefore, even if the amount of light-scattering particles is increased in order to increase the haze value of the wavelength conversion layer, a sufficient amount of transmitted light is secured as compared with the case of increasing the amount of light-scattering particles having a refractive index of more than 2.3. It is considered that the brightness of the image display device is maintained.
  • the content of light-scattering particles that can achieve both good image quality and sufficient brightness varies depending on the thickness of the wavelength conversion layer. Therefore, by setting the product (A ⁇ B) of the content A (mass%) of the light-scattering particles and the thickness B ( ⁇ m) of the wavelength conversion layer within the range of 40 to 1200, good image quality and sufficient brightness are obtained. It is thought that compatibility with the above will be achieved.
  • the product of the content A (mass%) of the light-scattering particles and the thickness B ( ⁇ m) of the wavelength conversion layer may be in the range of 100 to 1000, or may be in the range of 200 to 800. It may be in the range of 300 to 600.
  • the range of the product of the content rate A (mass%) of the light scattering particles and the thickness B ( ⁇ m) of the wavelength conversion layer is set in consideration of the refractive index of the light scattering particles contained in the wavelength conversion layer in addition to the above range. You may.
  • the refractive index of the light-scattering particles is more than 2.0 and 2.3 or less
  • the product of the content rate A (mass%) of the light-scattering particles and the thickness B ( ⁇ m) of the wavelength conversion layer is 100 to 500. It may be within the range, or may be within the range of 200 to 400.
  • the product of the content rate A (mass%) of the light-scattering particles and the thickness B ( ⁇ m) of the wavelength conversion layer is 100 to 1000. It may be within the range, or may be within the range of 300 to 700.
  • the product of the content A (mass%) of the light-scattering particles and the thickness B ( ⁇ m) of the wavelength conversion layer is in the range of 100 to 1200. It may be in the range of 300 to 1000.
  • the refractive index of the light-scattering particles in the present disclosure is a value with respect to the D line (light having a wavelength of 589.3 nm) of sodium.
  • the content of the light scattering particles contained in the wavelength conversion layer is not particularly limited as long as the product with the thickness of the wavelength conversion layer is in the range of 40 to 1200. From the viewpoint of obtaining a sufficient light scattering effect, the content of the light scattering particles may be 0.5% by mass or more, 1.0% by mass or more, or 2.0% by mass or more. You may. From the viewpoint of ensuring sufficient brightness, the content of the light scattering particles may be 20% by mass or less, 15% by mass or less, or 10% by mass or less.
  • the thickness of the wavelength conversion layer is not particularly limited as long as the product with the content of the light scattering particles is in the range of 40 to 1200. From the viewpoint of obtaining a sufficient wavelength conversion effect, the thickness of the wavelength conversion layer may be 40 ⁇ m or more, 50 ⁇ m or more, or 70 ⁇ m or more. From the viewpoint of reducing the thickness of the image display device, the thickness of the wavelength conversion layer may be 120 ⁇ m or less, 100 ⁇ m or less, or 90 ⁇ m or less.
  • the total light transmittance of the wavelength conversion member is preferably 65% or more, more preferably 70% or more, and further preferably 75% or more.
  • the total light transmittance of the wavelength conversion member is measured by the method described in the examples.
  • the haze of the wavelength conversion member is preferably 90% or more, more preferably 93% or more, and further preferably 95% or more.
  • the haze of the wavelength conversion member is measured by the method described in the examples.
  • the wavelength conversion layer does not contain Cd (cadmium) or the Cd content is 100 ppm or less (mass standard) of the entire wavelength conversion layer.
  • the wavelength conversion layer does not contain Cd, or the Cd content is 100 ppm or less of the entire wavelength conversion layer.
  • the wavelength conversion layer contains Cd as a component (for example, a phosphor). There is a method of reducing the amount of those that do not use or contain Cd.
  • the light scattering particles contained in the wavelength conversion layer scatter the light incident on the wavelength conversion layer in the wavelength conversion layer, and act to increase the wavelength conversion efficiency of the incident light by the phosphor.
  • the refractive index of the light scattering particles contained in the wavelength conversion layer having a refractive index of 2.3 or less may be 2.1 or less, 2.0 or less, or 1.9 or less. May be good.
  • the lower limit of the refractive index of the light scattering particles is not particularly limited. From the viewpoint of obtaining a sufficient light scattering effect, the refractive index may be 1.4 or more, or 1.5 or more.
  • the light-scattering particles having a refractive index of 2.3 or less include particles containing silica, silicone resin, zirconia, zinc oxide, acrylic resin, alumina, barium sulfate, or calcium carbonate.
  • the light scattering particles contained in the wavelength conversion layer may be only one type or two or more types. Further, even if the wavelength conversion layer contains only light-scattering particles having a refractive index of 2.3 or less, it contains light-scattering particles having a refractive index of 2.3 or less and light-scattering particles having a refractive index of more than 2.3. But it may be. Specific examples of the light-scattering particles having a refractive index greater than 2.3 include titanium oxide and the like.
  • the proportion of light-scattering particles having a refractive index of 2.3 or less is light scattering. It is preferably 50% by mass or more, more preferably 70% by mass or more, and further preferably 90% by mass or more of the whole particles.
  • the content is preferably less than 5% by mass of the wavelength conversion layer, and 1% by mass, from the viewpoint of ensuring sufficient brightness. It is more preferably less than, and even more preferably less than 0.5% by mass.
  • the above-mentioned “light-scattering particle content A (mass%)" is the light-scattering particles having a refractive index of 2.3 or less and the refractive index. Is the total content with light scattering particles larger than 2.3.
  • the average particle diameter of the light-scattering particles may be 3.5 ⁇ m or less, 2.5 ⁇ m or less, or 2.0 ⁇ m or less. ..
  • the average particle size of the light-scattering particles may be 0.1 ⁇ m or more, 0.5 ⁇ m or more, or 1.0 ⁇ m or more.
  • the average particle size of the light scattering particles is preferably 3.5 ⁇ m or less.
  • the average particle size of the light-scattering particles can be measured as follows. Light-scattering particles are dispersed in purified water containing a surfactant to obtain a dispersion liquid. In the volume-based particle size distribution measured by a laser diffraction type particle size distribution measuring device (for example, Shimadzu Corporation, SALD-3000J) using this dispersion, the value when the integration from the small diameter side is 50% (for example). The median diameter (D50)) is defined as the average particle size of the light-scattering particles.
  • the average particle size of the light-scattering particles contained in the wavelength conversion layer is the geometric mean of the equivalent circle diameter (major axis and minor axis) for 50 particles observed in the cross section of the wavelength conversion layer using a scanning electron microscope. ) May be calculated and calculated as the arithmetic mean value.
  • the product of the content A (mass%) of the light-scattering particles in the wavelength conversion layer and the thickness B ( ⁇ m) of the wavelength conversion layer is It may be in the range of 40 to 950.
  • the light-scattering particles having a refractive index of 2.3 or less contain zirconia, zinc oxide, barium sulfate, or calcium carbonate, the content A (mass%) of the light-scattering particles in the wavelength conversion layer and the thickness B of the wavelength conversion layer ( The product with ⁇ m) may be in the range of 180 to 950.
  • the product of the content A (mass%) of the light-scattering particles in the wavelength conversion layer and the thickness B ( ⁇ m) of the wavelength conversion layer is 500 to It may be in the range of 1200.
  • the product of the content A (mass%) of the light-scattering particles in the wavelength conversion layer and the thickness B ( ⁇ m) of the wavelength conversion layer is 40 to 950. It may be within the range of.
  • the type of the phosphor contained in the wavelength conversion layer is not particularly limited and can be selected according to the intended use.
  • the fluorescent substance include an organic fluorescent substance and an inorganic fluorescent substance.
  • Examples of the organic phosphor include naphthalimide compounds and perylene compounds.
  • Examples of the inorganic phosphor include Y 3 O 3 : Eu, YVO 4 : Eu, Y 2 O 2 : Eu, 3.5 MgO / 0.5 MgF 2 , GeO 2 : Mn, (Y ⁇ Cd) BO 2 : Eu, etc.
  • Red light emitting inorganic phosphor ZnS: Cu ⁇ Al, (Zn ⁇ Cd) S: Cu ⁇ Al, ZnS: Cu ⁇ Au ⁇ Al, Zn 2 SiO 4 : Mn, ZnSiO 4 : Mn, ZnS: Ag ⁇ Cu, ( Zn ⁇ Cd) S: Cu, ZnS: Cu, GdOS: Tb, LaOS: Tb, YSiO 4 : Ce ⁇ Tb, ZnGeO 4 : Mn, GeMgAlO: Tb, SrGaS: Eu 2+ , ZnS: Cu ⁇ Co, MgO ⁇ nB 2 O 3 : Green light emitting inorganic phosphors such as Ge ⁇ Tb, LaOBr: Tb ⁇ Tm, La 2 O 2 S: Tb, ZnS: Ag, GaWO 4 , Y 2 SiO 6 : Ce, ZnS: Ag ⁇ Ga ⁇ Cl , Ca 2 B 4
  • the wavelength conversion layer contains a quantum dot phosphor.
  • quantum dot phosphor particles containing at least one selected from the group consisting of II-VI group compounds, III-V group compounds, IV-VI group compounds, and IV group compounds (hereinafter, semiconductor type quantum dot fluorescence).
  • a body particles containing a compound having a perovskite-type crystal structure (perobskite-type quantum dot phosphor), and the like can be mentioned.
  • II-VI group compounds include CdSe, CdTe, CdS, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, ZnS.
  • III-V group compounds include GaN, GaP, GaAs, GaSb, AlN, AlP, AlAs, AlSb, InN, InP, InAs, InSb, PLCAP, PLKAs, VMwareSb, GaPAs, GaPSb, AlNP, AlNAs, AlNSb.
  • IV-VI group compounds include SnS, SnSe, SnTe, PbS, PbSe, PbTe, SnSeS, SnSeTe, SnSTe, PbSeS, PbSeTe, PbSTe, SnPbS, SnPbSe, SnPbSne, SnPbSe, SnPbSn .
  • Specific examples of the Group IV compound include Si, Ge, SiC, SiGe and the like.
  • the semiconductor quantum dot phosphor preferably contains at least one of Cd and In. From the viewpoint of compliance with environmental regulations, it is preferable that the semiconductor quantum dot phosphor does not contain Cd. Therefore, from the viewpoint of luminous efficiency and compliance with environmental regulations, it is preferable that the semiconductor quantum dot phosphor contains In. From the viewpoint of reducing the amount of Cd in the entire quantum dot phosphor, a quantum dot phosphor that does not contain Cd and a quantum dot phosphor that contains Cd may be used in combination.
  • the semiconductor type quantum dot phosphor may have a core-shell structure.
  • core-shell structure By making the band gap of the compound constituting the shell wider than the band gap of the compound constituting the core, it is possible to further improve the quantum efficiency of the semiconductor quantum dot phosphor.
  • core / shell examples include CdSe / ZnS, InP / ZnS, PbSe / PbS, CdSe / CdS, CdTe / CdS, CdTe / ZnS and the like.
  • the semiconductor type quantum dot phosphor may have a so-called core multi-shell structure in which the shell has a multi-layer structure.
  • the quantum efficiency of the semiconductor quantum dot phosphor is further improved. It is possible to make it.
  • the wavelength conversion layer contains a quantum dot phosphor
  • two or more kinds of quantum dot phosphors having different components, average particle diameters, core shell structures, etc. may be combined.
  • the emission center wavelength of the entire wavelength conversion layer can be adjusted to a desired value.
  • the phosphor may include a phosphor G having a emission center wavelength in the green wavelength range of 520 nm to 560 nm and a phosphor R having a emission center wavelength in the red wavelength range of 600 nm to 680 nm.
  • the wavelength conversion layer containing the phosphor G and the phosphor R When the wavelength conversion layer containing the phosphor G and the phosphor R is irradiated with excitation light in the blue wavelength range of 430 nm to 480 nm, green light and red light are emitted from the phosphor G and the phosphor R, respectively. As a result, white light can be obtained by the green light and red light emitted from the phosphor G and the phosphor R and the blue light transmitted through the wavelength conversion layer.
  • the content of the phosphor in the wavelength conversion layer may be, for example, 0.01% by mass or more, 0.05% by mass or more, and 0.1% by mass or more with respect to the entire wavelength conversion layer. May be. Further, it may be 1.0% by mass or less, 0.8% by mass or less, and 0.5% by mass or less.
  • 0.01% by mass or more a sufficient wavelength conversion function tends to be obtained, and when the content of the phosphor is 1.0% by mass or less, aggregation of the phosphor is suppressed. Tend to be.
  • the wavelength conversion layer may be in the state of a cured product containing a phosphor and light scattering particles.
  • a cured product is obtained by curing, for example, a composition (wavelength conversion resin composition) containing at least a phosphor, light scattering particles, a polymerizable compound, and a photopolymerization initiator. May be good.
  • the polymerizable compound contained in the wavelength conversion resin composition is not particularly limited, and examples thereof include thiol compounds, (meth) allyl compounds, and (meth) acrylic compounds.
  • the polymerizable compound is a thiol compound, a (meth) allyl compound, and a (meth) acrylic compound from the viewpoint of adhesion between the wavelength conversion layer and the coating material. It is preferable to include at least one selected from the group consisting of.
  • the wavelength conversion layer obtained by curing a wavelength conversion resin composition containing a thiol compound as a polymerizable compound and at least one selected from the group consisting of a (meth) allyl compound and a (meth) acrylic compound is a wavelength conversion layer.
  • the sulfide structure (RSR', R and R'formed by the progress of the enthiol reaction between the thiol group and the carbon-carbon double bond of the (meth) allyl group or the (meth) acryloyl group is an organic group. Represents). This tends to improve the adhesion between the wavelength conversion layer and the covering material. Further, the optical characteristics of the wavelength conversion layer tend to be further improved.
  • the thiol compound may be a monofunctional thiol compound having one thiol group in one molecule, or a polyfunctional thiol compound having two or more thiol groups in one molecule. good.
  • the thiol compound contained in the wavelength conversion resin composition may be only one kind or two or more kinds.
  • the thiol compound may or may not have a polymerizable group other than the thiol group (for example, (meth) acryloyl group, (meth) allyl group) in the molecule.
  • a compound containing a thiol group and a polymerizable group other than the thiol group in the molecule shall be classified as a "thiol compound”.
  • the monofunctional thiol compound examples include hexanethiol, 1-heptanethiol, 1-octanethiol, 1-nonanthiol, 1-decanethiol, 3-mercaptopropionic acid, methyl mercaptopropionate, methoxybutyl mercaptopropionate, and the like.
  • Examples thereof include octyl mercaptopropionate, tridecyl mercaptopropionate, 2-ethylhexyl-3-mercaptopropionate, n-octyl-3-mercaptopropionate and the like.
  • polyfunctional thiol compound examples include ethylene glycol bis (3-mercaptopropionate), diethylene glycol bis (3-mercaptopropionate), tetraethylene glycol bis (3-mercaptopropionate), 1,2-.
  • the thiol compound preferably contains a polyfunctional thiol compound from the viewpoint of further improving the adhesion between the wavelength conversion layer and the coating material, heat resistance, and moisture heat resistance.
  • the ratio of the polyfunctional thiol compound to the total amount of the thiol compound is, for example, preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 100% by mass.
  • the thiol compound may be in the state of a thioether oligomer that has reacted with the (meth) acrylic compound.
  • the thioether oligomer can be obtained by addition polymerization of a thiol compound and a (meth) acrylic compound in the presence of a polymerization initiator.
  • the thioether oligomer obtained by reacting a polyfunctional thiol compound with a polyfunctional (meth) acrylic compound is preferable from the viewpoint of further improving the optical properties, heat resistance, and moist heat resistance of the cured product, and pentaerythritol.
  • a thioether oligomer obtained by addition polymerization of tetrakis (3-mercaptopropionate) and tris (2-acryloyloxyethyl) isocyanurate is more preferable.
  • the weight average molecular weight of the thioether oligomer is, for example, preferably 3000 to 10000, more preferably 3000 to 8000, and even more preferably 4000 to 6000.
  • the weight average molecular weight of the thioether oligomer is determined by converting the molecular weight distribution measured by gel permeation chromatography (GPC) using a standard polystyrene calibration curve, as shown in Examples described later.
  • the thiol equivalent of the thioether oligomer is, for example, preferably 200 g / eq to 400 g / eq, more preferably 250 g / eq to 350 g / eq, and even more preferably 250 g / eq to 270 g / eq.
  • the content of the thiol compound in the wavelength conversion resin composition is, for example, 5% by mass to 80% by mass with respect to the total amount of the wavelength conversion resin composition. It is preferably 15% by mass to 70% by mass, more preferably 20% by mass to 60% by mass.
  • the content of the thiol compound is 5% by mass or more, the adhesion to the coating material of the cured product tends to be further improved, and when the content of the thiol compound is 80% by mass or less, the heat resistance of the cured product tends to be improved. And the moisture and heat resistance tends to be further improved.
  • the (meth) allyl compound may be a monofunctional (meth) allyl compound having one (meth) allyl group in one molecule, and two or more (meth) allyl compounds in one molecule. It may be a polyfunctional (meth) allyl compound having a (meth) allyl group.
  • the (meth) allyl compound contained in the wavelength conversion resin composition may be only one kind or two or more kinds.
  • the (meth) allyl compound may or may not have a polymerizable group (for example, (meth) acryloyl group) other than the (meth) allyl group in the molecule.
  • a polymerizable group for example, (meth) acryloyl group
  • compounds having a polymerizable group other than the (meth) allyl group in the molecule shall be classified as "(meth) allyl compound”.
  • the monofunctional (meth) allyl compound examples include (meth) allyl acetate, (meth) allyl n-propionate, (meth) allylbenzoate, (meth) allylphenylacetate, (meth) allylphenoxyacetate, and (meth).
  • examples thereof include allyl methyl ether and (meth) allyl glycidyl ether.
  • polyfunctional (meth) allyl compound examples include di (meth) allyl benzenedicarboxylate, di (meth) allyl cyclohexanedicarboxylate, di (meth) allyl maleate, di (meth) allyl adipate, and di (meth).
  • Examples of the (meth) allyl compound include compounds having an isocyanurate skeleton such as tri (meth) allyl isocyanurate, tri (meth) allyl cyanurate, and benzenedicarboxylic acid di (meth) from the viewpoint of heat resistance and moisture heat resistance of the cured product.
  • At least one selected from the group consisting of allyl and di (meth) allyl cyclohexanedicarboxylate is preferable, a compound having a triisocyanurate skeleton is more preferable, and tri (meth) allyl isocyanurate is further preferable.
  • the (meth) acrylic compound may be a monofunctional (meth) acrylic compound having one (meth) acryloyl group in one molecule, and two or more (meth) acrylic compounds in one molecule. It may be a polyfunctional (meth) acrylic compound having a (meth) acryloyl group.
  • the (meth) acrylic compound contained in the wavelength conversion resin composition may be one kind or two or more kinds.
  • the monofunctional (meth) acrylic compound examples include (meth) acrylic acid; methyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and isononyl (meth).
  • Alkyl (meth) acrylate having an alkyl group having 1 to 18 carbon atoms such as acrylate, n-octyl (meth) acrylate, lauryl (meth) acrylate, and stearyl (meth) acrylate; benzyl (meth) acrylate, phenoxyethyl ( A (meth) acrylate compound having an aromatic ring such as a meta) acrylate; an alkoxyalkyl (meth) acrylate such as butoxyethyl (meth) acrylate; an aminoalkyl (meth) acrylate such as N, N-dimethylaminoethyl (meth) acrylate; Diethylene glycol monoethyl ether (meth) acrylate, triethylene glycol monobutyl ether (meth) acrylate, tetraethylene glycol monomethyl ether (meth) acrylate, hexaethylene glycol monomethyl ether (meth) acrylate
  • Fluoroalkyl (meth) acrylates such as acrylates; 2-hydroxyethyl (meth) acrylates, 3-hydroxypropyl (meth) acrylates, 4-hydroxybutyl (meth) acrylates, triethires.
  • (Meta) acrylate compound having a hydroxyl group such as Nglycol mono (meth) acrylate, Tetraethylene glycol mono (meth) acrylate, Hexaethylene glycol mono (meth) acrylate, Octapropylene glycol mono (meth) acrylate;
  • (Meta) acrylate compound having a glycidyl group such as 2- (2- (meth) acryloyloxyethyloxy) ethyl isocyanate, 2- (meth) acryloyloxyethyl isocyanate (meth) acrylate compound having an isocyanate group such as tetra.
  • Polyalkylene glycol mono (meth) acrylates such as ethylene glycol mono (meth) acrylate, hexaethylene glycol mono (meth) acrylate, octapropylene glycol mono (meth) acrylate; (meth) acrylamide, N, N-dimethyl (meth) acrylamide. , N-Isopropyl (meth) acrylamide, N, N-dimethylaminopropyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, 2-hydroxyethyl (meth) acrylamide and other (meth) acrylamide compounds; Be done.
  • polyfunctional (meth) acrylic compound examples include 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, and 1,9-nonanediol di (meth) acrylate.
  • Polyalkylene glycol di (meth) acrylate Polyalkylene glycol di (meth) acrylate such as polyethylene glycol di (meth) acrylate and polypropylene glycol di (meth) acrylate; Trimethylol propantri (meth) acrylate, Trimethylol propantri with ethylene oxide (meth) Tri (meth) acrylate compounds such as meth) acrylate and tris (2-acryloyloxyethyl) isocyanurate; ethylene oxide-added pentaerythritol tetra (meth) acrylate, trimethylolpropanetetra (meth) acrylate, pentaerythritol tetra (meth) acrylate and the like.
  • Tetra (meth) acrylate compound tricyclodecanedimethanol di (meth) acrylate, cyclohexanedimethanol di (meth) acrylate, 1,3-adamantan dimethanol di (meth) acrylate, hydrogenated bisphenol A (poly) ethoxydi ( Meta) acrylate, hydrogenated bisphenol A (poly) propoxydi (meth) acrylate, hydrogenated bisphenol F (poly) ethoxydi (meth) acrylate, hydrogenated bisphenol F (poly) propoxydi (meth) acrylate, hydrogenated bisphenol S (poly) Examples thereof include (meth) acrylate compounds having an alicyclic structure such as ethoxydi (meth) acrylate and hydrogenated bisphenol S (poly) propoxydi (meth) acrylate.
  • the (meth) acrylic compound is preferably a (meth) acrylate compound having an alicyclic structure or an aromatic ring structure from the viewpoint of further improving the heat resistance and moisture heat resistance of the cured product.
  • the alicyclic structure or aromatic ring structure include an isobornyl skeleton, a tricyclodecane skeleton, and a bisphenol skeleton.
  • the (meth) acrylic compound may have an alkyleneoxy group or may be a bifunctional (meth) acrylic compound having an alkyleneoxy group.
  • alkyleneoxy group for example, an alkyleneoxy group having 2 to 4 carbon atoms is preferable, an alkyleneoxy group having 2 or 3 carbon atoms is more preferable, and an alkyleneoxy group having 2 carbon atoms is further preferable.
  • the alkyleneoxy group contained in the (meth) acrylic compound may be one kind or two or more kinds.
  • the alkyleneoxy group-containing compound may be a polyalkyleneoxy group-containing compound having a polyalkyleneoxy group containing a plurality of alkyleneoxy groups.
  • the number of alkyleneoxy groups in one molecule is preferably 2 to 30, more preferably 2 to 20, and 3 to 20. It is more preferably 10 pieces, and particularly preferably 3 to 5 pieces.
  • the (meth) acrylic compound When the (meth) acrylic compound has an alkyleneoxy group, it preferably has a bisphenol structure. As a result, the heat resistance tends to be superior.
  • the bisphenol structure include a bisphenol A structure and a bisphenol F structure, and among them, the bisphenol A structure is preferable.
  • (meth) acrylic compound containing an alkyleneoxy group examples include alkoxyalkyl (meth) acrylates such as butoxyethyl (meth) acrylates; diethylene glycol monoethyl ether (meth) acrylates and triethylene glycol monobutyl ether (meth) acrylates.
  • Polyalkylene glycol di (meth) acrylates such as (meth) acrylates; Tri (meth) acrylate compounds such as ethylene oxide-added trimethylol propantri (meth) acrylates; Tetra (meth) acrylates such as ethylene oxide-added pentaerythritol tetra (meth) acrylates.
  • Compounds; Bisphenol type di (meth) acrylate compounds such as ethoxylated bisphenol A type di (meth) acrylate, propoxylated bisphenol A type di (meth) acrylate, propoxylated ethoxylated bisphenol A type di (meth) acrylate; and the like. Be done.
  • Examples of the (meth) acrylic compound containing an alkyleneoxy group include ethoxylated bisphenol A type di (meth) acrylate, propoxylated bisphenol A type di (meth) acrylate and propoxylated ethoxylated bisphenol A type di (meth) acrylate. Is preferable, and ethoxylated bisphenol A type di (meth) acrylate is more preferable.
  • the polymerizable compound may include a thioether oligomer as a thiol compound and a (meth) allyl compound (preferably a polyfunctional (meth) allyl compound).
  • the content of the (meth) allyl compound may be, for example, 10% by mass to 50% by mass, or 15% by mass to 45% by mass, based on the total amount of the resin composition for wavelength conversion. It may be 20% by mass to 40% by mass.
  • the wavelength conversion material used in combination is preferably in the state of a dispersion liquid dispersed in the silicone compound as the dispersion medium.
  • the polymerizable compound is a thiol compound that is not in the form of a thioether oligomer and a (meth) acrylic compound (preferably a polyfunctional (meth) acrylic compound, more preferably a bifunctional (meth) acrylic compound). It may be included.
  • the content of the (meth) acrylic compound may be, for example, 40% by mass to 90% by mass, or 60% by mass to 90% by mass, based on the total amount of the resin composition for wavelength conversion. It may be 75% by mass to 85% by mass.
  • the wavelength conversion material used in combination is a (meth) acrylic compound as a dispersion medium, preferably a monofunctional (meth) compound. It is preferably in the state of a dispersion liquid dispersed in an acrylic compound, more preferably isobornyl (meth) acrylate.
  • the photopolymerization initiator contained in the wavelength conversion resin composition is not particularly limited, and examples thereof include compounds that generate radicals by irradiation with active energy rays such as ultraviolet rays.
  • photopolymerization initiator examples include benzophenone, N, N'-tetraalkyl-4, 4'-diaminobenzophenone, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1, 2-Methyl-1- [4- (Methylthio) Phenyl] -2-morpholino-companone-1,4,4'-bis (dimethylamino) benzophenone (also referred to as "Michlerketone”), 4,4'-bis (Diethylamino) benzophenone, 4-methoxy-4'-dimethylaminobenzophenone, 1-hydroxycyclohexylphenylketone, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropane-1-one, 1- (4- (4-) Aromatic ketone compounds such as (2-hydroxyethoxy) -phenyl) -2-hydroxy-2-methyl-1-propane-1-one
  • the photopolymerization initiator at least one selected from the group consisting of an acylphosphine oxide compound, an aromatic ketone compound, and an oxime ester compound is preferable from the viewpoint of curability, and the acylphosphine oxide compound and the aromatic ketone compound are selected. At least one selected from the above group is more preferable, and an acylphosphine oxide compound is further preferable.
  • the content of the photopolymerization initiator in the wavelength conversion resin composition is preferably, for example, 0.1% by mass to 5% by mass, preferably 0.1% by mass, based on the total amount of the wavelength conversion resin composition. It is more preferably% to 3% by mass, and even more preferably 0.1% by mass to 1.5% by mass.
  • the content of the photopolymerization initiator is 0.1% by mass or more, the sensitivity of the wavelength conversion resin composition tends to be sufficient, and the content of the photopolymerization initiator is 5% by mass or less.
  • the influence of the wavelength conversion resin composition on the hue and the decrease in storage stability tend to be suppressed.
  • the wavelength conversion resin composition may further contain other components such as a liquid medium (organic solvent or the like), a polymerization inhibitor, a silane coupling agent, a surfactant, a adhesion-imparting agent, and an antioxidant.
  • the wavelength conversion resin composition may contain one kind individually or a combination of two or more kinds for each of the other components.
  • the wavelength conversion member may have a covering material arranged on at least one surface of the wavelength conversion layer. By arranging the covering material, the invasion of moisture, oxygen, etc. into the wavelength conversion layer is suppressed, and the deterioration of the wavelength conversion layer is suppressed. In addition, appropriate rigidity is imparted to the wavelength conversion member to improve handleability.
  • the material of the covering material is not particularly limited, and polyester such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyolefin such as polyethylene (PE) and polypropylene (PP), polyamide such as nylon, and ethylene-vinyl alcohol co-weight. It may be coalescence (EVOH) or the like. From the viewpoint of availability, polyethylene terephthalate is preferable as the material of the covering material.
  • the covering material may be one provided with a barrier layer for strengthening the barrier function against water, oxygen, etc. (barrier film).
  • a barrier layer for strengthening the barrier function against water, oxygen, etc.
  • the barrier layer include an inorganic layer containing an inorganic substance such as alumina and silica.
  • the covering material has a barrier layer, it is preferable that the barrier layer is arranged on the side in contact with the wavelength conversion layer.
  • the oxygen permeability of the coating material is, for example, preferably 1.0 mL / ( m 2.24 h ⁇ atm) or less, more preferably 0.8 mL / ( m 2.24 h ⁇ atm) or less, and 0. It is more preferably .6 mL / ( m 2.24 h ⁇ atm) or less.
  • the oxygen permeability of the coating material can be measured using an oxygen permeability measuring device (for example, MOCON, OX-TRAN) under the conditions of a temperature of 23 ° C. and a relative humidity of 90%.
  • the water vapor permeability of the coating material is, for example, preferably 1 ⁇ 100 g / ( m 2.24 h) or less, and more preferably 8 ⁇ 10 -1 g / ( m 2.24 h) or less. It is more preferably 6 ⁇ 10 -1 g / ( m 2.24 h) or less.
  • the water vapor permeability of the coating material can be measured using a water vapor permeability measuring device (for example, MOCON, AQUATRAN) under the conditions of a temperature of 40 ° C. and a relative humidity of 100%.
  • the dressing may include a matte layer for scattering light.
  • the matte layer is preferably placed on the surface opposite to the surface on which the barrier layer of the dressing is placed.
  • the wavelength conversion layer of the coating material arranged on one surface side of the wavelength conversion layer, the surface on the side not facing the wavelength conversion layer, or the coating material arranged on both surface sides of the wavelength conversion layer. At least one of the surfaces on the non-opposing sides may be roughened.
  • the wavelength conversion member has a covering material, if the covering material is roughened, the handling of the image conversion member is excellent, and interference fringes due to the adjacent member and the wavelength conversion member coming into close contact with each other can be suppressed. There is a tendency.
  • the surface of the covering material may have, for example, an arithmetic surface roughness Ra of 0.5 ⁇ m or more. Arithmetic surface roughness Ra is measured by a method according to JIS B 0601: 2013.
  • the thickness of the covering material may be, for example, in the range of 10 ⁇ m to 150 ⁇ m.
  • FIG. 1 shows an example of the schematic configuration of the wavelength conversion member.
  • the wavelength conversion member of the present disclosure is not limited to the configuration shown in FIG.
  • the sizes of the wavelength conversion layer and the covering material in FIG. 1 are conceptual, and the relative relationship between the sizes is not limited to this. In each drawing, the same member may be designated by the same reference numeral, and duplicate description may be omitted.
  • the wavelength conversion member 10 shown in FIG. 1 has a wavelength conversion layer 11 and covering materials 12A and 12B provided on both sides of the wavelength conversion layer 11.
  • the types and average thicknesses of the covering material 12A and the covering material 12B may be the same or different.
  • the wavelength conversion member having the configuration shown in FIG. 1 can be manufactured by, for example, a known manufacturing method as follows.
  • a wavelength conversion resin composition is applied to the surface of a film-like coating material (hereinafter, also referred to as "first coating material") that is continuously conveyed to form a coating film.
  • first coating material a film-like coating material
  • the method for applying the wavelength conversion resin composition is not particularly limited, and examples thereof include a die coating method, a curtain coating method, an extrusion coating method, a rod coating method, and a roll coating method.
  • a film-like covering material (hereinafter, also referred to as "second covering material") that is continuously conveyed is bonded onto the coating film of the wavelength conversion resin composition.
  • the coating film is cured and a cured product layer is formed by irradiating the active energy rays from the side of the coating material that can transmit the active energy rays among the first coating material and the second coating material. Then, by cutting out to a specified size, a wavelength conversion member having the configuration shown in FIG. 1 can be obtained.
  • the wavelength and irradiation amount of the active energy ray can be set according to the composition of the wavelength conversion resin composition, the thickness of the wavelength conversion layer, and the like. In one embodiment, ultraviolet rays having a wavelength of 280 nm to 400 nm are irradiated with an irradiation amount of 100 mJ / cm 2 to 5000 mJ / cm 2 .
  • Examples of the ultraviolet source include low-pressure mercury lamps, medium-pressure mercury lamps, high-pressure mercury lamps, ultra-high-pressure mercury lamps, carbon arc lamps, metal halide lamps, xenon lamps, chemical lamps, black light lamps, microwave-excited mercury lamps, and the like.
  • the coating film is irradiated with the active energy ray before the second coating material is bonded, and the cured product layer is formed. May be formed.
  • the backlight unit of the present disclosure includes a light source and a wavelength conversion member of the present disclosure.
  • the backlight unit is preferably a multi-wavelength light source from the viewpoint of improving color reproducibility.
  • blue light having a emission center wavelength in the wavelength range of 430 nm to 480 nm and having an emission intensity peak having a half width of 100 nm or less, and emission center wavelength in the wavelength range of 520 nm to 560 nm.
  • green light having an emission intensity peak having a half-value width of 100 nm or less and red light having an emission center wavelength in the wavelength range of 600 nm to 680 nm and having an emission intensity peak having a half-value width of 100 nm or less.
  • the light unit can be mentioned.
  • the half-value width of the emission intensity peak means the peak width at a height of 1/2 of the peak height.
  • the emission center wavelength of the blue light emitted by the backlight unit is preferably in the range of 440 nm to 475 nm.
  • the emission center wavelength of the green light emitted by the backlight unit is preferably in the range of 520 nm to 545 nm.
  • the emission center wavelength of the red light emitted by the backlight unit is preferably in the range of 610 nm to 640 nm.
  • the half width of each emission intensity peak of the blue light, green light, and red light emitted by the backlight unit is preferably 80 nm or less, preferably 50 nm or less. It is more preferable to have.
  • the light source of the backlight unit for example, a light source that emits blue light having a emission center wavelength in the wavelength range of 430 nm to 480 nm can be used.
  • the light source include an LED (Light Emitting Diode) and a laser.
  • the wavelength conversion member includes at least a quantum dot phosphor R that emits red light and a quantum dot phosphor G that emits green light. Thereby, white light can be obtained by the red light and green light emitted from the wavelength conversion member and the blue light transmitted through the wavelength conversion member.
  • the light source of the backlight unit for example, a light source that emits ultraviolet light having a emission center wavelength in the wavelength range of 300 nm to 430 nm can also be used.
  • the light source include LEDs and lasers.
  • the wavelength conversion member preferably includes a quantum dot phosphor B that is excited by excitation light and emits blue light, together with the quantum dot phosphor R and the quantum dot phosphor G. As a result, white light can be obtained from the red light, green light, and blue light emitted from the wavelength conversion member.
  • the backlight unit of the present disclosure may be an edge light type or a direct type. From the viewpoint of reducing the thickness of the backlight unit, the direct type method is preferable.
  • FIG. 2 shows an example of the schematic configuration of the direct type backlight unit.
  • the backlight unit of the present disclosure is not limited to the configuration shown in FIG.
  • the size of the members in FIG. 2 is conceptual, and the relative relationship between the sizes of the members is not limited to this.
  • the backlight unit 20 shown in FIG. 2 has a light source 21 that emits blue light LB , a wavelength conversion member 10 that is arranged to face the light source 21, and retroreflection that is arranged to face the light source 21 via the wavelength conversion member 10.
  • the sex member 23 is provided.
  • the wavelength conversion member 10 emits red light LR and green light LG using a part of blue light LB as excitation light, and red light LR and green light LG and blue light L which is not the excitation light. B is emitted.
  • White light L W is emitted from the retroreflective member 23 by the red light LR, the green light LG , and the blue light LB.
  • the image display device of the present disclosure includes the backlight unit of the present disclosure described above.
  • the image display device is not particularly limited, and examples thereof include a liquid crystal display device.
  • FIG. 3 shows an example of the schematic configuration of the liquid crystal display device.
  • the liquid crystal display device of the present disclosure is not limited to the configuration shown in FIG.
  • the size of the members in FIG. 3 is conceptual, and the relative relationship between the sizes of the members is not limited to this.
  • the liquid crystal display device 30 shown in FIG. 3 includes a backlight unit 20 and a liquid crystal cell unit 31 arranged to face the backlight unit 20.
  • the liquid crystal cell unit 31 has a configuration in which the liquid crystal cell 32 is arranged between the polarizing plate 33A and the polarizing plate 33B.
  • the drive method of the liquid crystal cell 32 is not particularly limited, and is a TN (Twisted Nematic) method, an STN (Super Twisted Nematic) method, a VA (Vertical Birefringence) method, an IPS (In-Plane-Switching) method, an OCB (Optical Birefringence) method.
  • TN Transmission Nematic
  • STN Super Twisted Nematic
  • VA Very Birefringence
  • IPS In-Plane-Switching
  • OCB Optical Birefringence
  • a resin composition for wavelength conversion was prepared by blending a mixture containing the following components with light-scattering particles in an amount such that the content in the wavelength conversion layer was the value (mass%) shown in Table 1.
  • Polyfunctional (meth) acrylate compound Tricyclodecanedimethanol diacrylate (Shin-Nakamura Chemical Industry Co., Ltd.) 73 parts by mass
  • Polyfunctional thiol compound Pentaerythritol tetrakis (3-mercaptopropionate) (SC Organic Chemistry Co., Ltd., PEMP ) 20.5 parts by mass
  • Light-scattering particles 1 Zirconia particles (refractive index 2.13, average particle diameter 0.4 to 0.7 ⁇ m)
  • Light scattering particles 2 Zirconia particles (refractive index 2.13, average particle diameter 1.5 to 2.5 ⁇ m)
  • Light scattering particles 3 Alumina particles (refractive index 1.77, average particle diameter 1.6 ⁇ m)
  • Light scattering particles 4 Alumina particles (refractive index 1.77, average particle diameter 0.5 ⁇ m)
  • Light scattering particles 5 Alumina particles (refractive index 1.77, average particle diameter 0.27 ⁇ m)
  • Light-scattering particles 6 Alumina particles (refractive index 1.77, average particle diameter 3.7 ⁇ m)
  • Light scattering particles 7 Silicone resin particles (refractive index 1.49, average particle diameter 3.0 ⁇ m)
  • Light scattering particles 8 Acrylic resin particles (refractive index 1.45, average particle diameter 2.0 ⁇ m)
  • Light-scattering particles 9 Titania particles (refractive index 2.50,
  • Isobornyl acrylate was used as the dispersion medium for the InP / ZnS (core / shell) dispersion liquid.
  • the InP / ZnS (core / shell) dispersion contains 90% by mass or more of isobornyl acrylate.
  • a coating film was formed by applying each wavelength conversion resin composition obtained above to any of the following coating materials.
  • the same coating material as the coating material on which the coating film was formed was bonded onto this coating film, and ultraviolet rays of 1000 mJ / cm 2 were irradiated using an ultraviolet irradiation device (Igraphics Co., Ltd.).
  • an ultraviolet irradiation device Igraphics Co., Ltd.
  • a wavelength conversion member containing a cured product of the wavelength conversion resin composition and having a coating material arranged on both sides of the wavelength conversion layer having the thickness shown in Table 1 was obtained.
  • Coating material 1 Barrier component is vapor-deposited on one side of the PET film and has a matte layer on the other side.
  • Barrier film with an average thickness of 125 ⁇ m Coating material 2 Barrier component is vapor-deposited on one side of the PET film and matted on the other side. Barrier film with an average thickness of 12 ⁇ m having a layer Coating material 3: Barrier film having an average thickness of 25 ⁇ m having a matte layer on one side of the PET film sputtered with a barrier component.
  • the evaluation wavelength conversion member obtained by cutting the wavelength conversion member into dimensions of 100 mm in width and 100 mm in length is based on JIS K 7136: 2000 using a haze meter (Nippon Denki Kogyo Co., Ltd., NDH-7000SPI).
  • the total light transmittance was measured by the above method.
  • the evaluation wavelength conversion member obtained by cutting the wavelength conversion member into dimensions of 100 mm in width and 100 mm in length is based on JIS K 7136: 2000 using a haze meter (Nippon Denki Kogyo Co., Ltd., NDH-7000SPI). Haze was measured by the method used.
  • the wavelength conversion member for evaluation obtained by cutting the wavelength conversion member into dimensions having a width of 100 mm and a length of 100 mm was measured for brightness using a luminance meter (Photo Research Co., Ltd., PR-655) and evaluated according to the following criteria.
  • a luminance meter a camera unit that recognizes optical characteristics is installed at the top, and a BEF (luminance increasing film) plate, a diffuser plate, and an LED light source are provided under the lens, and measurement is performed between the BEF plate and the diffuser plate.
  • a sample was set and the one configured to be able to measure the brightness was used.
  • a ... Brightness is 800 cd / m 2 or more
  • the evaluation wavelength conversion member obtained by cutting the wavelength conversion member into dimensions having a width of 100 mm and a length of 100 mm is placed on a substrate in which mini-LEDs are arranged at intervals of 10 mm ⁇ 10 mm, and a composite prism film (composite prism film) is placed on the substrate.
  • POP and a reflective polarizing film (DBEF manufactured by 3M) were arranged.
  • the mini-LED was turned on, and the presence or absence of luminance unevenness around the mini-LED was visually observed from directly above, and evaluated according to the following criteria.
  • B Brightness unevenness is conspicuous
  • the evaluation wavelength conversion member obtained by cutting the wavelength conversion member into dimensions having a width of 100 mm and a length of 100 mm was arranged on a substrate in which mini-LEDs were arranged at intervals of 10 mm ⁇ 10 mm.
  • the mini-LED was turned on, and the presence or absence of agglomeration of the light scattering agent was visually observed and evaluated according to the following criteria.
  • the wavelength conversion members of Examples 1 to 17 having the refractive index of the light scattering particles of 2.3 or less and the value of A ⁇ B in the range of 40 to 1200 have the total light transmittance. And the haze value is high enough.
  • the wavelength conversion member of Comparative Examples 1 to 5 in which the refractive index of the light scattering particles exceeds 2.3 or the value of A ⁇ B is out of the range of 40 to 1200 has either the total light transmittance or the haze. Inferior to the examples.
  • the wavelength conversion members of Examples 1 to 16 in which the average particle size of the light-scattering particles is 3.5 ⁇ m or less are light-scattering as compared with the wavelength conversion members of Example 17 in which the average particle size of the light-scattering particles is more than 3.5 ⁇ m. Particle aggregation is suppressed.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Planar Illumination Modules (AREA)

Abstract

光散乱粒子と、蛍光体と、を含む波長変換層を有し、前記光散乱粒子は屈折率が2.3以下である光散乱粒子を含み、前記光散乱粒子の前記波長変換層における含有率A(質量%)と前記波長変換層の厚みB(μm)との積が40~1200の範囲内である、波長変換部材。

Description

波長変換部材、バックライトユニット、及び画像表示装置
 本発明は、波長変換部材、バックライトユニット、及び画像表示装置に関する。
 中間層の両側に樹脂シート等の被覆材を配置した積層体は、多くの技術分野で用いられている。例えば、液晶表示装置等の画像表示装置のディスプレイの色再現性を向上させる手段として、量子ドット蛍光体を含む層と、その両側に設けられる被覆材とを備える波長変換部材が知られている(例えば、特表2013-544018号公報及び国際公開第2016/052625号参照)。
 量子ドット蛍光体を含む波長変換部材は、例えば、画像表示装置のバックライトユニットに配置される。赤色光を発光する量子ドット蛍光体及び緑色光を発光する量子ドット蛍光体を含む波長変換部材を用いる場合、波長変換部材に対して励起光としての青色光を照射すると、量子ドット蛍光体から発光された赤色光及び緑色光と、波長変換部材を透過した青色光とにより、白色光を得ることができる。
 近年、モバイル電子機器のような薄型の画像表示装置に用いる波長変換部材への需要が高まっている。画像表示装置が薄型化すると、波長変換部材とバックライトとの距離が短くなり、波長変換部材自体の厚みも薄くなる傾向にある。その結果、バックライトの光源の真上とその周囲とにおける輝度ムラが目立ちやすくなり、画質に影響を与えるおそれがある。
 バックライトの輝度の差を解消するためには、波長変換部材における全光線透過光に占める拡散透過光の割合(ヘーズ)を高めることが有効である。しかしながら、拡散透過光の割合を高めると画像表示装置の輝度が不充分となるおそれがある。
 上記事情に鑑み、本開示の一実施形態は、良好な画質と充分な輝度とを両立可能な波長変換部材、バックライトユニット、及び画像表示装置を提供する。
 上記課題を解決するための具体的な手段には、以下の実施態様が含まれる。
<1>光散乱粒子と、蛍光体と、を含む波長変換層を有し、前記光散乱粒子は屈折率が2.3以下である光散乱粒子を含み、前記光散乱粒子の前記波長変換層における含有率A(質量%)と前記波長変換層の厚みB(μm)との積が40~1200の範囲内である、波長変換部材。
<2>前記光散乱粒子の前記波長変換層における含有率Aは0.5質量%~20質量%である、<1>に記載の波長変換部材。
<3>前記波長変換層の厚みBは40μm~120μmである、<1>又は<2>に記載の波長変換部材。
<4>前記屈折率が2.3以下である光散乱粒子はシリカを含み、前記積が40~950の範囲内である、<1>~<3>のいずれか1項に記載の波長変換部材。
<5>前記屈折率が2.3以下である光散乱粒子はシリコーン樹脂を含み、前記積が40~950の範囲内である、<1>~<3>のいずれか1項に記載の波長変換部材。
<6>前記屈折率が2.3以下である光散乱粒子はジルコニア、酸化亜鉛、硫酸バリウム又は炭酸カルシウムを含み、前記積が180~950の範囲内である、<1>~<3>のいずれか1項に記載の波長変換部材。
<7>前記屈折率が2.3以下である光散乱粒子はアクリル樹脂を含み、前記積が500~1200の範囲内である、<1>~<3>のいずれか1項に記載の波長変換部材。
<8>前記屈折率が2.3以下である光散乱粒子はアルミナを含み、かつ平均粒子径が3.5μm以下であり、前記積が40~950である、<1>~<3>のいずれか1項に記載の波長変換部材。
<9>前記波長変換層はCdを含まないか、又はCdの含有率が前記波長変換層全体の100ppm以下である、<1>~<8>のいずれか1項に記載の波長変換部材。
<10>全光線透過率が65%以上である、<1>~<9>のいずれか1項に記載の波長変換部材。
<11>ヘーズが90%以上である、<1>~<10>のいずれか1項に記載の波長変換部材。
<12>前記蛍光体は量子ドット蛍光体を含む、<1>~<11>のいずれか1項に記載の波長変換部材。
<13>前記波長変換層は(メタ)アクリル化合物を含む組成物の硬化物である、<1>~<12>のいずれか1項に記載の波長変換部材。
<14>前記波長変換層はチオール化合物を含む組成物の硬化物である、<1>~<13>のいずれか1項に記載の波長変換部材。
<15>前記波長変換層の少なくとも一部を被覆する被覆材をさらに有する、<1>~<14>のいずれか1項に記載の波長変換部材。
<16><1>~<15>のいずれか1項に記載の波長変換部材と、光源とを備えるバックライトユニット。
<17><16>に記載のバックライトユニットを備える画像表示装置。
 本開示によれば、良好な画質と充分な輝度とを両立可能な波長変換部材、バックライトユニット、及び画像表示装置が提供される。
波長変換部材の概略構成の一例を示す模式断面図である。 バックライトユニットの概略構成の一例を示す図である。 液晶表示装置の概略構成の一例を示す図である。
 以下、本発明を実施するための形態について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。
 本開示において「工程」との語には、他の工程から独立した工程に加え、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、当該工程も含まれる。
 本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において各成分は該当する物質を複数種含んでいてもよい。組成物中に各成分に該当する物質が複数種存在する場合、各成分の含有率は、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率を意味する。
 本開示において各成分に該当する粒子は複数種含んでいてもよい。組成物中に各成分に該当する粒子が複数種存在する場合、各成分の粒子径は、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
 本開示において「層」又は「膜」との語には、当該層又は膜が存在する領域を観察したときに、当該領域の全体に形成されている場合に加え、当該領域の一部にのみ形成されている場合も含まれる。
 本開示において「積層」との語は、層を積み重ねることを示し、二以上の層が結合されていてもよく、二以上の層が着脱可能であってもよい。
 本開示において積層体又はこれを構成する層の平均厚みは、マイクロメータ、多層膜厚測定器等を用いて測定した任意の3箇所の厚みの算術平均値とする。
 本開示において「(メタ)アクリロイル基」とは、アクリロイル基及びメタクリロイル基の少なくとも一方を意味し、「(メタ)アクリル」はアクリル及びメタクリルの少なくとも一方を意味し、「(メタ)アクリレート」はアクリレート及びメタクリレートの少なくとも一方を意味し、「(メタ)アリル」はアリル及びメタリルの少なくとも一方を意味する。
 本開示において(メタ)アリル化合物は、分子中に(メタ)アリル基を有する化合物を意味し、(メタ)アクリル化合物は、分子中に(メタ)アクリロイル基を有する化合物を意味する。
 本開示において波長スペクトルの「半値幅」は「半値全幅」を意味する。
<波長変換部材>
 本開示の一実施形態に係る波長変換部材は、光散乱粒子と、蛍光体と、を含む波長変換層を有し、前記光散乱粒子は屈折率が2.3以下である光散乱粒子を含み、前記光散乱粒子の前記波長変換層における含有率A(質量%)と前記波長変換層の厚みB(μm)との積が40~1200の範囲内である。
 発明者らの検討の結果、光散乱粒子が屈折率が2.3以下である光散乱粒子を含み、かつ光散乱粒子の含有率と波長変換層の厚みが上記関係を満たす波長変換層を備える波長変換部材は、良好な画質と充分な輝度とを両立可能であることがわかった。特に、波長変換層の厚みを薄くしても良好な画質と充分な輝度とを両立可能であることがわかった。
 光散乱粒子が屈折率が2.3以下である光散乱粒子を含み、かつその含有率A(質量%)と波長変換層の厚みB(μm)との積が40~1200の範囲内である波長変換部材が良好な画質と充分な輝度とを両立可能である理由は、例えば、下記のように考えられる。
 屈折率が2.3以下である光散乱粒子は、屈折率が2.3より大きい光散乱粒子に比べ、バックライトから入射する光を散乱させて得られる散乱光に占める前方散乱光(バックライト側と逆側に向けられる散乱光)が占める割合が大きい。このため、波長変換層のヘーズ値を高めるために光散乱粒子の量を増やしても、屈折率が2.3より大きい光散乱粒子の量を増やす場合に比べて充分な量の透過光が確保され、画像表示装置の輝度が維持されると考えられる。
 さらに、良好な画質と充分な輝度との両立を達成できる光散乱粒子の含有量は波長変換層の厚みによって異なる。そこで、光散乱粒子の含有率A(質量%)と波長変換層の厚みB(μm)との積(A×B)を40~1200の範囲内とすることで、良好な画質と充分な輝度との両立が達成されると考えられる。
 光散乱粒子の含有率A(質量%)と波長変換層の厚みB(μm)との積は、100~1000の範囲内であってもよく、200~800の範囲内であってもよく、300~600の範囲内であってもよい。
 光散乱粒子の含有率A(質量%)と波長変換層の厚みB(μm)との積の範囲は、上記範囲に加え、波長変換層に含まれる光散乱粒子の屈折率を考慮して設定してもよい。
 光散乱粒子の屈折率が2.0を超え2.3以下である場合、光散乱粒子の含有率A(質量%)と波長変換層の厚みB(μm)との積は、100~500の範囲内であってもよく、200~400の範囲内であってもよい。
 光散乱粒子の屈折率が1.7を超え2.0以下である場合、光散乱粒子の含有率A(質量%)と波長変換層の厚みB(μm)との積は、100~1000の範囲内であってもよく、300~700の範囲内であってもよい。
 光散乱粒子の屈折率が1.7以下である場合、光散乱粒子の含有率A(質量%)と波長変換層の厚みB(μm)との積は、100~1200の範囲内であってもよく、300~1000の範囲内であってもよい。
 本開示における光散乱粒子の屈折率は、ナトリウムのD線(波長589.3nmの光)に対する値である。
 波長変換層に含まれる光散乱粒子の含有率は、波長変換層の厚みとの積が40~1200の範囲内になるのであれば特に制限されない。充分な光散乱効果を得る観点からは、光散乱粒子の含有率は0.5質量%以上であってもよく、1.0質量%以上であってもよく、2.0質量%以上であってもよい。充分な輝度を確保する観点からは、光散乱粒子の含有率は20質量%以下であってもよく、15質量%以下であってもよく、10質量%以下であってもよい。
 波長変換層の厚みは、光散乱粒子の含有率との積が40~1200の範囲内になるのであれば特に制限されない。充分な波長変換効果を得る観点からは、波長変換層の厚みは40μm以上であってもよく、50μm以上であってもよく、70μm以上であってもよい。画像表示装置の薄型化に対応する観点からは、波長変換層の厚みは120μm以下であってもよく、100μm以下であってもよく、90μm以下であってもよい。
 充分な輝度を確保する観点からは、波長変換部材の全光線透過率は65%以上であることが好ましく、70%以上であることがより好ましく、75%以上であることがさらに好ましい。波長変換部材の全光線透過率は、実施例に記載した方法で測定される。
 画像の輝度ムラを抑制する観点からは、波長変換部材のヘーズは90%以上であることが好ましく、93%以上であることがより好ましく、95%以上であることがさらに好ましい。波長変換部材のヘーズは、実施例に記載した方法で測定される。
 環境規制への対応の観点からは、波長変換層はCd(カドミウム)を含まないか、又はCdの含有率が波長変換層全体の100ppm以下(質量基準)であることが好ましい。
 波長変換層はCdを含まないか、又はCdの含有率が波長変換層全体の100ppm以下である状態にする方法としては、波長変換層に含まれる成分(例えば、蛍光体)としてCdを含むものを使用しない又はCdを含むものの使用量を削減する方法が挙げられる。
(光散乱粒子)
 波長変換層に含まれる光散乱粒子は、波長変換層に入射する光を波長変換層内で散乱させて、蛍光体による入射光の波長変換効率を高めるように作用する。
 波長変換層に含まれる屈折率が2.3以下である光散乱粒子の屈折率は、2.1以下であってもよく、2.0以下であってもよく、1.9以下であってもよい。光散乱粒子の屈折率が小さいほど、得られる散乱光に占める前方散乱光の割合が大きい傾向にある。
 光散乱粒子の屈折率の下限値は特に制限されない。充分な光散乱効果を得る観点からは、屈折率は1.4以上であってもよく、1.5以上であってもよい。
 屈折率が2.3以下である光散乱粒子として具体的には、シリカ、シリコーン樹脂、ジルコニア、酸化亜鉛、アクリル樹脂、アルミナ、硫酸バリウム又は炭酸カルシウムを含む粒子が挙げられる。
 波長変換層に含まれる光散乱粒子は、1種のみでも2種以上であってもよい。また、波長変換層は屈折率が2.3以下である光散乱粒子のみを含んでも、屈折率が2.3以下である光散乱粒子と屈折率が2.3より大きい光散乱粒子とを含んでもよい。屈折率が2.3より大きい光散乱粒子として具体的には、酸化チタン等が挙げられる。
 波長変換層が屈折率が2.3以下である光散乱粒子と屈折率が2.3より大きい光散乱粒子とを含む場合、屈折率が2.3以下である光散乱粒子の割合が光散乱粒子全体の50質量%以上であることが好ましく、70質量%以上であることがより好ましく、90質量%以上であることがさらに好ましい。
 波長変換層が屈折率が2.3より大きい光散乱粒子を含む場合、充分な輝度を確保する観点からは、その含有率は波長変換層の5質量%未満であることが好ましく、1質量%未満であることがより好ましく、0.5質量%未満であることがさらに好ましい。
 波長変換層が屈折率が2.3より大きい光散乱粒子を含む場合、上述した「光散乱粒子の含有率A(質量%)」は、屈折率が2.3以下の光散乱粒子と屈折率が2.3より大きい光散乱粒子との合計含有率である。
 波長変換層の形成しやすさの観点からは、光散乱粒子の平均粒子径は3.5μm以下であってもよく、2.5μm以下であってもよく、2.0μm以下であってもよい。
 光散乱粒子の平均粒子径は0.1μm以上であってもよく、0.5μm以上であってもよく、1.0μm以上であってもよい。
 波長変換層中での凝集を抑制する観点からは、光散乱粒子の平均粒子径は3.5μm以下であることが好ましい。
 光散乱粒子の平均粒子径は、具体的には、以下のようにして測定することができる。
 界面活性剤を含んだ精製水に光散乱粒子を分散させ、分散液を得る。この分散液を用いてレーザー回折式粒度分布測定装置(例えば、株式会社島津製作所、SALD-3000J)で測定される体積基準の粒度分布において、小径側からの積算が50%となるときの値(メジアン径(D50))を光散乱粒子の平均粒子径とする。
 波長変換層に含まれた状態の光散乱粒子の平均粒子径は、走査型電子顕微鏡を用いて波長変換層の断面に観察される50個の粒子について円相当径(長径と短径の幾何平均)を算出し、その算術平均値として求めてもよい。
 屈折率が2.3以下である光散乱粒子がシリカ又はシリコーン樹脂を含む場合、光散乱粒子の波長変換層における含有率A(質量%)と波長変換層の厚みB(μm)との積は40~950の範囲内であってもよい。
 屈折率が2.3以下である光散乱粒子がジルコニア、酸化亜鉛、硫酸バリウム又は炭酸カルシウムを含む場合、光散乱粒子の波長変換層における含有率A(質量%)と波長変換層の厚みB(μm)との積は180~950の範囲内であってもよい。
 屈折率が2.3以下である光散乱粒子がアクリル樹脂を含む場合、光散乱粒子の波長変換層における含有率A(質量%)と波長変換層の厚みB(μm)との積は500~1200の範囲内であってもよい。
 屈折率が2.3以下である光散乱粒子がアルミナを含む場合、光散乱粒子の波長変換層における含有率A(質量%)と波長変換層の厚みB(μm)との積は40~950の範囲内であってもよい。
(蛍光体)
 波長変換層に含まれる蛍光体の種類は特に限定されず、用途に応じて選択できる。蛍光体としては、有機蛍光体及び無機蛍光体を挙げることができる。
 有機蛍光体としては、ナフタルイミド化合物、ペリレン化合物等が挙げられる。
 無機蛍光体としては、Y:Eu、YVO:Eu、Y:Eu、3.5MgO・0.5MgF、GeO:Mn、(Y・Cd)BO:Eu等の赤色発光無機蛍光体、ZnS:Cu・Al、(Zn・Cd)S:Cu・Al、ZnS:Cu・Au・Al、ZnSiO:Mn、ZnSiO:Mn、ZnS:Ag・Cu、(Zn・Cd)S:Cu、ZnS:Cu、GdOS:Tb、LaOS:Tb、YSiO:Ce・Tb、ZnGeO:Mn、GeMgAlO:Tb、SrGaS:Eu2+、ZnS:Cu・Co、MgO・nB:Ge・Tb、LaOBr:Tb・Tm、LaS:Tb等の緑色発光無機蛍光体、ZnS:Ag、GaWO、YSiO:Ce、ZnS:Ag・Ga・Cl、CaOCl:Eu2+、BaMgAl:Eu2+等の青色発光無機蛍光体、量子ドット蛍光体などが挙げられる。
 色再現性の観点からは、波長変換層は量子ドット蛍光体を含むことが好ましい。
 量子ドット蛍光体としては、II-VI族化合物、III-V族化合物、IV-VI族化合物、及びIV族化合物からなる群より選択される少なくとも1種を含む粒子(以下、半導体型量子ドット蛍光体ともいう)、ペロブスカイト型結晶構造を有する化合物を含む粒子(ペロブスカイト型量子ドット蛍光体)などが挙げられる。
 II-VI族化合物の具体例としては、CdSe、CdTe、CdS、ZnS、ZnSe、ZnTe、ZnO、HgS、HgSe、HgTe、CdSeS、CdSeTe、CdSTe、ZnSeS、ZnSeTe、ZnSTe、HgSeS、HgSeTe、HgSTe、CdZnS、CdZnSe、CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnS、HgZnSe、HgZnTe、CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTe、HgZnSTe等が挙げられる。
 III-V族化合物の具体例としては、GaN、GaP、GaAs、GaSb、AlN、AlP、AlAs、AlSb、InN、InP、InAs、InSb、GaNP、GaNAs、GaNSb、GaPAs、GaPSb、AlNP、AlNAs、AlNSb、AlPAs、AlPSb、InNP、InNAs、InNSb、InPAs、InPSb、GaAlNP、GaAlNAs、GaAlNSb、GaAlPAs、GaAlPSb、GaInNP、GaInNAs、GaInNSb、GaInPAs、GaInPSb、InAlNP、InAlNAs、InAlNSb、InAlPAs、InAlPSb等が挙げられる。
 IV-VI族化合物の具体例としては、SnS、SnSe、SnTe、PbS、PbSe、PbTe、SnSeS、SnSeTe、SnSTe、PbSeS、PbSeTe、PbSTe、SnPbS、SnPbSe、SnPbTe、SnPbSSe、SnPbSeTe、SnPbSTe等が挙げられる。
 IV族化合物の具体例としては、Si、Ge、SiC、SiGe等が挙げられる。
 発光効率の観点からは、半導体型量子ドット蛍光体は、Cd及びInの少なくとも一方を含むことが好ましい。環境規制への対応の観点からは、半導体型量子ドット蛍光体は、Cdを含まないことが好ましい。したがって、発光効率及び環境規制への対応の観点からは、半導体型量子ドット蛍光体はInを含むことが好ましい。
 量子ドット蛍光体全体のCd量を低減する観点からは、Cdを含まない量子ドット蛍光体と、Cdを含む量子ドット蛍光体とを併用してもよい。
 半導体型量子ドット蛍光体は、コアシェル構造を有するものであってもよい。コアを構成する化合物のバンドギャップよりもシェルを構成する化合物のバンドギャップを広くすることで、半導体型量子ドット蛍光体の量子効率をより向上させることが可能となる。コア及びシェルの組み合わせ(コア/シェル)としては、CdSe/ZnS、InP/ZnS、PbSe/PbS、CdSe/CdS、CdTe/CdS、CdTe/ZnS等が挙げられる。
 半導体型量子ドット蛍光体は、シェルが多層構造である、いわゆるコアマルチシェル構造を有するものであってもよい。バンドギャップの広いコアにバンドギャップの狭いシェルを1層又は2層以上積層し、さらにこのシェルの上にバンドギャップの広いシェルを積層することで、半導体型量子ドット蛍光体の量子効率をさらに向上させることが可能となる。
 波長変換層が量子ドット蛍光体を含む場合、成分、平均粒子径、コアシェル構造等が異なる2種以上の量子ドット蛍光体を組み合わせてもよい。2種以上の量子ドット蛍光体を組み合わせることで、波長変換層全体としての発光中心波長を所望の値に調節することができる。
 蛍光体は、520nm~560nmの緑色の波長域に発光中心波長を有する蛍光体Gと、600nm~680nmの赤色の波長域に発光中心波長を有する蛍光体Rとを含むものであってもよい。
 蛍光体Gと蛍光体Rとを含む波長変換層に430nm~480nmの青色の波長域の励起光を照射すると、蛍光体G及び蛍光体Rからそれぞれ緑色光及び赤色光が発光される。その結果、蛍光体G及び蛍光体Rから発光される緑色光及び赤色光と、波長変換層を透過する青色光とにより、白色光を得ることができる。
 波長変換層中の蛍光体の含有率は、波長変換層全体に対して、例えば、0.01質量%以上であってよく、0.05質量%以上であってよく、0.1質量%以上であってよい。また、1.0質量%以下であってよく、0.8質量%以下であってよく、0.5質量%以下であってよい。蛍光体の含有率が0.01質量%以上であると、充分な波長変換機能が得られる傾向にあり、蛍光体の含有率が1.0質量%以下であると、蛍光体の凝集が抑えられる傾向にある。
(波長変換用樹脂組成物)
 波長変換層は、蛍光体及び光散乱粒子を含む硬化物の状態であってもよい。このような硬化物は、例えば、蛍光体及び光散乱粒子と、重合性化合物と、光重合開始剤とを少なくとも含む組成物(波長変換用樹脂組成物)を硬化して得られるものであってもよい。
 波長変換用樹脂組成物に含まれる重合性化合物は特に制限されず、チオール化合物、(メタ)アリル化合物、(メタ)アクリル化合物等が挙げられる。
 波長変換層の表面に被覆材が設けられている場合、波長変換層と被覆材との密着性の観点からは、重合性化合物は、チオール化合物と、(メタ)アリル化合物及び(メタ)アクリル化合物からなる群より選択される少なくとも1種と、を含むことが好ましい。
 重合性化合物としてチオール化合物と、(メタ)アリル化合物及び(メタ)アクリル化合物からなる群より選択される少なくとも1種と、を含む波長変換用樹脂組成物を硬化して得られる波長変換層は、チオール基と(メタ)アリル基又は(メタ)アクリロイル基の炭素炭素二重結合との間でエンチオール反応が進行して形成されるスルフィド構造(R-S-R’、R及びR’は有機基を表す)を含む。これにより、波長変換層と被覆材との密着性が向上する傾向にある。また、波長変換層の光学特性がより向上する傾向にある。
(1)チオール化合物
 チオール化合物は、1分子中に1個のチオール基を有する単官能チオール化合物であってもよく、1分子中に2個以上のチオール基を有する多官能チオール化合物であってもよい。波長変換用樹脂組成物に含まれるチオール化合物は、1種のみでも2種以上であってもよい。
 チオール化合物は、分子中にチオール基以外の重合性基(例えば、(メタ)アクリロイル基、(メタ)アリル基)を有していても、有していなくてもよい。
 本開示において分子中にチオール基と、チオール基以外の重合性基を含む化合物は、「チオール化合物」に分類するものとする。
 単官能チオール化合物の具体例としては、ヘキサンチオール、1-ヘプタンチオール、1-オクタンチオール、1-ノナンチオール、1-デカンチオール、3-メルカプトプロピオン酸、メルカプトプロピオン酸メチル、メルカプトプロピオン酸メトキシブチル、メルカプトプロピオン酸オクチル、メルカプトプロピオン酸トリデシル、2-エチルヘキシル-3-メルカプトプロピオネート、n-オクチル-3-メルカプトプロピオネート等が挙げられる。
 多官能チオール化合物の具体例としては、エチレングリコールビス(3-メルカプトプロピオネート)、ジエチレングリコールビス(3-メルカプトプロピオネート)、テトラエチレングリコールビス(3-メルカプトプロピオネート)、1、2-プロピレングリコールビス(3-メルカプトプロピオネート)、ジエチレングリコールビス(3-メルカプトブチレート)、1、4-ブタンジオールビス(3-メルカプトプロピオネート)、1,4-ブタンジオールビス(3-メルカプトブチレート)、1,8-オクタンジオールビス(3-メルカプトプロピオネート)、1,9-オクタンジオールビス(3-メルカプトブチレート)、ヘキサンジオールビスチオグリコレート、トリメチロールプロパントリス(3-メルカプトプロピオネート)、トリメチロールプロパントリス(3-メルカプトブチレート)、トリメチロールプロパントリス(3-メルカプトイソブチレート)、トリメチロールプロパントリス(2-メルカプトイソブチレート)、トリメチロールプロパントリスチオグリコレート、トリス-[(3-メルカプトプロピオニルオキシ)-エチル]-イソシアヌレート、トリメチロールエタントリス(3-メルカプトブチレート)、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3-メルカプトブチレート)、ペンタエリスリトールテトラキス(3-メルカプトイソブチレート)、ペンタエリスリトールテトラキス(2-メルカプトイソブチレート)、ジペンタエリスリトールヘキサキス(3-メルカプトプロピオネート)、ジペンタエリスリトールヘキサキス(2-メルカプトプロピオネート)、ジペンタエリスリトールヘキサキス(3-メルカプトブチレート)、ジペンタエリスリトールヘキサキス(3-メルカプトイソブチレート)、ジペンタエリスリトールヘキサキス(2-メルカプトイソブチレート)、ペンタエリスリトールテトラキスチオグリコレート、ジペンタエリスリトールヘキサキスチオグリコレート等が挙げられる。
 波長変換層と被覆材との密着性、耐熱性、及び耐湿熱性をより向上させる観点からは、チオール化合物は、多官能チオール化合物を含むことが好ましい。チオール化合物の全量に対する多官能チオール化合物の割合は、例えば、80質量%以上であることが好ましく、90質量%以上であることがより好ましく、100質量%であることがさらに好ましい。
 チオール化合物は、(メタ)アクリル化合物と反応したチオエーテルオリゴマーの状態であってもよい。チオエーテルオリゴマーは、チオール化合物と(メタ)アクリル化合物とを重合開始剤の存在下で付加重合させることにより得ることができる。
 チオエーテルオリゴマーの中でも、硬化物の光学特性、耐熱性、及び耐湿熱性をより向上させる観点から、多官能チオール化合物と多官能(メタ)アクリル化合物とを反応させて得られるチオエーテルオリゴマーが好ましく、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)とトリス(2-アクリロイルオキシエチル)イソシアヌレートとを付加重合させて得られるチオエーテルオリゴマーがより好ましい。
 チオエーテルオリゴマーの重量平均分子量は、例えば、3000~10000であることが好ましく、3000~8000であることがより好ましく、4000~6000であることがさらに好ましい。
 チオエーテルオリゴマーの重量平均分子量は、後述する実施例に示すように、ゲルパーミエーションクロマトグラフィー(GPC)を用いて測定される分子量分布から標準ポリスチレンの検量線を使用して換算して求められる。
 チオエーテルオリゴマーのチオール当量は、例えば、200g/eq~400g/eqであることが好ましく、250g/eq~350g/eqであることがより好ましく、250g/eq~270g/eqであることがさらに好ましい。
 チオエーテルオリゴマーのチオール当量は、以下のようなヨウ素滴定法により測定することができる。
 測定試料0.2gを精秤し、これにクロロホルム20mLを加えて試料溶液とする。デンプン指示薬として可溶性デンプン0.275gを30gの純水に溶解させたものを用いて、純水20mL、イソプロピルアルコール10mL、及びデンプン指示薬1mLを加え、スターラーで撹拌する。ヨウ素溶液を滴下し、クロロホルム層が緑色を呈した点を終点とする。このとき下記式にて与えられる値を、測定試料のチオール当量とする。
 チオール当量(g/eq)=測定試料の質量(g)×10000/ヨウ素溶液の滴定量(mL)×ヨウ素溶液のファクター
 波長変換用樹脂組成物がチオール化合物を含有する場合、波長変換用樹脂組成物中のチオール化合物の含有率は、波長変換用樹脂組成物の全量に対して、例えば、5質量%~80質量%であることが好ましく、15質量%~70質量%であることがより好ましく、20質量%~60質量%であることがさらに好ましい。
 チオール化合物の含有率が5質量%以上であると、硬化物の被覆材との密着性がより向上する傾向にあり、チオール化合物の含有率が80質量%以下であると、硬化物の耐熱性及び耐湿熱性がより向上する傾向にある。
(2)(メタ)アリル化合物
 (メタ)アリル化合物は、1分子中に1個の(メタ)アリル基を有する単官能(メタ)アリル化合物であってもよく、1分子中に2個以上の(メタ)アリル基を有する多官能(メタ)アリル化合物であってもよい。波長変換用樹脂組成物に含まれる(メタ)アリル化合物は、1種のみでも2種以上であってもよい。
 (メタ)アリル化合物は、分子中に(メタ)アリル基以外の重合性基(例えば、(メタ)アクリロイル基)を有していても、有していなくてもよい。
 本開示において分子中に(メタ)アリル基以外の重合性基を有する化合物(ただし、チオール化合物を除く)は、「(メタ)アリル化合物」に分類するものとする。
 単官能(メタ)アリル化合物の具体例としては、(メタ)アリルアセテート、(メタ)アリルn-プロピオネート、(メタ)アリルベンゾエート、(メタ)アリルフェニルアセテート、(メタ)アリルフェノキシアセテート、(メタ)アリルメチルエーテル、(メタ)アリルグリシジルエーテル等が挙げられる。
 多官能(メタ)アリル化合物の具体例としては、ベンゼンジカルボン酸ジ(メタ)アリル、シクロヘキサンジカルボン酸ジ(メタ)アリル、ジ(メタ)アリルマレエート、ジ(メタ)アリルアジペート、ジ(メタ)アリルフタレート、ジ(メタ)アリルイソフタレート、ジ(メタ)アリルテレフタレート、グリセリンジ(メタ)アリルエーテル、トリメチロールプロパンジ(メタ)アリルエーテル、ペンタエリスリトールジ(メタ)アリルエーテル、1、3-ジ(メタ)アリル-5-グリシジルイソシアヌレート、トリ(メタ)アリルシアヌレート、トリ(メタ)アリルイソシアヌレート、トリ(メタ)アリルトリメリテート、テトラ(メタ)アリルピロメリテート、1、3、4、6-テトラ(メタ)アリルグリコールウリル、1、3、4、6-テトラ(メタ)アリル-3a-メチルグリコールウリル、1、3、4、6-テトラ(メタ)アリル-3a、6a-ジメチルグリコールウリル等が挙げられる。
 (メタ)アリル化合物としては、硬化物の耐熱性及び耐湿熱性の観点から、トリ(メタ)アリルイソシアヌレート等のイソシアヌレート骨格を有する化合物、トリ(メタ)アリルシアヌレート、ベンゼンジカルボン酸ジ(メタ)アリル、及びシクロヘキサンジカルボン酸ジ(メタ)アリルからなる群より選択される少なくとも1種が好ましく、トリイソシアヌレート骨格を有する化合物がより好ましく、トリ(メタ)アリルイソシアヌレートがさらに好ましい。
(3)(メタ)アクリル化合物
 (メタ)アクリル化合物は、1分子中に1個の(メタ)アクリロイル基を有する単官能(メタ)アクリル化合物であってもよく、1分子中に2個以上の(メタ)アクリロイル基を有する多官能(メタ)アクリル化合物であってもよい。波長変換用樹脂組成物に含まれる(メタ)アクリル化合物は、1種でも2種以上であってもよい。
 単官能(メタ)アクリル化合物の具体例としては、(メタ)アクリル酸;メチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソノニル(メタ)アクリレート、n-オクチル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート等のアルキル基の炭素数が1~18であるアルキル(メタ)アクリレート;ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート等の芳香環を有する(メタ)アクリレート化合物;ブトキシエチル(メタ)アクリレート等のアルコキシアルキル(メタ)アクリレート;N、N-ジメチルアミノエチル(メタ)アクリレート等のアミノアルキル(メタ)アクリレート;ジエチレングリコールモノエチルエーテル(メタ)アクリレート、トリエチレングリコールモノブチルエーテル(メタ)アクリレート、テトラエチレングリコールモノメチルエーテル(メタ)アクリレート、ヘキサエチレングリコールモノメチルエーテル(メタ)アクリレート、オクタエチレングリコールモノメチルエーテル(メタ)アクリレート、ノナエチレングリコールモノメチルエーテル(メタ)アクリレート、ジプロピレングリコールモノメチルエーテル(メタ)アクリレート、ヘプタプロピレングリコールモノメチルエーテル(メタ)アクリレート、テトラエチレングリコールモノエチルエーテル(メタ)アクリレート等のポリアルキレングリコールモノアルキルエーテル(メタ)アクリレート;ヘキサエチレングリコールモノフェニルエーテル(メタ)アクリレート等のポリアルキレングリコールモノアリールエーテル(メタ)アクリレート;シクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、メチレンオキシド付加シクロデカトリエン(メタ)アクリレート等の脂環構造を有する(メタ)アクリレート化合物;(メタ)アクリロイルモルホリン、テトラヒドロフルフリル(メタ)アクリレート等の複素環を有する(メタ)アクリレート化合物;ヘプタデカフルオロデシル(メタ)アクリレート等のフッ化アルキル(メタ)アクリレート;2-ヒドロキシエチル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、トリエチレングリコールモノ(メタ)アクリレート、テトラエチレングリコールモノ(メタ)アクリレート、ヘキサエチレングリコールモノ(メタ)アクリレート、オクタプロピレングリコールモノ(メタ)アクリレート等の水酸基を有する(メタ)アクリレート化合物;グリシジル(メタ)アクリレート等のグリシジル基を有する(メタ)アクリレート化合物;2-(2-(メタ)アクリロイルオキシエチルオキシ)エチルイソシアネート、2-(メタ)アクリロイルオキシエチルイソシアネート等のイソシアネート基を有する(メタ)アクリレート化合物;テトラエチレングリコールモノ(メタ)アクリレート、ヘキサエチレングリコールモノ(メタ)アクリレート、オクタプロピレングリコールモノ(メタ)アクリレート等のポリアルキレングリコールモノ(メタ)アクリレート;(メタ)アクリルアミド、N、N-ジメチル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N、N-ジメチルアミノプロピル(メタ)アクリルアミド、N、N-ジエチル(メタ)アクリルアミド、2-ヒドロキシエチル(メタ)アクリルアミド等の(メタ)アクリルアミド化合物;などが挙げられる。
 多官能(メタ)アクリル化合物の具体例としては、1、4-ブタンジオールジ(メタ)アクリレート、1、6-ヘキサンジオールジ(メタ)アクリレート、1、9-ノナンジオールジ(メタ)アクリレート等のアルキレングリコールジ(メタ)アクリレート;ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート等のポリアルキレングリコールジ(メタ)アクリレート;トリメチロールプロパントリ(メタ)アクリレート、エチレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート、トリス(2-アクリロイルオキシエチル)イソシアヌレート等のトリ(メタ)アクリレート化合物;エチレンオキシド付加ペンタエリスリトールテトラ(メタ)アクリレート、トリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート等のテトラ(メタ)アクリレート化合物;トリシクロデカンジメタノールジ(メタ)アクリレート、シクロヘキサンジメタノールジ(メタ)アクリレート、1、3-アダマンタンジメタノールジ(メタ)アクリレート、水添ビスフェノールA(ポリ)エトキシジ(メタ)アクリレート、水添ビスフェノールA(ポリ)プロポキシジ(メタ)アクリレート、水添ビスフェノールF(ポリ)エトキシジ(メタ)アクリレート、水添ビスフェノールF(ポリ)プロポキシジ(メタ)アクリレート、水添ビスフェノールS(ポリ)エトキシジ(メタ)アクリレート、水添ビスフェノールS(ポリ)プロポキシジ(メタ)アクリレート等の脂環構造を有する(メタ)アクリレート化合物などが挙げられる。
 (メタ)アクリル化合物は、硬化物の耐熱性及び耐湿熱性をより向上させる観点からは、脂環構造又は芳香環構造を有する(メタ)アクリレート化合物が好ましい。脂環構造又は芳香環構造としては、イソボルニル骨格、トリシクロデカン骨格、ビスフェノール骨格等が挙げられる。
 (メタ)アクリル化合物は、アルキレンオキシ基を有するものであってもよく、アルキレンオキシ基を有する2官能(メタ)アクリル化合物であってもよい。
 アルキレンオキシ基としては、例えば、炭素数が2~4のアルキレンオキシ基が好ましく、炭素数が2又は3のアルキレンオキシ基がより好ましく、炭素数が2のアルキレンオキシ基がさらに好ましい。
 (メタ)アクリル化合物が有するアルキレンオキシ基は、1種でも2種以上であってもよい。
 アルキレンオキシ基含有化合物は、複数個のアルキレンオキシ基を含むポリアルキレンオキシ基を有するポリアルキレンオキシ基含有化合物であってもよい。
 (メタ)アクリル化合物がアルキレンオキシ基を有する場合、一分子中のアルキレンオキシ基の数は、2個~30個であることが好ましく、2個~20個であることがより好ましく、3個~10個であることがさらに好ましく、3個~5個であることが特に好ましい。
 (メタ)アクリル化合物がアルキレンオキシ基を有する場合、ビスフェノール構造を有することが好ましい。これにより、耐熱性により優れる傾向にある。ビスフェノール構造としては、例えば、ビスフェノールA構造及びビスフェノールF構造が挙げられ、中でも、ビスフェノールA構造が好ましい。
 アルキレンオキシ基を含有する(メタ)アクリル化合物の具体例としては、ブトキシエチル(メタ)アクリレート等のアルコキシアルキル(メタ)アクリレート;ジエチレングリコールモノエチルエーテル(メタ)アクリレート、トリエチレングリコールモノブチルエーテル(メタ)アクリレート、テトラエチレングリコールモノメチルエーテル(メタ)アクリレート、ヘキサエチレングリコールモノメチルエーテル(メタ)アクリレート、オクタエチレングリコールモノメチルエーテル(メタ)アクリレート、ノナエチレングリコールモノメチルエーテル(メタ)アクリレート、ジプロピレングリコールモノメチルエーテル(メタ)アクリレート、ヘプタプロピレングリコールモノメチルエーテル(メタ)アクリレート、テトラエチレングリコールモノエチルエーテル(メタ)アクリレート等のポリアルキレングリコールモノアルキルエーテル(メタ)アクリレート;ヘキサエチレングリコールモノフェニルエーテル(メタ)アクリレート等のポリアルキレングリコールモノアリールエーテル(メタ)アクリレート;テトラヒドロフルフリル(メタ)アクリレート等の複素環を有する(メタ)アクリレート化合物;トリエチレングリコールモノ(メタ)アクリレート、テトラエチレングリコールモノ(メタ)アクリレート、ヘキサエチレングリコールモノ(メタ)アクリレート、オクタプロピレングリコールモノ(メタ)アクリレート等の水酸基を有する(メタ)アクリレート化合物;グリシジル(メタ)アクリレート等のグリシジル基を有する(メタ)アクリレート化合物;ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート等のポリアルキレングリコールジ(メタ)アクリレート;エチレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート等のトリ(メタ)アクリレート化合物;エチレンオキシド付加ペンタエリスリトールテトラ(メタ)アクリレート等のテトラ(メタ)アクリレート化合物;エトキシ化ビスフェノールA型ジ(メタ)アクリレート、プロポキシ化ビスフェノールA型ジ(メタ)アクリレート、プロポキシ化エトキシ化ビスフェノールA型ジ(メタ)アクリレート等のビスフェノール型ジ(メタ)アクリレート化合物;などが挙げられる。
 アルキレンオキシ基を含有する(メタ)アクリル化合物としては、中でも、エトキシ化ビスフェノールA型ジ(メタ)アクリレート、プロポキシ化ビスフェノールA型ジ(メタ)アクリレート及びプロポキシ化エトキシ化ビスフェノールA型ジ(メタ)アクリレートが好ましく、エトキシ化ビスフェノールA型ジ(メタ)アクリレートがより好ましい。
 ある実施態様では、重合性化合物はチオール化合物としてチオエーテルオリゴマーと、(メタ)アリル化合物(好ましくは、多官能(メタ)アリル化合物)とを含むものであってもよい。この場合、(メタ)アリル化合物の含有率は、波長変換用樹脂組成物の全量に対して、例えば、10質量%~50質量%であってもよく、15質量%~45質量%であってもよく、20質量%~40質量%であってもよい。
 重合性化合物がチオール化合物としてチオエーテルオリゴマーと(メタ)アリル化合物とを含む場合、併用する波長変換材料は、分散媒体としてシリコーン化合物に分散された分散液の状態であることが好ましい。
 ある実施態様では、重合性化合物はチオール化合物としてチオエーテルオリゴマーの状態ではないものと、(メタ)アクリル化合物(好ましくは多官能(メタ)アクリル化合物、より好ましくは2官能(メタ)アクリル化合物)とを含むものであってもよい。この場合、(メタ)アクリル化合物の含有率は、波長変換用樹脂組成物の全量に対して、例えば、40質量%~90質量%であってもよく、60質量%~90質量%であってもよく、75質量%~85質量%であってもよい。
 重合性化合物がチオール化合物としてチオエーテルオリゴマーの状態ではないものと、(メタ)アクリル化合物とを含む場合、併用する波長変換材料は、分散媒体として(メタ)アクリル化合物、好ましくは、単官能(メタ)アクリル化合物、より好ましくはイソボルニル(メタ)アクリレートに分散された分散液の状態であることが好ましい。
(光重合開始剤)
 波長変換用樹脂組成物に含まれる光重合開始剤は特に制限されず、紫外線等の活性エネルギー線の照射によりラジカルを発生する化合物が挙げられる。
 光重合開始剤の具体例としては、ベンゾフェノン、N、N’-テトラアルキル-4、4’-ジアミノベンゾフェノン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノ-プロパノン-1、4、4’-ビス(ジメチルアミノ)ベンゾフェノン(「ミヒラーケトン」とも称される)、4、4’-ビス(ジエチルアミノ)ベンゾフェノン、4-メトキシ-4’-ジメチルアミノベンゾフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、1-(4-(2-ヒドロキシエトキシ)-フェニル)-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン等の芳香族ケトン化合物;アルキルアントラキノン、フェナントレンキノン等のキノン化合物;ベンゾイン、アルキルベンゾイン等のベンゾイン化合物;ベンゾインアルキルエーテル、ベンゾインフェニルエーテル等のベンゾインエーテル化合物;ベンジルジメチルケタール等のベンジル誘導体;2-(o-クロロフェニル)-4、5-ジフェニルイミダゾール二量体、2-(o-クロロフェニル)-4、5-ジ(m-メトキシフェニル)イミダゾール二量体、2-(o-フルオロフェニル)-4、5-ジフェニルイミダゾール二量体、2-(o-メトキシフェニル)-4、5-ジフェニルイミダゾール二量体、2、4-ジ(p-メトキシフェニル)-5-フェニルイミダゾール二量体、2-(2、4-ジメトキシフェニル)-4、5-ジフェニルイミダゾール二量体等の2、4、5-トリアリールイミダゾール二量体;9-フェニルアクリジン、1、7-(9、9’-アクリジニル)ヘプタン等のアクリジン誘導体;1、2-オクタンジオン1-[4-(フェニルチオ)-2-(O-ベンゾイルオキシム)]、エタノン1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-1-(O-アセチルオキシム)等のオキシムエステル化合物;7-ジエチルアミノ-4-メチルクマリン等のクマリン化合物;2、4-ジエチルチオキサントン等のチオキサントン化合物;2、4、6-トリメチルベンゾイル-ジフェニル-ホスフィンオキサイド、2、4、6-トリメチルベンゾイル-フェニル-エトキシ-ホスフィンオキサイド等のアシルホスフィンオキサイド化合物;などが挙げられる。波長変換用樹脂組成物は、1種類の光重合開始剤を単独で含有していてもよく、2種類以上の光重合開始剤を組み合わせて含有していてもよい。
 光重合開始剤としては、硬化性の観点から、アシルホスフィンオキサイド化合物、芳香族ケトン化合物、及びオキシムエステル化合物からなる群より選択される少なくとも1種が好ましく、アシルホスフィンオキサイド化合物及び芳香族ケトン化合物からなる群より選択される少なくとも1種がより好ましく、アシルホスフィンオキサイド化合物がさらに好ましい。
 波長変換用樹脂組成物中の光重合開始剤の含有率は、波長変換用樹脂組成物の全量に対して、例えば、0.1質量%~5質量%であることが好ましく、0.1質量%~3質量%であることがより好ましく、0.1質量%~1.5質量%であることがさらに好ましい。光重合開始剤の含有率が0.1質量%以上であると、波長変換用樹脂組成物の感度が充分なものとなる傾向にあり、光重合開始剤の含有率が5質量%以下であると、波長変換用樹脂組成物の色相への影響及び保存安定性の低下が抑えられる傾向にある。
(その他の成分)
 波長変換用樹脂組成物は、液状媒体(有機溶媒等)、重合禁止剤、シランカップリング剤、界面活性剤、密着付与剤、酸化防止剤などのその他の成分をさらに含有していてもよい。波長変換用樹脂組成物は、その他の成分のそれぞれについて、1種類を単独で含有していてもよく、2種類以上を組み合わせて含有していてもよい。
(被覆材)
 波長変換部材は、波長変換層の少なくとも一方の面に配置される被覆材を有していてもよい。被覆材を配置することで、波長変換層への水分、酸素等の侵入を抑制して波長変換層の劣化が抑制される。また、波長変換部材に適度な剛性が付与されて取り扱い性が向上する。
 被覆材の材質は特に制限されず、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン(PE)、ポリプロピレン(PP)等のポリオレフィン、ナイロン等のポリアミド、エチレン-ビニルアルコール共重合体(EVOH)などであってもよい。入手容易性の観点からは、被覆材の材質はポリエチレンテレフタレートが好ましい。
 被覆材は、水、酸素等に対するバリア機能を強化するためのバリア層を備えたもの(バリアフィルム)であってもよい。バリア層としては、アルミナ、シリカ等の無機物を含む無機層が挙げられる。被覆材がバリア層を有する場合、波長変換層と接する側にバリア層が配置されることが好ましい。
 被覆材の酸素透過率は、例えば、1.0mL/(m・24h・atm)以下であることが好ましく、0.8mL/(m・24h・atm)以下であることがより好ましく、0.6mL/(m・24h・atm)以下であることがさらに好ましい。被覆材の酸素透過率は、酸素透過率測定装置(例えば、MOCON社、OX-TRAN)を用いて、温度23℃かつ相対湿度90%の条件で測定することができる。
 被覆材の水蒸気透過率は、例えば、1×10g/(m・24h)以下であることが好ましく、8×10-1g/(m・24h)以下であることがより好ましく、6×10-1g/(m・24h)以下であることがさらに好ましい。被覆材の水蒸気透過率は、水蒸気透過率測定装置(例えば、MOCON社、AQUATRAN)を用いて、温度40℃かつ相対湿度100%の条件で測定することができる。
 被覆材は、光を散乱させるためのマット層を備えていてもよい。被覆材がバリア層を備えている場合、マット層は被覆材のバリア層が配置される面と逆側の面に配置されることが好ましい。また、波長変換層の一方の面側に配置される被覆材の、波長変換層とは対向しない側の面、又は波長変換層の両方の面側に配置される被覆材の、波長変換層とは対向しない側の面の少なくとも一方が、粗面化されていてもよい。波長変換部材が被覆材を有するとき、被覆材が粗面化されていると、画像変換部材の取扱い性に優れ、隣接する部材と波長変換部材が密着することによる干渉縞を抑制することができる傾向にある。
 被覆材の表面は、例えば、算術表面粗さRaが0.5μm以上であってもよい。算術表面粗さRaは、JIS B 0601:2013に準拠する方法で測定される。
 被覆材の厚みは、例えば、10μm~150μmの範囲であってもよい。
(波長変換部材の構成例)
 波長変換部材の概略構成の一例を図1に示す。但し、本開示の波長変換部材は図1の構成に限定されるものではない。また、図1における波長変換層及び被覆材の大きさは概念的なものであり、大きさの相対的な関係はこれに限定されない。なお、各図面において、同一の部材には同一の符号を付し、重複した説明は省略することがある。
 図1に示す波長変換部材10は、波長変換層11と、波長変換層11の両面に設けられた被覆材12A及び12Bとを有する。被覆材12A及び被覆材12Bの種類及び平均厚みは、それぞれ同一であっても異なっていてもよい。
 図1に示す構成の波長変換部材は、例えば、以下のような公知の製造方法により製造することができる。
 まず、連続搬送されるフィルム状の被覆材(以下、「第1の被覆材」ともいう。)の表面に波長変換用樹脂組成物を付与し、塗膜を形成する。波長変換用樹脂組成物の付与方法は特に制限されず、ダイコーティング法、カーテンコーティング法、エクストルージョンコーティング法、ロッドコーティング法、ロールコーティング法等が挙げられる。
 次いで、波長変換用樹脂組成物の塗膜の上に、連続搬送されるフィルム状の被覆材(以下、「第2の被覆材」ともいう。)を貼り合わせる。
 次いで、第1の被覆材及び第2の被覆材のうち活性エネルギー線を透過可能な被覆材側から活性エネルギー線を照射することにより、塗膜を硬化し、硬化物層を形成する。その後、規定のサイズに切り出すことにより、図1に示す構成の波長変換部材を得ることができる。
 活性エネルギー線の波長及び照射量は、波長変換用樹脂組成物の組成、波長変換層の厚み等に応じて設定することができる。ある実施態様では、280nm~400nmの波長の紫外線を100mJ/cm~5000mJ/cmの照射量で照射する。紫外線源としては、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ、ケミカルランプ、ブラックライトランプ、マイクロウェーブ励起水銀灯等が挙げられる。
 なお、第1の被覆材及び第2の被覆材のいずれも活性エネルギー線を透過可能でない場合には、第2の被覆材を貼り合わせる前に塗膜に活性エネルギー線を照射し、硬化物層を形成してもよい。
<バックライトユニット>
 本開示のバックライトユニットは、光源と、本開示の波長変換部材と、を有する。
 バックライトユニットとしては、色再現性を向上させる観点から、多波長光源化されたものが好ましい。好ましい一態様としては、430nm~480nmの波長域に発光中心波長を有し、半値幅が100nm以下である発光強度ピークを有する青色光と、520nm~560nmの波長域に発光中心波長を有し、半値幅が100nm以下である発光強度ピークを有する緑色光と、600nm~680nmの波長域に発光中心波長を有し、半値幅が100nm以下である発光強度ピークを有する赤色光と、を発光するバックライトユニットを挙げることができる。なお、発光強度ピークの半値幅とは、ピーク高さの1/2の高さにおけるピーク幅を意味する。
 色再現性をより向上させる観点から、バックライトユニットが発光する青色光の発光中心波長は、440nm~475nmの範囲であることが好ましい。同様の観点から、バックライトユニットが発光する緑色光の発光中心波長は、520nm~545nmの範囲であることが好ましい。また、同様の観点から、バックライトユニットが発光する赤色光の発光中心波長は、610nm~640nmの範囲であることが好ましい。
 また、色再現性をより向上させる観点から、バックライトユニットが発光する青色光、緑色光、及び赤色光の各発光強度ピークの半値幅は、いずれも80nm以下であることが好ましく、50nm以下であることがより好ましい。
 バックライトユニットの光源としては、例えば、430nm~480nmの波長域に発光中心波長を有する青色光を発光する光源を用いることができる。光源としては、例えば、LED(Light Emitting Diode)及びレーザーが挙げられる。青色光を発光する光源を用いる場合、波長変換部材は、少なくとも、赤色光を発光する量子ドット蛍光体R及び緑色光を発光する量子ドット蛍光体Gを含むことが好ましい。これにより、波長変換部材から発光される赤色光及び緑色光と、波長変換部材を透過した青色光とにより、白色光を得ることができる。
 また、バックライトユニットの光源としては、例えば、300nm~430nmの波長域に発光中心波長を有する紫外光を発光する光源を用いることもできる。光源としては、例えば、LED及びレーザーが挙げられる。紫外光を発光する光源を用いる場合、波長変換部材は、量子ドット蛍光体R及び量子ドット蛍光体Gとともに、励起光により励起され青色光を発光する量子ドット蛍光体Bを含むことが好ましい。これにより、波長変換部材から発光される赤色光、緑色光、及び青色光により、白色光を得ることができる。
 本開示のバックライトユニットは、エッジライト方式であっても直下型方式であってもよい。バックライトユニットの薄型化の観点からは、直下型方式であることが好ましい。
 直下型方式のバックライトユニットの概略構成の一例を図2に示す。但し、本開示のバックライトユニットは、図2の構成に限定されるものではない。また、図2における部材の大きさは概念的なものであり、部材間の大きさの相対的な関係はこれに限定されない。
 図2に示すバックライトユニット20は、青色光Lを出射する光源21と、光源21と対向配置される波長変換部材10と、波長変換部材10を介して光源21と対向配置される再帰反射性部材23と、を備える。波長変換部材10は、青色光Lの一部を励起光として赤色光L及び緑色光Lを発光し、赤色光L及び緑色光Lと、励起光とならなかった青色光Lとを出射する。この赤色光L、緑色光L、及び青色光Lにより、再帰反射性部材23から白色光Lが出射される。
<画像表示装置>
 本開示の画像表示装置は、上述した本開示のバックライトユニットを備える。画像表示装置としては特に制限されず、例えば、液晶表示装置が挙げられる。
 液晶表示装置の概略構成の一例を図3に示す。但し、本開示の液晶表示装置は、図3の構成に限定されるものではない。また、図3における部材の大きさは概念的なものであり、部材間の大きさの相対的な関係はこれに限定されない。
 図3に示す液晶表示装置30は、バックライトユニット20と、バックライトユニット20と対向配置される液晶セルユニット31とを備える。液晶セルユニット31は、液晶セル32が偏光板33Aと偏光板33Bとの間に配置された構成とされる。
 液晶セル32の駆動方式は特に制限されず、TN(Twisted Nematic)方式、STN(Super Twisted Nematic)方式、VA(Vertical Alignment)方式、IPS(In-Plane-Switching)方式、OCB(Optically Compensated Birefringence)方式等が挙げられる。
 以下、実施例により本開示を具体的に説明するが、本開示はこれらの実施例に制限されるものではない。
(波長変換用樹脂組成物の調製)
 下記成分を含む混合物に、波長変換層中の含有率が表1に記載する値(質量%)となる量の光散乱粒子を配合し、波長変換用樹脂組成物を調製した。
 多官能(メタ)アクリレート化合物:トリシクロデカンジメタノールジアクリレート(新中村化学工業株式会社)73質量部
 多官能チオール化合物:ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)(SC有機化学株式会社、PEMP)20.5質量部
 光重合開始剤:2,4,6-トリメチルベンゾイル-ジフェニル-ホスフィンオキサイド(BASF社、IRGACURE TPO)0.5質量部
 緑色発光蛍光体:量子ドット蛍光体分散液(Nanosys社、InP/ZnS(コア/シェル)分散液、Gen3.0 QD Concentrate)5.0質量部
 赤色発光蛍光体:量子ドット蛍光体分散液(Nanosys社、InP/ZnS(コア/シェル)分散液、Gen3.0 QD Concentrate)1.5質量部
 光散乱粒子としては、下記のものを使用した。
 光散乱粒子1:ジルコニア粒子(屈折率2.13、平均粒子径0.4~0.7μm)
 光散乱粒子2:ジルコニア粒子(屈折率2.13、平均粒子径1.5~2.5μm)
 光散乱粒子3:アルミナ粒子(屈折率1.77、平均粒子径1.6μm)
 光散乱粒子4:アルミナ粒子(屈折率1.77、平均粒子径0.5μm)
 光散乱粒子5:アルミナ粒子(屈折率1.77、平均粒子径0.27μm)
 光散乱粒子6:アルミナ粒子(屈折率1.77、平均粒子径3.7μm)
 光散乱粒子7:シリコーン樹脂粒子(屈折率1.49、平均粒子径3.0μm)
 光散乱粒子8:アクリル樹脂粒子(屈折率1.45、平均粒子径2.0μm)
 光散乱粒子9:チタニア粒子(屈折率2.50、平均粒子径0.36μm)
 InP/ZnS(コア/シェル)分散液の分散媒体としては、イソボルニルアクリレートを使用した。InP/ZnS(コア/シェル)分散液中に、イソボルニルアクリレートが90質量%以上含有されている。
(波長変換部材の製造)
 下記の被覆材のいずれかに、上記で得られた各波長変換用樹脂組成物を塗布して塗膜を形成した。この塗膜上に、塗膜が形成された被覆材と同じ被覆材を貼り合わせ、紫外線照射装置(アイグラフィックス株式会社)を用いて1000mJ/cmの紫外線を照射した。これにより、波長変換用樹脂組成物の硬化物を含み、表1に示す厚みである波長変換層の両面に被覆材が配置された波長変換部材をそれぞれ得た。
 被覆材1:PETフィルムの片面にバリア成分が蒸着され、他の片面にマット層を有する、平均厚み125μmのバリアフィルム
 被覆材2:PETフィルムの片面にバリア成分が蒸着され、他の片面にマット層を有する、平均厚み12μmのバリアフィルム
 被覆材3:PETフィルムの片面にバリア成分がスパッタされ、他の片面にマット層を有する、平均厚み25μmのバリアフィルム
(全光線透過率の測定)
 波長変換部材を幅100mm、長さ100mmの寸法に裁断して得た評価用波長変換部材について、ヘーズメーター(日本電色工業株式会社、NDH-7000SPII)を用いて、JIS K 7136:2000に準拠する方法で全光線透過率を測定した。
(ヘーズの測定)
 波長変換部材を幅100mm、長さ100mmの寸法に裁断して得た評価用波長変換部材について、ヘーズメーター(日本電色工業株式会社、NDH-7000SPII)を用いて、JIS K 7136:2000に準拠する方法でヘーズを測定した。
(輝度の評価)
 波長変換部材を幅100mm、長さ100mmの寸法に裁断して得た評価用波長変換部材について、輝度計(フォトリサーチ社、PR-655)を用いて輝度を測定し、下記基準に従って評価した。輝度計としては、上部に光学特性を認識するカメラユニットが設置され、レンズ下の箇所にBEF(輝度上昇フィルム)板、拡散板及びLED光源を有し、BEF板と拡散板との間に測定サンプルをセットして、輝度を測定できるように構成されているものを使用した。
 A・・・輝度が800cd/m以上である
 B・・・輝度が800cd/m未満である
(輝度ムラの評価)
 波長変換部材を幅100mm、長さ100mmの寸法に裁断して得た評価用波長変換部材を、mini-LEDを10mm×10mm間隔で配置した基板の上に配置し、その上に複合プリズムフィルム(POP)と反射型偏光フィルム(3M社製、DBEF)を配置した。mini-LEDを点灯させ、mini-LEDの周辺の輝度ムラの有無を直上から目視で観察し、下記基準に従って評価した。
 A・・・輝度ムラがない又は目立たない
 B・・・輝度ムラが目立つ
(凝集の評価)
 波長変換部材を幅100mm、長さ100mmの寸法に裁断して得た評価用波長変換部材を、mini-LEDを10mm×10mm間隔で配置した基板の上に配置した。mini-LEDを点灯させ、光散乱剤の凝集の有無を目視で観察し、下記基準に従って評価した。
 A・・・凝集がない又は視認できない
 B・・・凝集が視認できる
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、光散乱粒子の屈折率が2.3以下であり、A×Bの値が40~1200の範囲内である実施例1~17の波長変換部材は、全光線透過率及びヘーズの値がともに充分に高い。
 光散乱粒子の屈折率が2.3を超えるか、又はA×Bの値が40~1200の範囲外である比較例1~5の波長変換部材は、全光線透過率とヘーズのいずれかが実施例よりも劣っている。
 光散乱粒子の平均粒子径が3.5μm以下である実施例1~16の波長変換部材は、光散乱粒子の平均粒子径が3.5μmを超える実施例17の波長変換部材に比べて光散乱粒子の凝集が抑制されている。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に援用されて取り込まれる。

Claims (17)

  1.  光散乱粒子と、蛍光体と、を含む波長変換層を有し、前記光散乱粒子は屈折率が2.3以下である光散乱粒子を含み、前記光散乱粒子の前記波長変換層における含有率A(質量%)と前記波長変換層の厚みB(μm)との積が40~1200の範囲内である、波長変換部材。
  2.  前記光散乱粒子の前記波長変換層における含有率Aは0.5質量%~20質量%である、請求項1に記載の波長変換部材。
  3.  前記波長変換層の厚みBは40μm~120μmである、請求項1又は請求項2に記載の波長変換部材。
  4.  前記屈折率が2.3以下である光散乱粒子はシリカを含み、前記積が40~950の範囲内である、請求項1~請求項3のいずれか1項に記載の波長変換部材。
  5.  前記屈折率が2.3以下である光散乱粒子はシリコーン樹脂を含み、前記積が40~950の範囲内である、請求項1~請求項3のいずれか1項に記載の波長変換部材。
  6.  前記屈折率が2.3以下である光散乱粒子はジルコニア、酸化亜鉛、硫酸バリウム又は炭酸カルシウムを含み、前記積が180~950の範囲内である、請求項1~請求項3のいずれか1項に記載の波長変換部材。
  7.  前記屈折率が2.3以下である光散乱粒子はアクリル樹脂を含み、前記積が500~1200の範囲内である、請求項1~請求項3のいずれか1項に記載の波長変換部材。
  8.  前記屈折率が2.3以下である光散乱粒子はアルミナを含み、かつ平均粒子径が3.5μm以下であり、前記積が40~950である、請求項1~請求項3のいずれか1項に記載の波長変換部材。
  9.  前記波長変換層はCdを含まないか、又はCdの含有率が前記波長変換層全体の100ppm以下である、請求項1~請求項8のいずれか1項に記載の波長変換部材。
  10.  全光線透過率が65%以上である、請求項1~請求項9のいずれか1項に記載の波長変換部材。
  11.  ヘーズが90%以上である、請求項1~請求項10のいずれか1項に記載の波長変換部材。
  12.  前記蛍光体は量子ドット蛍光体を含む、請求項1~請求項11のいずれか1項に記載の波長変換部材。
  13.  前記波長変換層は(メタ)アクリル化合物を含む組成物の硬化物である、請求項1~請求項12のいずれか1項に記載の波長変換部材。
  14.  前記波長変換層はチオール化合物を含む組成物の硬化物である、請求項1~請求項13のいずれか1項に記載の波長変換部材。
  15.  前記波長変換層の少なくとも一部を被覆する被覆材をさらに有する、請求項1~請求項14のいずれか1項に記載の波長変換部材。
  16.  請求項1~請求項15のいずれか1項に記載の波長変換部材と、光源とを備えるバックライトユニット。
  17.  請求項16に記載のバックライトユニットを備える画像表示装置。
PCT/JP2021/031770 2020-09-01 2021-08-30 波長変換部材、バックライトユニット、及び画像表示装置 WO2022050229A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2020/033062 2020-09-01
PCT/JP2020/033062 WO2022049624A1 (ja) 2020-09-01 2020-09-01 波長変換部材、バックライトユニット、及び画像表示装置

Publications (1)

Publication Number Publication Date
WO2022050229A1 true WO2022050229A1 (ja) 2022-03-10

Family

ID=80491707

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2020/033062 WO2022049624A1 (ja) 2020-09-01 2020-09-01 波長変換部材、バックライトユニット、及び画像表示装置
PCT/JP2021/031770 WO2022050229A1 (ja) 2020-09-01 2021-08-30 波長変換部材、バックライトユニット、及び画像表示装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/033062 WO2022049624A1 (ja) 2020-09-01 2020-09-01 波長変換部材、バックライトユニット、及び画像表示装置

Country Status (1)

Country Link
WO (2) WO2022049624A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140192294A1 (en) * 2013-01-07 2014-07-10 Innolux Corporation Patterned color conversion film and display device using the same
JP2016159445A (ja) * 2015-02-26 2016-09-05 大日本印刷株式会社 積層体及び画像表示装置
JP2017076482A (ja) * 2015-10-13 2017-04-20 大日本印刷株式会社 光波長変換シート、バックライト装置、および画像表示装置
JP2017107174A (ja) * 2015-11-30 2017-06-15 大日本印刷株式会社 積層体の製造方法、積層体、バックライト装置、および表示装置
JP2018128590A (ja) * 2017-02-09 2018-08-16 大日本印刷株式会社 光波長変換組成物、光波長変換部材、光波長変換シート、バックライト装置、および画像表示装置
CN109628022A (zh) * 2018-12-11 2019-04-16 宁波激智科技股份有限公司 一种高稳定、长寿命的量子点薄膜及其制备方法
CN109768150A (zh) * 2018-12-24 2019-05-17 宁波激智科技股份有限公司 一种高稳定性高辉度量子点膜及一种显示装置
JP6736106B1 (ja) * 2019-09-05 2020-08-05 Nsマテリアルズ株式会社 量子ドット含有組成物、及び、前記量子ドット含有組成物を用いた量子ドット含有部材、バックライト装置、表示装置、並びに、液晶表示素子

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140192294A1 (en) * 2013-01-07 2014-07-10 Innolux Corporation Patterned color conversion film and display device using the same
JP2016159445A (ja) * 2015-02-26 2016-09-05 大日本印刷株式会社 積層体及び画像表示装置
JP2017076482A (ja) * 2015-10-13 2017-04-20 大日本印刷株式会社 光波長変換シート、バックライト装置、および画像表示装置
JP2017107174A (ja) * 2015-11-30 2017-06-15 大日本印刷株式会社 積層体の製造方法、積層体、バックライト装置、および表示装置
JP2018128590A (ja) * 2017-02-09 2018-08-16 大日本印刷株式会社 光波長変換組成物、光波長変換部材、光波長変換シート、バックライト装置、および画像表示装置
CN109628022A (zh) * 2018-12-11 2019-04-16 宁波激智科技股份有限公司 一种高稳定、长寿命的量子点薄膜及其制备方法
CN109768150A (zh) * 2018-12-24 2019-05-17 宁波激智科技股份有限公司 一种高稳定性高辉度量子点膜及一种显示装置
JP6736106B1 (ja) * 2019-09-05 2020-08-05 Nsマテリアルズ株式会社 量子ドット含有組成物、及び、前記量子ドット含有組成物を用いた量子ドット含有部材、バックライト装置、表示装置、並びに、液晶表示素子

Also Published As

Publication number Publication date
WO2022049624A1 (ja) 2022-03-10

Similar Documents

Publication Publication Date Title
US11242481B2 (en) Wavelength conversion film and backlight unit
WO2019189270A1 (ja) 波長変換部材、バックライトユニット、及び画像表示装置
TW201924096A (zh) 背光單元、圖像顯示裝置及波長轉換構件
WO2019189269A1 (ja) 波長変換部材、バックライトユニット、及び画像表示装置
JP6733833B2 (ja) 積層体、波長変換部材、バックライトユニット、及び画像表示装置
WO2022050229A1 (ja) 波長変換部材、バックライトユニット、及び画像表示装置
WO2019186728A1 (ja) 波長変換部材、バックライトユニット、及び画像表示装置
WO2022107340A1 (ja) 波長変換部材、バックライトユニット、及び画像表示装置
WO2021029240A1 (ja) 波長変換材、波長変換材の製造方法、積層体、バックライトユニット、及び画像表示装置
JP2022174609A (ja) 波長変換部材、バックライトユニット、及び画像表示装置
JP2023028515A (ja) 波長変換部材及びその製造方法、バックライトユニット、画像表示装置、光散乱部材、並びに、光散乱層形成用組成物
WO2020183618A1 (ja) 波長変換部材、バックライトユニット、画像表示装置及び波長変換用樹脂組成物
WO2022024387A1 (ja) 波長変換部材、バックライトユニット、及び画像表示装置
WO2022024388A1 (ja) 波長変換部材、バックライトユニット、及び画像表示装置
WO2020208754A1 (ja) 波長変換部材、バックライトユニット、及び画像表示装置
WO2021152738A1 (ja) 波長変換部材、バックライトユニット、及び画像表示装置
JP2020196264A (ja) 積層体、波長変換部材、バックライトユニット、及び画像表示装置
WO2019064586A1 (ja) 波長変換部材、バックライトユニット、及び画像表示装置
JP2019101366A (ja) 波長変換部材、バックライトユニット及び画像表示装置
JP2022060064A (ja) 波長変換部材、バックライトユニット、画像表示装置、及び波長変換用樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21864287

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21864287

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP