WO2022049910A1 - Polarizing plate, polarizing plate with phase difference layer, and organic electroluminescent display device - Google Patents

Polarizing plate, polarizing plate with phase difference layer, and organic electroluminescent display device Download PDF

Info

Publication number
WO2022049910A1
WO2022049910A1 PCT/JP2021/027001 JP2021027001W WO2022049910A1 WO 2022049910 A1 WO2022049910 A1 WO 2022049910A1 JP 2021027001 W JP2021027001 W JP 2021027001W WO 2022049910 A1 WO2022049910 A1 WO 2022049910A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin layer
polarizing plate
based resin
pva
polyvinyl alcohol
Prior art date
Application number
PCT/JP2021/027001
Other languages
French (fr)
Japanese (ja)
Inventor
善則 南川
真由美 森崎
景亮 後藤
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to CN202180054138.8A priority Critical patent/CN116057608A/en
Priority to KR1020237006576A priority patent/KR20230056688A/en
Publication of WO2022049910A1 publication Critical patent/WO2022049910A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2329/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids

Definitions

  • the present invention relates to a polarizing plate, a polarizing plate with a retardation layer, and an organic electroluminescence (EL) display device.
  • the present invention has been made to solve the above-mentioned conventional problems, and a main object thereof is to provide a polarizing plate in which decolorization is remarkably suppressed when applied to an organic EL display device and a polarizing plate with a retardation layer. To do.
  • the polarizing plate according to the embodiment of the present invention is arranged on the polyvinyl alcohol-based resin layer, the protective layer provided on the visible side of the polyvinyl alcohol-based resin layer, and the side opposite to the visible side of the polyvinyl alcohol-based resin layer.
  • the polyvinyl alcohol-based resin layer comprises a first polyvinyl alcohol-based resin layer that functions as a polarizing element and a second polyvinyl alcohol-based resin layer provided on the visible side of the first polyvinyl alcohol-based resin layer. include.
  • the thickness of the second polyvinyl alcohol-based resin layer is 0.03 ⁇ m to 2 ⁇ m; the boric acid concentration on the surface of the polyvinyl alcohol-based resin layer opposite to the visible side is larger than the boric acid concentration on the visible side surface. Moreover, the difference is 0.3% by weight or more; the moisture permeability of the protective layer on the visual recognition side is 200 g / m 2.24 h or more. In one embodiment, the boric acid concentration of the first polyvinyl alcohol-based resin layer is 14% by weight or more.
  • the first polyvinyl alcohol-based resin layer has a single transmittance of 42.5% or more; the ratio of the orthogonal absorbance A 550 at a wavelength of 550 nm to the orthogonal absorbance A 210 at a wavelength of 210 nm (A). 550 / A 210 ) is 1.4 or more; the ratio of the orthogonal absorbance A 470 at a wavelength of 470 nm to the orthogonal absorbance A 600 at a wavelength of 600 nm (A 470 / A 600 ) is 0.7 or more; and orthogonal b.
  • the value is greater than -10.
  • the iodine concentration of the polarizing element is 2% by weight to 10% by weight.
  • the polarizing plate has an absolute value
  • a polarizing plate with a retardation layer is provided. This polarizing plate with a retardation layer has the above-mentioned polarizing plate and a retardation layer.
  • an organic electroluminescence display device is provided. This organic electroluminescence display device includes the above-mentioned polarizing plate or the above-mentioned polarizing plate with a retardation layer.
  • a second polyvinyl alcohol-based resin layer is provided adjacent to the first polyvinyl alcohol-based resin layer that functions as a polarizing element, and a second polyvinyl alcohol-based resin layer is provided.
  • FIG. 1 is a schematic cross-sectional view of the polarizing plate according to one embodiment of the present invention.
  • the polarizing plate 100 of the illustrated example includes a polyvinyl alcohol (PVA) -based resin layer 10, a protective layer (visual-viewing side protective layer) 30 provided on the visible side of the PVA-based resin layer 10, and a visible side of the PVA-based resin layer 10. Includes a pressure-sensitive adhesive layer 40 disposed on the opposite side of the surface.
  • the PVA-based resin layer 10 includes a first PVA-based resin layer 11 that functions as a polarizing element, and a second PVA-based resin layer 12 provided on the visible side of the first PVA-based resin layer 11.
  • the second PVA-based resin layer 12 can also function as an adhesive layer for bonding the first PVA-based resin layer 11 and the visual-viewing side protective layer 30.
  • the optical functional layer can be bonded via the pressure-sensitive adhesive layer 40.
  • Typical examples of the optical functional layer include another protective layer (inner protective layer) and a retardation layer.
  • the inner protective layer may preferably be omitted.
  • a polarizing plate with a retardation layer is configured.
  • the polarizing plate with a retardation layer will be described in Section B below.
  • the polarizing plate 100 may be attached to the organic EL panel via the pressure-sensitive adhesive layer 40.
  • the boric acid concentration on the surface of the PVA-based resin layer 10 (substantially the first PVA-based resin layer 11) opposite to the visible side is the PVA-based resin layer 10 (substantially).
  • the difference from the boric acid concentration on the visible side surface of the second PVA-based resin layer 12) (hereinafter, may be referred to as a boric acid concentration gradient) is 0.3% by weight or more. More specifically, the boric acid concentration of the first PVA-based resin layer is higher than the boric acid concentration of the second PVA-based resin layer, and therefore, the boric acid on the surface opposite to the visible side of the PVA-based resin layer.
  • a boric acid concentration gradient is formed in which the concentration is larger than the boric acid concentration on the surface on the visual side.
  • the boric acid concentration gradient is preferably 0.4% by weight or more, and more preferably 0.5% by weight or more.
  • the boric acid concentration gradient can be, for example, 27% by weight or less.
  • a second PVA-based resin layer is provided adjacent to the modulator (first PVA-based resin layer) to form a PVA-based resin layer having a two-layer structure, and the PVA-based resin layer can be visually recognized.
  • the PVA-based resin layer on the visual recognition side (the side far from the organic EL panel) can easily discharge ammonium ions, and the new problem was solved.
  • the crosslink density of the PVA-based resin decreases as the distance from the organic EL panel increases, so that ammonium ions do not easily invade the polarizing element (first PVA-based resin layer), and even if they do, they are on the visual side. It is presumed that this is because it is easy to pull out.
  • the second PVA-based resin layer function as an adhesive for adhering the polarizing element and the protective layer, it is not necessary to provide the second PVA-based resin layer separately from the adhesive, and the thickness is reduced and manufactured. It is advantageous in terms of both efficiency and cost.
  • the boric acid concentration (at the time of application) of the second PVA-based resin layer is 1% by weight or less, preferably 0.8% by weight or less, more preferably 0.5% by weight or less, and further preferably 0. .2% by weight or less, particularly preferably substantially zero.
  • concentration of the second PVA-based resin layer is in such a range, the above-mentioned desired boric acid concentration gradient is realized with a polarizing element having practical optical characteristics (first PVA-based resin layer). be able to.
  • the boric acid concentration of the substituent (first PVA-based resin layer) is preferably 15% by weight or more, more preferably 16% by weight or more, and further preferably 16% by weight to 26% by weight. be.
  • the boric acid concentration of the decoder is in such a range, practical optical characteristics can be obtained, and the desired boric acid concentration gradient can be realized with the second PVA-based resin layer. Further, it is possible to improve the appearance durability at the time of humidification while maintaining the ease of curl adjustment at the time of bonding well and suppressing the curl at the time of heating satisfactorily.
  • the boric acid concentration can be determined using, for example, Fourier Transform Infrared Spectroscopy (FT-IR). Specifically, it is as follows.
  • the second PVA-based resin layer is measured by total internal reflection attenuation spectroscopy (ATR) using a Fourier transform infrared spectrophotometer (for example, manufactured by PerkinElmer, trade name "SPECTRUM2000") and polarized light as the measurement light.
  • ATR total internal reflection attenuation spectroscopy
  • SPECTRUM2000 Fourier transform infrared spectrophotometer
  • the intensity of the acid peak (665 cm -1 ) and the intensity of the reference peak (2941 cm -1 ) are measured.
  • the boric acid amount index can be calculated from the obtained boric acid peak intensity and the reference peak intensity by the following formula, and further, the boric acid concentration can be calculated from the calculated boric acid amount index by the following formula.
  • the thickness of the second PVA-based resin layer is 0.03 ⁇ m to 2 ⁇ m, preferably 0.03 ⁇ m to 1 ⁇ m, more preferably 0.04 ⁇ m to 0.5 ⁇ m, and further preferably 0.04 ⁇ m to 0. It is 1 ⁇ m, and particularly preferably 0.05 ⁇ m to 0.1 ⁇ m.
  • the thickness of the second PVA-based resin layer is in such a range, ammonium ions can be more easily discharged.
  • the polarizing plate and the polarizing plate with a retardation layer are applied to an organic EL display device, decolorization can be suppressed even more satisfactorily.
  • the polarizing plate has a degree of polarization change ⁇ P of preferably 50% or less, more preferably 25% or less, still more preferably 10% or less when exposed to ammonia vapor for 2 hours in an environment of 60 ° C. ..
  • the invasion of ammonium ions into the polarizing element is satisfactorily suppressed, and the ammonium ions from the polarizing element are suppressed. Can be discharged well.
  • first PVA-based resin layer polarizer
  • second PVA-based resin layer the protective layer
  • the pressure-sensitive adhesive layer the first PVA-based resin layer (polarizer), the second PVA-based resin layer, the protective layer, and the pressure-sensitive adhesive layer will be specifically described.
  • the first PVA-based resin layer functions as a polarizing element as described above. Therefore, in the present specification, the first PVA-based resin layer may be referred to as a polarizing element.
  • the modulator is typically composed of a PVA-based resin film containing a dichroic substance (typically iodine).
  • the substituent preferably has a ratio (A 550 / A 210 ) of the orthogonal absorbance A 550 at a wavelength of 550 nm to the orthogonal absorbance A 210 at a wavelength of 210 nm of 1.4 or more, and has an orthogonal absorbance A 470 at a wavelength of 470 nm and a wavelength of 600 nm.
  • the ratio to the orthogonal absorbance A 600 in (A 470 / A 600 ) is 0.7 or more, and the orthogonal b value is larger than -10.
  • the modulator used in the embodiment of the present invention has a very large ratio (A 550 / A 210 ) and (A 470 / A 600 ) as compared with a normal thin polarizing element.
  • the content ratio of iodine ions (having absorption in the ultraviolet region near 210 nm) that do not form a complex with PVA in the polarizing element is very small, and the content ratio of PVA-iodine complex (having absorption in the visible region) is very small. Means that is very large. More specifically, the substituent has a very large content ratio of PVA-I 5 - complex having absorption near 600 nm, and a large content ratio of PVA-I 3 - complex having absorption near 480 nm. It is maintained without decreasing.
  • the thickness of the polarizing element means the length of the optical path length, if the thickness of the polarizing element is simply reduced, the optical path length is shortened and the polarization performance is also deteriorated. Since the amount of iodine that can be contained in the polarizing element is limited, it is essential to efficiently utilize the iodine contained in the polarizing element in order to achieve both high polarization performance and thinning of the polarizing element. In other words, by reducing iodine ions that have absorption in the ultraviolet and do not contribute to polarization performance, and by improving the ratio of PVA-iodine complexes that have absorption in the visible region, both high polarization performance and thinning of the polarizing element can be achieved.
  • the ratio (A 550 / A 210 ) is preferably 1.8 or more, more preferably 2.0 or more, and even more preferably 2.2 or more.
  • the upper limit of the ratio (A 550 / A 210 ) can be, for example, 3.5.
  • the ratio (A 470 / A 600 ) is preferably 0.75 or more, more preferably 0.80 or more, still more preferably 0.85 or more.
  • the upper limit of the ratio (A 470 / A 600 ) is, for example, 2.00, preferably 1.33.
  • the orthogonal b value of the polarizing element is larger than -10, preferably -7 or more, and more preferably -5 or more, as described above.
  • the upper limit of the orthogonal b value is preferably +10 or less, and more preferably +5 or less. According to the present invention, it is possible to realize an orthogonal b value in such a range.
  • the orthogonal b value indicates the hue when the polarizing elements (polarizing plates) are arranged in the orthogonal state, and the larger the absolute value of this numerical value, the more the orthogonal hue (black display in the image display device) appears to be tinted. Means.
  • the orthogonal b value when the orthogonal b value is as low as ⁇ 10 or less, the black display appears to be colored blue, and the display performance is deteriorated. That is, according to the embodiment of the present invention, it is possible to obtain a polarizing element that can realize an excellent hue at the time of displaying black.
  • the orthogonal b value can be measured by a spectrophotometer typified by LPF200.
  • the splitter preferably exhibits absorption dichroism at any wavelength of 380 nm to 780 nm.
  • the simple substance transmittance of the modulator is preferably 46.0% or less, and more preferably 45.0% or less.
  • the single transmittance is preferably 41.5% or more, more preferably 42.0% or more, and further preferably 42.5% or more.
  • the degree of polarization of the splitter is preferably 99.990% or more, and preferably 99.998% or less.
  • the polarizing element used in the embodiment of the present invention can have both a high single transmittance and a high degree of polarization.
  • the single transmittance is typically a Y value measured with an ultraviolet-visible spectrophotometer and corrected for luminosity factor.
  • the single transmittance is a value when the refractive index of one surface of the polarizing plate is converted to 1.50 and the refractive index of the other surface is converted to 1.53.
  • the degree of polarization is typically obtained by the following formula based on the parallel transmittance Tp and the orthogonal transmittance Tc measured by using an ultraviolet-visible spectrophotometer and corrected for luminosity factor.
  • Degree of polarization (%) ⁇ (Tp-Tc) / (Tp + Tc) ⁇ 1/2 ⁇ 100
  • the thickness of the splitter is preferably 15 ⁇ m or less, more preferably 12 ⁇ m or less, still more preferably 10 ⁇ m or less, and particularly preferably 8 ⁇ m or less.
  • the thickness of the polarizing element may be, for example, 1 ⁇ m or more, for example, 2 ⁇ m or more, and may be, for example, 3 ⁇ m or more.
  • the resin film forming the polarizing element may be a single-layer resin film or a laminated body having two or more layers.
  • the polarizing element composed of a single-layer resin film include a hydrophilic polymer film such as a polyvinyl alcohol (PVA) -based film, a partially formalized PVA-based film, and an ethylene / vinyl acetate copolymer-based partially saponified film.
  • a hydrophilic polymer film such as a polyvinyl alcohol (PVA) -based film, a partially formalized PVA-based film, and an ethylene / vinyl acetate copolymer-based partially saponified film.
  • PVA polyvinyl alcohol
  • a partially formalized PVA-based film ethylene / vinyl acetate copolymer-based partially saponified film
  • examples thereof include those which have been dyed and stretched with a bicolor substance such as iodine and a bicolor dye, and polyene-based oriented films such as a dehydrated product of PVA and a dehydrogenated product of polyvinyl chloride.
  • the dyeing with iodine is performed, for example, by immersing a PVA-based film in an aqueous iodine solution.
  • the draw ratio of the uniaxial stretching is preferably 3 to 7 times.
  • the stretching may be performed after the dyeing treatment or may be performed while dyeing. Further, it may be dyed after being stretched.
  • the PVA-based film is subjected to a swelling treatment, a crosslinking treatment, a cleaning treatment, a drying treatment and the like. For example, by immersing the PVA-based film in water and washing it with water before dyeing, it is possible not only to clean the dirt and blocking inhibitor on the surface of the PVA-based film, but also to swell the PVA-based film to prevent uneven dyeing. Can be prevented.
  • the polarizing element obtained by using the laminate include a laminate of a resin base material and a PVA-based resin layer (PVA-based resin film) laminated on the resin base material, or a resin base material and the resin.
  • Examples thereof include a polarizing element obtained by using a laminate with a PVA-based resin layer coated and formed on a base material.
  • the polarizing element obtained by using the laminate of the resin base material and the PVA-based resin layer coated and formed on the resin base material is, for example, a resin base material obtained by applying a PVA-based resin solution to the resin base material and drying it.
  • a PVA-based resin layer is formed on the PVA-based resin layer to obtain a laminate of a resin base material and a PVA-based resin layer; and stretching and dyeing the laminate to make the PVA-based resin layer a stator. obtain.
  • a polyvinyl alcohol-based resin layer containing a halide and a polyvinyl alcohol-based resin is preferably formed on one side of the resin base material. Stretching typically involves immersing the laminate in an aqueous boric acid solution for stretching. Further, stretching may further comprise, if necessary, stretching the laminate in the air at a high temperature (eg, 95 ° C. or higher) prior to stretching in boric acid aqueous solution.
  • the laminate is subjected to a drying shrinkage treatment in which the laminate is shrunk by 2% or more in the width direction by heating while being conveyed in the longitudinal direction.
  • the production method of the present embodiment includes subjecting the laminate to an aerial auxiliary stretching treatment, a dyeing treatment, an underwater stretching treatment, and a drying shrinkage treatment in this order.
  • the disorder of the orientation of the polyvinyl alcohol molecule and the decrease in the orientation can be suppressed as compared with the case where the PVA-based resin layer does not contain a halide.
  • This makes it possible to improve the optical characteristics of the polarizing element obtained through a treatment step of immersing the laminate in a liquid, such as a dyeing treatment and a stretching treatment in water. Further, the optical characteristics can be improved by shrinking the laminated body in the width direction by the drying shrinkage treatment.
  • the obtained resin base material / polarizing element laminate may be used as it is (that is, the resin base material may be used as a protective layer for the polarizing element), and the resin base material is peeled off from the resin base material / polarizing element laminate. Then, an arbitrary appropriate protective layer according to the purpose may be laminated on the peeled surface and used. Details of the method for producing such a polarizing element are described in, for example, Japanese Patent Application Laid-Open No. 2012-73580 and Japanese Patent No. 6470455. The entire description of these publications is incorporated herein by reference.
  • the second PVA-based resin layer can be typically formed by applying and drying a PVA-based resin aqueous solution.
  • the average degree of polymerization of the PVA-based resin contained in the aqueous solution is preferably about 100 to 5000, and more preferably 1000 to 4000.
  • the average saponification degree is preferably about 85 mol% to 100 mol%, more preferably 90 mol% to 100 mol%.
  • the PVA-based resin preferably contains an acetoacetyl group. This is because the adhesion between the polarizing element and the protective layer is excellent, and the durability can be excellent.
  • the acetoacetyl group-containing PVA-based resin can be obtained, for example, by reacting the PVA-based resin with diketene by an arbitrary method.
  • the degree of acetoacetyl group modification of the acetoacetyl group-containing PVA resin is typically 0.1 mol% or more, preferably about 0.1 mol% to 40 mol%, and more preferably 1 mol% to 20 mol. %, Especially preferably 2 mol% to 7 mol%.
  • the degree of acetoacetyl group modification is a value measured by NMR.
  • the resin concentration in the PVA-based resin aqueous solution is preferably 0.1% by weight to 15% by weight, more preferably 0.5% by weight to 10% by weight.
  • the viscosity of the aqueous solution is preferably 1 to 50 mPa ⁇ s.
  • the pH of the aqueous solution is preferably 2 to 6, more preferably 2.5 to 5, still more preferably 3 to 5, and particularly preferably 3.5 to 4.5.
  • the PVA-based resin aqueous solution may contain a metal compound colloid in one embodiment.
  • the metal compound colloid is one in which the metal compound fine particles are dispersed in the dispersion medium, and is electrostatically stabilized due to the mutual repulsion of the same kind of charges of the fine particles, and can have permanent stability. .. It was
  • the average particle size of the fine particles forming the metal compound colloid is set to any appropriate value as long as it does not adversely affect the optical characteristics such as transparency and polarization characteristics. It is preferably 1 nm to 100 nm, more preferably 1 nm to 50 nm. This is because the fine particles can be uniformly dispersed in the second PVA-based resin layer.
  • metal compound any suitable compound is used.
  • metal oxides such as alumina, silica, zirconia and titania
  • metal salts such as aluminum silicate, calcium carbonate, magnesium silicate, zinc carbonate, barium carbonate and calcium phosphate
  • minerals such as celite, talc, clay and kaolin.
  • a positively charged metal compound colloid is preferably used.
  • the metal compound include alumina, titania and the like, and alumina is particularly preferable.
  • the visible side protective layer 30 and the inner protective layer are each formed of any suitable film that can be used as a protective layer for the stator.
  • suitable film such as triacetyl cellulose (TAC), polyester-based, polyvinyl alcohol-based, polycarbonate-based, polyamide-based, polyimide-based, polyethersulfone-based, and polysulfone-based.
  • TAC triacetyl cellulose
  • thermosetting resins such as (meth) acrylic, urethane, (meth) acrylic urethane, epoxy, and silicone, or ultraviolet curable resins can also be mentioned.
  • glassy polymers such as siloxane-based polymers can also be mentioned.
  • the polymer film described in JP-A-2001-343529 (WO01 / 37007) can also be used.
  • a resin composition containing a thermoplastic resin having a substituted or unsubstituted imide group in the side chain and a thermoplastic resin having a substituted or unsubstituted phenyl group and a nitrile group in the side chain.
  • the polymer film can be, for example, an extruded product of the above resin composition.
  • the visual-viewing side protective layer has a moisture permeability of preferably 200 g / m 2.24 h or more, more preferably 300 g / m 2.24 h or more, still more preferably 330 g / m 2.24 h or more , and particularly preferably. Is 360 g / m 2.24 hours or more, and particularly preferably 400 g / m 2.24 hours or more.
  • the upper limit of the moisture permeability of the visible side protective layer may be, for example, 1000 g / m 2.24 h.
  • the visible side protective layer may preferably be composed of a TAC film.
  • the moisture permeability can be measured according to JIS Z 0208.
  • the visible side protective layer may be subjected to surface treatment such as hard coat treatment, antireflection treatment, sticking prevention treatment, and antiglare treatment, if necessary. Further / or, if necessary, the visual-viewing side protective layer is provided with a process for improving visibility when visually recognizing through polarized sunglasses (typically, a (elliptical) circular polarization function is imparted, and an ultra-high level is provided. (Giving a phase difference) may be applied. By performing such processing, excellent visibility can be realized even when the display screen is visually recognized through a polarizing lens such as polarized sunglasses. Therefore, the polarizing plate and the polarizing plate with a retardation layer can be suitably applied to an image display device that can be used outdoors.
  • surface treatment such as hard coat treatment, antireflection treatment, sticking prevention treatment, and antiglare treatment, if necessary.
  • the visual-viewing side protective layer is provided with a process for improving visibility when visually recognizing through polarized sunglasses (typically, a (elliptical
  • the thickness of the visible side protective layer 30 is preferably 10 ⁇ m to 60 ⁇ m, more preferably 15 ⁇ m to 50 ⁇ m. When the surface treatment is applied, the thickness of the visible side protective layer 30 is the thickness including the thickness of the surface treatment layer.
  • the inner protective layer is preferably optically isotropic in one embodiment.
  • optically isotropic means that the in-plane retardation Re (550) is 0 nm to 10 nm and the thickness direction retardation Rth (550) is -10 nm to +10 nm. say.
  • the thickness of the other protective layer is preferably 5 ⁇ m to 80 ⁇ m, more preferably 10 ⁇ m to 40 ⁇ m, and even more preferably 10 ⁇ m to 30 ⁇ m.
  • the inner protective layer may preferably be omitted.
  • Adhesive layer Typical examples of the adhesive constituting the adhesive layer include acrylic adhesives, rubber adhesives, silicone adhesives, polyester adhesives, urethane adhesives, epoxy adhesives, and adhesives. Examples include polyether adhesives.
  • a pressure-sensitive adhesive having desired characteristics according to the purpose by adjusting the type, number, combination and blending ratio of the monomers forming the base resin of the pressure-sensitive adhesive, as well as the blending amount of the cross-linking agent, the reaction temperature, the reaction time and the like. Can be prepared.
  • the base resin of the pressure-sensitive adhesive may be used alone or in combination of two or more.
  • An acrylic pressure-sensitive adhesive (acrylic pressure-sensitive adhesive composition) is preferable from the viewpoint of transparency, processability, durability and the like.
  • the acrylic pressure-sensitive adhesive composition typically contains a (meth) acrylic polymer as a main component.
  • the (meth) acrylic polymer can be contained in the pressure-sensitive adhesive composition in a proportion of, for example, 50% by weight or more, preferably 70% by weight or more, and more preferably 90% by weight or more in the solid content of the pressure-sensitive adhesive composition.
  • the (meth) acrylic polymer contains an alkyl (meth) acrylate as a main component as a monomer unit.
  • (meth) acrylate means acrylate and / or methacrylate.
  • the alkyl (meth) acrylate may be contained in a proportion of preferably 80% by weight or more, more preferably 90% by weight or more, in the monomer component forming the (meth) acrylic polymer.
  • Examples of the alkyl group of the alkyl (meth) acrylate include a linear or branched alkyl group having 1 to 18 carbon atoms. The average number of carbon atoms of the alkyl group is preferably 3 to 9, and more preferably 3 to 6.
  • the preferred alkyl (meth) acrylate is butyl acrylate.
  • the acrylic pressure-sensitive adhesive composition may preferably contain a silane coupling agent and / or a cross-linking agent.
  • silane coupling agent include epoxy group-containing silane coupling agents.
  • cross-linking agent include isocyanate-based cross-linking agents and peroxide-based cross-linking agents.
  • the acrylic pressure-sensitive adhesive composition may contain an antioxidant and / or a conductive agent. Details of the pressure-sensitive adhesive are described in, for example, JP-A-2006-183022, JP-A-2015-199942, JP-A-2018-053114, JP-A-2016-190996, and International Publication No. 2018/008712. The description of these publications is incorporated herein by reference.
  • the adhesive has a storage elastic modulus at 25 ° C., preferably 1.0 ⁇ 10 4 Pa to 1.0 ⁇ 10 6 Pa, and more preferably 1.0 ⁇ 10 4 Pa to 1.0 ⁇ 10 5 Pa. Is.
  • the storage elastic modulus of the pressure-sensitive adhesive is within such a range, peeling or floating between layers can be suppressed, and adverse effects on the emission of ammonium ions can be prevented.
  • the pressure-sensitive adhesive may have a creep amount ⁇ Cr at 70 ° C. of, for example, 65 ⁇ m or less, 50 ⁇ m or less, 45 ⁇ m or less, 40 ⁇ m or less, 35 ⁇ m or less, 30 ⁇ m or less, 25 ⁇ m or less, 20 ⁇ m or less, and further 15 ⁇ m or less.
  • the lower limit of the creep amount ⁇ Cr is, for example, 0.5 ⁇ m.
  • the thickness of the pressure-sensitive adhesive layer is preferably 2 ⁇ m to 40 ⁇ m, more preferably 3 ⁇ m to 20 ⁇ m, and further preferably 4 ⁇ m to 15 ⁇ m.
  • the polarizing plate according to the embodiment of the present invention comprises a polarizing plate with a retardation layer in which the retardation layers are bonded via the pressure-sensitive adhesive layer 40. You may. Therefore, a polarizing plate with a retardation layer can also be included in the embodiment of the present invention.
  • the polarizing plate with a retardation layer according to the embodiment of the present invention can significantly suppress decolorization when applied to an organic EL display device.
  • the retardation layer typically has a circular polarization function or an elliptically polarizing function.
  • the retardation layer typically exhibits reverse dispersion wavelength characteristics and can function as a ⁇ / 4 plate.
  • the retardation layer may be a stretched film of a resin film or an oriented solidified layer of a liquid crystal compound (liquid crystal oriented solidified layer).
  • the retardation layer is preferably a stretched film of a resin film.
  • Organic EL Display Device The polarizing plate according to the above item A and the polarizing plate with a retardation layer according to the above item B can be applied to the organic EL display device. Therefore, an organic EL display device including a polarizing plate or a polarizing plate with a retardation layer is also included in the embodiment of the present invention.
  • the organic EL display device typically includes a polarizing plate or a polarizing plate with a retardation layer on the visible side thereof.
  • the polarizing plate with a retardation layer is laminated so that the retardation layer is on the organic EL cell side (the polarizing plate is on the visual recognition side).
  • the organic EL display device has a curved shape (substantially a curved display screen) and / or is bendable or bendable.
  • the present inventors use the polarizing plate and the polarizing plate by ammonia (substantially ammonium ions) generated from the organic EL panel.
  • ammonia substantially ammonium ions
  • the measurement method of each characteristic is as follows. Unless otherwise specified, "parts" and “%” in Examples and Comparative Examples are based on weight.
  • the thickness of the first PVA-based resin layer was measured using an interference film thickness meter (manufactured by Otsuka Electronics Co., Ltd., product name "MCPD-3000").
  • the thickness of the second PVA-based resin layer was determined by cutting the polarizing plates of Examples and Comparative Examples and observing the cross section of the polarizing plate using a scanning electron microscope (“JSM7100F” manufactured by JEOL Ltd.). Measured from the image.
  • the orthogonal absorbance A 210 was obtained from the orthogonal transmittance Tc 210 having a measurement wavelength of 210 nm, and the orthogonal absorbance A 550 was obtained from the orthogonal transmittance Tc 550 having a measurement wavelength of 550 nm, respectively, using "U4100" manufactured by Hitachi High-Technologies Corporation. Further, the orthogonal absorbance A 470 is obtained from the orthogonal transmittance Tc 470 having a measurement wavelength of 470 nm, and the orthogonal absorbance A 600 is obtained from the orthogonal transmittance Tc 600 having a measurement wavelength of 600 nm.
  • the polarizing plates obtained in Examples and Comparative Examples were cut out into a size of 30 mm ⁇ 30 mm and used as measurement data.
  • the measurement material was attached to the edge of the mouth of the glass bottle via the adhesive layer so that the mouth of the glass bottle was completely covered with this measurement material and the steam did not leak from the gap.
  • the glass bottle covered with the measurement material was heated at 60 ° C. for 2 hours.
  • of the change in the degree of polarization was calculated from the following equation, where the degree of polarization of the polarizing plate (substantially the polarizing element) before heating was P 0 and the degree of polarization after heating was P 20 .
  • Example 1 Fabrication of Polarizer
  • a thermoplastic resin base material an amorphous isophthal copolymer polyethylene terephthalate film (thickness: 100 ⁇ m) having a long shape and a Tg of about 75 ° C. was used, and one side of the resin base material was treated with corona. Was given. 100 parts by weight of PVA-based resin in which polyvinyl alcohol (polymerization degree 4200, saponification degree 99.2 mol%) and acetacetyl-modified PVA (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name "Gosefimer”) are mixed at a ratio of 9: 1.
  • a PVA aqueous solution (coating solution) was prepared by dissolving 13 parts by weight of potassium iodide in water.
  • the PVA aqueous solution was applied to the corona-treated surface of the resin base material and dried at 60 ° C. to form a PVA-based resin layer having a thickness of 13 ⁇ m, and a laminate was prepared.
  • the obtained laminate was uniaxially stretched 2.4 times in the vertical direction (longitudinal direction) in an oven at 130 ° C. (aerial auxiliary stretching treatment). Next, the laminate was immersed in an insolubilizing bath at a liquid temperature of 40 ° C.
  • boric acid aqueous solution obtained by blending 3 parts by weight of potassium iodide and 5 parts by weight of boric acid with respect to 100 parts by weight of water
  • a boric acid aqueous solution obtained by blending 3 parts by weight of potassium iodide and 5 parts by weight of boric acid with respect to 100 parts by weight of water
  • a boric acid aqueous solution boric acid concentration 4% by weight, potassium iodide concentration 5% by weight
  • Uniaxial stretching was performed so that the stretching ratio was 5.5 times (underwater stretching treatment).
  • the laminate was immersed in a washing bath having a liquid temperature of 20 ° C.
  • a second PVA-based resin layer was formed on the surface of the polarizing element (first PVA-based resin layer) of the laminate obtained above, and a protective layer was laminated. Specifically, it is as follows. Acetoacetyl-modified PVA (polymerization degree 1200, acetoacetyl modification degree 4.6%, saponification degree 99.0 mol% or more, solid content concentration 4%, manufactured by Mitsubishi Chemical Corporation, trade name "Gosenex Z-200") 6. An aqueous resin composition was obtained by mixing 02 parts, 25 parts of an aqueous solution containing a positively charged alumina colloid (average particle size 15 nm) at a solid content concentration of 3.2%, and 18.98 parts of pure water.
  • the surface of the first PVA-based resin layer is coated so that the thickness of the resin composition after drying is 0.09 ⁇ m, and the HC-TAC film is bonded using a roll machine, and then the resin composition is applied. By drying, a second PVA-based resin layer was formed, and the polarizing element and the protective layer were bonded together.
  • the HC-TAC film is a film in which a hard coat (HC) layer (thickness 7 ⁇ m) is formed on a triacetyl cellulose (TAC) film (thickness 25 ⁇ m), and the TAC film is the first PVA-based resin layer side. It was pasted together so that it would be.
  • the moisture permeability of the HC-TAC film was 427 g / m 2.24 h.
  • the resin base material is peeled off, an acrylic pressure-sensitive adhesive (thickness 20 ⁇ m) is placed on the peeled surface, and a visible side protective layer (HC-TAC film) / second PVA-based resin layer / first PVA-based resin is placed.
  • a polarizing plate having a layer (polarizer) / pressure-sensitive adhesive layer (acrylic pressure-sensitive adhesive) was obtained.
  • the boric acid concentration on the surface opposite to the visible side of the first PVA-based resin layer was 17.5% by weight, and the boric acid concentration on the visible side surface of the second PVA-based resin layer was 17.0% by weight. rice field.
  • the obtained polarizing plate was subjected to the evaluation of (6) above. The results are shown in Table 1.
  • the acrylic adhesive was prepared as follows. A four-necked flask equipped with a stirring blade, a thermometer, a nitrogen gas introduction tube, and a cooler contains 91 parts of butyl acrylate, 6 parts of acryloyl morpholine, 2.7 parts of acrylic acid, and 0.3 parts of 4-hydroxybutyl acrylate. A mixture of monomers was charged.
  • Example 2 A polarizing plate was obtained in the same manner as in Example 1 except that the conditions of the cross-linking treatment for producing the polarizing element (first PVA-based resin layer) were changed to change the boric acid concentration of the polarizing element.
  • the boric acid concentration on the surface opposite to the visible side of the first PVA-based resin layer was 21.8% by weight, and the boric acid concentration on the visible side surface of the second PVA-based resin layer was 19.7% by weight. rice field.
  • the obtained polarizing plate was subjected to the same evaluation as in Example 1. The results are shown in Table 1.
  • Example 3 The thickness of the second PVA-based resin layer was set to 0.07 ⁇ m, and the conditions for the cross-linking treatment when producing the polarizing element (first PVA-based resin layer) were changed to change the boric acid concentration of the polarizing element.
  • a polarizing plate was obtained in the same manner as in Example 1 except that it was changed.
  • the boric acid concentration on the surface opposite to the visible side of the first PVA-based resin layer was 21.8% by weight, and the boric acid concentration on the visible side surface of the second PVA-based resin layer was 20.3% by weight. rice field.
  • the obtained polarizing plate was subjected to the same evaluation as in Example 1. The results are shown in Table 1.
  • Example 4 Resin base material / polarization in the same manner as in Example 1 except that the conditions of the cross-linking treatment and the stretching treatment for producing the splitter (first PVA-based resin layer) were changed to change the optical characteristics of the splitter.
  • a laminate having a child composition was obtained.
  • the thickness of the splitter was 5 ⁇ m
  • the single transmittance was 43.0%
  • a 550 / A 210 was 1.37
  • a 470 / A 600 was 0.90
  • the orthogonal b value was -2.62.
  • the following procedure was the same as in Example 1 to obtain a polarizing plate.
  • the boric acid concentration on the surface opposite to the visible side of the first PVA-based resin layer was 14.3% by weight, and the boric acid concentration on the visible side surface of the second PVA-based resin layer was 13.9% by weight.
  • rice field. The obtained polarizing plate was subjected to the same evaluation as in Example 1. The results are shown in Table 1.
  • Example 5 At the same time, a long roll of a polyvinyl alcohol (PVA) resin film (manufactured by Kuraray, product name "PE3000”) having a thickness of 30 ⁇ m is uniaxially stretched in the longitudinal direction so as to be 5.9 times in the longitudinal direction by a roll stretching machine.
  • a extruder (first PVA-based resin layer) having a thickness of 12 ⁇ m was prepared by performing swelling, dyeing, cross-linking, and washing treatment, and finally drying treatment. Specifically, the swelling treatment was carried out by stretching 2.2 times while treating with pure water at 20 ° C. Next, the dyeing treatment was carried out in an aqueous solution at 30 ° C.
  • PVA polyvinyl alcohol
  • the weight ratio of iodine and potassium iodide was adjusted so that the simple substance transmittance of the obtained polarizing element was 43.0% and the weight ratio was 1: 7. However, it was stretched 1.4 times.
  • the cross-linking treatment adopted a two-step cross-linking treatment, and the first-step cross-linking treatment was carried out 1.2 times while being treated with an aqueous solution in which boric acid and potassium iodide were dissolved at 40 ° C.
  • the boric acid content of the aqueous solution of the first-step crosslinking treatment was 5.0% by weight, and the potassium iodide content was 3.0% by weight.
  • the second-step cross-linking treatment was carried out by stretching 1.6 times while treating with an aqueous solution in which boric acid and potassium iodide were dissolved at 65 ° C.
  • the boric acid content of the aqueous solution of the second-step crosslinking treatment was 4.3% by weight, and the potassium iodide content was 5.0% by weight.
  • the washing treatment was carried out with an aqueous potassium iodide solution at 20 ° C.
  • the potassium iodide content of the aqueous solution of the washing treatment was set to 2.6% by weight.
  • the drying treatment was carried out at 70 ° C. for 5 minutes to obtain a substituent (first PVA-based resin layer).
  • a polarizing plate was obtained in the same manner as in Example 1 except that this polarizing element (first PVA-based resin layer) was used.
  • the boric acid concentration on the surface opposite to the visible side of the first PVA-based resin layer is 24% by weight, and the boric acid concentration on the visible side surface of the second PVA-based resin layer is 21.6% by weight. there were.
  • the obtained polarizing plate was subjected to the same evaluation as in Example 1. The results are shown in Table 1.
  • Example 1 A laminate having a resin substrate / polarizing element configuration was obtained in the same manner as in Example 1.
  • the same HC-TAC film as in Example 1 was attached to the surface of the polarizing element of the laminate via an ultraviolet curable adhesive (thickness 1 ⁇ m). That is, the second PVA-based resin layer was not formed.
  • a polarizing plate having a structure of a visible side protective layer (HC-TAC film) / adhesive / polarizing element / adhesive layer (acrylic adhesive) was obtained.
  • the boric acid concentration on the surface of the PVA-based resin layer (polarizer only) opposite to the visible side was 13.6% by weight, and the boric acid concentration on the visible side surface was 15.4% by weight.
  • the obtained polarizing plate was subjected to the same evaluation as in Example 1. The results are shown in Table 1.
  • Comparative Example 2 A polarizing plate was obtained in the same manner as in Comparative Example 1 except that the conditions of the cross-linking treatment for producing the polarizing element were changed to change the boric acid concentration of the polarizing element.
  • the boric acid concentration on the surface of the PVA-based resin layer (polarizer only) opposite to the visible side was 16.6% by weight, and the boric acid concentration on the visible side surface was 18.6% by weight.
  • the obtained polarizing plate was subjected to the same evaluation as in Example 1. The results are shown in Table 1.
  • Example 3 A polarizing plate was obtained in the same manner as in Example 1 except that an HC-COP film was used as a protective layer on the visual viewing side.
  • the HC-COP film was a film in which a hard coat (HC) layer (thickness 2 ⁇ m) was formed on a COP film (thickness 25 ⁇ m), and the moisture permeability was 35 g / m 2.24 h.
  • the obtained polarizing plate was subjected to the same evaluation as in Example 1. The results are shown in Table 1.
  • the polarizing plate of the present invention is suitably used for an organic EL display device, and the polarizing plate with a retardation layer is preferably used as an antireflection circular polarizing plate for an organic EL display device.

Abstract

Provided are: a polarizing plate in which decolorization is remarkably suppressed when applied to an organic EL display device; and a polarizing plate with a phase difference layer. A polarizing plate according to an embodiment of the present invention includes a polyvinyl alcohol resin layer, a protective layer provided on the visible side of the polyvinyl alcohol resin layer, and an adhesive layer disposed on the reverse side from the visible side of the polyvinyl alcohol resin layer. The polyvinyl alcohol resin layer includes a first polyvinyl alcohol resin layer that functions as a polarizer, and a second polyvinyl alcohol resin layer provided on the visible side of the first polyvinyl alcohol resin layer. The thickness of the second polyvinyl alcohol resin layer is 0.03-2 μm. The boric acid concentration on the surface of the polyvinyl alcohol resin layer on the reverse side from the visible side is higher than the boric acid concentration on the visible-side surface, and the difference therebetween is 0.3 wt% or more. The moisture permeability of the protective layer on the visible side is at least 200 g/m2•24 h.

Description

偏光板、位相差層付偏光板および有機エレクトロルミネセンス表示装置Polarizing plate, polarizing plate with retardation layer and organic electroluminescence display device
 本発明は、偏光板、位相差層付偏光板および有機エレクトロルミネセンス(EL)表示装置に関する。 The present invention relates to a polarizing plate, a polarizing plate with a retardation layer, and an organic electroluminescence (EL) display device.
 近年、薄型ディスプレイの普及と共に、有機ELパネルを搭載したディスプレイ(有機EL表示装置)が提案されている。有機ELパネルは反射性の高い金属層を有するため、外光反射や背景の映り込み等の問題を生じやすい。そこで、円偏光板を視認側に設けることにより、これらの問題を防ぐことが知られている(例えば、特許文献1~3)。しかし、有機EL表示装置に設けられた円偏光板(実質的には、円偏光板に含まれる偏光板)は脱色しやすいという問題がある。 In recent years, with the spread of thin displays, displays (organic EL display devices) equipped with organic EL panels have been proposed. Since the organic EL panel has a highly reflective metal layer, problems such as external light reflection and background reflection are likely to occur. Therefore, it is known to prevent these problems by providing a circular polarizing plate on the visual recognition side (for example, Patent Documents 1 to 3). However, there is a problem that the circular polarizing plate provided in the organic EL display device (substantially, the polarizing plate included in the circular polarizing plate) is easily decolorized.
特開2003-311239号公報Japanese Patent Application Laid-Open No. 2003-31239 特開2002-372622号公報Japanese Patent Application Laid-Open No. 2002-372622 特許第3325560号公報Japanese Patent No. 3325560
 本発明は上記従来の課題を解決するためになされたものであり、その主たる目的は、有機EL表示装置に適用した場合に脱色が顕著に抑制された偏光板および位相差層付偏光板を提供することにある。 The present invention has been made to solve the above-mentioned conventional problems, and a main object thereof is to provide a polarizing plate in which decolorization is remarkably suppressed when applied to an organic EL display device and a polarizing plate with a retardation layer. To do.
 本発明の実施形態による偏光板は、ポリビニルアルコール系樹脂層と、該ポリビニルアルコール系樹脂層の視認側に設けられた保護層と、該ポリビニルアルコール系樹脂層の視認側と反対側に配置された粘着剤層と、を含む。該ポリビニルアルコール系樹脂層は、偏光子として機能する第1のポリビニルアルコール系樹脂層と、該第1のポリビニルアルコール系樹脂層の視認側に設けられた第2のポリビニルアルコール系樹脂層と、を含む。該第2のポリビニルアルコール系樹脂層の厚みは0.03μm~2μmであり;該ポリビニルアルコール系樹脂層の視認側と反対側の表面のホウ酸濃度は視認側表面のホウ酸濃度よりも大きく、かつ、その差は0.3重量%以上であり;該視認側の保護層の透湿度は200g/m・24h以上である。
 1つの実施形態においては、上記第1のポリビニルアルコール系樹脂層のホウ酸濃度は14重量%以上である。
 1つの実施形態においては、上記第1のポリビニルアルコール系樹脂層は、単体透過率が42.5%以上であり;波長550nmにおける直交吸光度A550と波長210nmにおける直交吸光度A210との比(A550/A210)が1.4以上であり;波長470nmにおける直交吸光度A470と波長600nmにおける直交吸光度A600との比(A470/A600)が0.7以上であり;かつ、直交b値が-10より大きい。
 1つの実施形態においては、上記偏光子のヨウ素濃度は2重量%~10重量%である。
 1つの実施形態においては、上記偏光板は、60℃の環境下で2時間アンモニア蒸気に曝露したときの偏光度変化の絶対値|ΔP|が50%以下である。
 本発明の別の局面によれば、位相差層付偏光板が提供される。この位相差層付偏光板は、上記偏光板と位相差層とを有する。 
 本発明のさらに別の局面によれば、有機エレクトロルミネセンス表示装置が提供される。この有機エレクトロルミネセンス表示装置は、上記偏光板または上記位相差層付偏光板を備える。
The polarizing plate according to the embodiment of the present invention is arranged on the polyvinyl alcohol-based resin layer, the protective layer provided on the visible side of the polyvinyl alcohol-based resin layer, and the side opposite to the visible side of the polyvinyl alcohol-based resin layer. Includes a pressure-sensitive adhesive layer. The polyvinyl alcohol-based resin layer comprises a first polyvinyl alcohol-based resin layer that functions as a polarizing element and a second polyvinyl alcohol-based resin layer provided on the visible side of the first polyvinyl alcohol-based resin layer. include. The thickness of the second polyvinyl alcohol-based resin layer is 0.03 μm to 2 μm; the boric acid concentration on the surface of the polyvinyl alcohol-based resin layer opposite to the visible side is larger than the boric acid concentration on the visible side surface. Moreover, the difference is 0.3% by weight or more; the moisture permeability of the protective layer on the visual recognition side is 200 g / m 2.24 h or more.
In one embodiment, the boric acid concentration of the first polyvinyl alcohol-based resin layer is 14% by weight or more.
In one embodiment, the first polyvinyl alcohol-based resin layer has a single transmittance of 42.5% or more; the ratio of the orthogonal absorbance A 550 at a wavelength of 550 nm to the orthogonal absorbance A 210 at a wavelength of 210 nm (A). 550 / A 210 ) is 1.4 or more; the ratio of the orthogonal absorbance A 470 at a wavelength of 470 nm to the orthogonal absorbance A 600 at a wavelength of 600 nm (A 470 / A 600 ) is 0.7 or more; and orthogonal b. The value is greater than -10.
In one embodiment, the iodine concentration of the polarizing element is 2% by weight to 10% by weight.
In one embodiment, the polarizing plate has an absolute value | ΔP | of a change in degree of polarization when exposed to ammonia vapor for 2 hours in an environment of 60 ° C. of 50% or less.
According to another aspect of the present invention, a polarizing plate with a retardation layer is provided. This polarizing plate with a retardation layer has the above-mentioned polarizing plate and a retardation layer.
According to yet another aspect of the present invention, an organic electroluminescence display device is provided. This organic electroluminescence display device includes the above-mentioned polarizing plate or the above-mentioned polarizing plate with a retardation layer.
 本発明の実施形態によれば、偏光板のポリビニルアルコール系樹脂層において、偏光子として機能する第1のポリビニルアルコール系樹脂層に隣接して第2のポリビニルアルコール系樹脂層を設け、第2のポリビニルアルコール系樹脂層の視認側表面のホウ酸濃度が第1のポリビニルアルコール系樹脂層の視認側と反対側の表面のホウ酸濃度よりも所定値以上小さくなるような濃度勾配を設けることにより、有機EL表示装置に適用した場合に脱色が顕著に抑制された偏光板および位相差層付偏光板を実現することができる。 According to the embodiment of the present invention, in the polyvinyl alcohol-based resin layer of the polarizing plate, a second polyvinyl alcohol-based resin layer is provided adjacent to the first polyvinyl alcohol-based resin layer that functions as a polarizing element, and a second polyvinyl alcohol-based resin layer is provided. By providing a concentration gradient such that the boric acid concentration on the visible side surface of the polyvinyl alcohol-based resin layer is smaller than the boric acid concentration on the surface opposite to the visible side of the first polyvinyl alcohol-based resin layer by a predetermined value or more. It is possible to realize a polarizing plate in which decolorization is significantly suppressed and a polarizing plate with a retardation layer when applied to an organic EL display device.
本発明の1つの実施形態による偏光板の概略断面図である。It is a schematic sectional drawing of the polarizing plate by one Embodiment of this invention.
 以下、本発明の実施形態について説明するが、本発明はこれらの実施形態には限定されない。  Hereinafter, embodiments of the present invention will be described, but the present invention is not limited to these embodiments. It was
A.偏光板
A-1.偏光板の全体構成
 図1は、本発明の1つの実施形態による偏光板の概略断面図である。図示例の偏光板100は、ポリビニルアルコール(PVA)系樹脂層10と、PVA系樹脂層10の視認側に設けられた保護層(視認側保護層)30と、PVA系樹脂層10の視認側と反対側に配置された粘着剤層40と、を含む。PVA系樹脂層10は、偏光子として機能する第1のPVA系樹脂層11と、第1のPVA系樹脂層11の視認側に設けられた第2のPVA系樹脂層12と、を含む。第2のPVA系樹脂層12は、第1のPVA系樹脂層11と視認側保護層30とを貼り合わせる接着層としても機能し得る。代表的には、粘着剤層40を介して、光学機能層が貼り合わせられ得る。光学機能層の代表例としては、別の保護層(内側保護層)、位相差層が挙げられる。内側保護層は、好ましくは省略され得る。光学機能層が位相差層である場合には、位相差層付偏光板が構成される。位相差層付偏光板については、後述のB項で説明する。粘着剤層40を介して、偏光板100が有機ELパネルに貼り合わせられてもよい。
A. Polarizer A-1. Overall Configuration of Polarizing Plate FIG. 1 is a schematic cross-sectional view of the polarizing plate according to one embodiment of the present invention. The polarizing plate 100 of the illustrated example includes a polyvinyl alcohol (PVA) -based resin layer 10, a protective layer (visual-viewing side protective layer) 30 provided on the visible side of the PVA-based resin layer 10, and a visible side of the PVA-based resin layer 10. Includes a pressure-sensitive adhesive layer 40 disposed on the opposite side of the surface. The PVA-based resin layer 10 includes a first PVA-based resin layer 11 that functions as a polarizing element, and a second PVA-based resin layer 12 provided on the visible side of the first PVA-based resin layer 11. The second PVA-based resin layer 12 can also function as an adhesive layer for bonding the first PVA-based resin layer 11 and the visual-viewing side protective layer 30. Typically, the optical functional layer can be bonded via the pressure-sensitive adhesive layer 40. Typical examples of the optical functional layer include another protective layer (inner protective layer) and a retardation layer. The inner protective layer may preferably be omitted. When the optical functional layer is a retardation layer, a polarizing plate with a retardation layer is configured. The polarizing plate with a retardation layer will be described in Section B below. The polarizing plate 100 may be attached to the organic EL panel via the pressure-sensitive adhesive layer 40.
 本発明の実施形態においては、PVA系樹脂層10(実質的には、第1のPVA系樹脂層11)の視認側と反対側の表面のホウ酸濃度はPVA系樹脂層10(実質的には、第2のPVA系樹脂層12)の視認側表面のホウ酸濃度との差(以下、ホウ酸濃度勾配と称する場合がある)は0.3重量%以上である。より具体的には、第1のPVA系樹脂層のホウ酸濃度は第2のPVA系樹脂層のホウ酸濃度よりも大きく、したがって、PVA系樹脂層の視認側と反対側の表面のホウ酸濃度が視認側表面のホウ酸濃度よりも大きくなるホウ酸濃度勾配が形成されている。ホウ酸濃度勾配は、好ましくは0.4重量%以上であり、より好ましくは0.5重量%以上である。ホウ酸濃度勾配は、例えば27重量%以下であり得る。本発明者らは、偏光板および位相差層付偏光板を有機EL表示装置に適用した場合に、偏光板および位相差層付偏光板が脱色するという新たな課題に直面し、当該課題について鋭意検討した結果、脱色の原因は、有機ELパネルから発生するアンモニア(実質的には、アンモニウムイオン)であることを発見した。さらに、偏光子中のホウ酸濃度が高いほど上記脱色が抑制されることから、ホウ酸濃度が高い方がアンモニウムイオンを遮断しやすいことを発見した。このような知見に基づき、偏光子(第1のPVA系樹脂層)に隣接して第2のPVA系樹脂層を設けて2層構造のPVA系樹脂層を形成し、PVA系樹脂層の視認側表面のホウ酸濃度が視認側と反対側の表面のホウ酸濃度よりも所定値以上小さくなるような濃度勾配を設けることにより、有機ELパネル側から偏光子に侵入するアンモニウムイオンをできる限り遮断し、かつ、視認側(有機ELパネルから遠い側)のPVA系樹脂層がアンモニウムイオンを排出しやすくできることを見出し、当該新たな課題を解決した。これは、有機ELパネルから遠ざかるにしたがってPVA系樹脂の架橋密度が小さくなるので、アンモニウムイオンが偏光子(第1のPVA系樹脂層)に侵入し難く、かつ、仮に侵入したとしても視認側に抜けやすくなるためであると推察される。さらに、第2のPVA系樹脂層を偏光子と保護層とを貼り合わせる接着剤として機能させることにより、接着剤とは別個に第2のPVA系樹脂層を設ける必要がなくなり、薄型化、製造効率およびコストのいずれの点からも有利である。 In the embodiment of the present invention, the boric acid concentration on the surface of the PVA-based resin layer 10 (substantially the first PVA-based resin layer 11) opposite to the visible side is the PVA-based resin layer 10 (substantially). The difference from the boric acid concentration on the visible side surface of the second PVA-based resin layer 12) (hereinafter, may be referred to as a boric acid concentration gradient) is 0.3% by weight or more. More specifically, the boric acid concentration of the first PVA-based resin layer is higher than the boric acid concentration of the second PVA-based resin layer, and therefore, the boric acid on the surface opposite to the visible side of the PVA-based resin layer. A boric acid concentration gradient is formed in which the concentration is larger than the boric acid concentration on the surface on the visual side. The boric acid concentration gradient is preferably 0.4% by weight or more, and more preferably 0.5% by weight or more. The boric acid concentration gradient can be, for example, 27% by weight or less. The present inventors faced a new problem that the polarizing plate and the polarizing plate with a retardation layer are decolorized when the polarizing plate and the polarizing plate with a retardation layer are applied to an organic EL display device, and the present inventors are keen on the problem. As a result of the examination, it was found that the cause of the decolorization was ammonia (substantially ammonium ion) generated from the organic EL panel. Furthermore, since the above-mentioned decolorization is suppressed as the boric acid concentration in the polarizing element is higher, it was discovered that the higher the boric acid concentration, the easier it is to block ammonium ions. Based on such findings, a second PVA-based resin layer is provided adjacent to the modulator (first PVA-based resin layer) to form a PVA-based resin layer having a two-layer structure, and the PVA-based resin layer can be visually recognized. By providing a concentration gradient such that the boric acid concentration on the side surface is smaller than the boric acid concentration on the surface opposite to the viewing side by a predetermined value or more, ammonium ions that invade the polarizing element from the organic EL panel side are blocked as much as possible. Moreover, it was found that the PVA-based resin layer on the visual recognition side (the side far from the organic EL panel) can easily discharge ammonium ions, and the new problem was solved. This is because the crosslink density of the PVA-based resin decreases as the distance from the organic EL panel increases, so that ammonium ions do not easily invade the polarizing element (first PVA-based resin layer), and even if they do, they are on the visual side. It is presumed that this is because it is easy to pull out. Further, by making the second PVA-based resin layer function as an adhesive for adhering the polarizing element and the protective layer, it is not necessary to provide the second PVA-based resin layer separately from the adhesive, and the thickness is reduced and manufactured. It is advantageous in terms of both efficiency and cost.
 第2のPVA系樹脂層のホウ酸濃度(塗布時)は1重量%以下であり、好ましくは0.8重量%以下であり、より好ましくは0.5重量%以下であり、さらに好ましくは0.2重量%以下であり、特に好ましくは実質的にゼロである。第2のPVA系樹脂層の濃度がこのような範囲であれば、実用的な光学特性を有する偏光子(第1のPVA系樹脂層)との間で上記所望のホウ酸濃度勾配を実現することができる。ここで、偏光子(第1のPVA系樹脂層)のホウ酸濃度は、好ましくは15重量%以上であり、より好ましくは16重量%以上であり、さらに好ましくは16重量%~26重量%である。偏光子のホウ酸濃度がこのような範囲であれば、実用的な光学特性が得られるとともに、第2のPVA系樹脂層との間で上記所望のホウ酸濃度勾配を実現することができる。さらに、貼り合わせ時のカール調整の容易性を良好に維持し、かつ、加熱時のカールを良好に抑制しつつ、加湿時の外観耐久性を改善することができる。ホウ酸濃度は、例えば、フーリエ変換赤外分光測定(FT-IR)を用いて決定され得る。具体的には以下のとおりである。第2のPVA系樹脂層について、フーリエ変換赤外分光光度計(例えば、Perkin  Elmer社製、商品名「SPECTRUM2000」)を用いて、偏光を測定光とする全反射減衰分光(ATR)測定によりホウ酸ピーク(665cm-1)の強度および参照ピーク(2941cm-1)の強度を測定する。得られたホウ酸ピーク強度および参照ピーク強度からホウ酸量指数が下記式により算出され、さらに、算出したホウ酸量指数から下記式によりホウ酸濃度が算出され得る。
  (ホウ酸量指数)=(ホウ酸ピーク665cm-1の強度)/(参照ピーク2941cm-1の強度)
  (ホウ酸濃度)=(ホウ酸量指数)×6.61+0.47
The boric acid concentration (at the time of application) of the second PVA-based resin layer is 1% by weight or less, preferably 0.8% by weight or less, more preferably 0.5% by weight or less, and further preferably 0. .2% by weight or less, particularly preferably substantially zero. When the concentration of the second PVA-based resin layer is in such a range, the above-mentioned desired boric acid concentration gradient is realized with a polarizing element having practical optical characteristics (first PVA-based resin layer). be able to. Here, the boric acid concentration of the substituent (first PVA-based resin layer) is preferably 15% by weight or more, more preferably 16% by weight or more, and further preferably 16% by weight to 26% by weight. be. When the boric acid concentration of the decoder is in such a range, practical optical characteristics can be obtained, and the desired boric acid concentration gradient can be realized with the second PVA-based resin layer. Further, it is possible to improve the appearance durability at the time of humidification while maintaining the ease of curl adjustment at the time of bonding well and suppressing the curl at the time of heating satisfactorily. The boric acid concentration can be determined using, for example, Fourier Transform Infrared Spectroscopy (FT-IR). Specifically, it is as follows. The second PVA-based resin layer is measured by total internal reflection attenuation spectroscopy (ATR) using a Fourier transform infrared spectrophotometer (for example, manufactured by PerkinElmer, trade name "SPECTRUM2000") and polarized light as the measurement light. The intensity of the acid peak (665 cm -1 ) and the intensity of the reference peak (2941 cm -1 ) are measured. The boric acid amount index can be calculated from the obtained boric acid peak intensity and the reference peak intensity by the following formula, and further, the boric acid concentration can be calculated from the calculated boric acid amount index by the following formula.
(Boric acid amount index) = (Intensity of boric acid peak 665 cm -1 ) / (Intensity of reference peak 2941 cm -1 )
(Boric acid concentration) = (Boric acid amount index) x 6.61 + 0.47
 第2のPVA系樹脂層の厚みは0.03μm~2μmであり、好ましくは0.03μm~1μmであり、より好ましくは0.04μm~0.5μmであり、さらに好ましくは0.04μm~0.1μmであり、特に好ましくは0.05μm~0.1μmである。第2のPVA系樹脂層の厚みがこのような範囲であれば、アンモニウムイオンをさらに排出しやすくすることができる。その結果、偏光板および位相差層付偏光板が有機EL表示装置に適用された場合に、脱色がさらに良好に抑制され得る。 The thickness of the second PVA-based resin layer is 0.03 μm to 2 μm, preferably 0.03 μm to 1 μm, more preferably 0.04 μm to 0.5 μm, and further preferably 0.04 μm to 0. It is 1 μm, and particularly preferably 0.05 μm to 0.1 μm. When the thickness of the second PVA-based resin layer is in such a range, ammonium ions can be more easily discharged. As a result, when the polarizing plate and the polarizing plate with a retardation layer are applied to an organic EL display device, decolorization can be suppressed even more satisfactorily.
 偏光板は、60℃の環境下で2時間アンモニア蒸気に曝露したときの偏光度変化ΔPが、好ましくは50%以下であり、より好ましくは25%以下であり、さらに好ましくは10%以下である。偏光度変化ΔPは小さいほど好ましく、理想的にはゼロである。本発明の実施形態によれば、上記のような構成を採用することにより、偏光子(第1のPVA系樹脂層)へのアンモニウムイオンの侵入を良好に抑制し、かつ、偏光子からアンモニウムイオンを良好に排出することができる。その結果、偏光板は、アンモニアに曝露されても偏光度変化(実質的には、偏光度の低下)が顕著に抑制され得る。このような偏光板(結果として、位相差層付偏光板)は、有機EL表示装置に適用された場合に、脱色が良好に抑制され得る。 The polarizing plate has a degree of polarization change ΔP of preferably 50% or less, more preferably 25% or less, still more preferably 10% or less when exposed to ammonia vapor for 2 hours in an environment of 60 ° C. .. The smaller the degree of polarization change ΔP is, the more preferable it is, and ideally it is zero. According to the embodiment of the present invention, by adopting the above-mentioned configuration, the invasion of ammonium ions into the polarizing element (first PVA-based resin layer) is satisfactorily suppressed, and the ammonium ions from the polarizing element are suppressed. Can be discharged well. As a result, even when the polarizing plate is exposed to ammonia, the change in the degree of polarization (substantially, the decrease in the degree of polarization) can be significantly suppressed. Such a polarizing plate (as a result, a polarizing plate with a retardation layer) can satisfactorily suppress decolorization when applied to an organic EL display device.
 以下、第1のPVA系樹脂層(偏光子)、第2のPVA系樹脂層、保護層、および粘着剤層について具体的に説明する。 Hereinafter, the first PVA-based resin layer (polarizer), the second PVA-based resin layer, the protective layer, and the pressure-sensitive adhesive layer will be specifically described.
A-2.第1のPVA系樹脂層
 第1のPVA系樹脂層は、上記のとおり偏光子として機能する。したがって、本明細書においては、第1のPVA系樹脂層を偏光子と称する場合がある。偏光子は、代表的には、二色性物質(代表的には、ヨウ素)を含むPVA系樹脂フィルムで構成される。
A-2. First PVA-based Resin Layer The first PVA-based resin layer functions as a polarizing element as described above. Therefore, in the present specification, the first PVA-based resin layer may be referred to as a polarizing element. The modulator is typically composed of a PVA-based resin film containing a dichroic substance (typically iodine).
 偏光子は、好ましくは、波長550nmにおける直交吸光度A550と波長210nmにおける直交吸光度A210との比(A550/A210)が1.4以上であり、波長470nmにおける直交吸光度A470と波長600nmにおける直交吸光度A600との比(A470/A600)が0.7以上であり、かつ、直交b値が-10より大きい。本発明の実施形態に用いられる偏光子は、通常の薄型偏光子に比べて当該比(A550/A210)および(A470/A600)が非常に大きい。これは、偏光子におけるPVAと錯体を形成していないヨウ素イオン(210nm付近の紫外領域に吸収を有する)の含有比が非常に小さく、PVA-ヨウ素錯体(可視領域に吸収を有する)の含有比が非常に大きいことを意味する。より詳細には、当該偏光子は、600nm付近に吸収を有するPVA-I 錯体の含有比が非常に大きく、かつ、480nm付近に吸収を有するPVA-I 錯体の含有比が大幅に減少することなく維持されている。ここで、偏光子の厚みは、光路長の長さを意味するため、単純に偏光子の厚みを薄くした場合、光路長も短くなり、偏光性能も低下してしまう。偏光子に含有できるヨウ素の量にも限りがあるため、高い偏光性能と偏光子の薄型化を両立するためには、偏光子中に含まれるヨウ素を効率的に活用することが必須となる。つまり、紫外に吸光を有し、偏光性能に寄与しないヨウ素イオンを減らし、可視領域に吸光を有するPVA-ヨウ素錯体の比率を向上させることで、高い偏光性能と偏光子の薄型化を両立することが可能になる。言い換えると、比(A550/A210)を大きくすることにより、薄型で高い光学特性を達成することが可能となる。さらに、比(A470/A600)を所定値以上に維持することにより、可視光全域にわたって良好な偏光性能を実現することができる。薄型偏光子におけるヨウ素量が限られている中、従来の技術では、比(A550/A210)および比(A470/A600)の両方を大きくすることは困難であったところ、本発明の実施形態に用いられる偏光子においては、これらの両方を大きくすることができる。比(A550/A210)は、好ましくは1.8以上であり、より好ましくは2.0以上であり、さらに好ましくは2.2以上である。比(A550/A210)の上限は、例えば3.5であり得る。比(A470/A600)は、好ましくは0.75以上であり、より好ましくは0.80以上であり、さらに好ましくは0.85以上である。比(A470/A600)の上限は、例えば2.00であり、好ましくは1.33である。なお、直交吸光度は、後述する偏光度を求める際に測定される直交透過率Tcに基づいて、下記式により求められる。
   直交吸光度=log10(100/Tc)
The substituent preferably has a ratio (A 550 / A 210 ) of the orthogonal absorbance A 550 at a wavelength of 550 nm to the orthogonal absorbance A 210 at a wavelength of 210 nm of 1.4 or more, and has an orthogonal absorbance A 470 at a wavelength of 470 nm and a wavelength of 600 nm. The ratio to the orthogonal absorbance A 600 in (A 470 / A 600 ) is 0.7 or more, and the orthogonal b value is larger than -10. The modulator used in the embodiment of the present invention has a very large ratio (A 550 / A 210 ) and (A 470 / A 600 ) as compared with a normal thin polarizing element. This is because the content ratio of iodine ions (having absorption in the ultraviolet region near 210 nm) that do not form a complex with PVA in the polarizing element is very small, and the content ratio of PVA-iodine complex (having absorption in the visible region) is very small. Means that is very large. More specifically, the substituent has a very large content ratio of PVA-I 5 - complex having absorption near 600 nm, and a large content ratio of PVA-I 3 - complex having absorption near 480 nm. It is maintained without decreasing. Here, since the thickness of the polarizing element means the length of the optical path length, if the thickness of the polarizing element is simply reduced, the optical path length is shortened and the polarization performance is also deteriorated. Since the amount of iodine that can be contained in the polarizing element is limited, it is essential to efficiently utilize the iodine contained in the polarizing element in order to achieve both high polarization performance and thinning of the polarizing element. In other words, by reducing iodine ions that have absorption in the ultraviolet and do not contribute to polarization performance, and by improving the ratio of PVA-iodine complexes that have absorption in the visible region, both high polarization performance and thinning of the polarizing element can be achieved. Will be possible. In other words, by increasing the ratio (A 550 / A 210 ), it is possible to achieve thinness and high optical characteristics. Furthermore, by maintaining the ratio (A 470 / A 600 ) above a predetermined value, good polarization performance can be realized over the entire visible light range. Given the limited amount of iodine in thin polarizing elements, it has been difficult to increase both the ratio (A 550 / A 210 ) and the ratio (A 470 / A 600 ) with conventional techniques. In the modulator used in the embodiment, both of these can be increased. The ratio (A 550 / A 210 ) is preferably 1.8 or more, more preferably 2.0 or more, and even more preferably 2.2 or more. The upper limit of the ratio (A 550 / A 210 ) can be, for example, 3.5. The ratio (A 470 / A 600 ) is preferably 0.75 or more, more preferably 0.80 or more, still more preferably 0.85 or more. The upper limit of the ratio (A 470 / A 600 ) is, for example, 2.00, preferably 1.33. The orthogonal absorbance is determined by the following formula based on the orthogonal transmittance Tc measured when determining the degree of polarization described later.
Orthogonal absorbance = log10 (100 / Tc)
 さらに、偏光子の直交b値は、上記のとおり-10より大きく、好ましくは-7以上であり、より好ましくは-5以上である。直交b値の上限は、好ましくは+10以下であり、より好ましくは+5以下である。本願発明によれば、このような範囲の直交b値を実現することができる。直交b値は偏光子(偏光板)を直交状態に配置した場合の色相を示しており、この数値の絶対値が大きいほど、直交色相(画像表示装置における黒表示)が色味がかって見えることを意味する。例えば、直交b値がー10以下のように低い場合は、黒表示が青く色づいて見え、表示性能が低下する。すなわち、本発明の実施形態によれば、黒表示時に優れた色相を実現し得る偏光子を得ることができる。なお、直交b値は、LPF200に代表される分光光度計により測定され得る。 Further, the orthogonal b value of the polarizing element is larger than -10, preferably -7 or more, and more preferably -5 or more, as described above. The upper limit of the orthogonal b value is preferably +10 or less, and more preferably +5 or less. According to the present invention, it is possible to realize an orthogonal b value in such a range. The orthogonal b value indicates the hue when the polarizing elements (polarizing plates) are arranged in the orthogonal state, and the larger the absolute value of this numerical value, the more the orthogonal hue (black display in the image display device) appears to be tinted. Means. For example, when the orthogonal b value is as low as −10 or less, the black display appears to be colored blue, and the display performance is deteriorated. That is, according to the embodiment of the present invention, it is possible to obtain a polarizing element that can realize an excellent hue at the time of displaying black. The orthogonal b value can be measured by a spectrophotometer typified by LPF200.
 偏光子は、好ましくは、波長380nm~780nmのいずれかの波長で吸収二色性を示す。偏光子の単体透過率は、好ましくは46.0%以下であり、より好ましくは45.0%以下である。一方、単体透過率は、好ましくは41.5%以上であり、より好ましくは42.0%以上であり、さらに好ましくは42.5%以上である。偏光子の偏光度は、好ましくは99.990%以上であり、好ましくは99.998%以下である。本発明の実施形態に用いられる偏光子は、高い単体透過率と高い偏光度とを両立し得る。上記単体透過率は、代表的には、紫外可視分光光度計を用いて測定し、視感度補正を行なったY値である。また、単体透過率は、偏光板の一方の表面の屈折率を1.50、もう一方の表面の屈折率を1.53に換算した時の値である。上記偏光度は、代表的には、紫外可視分光光度計を用いて測定して視感度補正を行なった平行透過率Tpおよび直交透過率Tcに基づいて、下記式により求められる。
   偏光度(%)={(Tp-Tc)/(Tp+Tc)}1/2×100
The splitter preferably exhibits absorption dichroism at any wavelength of 380 nm to 780 nm. The simple substance transmittance of the modulator is preferably 46.0% or less, and more preferably 45.0% or less. On the other hand, the single transmittance is preferably 41.5% or more, more preferably 42.0% or more, and further preferably 42.5% or more. The degree of polarization of the splitter is preferably 99.990% or more, and preferably 99.998% or less. The polarizing element used in the embodiment of the present invention can have both a high single transmittance and a high degree of polarization. The single transmittance is typically a Y value measured with an ultraviolet-visible spectrophotometer and corrected for luminosity factor. The single transmittance is a value when the refractive index of one surface of the polarizing plate is converted to 1.50 and the refractive index of the other surface is converted to 1.53. The degree of polarization is typically obtained by the following formula based on the parallel transmittance Tp and the orthogonal transmittance Tc measured by using an ultraviolet-visible spectrophotometer and corrected for luminosity factor.
Degree of polarization (%) = {(Tp-Tc) / (Tp + Tc)} 1/2 × 100
 偏光子の厚みは、好ましくは15μm以下であり、より好ましくは12μm以下であり、さらに好ましくは10μm以下であり、特に好ましくは8μm以下である。一方、偏光子の厚みは、例えば1μm以上であり、また例えば2μm以上であり、また例えば3μm以上であり得る。偏光子の厚みがこのような範囲であれば、加熱時のカールを良好に抑制することができ、および、良好な加熱時の外観耐久性が得られる。 The thickness of the splitter is preferably 15 μm or less, more preferably 12 μm or less, still more preferably 10 μm or less, and particularly preferably 8 μm or less. On the other hand, the thickness of the polarizing element may be, for example, 1 μm or more, for example, 2 μm or more, and may be, for example, 3 μm or more. When the thickness of the splitter is in such a range, curling during heating can be satisfactorily suppressed, and good appearance durability during heating can be obtained.
 偏光子を形成する樹脂フィルムは、単層の樹脂フィルムであってもよく、二層以上の積層体であってもよい。 The resin film forming the polarizing element may be a single-layer resin film or a laminated body having two or more layers.
 単層の樹脂フィルムから構成される偏光子の具体例としては、ポリビニルアルコール(PVA)系フィルム、部分ホルマール化PVA系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルム等の親水性高分子フィルムに、ヨウ素や二色性染料等の二色性物質による染色処理および延伸処理が施されたもの、PVAの脱水処理物やポリ塩化ビニルの脱塩酸処理物等ポリエン系配向フィルム等が挙げられる。好ましくは、光学特性に優れることから、PVA系フィルムをヨウ素で染色し一軸延伸して得られた偏光子が用いられる。 Specific examples of the polarizing element composed of a single-layer resin film include a hydrophilic polymer film such as a polyvinyl alcohol (PVA) -based film, a partially formalized PVA-based film, and an ethylene / vinyl acetate copolymer-based partially saponified film. Examples thereof include those which have been dyed and stretched with a bicolor substance such as iodine and a bicolor dye, and polyene-based oriented films such as a dehydrated product of PVA and a dehydrogenated product of polyvinyl chloride. Preferably, since the PVA-based film is excellent in optical properties, a polarizing element obtained by dyeing a PVA-based film with iodine and uniaxially stretching it is used.
 上記ヨウ素による染色は、例えば、PVA系フィルムをヨウ素水溶液に浸漬することにより行われる。上記一軸延伸の延伸倍率は、好ましくは3~7倍である。延伸は、染色処理後に行ってもよいし、染色しながら行ってもよい。また、延伸してから染色してもよい。必要に応じて、PVA系フィルムに、膨潤処理、架橋処理、洗浄処理、乾燥処理等が施される。例えば、染色の前にPVA系フィルムを水に浸漬して水洗することで、PVA系フィルム表面の汚れやブロッキング防止剤を洗浄することができるだけでなく、PVA系フィルムを膨潤させて染色ムラなどを防止することができる。 The dyeing with iodine is performed, for example, by immersing a PVA-based film in an aqueous iodine solution. The draw ratio of the uniaxial stretching is preferably 3 to 7 times. The stretching may be performed after the dyeing treatment or may be performed while dyeing. Further, it may be dyed after being stretched. If necessary, the PVA-based film is subjected to a swelling treatment, a crosslinking treatment, a cleaning treatment, a drying treatment and the like. For example, by immersing the PVA-based film in water and washing it with water before dyeing, it is possible not only to clean the dirt and blocking inhibitor on the surface of the PVA-based film, but also to swell the PVA-based film to prevent uneven dyeing. Can be prevented.
 積層体を用いて得られる偏光子の具体例としては、樹脂基材と当該樹脂基材に積層されたPVA系樹脂層(PVA系樹脂フィルム)との積層体、あるいは、樹脂基材と当該樹脂基材に塗布形成されたPVA系樹脂層との積層体を用いて得られる偏光子が挙げられる。樹脂基材と当該樹脂基材に塗布形成されたPVA系樹脂層との積層体を用いて得られる偏光子は、例えば、PVA系樹脂溶液を樹脂基材に塗布し、乾燥させて樹脂基材上にPVA系樹脂層を形成して、樹脂基材とPVA系樹脂層との積層体を得ること;当該積層体を延伸および染色してPVA系樹脂層を偏光子とすること;により作製され得る。本実施形態においては、好ましくは、樹脂基材の片側に、ハロゲン化物とポリビニルアルコール系樹脂とを含むポリビニルアルコール系樹脂層を形成する。延伸は、代表的には積層体をホウ酸水溶液中に浸漬させて延伸することを含む。さらに、延伸は、必要に応じて、ホウ酸水溶液中での延伸の前に積層体を高温(例えば、95℃以上)で空中延伸することをさらに含み得る。加えて、本実施形態においては、好ましくは、積層体は、長手方向に搬送しながら加熱することにより幅方向に2%以上収縮させる乾燥収縮処理に供される。代表的には、本実施形態の製造方法は、積層体に、空中補助延伸処理と染色処理と水中延伸処理と乾燥収縮処理とをこの順に施すことを含む。補助延伸を導入することにより、熱可塑性樹脂上にPVAを塗布する場合でも、PVAの結晶性を高めることが可能となり、高い光学特性を達成することが可能となる。また、同時にPVAの配向性を事前に高めることで、後の染色工程や延伸工程で水に浸漬された時に、PVAの配向性の低下や溶解などの問題を防止することができ、高い光学特性を達成することが可能になる。さらに、PVA系樹脂層を液体に浸漬した場合において、PVA系樹脂層がハロゲン化物を含まない場合に比べて、ポリビニルアルコール分子の配向の乱れ、および配向性の低下が抑制され得る。これにより、染色処理および水中延伸処理など、積層体を液体に浸漬して行う処理工程を経て得られる偏光子の光学特性を向上し得る。さらに、乾燥収縮処理により積層体を幅方向に収縮させることにより、光学特性を向上させることができる。得られた樹脂基材/偏光子の積層体はそのまま用いてもよく(すなわち、樹脂基材を偏光子の保護層としてもよく)、樹脂基材/偏光子の積層体から樹脂基材を剥離し、当該剥離面に目的に応じた任意の適切な保護層を積層して用いてもよい。このような偏光子の製造方法の詳細は、例えば特開2012-73580号公報、特許第6470455号に記載されている。これらの公報は、その全体の記載が本明細書に参考として援用される。 Specific examples of the polarizing element obtained by using the laminate include a laminate of a resin base material and a PVA-based resin layer (PVA-based resin film) laminated on the resin base material, or a resin base material and the resin. Examples thereof include a polarizing element obtained by using a laminate with a PVA-based resin layer coated and formed on a base material. The polarizing element obtained by using the laminate of the resin base material and the PVA-based resin layer coated and formed on the resin base material is, for example, a resin base material obtained by applying a PVA-based resin solution to the resin base material and drying it. It is produced by forming a PVA-based resin layer on the PVA-based resin layer to obtain a laminate of a resin base material and a PVA-based resin layer; and stretching and dyeing the laminate to make the PVA-based resin layer a stator. obtain. In the present embodiment, a polyvinyl alcohol-based resin layer containing a halide and a polyvinyl alcohol-based resin is preferably formed on one side of the resin base material. Stretching typically involves immersing the laminate in an aqueous boric acid solution for stretching. Further, stretching may further comprise, if necessary, stretching the laminate in the air at a high temperature (eg, 95 ° C. or higher) prior to stretching in boric acid aqueous solution. In addition, in the present embodiment, preferably, the laminate is subjected to a drying shrinkage treatment in which the laminate is shrunk by 2% or more in the width direction by heating while being conveyed in the longitudinal direction. Typically, the production method of the present embodiment includes subjecting the laminate to an aerial auxiliary stretching treatment, a dyeing treatment, an underwater stretching treatment, and a drying shrinkage treatment in this order. By introducing the auxiliary stretching, even when PVA is applied on the thermoplastic resin, the crystallinity of PVA can be enhanced and high optical characteristics can be achieved. At the same time, by increasing the orientation of PVA in advance, it is possible to prevent problems such as deterioration of PVA orientation and dissolution when immersed in water in a subsequent dyeing step or stretching step, and high optical characteristics. Will be possible to achieve. Further, when the PVA-based resin layer is immersed in a liquid, the disorder of the orientation of the polyvinyl alcohol molecule and the decrease in the orientation can be suppressed as compared with the case where the PVA-based resin layer does not contain a halide. This makes it possible to improve the optical characteristics of the polarizing element obtained through a treatment step of immersing the laminate in a liquid, such as a dyeing treatment and a stretching treatment in water. Further, the optical characteristics can be improved by shrinking the laminated body in the width direction by the drying shrinkage treatment. The obtained resin base material / polarizing element laminate may be used as it is (that is, the resin base material may be used as a protective layer for the polarizing element), and the resin base material is peeled off from the resin base material / polarizing element laminate. Then, an arbitrary appropriate protective layer according to the purpose may be laminated on the peeled surface and used. Details of the method for producing such a polarizing element are described in, for example, Japanese Patent Application Laid-Open No. 2012-73580 and Japanese Patent No. 6470455. The entire description of these publications is incorporated herein by reference.
A-3.第2のPVA系樹脂層
 第2のPVA系樹脂層は、代表的には、PVA系樹脂水溶液を塗布および乾燥することにより形成され得る。水溶液に含まれるPVA系樹脂の平均重合度は、好ましくは100~5000程度、さらに好ましくは1000~4000である。平均ケン化度は、好ましくは85モル%~100モル%程度、さらに好ましくは90モル%~100モル%である。平均重合度および平均ケン化度がこのような範囲であれば、第1のPVA系樹脂層との接着性に優れ、その結果、第1のPVA系樹脂層との界面においてアンモニウムイオンの排出に対する悪影響が防止され得る。その結果、偏光板および位相差層付偏光板を有機EL表示装置に適用した場合に、脱色をさらに良好に抑制することができる。
A-3. Second PVA-based Resin Layer The second PVA-based resin layer can be typically formed by applying and drying a PVA-based resin aqueous solution. The average degree of polymerization of the PVA-based resin contained in the aqueous solution is preferably about 100 to 5000, and more preferably 1000 to 4000. The average saponification degree is preferably about 85 mol% to 100 mol%, more preferably 90 mol% to 100 mol%. When the average degree of polymerization and the average degree of saponification are in such a range, the adhesiveness with the first PVA-based resin layer is excellent, and as a result, with respect to the emission of ammonium ions at the interface with the first PVA-based resin layer. Adverse effects can be prevented. As a result, when the polarizing plate and the polarizing plate with a retardation layer are applied to the organic EL display device, decolorization can be suppressed more satisfactorily.
 PVA系樹脂は、好ましくは、アセトアセチル基を含有する。偏光子と保護層との密着性に優れ、耐久性に優れ得るからである。アセトアセチル基含有PVA系樹脂は、例えば、PVA系樹脂とジケテンとを任意の方法で反応させることにより得られる。アセトアセチル基含有PVA系樹脂のアセトアセチル基変性度は、代表的には0.1モル%以上であり、好ましくは0.1モル%~40モル%程度、さらに好ましくは1モル%~20モル%、特に好ましくは2モル%~7モル%である。なお、アセトアセチル基変性度はNMRにより測定した値である。 The PVA-based resin preferably contains an acetoacetyl group. This is because the adhesion between the polarizing element and the protective layer is excellent, and the durability can be excellent. The acetoacetyl group-containing PVA-based resin can be obtained, for example, by reacting the PVA-based resin with diketene by an arbitrary method. The degree of acetoacetyl group modification of the acetoacetyl group-containing PVA resin is typically 0.1 mol% or more, preferably about 0.1 mol% to 40 mol%, and more preferably 1 mol% to 20 mol. %, Especially preferably 2 mol% to 7 mol%. The degree of acetoacetyl group modification is a value measured by NMR.
 PVA系樹脂水溶液における樹脂濃度は、好ましくは0.1重量%~15重量%、さらに好ましくは0.5重量%~10重量%である。当該水溶液の粘度は、好ましくは1~50mPa・sである。当該水溶液のpHは、好ましくは2~6、より好ましくは2.5~5、さらに好ましくは3~5、特に好ましくは3.5~4.5である。 The resin concentration in the PVA-based resin aqueous solution is preferably 0.1% by weight to 15% by weight, more preferably 0.5% by weight to 10% by weight. The viscosity of the aqueous solution is preferably 1 to 50 mPa · s. The pH of the aqueous solution is preferably 2 to 6, more preferably 2.5 to 5, still more preferably 3 to 5, and particularly preferably 3.5 to 4.5.
 PVA系樹脂水溶液(結果として、第2のPVA系樹脂層)は、1つの実施形態においては、金属化合物コロイドを含み得る。金属化合物コロイドは、金属化合物微粒子が分散媒中に分散しているものであり、微粒子の同種電荷の相互反発に起因して静電的安定化し、永続的に安定性を有し得るものである。  The PVA-based resin aqueous solution (as a result, the second PVA-based resin layer) may contain a metal compound colloid in one embodiment. The metal compound colloid is one in which the metal compound fine particles are dispersed in the dispersion medium, and is electrostatically stabilized due to the mutual repulsion of the same kind of charges of the fine particles, and can have permanent stability. .. It was
 金属化合物コロイドを形成する微粒子の平均粒子径は、透明性、偏光特性等の光学特性に悪影響を及ぼさない限り、任意の適切な値に設定される。好ましくは1nm~100nm、さらに好ましくは1nm~50nmである。微粒子を第2のPVA系樹脂層中に均一に分散させることができるからである。 The average particle size of the fine particles forming the metal compound colloid is set to any appropriate value as long as it does not adversely affect the optical characteristics such as transparency and polarization characteristics. It is preferably 1 nm to 100 nm, more preferably 1 nm to 50 nm. This is because the fine particles can be uniformly dispersed in the second PVA-based resin layer.
 金属化合物としては、任意の適切な化合物が用いられる。例えば、アルミナ、シリカ、ジルコニア、チタニア等の金属酸化物;ケイ酸アルミニウム、炭酸カルシウム、ケイ酸マグネシウム、炭酸亜鉛、炭酸バリウム、リン酸カルシウム等の金属塩;セライト、タルク、クレイ、カオリン等の鉱物が挙げられる。正電荷を有する金属化合物コロイドが好ましく用いられる。当該金属化合物としては、アルミナ、チタニア等が挙げられ、特に好ましくはアルミナである。 As the metal compound, any suitable compound is used. For example, metal oxides such as alumina, silica, zirconia and titania; metal salts such as aluminum silicate, calcium carbonate, magnesium silicate, zinc carbonate, barium carbonate and calcium phosphate; minerals such as celite, talc, clay and kaolin. Be done. A positively charged metal compound colloid is preferably used. Examples of the metal compound include alumina, titania and the like, and alumina is particularly preferable.
A-4.保護層
 視認側保護層30および内側保護層(存在する場合)は、それぞれ、偏光子の保護層として使用できる任意の適切なフィルムで形成される。当該フィルムの主成分となる材料の具体例としては、トリアセチルセルロース(TAC)等のセルロース系樹脂や、ポリエステル系、ポリビニルアルコール系、ポリカーボネート系、ポリアミド系、ポリイミド系、ポリエーテルスルホン系、ポリスルホン系、ポリスチレン系、ポリノルボルネン系、ポリオレフィン系、(メタ)アクリル系、アセテート系等の透明樹脂等が挙げられる。また、(メタ)アクリル系、ウレタン系、(メタ)アクリルウレタン系、エポキシ系、シリコーン系等の熱硬化型樹脂または紫外線硬化型樹脂等も挙げられる。この他にも、例えば、シロキサン系ポリマー等のガラス質系ポリマーも挙げられる。また、特開2001-343529号公報(WO01/37007)に記載のポリマーフィルムも使用できる。このフィルムの材料としては、例えば、側鎖に置換または非置換のイミド基を有する熱可塑性樹脂と、側鎖に置換または非置換のフェニル基ならびにニトリル基を有する熱可塑性樹脂を含有する樹脂組成物が使用でき、例えば、イソブテンとN-メチルマレイミドからなる交互共重合体と、アクリロニトリル・スチレン共重合体とを有する樹脂組成物が挙げられる。当該ポリマーフィルムは、例えば、上記樹脂組成物の押出成形物であり得る。
A-4. Protective Layer The visible side protective layer 30 and the inner protective layer (if any) are each formed of any suitable film that can be used as a protective layer for the stator. Specific examples of the material that is the main component of the film include cellulose-based resins such as triacetyl cellulose (TAC), polyester-based, polyvinyl alcohol-based, polycarbonate-based, polyamide-based, polyimide-based, polyethersulfone-based, and polysulfone-based. , Polyester-based, polycarbonate-based, polyolefin-based, (meth) acrylic-based, acetate-based transparent resins and the like. Further, thermosetting resins such as (meth) acrylic, urethane, (meth) acrylic urethane, epoxy, and silicone, or ultraviolet curable resins can also be mentioned. In addition to this, for example, glassy polymers such as siloxane-based polymers can also be mentioned. Further, the polymer film described in JP-A-2001-343529 (WO01 / 37007) can also be used. As the material of this film, for example, a resin composition containing a thermoplastic resin having a substituted or unsubstituted imide group in the side chain and a thermoplastic resin having a substituted or unsubstituted phenyl group and a nitrile group in the side chain. Can be used, and examples thereof include a resin composition having an alternating copolymer composed of isobutene and N-methylmaleimide and an acrylonitrile / styrene copolymer. The polymer film can be, for example, an extruded product of the above resin composition.
 視認側保護層は、その透湿度が好ましくは200g/m・24h以上であり、より好ましくは300g/m・24h以上であり、さらに好ましくは330g/m・24h以上であり、特に好ましくは360g/m・24h以上であり、とりわけ好ましくは400g/m・24h以上である。視認側保護層の透湿度の上限は、例えば1000g/m・24hであり得る。視認側保護層の透湿度がこのような範囲であれば、アンモニウムイオンの排出がさらに促進され、結果として、偏光板および位相差層付偏光板の脱色をさらに良好に抑制することができる。この場合、視認側保護層は、好ましくはTACフィルムで構成され得る。なお、透湿度は、JIS Z 0208に準じて測定され得る。 The visual-viewing side protective layer has a moisture permeability of preferably 200 g / m 2.24 h or more, more preferably 300 g / m 2.24 h or more, still more preferably 330 g / m 2.24 h or more , and particularly preferably. Is 360 g / m 2.24 hours or more, and particularly preferably 400 g / m 2.24 hours or more. The upper limit of the moisture permeability of the visible side protective layer may be, for example, 1000 g / m 2.24 h. When the moisture permeability of the visual-viewing side protective layer is within such a range, the emission of ammonium ions is further promoted, and as a result, the decolorization of the polarizing plate and the polarizing plate with a retardation layer can be further suppressed. In this case, the visible side protective layer may preferably be composed of a TAC film. The moisture permeability can be measured according to JIS Z 0208.
 視認側保護層には、必要に応じて、ハードコート処理、反射防止処理、スティッキング防止処理、アンチグレア処理等の表面処理が施されていてもよい。さらに/あるいは、視認側保護層には、必要に応じて、偏光サングラスを介して視認する場合の視認性を改善する処理(代表的には、(楕)円偏光機能を付与すること、超高位相差を付与すること)が施されていてもよい。このような処理を施すことにより、偏光サングラス等の偏光レンズを介して表示画面を視認した場合でも、優れた視認性を実現することができる。したがって、偏光板および位相差層付偏光板は、屋外で用いられ得る画像表示装置にも好適に適用され得る。 The visible side protective layer may be subjected to surface treatment such as hard coat treatment, antireflection treatment, sticking prevention treatment, and antiglare treatment, if necessary. Further / or, if necessary, the visual-viewing side protective layer is provided with a process for improving visibility when visually recognizing through polarized sunglasses (typically, a (elliptical) circular polarization function is imparted, and an ultra-high level is provided. (Giving a phase difference) may be applied. By performing such processing, excellent visibility can be realized even when the display screen is visually recognized through a polarizing lens such as polarized sunglasses. Therefore, the polarizing plate and the polarizing plate with a retardation layer can be suitably applied to an image display device that can be used outdoors.
 視認側保護層30の厚みは、好ましくは10μm~60μm、より好ましくは15μm~50μmである。なお、表面処理が施されている場合、視認側保護層30の厚みは、表面処理層の厚みを含めた厚みである。 The thickness of the visible side protective layer 30 is preferably 10 μm to 60 μm, more preferably 15 μm to 50 μm. When the surface treatment is applied, the thickness of the visible side protective layer 30 is the thickness including the thickness of the surface treatment layer.
 内側保護層(存在する場合)は、1つの実施形態においては、光学的に等方性であることが好ましい。本明細書において「光学的に等方性である」とは、面内位相差Re(550)が0nm~10nmであり、厚み方向の位相差Rth(550)が-10nm~+10nmであることをいう。別の保護層の厚みは、好ましくは5μm~80μm、より好ましくは10μm~40μm、さらに好ましくは10μm~30μmである。本発明の実施形態においては、内側保護層は好ましくは省略され得る。 The inner protective layer (if present) is preferably optically isotropic in one embodiment. As used herein, "optically isotropic" means that the in-plane retardation Re (550) is 0 nm to 10 nm and the thickness direction retardation Rth (550) is -10 nm to +10 nm. say. The thickness of the other protective layer is preferably 5 μm to 80 μm, more preferably 10 μm to 40 μm, and even more preferably 10 μm to 30 μm. In embodiments of the invention, the inner protective layer may preferably be omitted.
A-5.粘着剤層
 粘着剤層を構成する粘着剤としては、代表的には、アクリル系粘着剤、ゴム系粘着剤、シリコーン系粘着剤、ポリエステル系粘着剤、ウレタン系粘着剤、エポキシ系粘着剤、およびポリエーテル系粘着剤が挙げられる。粘着剤のベース樹脂を形成するモノマーの種類、数、組み合わせおよび配合比、ならびに、架橋剤の配合量、反応温度、反応時間等を調整することにより、目的に応じた所望の特性を有する粘着剤を調製することができる。粘着剤のベース樹脂は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。透明性、加工性および耐久性などの観点から、アクリル系粘着剤(アクリル系粘着剤組成物)が好ましい。アクリル系粘着剤組成物は、代表的には、(メタ)アクリル系ポリマーを主成分として含む。(メタ)アクリル系ポリマーは、粘着剤組成物の固形分中、例えば50重量%以上、好ましくは70重量%以上、より好ましくは90重量%以上の割合で粘着剤組成物に含有され得る。(メタ)アクリル系ポリマーは、モノマー単位としてアルキル(メタ)アクリレートを主成分として含有する。なお、(メタ)アクリレートはアクリレートおよび/またはメタクリレートをいう。アルキル(メタ)アクリレートは、(メタ)アクリル系ポリマーを形成するモノマー成分中、好ましくは80重量%以上、より好ましくは90重量%以上の割合で含有され得る。アルキル(メタ)アクリレートのアルキル基としては、例えば、1個~18個の炭素原子を有する直鎖状または分岐鎖状のアルキル基が挙げられる。当該アルキル基の平均炭素数は、好ましくは3個~9個であり、より好ましくは3個~6個である。好ましいアルキル(メタ)アクリレートは、ブチルアクリレートである。(メタ)アクリル系ポリマーを構成するモノマー(共重合モノマー)としては、アルキル(メタ)アクリレート以外に、カルボキシル基含有モノマー、ヒドロキシル基含有モノマー、アミド基含有モノマー、芳香環含有(メタ)アクリレート、複素環含有ビニル系モノマー等が挙げられる。アクリル系粘着剤組成物は、好ましくは、シランカップリング剤および/または架橋剤を含有し得る。シランカップリング剤としては、例えばエポキシ基含有シランカップリング剤が挙げられる。架橋剤としては、例えば、イソシアネート系架橋剤、過酸化物系架橋剤が挙げられる。さらに、アクリル系粘着剤組成物は、酸化防止剤および/または導電剤を含有してもよい。粘着剤の詳細は、例えば、特開2006-183022号公報、特開2015-199942号公報、特開2018-053114号公報、特開2016-190996号公報、国際公開第2018/008712号に記載されており、これらの公報の記載は本明細書に参考として援用される。
A-5. Adhesive layer Typical examples of the adhesive constituting the adhesive layer include acrylic adhesives, rubber adhesives, silicone adhesives, polyester adhesives, urethane adhesives, epoxy adhesives, and adhesives. Examples include polyether adhesives. A pressure-sensitive adhesive having desired characteristics according to the purpose by adjusting the type, number, combination and blending ratio of the monomers forming the base resin of the pressure-sensitive adhesive, as well as the blending amount of the cross-linking agent, the reaction temperature, the reaction time and the like. Can be prepared. The base resin of the pressure-sensitive adhesive may be used alone or in combination of two or more. An acrylic pressure-sensitive adhesive (acrylic pressure-sensitive adhesive composition) is preferable from the viewpoint of transparency, processability, durability and the like. The acrylic pressure-sensitive adhesive composition typically contains a (meth) acrylic polymer as a main component. The (meth) acrylic polymer can be contained in the pressure-sensitive adhesive composition in a proportion of, for example, 50% by weight or more, preferably 70% by weight or more, and more preferably 90% by weight or more in the solid content of the pressure-sensitive adhesive composition. The (meth) acrylic polymer contains an alkyl (meth) acrylate as a main component as a monomer unit. In addition, (meth) acrylate means acrylate and / or methacrylate. The alkyl (meth) acrylate may be contained in a proportion of preferably 80% by weight or more, more preferably 90% by weight or more, in the monomer component forming the (meth) acrylic polymer. Examples of the alkyl group of the alkyl (meth) acrylate include a linear or branched alkyl group having 1 to 18 carbon atoms. The average number of carbon atoms of the alkyl group is preferably 3 to 9, and more preferably 3 to 6. The preferred alkyl (meth) acrylate is butyl acrylate. As the monomer (copolymerization monomer) constituting the (meth) acrylic polymer, in addition to the alkyl (meth) acrylate, a carboxyl group-containing monomer, a hydroxyl group-containing monomer, an amide group-containing monomer, an aromatic ring-containing (meth) acrylate, and a complex Examples include ring-containing vinyl-based monomers. The acrylic pressure-sensitive adhesive composition may preferably contain a silane coupling agent and / or a cross-linking agent. Examples of the silane coupling agent include epoxy group-containing silane coupling agents. Examples of the cross-linking agent include isocyanate-based cross-linking agents and peroxide-based cross-linking agents. Further, the acrylic pressure-sensitive adhesive composition may contain an antioxidant and / or a conductive agent. Details of the pressure-sensitive adhesive are described in, for example, JP-A-2006-183022, JP-A-2015-199942, JP-A-2018-053114, JP-A-2016-190996, and International Publication No. 2018/008712. The description of these publications is incorporated herein by reference.
 粘着剤は、25℃における貯蔵弾性率が、好ましくは1.0×10Pa~1.0×10Paであり、より好ましくは1.0×10Pa~1.0×10Paである。粘着剤の貯蔵弾性率がこのような範囲であれば、層間のはがれ、または浮きなどを抑制することができ、アンモニウムイオンの排出に対する悪影響を防止することができる。 The adhesive has a storage elastic modulus at 25 ° C., preferably 1.0 × 10 4 Pa to 1.0 × 10 6 Pa, and more preferably 1.0 × 10 4 Pa to 1.0 × 10 5 Pa. Is. When the storage elastic modulus of the pressure-sensitive adhesive is within such a range, peeling or floating between layers can be suppressed, and adverse effects on the emission of ammonium ions can be prevented.
 粘着剤は、70℃におけるクリープ量ΔCrが、例えば65μm以下であり、50μm以下、45μm以下、40μm以下、35μm以下、30μm以下、25μm以下、20μm以下、さらには15μm以下であってもよい。クリープ量ΔCrの下限は、例えば0.5μmである。クリープ量がこのような範囲であれば、貯蔵弾性率の場合と同様に、層間のはがれ、または浮きなどを抑制することができ、アンモニウムイオンの排出に対する悪影響を防止することができる。なお、クリープ値は、例えば以下の手順で測定され得る:縦20mm×横20mmの接合面にてステンレス製試験板に貼り付けた粘着剤に対して、試験板を固定した状態で500gfの荷重を鉛直下方に加える。荷重を加え始めてから100秒後及び3600秒後の各時点における試験板に対する粘着剤のクリープ量(ずれ量)を測定し、それぞれCr100及びCr3600とする。測定したCr100及びCr3600から、式ΔCr=Cr3600-Cr100によりクリープ量ΔCrが求められ得る。 The pressure-sensitive adhesive may have a creep amount ΔCr at 70 ° C. of, for example, 65 μm or less, 50 μm or less, 45 μm or less, 40 μm or less, 35 μm or less, 30 μm or less, 25 μm or less, 20 μm or less, and further 15 μm or less. The lower limit of the creep amount ΔCr is, for example, 0.5 μm. When the creep amount is in such a range, peeling or floating between layers can be suppressed and an adverse effect on the emission of ammonium ions can be prevented, as in the case of the storage elastic modulus. The creep value can be measured, for example, by the following procedure: A load of 500 gf is applied to the adhesive adhered to the stainless steel test plate on the joint surface of 20 mm in length × 20 mm in width with the test plate fixed. Add vertically below. The creep amount (displacement amount) of the adhesive to the test plate at each time point 100 seconds and 3600 seconds after the start of applying the load is measured, and the values are Cr 100 and Cr 3600 , respectively. From the measured Cr 100 and Cr 3600 , the creep amount ΔCr can be obtained by the formula ΔCr = Cr 3600 −Cr 100 .
 粘着剤層の厚みは、好ましくは2μm~40μmであり、より好ましくは3μm~20μmであり、さらに好ましくは4μm~15μmである。 The thickness of the pressure-sensitive adhesive layer is preferably 2 μm to 40 μm, more preferably 3 μm to 20 μm, and further preferably 4 μm to 15 μm.
B.位相差層付偏光板
 上記A-1項に記載のとおり、本発明の実施形態による偏光板は、粘着剤層40を介して位相差層が貼り合わせられて、位相差層付偏光板を構成してもよい。したがって、位相差層付偏光板もまた、本発明の実施形態に包含され得る。本発明の実施形態による位相差層付偏光板は、有機EL表示装置に適用した場合に脱色が顕著に抑制され得る。位相差層は、代表的には、円偏光機能または楕円偏光機能を有する。位相差層は、代表的には、逆分散波長特性を示し、かつ、λ/4板として機能し得る。位相差層は、樹脂フィルムの延伸フィルムであってもよく、液晶化合物の配向固化層(液晶配向固化層)であってもよい。位相差層は、好ましくは、樹脂フィルムの延伸フィルムである。このような構成であれば、アンモニウムイオンの偏光子への侵入を良好に抑制することができる。樹脂フィルムを構成する樹脂の代表例としては、ポリカーボネート系樹脂またはポリエステルカーボネート系樹脂が挙げられる。
B. Polarizing plate with retardation layer As described in item A-1, the polarizing plate according to the embodiment of the present invention comprises a polarizing plate with a retardation layer in which the retardation layers are bonded via the pressure-sensitive adhesive layer 40. You may. Therefore, a polarizing plate with a retardation layer can also be included in the embodiment of the present invention. The polarizing plate with a retardation layer according to the embodiment of the present invention can significantly suppress decolorization when applied to an organic EL display device. The retardation layer typically has a circular polarization function or an elliptically polarizing function. The retardation layer typically exhibits reverse dispersion wavelength characteristics and can function as a λ / 4 plate. The retardation layer may be a stretched film of a resin film or an oriented solidified layer of a liquid crystal compound (liquid crystal oriented solidified layer). The retardation layer is preferably a stretched film of a resin film. With such a configuration, the invasion of ammonium ions into the stator can be satisfactorily suppressed. Typical examples of the resin constituting the resin film include a polycarbonate-based resin and a polyester carbonate-based resin.
C.有機EL表示装置
 上記A項に記載の偏光板および上記B項に記載の位相差層付偏光板は、有機EL表示装置に適用され得る。したがって、偏光板または位相差層付偏光板を含む有機EL表示装置もまた、本発明の実施形態に包含される。有機EL表示装置は、代表的には、その視認側に偏光板または位相差層付偏光板を備える。位相差層付偏光板は、位相差層が有機ELセル側となるように(偏光板が視認側となるように)積層されている。1つの実施形態においては、有機EL表示装置は、湾曲した形状(実質的には、湾曲した表示画面)を有し、および/または、屈曲もしくは折り曲げ可能である。上記のとおり、本発明者らは、偏光板および位相差層付偏光板を有機EL表示装置に適用した場合に、有機ELパネルから発生するアンモニア(実質的には、アンモニウムイオン)により偏光板および位相差層付偏光板が脱色するという新たな課題を発見し、上記A項に記載の偏光板および上記B項に記載の位相差層付偏光板により当該課題を解決した。すなわち、有機EL表示装置において、本発明の実施形態による偏光板および位相差層付偏光板の効果が顕著である。
C. Organic EL Display Device The polarizing plate according to the above item A and the polarizing plate with a retardation layer according to the above item B can be applied to the organic EL display device. Therefore, an organic EL display device including a polarizing plate or a polarizing plate with a retardation layer is also included in the embodiment of the present invention. The organic EL display device typically includes a polarizing plate or a polarizing plate with a retardation layer on the visible side thereof. The polarizing plate with a retardation layer is laminated so that the retardation layer is on the organic EL cell side (the polarizing plate is on the visual recognition side). In one embodiment, the organic EL display device has a curved shape (substantially a curved display screen) and / or is bendable or bendable. As described above, when the polarizing plate and the polarizing plate with a retardation layer are applied to the organic EL display device, the present inventors use the polarizing plate and the polarizing plate by ammonia (substantially ammonium ions) generated from the organic EL panel. A new problem of decolorization of a polarizing plate with a retardation layer was discovered, and the problem was solved by the polarizing plate according to the above item A and the polarizing plate with a retardation layer according to the above item B. That is, in the organic EL display device, the effect of the polarizing plate and the polarizing plate with a retardation layer according to the embodiment of the present invention is remarkable.
 以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。各特性の測定方法は以下の通りである。なお、特に明記しない限り、実施例および比較例における「部」および「%」は重量基準である。
(1)厚み
 第1のPVA系樹脂層の厚みは、干渉膜厚計(大塚電子社製、製品名「MCPD-3000」)を用いて測定した。また、第2のPVA系樹脂層の厚みは、実施例および比較例の偏光板を切削し、偏光板断面を走査電子顕微鏡(日本電子株式会社製 「JSM7100F」)を用いて観察し、当該顕微鏡画像から測定した。
(2)単体透過率および偏光度
 実施例および比較例に用いた偏光板について、紫外可視分光光度計(大塚電子社製「LPF200」)を用いて測定した単体透過率Ts、平行透過率Tp、直交透過率Tcをそれぞれ、偏光子のTs、TpおよびTcとした。これらのTs、TpおよびTcは、JIS Z8701の2度視野(C光源)により測定して視感度補正を行なったY値である。得られたTpおよびTcから、下記式により偏光度Pを求めた。
   偏光度P(%)={(Tp-Tc)/(Tp+Tc)}1/2×100
 測定波長210nmの直交透過率Tc210から直交吸光度A210を、および、測定波長550nmの直交透過率Tc550から直交吸光度A550を、それぞれ日立ハイテクノロジーズ社製「U4100」を用いて求めた。また、測定波長470nmの直交透過率Tc470から直交吸光度A470を、および、測定波長600nmの直交透過率Tc600から直交吸光度A600を、それぞれ日本分光社製、製品名「V-7100」を用いて求めた。
(3)透湿度
 JIS Z 0208に準じて測定した。具体的には、実施例および比較例で用いた保護層(を構成するフィルム)を10cmΦの円状に切り出し、測定試料とした。この測定試料について、日立製作所社製「MOCON」を用いて、40℃、92%RHの試験条件で透湿度を測定した。
(4)直交b値
 実施例および比較例に用いた偏光板を、紫外可視分光光度計(日本分光社製、製品名「V7100」)を用いて測定し、クロスニコル状態での色相を求めた。直交b値が低い(負の値で、かつ、絶対値が大きい)偏光板ほど、色相がニュートラルではなく青色になっていることを示している。
(5)ホウ酸濃度
  実施例および比較例で得られた偏光板について、フーリエ変換赤外分光光度計(FT-IR)(Perkin  Elmer社製、商品名「SPECTRUM2000」)を用いて、偏光を測定光とする全反射減衰分光(ATR)測定によりホウ酸ピーク(665cm-1)の強度および参照ピーク(2941cm-1)の強度を測定した。得られたホウ酸ピーク強度および参照ピーク強度からホウ酸量指数を下記式により算出し、さらに、算出したホウ酸量指数から下記式によりホウ酸濃度を決定した。
  (ホウ酸量指数)=(ホウ酸ピーク665cm-1の強度)/(参照ピーク2941cm-1の強度)
  (ホウ酸濃度)=(ホウ酸量指数)×6.61+0.47
(6)アンモニア脱色試験
 ガラス瓶(直径30mmおよび深さ50mmの円筒状)に10%アンモニア水溶液1.5mlを入れた。このとき、アンモニア水溶液の液面からガラス瓶の口(上端)までの距離は約30mmであった。実施例および比較例で得られた偏光板を30mm×30mmサイズに切り出し、測定資料とした。この測定資料でガラス瓶の口がすべて覆われるようにして、かつ、蒸気が隙間から漏れないようにして、粘着剤層を介してガラス瓶の口の縁に測定資料を貼り合わせた。測定資料で覆われたガラス瓶を60℃で2時間加熱した。偏光板(実質的には、偏光子)の加熱前の偏光度をP、加熱後の偏光度をP20として、下記式から偏光度変化の絶対値|ΔP|を算出した。|ΔP|が小さいほど、アンモニアによる脱色が抑制されていることを意味する。
   |ΔP|=|P20-P
得られたΔPに基づいて、以下の基準で評価した。
   A:|ΔP|が10%以下
   B:|ΔP|が10%より大きく25%以下
   C:|ΔP|が25%より大きく50%以下
   D:|ΔP|が50%より大きく75%以下
   E:|ΔP|が75%より大きい
Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples. The measurement method of each characteristic is as follows. Unless otherwise specified, "parts" and "%" in Examples and Comparative Examples are based on weight.
(1) Thickness The thickness of the first PVA-based resin layer was measured using an interference film thickness meter (manufactured by Otsuka Electronics Co., Ltd., product name "MCPD-3000"). The thickness of the second PVA-based resin layer was determined by cutting the polarizing plates of Examples and Comparative Examples and observing the cross section of the polarizing plate using a scanning electron microscope (“JSM7100F” manufactured by JEOL Ltd.). Measured from the image.
(2) Single transmittance and degree of polarization The polarizing plates used in the Examples and Comparative Examples were measured with an ultraviolet-visible spectrophotometer (“LPF200” manufactured by Otsuka Electronics Co., Ltd.), and the single transmittance Ts and parallel transmittance Tp were measured. The orthogonal transmittance Tc was defined as Ts, Tp and Tc of the polarizing elements, respectively. These Ts, Tp and Tc are Y values measured by the JIS Z8701 two-degree visual field (C light source) and corrected for luminosity factor. From the obtained Tp and Tc, the degree of polarization P was determined by the following formula.
Degree of polarization P (%) = {(Tp-Tc) / (Tp + Tc)} 1/2 × 100
The orthogonal absorbance A 210 was obtained from the orthogonal transmittance Tc 210 having a measurement wavelength of 210 nm, and the orthogonal absorbance A 550 was obtained from the orthogonal transmittance Tc 550 having a measurement wavelength of 550 nm, respectively, using "U4100" manufactured by Hitachi High-Technologies Corporation. Further, the orthogonal absorbance A 470 is obtained from the orthogonal transmittance Tc 470 having a measurement wavelength of 470 nm, and the orthogonal absorbance A 600 is obtained from the orthogonal transmittance Tc 600 having a measurement wavelength of 600 nm. Obtained using.
(3) Moisture permeability Measured according to JIS Z 0208. Specifically, the protective layer (the film constituting the film) used in Examples and Comparative Examples was cut into a circle of 10 cmΦ and used as a measurement sample. The moisture permeability of this measurement sample was measured using "MOCON" manufactured by Hitachi, Ltd. under the test conditions of 40 ° C. and 92% RH.
(4) Orthogonal b value The polarizing plate used in the Examples and Comparative Examples was measured using an ultraviolet-visible spectrophotometer (manufactured by JASCO Corporation, product name "V7100"), and the hue in the cross Nicol state was determined. .. The lower the orthogonal b value (negative value and larger absolute value), the more the hue is blue rather than neutral.
(5) Boric acid concentration With respect to the polarizing plates obtained in Examples and Comparative Examples, the polarization was measured using a Fourier transform infrared spectrophotometer (FT-IR) (manufactured by PerkinElmer, trade name "SPECTRUM2000"). The intensity of the boric acid peak (665 cm -1 ) and the intensity of the reference peak (2941 cm -1 ) were measured by total reflection spectroscopy (ATR) measurement using light. The boric acid amount index was calculated from the obtained boric acid peak intensity and the reference peak intensity by the following formula, and further, the boric acid concentration was determined from the calculated boric acid amount index by the following formula.
(Boric acid amount index) = (Intensity of boric acid peak 665 cm -1 ) / (Intensity of reference peak 2941 cm -1 )
(Boric acid concentration) = (Boric acid amount index) x 6.61 + 0.47
(6) Ammonia decolorization test 1.5 ml of a 10% aqueous ammonia solution was placed in a glass bottle (cylindrical shape having a diameter of 30 mm and a depth of 50 mm). At this time, the distance from the liquid surface of the aqueous ammonia solution to the mouth (upper end) of the glass bottle was about 30 mm. The polarizing plates obtained in Examples and Comparative Examples were cut out into a size of 30 mm × 30 mm and used as measurement data. The measurement material was attached to the edge of the mouth of the glass bottle via the adhesive layer so that the mouth of the glass bottle was completely covered with this measurement material and the steam did not leak from the gap. The glass bottle covered with the measurement material was heated at 60 ° C. for 2 hours. The absolute value | ΔP | of the change in the degree of polarization was calculated from the following equation, where the degree of polarization of the polarizing plate (substantially the polarizing element) before heating was P 0 and the degree of polarization after heating was P 20 . The smaller | ΔP |, the more the decolorization due to ammonia is suppressed.
| ΔP | = | P 20 -P 0 |
Based on the obtained ΔP, it was evaluated according to the following criteria.
A: | ΔP | is 10% or less B: | ΔP | is greater than 10% and 25% or less C: | ΔP | is greater than 25% and 50% or less D: | ΔP | is greater than 50% and 75% or less E: | ΔP | is greater than 75%
[実施例1]
1.偏光子の作製
 熱可塑性樹脂基材として、長尺状で、Tg約75℃である、非晶質のイソフタル共重合ポリエチレンテレフタレートフィルム(厚み:100μm)を用い、樹脂基材の片面に、コロナ処理を施した。
 ポリビニルアルコール(重合度4200、ケン化度99.2モル%)およびアセトアセチル変性PVA(日本合成化学工業社製、商品名「ゴーセファイマー」)を9:1で混合したPVA系樹脂100重量部に、ヨウ化カリウム13重量部を添加したものを水に溶かし、PVA水溶液(塗布液)を調製した。
 樹脂基材のコロナ処理面に、上記PVA水溶液を塗布して60℃で乾燥することにより、厚み13μmのPVA系樹脂層を形成し、積層体を作製した。
 得られた積層体を、130℃のオーブン内で縦方向(長手方向)に2.4倍に一軸延伸した(空中補助延伸処理)。
 次いで、積層体を、液温40℃の不溶化浴(水100重量部に対して、ホウ酸を4重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(不溶化処理)。
 次いで、液温30℃の染色浴(水100重量部に対して、ヨウ素とヨウ化カリウムを1:7の重量比で配合して得られたヨウ素水溶液)に、最終的に得られる偏光子の単体透過率(Ts)が43.0%となるように濃度を調整しながら60秒間浸漬させた(染色処理)。
 次いで、液温40℃の架橋浴(水100重量部に対して、ヨウ化カリウムを3重量部配合し、ホウ酸を5重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(架橋処理)。
 その後、積層体を、液温70℃のホウ酸水溶液(ホウ酸濃度4重量%、ヨウ化カリウム濃度5重量%)に浸漬させながら、周速の異なるロール間で縦方向(長手方向)に総延伸倍率が5.5倍となるように一軸延伸を行った(水中延伸処理)。
 その後、積層体を液温20℃の洗浄浴(水100重量部に対して、ヨウ化カリウムを3重量部配合して得られた水溶液)に浸漬させた(洗浄処理)。
 その後、約90℃に保たれたオーブン中で乾燥しながら、表面温度が約75℃に保たれたSUS製の加熱ロールに接触させた(乾燥収縮処理)。
 このようにして、樹脂基材上に偏光子を形成し、樹脂基材/偏光子(第1のPVA系樹脂層)の構成を有する積層体を得た。偏光子(第1のPVA系樹脂層)の厚みは5μm、単体透過率は43.0%であった。
[Example 1]
1. 1. Fabrication of Polarizer As a thermoplastic resin base material, an amorphous isophthal copolymer polyethylene terephthalate film (thickness: 100 μm) having a long shape and a Tg of about 75 ° C. was used, and one side of the resin base material was treated with corona. Was given.
100 parts by weight of PVA-based resin in which polyvinyl alcohol (polymerization degree 4200, saponification degree 99.2 mol%) and acetacetyl-modified PVA (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name "Gosefimer") are mixed at a ratio of 9: 1. A PVA aqueous solution (coating solution) was prepared by dissolving 13 parts by weight of potassium iodide in water.
The PVA aqueous solution was applied to the corona-treated surface of the resin base material and dried at 60 ° C. to form a PVA-based resin layer having a thickness of 13 μm, and a laminate was prepared.
The obtained laminate was uniaxially stretched 2.4 times in the vertical direction (longitudinal direction) in an oven at 130 ° C. (aerial auxiliary stretching treatment).
Next, the laminate was immersed in an insolubilizing bath at a liquid temperature of 40 ° C. (a boric acid aqueous solution obtained by blending 4 parts by weight of boric acid with 100 parts by weight of water) for 30 seconds (insolubilization treatment).
Next, in a dyeing bath having a liquid temperature of 30 ° C. (an aqueous iodine solution obtained by mixing iodine and potassium iodide in a weight ratio of 1: 7 with respect to 100 parts by weight of water), the polarizing element finally obtained is charged. It was immersed for 60 seconds while adjusting the concentration so that the simple substance transmittance (Ts) was 43.0% (staining treatment).
Then, it was immersed in a cross-linked bath having a liquid temperature of 40 ° C. (a boric acid aqueous solution obtained by blending 3 parts by weight of potassium iodide and 5 parts by weight of boric acid with respect to 100 parts by weight of water) for 30 seconds. (Crossing treatment).
Then, while immersing the laminate in a boric acid aqueous solution (boric acid concentration 4% by weight, potassium iodide concentration 5% by weight) at a liquid temperature of 70 ° C., the total in the longitudinal direction (longitudinal direction) between rolls having different peripheral speeds. Uniaxial stretching was performed so that the stretching ratio was 5.5 times (underwater stretching treatment).
Then, the laminate was immersed in a washing bath having a liquid temperature of 20 ° C. (an aqueous solution obtained by blending 3 parts by weight of potassium iodide with 100 parts by weight of water) (cleaning treatment).
Then, while drying in an oven kept at about 90 ° C., it was brought into contact with a heating roll made of SUS whose surface temperature was kept at about 75 ° C. (dry shrinkage treatment).
In this way, a polarizing element was formed on the resin substrate, and a laminate having a resin substrate / polarizing element (first PVA-based resin layer) configuration was obtained. The thickness of the splitter (first PVA-based resin layer) was 5 μm, and the single transmittance was 43.0%.
2.偏光板の作製
  上記で得られた積層体の偏光子(第1のPVA系樹脂層)表面に、第2のPVA系樹脂層を形成するとともに保護層を積層した。具体的には以下のとおりである。アセトアセチル変性PVA(重合度1200、アセトアセチル変性度4.6%、ケン化度99.0モル%以上、固形分濃度4%、三菱化学社製、商品名「ゴーセネックスZ-200」)6.02部、正電荷を有するアルミナコロイド(平均粒子径15nm)を固形分濃度3.2%で含有する水溶液25部、および純水18.98部を混合して水系樹脂組成物を得た。第1のPVA系樹脂層表面に、樹脂組成物の乾燥後の厚みが0.09μmになるように塗工し、ロール機を使用してHC-TACフィルムを貼り合わせた後、樹脂組成物を乾燥させることにより、第2のPVA系樹脂層を形成するとともに偏光子と保護層とを貼り合わせた。なお、HC-TACフィルムは、トリアセチルセルロース(TAC)フィルム(厚み25μm)にハードコート(HC)層(厚み7μm)が形成されたフィルムであり、TACフィルムが第1のPVA系樹脂層側となるようにして貼り合わせた。HC-TACフィルムの透湿度は427g/m・24hであった。次いで、樹脂基材を剥離し、当該剥離面にアクリル系粘着剤(厚み20μm)を配置し、視認側保護層(HC-TACフィルム)/第2のPVA系樹脂層/第1のPVA系樹脂層(偏光子)/粘着剤層(アクリル系粘着剤)の構成を有する偏光板を得た。第1のPVA系樹脂層の視認側と反対側表面のホウ酸濃度は17.5重量%であり、第2のPVA系樹脂層の視認側表面のホウ酸濃度は17.0重量%であった。また、得られた偏光板における偏光子のA550/A210は2.59、A470/A600は0.96、直交b値は-1.6であった。得られた偏光板を上記(6)の評価に供した。結果を表1に示す。
 なお、アクリル系粘着剤は以下のようにして調製した。攪拌羽根、温度計、窒素ガス導入管、冷却器を備えた4つ口フラスコに、ブチルアクリレート91部、アクリロイルモルホリン6部、アクリル酸2.7部および4-ヒドロキシブチルアクリレート0.3部を含有するモノマー混合物を仕込んだ。さらに、このモノマー混合物100部に対して、重合開始剤として2,2’-アゾビスイソブチロニトリル0.1部を酢酸エチル100部と共に仕込み、緩やかに攪拌しながら窒素ガスを導入して窒素置換した後、フラスコ内の液温を55℃付近に保って8時間重合反応を行って、重量平均分子量(Mw)270万、Mw/Mn=3.8のアクリル系ポリマーの溶液を調製した。上記アクリル系ポリマー溶液の固形分100部に対して、トリメチロールプロパン/トリレンジイソシアネート付加物(東ソー社製、商品名「コロネートL」)0.1部、過酸化物架橋剤(日本油脂社製、商品名「ナイパーBMT」)0.3部およびエポキシ基含有シランカップリング剤(信越化学工業社製、商品名「KBM-403」)0.2部を配合して、アクリル系粘着剤を得た。
2. 2. Preparation of Polarizing Plate A second PVA-based resin layer was formed on the surface of the polarizing element (first PVA-based resin layer) of the laminate obtained above, and a protective layer was laminated. Specifically, it is as follows. Acetoacetyl-modified PVA (polymerization degree 1200, acetoacetyl modification degree 4.6%, saponification degree 99.0 mol% or more, solid content concentration 4%, manufactured by Mitsubishi Chemical Corporation, trade name "Gosenex Z-200") 6. An aqueous resin composition was obtained by mixing 02 parts, 25 parts of an aqueous solution containing a positively charged alumina colloid (average particle size 15 nm) at a solid content concentration of 3.2%, and 18.98 parts of pure water. The surface of the first PVA-based resin layer is coated so that the thickness of the resin composition after drying is 0.09 μm, and the HC-TAC film is bonded using a roll machine, and then the resin composition is applied. By drying, a second PVA-based resin layer was formed, and the polarizing element and the protective layer were bonded together. The HC-TAC film is a film in which a hard coat (HC) layer (thickness 7 μm) is formed on a triacetyl cellulose (TAC) film (thickness 25 μm), and the TAC film is the first PVA-based resin layer side. It was pasted together so that it would be. The moisture permeability of the HC-TAC film was 427 g / m 2.24 h. Next, the resin base material is peeled off, an acrylic pressure-sensitive adhesive (thickness 20 μm) is placed on the peeled surface, and a visible side protective layer (HC-TAC film) / second PVA-based resin layer / first PVA-based resin is placed. A polarizing plate having a layer (polarizer) / pressure-sensitive adhesive layer (acrylic pressure-sensitive adhesive) was obtained. The boric acid concentration on the surface opposite to the visible side of the first PVA-based resin layer was 17.5% by weight, and the boric acid concentration on the visible side surface of the second PVA-based resin layer was 17.0% by weight. rice field. Further, in the obtained polarizing plate, the A 550 / A 210 of the polarizing element was 2.59, the A 470 / A 600 was 0.96, and the orthogonal b value was −1.6. The obtained polarizing plate was subjected to the evaluation of (6) above. The results are shown in Table 1.
The acrylic adhesive was prepared as follows. A four-necked flask equipped with a stirring blade, a thermometer, a nitrogen gas introduction tube, and a cooler contains 91 parts of butyl acrylate, 6 parts of acryloyl morpholine, 2.7 parts of acrylic acid, and 0.3 parts of 4-hydroxybutyl acrylate. A mixture of monomers was charged. Further, 0.1 part of 2,2'-azobisisobutyronitrile was charged to 100 parts of this monomer mixture together with 100 parts of ethyl acetate as a polymerization initiator, and nitrogen gas was introduced with gentle stirring to introduce nitrogen. After the substitution, the liquid temperature in the flask was maintained at around 55 ° C. and the polymerization reaction was carried out for 8 hours to prepare a solution of an acrylic polymer having a weight average molecular weight (Mw) of 2.7 million and Mw / Mn = 3.8. For 100 parts of the solid content of the acrylic polymer solution, 0.1 part of trimethylolpropane / tolylene diisocyanate adduct (manufactured by Tosoh Co., Ltd., trade name "Coronate L") and peroxide cross-linking agent (manufactured by Nippon Oil & Fats Co., Ltd.) , Product name "Niper BMT") 0.3 parts and epoxy group-containing silane coupling agent (manufactured by Shinetsu Chemical Industry Co., Ltd., product name "KBM-403") 0.2 parts are blended to obtain an acrylic pressure-sensitive adhesive. rice field.
[実施例2]
 偏光子(第1のPVA系樹脂層)を作製する際の架橋処理の条件を変更して偏光子のホウ酸濃度を変更したこと以外は実施例1と同様にして偏光板を得た。第1のPVA系樹脂層の視認側と反対側表面のホウ酸濃度は21.8重量%であり、第2のPVA系樹脂層の視認側表面のホウ酸濃度は19.7重量%であった。得られた偏光板を実施例1と同様の評価に供した。結果を表1に示す。
[Example 2]
A polarizing plate was obtained in the same manner as in Example 1 except that the conditions of the cross-linking treatment for producing the polarizing element (first PVA-based resin layer) were changed to change the boric acid concentration of the polarizing element. The boric acid concentration on the surface opposite to the visible side of the first PVA-based resin layer was 21.8% by weight, and the boric acid concentration on the visible side surface of the second PVA-based resin layer was 19.7% by weight. rice field. The obtained polarizing plate was subjected to the same evaluation as in Example 1. The results are shown in Table 1.
[実施例3]
 第2のPVA系樹脂層の厚みを0.07μmとしたこと、および、偏光子(第1のPVA系樹脂層)を作製する際の架橋処理の条件を変更して偏光子のホウ酸濃度を変更したこと以外は実施例1と同様にして偏光板を得た。第1のPVA系樹脂層の視認側と反対側表面のホウ酸濃度は21.8重量%であり、第2のPVA系樹脂層の視認側表面のホウ酸濃度は20.3重量%であった。得られた偏光板を実施例1と同様の評価に供した。結果を表1に示す。
[Example 3]
The thickness of the second PVA-based resin layer was set to 0.07 μm, and the conditions for the cross-linking treatment when producing the polarizing element (first PVA-based resin layer) were changed to change the boric acid concentration of the polarizing element. A polarizing plate was obtained in the same manner as in Example 1 except that it was changed. The boric acid concentration on the surface opposite to the visible side of the first PVA-based resin layer was 21.8% by weight, and the boric acid concentration on the visible side surface of the second PVA-based resin layer was 20.3% by weight. rice field. The obtained polarizing plate was subjected to the same evaluation as in Example 1. The results are shown in Table 1.
[実施例4]
 偏光子(第1のPVA系樹脂層)を作製する際の架橋処理および延伸処理の条件を変更して偏光子の光学特性を変更したこと以外は実施例1と同様にして樹脂基材/偏光子の構成を有する積層体を得た。偏光子の厚みは5μm、単体透過率は43.0%、A550/A210は1.37、A470/A600は0.90、直交b値は-2.62であった。以下の手順は実施例1と同様にして偏光板を得た。第1のPVA系樹脂層の視認側と反対側表面のホウ酸濃度は14.3重量%であり、第2のPVA系樹脂層の視認側表面のホウ酸濃度は13.9重量%であった。得られた偏光板を実施例1と同様の評価に供した。結果を表1に示す。
[Example 4]
Resin base material / polarization in the same manner as in Example 1 except that the conditions of the cross-linking treatment and the stretching treatment for producing the splitter (first PVA-based resin layer) were changed to change the optical characteristics of the splitter. A laminate having a child composition was obtained. The thickness of the splitter was 5 μm, the single transmittance was 43.0%, A 550 / A 210 was 1.37, A 470 / A 600 was 0.90, and the orthogonal b value was -2.62. The following procedure was the same as in Example 1 to obtain a polarizing plate. The boric acid concentration on the surface opposite to the visible side of the first PVA-based resin layer was 14.3% by weight, and the boric acid concentration on the visible side surface of the second PVA-based resin layer was 13.9% by weight. rice field. The obtained polarizing plate was subjected to the same evaluation as in Example 1. The results are shown in Table 1.
[実施例5]
 厚み30μmのポリビニルアルコール(PVA)系樹脂フィルム(クラレ製、製品名「PE3000」)の長尺ロールを、ロール延伸機により長手方向に5.9倍になるように長手方向に一軸延伸しながら同時に膨潤、染色、架橋、洗浄処理を施し、最後に乾燥処理を施すことにより厚み12μmの偏光子(第1のPVA系樹脂層)を作製した。
 具体的には、膨潤処理は20℃の純水で処理しながら2.2倍に延伸した。次いで、染色処理は得られる偏光子の単体透過率が43.0%になるようにヨウ素濃度が調整されたヨウ素とヨウ化カリウムの重量比が1:7である30℃の水溶液中において処理しながら1.4倍に延伸した。更に、架橋処理は、2段階の架橋処理を採用し、1段階目の架橋処理は40℃のホウ酸とヨウ化カリウムを溶解した水溶液において処理しながら1.2倍に延伸した。1段階目の架橋処理の水溶液のホウ酸含有量は5.0重量%で、ヨウ化カリウム含有量は3.0重量%とした。2段階目の架橋処理は65℃のホウ酸とヨウ化カリウムを溶解した水溶液において処理しながら1.6倍に延伸した。2段階目の架橋処理の水溶液のホウ酸含有量は4.3重量%で、ヨウ化カリウム含有量は5.0重量%とした。また、洗浄処理は、20℃のヨウ化カリウム水溶液で処理した。洗浄処理の水溶液のヨウ化カリウム含有量は2.6重量%とした。最後に、乾燥処理は70℃で5分間乾燥させて偏光子(第1のPVA系樹脂層)を得た。
 この偏光子(第1のPVA系樹脂層)を用いたこと以外は実施例1と同様にして偏光板を得た。ここで、第1のPVA系樹脂層の視認側と反対側表面のホウ酸濃度は24重量%であり、第2のPVA系樹脂層の視認側表面のホウ酸濃度は21.6重量%であった。得られた偏光板を実施例1と同様の評価に供した。結果を表1に示す。
[Example 5]
At the same time, a long roll of a polyvinyl alcohol (PVA) resin film (manufactured by Kuraray, product name "PE3000") having a thickness of 30 μm is uniaxially stretched in the longitudinal direction so as to be 5.9 times in the longitudinal direction by a roll stretching machine. A extruder (first PVA-based resin layer) having a thickness of 12 μm was prepared by performing swelling, dyeing, cross-linking, and washing treatment, and finally drying treatment.
Specifically, the swelling treatment was carried out by stretching 2.2 times while treating with pure water at 20 ° C. Next, the dyeing treatment was carried out in an aqueous solution at 30 ° C. in which the weight ratio of iodine and potassium iodide was adjusted so that the simple substance transmittance of the obtained polarizing element was 43.0% and the weight ratio was 1: 7. However, it was stretched 1.4 times. Further, the cross-linking treatment adopted a two-step cross-linking treatment, and the first-step cross-linking treatment was carried out 1.2 times while being treated with an aqueous solution in which boric acid and potassium iodide were dissolved at 40 ° C. The boric acid content of the aqueous solution of the first-step crosslinking treatment was 5.0% by weight, and the potassium iodide content was 3.0% by weight. The second-step cross-linking treatment was carried out by stretching 1.6 times while treating with an aqueous solution in which boric acid and potassium iodide were dissolved at 65 ° C. The boric acid content of the aqueous solution of the second-step crosslinking treatment was 4.3% by weight, and the potassium iodide content was 5.0% by weight. The washing treatment was carried out with an aqueous potassium iodide solution at 20 ° C. The potassium iodide content of the aqueous solution of the washing treatment was set to 2.6% by weight. Finally, the drying treatment was carried out at 70 ° C. for 5 minutes to obtain a substituent (first PVA-based resin layer).
A polarizing plate was obtained in the same manner as in Example 1 except that this polarizing element (first PVA-based resin layer) was used. Here, the boric acid concentration on the surface opposite to the visible side of the first PVA-based resin layer is 24% by weight, and the boric acid concentration on the visible side surface of the second PVA-based resin layer is 21.6% by weight. there were. The obtained polarizing plate was subjected to the same evaluation as in Example 1. The results are shown in Table 1.
[比較例1]
 実施例1と同様にして樹脂基材/偏光子の構成を有する積層体を得た。積層体の偏光子表面に、紫外線硬化型接着剤(厚み1μm)を介して実施例1と同様のHC-TACフィルムを貼り合わせた。すなわち、第2のPVA系樹脂層は形成しなかった。このようにして、視認側保護層(HC-TACフィルム)/接着剤/偏光子/粘着剤層(アクリル系粘着剤)の構成を有する偏光板を得た。PVA系樹脂層(偏光子のみ)の視認側と反対側表面のホウ酸濃度は13.6重量%であり、視認側表面のホウ酸濃度は15.4重量%であった。得られた偏光板を実施例1と同様の評価に供した。結果を表1に示す。
[Comparative Example 1]
A laminate having a resin substrate / polarizing element configuration was obtained in the same manner as in Example 1. The same HC-TAC film as in Example 1 was attached to the surface of the polarizing element of the laminate via an ultraviolet curable adhesive (thickness 1 μm). That is, the second PVA-based resin layer was not formed. In this way, a polarizing plate having a structure of a visible side protective layer (HC-TAC film) / adhesive / polarizing element / adhesive layer (acrylic adhesive) was obtained. The boric acid concentration on the surface of the PVA-based resin layer (polarizer only) opposite to the visible side was 13.6% by weight, and the boric acid concentration on the visible side surface was 15.4% by weight. The obtained polarizing plate was subjected to the same evaluation as in Example 1. The results are shown in Table 1.
[比較例2]
 偏光子を作製する際の架橋処理の条件を変更して偏光子のホウ酸濃度を変更したこと以外は比較例1と同様にして偏光板を得た。PVA系樹脂層(偏光子のみ)の視認側と反対側表面のホウ酸濃度は16.6重量%であり、視認側表面のホウ酸濃度は18.6重量%であった。得られた偏光板を実施例1と同様の評価に供した。結果を表1に示す。
[Comparative Example 2]
A polarizing plate was obtained in the same manner as in Comparative Example 1 except that the conditions of the cross-linking treatment for producing the polarizing element were changed to change the boric acid concentration of the polarizing element. The boric acid concentration on the surface of the PVA-based resin layer (polarizer only) opposite to the visible side was 16.6% by weight, and the boric acid concentration on the visible side surface was 18.6% by weight. The obtained polarizing plate was subjected to the same evaluation as in Example 1. The results are shown in Table 1.
[比較例3]
 視認側保護層としてHC-COPフィルムを用いたこと以外は実施例1と同様にして偏光板を得た。HC-COPフィルムは、COPフィルム(厚み25μm)にハードコート(HC)層(厚み2μm)が形成されたフィルムであり、その透湿度は35g/m・24hであった。得られた偏光板を実施例1と同様の評価に供した。結果を表1に示す。
[Comparative Example 3]
A polarizing plate was obtained in the same manner as in Example 1 except that an HC-COP film was used as a protective layer on the visual viewing side. The HC-COP film was a film in which a hard coat (HC) layer (thickness 2 μm) was formed on a COP film (thickness 25 μm), and the moisture permeability was 35 g / m 2.24 h. The obtained polarizing plate was subjected to the same evaluation as in Example 1. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[評価]
 表1から明らかなように、本発明の実施例によれば、アンモニアに曝されても偏光度がほとんど変化しない(すなわち、脱色しない)偏光板を得ることができる。すなわち、本発明の実施例によれば、有機EL表示装置に適用した場合に脱色が抑制された偏光板および位相差層付偏光板を実現できることがわかる。一方、比較例の偏光板は偏光機能が大幅に減少している。
[evaluation]
As is clear from Table 1, according to the embodiment of the present invention, it is possible to obtain a polarizing plate in which the degree of polarization hardly changes (that is, does not decolorize) even when exposed to ammonia. That is, according to the embodiment of the present invention, it can be seen that a polarizing plate having suppressed decolorization and a polarizing plate with a retardation layer can be realized when applied to an organic EL display device. On the other hand, the polarizing plate of the comparative example has a significantly reduced polarization function.
 本発明の偏光板は有機EL表示装置に好適に用いられ、位相差層付偏光板は有機EL表示装置の反射防止用円偏光板として好適に用いられる。 The polarizing plate of the present invention is suitably used for an organic EL display device, and the polarizing plate with a retardation layer is preferably used as an antireflection circular polarizing plate for an organic EL display device.
 10   PVA系樹脂層
 11   第1のPVA系樹脂層(偏光子)
 12   第2のPVA系樹脂層
 30   保護層
 40   粘着剤層
100   偏光板
 
10 PVA-based resin layer 11 First PVA-based resin layer (polarizer)
12 Second PVA-based resin layer 30 Protective layer 40 Adhesive layer 100 Polarizing plate

Claims (7)

  1.  ポリビニルアルコール系樹脂層と、該ポリビニルアルコール系樹脂層の視認側に設けられた保護層と、該ポリビニルアルコール系樹脂層の視認側と反対側に配置された粘着剤層と、を含み、
     該ポリビニルアルコール系樹脂層が、偏光子として機能する第1のポリビニルアルコール系樹脂層と、該第1のポリビニルアルコール系樹脂層の視認側に設けられた第2のポリビニルアルコール系樹脂層と、を含み、
     該第2のポリビニルアルコール系樹脂層の厚みが0.03μm~2μmであり、
     該ポリビニルアルコール系樹脂層の視認側と反対側の表面のホウ酸濃度が視認側表面のホウ酸濃度よりも大きく、かつ、その差が0.3重量%以上であり、
     該視認側の保護層の透湿度が200g/m・24h以上である、
     偏光板。
    It includes a polyvinyl alcohol-based resin layer, a protective layer provided on the visible side of the polyvinyl alcohol-based resin layer, and an adhesive layer arranged on the side opposite to the visible side of the polyvinyl alcohol-based resin layer.
    The polyvinyl alcohol-based resin layer comprises a first polyvinyl alcohol-based resin layer that functions as a polarizing element, and a second polyvinyl alcohol-based resin layer provided on the visible side of the first polyvinyl alcohol-based resin layer. Including
    The thickness of the second polyvinyl alcohol-based resin layer is 0.03 μm to 2 μm.
    The boric acid concentration on the surface opposite to the visible side of the polyvinyl alcohol-based resin layer is larger than the boric acid concentration on the visible side surface, and the difference is 0.3% by weight or more.
    The moisture permeability of the protective layer on the visual recognition side is 200 g / m 2.24 h or more.
    Polarizer.
  2.  前記第1のポリビニルアルコール系樹脂層のホウ酸濃度が14重量%以上である、請求項1に記載の偏光板。 The polarizing plate according to claim 1, wherein the boric acid concentration of the first polyvinyl alcohol-based resin layer is 14% by weight or more.
  3.  前記第1のポリビニルアルコール系樹脂層は、
     単体透過率が42.5%以上であり、
     波長550nmにおける直交吸光度A550と波長210nmにおける直交吸光度A210との比(A550/A210)が1.4以上であり、
     波長470nmにおける直交吸光度A470と波長600nmにおける直交吸光度A600との比(A470/A600)が0.7以上であり、かつ、
     直交b値が-10より大きい、
     請求項1または2に記載の偏光板。
    The first polyvinyl alcohol-based resin layer is
    The single transmittance is 42.5% or more,
    The ratio (A 550 / A 210 ) of the orthogonal absorbance A 550 at a wavelength of 550 nm to the orthogonal absorbance A 210 at a wavelength of 210 nm is 1.4 or more.
    The ratio (A 470 / A 600 ) of the orthogonal absorbance A 470 at a wavelength of 470 nm and the orthogonal absorbance A 600 at a wavelength of 600 nm is 0.7 or more, and
    Orthogonal b value is greater than -10,
    The polarizing plate according to claim 1 or 2.
  4.  前記偏光子のヨウ素濃度が2重量%~10重量%である、請求項1から3のいずれかに記載の偏光板。 The polarizing plate according to any one of claims 1 to 3, wherein the iodine concentration of the polarizing element is 2% by weight to 10% by weight.
  5.  60℃の環境下で2時間アンモニア蒸気に曝露したときの偏光度変化の絶対値|ΔP|が50%以下である、請求項1から4のいずれかに記載の偏光板。 The polarizing plate according to any one of claims 1 to 4, wherein the absolute value | ΔP | of the change in degree of polarization when exposed to ammonia vapor for 2 hours in an environment of 60 ° C. is 50% or less.
  6.  請求項1から5のいずれかに記載の偏光板と位相差層とを有する、位相差層付偏光板。 A polarizing plate with a retardation layer having the polarizing plate according to any one of claims 1 to 5 and a retardation layer.
  7.  請求項1から5のいずれかに記載の偏光板または請求項6に記載の位相差層付偏光板を備える、有機エレクトロルミネセンス表示装置。 An organic electroluminescence display device comprising the polarizing plate according to any one of claims 1 to 5 or the polarizing plate with a retardation layer according to claim 6.
PCT/JP2021/027001 2020-09-02 2021-07-19 Polarizing plate, polarizing plate with phase difference layer, and organic electroluminescent display device WO2022049910A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180054138.8A CN116057608A (en) 2020-09-02 2021-07-19 Polarizing plate, polarizing plate with retardation layer, and organic electroluminescent display device
KR1020237006576A KR20230056688A (en) 2020-09-02 2021-07-19 Polarizing plate, polarizing plate with retardation layer, and organic electroluminescent display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020147533A JP7411520B2 (en) 2020-09-02 2020-09-02 Polarizing plate, polarizing plate with retardation layer, and organic electroluminescent display device
JP2020-147533 2020-09-02

Publications (1)

Publication Number Publication Date
WO2022049910A1 true WO2022049910A1 (en) 2022-03-10

Family

ID=80491945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/027001 WO2022049910A1 (en) 2020-09-02 2021-07-19 Polarizing plate, polarizing plate with phase difference layer, and organic electroluminescent display device

Country Status (5)

Country Link
JP (2) JP7411520B2 (en)
KR (1) KR20230056688A (en)
CN (1) CN116057608A (en)
TW (1) TW202220843A (en)
WO (1) WO2022049910A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008026438A (en) * 2006-07-19 2008-02-07 Sumitomo Chemical Co Ltd Composite polarizing plate, its manufacturing method, composite optical member and liquid crystal display device
US20130114137A1 (en) * 2011-11-07 2013-05-09 Chang Seok Bae Polarizer having enhanced photodurability and method for preparing the same
WO2013161647A1 (en) * 2012-04-24 2013-10-31 コニカミノルタ株式会社 Method for producing polarizing plate
WO2015064433A1 (en) * 2013-10-29 2015-05-07 住友化学株式会社 Polarizing plate
JP2016122181A (en) * 2014-12-24 2016-07-07 住友化学株式会社 Polarizing plate and liquid crystal display device
WO2017145607A1 (en) * 2016-02-26 2017-08-31 日東電工株式会社 Polarizer, one-side-protected polarizing film, polarizing film including adhesive layer, and image display device and method for continuously manufacturing same
JP2017207557A (en) * 2016-05-16 2017-11-24 住友化学株式会社 Polarizing plate

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69923536T2 (en) 1998-10-30 2006-03-30 Teijin Ltd. PHASE DIFFERENTIAL FILM AND THIS USING OPTICAL DEVICE
JP2002372622A (en) 2001-06-14 2002-12-26 Nitto Denko Corp Composite optical retardation plate, circularly polarizing plate and liquid crystal display, organic el display device
JP2003311239A (en) 2002-04-23 2003-11-05 Matsushita Electric Works Ltd Apparatus for treating garbage
JP2009092825A (en) * 2007-10-05 2009-04-30 Nitto Denko Corp Optical laminate
JP5324316B2 (en) * 2008-05-27 2013-10-23 日東電工株式会社 Adhesive polarizing plate, image display device, and manufacturing method thereof
JP6018276B2 (en) * 2015-02-13 2016-11-02 日東電工株式会社 Polarizing film, polarizing film with pressure-sensitive adhesive layer, and image display device
JP6704671B2 (en) * 2014-12-25 2020-06-03 日東電工株式会社 Adhesive sheet and optical member
JP6486859B2 (en) * 2016-03-29 2019-03-20 日東電工株式会社 Polarizing film and image display device
WO2020158517A1 (en) * 2019-01-30 2020-08-06 日東電工株式会社 Optical layered film having adhesive layer and image display device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008026438A (en) * 2006-07-19 2008-02-07 Sumitomo Chemical Co Ltd Composite polarizing plate, its manufacturing method, composite optical member and liquid crystal display device
US20130114137A1 (en) * 2011-11-07 2013-05-09 Chang Seok Bae Polarizer having enhanced photodurability and method for preparing the same
WO2013161647A1 (en) * 2012-04-24 2013-10-31 コニカミノルタ株式会社 Method for producing polarizing plate
WO2015064433A1 (en) * 2013-10-29 2015-05-07 住友化学株式会社 Polarizing plate
JP2016122181A (en) * 2014-12-24 2016-07-07 住友化学株式会社 Polarizing plate and liquid crystal display device
WO2017145607A1 (en) * 2016-02-26 2017-08-31 日東電工株式会社 Polarizer, one-side-protected polarizing film, polarizing film including adhesive layer, and image display device and method for continuously manufacturing same
JP2017207557A (en) * 2016-05-16 2017-11-24 住友化学株式会社 Polarizing plate

Also Published As

Publication number Publication date
CN116057608A (en) 2023-05-02
KR20230056688A (en) 2023-04-27
TW202220843A (en) 2022-06-01
JP7411520B2 (en) 2024-01-11
JP2022042217A (en) 2022-03-14
JP2024029094A (en) 2024-03-05

Similar Documents

Publication Publication Date Title
TWI757503B (en) Polarizing plate with retardation layer and image display device
JP5072747B2 (en) Manufacturing method of polarizer, polarizer, polarizing plate, optical film, and image display device
JP5073589B2 (en) Manufacturing method of polarizer, polarizer, polarizing plate, optical film, and image display device
KR20190086571A (en) Method for manufacturing polarizing plate
KR20190109267A (en) Method of manufacturing optical laminate and method of manufacturing optical laminate with adhesive layer
CN109643035B (en) Liquid crystal display device having a plurality of pixel electrodes
JP7039195B2 (en) Optical members and liquid crystal display devices
WO2021172091A1 (en) Method for recovering optical characteristics of polarizing plate deteriorated in high temperature environment
WO2022049910A1 (en) Polarizing plate, polarizing plate with phase difference layer, and organic electroluminescent display device
KR20190109266A (en) Method for manufacturing optical laminate with adhesive layer
WO2022049909A1 (en) Polarizing plate, polarizing plate with retardation layer, and organic electroluminescent display device
JP2008298871A (en) Manufacturing method of polarizer, polarizer, polarizing plate, optical film, and image display device
TW202229942A (en) Polarizing plate, cover glass-equipped polarizing plate, and image display device
WO2022044500A1 (en) Polarizing plate, retardation-layer-equipped polarizing plate, and image display device
WO2022244301A1 (en) Circular polarizing plate and image display device using same
WO2021117289A1 (en) Polarizing plate, polarizing plate set, and image display device
WO2023084838A1 (en) Polarizing plate having retardation layer and image display device including said polarizing plate having retardation layer
WO2022201907A1 (en) Polarizing plate with retardation layer and production method therefor, and image display device using said polarizing plate with retardation layer
WO2022107394A1 (en) Phase difference layer-equipped phase difference layer-equipped polarizing plate and organic electroluminescence display device using same
JP2009244863A (en) Polarizer, method for manufacturing the same, polarizing plate, optical film, and image display apparatus
JP2008241910A (en) Method of manufacturing polarizing film
JP2022141116A (en) Polarizing plate with retardation layers
JP2022059257A (en) Polarizing plate and organic EL display device
CN114467043A (en) Self-luminous image display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21863968

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21863968

Country of ref document: EP

Kind code of ref document: A1