WO2022048262A1 - Matériau composite de réseau de nanotubes tin modifiés par des points quantiques de disulfure de molybdène de type métallique et son procédé de préparation - Google Patents

Matériau composite de réseau de nanotubes tin modifiés par des points quantiques de disulfure de molybdène de type métallique et son procédé de préparation Download PDF

Info

Publication number
WO2022048262A1
WO2022048262A1 PCT/CN2021/102617 CN2021102617W WO2022048262A1 WO 2022048262 A1 WO2022048262 A1 WO 2022048262A1 CN 2021102617 W CN2021102617 W CN 2021102617W WO 2022048262 A1 WO2022048262 A1 WO 2022048262A1
Authority
WO
WIPO (PCT)
Prior art keywords
mos
type mos
quantum dots
nanotube array
composite material
Prior art date
Application number
PCT/CN2021/102617
Other languages
English (en)
Chinese (zh)
Inventor
王玮
康琪
刘天宇
汪敏
柏寄荣
邓瑶瑶
许�鹏
孙潇楠
张金涛
Original Assignee
常州工学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 常州工学院 filed Critical 常州工学院
Publication of WO2022048262A1 publication Critical patent/WO2022048262A1/fr

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Definitions

  • the invention belongs to the technical field of nanomaterial preparation, and in particular relates to a TiN nanotube array composite material decorated with metallic molybdenum disulfide quantum dots and a preparation method thereof.
  • MoS2 has excellent physical and chemical properties, and has important application prospects in the fields of electrocatalysis and biosensing.
  • MoS quantum dots are concerned, due to their small size, large specific surface area, and many active sites at the exposed edges, they exhibit excellent electrocatalytic properties, which can be applied to electrocatalytic hydrogen evolution reactions and highly sensitive sensors.
  • thermodynamically stable MoS 2 is a semiconducting type, and the electrocatalytic performance of semiconducting MoS 2 needs to be further improved because of its weak electron transport ability, while the metal type MoS 2 has good electron transport ability, so the metal type MoS 2 Quantum dots have broader application prospects in the field of electrocatalysis.
  • MoS2 QDs are prone to agglomeration in the dispersed phase medium, which reduces their electrocatalytic performance, thereby limiting their applications.
  • Titanium nitride nanomaterials are materials with good physical and chemical properties, exhibiting thermodynamic stability, good electrical conductivity, and good biocompatibility.
  • the purpose of the present invention is to provide a TiN nanotube array decorated with metallic molybdenum disulfide quantum dots
  • the composite material and the preparation method thereof are simple in process and convenient for industrial production.
  • a preparation method of a TiN nanotube array composite material decorated with metallic MoS2 quantum dots specifically comprising the following steps:
  • step (3) (4) placing the TiN nanotube array in the solution of metallic MoS 2 quantum dots described in step (3), and then performing ultrasonic treatment, soaking and drying in sequence to obtain a composite of TiN nanotube arrays decorated with metallic MoS 2 quantum dots Material.
  • the manual grinding method in step (1) is specifically: placing the semiconductor - type MoS block in ethanol or isopropanol to obtain a mixed solution, and then placing the mixed solution in an agate mortar , manually grind for 60 min, and after ethanol or isopropanol evaporates, and after natural drying, semiconductor-type MoS 2 powder is obtained.
  • the size of the semiconductor-type MoS 2 bulk is 6 ⁇ m, and the size of the semiconductor-type MoS 2 powder is ⁇ 1 ⁇ m;
  • the addition amount of the ethanol or isopropanol is based on the mass concentration of the semiconductor-type MoS 2 block in the mixed solution being 100 mg/mL.
  • the water content and oxygen content in the glove box of the anhydrous and oxygen-free environment in step (2) are both less than 1 ppm, and the inert gas is one or more of nitrogen, argon and helium, and the inert gas The purity is 99.99%.
  • the butyllithium solution in step (2) is a n-hexane solution of butyllithium, the molar concentration of the butyllithium in the butyllithium solution is 2.5 mol/L, and the butyllithium solution is The amount of butyllithium used is based on the volume of butyllithium, and the volume-to-mass ratio of the butyllithium to the semiconducting MoS 2 powder is 500 ⁇ L: 20 mg.
  • the solvent in step (3) is deionized water or ethanol
  • the mass-volume ratio of the semiconductor-type MoS 2 powder to the solvent is (10-30) mg:20 mL
  • the ultrasonic treatment time is 30 min.
  • the number of times of centrifugation described in step (3) is 3 times, and the specific operations are: firstly centrifuge at 600rpm for 10min, take a supernatant; then carry out the first supernatant at 10000rpm Centrifugal separation to take the secondary supernatant; finally, the secondary supernatant is further purified and centrifuged at a rotational speed of 15000 rpm, and the obtained supernatant is a metallic MoS 2 quantum dot solution.
  • the size of the metal-type MoS 2 quantum dots is 3-10 nm.
  • the mass concentration of the metal-type MoS 2 quantum dots in the metal-type MoS 2 quantum dot solution is 0.5-1.5 mg/mL
  • the ultrasonic treatment time is 10s
  • the soaking time is 2min
  • the drying is 60min in an oven with a temperature of 60°C.
  • Another object of the present invention is to provide a TiN nanotube array composite material decorated with metallic MoS 2 quantum dots prepared by the method.
  • the quantum dots are loaded on the outer and inner surfaces of TiN nanotubes, and the TiN nanotubes have an outer diameter of 60-90 nm and an inner diameter of 20-30 nm.
  • the semiconductor-type MoS 2 powder is first processed into metal-type MoS 2 quantum dots by lithium intercalation treatment, and then ultrasonic treatment, soaking and drying are performed to obtain the TiN nanotube array composite modified by the metal-type MoS 2 quantum dots
  • the material and the preparation process are simple and feasible, and have wide practical application value and industrial production prospect.
  • the semiconductor-type MoS 2 is processed into metal-type MoS 2 quantum dots, which improves the electron transport capability, thereby improving the electrocatalytic performance; on the other hand, the metal-type MoS 2 quantum dots are compounded in TiN nanotubes On the outer and inner surfaces of the array, nanocomposites with stable structure and excellent performance are obtained, which have both the electrocatalytic properties of metal - type MoS2 quantum dots and the thermodynamic stability and good electrical conductivity of titanium nitride nanotube arrays.
  • the problem of easy agglomeration of MoS 2 quantum dots makes the TiN nanotube array composites decorated with metallic MoS 2 quantum dots expected to be used in enzyme-free hydrogen peroxide electrochemical sensors.
  • FIG. 1 is a schematic structural diagram of the TiN nanotube array composite material decorated with metallic MoS 2 quantum dots of the present invention.
  • a preparation method of a TiN nanotube array composite material decorated with metallic MoS2 quantum dots specifically comprising the following steps:
  • the manual grinding method is used to grind, and the semiconductor-type MoS 2 block with a size of 6 ⁇ m is placed in ethanol or isopropanol to obtain a mixed solution with a mass concentration of 100 mg/mL, Then the mixed solution is placed in an agate mortar, manually ground for 60 min, and after ethanol or isopropanol is evaporated and naturally dried, a semiconductor - type MoS powder with a size of less than 1 ⁇ m is obtained;
  • TiN nanotube array material is placed in the metal-type MoS 2 quantum dot solution described in step (3), and then ultrasonically treated for 10s at room temperature, soaked for 2min, and dried in an oven at 60°C for 60min to obtain metal-type MoS2 quantum dots.
  • the TiN nanotube array composite material decorated with metallic MoS 2 quantum dots prepared in this example wherein the TiN nanotubes are vertically grown on the Ti sheet substrate, and the metallic MoS 2 quantum dots are supported on TiN
  • the outer surface and inner surface of the nanotube are described, the outer diameter of the TiN nanotube is 60-90 nm, and the inner diameter is 20-30 nm.
  • a preparation method of a TiN nanotube array composite material decorated with metallic MoS2 quantum dots specifically comprising the following steps:
  • the manual grinding method is used to grind, and the semiconductor-type MoS 2 block with a size of 6 ⁇ m is placed in ethanol or isopropanol to obtain a mixed solution with a mass concentration of 100 mg/mL, Then the mixed solution is placed in an agate mortar, manually ground for 60 min, and after ethanol or isopropanol is evaporated and naturally dried, a semiconductor - type MoS powder with a size of less than 1 ⁇ m is obtained;
  • TiN nanotube array material is placed in the metal-type MoS 2 quantum dot solution described in step (3), and then ultrasonically treated for 10s at room temperature, soaked for 2min, and dried in an oven at 60°C for 60min to obtain metal-type MoS2 quantum dots.
  • the TiN nanotube array composite material decorated with metallic MoS 2 quantum dots prepared in this example wherein the TiN nanotubes are vertically grown on the Ti sheet substrate, and the metallic MoS 2 quantum dots are supported on TiN
  • the outer surface and inner surface of the nanotube are described, the outer diameter of the TiN nanotube is 60-90 nm, and the inner diameter is 20-30 nm.
  • a preparation method of a TiN nanotube array composite material decorated with metallic MoS2 quantum dots specifically comprising the following steps:
  • the manual grinding method is used to grind, and the semiconductor-type MoS 2 block with a size of 6 ⁇ m is placed in ethanol or isopropanol to obtain a mixed solution with a mass concentration of 100 mg/mL, Then the mixed solution is placed in an agate mortar, manually ground for 60 min, and after ethanol or isopropanol is evaporated and naturally dried, a semiconductor - type MoS powder with a size of less than 1 ⁇ m is obtained;
  • TiN nanotube array material is placed in the metal-type MoS 2 quantum dot solution described in step (3), and then ultrasonically treated for 10s at room temperature, soaked for 2min, and dried in an oven at 60°C for 60min to obtain metal-type MoS2 quantum dots.
  • the TiN nanotube array composite material decorated with metallic MoS 2 quantum dots prepared in this example wherein the TiN nanotubes are vertically grown on the Ti sheet substrate, and the metallic MoS 2 quantum dots are supported on TiN
  • the outer surface and inner surface of the nanotube are described, the outer diameter of the TiN nanotube is 60-90 nm, and the inner diameter is 20-30 nm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

La présente invention concerne le domaine technique de la préparation de nanomatériaux, et en particulier, un matériau composite de réseau de nanotubes TiN modifié par points quantiques de disulfure de molybdène de type métallique et son procédé de préparation. La méthode de préparation consiste à : (1) l'utilisation d'un procédé de meulage manuel pour meuler un bloc de semi-conducteur de grande taille MoS2 pour obtenir la poudre de semi-conducteur MoS2; (2) la réalisation d'un traitement d'intercalation du lithium sur la poudre de semi-conducteur MoS2; (3) la dispersion de la poudre de semi-conducteur MoS2 soumise au traitement d'intercalation de lithium dans un solvant, la réalisation d'un traitement par ultrasons, et la réalisation d'une séparation centrifuge pour obtenir une solution de points quantiques MoS2 de type métallique; (4) la mise en place d'un réseau de nanotubes TiN dans la solution de points quantiques MoS2 de type métallique, puis la réalisation séquentielle d'un traitement par ultrasons, l'immersion de celui-ci, et le séchage de celui-ci pour obtenir le matériau composite de réseau de nanotubes TiN modifié par points quantiques MoS2 de type métallique. Le matériau composite de réseau de nanotubes TiN à points quantiques MoS2 de type métallique de la présente invention présente d'excellentes performances électrocatalytiques et une excellente stabilité.
PCT/CN2021/102617 2020-09-01 2021-06-28 Matériau composite de réseau de nanotubes tin modifiés par des points quantiques de disulfure de molybdène de type métallique et son procédé de préparation WO2022048262A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010902585.1 2020-09-01
CN202010902585.1A CN112076772A (zh) 2020-09-01 2020-09-01 一种金属型二硫化钼量子点修饰的TiN纳米管阵列复合材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2022048262A1 true WO2022048262A1 (fr) 2022-03-10

Family

ID=73731282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/102617 WO2022048262A1 (fr) 2020-09-01 2021-06-28 Matériau composite de réseau de nanotubes tin modifiés par des points quantiques de disulfure de molybdène de type métallique et son procédé de préparation

Country Status (2)

Country Link
CN (1) CN112076772A (fr)
WO (1) WO2022048262A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112076772A (zh) * 2020-09-01 2020-12-15 常州工学院 一种金属型二硫化钼量子点修饰的TiN纳米管阵列复合材料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103880084A (zh) * 2014-03-14 2014-06-25 南京航空航天大学 一种制备超小单层过渡金属化合物量子点溶液的方法
CN107723777A (zh) * 2017-10-16 2018-02-23 南通纺织丝绸产业技术研究院 电沉积二硫化钼量子点修饰二氧化钛纳米管阵列的制备方法
CN112076772A (zh) * 2020-09-01 2020-12-15 常州工学院 一种金属型二硫化钼量子点修饰的TiN纳米管阵列复合材料及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104835648B (zh) * 2015-04-08 2018-05-01 苏州大学 氧化铋纳米颗粒/二氧化钛纳米管阵列的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103880084A (zh) * 2014-03-14 2014-06-25 南京航空航天大学 一种制备超小单层过渡金属化合物量子点溶液的方法
CN107723777A (zh) * 2017-10-16 2018-02-23 南通纺织丝绸产业技术研究院 电沉积二硫化钼量子点修饰二氧化钛纳米管阵列的制备方法
CN112076772A (zh) * 2020-09-01 2020-12-15 常州工学院 一种金属型二硫化钼量子点修饰的TiN纳米管阵列复合材料及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
YONGCHUAN WU ET AL.: "WS2 nanodots-modified Ti02 nanotubes to enhance visible-light photocatalytic activity", MATERIALS LETTERS, vol. 240, 19 November 2018 (2018-11-19), pages 47 - 50, XP085597106, ISSN: 0167-577X, DOI: 10.1016/j.matlet.2018.12.056 *
YUXI PI ET AL.: "Ti02 nanorod arrays decorated with exfoliated WS2 nanosheets for enhanced photoelectrochemical water oxidation", JOURNAL OF COLLOID AND INTERFACE SCIENCE, vol. 545, 14 March 2019 (2019-03-14), pages 282 - 288, XP055906213, ISSN: 0021-9797, DOI: 10.1016/j.jcis.2019.03.041 *
ZHONG, WEI ET AL.: "MoS2 (Preparation,Optical and Electrocatalytic Properties of Monolayer MoS2 Quantum Dots", JILIN NORMAL UNIVERSITY JOURNAL( NATURAL SCIENCE EDITION, vol. 37, no. 3, 10 August 2016 (2016-08-10), pages 1 - 6, XP055906216, ISSN: 1674-3873 *

Also Published As

Publication number Publication date
CN112076772A (zh) 2020-12-15

Similar Documents

Publication Publication Date Title
Zhang et al. Accordion‐like carbon with high nitrogen doping for fast and stable K ion storage
Yuan et al. Si-based materials derived from biomass: synthesis and applications in electrochemical energy storage
Zhou et al. Polyaniline-encapsulated silicon on three-dimensional carbon nanotubes foam with enhanced electrochemical performance for lithium-ion batteries
Wang et al. Synthesis and characterization of CuO nanowhiskers by a novel one-step, solid-state reaction in the presence of a nonionic surfactant
Al Ja’farawy et al. A review: the development of SiO 2/C anode materials for lithium-ion batteries
Jiang Chemical preparation of graphene‐based nanomaterials and their applications in chemical and biological sensors
Zhang et al. Fe 2 O 3-decorated millimeter-long vertically aligned carbon nanotube arrays as advanced anode materials for asymmetric supercapacitors with high energy and power densities
CN109709160B (zh) 一种电子导电金属有机框架薄膜及其制备方法和用途
CN105322146B (zh) 一种硒化钼/碳纳米纤维/石墨烯复合材料及其制备方法
CN105322147B (zh) 一种二硫化钨/碳纳米纤维/石墨烯复合材料及其制备方法
WO2014032399A1 (fr) Procédé pour la préparation à basse température de graphène et de matériau composite à base de graphène
CN104900845B (zh) 纳米阀门封装的硫介孔二氧化硅复合材料的制备方法
Yi et al. Tailored silicon hollow spheres with Micrococcus for Li ion battery electrodes
CN108336310B (zh) 一种基于自支撑还原氧化石墨烯卷的复合材料及制备方法
WO2022048262A1 (fr) Matériau composite de réseau de nanotubes tin modifiés par des points quantiques de disulfure de molybdène de type métallique et son procédé de préparation
JP2023070625A (ja) ケイ素-炭素複合材料、その調製方法及びその応用
CN108899496B (zh) 石墨烯掺杂ws2制备方法及在锂/钠离子电池中的应用
CN105977049A (zh) 一种碳化钼/石墨烯纳米带复合材料的制备方法
CN108615860A (zh) 氮掺杂石墨烯/硅三维锂离子负极复合材料及其制备方法
Paul et al. Organic photovoltaic cells using MWCNTs
CN109148855A (zh) 一种负极材料及其制备方法、锂离子电池负极和锂离子电池
CN115394927A (zh) 钙钛矿薄膜、晶种辅助成膜方法、钙钛矿太阳能电池
Zhang et al. Necklace‐Structured Silicon Suboxide‐Based Anode Materials with Multiple Carbon Networks for Stable Lithium Storage
Bobrowska et al. Carbon nano‐onion and zinc oxide composites as an electron transport layer in inverted organic solar cells
JP2023509252A (ja) ガーネット類似構造のケイ素ベース複合材料、その調製方法及びその応用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21863330

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21863330

Country of ref document: EP

Kind code of ref document: A1