WO2022048380A1 - 光学组件、光子集成芯片及其耦合结构 - Google Patents

光学组件、光子集成芯片及其耦合结构 Download PDF

Info

Publication number
WO2022048380A1
WO2022048380A1 PCT/CN2021/110314 CN2021110314W WO2022048380A1 WO 2022048380 A1 WO2022048380 A1 WO 2022048380A1 CN 2021110314 W CN2021110314 W CN 2021110314W WO 2022048380 A1 WO2022048380 A1 WO 2022048380A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveguide
polymer
chip
coupling
photonic integrated
Prior art date
Application number
PCT/CN2021/110314
Other languages
English (en)
French (fr)
Inventor
郭德汾
李显尧
Original Assignee
苏州旭创科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州旭创科技有限公司 filed Critical 苏州旭创科技有限公司
Publication of WO2022048380A1 publication Critical patent/WO2022048380A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/262Optical details of coupling light into, or out of, or between fibre ends, e.g. special fibre end shapes or associated optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12133Functions
    • G02B2006/12147Coupler

Definitions

  • the present application relates to the technical field of optical communication, and in particular, to an optical component, a photonic integrated chip and a coupling structure thereof.
  • Silicon photonics chips are the key technology for realizing optical interconnection, which can effectively reduce the cost of modules in optical communication.
  • the size of a typical single-mode silicon waveguide is 420 nm ⁇ 220 nm, while the size of a single-mode fiber is about 9 ⁇ m.
  • Special devices are required between the silicon optical chip and the single-mode fiber to achieve efficient coupling between the two.
  • the commonly used coupling schemes include vertical coupling of grating couplers and mode spot converters (spot size converters). converter, SSC) horizontal coupling.
  • the Chinese patent "A Light Spot Converter and Optical Device” discloses a light spot converter for the coupling of a silicon optical chip and a single-mode fiber, including a subwavelength grating bridged with a conventional silicon waveguide , and a polymer waveguide covering the subwavelength grating, the polymer waveguide is arranged on the buried oxide layer of the silicon photonic chip, and covers all surfaces of the subwavelength grating that are not in contact with the buried oxide layer. The polymer waveguide is optically coupled, and the polymer waveguide is then coupled to the single-mode fiber.
  • the lens fiber is used in this solution, that is, in addition to the spot converter, the lens coupling of the lens fiber is required to improve the The spot matching between the silicon photonic chip and the single-mode fiber improves the coupling efficiency.
  • the polymer waveguide of this solution covers the upper surface and both sides of the subwavelength grating, and the process is complicated; in addition, the outer cladding layer of the polymer waveguide is still silicon dioxide, and the refractive index difference between the two should not be too large. The range of refractive index options for polymer waveguides is limited.
  • the purpose of the present application is to provide an optical component, a photonic integrated chip and a coupling structure thereof, which reduce the process requirements, and do not require a lens fiber, which can directly couple with ordinary single-mode fiber, and reduce the interference between the polymer waveguide and the single-mode fiber. coupling loss.
  • the present application provides a coupling structure for a photonic integrated chip, which has a coupling end face for coupling with an external single-mode optical fiber, and is characterized in that: the coupling structure includes a substrate and is provided on the substrate. a chip waveguide and a polymer waveguide, the polymer waveguide is adjacent to the coupling end face;
  • the polymer waveguide includes a conventional polymer waveguide and a first reverse wedge structure that are connected to each other; the tip of the first reverse wedge structure is located at the coupling end face; the conventional polymer waveguide and the chip waveguide part Overlapping, the chip waveguide and the polymer waveguide are optically coupled.
  • the chip waveguide includes a second reverse wedge structure, the second reverse wedge structure at least partially overlapping the conventional polymer waveguide.
  • the chip waveguide includes a sub-wavelength grating waveguide that at least partially overlaps the conventional polymer waveguide.
  • the chip waveguide further includes a reversed wedge-shaped subwavelength grating waveguide connected to the subwavelength grating waveguide, and the reversed wedge-shaped subwavelength grating waveguide overlaps the conventional polymer waveguide.
  • the chip waveguide further includes a third reverse wedge structure, and the conventional subwavelength grating waveguide covers both sides of the third reverse wedge structure.
  • the chip waveguide is a single-mode optical waveguide.
  • the width of the tip end face of the first reverse wedge structure is in the range of 600 nm ⁇ 1500 nm.
  • the length of the overlapping portion of the conventional polymer waveguide and the chip waveguide is in the range of 200 ⁇ m ⁇ 2000 ⁇ m.
  • the substrate is a silicon substrate
  • the coupling structure further includes a buried oxide layer located between the chip waveguide and the silicon substrate, and a polymer substrate located under the polymer waveguide;
  • the buried oxide layer is further provided with a cladding layer covering the chip waveguide, and the polymer substrate is further provided with a polymer cladding layer covering the polymer waveguide;
  • the chip waveguide is a silicon waveguide or a silicon nitride waveguide.
  • the thickness of the cladding layer between the chip waveguide and the polymer waveguide is in the range of 0-200 nm.
  • the refractive index difference between the polymer cladding layer and the polymer substrate and the refractive index of the polymer waveguide is in the range of 0.005-0.6;
  • the refractive index of the polymer waveguide is smaller than the refractive index of the chip waveguide.
  • the present application also provides a photonic integrated chip, including an optical active device and/or an optical passive device, and the coupling structure described in any of the above embodiments, the optical active device and/or the optical passive device optically The chip waveguides of the coupling structure are connected.
  • the present application further provides an optical component, including a photonic integrated chip and a single-mode optical fiber, the photonic integrated chip includes the coupling structure described in any of the above embodiments, and the photonic integrated chip is connected to the single-mode optical fiber through the coupling structure. Fiber Optic Coupling.
  • the coupling structure of the present application adopts a polymer waveguide with a reverse wedge structure, and the refractive index difference between the polymer waveguide and its cladding can have a large range, which increases the optional refractive index of the polymer waveguide. It can reduce the size of the polymer waveguide and reduce the coupling loss between the polymer waveguide and the single-mode fiber.
  • FIG. 1 is a partial and cross-sectional schematic diagram of a photonic integrated chip including a coupling structure in Embodiment 1 of the application;
  • FIG. 2 is a schematic longitudinal cross-sectional view of the coupling structure along the length of the waveguide in Embodiment 1 of the application;
  • FIG. 3 is a partial and cross-sectional schematic diagram of a photonic integrated chip including a coupling structure in Embodiment 2 of the present application;
  • FIG. 4 is a schematic longitudinal cross-sectional view of the coupling structure along the length of the waveguide in Embodiment 2 of the present application;
  • Fig. 5 is a simulation diagram of the variation of the coupling loss between the polymer waveguide and the chip waveguide with the length of the inverted wedge-shaped subwavelength grating waveguide;
  • FIG. 6 is a simulation diagram of coupling loss between the first reverse wedge structure with different tip end face widths and a single-mode fiber
  • FIG. 7 is a schematic diagram of an optical assembly of the present application.
  • spatially relative positions are used herein for convenience of description to describe an element or feature as shown in the figures relative to one another. A relationship to another unit or feature.
  • the term spatially relative position may be intended to encompass different orientations of the device in use or operation in addition to the orientation shown in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the exemplary term “below” can encompass both an orientation of above and below.
  • the device may be otherwise oriented (rotated 90 degrees or otherwise) and the spatially relative descriptors used herein interpreted accordingly.
  • photonic integrated chips can effectively reduce the cost of optical modules.
  • Common photonic integrated chips such as silicon optical chips have a typical size of single-mode silicon waveguide of 420 nm ⁇ 220 nm, while the size of single-mode optical fiber is about 9 ⁇ m.
  • FIG. 1 is a photonic integrated chip including a coupling structure.
  • FIG. 1 is a photonic integrated chip including a coupling structure.
  • FIG. 2 is a schematic diagram of a longitudinal section of the coupling structure along the length of the waveguide.
  • the coupling structure 200 is arranged on the edge of the photonic integrated chip 100 and has a coupling end face E for coupling with an external single-mode optical fiber.
  • the above-mentioned photonic integrated chip 100 may be provided with optical active devices and/or optical passive devices (not shown in the figure), such as optical detectors, wavelength division multiplexing/demultiplexing devices, optical splitters and/or polarization beam splitters.
  • optical active device and/or the optical passive device is connected to one end of the chip waveguide of the above-mentioned coupling structure that is far away from the above-mentioned coupling end face.
  • the above-mentioned coupling structure 200 includes a substrate 101 , a chip waveguide 20 and a polymer waveguide 10 disposed on the substrate 101 , and the polymer waveguide 10 is adjacent to the coupling of the coupling structure 200 . end face E.
  • the polymer waveguide 10 includes a conventional polymer waveguide 12 and a first reverse wedge structure 11 connected to each other, and the tip of the first reverse wedge structure 11 is located at the above-mentioned coupling end face E.
  • the conventional polymer waveguide 12 is partially overlapped with the chip waveguide 20 to realize optical coupling between the chip waveguide 20 and the polymer waveguide 10 .
  • the conventional polymer waveguide 12 refers to a waveguide having a fixed width and height and an elongated section.
  • a silicon photonic integrated chip with a silicon-on-insulator structure is used as an example for description.
  • the above-mentioned chip waveguide is a silicon waveguide.
  • the chip waveguide can also be a silicon nitride waveguide, and the photonic integrated chip can also be made of other materials.
  • the substrate 101 is a silicon substrate
  • the coupling structure 200 further includes a buried oxide layer 102 between the chip waveguide 20 and the silicon substrate, and a polymer waveguide 10 under the polymer waveguide 10 Substrate 105.
  • the buried oxide layer 102 is further provided with a cladding layer 103 covering the chip waveguide 20
  • the polymer substrate 105 is further provided with a polymer cladding layer 104 covering the polymer waveguide 10 .
  • both the buried oxide layer 102 and the cladding layer 103 are made of silicon dioxide
  • the chip waveguide 20 is a single-mode silicon waveguide.
  • the cladding layer may also adopt other materials with a refractive index lower than that of the chip waveguide.
  • the polymer substrate 105 is close to the end face of the chip waveguide 20 , and the polymer waveguide 10 and the polymer cladding layer 104 extend to the chip waveguide 20 , so that the polymer waveguide 10 covers the chip waveguide 20 .
  • the thickness H of the cladding layer 103 between the chip waveguide 20 and the polymer waveguide 10 is in the range of 0-200 nm, so as to realize evanescent wave coupling between the chip waveguide and the polymer waveguide.
  • the cladding layer and the waveguide are both polymers and are not limited by the refractive index of the silica cladding layer, the refractive index of the polymer waveguide has a wide optional range, which reduces the technological requirements of the polymer waveguide.
  • the silicon waveguide (chip waveguide) is still covered in the silicon dioxide cladding. During the production process, only the silicon dioxide cladding above the silicon waveguide needs to be thinned, and the silicon dioxide cladding on both sides of the silicon waveguide does not need to be hollowed out. On the one hand, the silicon waveguide is protected, and the exposed silicon waveguide is prevented from being damaged due to exposure of the silicon wave.
  • the refractive index of the polymer used in the polymer substrate 105, the polymer cladding layer 104 and the polymer waveguide 10 is between 1.5 and 2
  • the refractive index of the polymer cladding layer 104 and the polymer substrate 105 is the same as that of the polymer
  • the refractive index difference of the object waveguide 10 is in the range of 0.005-0.6, which can have better coupling efficiency with the single-mode fiber, and at the same time, the larger refractive index difference reduces the technological difficulty of the polymer waveguide.
  • the above-mentioned polymer waveguide 10 covered on the chip waveguide 20 is a conventional polymer waveguide 12, and its cross-sectional width is in the range of 2-7 ⁇ m.
  • the overlapping portion of the chip waveguide 20 and the conventional polymer waveguide 12 is a second reverse wedge structure 21 , the tip of the second reverse wedge structure 21 faces the coupling end face E, and the chip waveguide 20 passes through the second reverse wedge structure 21 Adiabatic coupling to conventional polymer waveguides 12 is achieved.
  • the length L of the overlapping portion of the conventional polymer waveguide 12 and the chip waveguide 20 is in the range of 200 ⁇ m ⁇ 2000 ⁇ m, and the tip end face width D of the first reverse wedge structure 11 is in the range of 600 nm ⁇ 1500 nm.
  • the optical signal is transmitted from the conventional waveguide 30 of the photonic integrated chip 100 to the second reverse wedge structure 21 of the coupling structure 200, and the second reverse wedge structure 21 through the second reverse wedge structure.
  • 21 is adiabatically coupled to the conventional polymer waveguide 12. That is, as the width of the second reverse wedge structure 21 is gradually narrowed, the optical field energy of the optical signal is gradually transferred to the conventional polymer waveguide 12. At the tip of the second reverse wedge structure 21, the optical field energy is concentrated in the conventional polymer waveguide 12. In the material waveguide 12 , the conventional polymer waveguide 12 is transmitted to the first reverse wedge structure 11 .
  • the optical field energy of the optical signal slowly expands into the polymer cladding layer 104, so that the optical signal is located at the tip (end face of the first reverse wedge structure 11)
  • the optical field at E) is close to the optical field of the single-mode fiber, so as to improve the matching degree of the optical field between the coupling structure 200 and the single-mode fiber, thereby reducing the coupling loss and effectively improving the coupling efficiency between the coupling structure and the single-mode fiber.
  • the coupling process of the optical signal from the single-mode fiber to the coupling structure is the reverse process of the above-mentioned optical signal transmission, which can also improve the coupling efficiency of the optical signal from the single-mode fiber to the coupling structure.
  • the coupling structure 200 of this embodiment is different from Embodiment 1 in that in this embodiment, the chip waveguide 20 includes a sub-wavelength grating waveguide 22 , wherein the sub-wavelength grating waveguide 22 is connected to a conventional polymer waveguide 12 at least partially overlap, enabling optical coupling between the chip waveguide 20 and the polymer waveguide 10 .
  • the above-mentioned chip waveguide 20 further includes an inverted wedge-shaped sub-wavelength grating waveguide 23 interconnected with the sub-wavelength grating waveguide 22 , and the inverted wedge-shaped sub-wavelength grating waveguide 23 is at least partially overlapped with the conventional polymer waveguide 12 to realize the chip Adiabatic coupling of the waveguide 20 to the polymer waveguide 10 .
  • the subwavelength grating waveguide 22 and the conventional waveguide 30 of the photonic integrated chip 100 are bridged by a third reverse wedge structure 24, and the wider end of the third reverse wedge structure 24 is connected to the conventional waveguide 30 of the photonic integrated chip 100, and the subwavelength The wavelength grating waveguide 22 is clad on both sides of the third reverse wedge structure 24 .
  • the tips of the reversed wedge-shaped subwavelength grating waveguide 23 and the third reversed wedge-shaped structure 24 both face the coupling end face E, and the conventional waveguide 30 refers to a single-mode optical waveguide with a fixed width and height of a photonic integrated chip.
  • the substrate 101 is a silicon substrate
  • the substrate 101 is provided with a buried oxide layer 102
  • the chip waveguide 20 is arranged on the buried oxide layer 102, and is covered with a cladding layer 103
  • the object waveguide 10 is disposed on a polymer substrate 105 and covered with a polymer cladding layer 104 .
  • both the buried oxide layer 102 and the cladding layer 103 are made of silicon dioxide
  • the chip waveguide 20 is a single-mode silicon waveguide.
  • the cladding layer can also be made of other materials with a refractive index lower than that of the chip waveguide, and the chip waveguide can also be a silicon nitride waveguide.
  • the polymer substrate 105 is close to the end face of the chip waveguide 20, the polymer waveguide 10 and the polymer cladding 105 extend to the chip waveguide 20, so that the polymer waveguide 10 covers the subwavelength grating waveguide 22 of the chip waveguide 20, and the chip waveguide 20
  • the thickness H of the cladding layer 103 with the polymer waveguide 10 is in the range of 0-200 nm, so as to achieve better coupling between the chip waveguide 20 and the polymer waveguide 10 .
  • the equivalent refractive index of the sub-wavelength grating waveguide 22 and the reverse wedge-shaped sub-wavelength grating waveguide 23 gradually decreases from the end of the sub-wavelength grating waveguide 22 adjacent to the conventional waveguide 30 to the tip of the reverse wedge-shaped sub-wavelength grating waveguide 23 (section C) , so that the equivalent refractive index at the tip is close to that of the polymer waveguide 10 .
  • the width of the subwavelength grating waveguide 22 in front of the tip end face (section F) of the third reverse wedge structure 24 (near the side of the conventional waveguide 30) and the width behind it (near the reverse side) can be adjusted separately, so that the equivalent refractive index at the tip end face is continuous and gradually decreases, so as to avoid the light reflection loss caused by the sudden change of the equivalent refractive index.
  • the period of the subwavelength grating waveguide 22 should be smaller than the value of the wavelength of the optical signal transmitted in the waveguide divided by 2 times the equivalent refractive index of the grating.
  • Adopting the reverse wedge-shaped subwavelength grating waveguide 23 and the conventional polymer waveguide 12 for adiabatic coupling can shorten the overlapping coupling length of the chip waveguide 20 and the polymer waveguide 10, and can effectively reduce the transmission loss.
  • the length of the overlapping portion of the conventional polymer waveguide 12 and the chip waveguide 20 can be shortened to 1000 ⁇ m, or even 600 ⁇ m, which can maintain a small coupling loss and still have a high coupling efficiency.
  • the overall equivalent refractive index of the subwavelength grating waveguide 22 and the reverse wedge-shaped subwavelength grating waveguide 23 is 2.5, the period is 280nm, and the duty cycle is selected to be 0.5, which is convenient for processing.
  • the width of the tip end face (at the section C) of the inverted wedge-shaped subwavelength grating waveguide 23 is 170 nm.
  • the duty cycle of the subwavelength grating waveguide 22 and the inverse wedge-shaped subwavelength grating waveguide 23 can be adjusted appropriately, not necessarily a strict duty cycle of 0.5.
  • the width of the sub-wavelength grating waveguide 22 before the tip end face (section F) of the third reverse wedge structure 24 is 280 nm, and the width of the sub-wavelength grating waveguide 22 after that is 375 nm.
  • the third reverse The tip end face of the wedge-shaped structure 24 has a continuous refractive index change to avoid additional loss caused by abrupt changes in the refractive index.
  • the above parameters are set so that the energy of the eigenmode light field is mainly concentrated in the polymer waveguide 10 at the tip end face (section C) of the reverse wedge-shaped subwavelength grating waveguide 23 .
  • the refractive index of the polymer used in the polymer substrate 105, the polymer cladding layer 104 and the polymer waveguide 10 is between 1.5 and 2.
  • the refractive index of the polymer cladding layer 104 and the polymer substrate 105 is the same as the refractive index of the polymer waveguide 10.
  • the rate difference is in the range of 0.005 ⁇ 0.6.
  • the refractive index of the polymer waveguide 10 is set to 1.58, the refractive index of the polymer cladding layer 104 is set to 1.56, and the refractive index difference between the two is set to 0.02.
  • the relationship between the coupling loss of the sub-wavelength grating waveguide 22 and the reverse wedge-shaped sub-wavelength grating waveguide 23 and the polymer waveguide 10 varies with the length L of the overlap (or the reverse wedge-shaped sub-wavelength grating waveguide 23 ) as shown in Figure 5 As shown, when the overlapping length L is greater than 200 ⁇ m, the coupling loss is less than 1.5 dB; when the overlapping length L is greater than 600 ⁇ m, the coupling loss is already very small, less than 0.2 dB.
  • the transmission loss of light in the subwavelength grating waveguide 22 and the reverse wedge-shaped subwavelength grating waveguide 23 is 3dB/cm
  • the transmission loss at 600 ⁇ m is 0.18dB
  • the coupling loss less than 0.2dB the overall loss is less than 0.38dB
  • the overall loss of the coupling between the chip waveguide 20 and the polymer waveguide 10 is effectively reduced, and the coupling efficiency between the two is improved.
  • the different tip end face width D of the first reverse wedge structure 11 of the polymer waveguide 10 is different from that of the single mode
  • the loss of fiber coupling is shown in Figure 6.
  • the tip end face width D of the first reverse wedge structure 11 is 1 ⁇ m or 0.6 ⁇ m, the loss is less than 0.6 dB; when the tip end face width D is 0.8 ⁇ m, the loss is the smallest, about 0.3 dB.
  • the overall loss from the chip waveguide 20 to the polymer waveguide 10 to the single-mode fiber can be less than 0.7dB, and the polarization-dependent loss is less than 0.1 dB, which effectively improves the coupling efficiency between the photonic integrated chip and the single-mode fiber, and realizes high-efficiency coupling.
  • the optical signal is transmitted from the conventional waveguide 30 of the photonic integrated chip 100 to the third reverse wedge structure 24 of the coupling structure 200, It is transmitted into the subwavelength grating waveguide 22 through the bridge structure between the third reverse wedge structure 24 and the subwavelength grating waveguide 22 , and then is adiabatically coupled to the conventional polymer waveguide 12 through the reverse wedge subwavelength grating waveguide 23 . That is, as the width of the reversed wedge-shaped subwavelength grating waveguide 23 is gradually narrowed, the optical field energy of the optical signal is gradually transferred to the conventional polymer waveguide 12.
  • the optical field energy is concentrated in the conventional polymer waveguide 12 and then transmitted to the first reverse wedge structure 11 by the conventional polymer waveguide 12 .
  • the optical field energy of the optical signal slowly expands into the polymer cladding layer 104, so that the optical signal is located at the tip (end face of the first reverse wedge structure 11)
  • the optical field at E) is close to the optical field of the single-mode fiber, so as to improve the matching degree of the optical field between the coupling structure 200 and the single-mode fiber, thereby reducing the coupling loss and effectively improving the coupling efficiency between the coupling structure and the single-mode fiber.
  • the coupling process of the optical signal from the single-mode fiber to the coupling structure is the reverse process of the above-mentioned optical signal transmission, which can also improve the coupling efficiency of the optical signal from the single-mode fiber to the coupling structure.
  • this embodiment provides an optical component, such as an optical module and the like.
  • the optical assembly includes a photonic integrated chip 100 and a single-mode optical fiber 300
  • the photonic integrated chip 100 includes the coupling structure 200 in the above-mentioned embodiment 1 or 2
  • the photonic integrated chip 100 realizes high-efficiency light through the coupling structure 200 and the single-mode optical fiber 300 . coupling.
  • the photonic integrated chip 100 may be provided with optically active devices and/or optically passive devices (not shown in the figure), such as photodetectors, wavelength division multiplexing/demultiplexers, optical splitters and/or polarization beam splitters
  • optical active device and/or the optical passive device is connected to one end of the chip waveguide 20 of the above-mentioned coupling structure 200 away from the single-mode fiber 300 through the conventional waveguide 30 of the chip.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

一种光学组件、光子集成芯片(100)及其耦合结构(200),耦合结构(200)具有用于与外部单模光纤(300)耦合的耦合端面(E),其包括基板(101)、设于基板(101)上的芯片波导(20)和聚合物波导(10),该聚合物波导(10)临近耦合端面(E);其中,聚合物波导(10)包括相互连接的常规聚合物波导(12)和第一反向楔形结构(11);第一反向楔形结构(11)的尖端位于耦合端面(E)处;常规聚合物波导(12)与芯片波导(20)部分重叠,芯片波导(20)和聚合物波导(10)相光耦合。耦合结构(200)采用了具有第一反向楔形结构(11)的聚合物波导(10),聚合物波导(10)与其包层的折射率差可采用较大的范围,增加了聚合物波导(10)折射率的可选范围,降低了工艺要求,可缩小聚合物波导(10)的尺寸、减小聚合物波导(10)与单模光纤(300)之间的耦合损耗。

Description

光学组件、光子集成芯片及其耦合结构 技术领域
本申请涉及光通信技术领域,尤其涉及一种光学组件、光子集成芯片及其耦合结构。
背景技术
硅光芯片是实现光互连的关键技术,能够有效降低光通信中模块的成本。典型单模硅波导的尺寸为420nm×220nm,而单模光纤的尺寸9μm左右,在硅光芯片与单模光纤之间需要有特殊的器件实现两者之间的高效耦合。目前常用的耦合方案有光栅耦合器的垂直耦合和模斑变换器 (spot size converter, SSC)的水平耦合。
中国专利《一种光斑转换器及光学装置》(申请号:201510516253 .9)公开了一种光斑转换器,用于硅光芯片与单模光纤的耦合,包括与常规硅波导桥接的亚波长光栅,以及覆盖于亚波长光栅上的聚合物波导,聚合物波导设于硅光芯片的埋氧层上,包覆亚波长光栅未与埋氧层接触的所有表面,常规硅波导通过亚波长光栅与聚合物波导光耦合,聚合物波导再与单模光纤耦合。但是由于聚合物波导的端面处的模场直径远比普通单模光纤的模场直径小,所以该方案中采用的是透镜光纤,即除了该光斑转换器,还需要透镜光纤的透镜耦合才能提高硅光芯片与单模光纤之间的光斑匹配,从而提高耦合效率。而且,该方案的聚合物波导包覆亚波长光栅的上表面和两侧,工艺复杂;另外,聚合物波导外侧包层依然是二氧化硅,二者之间的折射率差不能太大的要求限制了聚合物波导的折射率可选范围。
技术解决方案
本申请的目的在于提供一种光学组件、光子集成芯片及其耦合结构,降低了工艺要求,而且无需透镜光纤,可直接耦合普通单模光纤,减小了聚合物波导与单模光纤之间的耦合损耗。
为了实现上述目的之一,本申请提供了一种光子集成芯片的耦合结构,具有用于与外部单模光纤耦合的耦合端面,其特征在于:所述耦合结构包括基板、设于所述基板上的芯片波导和聚合物波导,所述聚合物波导临近所述耦合端面;
所述聚合物波导包括相互连接的常规聚合物波导和第一反向楔形结构;所述第一反向楔形结构的尖端位于所述耦合端面处;所述常规聚合物波导与所述芯片波导部分重叠,所述芯片波导和所述聚合物波导光耦合。
作为实施方式的进一步改进,所述芯片波导包括第二反向楔形结构,所述第二反向楔形结构与所述常规聚合物波导至少部分重叠。
作为实施方式的进一步改进,所述芯片波导包括亚波长光栅波导,所述亚波长光栅波导与所述常规聚合物波导至少部分重叠。
作为实施方式的进一步改进,所述芯片波导还包括与所述亚波长光栅波导相连的反向楔形亚波长光栅波导,所述反向楔形亚波长光栅波导与所述常规聚合物波导重叠。
作为实施方式的进一步改进,所述芯片波导还包括第三反向楔形结构,所述常规亚波长光栅波导包覆所述第三反向楔形结构的两侧。
作为实施方式的进一步改进,所述芯片波导为单模光波导。
作为实施方式的进一步改进,所述第一反向楔形结构的尖端端面宽度在600nm~1500nm范围内。
作为实施方式的进一步改进,所述常规聚合物波导与所述芯片波导重叠部分的长度在200μm~2000μm范围内。
作为实施方式的进一步改进,所述基板为硅基板,所述耦合结构还包括位于所述芯片波导和所述硅基板之间的埋氧层,以及位于所述聚合物波导下方的聚合物基底;所述埋氧层上还设有覆盖所述芯片波导的包层,所述聚合物基底上还设有覆盖所述聚合物波导的聚合物包层;
所述芯片波导为硅波导或氮化硅波导。
作为实施方式的进一步改进,所述芯片波导与所述聚合物波导之间的包层厚度在0~200nm范围内。
作为实施方式的进一步改进,所述聚合物包层和聚合物基底的折射率与所述聚合物波导的折射率差在0.005~0.6范围内;
所述聚合物波导的折射率小于所述芯片波导的折射率。
本申请还提供了一种光子集成芯片,包括光有源器件和/或光无源器件,以及上述任一实施例所述的耦合结构,所述光有源器件和/或光无源器件光连接所述耦合结构的芯片波导。
本申请另外提供了一种光学组件,包括光子集成芯片和单模光纤,该光子集成芯片包括上述任一实施例所述的耦合结构,所述光子集成芯片通过所述耦合结构与所述单模光纤光耦合。
有益效果
本申请的有益效果:本申请的耦合结构采用了具有反向楔形结构的聚合物波导,聚合物波导与其包层的折射率差可具有较大的范围,增加了聚合物波导折射率的可选范围,降低了工艺要求,可缩小聚合物波导的尺寸、减小聚合物波导与单模光纤之间的耦合损耗。
附图说明
图1为本申请实施例1中光子集成芯片包含耦合结构的局部及截面示意图;
图2为本申请实施例1中耦合结构沿波导长度方向的纵截面示意图;
图3为本申请实施例2中光子集成芯片包含耦合结构的局部及截面示意图;
图4为本申请实施例2中耦合结构沿波导长度方向的纵截面示意图;
图5为聚合物波导与芯片波导之间的耦合损耗随反向楔形亚波长光栅波导长度的变化仿真图;
图6为不同尖端端面宽度的第一反向楔形结构与单模光纤之间的耦合损耗仿真图;
图7为本申请光学组件示意图。
本发明的实施方式
以下将结合附图所示的具体实施方式对本申请进行详细描述。但这些实施方式并不限制本申请,本领域的普通技术人员根据这些实施方式所做出的结构、方法、或功能上的变换均包含在本申请的保护范围内。
在本申请的各个图示中,为了便于图示,结构或部分的某些尺寸会相对于其它结构或部分夸大,因此,仅用于图示本申请的主题的基本结构。
另外,本文使用的例如“上”、“上方”、“下”、“下方”等表示空间相对位置的术语是出于便于说明的目的来描述如附图中所示的一个单元或特征相对于另一个单元或特征的关系。空间相对位置的术语可以旨在包括设备在使用或工作中除了图中所示方位以外的不同方位。例如,如果将图中的设备翻转,则被描述为位于其他单元或特征“下方”或“之下”的单元将位于其他单元或特征“上方”。因此,示例性术语“下方”可以囊括上方和下方这两种方位。设备可以以其他方式被定向(旋转90度或其他朝向),并相应地解释本文使用的与空间相关的描述语。当元件或层被称为在另一部件或层“上”、与另一部件或层“连接”时,其可以直接在该另一部件或层上、连接到该另一部件或层,或者可以存在中间元件或层。
采用光子集成芯片可有效降低光模块的成本,常用的光子集成芯片如硅光芯片,其单模硅波导的典型尺寸为420nm×220nm,而单模光纤的尺寸在9μm左右,本申请提供了一种光子集成芯片,具有特殊的耦合结构,可通过该耦合结构与单模光纤实现高效耦合。
实施例1
该实施例提供一种包含耦合结构的光子集成芯片,其耦合结构可用于光子集成芯片与外部单模光纤的耦合,如图1和2所示,其中,图1为光子集成芯片包含耦合结构的局部及截面示意图,其中为了清楚显示芯片波导和聚合物波导的位置关系,局部图上只显示了芯片波导和聚合物波导,省略了衬底和包层等结构。图2为耦合结构沿波导长度方向的纵截面示意图。该耦合结构200设于光子集成芯片100的边缘,具有用于与外部单模光纤耦合的耦合端面E。上述光子集成芯片100可以设有光有源器件和/或光无源器件(未在图中表示),如光探测器、波分复用/解复用器、分光器和/或偏振分束器等,光有源器件和/或光无源器件连接上述耦合结构的芯片波导远离上述耦合端面的一端。
具体的,如图1和2所示,该实施例中,上述耦合结构200包括基板101,设于基板101上的芯片波导20和聚合物波导10,该聚合物波导10临近耦合结构200的耦合端面E。其中,聚合物波导10包括相互连接的常规聚合物波导12和第一反向楔形结构11,该第一反向楔形结构11的尖端位于上述耦合端面E处。常规聚合物波导12与芯片波导20部分重叠,实现芯片波导20和聚合物波导10之间的光耦合。这里,常规聚合物波导12指的是具有固定宽度和高度和一段长条形波导。该实施例以绝缘体上硅结构的硅光子集成芯片为例进行说明,上述芯片波导为硅波导,在其它实施例中,芯片波导也可以是氮化硅波导,光子集成芯片也可以是其它材料的集成芯片,如铌酸锂等,但不局限于硅光子集成芯片或铌酸锂材料的集成芯片。
该实施例中,以硅光子集成芯片为例,上述基板101为硅基板,上述耦合结构200还包括位于芯片波导20和硅基板之间的埋氧层102,以及位于聚合物波导10下方的聚合物基底105。埋氧层102上还设有覆盖芯片波导20的包层103,聚合物基底105上还设有覆盖聚合物波导10的聚合物包层104。这里,埋氧层102和包层103均采用二氧化硅,芯片波导20为单模硅波导。当然,在其它实施例中,包层也可以采用其它折射率低于芯片波导折射率的材料。上述聚合物基底105靠近芯片波导20的端面,聚合物波导10和聚合物包层104延伸至芯片波导20上,使聚合物波导10覆盖于芯片波导20上。芯片波导20与聚合物波导10之间的包层103厚度H在0~200nm范围内,以使芯片波导与聚合物波导之间实现倏逝波耦合。由于包层和波导均为聚合物,不受二氧化硅包层折射率的限制,所以聚合物波导的折射率具有较大的可选范围,降低了聚合物波导的工艺要求。而且硅波导(芯片波导)仍然包覆在二氧化硅包层中,制作过程中,只需减薄硅波导上方的二氧化硅包层,无需掏空硅波导两侧的二氧化硅包层,一方面保护了硅波导,避免露出硅波导致使裸露的硅波导被损坏,另一方面降低了工艺难度,也方便后续聚合物波导及封装等各种工艺的实施。
该实施例中,上述聚合物基底105、聚合物包层104和聚合物波导10采用的聚合物的折射率在1.5~2之间,聚合物包层104和聚合物基底105的折射率与聚合物波导10的折射率差在0.005~0.6范围内,可与单模光纤具有更好的耦合效率,同时较大的折射率差降低了聚合物波导的工艺难度。
上述覆盖于芯片波导20上的聚合物波导10为其常规聚合物波导12,其横截面宽度在2-7μm范围内。芯片波导20与常规聚合物波导12重叠的部分为一第二反向楔形结构21,该第二反向楔形结构21的尖端朝向所述耦合端面E,芯片波导20通过第二反向楔形结构21与常规聚合物波导12实现绝热耦合。该实施例中,常规聚合物波导12与芯片波导20重叠部分的长度L在200μm~2000μm范围内,第一反向楔形结构11的尖端端面宽度D在600nm~1500nm范围内。
以光信号从光子集成芯片100到单模光纤的耦合为例,光信号从光子集成芯片100的常规波导30传输到其耦合结构200的第二反向楔形结构21,通过第二反向楔形结构21绝热地耦合到常规聚合物波导12。即随着第二反向楔形结构21的宽度逐渐收窄,光信号的光场能量逐渐向常规聚合物波导12转移,在第二反向楔形结构21的尖端处,光场能量集中在常规聚合物波导12中,再由常规聚合物波导12传输到第一反向楔形结构11。随着第一反向楔形结构11的横截面宽度逐渐收窄,光信号的光场能量慢慢扩大到聚合物包层104中,使光信号在第一反向楔形结构11的尖端处(端面E处)的光场与单模光纤的光场接近,以提高耦合结构200与单模光纤的光场匹配度,从而减少耦合损耗,可有效提高耦合结构与单模光纤的耦合效率。光信号从单模光纤到耦合结构的耦合过程为上述光信号传输的逆向过程,同样可提高光信号从单模光纤到耦合结构的耦合效率。
实施例2
如图3和4所示,该实施例的耦合结构200与实施例1不同的是,该实施例中,芯片波导20包括亚波长光栅波导22,其中,亚波长光栅波导22与常规聚合物波导12至少部分重叠,实现芯片波导20与聚合物波导10之间的光耦合。
该实施例中,上述芯片波导20还包括与亚波长光栅波导22相互连接的反向楔形亚波长光栅波导23,该反向楔形亚波长光栅波导23与常规聚合物波导12至少部分重叠,实现芯片波导20与聚合物波导10的绝热耦合。亚波长光栅波导22与光子集成芯片100的常规波导30之间通过一第三反向楔形结构24桥接,该第三反向楔形结构24较宽的一端连接光子集成芯片100的常规波导30,亚波长光栅波导22包覆于第三反向楔形结构24的两侧。上述反向楔形亚波长光栅波导23和第三反向楔形结构24的尖端均朝向耦合端面E,上述常规波导30指光子集成芯片的具有固定宽度和高度的单模光波导。
同样,以硅光子集成芯片为例,该实施例中,基板101为硅基板,基板101上设有埋氧层102,芯片波导20设于埋氧层102上,并覆盖有包层103,聚合物波导10设于聚合物基底105上,并覆盖有聚合物包层104。这里,埋氧层102和包层103均采用二氧化硅,芯片波导20为单模硅波导。当然,在其它实施例中,包层也可以采用其它折射率低于芯片波导折射率的材料,芯片波导也可以是氮化硅波导。上述聚合物基底105靠近芯片波导20的端面,聚合物波导10和聚合物包层105延伸至芯片波导20上,使聚合物波导10覆盖于芯片波导20的亚波长光栅波导22上,芯片波导20与聚合物波导10之间的包层103厚度H在0~200nm范围内,以使芯片波导20与聚合物波导10之间实现更好的耦合。亚波长光栅波导22和反向楔形亚波长光栅波导23的等效折射率从亚波长光栅波导22临近常规波导30一端向反向楔形亚波长光栅波导23的尖端处(截面C处)逐渐变小,使尖端处的等效折射率接近聚合物波导10的折射率。同时在亚波长光栅波导22与常规波导30桥接处,第三反向楔形结构24的尖端端面(截面F)之前(临近常规波导30一侧)的亚波长光栅波导22的宽度与其之后(临近反向楔形亚波长光栅波导23一侧)的亚波长光栅波导22的宽度可分别调整,以使该尖端端面处的等效折射率连续、逐渐变小,避免等效折射率突变引起光反射损耗。亚波长光栅波导22的周期则应该小于波导内传输的光信号的波长除以2倍的光栅等效折射率的值。采用反向楔形亚波长光栅波导23与常规聚合物波导12进行绝热耦合,缩短了芯片波导20与聚合物波导10重叠耦合的长度,可有效减少传输损耗。这里,常规聚合物波导12与芯片波导20重叠部分的长度可缩短至1000μm,甚至600μm,都可以保持较小的耦合损耗,仍然具有较高的耦合效率。
这里,以如下的具体例子为例进行分析说明:亚波长光栅波导22和反向楔形亚波长光栅波导23的整体等效折射率为2.5,其周期取280nm,占空比选择方便加工的0.5,反向楔形亚波长光栅波导23的尖端端面(截面C处)宽度为170nm。为了使亚波长光栅波导22和反向楔形亚波长光栅波导23的等效折射率连续变小,在合适的位置可适当调整其占空比,不一定是严格的0.5的占空比。第三反向楔形结构24的尖端端面(截面F)之前的亚波长光栅波导22的宽度为280nm,之后的亚波长光栅波导22的宽度为375nm,结合合适的占空比,使第三反向楔形结构24的尖端端面处具有连续的折射率变化,避免折射率突变引起的额外损耗。上述各参数的设定,以使反向楔形亚波长光栅波导23的尖端端面处(截面C处),本征模光场的能量主要聚集在聚合物波导10中为目标。上述聚合物基底105、聚合物包层104和聚合物波导10采用的聚合物的折射率在1.5~2之间,聚合物包层104和聚合物基底105的折射率与聚合物波导10的折射率差在0.005~0.6范围内。这里,聚合物波导10的折射率取1.58,聚合物包层104的折射率取1.56,二者之间的折射率差为0.02。在此基础上,亚波长光栅波导22和反向楔形亚波长光栅波导23与聚合物波导10的耦合损耗随二者重叠(或者反向楔形亚波长光栅波导23)的长度L变化关系如图5所示,当重叠的长度L大于200μm时,耦合损耗小于1.5dB;当重叠的长度L大于600μm时,耦合损耗已经非常小,小于0.2dB。假设光在亚波长光栅波导22和反向楔形亚波长光栅波导23内的传输损耗为3dB/cm,600μm的传输损耗为0.18dB,加上小于0.2dB的耦合损耗,整体的损耗小于0.38dB,有效减少了芯片波导20到聚合物波导10之间耦合的整体损耗,提高了二者之间的耦合效率。
另外,当聚合物波导10的高度h取3.5μm,常规聚合物波导12的宽度d也设为3.5μm时,聚合物波导10的第一反向楔形结构11不同的尖端端面宽度D与单模光纤耦合的损耗如图6所示。在第一反向楔形结构11的尖端端面宽度D为1μm或0.6μm时,该损耗小于0.6dB;该尖端端面宽度D为0.8μm时,具有最小的损耗,约为0.3dB。所以,结合上述芯片波导20与聚合物波导10之间的耦合损耗,从芯片波导20到聚合物波导10再到单模光纤之间的耦合,整体损耗可以小于0.7dB,且偏振相关损耗小于0.1dB,有效提高了光子集成芯片与单模光纤之间的耦合效率,实现高效耦合。
同实施例1一样,这里以光信号从光子集成芯片100到单模光纤的耦合为例,光信号从光子集成芯片100的常规波导30传输到其耦合结构200的第三反向楔形结构24,通过第三反向楔形结构24与亚波长光栅波导22的桥接结构传输到亚波长光栅波导22中,再经反向楔形亚波长光栅波导23绝热地耦合到常规聚合物波导12中。即随着反向楔形亚波长光栅波导23的宽度逐渐收窄,光信号的光场能量逐渐向常规聚合物波导12转移,在反向楔形亚波长光栅波导23的尖端处(截面C处),光场能量集中在常规聚合物波导12中,再由常规聚合物波导12传输到第一反向楔形结构11。随着第一反向楔形结构11的横截面宽度逐渐收窄,光信号的光场能量慢慢扩大到聚合物包层104中,使光信号在第一反向楔形结构11的尖端处(端面E处)的光场与单模光纤的光场接近,以提高耦合结构200与单模光纤的光场匹配度,从而减少耦合损耗,可有效提高耦合结构与单模光纤的耦合效率。光信号从单模光纤到耦合结构的耦合过程为上述光信号传输的逆向过程,同样可提高光信号从单模光纤到耦合结构的耦合效率。
实施例3
如图7所示,该实施例提供了一种光学组件,如光模块等。该光学组件包括光子集成芯片100和单模光纤300,该光子集成芯片100包括上述实施例1或2中的耦合结构200,光子集成芯片100通过其耦合结构200与单模光纤300实现高效的光耦合。
该光子集成芯片100可以设有光有源器件和/或光无源器件(未在图中表示),如光探测器、波分复用/解复用器、分光器和/或偏振分束器等,光有源器件和/或光无源器件通过芯片的常规波导30连接上述耦合结构200的芯片波导20远离单模光纤300的一端。
上文所列出的一系列的详细说明仅仅是针对本申请的可行性实施方式的具体说明,它们并非用以限制本申请的保护范围,凡未脱离本申请技艺精神所作的等效实施方式或变更均应包含在本申请的保护范围之内。

Claims (13)

  1. 一种光子集成芯片的耦合结构,具有用于与外部单模光纤耦合的耦合端面,其特征在于:所述耦合结构包括基板、设于所述基板上的芯片波导和聚合物波导,所述聚合物波导临近所述耦合端面;
    所述聚合物波导包括相互连接的常规聚合物波导和第一反向楔形结构;所述第一反向楔形结构的尖端位于所述耦合端面处;所述常规聚合物波导与所述芯片波导部分重叠,所述芯片波导和所述聚合物波导光耦合。
  2. 根据权利要求1所述的光子集成芯片的耦合结构,其特征在于:
    所述芯片波导包括第二反向楔形结构,所述第二反向楔形结构与所述常规聚合物波导至少部分重叠。
  3. 根据权利要求1所述的光子集成芯片的耦合结构,其特征在于:
    所述芯片波导包括亚波长光栅波导,所述亚波长光栅波导与所述常规聚合物波导至少部分重叠。
  4. 根据权利要求3所述的光子集成芯片的耦合结构,其特征在于:所述芯片波导还包括与所述亚波长光栅波导相连的反向楔形亚波长光栅波导,所述反向楔形亚波长光栅波导与所述常规聚合物波导重叠。
  5. 根据权利要求4所述的光子集成芯片的耦合结构,其特征在于:所述芯片波导还包括第三反向楔形结构,所述常规亚波长光栅波导包覆所述第三反向楔形结构的两侧。
  6. 根据权利要求1所述的光子集成芯片的耦合结构,其特征在于:所述芯片波导为单模光波导。
  7. 根据权利要求1所述的光子集成芯片的耦合结构,其特征在于:所述第一反向楔形结构的尖端端面宽度在600nm~1500nm范围内。
  8. 根据权利要求1所述的光子集成芯片的耦合结构,其特征在于:所述常规聚合物波导与所述芯片波导重叠部分的长度在200μm~2000μm范围内。
  9. 根据权利要求1-8任一项所述的光子集成芯片的耦合结构,其特征在于:
    所述基板为硅基板,所述耦合结构还包括位于所述芯片波导和所述硅基板之间的埋氧层,以及位于所述聚合物波导下方的聚合物基底;所述埋氧层上还设有覆盖所述芯片波导的包层,所述聚合物基底上还设有覆盖所述聚合物波导的聚合物包层;
    所述芯片波导为硅波导或氮化硅波导。
  10. 根据权利要求9所述的光子集成芯片的耦合结构,其特征在于:所述芯片波导与所述聚合物波导之间的包层厚度在0~200nm范围内。
  11. 根据权利要求9所述的光子集成芯片的耦合结构,其特征在于:所述聚合物包层和聚合物基底的折射率与所述聚合物波导的折射率差在0.005~0.6范围内;
    所述聚合物波导的折射率小于所述芯片波导的折射率。
  12. 一种光子集成芯片,包括光有源器件和/或光无源器件,其特征在于:还包括权利要求1-11任一项所述的耦合结构,所述光有源器件和/或光无源器件光连接所述耦合结构的芯片波导。
  13. 一种光学组件,包括光子集成芯片和单模光纤,其特征在于:所述光子集成芯片包括权利要求1-11任一项所述的耦合结构,所述光子集成芯片通过所述耦合结构与所述单模光纤光耦合。
PCT/CN2021/110314 2020-09-07 2021-08-03 光学组件、光子集成芯片及其耦合结构 WO2022048380A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010926151.5 2020-09-07
CN202010926151.5A CN114153024A (zh) 2020-09-07 2020-09-07 光学组件、光子集成芯片及其耦合结构

Publications (1)

Publication Number Publication Date
WO2022048380A1 true WO2022048380A1 (zh) 2022-03-10

Family

ID=80460296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/110314 WO2022048380A1 (zh) 2020-09-07 2021-08-03 光学组件、光子集成芯片及其耦合结构

Country Status (2)

Country Link
CN (1) CN114153024A (zh)
WO (1) WO2022048380A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114966980A (zh) * 2022-05-07 2022-08-30 上海图灵智算量子科技有限公司 波导、光学组件及其集成方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115598764B (zh) * 2022-11-28 2023-03-14 之江实验室 端面耦合器、光电子芯片和端面耦合器的制作方法
CN116840972B (zh) * 2023-08-30 2023-12-12 深圳市速腾聚创科技有限公司 光芯片、激光雷达及可移动设备
CN116840987B (zh) * 2023-08-30 2023-12-12 深圳市速腾聚创科技有限公司 光芯片、激光雷达及可移动设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07110415A (ja) * 1993-10-13 1995-04-25 Kyocera Corp 光導波路、光導波路と光ファイバの接続装置
CN102159975A (zh) * 2008-09-17 2011-08-17 英特尔公司 用于在硅光子芯片与光纤之间有效耦合的方法和设备
CN106468810A (zh) * 2015-08-20 2017-03-01 中兴通讯股份有限公司 一种光斑转换器及光学装置
CN108132499A (zh) * 2018-02-02 2018-06-08 苏州易缆微光电技术有限公司 基于多层聚合物结构的硅波导模斑转换器及其制备方法
CN108885307A (zh) * 2016-12-22 2018-11-23 华为技术有限公司 用于光子芯片的具有可控模场的光学边缘耦合器
CN111458793A (zh) * 2020-04-17 2020-07-28 中国科学院半导体研究所 Lnoi基脊型光波导端面耦合结构及其应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3153899A1 (en) * 2015-10-09 2017-04-12 Caliopa NV Optical coupling scheme
IT201800005891A1 (it) * 2018-05-31 2019-12-01 Procedimento per realizzare un dispositivo per accoppiamento adiabatico, dispositivo e sistema corrispondenti
CN110954998B (zh) * 2018-09-27 2021-10-01 上海新微技术研发中心有限公司 激光器与硅光芯片集成结构及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07110415A (ja) * 1993-10-13 1995-04-25 Kyocera Corp 光導波路、光導波路と光ファイバの接続装置
CN102159975A (zh) * 2008-09-17 2011-08-17 英特尔公司 用于在硅光子芯片与光纤之间有效耦合的方法和设备
CN106468810A (zh) * 2015-08-20 2017-03-01 中兴通讯股份有限公司 一种光斑转换器及光学装置
CN108885307A (zh) * 2016-12-22 2018-11-23 华为技术有限公司 用于光子芯片的具有可控模场的光学边缘耦合器
CN108132499A (zh) * 2018-02-02 2018-06-08 苏州易缆微光电技术有限公司 基于多层聚合物结构的硅波导模斑转换器及其制备方法
CN111458793A (zh) * 2020-04-17 2020-07-28 中国科学院半导体研究所 Lnoi基脊型光波导端面耦合结构及其应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114966980A (zh) * 2022-05-07 2022-08-30 上海图灵智算量子科技有限公司 波导、光学组件及其集成方法

Also Published As

Publication number Publication date
CN114153024A (zh) 2022-03-08

Similar Documents

Publication Publication Date Title
WO2022048380A1 (zh) 光学组件、光子集成芯片及其耦合结构
WO2021175082A1 (zh) 一种模斑变换器及硅光集成芯片
US7801397B2 (en) Efficient light coupler from off-chip to on-chip waveguides
WO2021175072A1 (zh) 一种半导体光耦合结构和硅光集成芯片
CA2092840A1 (en) Integrated optical package for coupling optical fibers to devices with asymmetric light beams
WO2012046401A1 (ja) 光学変換素子及び光学変換素子の製造方法
JP5323646B2 (ja) ハイブリッド集積光モジュール
CN111665592B (zh) 一种lnoi悬空模斑转换器及其工艺实现方法
JP2005508021A5 (zh)
JP2009523264A (ja) 薄型soicmos光電集積回路内への広帯域光学結合
CA2464715A1 (en) Optical junction apparatus and methods employing optical power transverse-transfer
KR20200060718A (ko) 광자 집적 회로의 도파관에 광섬유의 자기 정렬 연결을 위한 방법 및 장치
JP2008250019A (ja) 光集積回路および光集積回路モジュール
WO2005101075A1 (ja) 光導波路構造
JP7371556B2 (ja) 光導波路素子
JP3490745B2 (ja) 複合光導波路型光デバイス
US20010026670A1 (en) Optical waveguide and method for making the same
CN115857091A (zh) 一种铌酸锂薄膜mmi起偏分束器
JPH07128531A (ja) 光集積回路およびその作製方法
JP2001242331A (ja) 半導体装置
JP2004157530A (ja) 光モジュール
CN115877506B (zh) 覆盖可见光波段的薄膜铌酸锂端面耦合器及其制备方法
CN214954215U (zh) 一种凸型自增强聚焦耦合光栅耦合器
JPH09159865A (ja) 光導波路の接続構造
JP3690646B2 (ja) 光導波路回路基板と光ファイバアレイとの接続構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21863448

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21863448

Country of ref document: EP

Kind code of ref document: A1