WO2022048206A1 - 一种从剩余污泥中提取cod的方法 - Google Patents

一种从剩余污泥中提取cod的方法 Download PDF

Info

Publication number
WO2022048206A1
WO2022048206A1 PCT/CN2021/096733 CN2021096733W WO2022048206A1 WO 2022048206 A1 WO2022048206 A1 WO 2022048206A1 CN 2021096733 W CN2021096733 W CN 2021096733W WO 2022048206 A1 WO2022048206 A1 WO 2022048206A1
Authority
WO
WIPO (PCT)
Prior art keywords
excess sludge
cell wall
supernatant
cod
stirring
Prior art date
Application number
PCT/CN2021/096733
Other languages
English (en)
French (fr)
Inventor
唐铭
李洋洋
沈群
Original Assignee
浙江湖州金洁水务股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江湖州金洁水务股份有限公司 filed Critical 浙江湖州金洁水务股份有限公司
Publication of WO2022048206A1 publication Critical patent/WO2022048206A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/02Biological treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/121Treatment of sludge; Devices therefor by de-watering, drying or thickening by mechanical de-watering
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds

Definitions

  • the invention belongs to the technical field of sewage treatment, and in particular relates to a method for extracting COD from excess sludge.
  • Sewage treatment plants generally use the activated sludge method to treat various types of sewage.
  • the microorganisms in the sludge can achieve self-growth while removing pollutants in the water, and at the same time generate a large amount of excess sludge. It is predicted that by 2020, the output of excess sludge in my country will reach more than 80 million tons.
  • the remaining activated sludge contains a large amount of organic matter and rich nutrients, as well as pathogenic bacteria, parasite eggs and other substances that are easy to harm human health. If it is not stabilized and discharged arbitrarily, it will cause serious environmental problems. Therefore, the excess sludge must be treated and disposed of.
  • the method of thermal alkali treatment of excess sludge can usually be used to achieve the purpose of enriching the carbon source in the supernatant after the treatment, that is, the COD extraction described in the present invention, which not only reduces the amount of excess sludge.
  • the carbon source can be reused as the carbon source in the process of microbial denitrification and phosphorus removal, and finally the comprehensive utilization effect of COD in the sludge can be realized.
  • the treatment additive is only lye, so that even if the microbial cell dies, the cell polysaccharide, lipopeptide and related lipid derivatives on the cell wall surface will remain. , and can not be completely shed and dissolved, which reduces the ability of carbon source enrichment in the supernatant, and the final display effect is that the COD value in the supernatant is not large enough.
  • the patent publication number is CN 107265806A, and the Chinese invention patent whose publication date is 2017.10.20 discloses a process for treating excess sludge based on carbon source recycling.
  • the 10) stage can inhibit the activity of methanogens, avoid the consumption of VFAs in the process of methanogenesis by methanogens, and keep the acid-producing effect stronger than the methane-producing effect, thereby greatly increasing the cumulative concentration of SCOD and VFAs in the hydrolyzed acidification solution.
  • the hot alkali pretreatment step in this invention patent has the problems that the decomposition effect on cells is not complete, and the proportion of macromolecular organic matter entering the supernatant is relatively low.
  • the object of the present invention is to provide a method for extracting COD from excess sludge, which can decompose the cell wall by adding a cell wall decomposing agent, an alkali-resistant agent and a crushing neutralizer when the excess sludge is subjected to thermal alkali treatment. Adding materials and matching with the appropriate hot alkali process can achieve the effect that the organic matter in the excess sludge is decomposed to the greatest extent, and the supernatant is recycled and reused.
  • the invention has the advantages of completely disintegrating the microbial cells in the excess sludge, high proportion of the extracellular polymer entering the supernatant liquid after dissolving, the additive material does not affect the recycling operation of the carbon source in the supernatant liquid, and the cell wall decomposition additive material
  • the cell wall of microorganisms is completely destroyed and decomposed, and the overall thermal alkali operation is simple and efficient, which ultimately greatly reduces the discharge of excess sludge and greatly reduces the risk of harmful microorganisms discharge from excess sludge.
  • the technical scheme adopted by the present invention to solve the above problems is: a method for extracting COD from excess sludge, which in turn comprises the following steps:
  • the reaction tank is heated while stirring, heated to above 80°C and kept stirring for 0.5-2h, and then stopped stirring;
  • the filtrate is also rich in organic macromolecules after microbial cell crushing, and can be used together with the supernatant as a carbon source in the process of microbial denitrification and phosphorus removal in subsequent sewage treatment.
  • step S1 the moisture content of the excess sludge is 95%-98%, the alkali material is solid sodium hydroxide or a solute mass fraction of 30%-32% sodium hydroxide solution,
  • the mass ratio of the excess sludge to solid sodium hydroxide is 100:(0.5-2.0), and the mass ratio of the excess sludge to 30%-32% sodium hydroxide solution is 100:(1.5-6.0) .
  • the sodium hydroxide is excessive in the above ratio, the ability to kill microorganisms by itself will not be improved significantly, and the subsequent additive material cannot effectively carry out the cell wall crushing operation, and if the sodium hydroxide is added too little, The ability of sodium hydroxide to decompose itself and kill microbial cells will be weakened, so the above ratio range is determined.
  • a further preferred technical solution is: in step S2, under the condition of heating to 80-90°C and keeping the temperature, keep stirring for 1.0-2.0h, and under the condition of heating to 95-98°C and keeping the temperature, keep stirring for 0.5-1.0h.
  • step S3 the time for standing and separation is 30-45min.
  • step S4 the mass ratio of the dry sludge to the excess sludge is 1:(15-45); the COD value in the filtrate and the supernatant is 11200-18500 mg/L .
  • the operation of the filter press is carried out by a plate and frame filter press, and the excess sludge is pumped into the reaction tank from the sludge storage tank or sludge concentration tank of the sewage treatment plant.
  • step S1 adding to the excess sludge is used to decompose the cell wall of microorganisms, and the extracellular polymer is released to the supernatant as a cell wall decomposition additive for recycling carbon sources, and the cell wall is decomposed.
  • Additives include cell wall decomposing agents, alkali resistance agents and crushing neutralizers.
  • the cell wall decomposing agent is any one or more mixtures of polyhydroxy triquaternary ammonium salt, hexamethylene chloride triquaternary ammonium salt and dialkyl polyoxyethylene triquaternary ammonium salt
  • the alkali-resistant agent is any one or more mixtures of bentonite, organic montmorillonite and polyurethane elastic fibers
  • the crushing neutralizer is hollow microspheres prepared by mixing aluminum tripolyphosphate, stone micropowder and polyurethane.
  • the cell wall decomposing agent adopts a quaternary ammonium salt that increases the permeability of the cell wall to ensure the basic effect of killing microbial cells and dissolving the polymer on the cell wall into the supernatant after decomposing, and the resistant
  • the alkaline agent is used for compounding and modifying the quaternary ammonium salt to prevent the quaternary ammonium salt from failing in the above alkaline environment.
  • the final crushing and neutralizing agent has three functions.
  • microspheres themselves can further break the microbial cells by means of physical breakage, so as to ensure the effective release and dissolution of the polymers on the cells.
  • the hollow microsphere itself can disperse the accidentally agglomerated bentonite and organic montmorillonite through physical impact, so that the bentonite and organic montmorillonite can stably combine with quaternary ammonium salt in a large proportion, and protect the quaternary ammonium in an alkaline environment. Salt.
  • a further preferred technical solution is: the particle size of the bentonite or organic montmorillonite is 15-25 ⁇ m, the aspect ratio of the polyurethane elastic fiber is (750-820): 1, and the stone powder is volcanic rock powder, dolomite Any one of stone micropowder or calcite micropowder, the particle size of the hollow microspheres is 0.20-0.35mm.
  • the mixture is subjected to microwave heating, foaming and expansion treatment, and the hollow microspheres are obtained after cooling.
  • a further preferred technical solution is: in the microwave heating foam expansion treatment, the microwave frequency is 2200-2560MHz, the temperature is 45-55°C, the foaming and expansion time is 1.5-4.5min, and the cooling rate is 5-8°C/min .
  • the microwave heating foaming and expansion operation can be used to make polyurethane as a binder and a foaming agent to finally obtain the style of hollow microspheres, ensuring that the microspheres themselves have light weight, high hardness and good particle size uniformity.
  • a cell wall decomposition additive composed of a cell wall decomposer, an alkali-resistant agent and a crushing neutralizer is added, and a suitable hot alkali process is combined to achieve the effect of the residual sludge.
  • the organic matter is decomposed to the greatest extent, and the effect of recycling and reuse after entering the supernatant.
  • the invention has the advantages of completely disintegrating the microbial cells in the excess sludge, high proportion of the extracellular polymer entering the supernatant liquid after dissolving, the additive material does not affect the recycling operation of the carbon source in the supernatant liquid, and the cell wall decomposition additive material
  • the cell wall of microorganisms is completely destroyed and decomposed, and the overall thermal alkali operation is simple and efficient, which ultimately greatly reduces the discharge of excess sludge and greatly reduces the risk of harmful microorganisms discharge from excess sludge.
  • a method for extracting COD from excess sludge comprising the following steps in sequence:
  • the reaction tank is heated while stirring, heated to 85°C, kept stirring for 1.5 hours, and then stopped stirring;
  • step S1 the moisture content of the excess sludge is 98%, the alkali material is solid sodium hydroxide, and the mass ratio of the excess sludge to the solid sodium hydroxide is 100:0.5.
  • step S3 the time for standing and separation is 30 min.
  • step S4 the mass ratio of the dry sludge to the excess sludge is 1:26; the COD value in the filtrate and the supernatant is 11500 mg/L.
  • step S1 adding to the excess sludge is used to decompose the cell wall of microorganisms, and release the extracellular polymer to the supernatant as a cell wall decomposing additive for recycling carbon sources, and the cell wall decomposing additive includes a cell wall decomposing agent, Alkali resistance agent and crushing neutralizer.
  • the cell wall decomposing agent is polyhydroxy triquaternary ammonium salt
  • the alkali-resistant agent is bentonite
  • the crushing neutralizer is hollow microspheres prepared by mixing aluminum tripolyphosphate, stone micropowder and polyurethane.
  • the particle size of the bentonite is 20 ⁇ m
  • the fine stone powder is volcanic rock fine powder
  • the particle size of the hollow microsphere is 0.22 mm.
  • the preparation method of the hollow microspheres comprises the following steps in sequence:
  • the mixture is subjected to microwave heating, foaming and expansion treatment, and the hollow microspheres are obtained after cooling.
  • the microwave frequency is 2250MHz
  • the temperature is 45°C
  • the foaming and expansion time is 2min
  • the cooling rate is 5°C/min.
  • the finally obtained supernatant is used as a carbon source for subsequent microbial denitrification and dephosphorization operations, so as to ensure the comprehensive utilization effect of the excess sludge.
  • a method for extracting COD from excess sludge comprising the following steps in sequence:
  • the reaction tank is heated and stirred, heated to 96°C, kept stirring for 0.5h, and then stopped stirring;
  • step S1 the moisture content of the excess sludge is 95%, the alkali material is a 30% sodium hydroxide solution, and the mass ratio of the excess sludge to the 30% sodium hydroxide solution is 100:2.5.
  • step S3 the time for standing and separation is 40 min.
  • step S4 the mass ratio of the dry sludge to the excess sludge is 1:35; the COD value in the filtrate and the supernatant is 14020 mg/L.
  • step S1 adding to the excess sludge is used to decompose the cell wall of microorganisms, and release the extracellular polymer to the supernatant as a cell wall decomposing additive for recycling carbon sources, and the cell wall decomposing additive includes a cell wall decomposing agent, Alkali resistance agent and crushing neutralizer.
  • the cell wall decomposing agent is hexamethylene triquaternary ammonium chloride; the alkali-resistant agent is organic montmorillonite; the crushing and neutralizing agent is hollow microspheres prepared by mixing aluminum tripolyphosphate, stone powder and polyurethane .
  • the particle size of the bentonite is 20 ⁇ m
  • the fine stone powder is calcite fine powder
  • the particle size of the hollow microsphere is 0.32 mm.
  • the preparation method of the hollow microspheres comprises the following steps in sequence:
  • the mixture is subjected to microwave heating, foaming and expansion treatment, and the hollow microspheres are obtained after cooling.
  • the microwave frequency is 2550MHz
  • the temperature is 45°C
  • the foaming and expansion time is 4min
  • the cooling rate is 6°C/min.
  • the finally obtained supernatant is used as a carbon source for subsequent microbial denitrification and dephosphorization operations, so as to ensure the comprehensive utilization effect of the excess sludge.
  • a method for extracting COD from excess sludge comprising the following steps in sequence:
  • the reaction tank is heated while stirring, heated to 98°C and kept stirring for 0.5h, and then stopped stirring;
  • step S1 the moisture content of the excess sludge is 95%, the alkali material is a 30% sodium hydroxide solution, and the mass ratio of the excess sludge to the 30% sodium hydroxide solution is 100:5.5.
  • step S3 the time for standing and separation is 45 min.
  • step S4 the mass ratio of the dry sludge to the excess sludge is 1:42; the COD value in the filtrate and the supernatant is 16500 mg/L.
  • step S1 adding to the excess sludge is used to decompose the cell wall of microorganisms, and release the extracellular polymer to the supernatant as a cell wall decomposing additive for recycling carbon sources, and the cell wall decomposing additive includes a cell wall decomposing agent, Alkali resistance agent and crushing neutralizer.
  • the cell wall decomposing agent is dialkyl polyoxyethylene triquaternary ammonium salt; the alkali resistance agent is polyurethane elastic fiber; the crushing neutralizer is hollow microspheres prepared by mixing aluminum tripolyphosphate, stone powder and polyurethane .
  • the length-diameter ratio of the polyurethane elastic fibers is 760:1
  • the stone material micropowder is calcite micropowder
  • the particle size of the hollow microspheres is 0.35 mm.
  • the preparation method of the hollow microspheres comprises the following steps in sequence:
  • the mixture is subjected to microwave heating, foaming and expansion treatment, and the hollow microspheres are obtained after cooling.
  • the microwave frequency is 2560MHz
  • the temperature is 50°C
  • the foaming and expansion time is 4min
  • the cooling rate is 8°C/min.
  • the finally obtained supernatant is used as a carbon source for subsequent microbial denitrification and dephosphorization operations, so as to ensure the comprehensive utilization effect of the excess sludge.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Treatment Of Sludge (AREA)

Abstract

本发明属于污水处理技术领域,尤其涉及一种从剩余污泥中提取COD的方法。本发明通过在对剩余污泥进行热碱处理时,添加由细胞壁分解剂、耐碱剂以及破碎中和剂组成的细胞壁分解添加料,并配合合适的热碱工艺的方式,达到剩余污泥中的有机物被最大程度地分解,进入上清液后回收再利用的效果。本发明具有对剩余污泥中的微生物细胞破解程度彻底,胞外多聚物溶解后进入上清液的比例高,添加料不影响上清液中碳源的回用操作,以及细胞壁分解添加料对微生物的细胞壁破坏分解彻底,整体热碱操作简单高效的优点,最终大大降低了剩余污泥的排放量,大大降低了剩余污泥的有害微生物排放风险。

Description

一种从剩余污泥中提取COD 的方法 技术领域
本发明属于污水处理技术领域,尤其涉及一种从剩余污泥中提取COD的方法。
背景技术
污水处理厂普遍使用活性污泥法进行各类污水的处理,污泥中的微生物在去除水中污染物的同时,实现自我生长,同时产生大量剩余污泥。据预测,至2020年我国剩余污泥产量将达到8000多万吨,剩余的活性污泥含有大量的有机物质和丰富的营养物质,同时还含有致病菌、寄生虫卵等容易危害人类健康的因素,如不加稳定而任意排放,会造成严重的环境问题,因此,必须对剩余污泥加以处理处置。
现有技术中,通常可以采用对剩余污泥进行热碱处理的方法,实现处理后上清液富集碳源的目的,即本发明中所述的提取COD,这样既降低了剩余污泥的量,又可以将碳源回用,作为微生物脱氮除磷环节的碳源,最终实现污泥中COD的资源化综合利用效果。
但是另一方面,目前现有的剩余污泥热碱处理方式,其处理添加剂仅仅为碱液,这样就存在即使微生物细胞死亡,其胞壁表面的细胞多糖、脂肽及相关脂类衍生物等,也不能很好地全部脱落和溶解,这样就降低了上清液中碳源富集的能力,最终显示效果是上清液中的COD数值不够大。
专利公开号为CN 107265806A,公开日为2017.10.20的中国发明专利公开了一种基于碳源回用的剩余污泥处理工艺,先将剩余污泥经过热碱预处理,污泥细胞分解,大分子有机物如蛋白质、多糖等释放到上清液中,然后污泥水解酸化经酸性启动(pH=6)阶段,有利于保持产酸微生物的活性,促进VFAs的积累,经过碱性发酵(pH=10)阶段可抑制产甲烷菌的活性,避免产甲烷菌产甲烷的过程中消耗VFAs,保持了产酸效应强于产甲烷效应,从而使得水解酸化液中SCOD、VFAs的累积浓度大大提高。
但是该发明专利中的热碱预处理步骤存在对细胞的分解效果不彻底,大分子有机物进入上清液的比例相对较低的问题。
技术解决方案
本发明的目的是提供一种从剩余污泥中提取COD的方法,其能通过在对剩余污泥进行热碱处理时,添加由细胞壁分解剂、耐碱剂以及破碎中和剂组成的细胞壁分解添加料,并配合合适的热碱工艺的方式,达到剩余污泥中的有机物被最大程度地分解,进入上清液后回收再利用的效果。本发明具有对剩余污泥中的微生物细胞破解程度彻底,胞外多聚物溶解后进入上清液的比例高,添加料不影响上清液中碳源的回用操作,以及细胞壁分解添加料对微生物的细胞壁破坏分解彻底,整体热碱操作简单高效的优点,最终大大降低了剩余污泥的排放量,大大降低了剩余污泥的有害微生物排放风险。
本发明解决上述问题采用的技术方案是:一种从剩余污泥中提取COD的方法,依次包括以下步骤:
S1、在反应池中混合剩余污泥以及碱料;
S2、对反应池进行边加热边搅拌操作,加热至80℃以上后保持搅拌0.5-2h,然后停止搅拌;
S3、对反应池内物料进行静置分离,得到上清液和沉积污泥;
S4、对沉积污泥进行压榨脱水处理,得到滤液和干污泥,滤液和S3中的上清液一起回流待用,干污泥外运处理。
在本发明中,所述滤液同样富含微生物细胞破碎后的有机高分子,可以与所述上清液一起,作为后续污水处理中微生物脱氮除磷过程中的碳源。
进一步优选的技术方案在于:步骤S1中,所述剩余污泥的含水率为95%-98%,所述碱料为固体氢氧化钠或溶质质量分数为30%-32%氢氧化钠溶液,所述剩余污泥与固体氢氧化钠的质量配比为100:(0.5-2.0),所述剩余污泥与30%-32%氢氧化钠溶液的质量配比为100:(1.5-6.0)。
在本发明中,若氢氧化钠在上述比例上再过量,则会导致自身杀死微生物的能力提升不明显,而且后续添加料不能有效地进行细胞壁破碎操作,而若氢氧化钠添加过少,则会导致氢氧化钠自身分解、杀死微生物细胞的能力变弱,因此确定了上述比例范围。
进一步优选的技术方案在于:步骤S2中,加热至80-90℃并保温的情况下,保持搅拌1.0-2.0h,加热至95-98℃并保温的情况下,保持搅拌0.5-1.0h。
进一步优选的技术方案在于:步骤S3中,静置分离的时间为30-45min。
进一步优选的技术方案在于:步骤S4中,所述干污泥与剩余污泥的质量之比为1:(15-45);所述滤液以及上清液中的COD值为11200-18500mg/L。
在本发明中,压滤机操作采用板框压滤机进行,剩余污泥从污水处理厂的储泥池或污泥浓缩池泵入所述反应池。
进一步优选的技术方案在于:步骤S1中,往所述剩余污泥内再添加用于破解微生物细胞壁,释放胞外多聚物至上清液以作为回收碳源的细胞壁分解添加料,所述细胞壁分解添加料包括细胞壁分解剂、耐碱剂以及破碎中和剂。
进一步优选的技术方案在于:所述细胞壁分解剂为多羟基三季铵盐、氯化六次甲基三季铵盐以及双烷基聚氧乙烯基三季铵盐中的任意一种或多种混合物;所述耐碱剂为膨润土、有机蒙脱石以及聚氨酯弹性纤维中的任意一种或多种混合物;所述破碎中和剂为三聚磷酸铝、石料微粉以及聚氨酯混合制得的中空微球。
在本发明中,所述细胞壁分解剂采用具有增大细胞壁通透性的季铵盐,来保证微生物细胞杀死、细胞壁上多聚物分解后溶解进入上清液的基础效果,而所述耐碱剂则用于与所述季铵盐复合、改性,避免所述季铵盐在上述碱性环境下失效,最后的所述破碎中和剂,具有三个作用。
第一,中和多余的季铵盐,避免季铵盐残留后影响上清液中作为碳源的高分子有机物,在被脱氮除磷微生物使用的安全性。
第二,微球自身通过物理破碎方式,可以进一步破碎微生物细胞,保证细胞上多聚物的有效释放溶解。
第三,中空微球自身通过物理撞击方式,可以分散意外团聚的膨润土和有机蒙脱石,使得膨润土和有机蒙脱石可以稳定、大比例的结合季铵盐、在碱性环境中保护季铵盐。
进一步优选的技术方案在于:所述膨润土或有机蒙脱石的粒径为15-25μm,所述聚氨酯弹性纤维的长径比为(750-820):1,所述石料微粉为火山岩微粉、白云石微粉或方解石微粉中的任意一种,所述中空微球的粒径为0.20-0.35mm。
进一步优选的技术方案在于所述中空微球的制备方法依次包括以下步骤:
S1、在真空破碎机中添加三聚磷酸铝以及石料微粉,破碎至粒径为45-95μm的细料;
S2、在搅拌反应器中先加入部分聚氨酯,再加入S1中的细料,在温度为75-125℃的范围内,搅拌45-95min,测量其粘度值;
S3、边搅拌边加入剩余的聚氨酯,直至实时粘度达到8500-12000Pa•s,停止搅拌,得到混合料;
S4、对所述混合料进行微波加热发泡膨胀处理,冷却后得到所述中空微球。
进一步优选的技术方案在于:所述微波加热发泡膨胀处理中,微波频率为2200-2560MHz,温度为45-55℃,发泡膨胀时间为1.5-4.5min,冷却速度为5-8℃/min。
有益效果
在本发明中,采用微波加热发泡膨胀操作,可以使得聚氨酯作为粘结剂,又作为发泡剂,最终获得中空微球的样式,保证微球自身具有质轻、硬度大以及粒度均一性好的优点。
本发明通过在对剩余污泥进行热碱处理时,添加由细胞壁分解剂、耐碱剂以及破碎中和剂组成的细胞壁分解添加料,并配合合适的热碱工艺的方式,达到剩余污泥中的有机物被最大程度地分解,进入上清液后回收再利用的效果。本发明具有对剩余污泥中的微生物细胞破解程度彻底,胞外多聚物溶解后进入上清液的比例高,添加料不影响上清液中碳源的回用操作,以及细胞壁分解添加料对微生物的细胞壁破坏分解彻底,整体热碱操作简单高效的优点,最终大大降低了剩余污泥的排放量,大大降低了剩余污泥的有害微生物排放风险。
本发明的实施方式
以下所述仅为本发明的较佳实施例,并非对本发明的范围进行限定。
实施例1
一种从剩余污泥中提取COD的方法,依次包括以下步骤:
S1、在反应池中混合剩余污泥以及碱料;
S2、对反应池进行边加热边搅拌操作,加热至85℃后保持搅拌1.5h,然后停止搅拌;
S3、对反应池内物料进行静置分离,得到上清液和沉积污泥;
S4、对沉积污泥进行压榨脱水处理,得到滤液和干污泥,滤液和S3中的上清液一起回流待用,干污泥外运处理。
步骤S1中,所述剩余污泥的含水率为98%,所述碱料为固体氢氧化钠,所述剩余污泥与固体氢氧化钠的质量配比为100:0.5。
步骤S3中,静置分离的时间为30min。
步骤S4中,所述干污泥与剩余污泥的质量之比为1:26;所述滤液以及上清液中的COD值为11500mg/L。
步骤S1中,往所述剩余污泥内再添加用于破解微生物细胞壁,释放胞外多聚物至上清液以作为回收碳源的细胞壁分解添加料,所述细胞壁分解添加料包括细胞壁分解剂、耐碱剂以及破碎中和剂。
所述细胞壁分解剂为多羟基三季铵盐;所述耐碱剂为膨润土;所述破碎中和剂为三聚磷酸铝、石料微粉以及聚氨酯混合制得的中空微球。
所述膨润土的粒径为20μm,所述石料微粉为火山岩微粉,所述中空微球的粒径为0.22mm。
所述中空微球的制备方法依次包括以下步骤:
S1、在真空破碎机中添加三聚磷酸铝以及石料微粉,破碎至粒径为60μm的细料;
S2、在搅拌反应器中先加入部分聚氨酯,再加入S1中的细料,在温度为82℃的范围内,搅拌48min,测量其粘度值;
S3、边搅拌边加入剩余的聚氨酯,直至实时粘度达到9000Pa•s,停止搅拌,得到混合料;
S4、对所述混合料进行微波加热发泡膨胀处理,冷却后得到所述中空微球。
所述微波加热发泡膨胀处理中,微波频率为2250MHz,温度为45℃,发泡膨胀时间为2min,冷却速度为5℃/min。
在本实施例中,最后得到的上清液在加入滤液后,用于后续微生物脱氮除磷操作时的碳源,以保证剩余污泥的综合利用效果。
实施例2
一种从剩余污泥中提取COD的方法,依次包括以下步骤:
S1、在反应池中混合剩余污泥以及碱料;
S2、对反应池进行边加热边搅拌操作,加热至96℃后保持搅拌0.5h,然后停止搅拌;
S3、对反应池内物料进行静置分离,得到上清液和沉积污泥;
S4、对沉积污泥进行压榨脱水处理,得到滤液和干污泥,滤液和S3中的上清液一起回流待用,干污泥外运处理。
步骤S1中,所述剩余污泥的含水率为95%,所述碱料为30%氢氧化钠溶液,所述剩余污泥与30%氢氧化钠溶液的质量配比为100:2.5。
步骤S3中,静置分离的时间为40min。
步骤S4中,所述干污泥与剩余污泥的质量之比为1:35;所述滤液以及上清液中的COD值为14020mg/L。
步骤S1中,往所述剩余污泥内再添加用于破解微生物细胞壁,释放胞外多聚物至上清液以作为回收碳源的细胞壁分解添加料,所述细胞壁分解添加料包括细胞壁分解剂、耐碱剂以及破碎中和剂。
所述细胞壁分解剂为氯化六次甲基三季铵盐;所述耐碱剂为有机蒙脱石;所述破碎中和剂为三聚磷酸铝、石料微粉以及聚氨酯混合制得的中空微球。
所述膨润土的粒径为20μm,所述石料微粉为方解石微粉,所述中空微球的粒径为0.32mm。
所述中空微球的制备方法依次包括以下步骤:
S1、在真空破碎机中添加三聚磷酸铝以及石料微粉,破碎至粒径为60μm的细料;
S2、在搅拌反应器中先加入部分聚氨酯,再加入S1中的细料,在温度为100℃的范围内,搅拌60min,测量其粘度值;
S3、边搅拌边加入剩余的聚氨酯,直至实时粘度达到10000Pa•s,停止搅拌,得到混合料;
S4、对所述混合料进行微波加热发泡膨胀处理,冷却后得到所述中空微球。
所述微波加热发泡膨胀处理中,微波频率为2550MHz,温度为45℃,发泡膨胀时间为4min,冷却速度为6℃/min。
在本实施例中,最后得到的上清液在加入滤液后,用于后续微生物脱氮除磷操作时的碳源,以保证剩余污泥的综合利用效果。
实施例3
一种从剩余污泥中提取COD的方法,依次包括以下步骤:
S1、在反应池中混合剩余污泥以及碱料;
S2、对反应池进行边加热边搅拌操作,加热至98℃后保持搅拌0.5h,然后停止搅拌;
S3、对反应池内物料进行静置分离,得到上清液和沉积污泥;
S4、对沉积污泥进行压榨脱水处理,得到滤液和干污泥,滤液和S3中的上清液一起回流待用,干污泥外运处理。
步骤S1中,所述剩余污泥的含水率为95%,所述碱料为30%氢氧化钠溶液,所述剩余污泥与30%氢氧化钠溶液的质量配比为100:5.5。
步骤S3中,静置分离的时间为45min。
步骤S4中,所述干污泥与剩余污泥的质量之比为1:42;所述滤液以及上清液中的COD值为16500mg/L。
步骤S1中,往所述剩余污泥内再添加用于破解微生物细胞壁,释放胞外多聚物至上清液以作为回收碳源的细胞壁分解添加料,所述细胞壁分解添加料包括细胞壁分解剂、耐碱剂以及破碎中和剂。
所述细胞壁分解剂为双烷基聚氧乙烯基三季铵盐;所述耐碱剂为聚氨酯弹性纤维;所述破碎中和剂为三聚磷酸铝、石料微粉以及聚氨酯混合制得的中空微球。
所述聚氨酯弹性纤维的长径比为760:1,所述石料微粉为方解石微粉,所述中空微球的粒径为0.35mm。
所述中空微球的制备方法依次包括以下步骤:
S1、在真空破碎机中添加三聚磷酸铝以及石料微粉,破碎至粒径为80μm的细料;
S2、在搅拌反应器中先加入部分聚氨酯,再加入S1中的细料,在温度为120℃的范围内,搅拌85min,测量其粘度值;
S3、边搅拌边加入剩余的聚氨酯,直至实时粘度达到12000Pa•s,停止搅拌,得到混合料;
S4、对所述混合料进行微波加热发泡膨胀处理,冷却后得到所述中空微球。
所述微波加热发泡膨胀处理中,微波频率为2560MHz,温度为50℃,发泡膨胀时间为4min,冷却速度为8℃/min。
在本实施例中,最后得到的上清液在加入滤液后,用于后续微生物脱氮除磷操作时的碳源,以保证剩余污泥的综合利用效果。
上面对本发明的实施方式作了详细说明,但是本发明不限于上述实施方式,在所述技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下做出各种修改。这些都是不具有创造性的修改,只要在本发明的权利要求范围内都受到专利法的保护。

Claims (10)

  1. 一种从剩余污泥中提取COD的方法,其特征在于依次包括以下步骤:
    S1、在反应池中混合剩余污泥以及碱料;
    S2、对反应池进行边加热边搅拌操作,加热至80℃以上后保持搅拌0.5-2h,然后停止搅拌;
    S3、对反应池内物料进行静置分离,得到上清液和沉积污泥;
    S4、对沉积污泥进行压榨脱水处理,得到滤液和干污泥,滤液和S3中的上清液一起回流待用,干污泥外运处理。
  2. 根据权利要求1所述的一种从剩余污泥中提取COD的方法,其特征在于:步骤S1中,所述剩余污泥的含水率为95%-98%,所述碱料为固体氢氧化钠或溶质质量分数为30%-32%氢氧化钠溶液,所述剩余污泥与固体氢氧化钠的质量配比为100:(0.5-2.0),所述剩余污泥与30%-32%氢氧化钠溶液的质量配比为100:(1.5-6.0)。
  3. 根据权利要求1所述的一种从剩余污泥中提取COD的方法,其特征在于:步骤S2中,加热至80-90℃并保温的情况下,保持搅拌1.0-2.0h,加热至95-98℃并保温的情况下,保持搅拌0.5-1.0h。
  4. 根据权利要求1所述的一种从剩余污泥中提取COD的方法,其特征在于:步骤S3中,静置分离的时间为30-45min。
  5. 根据权利要求1所述的一种从剩余污泥中提取COD的方法,其特征在于:步骤S4中,所述干污泥与剩余污泥的质量之比为1:(15-45);所述滤液以及上清液中的COD值为11200-18500mg/L。
  6. 根据权利要求1所述的一种从剩余污泥中提取COD的方法,其特征在于:步骤S1中,往所述剩余污泥内再添加用于破解微生物细胞壁,释放胞外多聚物至上清液以作为回收碳源的细胞壁分解添加料,所述细胞壁分解添加料包括细胞壁分解剂、耐碱剂以及破碎中和剂。
  7. 根据权利要求6所述的一种从剩余污泥中提取COD的方法,其特征在于:所述细胞壁分解剂为多羟基三季铵盐、氯化六次甲基三季铵盐以及双烷基聚氧乙烯基三季铵盐中的任意一种或多种混合物;所述耐碱剂为膨润土、有机蒙脱石以及聚氨酯弹性纤维中的任意一种或多种混合物;所述破碎中和剂为三聚磷酸铝、石料微粉以及聚氨酯混合制得的中空微球。
  8. 根据权利要求7所述的一种从剩余污泥中提取COD的方法,其特征在于:所述膨润土或有机蒙脱石的粒径为15-25μm,所述聚氨酯弹性纤维的长径比为(750-820):1,所述石料微粉为火山岩微粉、白云石微粉或方解石微粉中的任意一种,所述中空微球的粒径为0.20-0.35mm。
  9. 根据权利要求7所述的一种从剩余污泥中提取COD的方法,其特征在于所述中空微球的制备方法依次包括以下步骤:
    S1、在真空破碎机中添加三聚磷酸铝以及石料微粉,破碎至粒径为45-95μm的细料;
    S2、在搅拌反应器中先加入部分聚氨酯,再加入S1中的细料,在温度为75-125℃的范围内,搅拌45-95min,测量其粘度值;
    S3、边搅拌边加入剩余的聚氨酯,直至实时粘度达到8500-12000Pa•s,停止搅拌,得到混合料;
    S4、对所述混合料进行微波加热发泡膨胀处理,冷却后得到所述中空微球。
  10. 根据权利要求9所述的一种从剩余污泥中提取COD的方法,其特征在于:所述微波加热发泡膨胀处理中,微波频率为2200-2560MHz,温度为45-55℃,发泡膨胀时间为1.5-4.5min,冷却速度为5-8℃/min。
PCT/CN2021/096733 2020-09-01 2021-05-28 一种从剩余污泥中提取cod的方法 WO2022048206A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010904372.2A CN112209586A (zh) 2020-09-01 2020-09-01 一种从剩余污泥中提取cod的方法
CN202010904372.2 2020-09-01

Publications (1)

Publication Number Publication Date
WO2022048206A1 true WO2022048206A1 (zh) 2022-03-10

Family

ID=74048725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/096733 WO2022048206A1 (zh) 2020-09-01 2021-05-28 一种从剩余污泥中提取cod的方法

Country Status (2)

Country Link
CN (1) CN112209586A (zh)
WO (1) WO2022048206A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114735911A (zh) * 2022-03-23 2022-07-12 东华工程科技股份有限公司 一种化工园区剩余污泥原位资源化利用的方法
CN115304227A (zh) * 2022-07-15 2022-11-08 中国地质大学(武汉) 一种污泥中溶解性有机物分子组成的解析方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112209586A (zh) * 2020-09-01 2021-01-12 浙江湖州金洁水务股份有限公司 一种从剩余污泥中提取cod的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003245693A (ja) * 2002-02-25 2003-09-02 Sapienant:Kk 汚泥減量方法および装置
CN103030259A (zh) * 2013-01-07 2013-04-10 北京科技大学 一种剩余污泥调理脱水的方法
CN105585231A (zh) * 2014-11-04 2016-05-18 中国石油化工股份有限公司 一种利用超声和碱处理的污泥减量方法
CN107055986A (zh) * 2016-12-23 2017-08-18 北京建筑大学 一种高压微波污泥预处理方法
CN107265806A (zh) * 2017-08-07 2017-10-20 深圳市海源能源科技有限公司 一种基于碳源回用的剩余污泥处理工艺
CN109095751A (zh) * 2018-09-13 2018-12-28 左健 一种较低温度热碱分解处理活性污泥的方法
CN112209586A (zh) * 2020-09-01 2021-01-12 浙江湖州金洁水务股份有限公司 一种从剩余污泥中提取cod的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103708696B (zh) * 2013-12-20 2015-04-22 华南理工大学 一种利用剩余污泥快速产甲烷的方法
CN105366909B (zh) * 2015-11-11 2018-02-09 中国电建集团中南勘测设计研究院有限公司 一种污泥深度脱水的工艺
CN110117148A (zh) * 2019-05-24 2019-08-13 苏州达道环保科技有限公司 一种污水厂生化污泥的低温热碱消解方法及其反应装置
CN110437497B (zh) * 2019-08-12 2022-02-01 北京建筑大学 剩余污泥中胞内与胞外高分子聚合物同时回收的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003245693A (ja) * 2002-02-25 2003-09-02 Sapienant:Kk 汚泥減量方法および装置
CN103030259A (zh) * 2013-01-07 2013-04-10 北京科技大学 一种剩余污泥调理脱水的方法
CN105585231A (zh) * 2014-11-04 2016-05-18 中国石油化工股份有限公司 一种利用超声和碱处理的污泥减量方法
CN107055986A (zh) * 2016-12-23 2017-08-18 北京建筑大学 一种高压微波污泥预处理方法
CN107265806A (zh) * 2017-08-07 2017-10-20 深圳市海源能源科技有限公司 一种基于碳源回用的剩余污泥处理工艺
CN109095751A (zh) * 2018-09-13 2018-12-28 左健 一种较低温度热碱分解处理活性污泥的方法
CN112209586A (zh) * 2020-09-01 2021-01-12 浙江湖州金洁水务股份有限公司 一种从剩余污泥中提取cod的方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114735911A (zh) * 2022-03-23 2022-07-12 东华工程科技股份有限公司 一种化工园区剩余污泥原位资源化利用的方法
CN115304227A (zh) * 2022-07-15 2022-11-08 中国地质大学(武汉) 一种污泥中溶解性有机物分子组成的解析方法
CN115304227B (zh) * 2022-07-15 2023-12-15 中国地质大学(武汉) 一种污泥中溶解性有机物分子组成的解析方法

Also Published As

Publication number Publication date
CN112209586A (zh) 2021-01-12

Similar Documents

Publication Publication Date Title
WO2022048206A1 (zh) 一种从剩余污泥中提取cod的方法
US8444861B2 (en) Method and apparatus using hydrogen peroxide and microwave system for slurries treatment
KR100837698B1 (ko) 슬러지 고도처리장치 및 방법
KR101019200B1 (ko) 질소 과다함유 폐수처리 및 스트루바이트의 제조방법
KR100757518B1 (ko) 폐산, 폐알칼리 및 슬러지의 처리 및 자원화 방법
EP3527296A1 (en) Method for recycling used absorbent articles
JP2000015231A (ja) 有機性廃棄物のメタン発酵方法
CN114195341B (zh) 一种提高剩余污泥厌氧产甲烷效率和磷可利用度的强化预处理方法
CN106518174A (zh) 一种提取污泥中的磷生产含磷复合肥的方法
KR100849671B1 (ko) 열팽창을 이용한 슬러지 감량화 시스템 및 방법
KR101123854B1 (ko) 유기성 폐기물의 고온 습식-건식 병렬 혐기성 소화장치 및 방법
CN114195339B (zh) 污泥碳源化回用同步污泥减量方法、装置及系统
KR101767256B1 (ko) 음폐수를 무방류하는 음식물쓰레기 처리방법
KR101305458B1 (ko) 혐기소화조 소화효율 증대를 위한 슬러지 가용화 방법
CN110015828A (zh) 活性污泥的两级厌氧消化处理方法及处理系统
CN105948443A (zh) 一种石灰热碱破胞污泥减量方法
CN110511072B (zh) 一种利用有机废物制备营养土的方法
KR100895003B1 (ko) 암모니아 가스를 효율적으로 제어하는 탈취제 및 그제조방법
JP2006256871A (ja) 澱粉製造排水から液肥を製造する方法および装置。
JP2018199101A (ja) 汚泥処理システムおよび汚泥処理方法
KR102299946B1 (ko) 수산부산물 산 발효액 및 이의 제조방법
KR20060134272A (ko) 유기질 비료의 제조방법
KR20180106010A (ko) 에너지 자립형 슬러지 자원순환 시스템 및 방법
KR101222250B1 (ko) 열팽창과 병합 소화를 이용한 슬러지 감량화 방법 및 시스템
CA2656390A1 (en) Method for treating bio-organic and wastewater sludges

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21863276

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21863276

Country of ref document: EP

Kind code of ref document: A1