WO2022048036A1 - 水体配置方法、装置、设备和存储介质 - Google Patents

水体配置方法、装置、设备和存储介质 Download PDF

Info

Publication number
WO2022048036A1
WO2022048036A1 PCT/CN2020/130366 CN2020130366W WO2022048036A1 WO 2022048036 A1 WO2022048036 A1 WO 2022048036A1 CN 2020130366 W CN2020130366 W CN 2020130366W WO 2022048036 A1 WO2022048036 A1 WO 2022048036A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
point
water body
search
target
Prior art date
Application number
PCT/CN2020/130366
Other languages
English (en)
French (fr)
Inventor
杨旭
付坤
毛月
刘晓东
Original Assignee
北京冰封互娱科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京冰封互娱科技有限公司 filed Critical 北京冰封互娱科技有限公司
Publication of WO2022048036A1 publication Critical patent/WO2022048036A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F13/00Video games, i.e. games using an electronically generated display having two or more dimensions
    • A63F13/60Generating or modifying game content before or while executing the game program, e.g. authoring tools specially adapted for game development or game-integrated level editor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0481Interaction techniques based on graphical user interfaces [GUI] based on specific properties of the displayed interaction object or a metaphor-based environment, e.g. interaction with desktop elements like windows or icons, or assisted by a cursor's changing behaviour or appearance
    • G06F3/0482Interaction with lists of selectable items, e.g. menus
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0484Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
    • G06F3/04847Interaction techniques to control parameter settings, e.g. interaction with sliders or dials
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F8/00Arrangements for software engineering
    • G06F8/30Creation or generation of source code
    • G06F8/38Creation or generation of source code for implementing user interfaces

Definitions

  • the present invention relates to the technical field of data processing, and in particular, to a water body configuration method, device, equipment and storage medium.
  • water bodies can be set in the game environment.
  • water bodies can be further divided into deep water, medium water and shallow water according to water depth, and water bodies can be divided according to water body characteristics.
  • the logical data reflects different properties of water bodies, and water bodies with different logical data have different game effects.
  • a piece of water corresponds to multiple plots. After the water body is procedurally generated and rendered, technicians are required to manually divide the area. For each parcel belonging to a body of water, a technician is required to manually configure the logical data of the body of water.
  • the logical data of the water body corresponding to a plot is not unique. When the logical data of the water body is complex, it needs to be configured by technicians several times. The efficiency and quality of the water body configuration depends on the experience and competence of the technicians. In the case of a wide water area and complex water conditions, the efficiency of data configuration is extremely low, and the occurrence of configuration errors is unavoidable.
  • the related art also proposes a method for configuring a water body.
  • this method it is necessary to first make a large number of modular maps containing water bodies configured with logical data and establish a material library.
  • select appropriate map modules from the material library for splicing For this method, a large number of modular material reserves need to be prepared for various water bodies, and each water body still needs to be manually configured in the reserve stage. If there are many types and styles of water bodies that are finally spliced, the reuse rate of the modules will be low.
  • Embodiments of the present invention provide a water body configuration method, device, equipment, and storage medium, which are used to reduce the workload of configuring water bodies, reduce the probability of errors in the configuration process, save time for technicians to create water bodies, and allow technicians to Spend more time on enriching the water environment.
  • an embodiment of the present invention provides a water body configuration method, the method comprising:
  • the logical data of the water body is determined.
  • the first height difference satisfies a preset condition, determine that the first search point is a target water surface point covered by the water body, and determine the preset number of second search points adjacent to the first search point. searching for a point, determining the second search point as the water surface point to be detected, and turning to the step of determining a preset number of first search points adjacent to the water surface point to be detected.
  • determining that the first search point is a target water surface point covered by the water body if the first height difference satisfies a preset condition including:
  • first height difference is greater than a first preset threshold, determining that the first search point is a target water surface point covered by the water body;
  • the method also includes:
  • the first height difference is less than or equal to the first preset threshold, it is marked that the first search point has been checked.
  • the logical data includes a water depth area type of the water body, and the logical data of the water body is determined based on the height difference between the target water surface point and the corresponding groundwater surface, including:
  • the any one of the water surface points belongs to shallow water
  • any water surface point belong to reclaimed water
  • any water surface point in the target water surface points and the corresponding groundwater surface is greater than the third preset threshold, then the any water surface point belongs to deep water;
  • the water body is divided into a shallow water area, a medium water area and a deep water area.
  • the method further includes:
  • the water area attribute of the water body is configured corresponding to each block covered by the water body.
  • the method further includes:
  • the target manipulation object is allowed to perform swimming operation in the water area corresponding to the any land block, and according to the water area corresponding to the any land block swimming parameters, determine the swimming action special effects and swimming sound effects corresponding to the swimming parameters.
  • the method further includes:
  • the land covered by the water body belongs to a road and the road is covered by the water body, the road covered by the water body is deleted when calculating the wayfinding data;
  • the any land block is set as no passage.
  • the method further includes:
  • the antagonistic object is randomly generated within the location range.
  • an embodiment of the present invention provides a water body configuration device, including:
  • the acquisition module acquires the water source point of the water body set in the map, and starts from the water source point to search for the search points adjacent to the water source point;
  • a determination module determines a target water surface point that belongs to the water body with the water source point in the search point;
  • the splicing module is used for splicing and adding materials to the plots corresponding to the target water surface points to obtain the water bodies starting from the water source points;
  • the determining module is configured to determine the logical data of the water body based on the height difference between the target water surface point and the corresponding groundwater surface.
  • the determining module is used for:
  • the first height difference satisfies a preset condition, determine that the first search point is a target water surface point covered by the water body, and determine the preset number of second search points adjacent to the first search point. searching for a point, determining the second search point as the water surface point to be detected, and turning to the step of determining a preset number of first search points adjacent to the water surface point to be detected.
  • the determining module is used for:
  • first height difference is greater than a first preset threshold, determining that the first search point is a target water surface point covered by the water body;
  • the first height difference is less than or equal to the first preset threshold, it is marked that the first search point has been checked.
  • the logical data includes a water depth area type of the water body, and the determining module is used for:
  • the any one of the water surface points belongs to shallow water
  • any water surface point belong to reclaimed water
  • any water surface point in the target water surface points and the corresponding groundwater surface is greater than the third preset threshold, then the any water surface point belongs to deep water;
  • the water body is divided into a shallow water area, a medium water area and a deep water area.
  • the device further includes a configuration module, the configuration module is used for:
  • the water area attribute of the water body is configured corresponding to each block covered by the water body.
  • the configuration module is also used for:
  • the target manipulation object is allowed to perform swimming operation in the water area corresponding to the any land block, and according to the water area corresponding to the any land block swimming parameters, determine the swimming action special effects and swimming sound effects corresponding to the swimming parameters.
  • the configuration module is also used for:
  • the land covered by the water body belongs to a road and the road is covered by the water body, the road covered by the water body is deleted when calculating the wayfinding data;
  • the any land block is set as no passage.
  • the configuration module is also used for:
  • the antagonistic object is randomly generated within the location range.
  • a computer program which includes computer-readable codes, which, when the computer-readable codes are run on an electronic device, cause the electronic device to execute the water body configuration method provided in the first aspect of the present invention.
  • a computer-readable medium in which the computer program provided by the third aspect of the present invention is stored.
  • the water body can be automatically generated from the water source point according to the height difference between the water surface point and the corresponding underwater ground, and in the process of generating the water body, the logical data of the water body can be automatically determined.
  • the technicians manually divide the water area and manually configure the logical data of each plot, thereby reducing the workload of configuring the water body and reducing the probability of errors in the configuration process.
  • the time for creating water bodies can also be saved for the technicians, which is beneficial to allow the technicians to spend more time on enriching the water body environment.
  • FIG. 1 is a schematic flowchart of a water body configuration method according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a water source point setting interface according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of the effect of a water body provided by an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a water body including waters with different depths according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a map editing interface provided by an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a swimming type configuration interface provided by an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of the effect of a Mask-Swimable provided by an embodiment of the present invention.
  • FIG. 8 is a schematic flowchart of another water body configuration method provided by an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a water body configuration device according to an embodiment of the present invention.
  • FIG. 10 is a block diagram of an electronic device for executing the method according to the present invention provided by an embodiment of the present invention.
  • FIG. 11 is a storage unit provided by an embodiment of the present invention for holding or carrying program codes for implementing the method according to the present invention.
  • the words “if”, “if” as used herein may be interpreted as “at” or “when” or “in response to determining” or “in response to detecting”.
  • the phrases “if determined” or “if detected (the stated condition or event)” can be interpreted as “when determined” or “in response to determining” or “when detected (the stated condition or event),” depending on the context )” or “in response to detection (a stated condition or event)”.
  • FIG. 1 is a flowchart of a water body configuration method according to an embodiment of the present invention. As shown in FIG. 1 , the method includes the following steps:
  • a body of water can be thought of as a closed contour in which a body of water is filled, and a body of water has a source of water.
  • planners can select a water source point in the ground coordinate system, and the water source point can be used as a point in the water body.
  • the coordinate position of the water source point can be input, and the corresponding water source point can also be input.
  • water level After the water source point is set, it is assumed that water flows from the set water source point and fills the entire water body. The process of water filling the water body can be determined by the flooding algorithm and the breadth-first search algorithm.
  • the water source point After selecting the water source point, suppose the map is composed of many small squares, each small square has four vertices, and the water source point is a vertex in a small square. Starting from the water source point, search for search points around it according to the water source point, and then select a target water surface point belonging to the same water body as the water source point from these search points.
  • a search queue can be established, and the search points that need to be searched are put into the search queue. Not all points in the map need to be searched, and only those points that meet certain conditions will be put into the search queue for search.
  • the search points in the search queue are arranged in an order, those that are arranged first will be searched first, and those that are arranged last will be searched last.
  • each water surface point corresponds to a water surface height
  • the water surface height can be the height difference between the water surface point and the corresponding underwater surface point, which can be based on each water surface point.
  • the corresponding water surface heights are used to determine whether any of the water surface points and the water source point belong to the same water body. If any of the water surface points and the water source point belong to the same water body, then any water surface point can be used as the target water surface point covered by the water body starting from the water source point. If any of the water surface points and the water source point do not belong to the same water body, then the any water surface point will not be used as the target water surface point covered by the water body starting from the water source point.
  • the plots corresponding to the target water surface points are spliced to create a multi-level of detail (LOD) model of the water body, and then add materials, namely Water bodies can be generated.
  • LOD multi-level of detail
  • the plot is the smallest unit that constitutes the ground in the game scene.
  • An effect diagram of a generated water body can be seen in Figure 3.
  • the water body has different properties and may correspond to different logical data
  • the logical data of the water body may include CellType, Mask, CellMask, and CellPass. The meanings and specific functions represented by these logical data will be introduced later, and will not be repeated here.
  • the logical data of the water body can also be automatically generated according to the water surface height of each target water surface point.
  • the water body After the water body is generated and the logical data of the water body is automatically created, the water body can be used to play the game, and the target manipulation object controlled by the player can interact with the water body in different ways. According to the player's control and the logical data of the water body, different game effects and special effects can be given.
  • the following describes the process of determining whether any water surface point is the target water surface point covered by the water body starting from the water source point.
  • the process of determining the target water surface point covered by the water body starting from the water source point can be implemented as follows: Detect the first search point adjacent to the water surface point, and the water surface point to be detected is the water source point in the process of detecting the target water surface point covered by the water body for the first time; calculate the first height between the first search point and the corresponding underwater surface point If the first height difference satisfies the preset condition, determine the first search point as the target water surface point covered by the water body, determine a preset number of second search points adjacent to the first search point, and set the second search point If it is determined to be the water surface point to be detected, go to the step of determining a preset number of first search points adjacent to the water surface point to be detected.
  • the process of determining that the first search point is a target water surface point covered by a water body may be implemented as follows: if the first height difference is greater than a first preset threshold, determining the first search point is The search point is the target water surface point covered by the water body. Correspondingly, if the first height difference is less than or equal to the first preset threshold, it is marked that the first search point has been checked.
  • a water body list can be set, and the target water surface points belonging to the same water body as the water source point can be recorded in the water body list, so that by querying the target water surface points in the water body list, you can know which water surface points are included in the same water body.
  • the height difference between the water source point and the corresponding underwater surface can be determined. If the height difference is greater than 0, the water source point can be marked as checked, and the water source point can be added to the water body list. If the difference is less than or equal to 0, the water source point does not meet the design requirements, the water body generation process is terminated, and an error is reported. If the water source point meets the design requirements, the subsequent steps of detecting other points can be performed.
  • the water source point can be used as the water surface point to be detected, and a preset number of first search points adjacent to the water surface point to be detected can be determined.
  • a preset number of first search points adjacent to the water surface point to be detected can be determined.
  • four adjacent first search points around the water source point may be put into the search queue.
  • the first search point A1 arranged at the first position in the search queue can be taken out. If the height difference between A1 and the corresponding underwater surface is greater than 0, it can be marked that A1 has been checked, and A1 is put into the water body list, and a preset number of the first search point adjacent to the first search point can also be determined.
  • Second search points B1, B2... determine the second search point as the water surface point to be detected, and put the second search point at the end of the search queue.
  • four adjacent second search points around A1 may be put into the search queue. If the height difference between A1 and the corresponding underwater surface is less than or equal to 0, it can be marked that A1 has been checked, and no other processing is performed.
  • the logical data of the water body can also be automatically generated according to the water surface height of each target water surface point.
  • the logical data may include the water depth area type of the water body, and the process of automatically generating the logical data of the water body may be implemented as follows: if the height difference between any one of the target water surface points and the corresponding groundwater surface is less than the second preset threshold, then Any water surface point belongs to shallow water; if the height difference between any water surface point in the target water surface point and the corresponding groundwater surface is greater than or equal to the second preset threshold and less than or equal to the third preset threshold, then any water surface The point belongs to reclaimed water; if the height difference between any of the target water surface points and the corresponding groundwater surface is greater than the third preset threshold, then any water surface point belongs to deep water; The water depth type divides the water body into shallow water area, medium water area and deep water area.
  • the continuous water body can be automatically divided into 3 different water depth areas, including shallow water area, medium water area and deep water area, according to the water surface depth corresponding to each block covered by the water body. If the water surface depth is below 0.5 meters, it is a shallow water area. If the water surface depth is between 0.5-1.5 meters, it is a mid-water area. If the water surface depth is more than 1.5 meters, it is a deep water area. As shown in Figure 4, Figure 4 shows a map, on the ground is a body of water, a piece of water body in Figure 4 includes areas of various water depths, and the depth of water is represented by white or shades of different concentrations.
  • the target control object controlled by the player can be made to slow down in shallow water, and the target control object can be allowed to swim in medium water or deep water.
  • the water area attributes corresponding to each block covered by the input water body can also be obtained; based on the input water area attributes, the water area of the water body corresponding to each block covered by the water body can be configured Attributes.
  • the water properties of a water body can be recorded corresponding to the various blocks it covers.
  • planners can fill in values such as shallow water type, medium water type, deep water type, prompt type, and prompt range in the map editing interface.
  • a plot of continuous water can be assigned CellTypes of different configurations according to the height of the water surface when the water body is generated, so that in a continuous body of water, players can be provided with different ways to play according to the depth of the water, and exert different influences on the target manipulation object.
  • Planners only need to configure CellTypes corresponding to different plots when designing water bodies, and then they can associate CellTypes corresponding to different plots with specific water bodies.
  • CellType is a property of land, which is used to distinguish water properties, such as regular water, magma, etc.
  • Different CellTypes can match different interactive feedback such as swimming actions and special effects sound effects.
  • planners can increase, decrease, and adjust the values of various CellTypes through the map editing interface.
  • the target manipulation object can be set to walk effortlessly in the shallows of the lake, and in deeper waters, the target manipulation object will show the effect that the whole body is soaked and the movement speed is greatly reduced. If in the next game version, you want to show the situation that the same lake is seriously polluted, you can just change the value of the corresponding water property, and then regenerate the water body, you can change the lake water to a poisonous swamp.
  • the target manipulation object is allowed to perform swimming operations in the water corresponding to any plot, and according to the swimming parameters of the water corresponding to any plot, Determine the swimming action special effects and swimming sound effects corresponding to the swimming parameters.
  • generating underwater logic blocks on mid-water and deep-water plots can make the server height of target control objects and water NPCs near the water surface.
  • the logical block is an empty lot with the height of the server.
  • the Mask and CellPass properties of the plot can be automatically adjusted to automatically correct the wayfinding data.
  • CellPass is an attribute of a plot that can record whether an area is passable or not for wayfinding data.
  • the road covered by the water body will be deleted when calculating the wayfinding data; if the water attribute corresponding to any land covered by the water body is deep water where swimming is prohibited. area, set any parcel as no-passage when calculating wayfinding data.
  • the random generation location range of the confrontation object corresponding to the target manipulation object in the map can be set, and the generation of the confrontation object with the terrestrial attribute is prohibited outside the position range; if the species attribute of the confrontation object is the terrestrial attribute , the adversarial objects are randomly generated within the location range.
  • the value of the CellMask of the plot can be automatically adjusted.
  • CellMask is a property of a parcel that records whether the area is attackable against opponents, and also records whether the area is a swamp or other ecological area type.
  • By adjusting the value of CellMask it is possible to control the position range of attacking the opponent that meets the design requirements. For example, when automatically generating a terrestrial confrontation object at random, by referring to the value of CellMask, it is possible to prohibit random generation of a confrontation object with a terrestrial property in the seabed.
  • FIG. 8 it is a schematic diagram of the overall flow of generating a water body and determining the logical data of the water body in the process of generating the water body.
  • a new water body can be created, then the planner can enter configuration data, and then the water source point can be added to the search queue, and the water source point can be selected as the current point.
  • the value of the shallow water type in the configuration data can be assigned to the CellType of the plot. Then, you can determine whether the option to use Mask is checked in the configuration data. If the option of using Mask is checked in the configuration data, the Mask property of the block where the current point is located can be automatically set to a value that conforms to the definition of the shallow water area, and then the current point is recorded as a legal point for which logical data has been generated, and placed in the water body list middle. If the option to use Mask is not checked in the configuration data, go directly to the step of recording the current point as a legal point for which logical data has been generated and placing it in the water body list.
  • the height difference between the reference plane and the current point plot is greater than 0.5, it can be determined whether the height difference between the reference plane and the current point plot is less than or equal to 1.5. If the height difference between the reference plane and the current point plot is less than or equal to 1.5, then Determine whether the swimming water option is checked in the configuration data. If the option of swimming water is not checked in the configuration data, the value of the water type in the configuration data can be assigned to the CellType of the plot. Then, you can determine whether the option to use Mask is checked in the configuration data. If the option to use Mask is checked in the configuration data, the Mask property of the block where the current point is located can be automatically set to a value that conforms to the definition of the mid-water area.
  • the current point can be recorded as a legal point for which logical data has been generated and placed in the water body list. If the option to use Mask is not checked in the configuration data, go directly to the step of recording the current point as a legal point for which logical data has been generated and placing it in the water body list.
  • the value of the deep water type in the configuration data can be assigned to the CellType of the plot. Then, it can be determined whether swimming water is checked in the configuration data. If swimming water is not checked in the configuration data, you can assign the value of the deep water type in the configuration data to the CellType of the plot. Next, you can determine whether the option to use Mask is checked in the configuration data. If the option to use Mask is checked in the configuration data, the Mask property of the patch where the current point is located can be automatically set to a value that conforms to the definition of the deep water area.
  • the legal land can be searched, and the value of the prompt type can be assigned to the property corresponding to the land.
  • the current point can be recorded as a legal point for which logical data has been generated and placed in the water body list. If the option to use Mask is not checked in the configuration data, go directly to the step of recording the current point as a legal point for which logical data has been generated and placing it in the water body list.
  • the value of the swimming water type in the configuration data can be assigned to the CellType of the plot to automatically generate an underwater logic block. Then, it can be judged whether the option of using Mask is checked in the configuration data. If the option to use Mask is checked in the configuration data, the Mask property of the patch where the current point is located can be automatically set to a value that matches the definition of the swimming area. The current point can then be recorded as a legal point for which logical data has been generated and placed in the water body list. If the option to use Mask is not checked in the configuration data, go directly to the step of recording the current point as a legal point for which logical data has been generated and placing it in the water body list.
  • the current point is recorded as a legal point for which logical data has been generated and placed in the water body list, it can be determined whether there are points without logical data generated in the adjacent points. If there are points for which no logical data is generated in the adjacent points, these points are added to the tail of the search queue, and the next point in the search queue is selected as the current point. If there is no point in the adjacent points for which no logical data is generated, it is judged whether the search queue is empty.
  • the search queue is not empty, it can be judged whether the list of water bodies is not empty. If the water body list is empty, the water body generation fails and an error report is printed. If the water body list is not empty, you can create a water body according to the points in the water body list, and set the LOD and material according to the configuration data, and finally the water body is created.
  • the water body can be automatically generated from the water source point according to the height difference between the water surface point and the corresponding underwater ground, and in the process of generating the water body, the logical data of the water body can be automatically determined.
  • the technicians manually divide the water area and manually configure the logical data of each plot, thereby reducing the workload of configuring the water body and reducing the probability of errors in the configuration process.
  • the time for creating water bodies can also be saved for the technicians, which is beneficial to allow the technicians to spend more time on enriching the water body environment.
  • water body configuration device of the present invention will be described in detail below. Those skilled in the art can understand that these water body configuration devices can be configured by using commercially available hardware components through the steps taught in this solution.
  • FIG. 9 is a schematic structural diagram of a water body configuration device according to an embodiment of the present invention. As shown in FIG. 9 , the device includes:
  • the acquisition module 91 is configured to acquire the water source point of the water body set in the map, and start from the water source point to search for the search points adjacent to the water source point;
  • a determination module 92 configured to determine a target water surface point that belongs to the water body with the water source point in the search point based on the height difference between each water surface point included in the map and the corresponding underwater surface point ;
  • the splicing module 93 is used for splicing the plots corresponding to the target water surface points and adding materials to obtain the water bodies starting from the water source points;
  • the determining module 92 is configured to determine the logical data of the water body based on the height difference between the target water surface point and the corresponding groundwater surface.
  • the determining module 92 is used for:
  • the first height difference satisfies a preset condition, determine that the first search point is a target water surface point covered by the water body, and determine the preset number of second search points adjacent to the first search point. searching for a point, determining the second search point as the water surface point to be detected, and turning to the step of determining a preset number of first search points adjacent to the water surface point to be detected.
  • the determining module 92 is used for:
  • first height difference is greater than a first preset threshold, determining that the first search point is a target water surface point covered by the water body;
  • the first height difference is less than or equal to the first preset threshold, it is marked that the first search point has been checked.
  • the logical data includes the water depth area type of the water body, and the determining module 92 is used for:
  • the any one of the water surface points belongs to shallow water
  • any water surface point belong to reclaimed water
  • any water surface point in the target water surface points and the corresponding groundwater surface is greater than the third preset threshold, then the any water surface point belongs to deep water;
  • the water body is divided into a shallow water area, a medium water area and a deep water area.
  • the device further includes a configuration module, the configuration module is used for:
  • the water area attribute of the water body is configured corresponding to each block covered by the water body.
  • the configuration module is also used for:
  • the target manipulation object is allowed to perform swimming operation in the water area corresponding to the any land block, and according to the water area corresponding to the any land block swimming parameters, determine the swimming action special effects and swimming sound effects corresponding to the swimming parameters.
  • the configuration module is also used for:
  • the land covered by the water body belongs to a road and the road is covered by the water body, the road covered by the water body is deleted when calculating the wayfinding data;
  • the any land block is set as no passage.
  • the configuration module is also used for:
  • the antagonistic object is randomly generated within the location range.
  • the apparatus shown in FIG. 9 can execute the water body configuration method provided in the embodiments shown in the foregoing FIG. 1 to FIG. 8 .
  • the apparatus shown in FIG. 9 can execute the water body configuration method provided in the embodiments shown in the foregoing FIG. 1 to FIG. 8 .
  • Various component embodiments of the present invention may be implemented in hardware, or in software modules running on one or more processors, or in a combination thereof.
  • a microprocessor or a digital signal processor (DSP) may be used in practice to implement some or all of the functions of some or all of the components in the electronic device according to the embodiments of the present invention.
  • DSP digital signal processor
  • the present invention can also be implemented as apparatus or apparatus programs (eg, computer programs and computer program products) for performing part or all of the methods described herein.
  • Such a program implementing the present invention may be stored on a computer-readable medium, or may be in the form of one or more signals. Such signals may be downloaded from Internet sites, or provided on carrier signals, or in any other form.
  • Figure 10 shows an electronic device that may be implemented for performing the method according to the present invention.
  • the electronic device traditionally includes a processor 410 and a computer program product or computer readable medium in the form of a memory 420 .
  • the memory 420 may be electronic memory such as flash memory, EEPROM (Electrically Erasable Programmable Read Only Memory), EPROM, hard disk, or ROM.
  • the memory 420 has storage space 430 for program code 431 for performing any of the method steps in the above-described methods.
  • storage space 430 for storing program codes may include respective program codes 431 for implementing various steps in the above methods, respectively.
  • the program codes can be read from or written to one or more computer program products.
  • These computer program products include program code carriers such as hard disks, compact discs (CDs), memory cards or floppy disks. Such computer program products are typically portable or fixed storage units as described with reference to FIG. 11 .
  • the storage unit may have storage segments, storage spaces, etc. arranged similarly to the memory 420 in the electronic device of FIG. 10 .
  • the program code may, for example, be compressed in a suitable form.
  • the storage unit includes computer readable code 431', ie code readable by a processor such as 410, for example, which when executed by an electronic device, causes the electronic device to perform each of the methods described above. step.
  • references herein to "one embodiment,” “an embodiment,” or “one or more embodiments” means that a particular feature, structure, or characteristic described in connection with an embodiment is included in at least one embodiment of the present invention. Also, please note that instances of the phrase “in one embodiment” herein are not necessarily all referring to the same embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Software Systems (AREA)
  • Instructional Devices (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

一种水体配置方法、装置、设备和存储介质,该方法包括:获取地图中设定的水体的水源点,由水源点出发搜索水源点相邻的搜索点(101);基于地图中包含的各水面点与对应的水下地面点之间的高度差,在搜索点中确定与水源点同属于水体的目标水面点(102);对目标水面点对应的地块进行拼接并添加材质,得到从水源点出发的水体(103);基于目标水面点与对应的地下水面之间的高度差,确定水体的逻辑数据(104)。采用该方法,可以减少配置水体的工作量,降低配置过程中产生错误的概率,还可以为技术人员节省创建水体的时间,有利于让技术人员把更多的时间用在丰富水体环境上。

Description

水体配置方法、装置、设备和存储介质
本申请要求于2020年9月2日提交的申请号为202010912007.6、发明名称为“水体配置方法、装置、设备和存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及数据处理技术领域,尤其涉及一种水体配置方法、装置、设备和存储介质。
背景技术
为了让游戏更加逼真的模拟真实世界,可以在游戏环境中设置水体。而为了丰富游戏环境的多样性和复杂性,可以不单单把所有水体都设置为具有相一致的逻辑数据,可以进一步按照水深将水体划分为深水、中水和浅水等,按照水体特性将水体划分为岩浆、沼泽、温泉等。其中,逻辑数据反映了水体的不同属性,具有不同逻辑数据的水体具有不同的游戏效果。
一片水域对应着多个地块,在水体由程序生成并渲染完毕后,需要技术人员手动划分区域。对于每个属于水体的地块,需要技术人员手动配置水体的逻辑数据。一个地块对应的水体逻辑数据不唯一,在水体逻辑数据较为复杂的情况下,需要技术人员多次进行配置。水体配置的效率和质量依赖技术人员的经验和能力。在水域面积广,水体情况复杂的情况下,数据配置的效率极低,配置错误的发生难以避免。
相关技术还提出了一种配置水体的方法。在该方法中,需要先制作大量配置好逻辑数据的包含水体的模块化地图以及建立素材库,制作水体时从素材库中选取合适的地图模块进行拼接。对于该方法,需要为各种水体准备大量的模块化素材储备,储备阶段仍然要对每个水体进行人工配置。如果最终拼接的水 体类型和样式较多,模块的重复利用率就低。如果水体类型和样式较少,游戏场景的重复率就高,做出某个湖泊的水性质特殊、和其他水域完全不同这种游戏场景的成本就极高,满足不了游戏场景的多样化、特色化的需求。
发明内容
本发明实施例提供一种水体配置方法、装置、设备和存储介质,用以实现减少配置水体的工作量,降低配置过程中产生错误的概率,为技术人员节省创建水体的时间,让技术人员把更多的时间用在丰富水体环境上。
第一方面,本发明实施例提供一种水体配置方法,该方法包括:
获取地图中设定的水体的水源点,由所述水源点出发搜索所述水源点相邻的搜索点;
基于所述地图中包含的各水面点与对应的水下地面点之间的高度差,在所述搜索点中确定与所述水源点同属于所述水体的目标水面点;
对所述目标水面点对应的地块进行拼接并添加材质,得到从所述水源点出发的水体;
基于所述目标水面点与对应的地下水面之间的高度差,确定所述水体的逻辑数据。
可选地,所述基于所述地图中包含的各水面点与对应的水下地面点之间的高度差,在所述搜索点中确定与所述水源点同属于所述水体的目标水面点,包括:
确定预设数量的与待检测水面点相邻接的第一搜索点,所述待检测水面点在首次检测与所述水源点同属于所述水体的目标水面点的过程中为所述水源点;
计算所述第一搜索点与对应的水下地面点之间的第一高度差;
若所述第一高度差满足预设条件,则确定所述第一搜索点为所述水体覆盖的目标水面点,确定所述预设数量的与所述第一搜索点相邻接的第二搜索点,将所述第二搜索点确定为所述待检测水面点,转至执行所述确定预设数量的与待检测水面点相邻接的第一搜索点的步骤。
可选地,所述若所述第一高度差满足预设条件,则确定所述第一搜索点为所述水体覆盖的目标水面点,包括:
若所述第一高度差大于第一预设阈值,则确定所述第一搜索点为所述水体覆盖的目标水面点;
所述方法还包括:
若所述第一高度差小于或者等于所述第一预设阈值,则标记已检查所述第一搜索点。
可选地,所述逻辑数据包括水体的水深区域类型,所述基于所述目标水面点与对应的地下水面之间的高度差,确定所述水体的逻辑数据,包括:
若所述目标水面点中的任一水面点与对应的地下水面之间的高度差小于第二预设阈值,则所述任一水面点属于浅水;
若所述目标水面点中的任一水面点与对应的地下水面之间的高度差大于或者等于所述第二预设阈值、且小于或者等于第三预设阈值,则所述任一水面点属于中水;
若所述目标水面点中的任一水面点与对应的地下水面之间的高度差大于所述第三预设阈值,则所述任一水面点属于深水;
基于所述目标水面点中各水面点所属的水深类型,将所述水体划分为浅水区域、中水区域以及深水区域。
可选地,所述方法还包括:
获取输入的所述水体覆盖的各地块分别对应的水域属性;
基于输入的水域属性,对应于所述水体覆盖的各地块配置所述水体的水域属性。
可选地,所述方法还包括:
若所述水体覆盖的任一地块对应的水域属性为允许游泳,则允许目标操控对象在所述任一地块对应的水域中进行游泳操作,并根据所述任一地块对应的水域的游泳参数,确定所述游泳参数对应的游泳动作特效以及游泳音效。
可选地,所述方法还包括:
若所述水体覆盖的地块属于道路且所述道路被所述水体覆盖,则在计算寻路数据时将被所述水体覆盖的道路删除;
若所述水体覆盖的任一地块对应的水域属性为禁止游泳的深水区域,则在计算寻路数据时将所述任一地块设置为禁止通行。
可选地,所述方法还包括:
根据所述水体的水域属性,设置目标操控对象对应的对抗对象在所述地图中的随机生成位置范围,所述位置范围外禁止生成陆生属性的对抗对象;
若所述对抗对象的物种属性为陆生属性,则在所述位置范围内随机生成所述对抗对象。
第二方面,本发明实施例提供一种水体配置装置,包括:
获取模块,获取地图中设定的水体的水源点,由所述水源点出发搜索所述水源点相邻的搜索点;
确定模块,基于所述地图中包含的各水面点与对应的水下地面点之间的高度差,在所述搜索点中确定与所述水源点同属于所述水体的目标水面点;
拼接模块,用于对所述目标水面点对应的地块进行拼接并添加材质,得到从所述水源点出发的水体;
所述确定模块,用于基于所述目标水面点与对应的地下水面之间的高度差,确定所述水体的逻辑数据。
可选地,所述确定模块,用于:
确定预设数量的与待检测水面点相邻接的第一搜索点,所述待检测水面点在首次检测与所述水源点同属于所述水体的目标水面点的过程中为所述水源点;
计算所述第一搜索点与对应的水下地面点之间的第一高度差;
若所述第一高度差满足预设条件,则确定所述第一搜索点为所述水体覆盖的目标水面点,确定所述预设数量的与所述第一搜索点相邻接的第二搜索点,将所述第二搜索点确定为所述待检测水面点,转至执行所述确定预设数量的与待检测水面点相邻接的第一搜索点的步骤。
可选地,所述确定模块,用于:
若所述第一高度差大于第一预设阈值,则确定所述第一搜索点为所述水体覆盖的目标水面点;
若所述第一高度差小于或者等于所述第一预设阈值,则标记已检查所述第一搜索点。
可选地,所述逻辑数据包括水体的水深区域类型,所述确定模块,用于:
若所述目标水面点中的任一水面点与对应的地下水面之间的高度差小于第二预设阈值,则所述任一水面点属于浅水;
若所述目标水面点中的任一水面点与对应的地下水面之间的高度差大于或者等于所述第二预设阈值、且小于或者等于第三预设阈值,则所述任一水面点属于中水;
若所述目标水面点中的任一水面点与对应的地下水面之间的高度差大于所述第三预设阈值,则所述任一水面点属于深水;
基于所述目标水面点中各水面点所属的水深类型,将所述水体划分为浅水区域、中水区域以及深水区域。
可选地,所述装置还包括配置模块,所述配置模块,用于:
获取输入的所述水体覆盖的各地块分别对应的水域属性;
基于输入的水域属性,对应于所述水体覆盖的各地块配置所述水体的水域属性。
可选地,所述配置模块,还用于:
若所述水体覆盖的任一地块对应的水域属性为允许游泳,则允许目标操控对象在所述任一地块对应的水域中进行游泳操作,并根据所述任一地块对应的水域的游泳参数,确定所述游泳参数对应的游泳动作特效以及游泳音效。
可选地,所述配置模块,还用于:
若所述水体覆盖的地块属于道路且所述道路被所述水体覆盖,则在计算寻路数据时将被所述水体覆盖的道路删除;
若所述水体覆盖的任一地块对应的水域属性为禁止游泳的深水区域,则在计算寻路数据时将所述任一地块设置为禁止通行。
可选地,所述配置模块,还用于:
根据所述水体的水域属性,设置目标操控对象对应的对抗对象在所述地图中的随机生成位置范围,所述位置范围外禁止生成陆生属性的对抗对象;
若所述对抗对象的物种属性为陆生属性,则在所述位置范围内随机生成所述对抗对象。
第三方面,提供了一种计算机程序,其包括计算机可读代码,当所述计算机可读代码在电子设备上运行时,导致所述电子设备执行本发明第一方面提供的水体配置方法。
第四方面,提供了一种计算机可读介质,其中存储了如本发明第三方面提供的计算机程序。
采用本发明,可以从水源点出发自动根据水面点与对应的水下地面之间的高度差生成水体,且在生成水体的过程中,自动确定水体的逻辑数据。通过这样的方式,可以避免再让技术人员手动划分水域并手动配置每个地块的逻辑数据,进而可以减少配置水体的工作量,降低配置过程中产生错误的概率。通过这样的方式,还可以为技术人员节省创建水体的时间,有利于让技术人员把更多的时间用在丰富水体环境上。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种水体配置方法的流程图示意图;
图2为本发明实施例提供的一种水源点设置界面示意图;
图3为本发明实施例提供的一种水体的效果示意图;
图4为本发明实施例提供的一种包括不同水深水域的水体示意图;
图5为本发明实施例提供的一种地图编辑界面示意图;
图6为本发明实施例提供的一种游泳类型配置界面示意图;
图7为本发明实施例提供的一种Mask-Swimable的效果示意图;
图8为本发明实施例提供的另一种水体配置方法的流程图示意图;
图9为本发明实施例提供的一种水体配置装置的结构示意图;
图10为本发明实施例提供的一种用于执行根据本发明的方法的电子设备的框图;以及
图11为本发明实施例提供的一种用于保持或者携带实现根据本发明的方法的程序代码的存储单元。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本发明。在本发明实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义,“多种”一般包含至少两种。
取决于语境,如在此所使用的词语“如果”、“若”可以被解释成为“在……时”或“当……时”或“响应于确定”或“响应于检测”。类似地,取决于语境,短语“如果确定”或“如果检测(陈述的条件或事件)”可以被解释成为“当确定时”或“响应于确定”或“当检测(陈述的条件或事件)时”或“响应于检测(陈述的条件或事件)”。
另外,下述各方法实施例中的步骤时序仅为一种举例,而非严格限定。
图1为本发明实施例提供的一种水体配置方法的流程图,如图1所示,该方法包括如下步骤:
101、获取地图中设定的水体的水源点,由水源点出发搜索水源点相邻的搜索点。
102、基于地图中包含的各水面点与对应的水下地面点之间的高度差,在搜索点中确定与水源点同属于水体的目标水面点。
103、对目标水面点对应的地块进行拼接并添加材质,得到从水源点出发的水体。
104、基于目标水面点与对应的地下水面之间的高度差,确定水体的逻辑数据。
为了便于理解,可以将一个水体视为一个封闭的轮廓,在该封闭的轮廓中充盈着水体,一个水体中有一个水源。
在实际应用中,如图2所示,策划人员可以在地面坐标系中选定水源点,该水源点可以作为水体中的一个点,具体可以输入水源点坐标位置,还可以输入该水源点对应的水面高度。在设定好水源点之后,假设水从该设定的水源点流出并充满整个水体,水充满水体的过程可以通过漫水算法和广度优先搜索算法确定。
在选定水源点之后,假设地图是由许多小的方格组成的,每个小的方格有四个顶点,水源点就是某个小的方格中的一个顶点。可以从该水源点出发,根据该水源点搜索其周围的搜索点,然后在这些搜索点中选取与水源点属于同一水体的目标水面点。
实际应用中,可以建立搜索队列,将需要所搜的搜索点放入搜索队列中,不是地图中所有的点都需要搜索,只有那些满足一定条件的点才会放入搜索队列中进行搜索。搜索队列中的搜索点具有排列顺序,排列在先的会被先进行搜索,排列在后的会被后进行搜索。
可以理解的是,假设地面坐标系中设置有多个水面点,每个水面点对应有水面高度,水面高度可以是水面点和对应的水下地面点之间的高度差,可以基于各水面点分别对应的水面高度,确定各水面点中的任一水面点是否和水源点属于同一水体。如果各水面点中的任一水面点和水源点属于同一水体,那么该 任一水面点可以作为从水源点出发的水体覆盖的目标水面点。如果各水面点中的任一水面点和水源点不属于同一水体,那么该任一水面点则不作为从水源点出发的水体覆盖的目标水面点。
需要说明的是,确定任一水面点是否是从水源点出发的水体覆盖的目标水面点的具体实现方式会在后面进行介绍,在此暂不赘述。
在确定出从水源点出发的水体覆盖的所有目标水面点之后,将目标水面点对应的地块进行拼接,可以创建出水体的多细节层次(Levels of Detail,LOD)模型,然后添加材质,即可生成水体。其中,地块为游戏场景中组成地面的最小单位。一种生成水体的效果图可以见图3所示。
需要说明的是,水体具有不同属性,可以对应有不同逻辑数据,水体的逻辑数据可以包括CellType、Mask、CellMask以及CellPass等。这些逻辑数据表示的含义以及具体作用会在后面进行介绍,在此暂不赘述。在生成水体的同时,还可以根据各目标水面点的水面高度,自动生成水体的逻辑数据。
在生成水体以及自动创建水体的逻辑数据之后,就可以使用该水体进行游戏,玩家操控的目标操控对象可以和水体产生不同的交互。根据玩家的操控以及水体的逻辑数据,可以给出不同的游戏效果反应与特效音效。
下面介绍确定任一水面点是否是从水源点出发的水体覆盖的目标水面点的过程。
可选地,基于地图中包含的各水面点与对应的水下地面点之间的高度差,确定从水源点出发的水体覆盖的目标水面点的过程可以实现为:确定预设数量的与待检测水面点相邻接的第一搜索点,待检测水面点在首次检测水体覆盖的目标水面点的过程中为水源点;计算第一搜索点与对应的水下地面点之间的第一高度差;若第一高度差满足预设条件,则确定第一搜索点为水体覆盖的目标水面点,确定预设数量的与第一搜索点相邻接的第二搜索点,将第二搜索点确定为待检测水面点,转至执行确定预设数量的与待检测水面点相邻接的第一搜索点的步骤。
可选地,上述若第一高度差满足预设条件,则确定第一搜索点为水体覆盖 的目标水面点的过程可以实现为:若第一高度差大于第一预设阈值,则确定第一搜索点为水体覆盖的目标水面点。相应地,若第一高度差小于或者等于第一预设阈值,则标记已检查第一搜索点。
在实际应用中,可以设置水体列表,和水源点属于同一水体的目标水面点可以记录在该水体列表中,这样查询水体列表中的目标水面点,就能够知道同一水体中都包括哪些水面点。
可以理解的是,可以确定水源点与对应的水下地面之间的高度差,若该高度差大于0,则可以将该水源点标记为已检查,将该水源点加入水体列表,若该高度差小于或者等于0,则该水源点是不符合设计要求的,终止水体生成的过程,并报错。若水源点是符合设计要求的,则可以执行后续检测其他点的步骤。
在检测其他点的过程中,可以以水源点作为待检测水面点,确定预设数量的与待检测水面点相邻接的第一搜索点。在一种可能的实现方式中,例如可以将水源点周围相邻的4个相邻接的第一搜索点放入搜索队列。可以取出搜索队列中排列在第一位的第一搜索点A1。若A1与对应的水下地面之间的高度差大于0,则可以标记A1已经过检查,并将A1放入水体列表,同时还可以确定预设数量的与第一搜索点相邻接的第二搜索点B1、B2……,将第二搜索点确定为待检测水面点,将第二搜索点放入搜索队列的末尾。在一种可能的实现方式中,例如可以将A1周围相邻的4个相邻接的第二搜索点放入搜索队列。若A1与对应的水下地面之间的高度差小于或者等于0,则可以标记A1已经过检查,并不做其他处理。
之后可以依次访问搜索队列中的每个待检测水面点,就可以将全图范围内从水源点出发的水体能够蔓延的所有目标水面点都确定出来,并将确定出的这些目标水面点记录在水体列表中。
在生成水体的同时,还可以根据各目标水面点的水面高度,自动生成水体的逻辑数据。逻辑数据可以包括水体的水深区域类型,自动生成水体的逻辑数据的过程可以实现为:若目标水面点中的任一水面点与对应的地下水面之间的高度差小于第二预设阈值,则任一水面点属于浅水;若目标水面点中的任一水 面点与对应的地下水面之间的高度差大于或者等于第二预设阈值、且小于或者等于第三预设阈值,则任一水面点属于中水;若目标水面点中的任一水面点与对应的地下水面之间的高度差大于第三预设阈值,则任一水面点属于深水;基于目标水面点中各水面点所属的水深类型,将水体划分为浅水区域、中水区域以及深水区域。
在实际应用中,可以根据水体覆盖的各地块对应的水面深度,自动将连续的水体划分为3种不同水深区域,包括浅水区域、中水区域以及深水区域。如果水面深度在0.5米以下,则为浅水区域。如果水面深度在0.5-1.5米之间,则为中水区域。如果水面深度在1.5米以上,则为深水区域。如图4所示,图4展示一个地图,在该地面上是水体,图4中的一片水体包括多种水深区域,以白色或者不同浓度的阴影表示水的深浅。
不同水深区域在游戏中具有不同交互效果。例如,可以让玩家操控的目标操控对象在浅水中行走速度放慢,可以让目标操控对象在中水或者深水中游泳等。
除了可以设置水体的水深区域类型之外,可选地,还可以获取输入的水体覆盖的各地块分别对应的水域属性;基于输入的水域属性,对应于水体覆盖的各地块配置水体的水域属性。
在实际应用中,水体的水域属性可以对应于其覆盖的各地块进行记录。如图5所示,策划人员可以在地图编辑界面中填写浅水类型、中水类型、深水类型、提示类型、提示范围等数值。可以将一个连续水域的地块在水体生成时按水面高度赋予不同的配置的CellType,从而可以实现在一片连续的水体中,根据水深给玩家提供不同的玩法,对目标操控对象施加不同的影响。策划人员仅仅需要在设计水体时配置不同地块对应的CellType,就可以将不同地块对应的CellType与特定的水体关联起来。其中,CellType是一种地块的属性,用于区分水域属性,如常规水域,岩浆等,不同CellType可以匹配不同的游泳动作和特效音效等交互反馈。实际应用中,策划人员可以通过地图编辑界面增减、调整各种CellType的值。
在一种可能的实现方式中,可以设置目标操控对象在湖边浅滩并不费力地淌水行走,在较深的水域目标操控对象会展现全身湿透且移动速度大大降低的效果。如果在下一个游戏版本中,希望展现同一片湖水被污染严重的情况,则可以仅仅改动对应水域属性的值,再重新生成水体,就能够将该湖水改为充满剧毒的沼泽。
可选地,若水体覆盖的任一地块对应的水域属性为允许游泳,则允许目标操控对象在任一地块对应的水域中进行游泳操作,并根据任一地块对应的水域的游泳参数,确定游泳参数对应的游泳动作特效以及游泳音效。
如前面所述,并不是所有水深水域都设置为可以让目标操控对象游泳。如果水体的逻辑数据勾选了可以让目标操控对象游泳时,在自动生成水体时,如图6所示,可以自动将中水水域和深水水域的CellType赋值为游泳类型的值。在图6中,游泳类型被赋值为18。可以理解的是,不同的CellType赋值可以对应不同的游泳动作及特效音效。一种Mask-Swimable地图的示意效果可以见图7所示。
可以通过设置中水和深水对应的地块的Mask中的Swimable属性来禁止或者允许目标操控对象游泳。其中,Mask为一种地块的属性,可以记录水域是否可以游泳、行走、飞行、建造等,用于区分逻辑状态。当Swimable属性为true时,表示允许目标操控对象和非玩家角色(Non Player Character,NPC)在对应的地块上处于某特定状态。例如,如果目标操控对象从Swimable为true的区域进入Swimable为false的区域,在游戏中表现为目标操控对象从水中游上岸边,姿态从游泳切换为走路的过程。如果一只陆生野兽落入水域区域,则需要开始划水游泳,进入水域区域的陆生野兽可能设置为无法再像在陆地上一样去做出伤害力极大的攻击动作。
此外,在中水和深水地块上生成水下逻辑块,可以使目标操控对象和水上NPC的服务器高度位于水面附近。其中,逻辑块为具有服务器高度的空地块。
在计算寻路数据的过程中,如果设计人员勾选了使用Mask的选项,在生成水体的过程中,可以自动调整地块的Mask和CellPass属性,自动修正寻路数 据。CellPass是一种地块的属性,可以记录一片区域是否可以通行,用于寻路数据。
可选地,若水体覆盖的地块属于道路且道路被水体覆盖,则在计算寻路数据时将被水体覆盖的道路删除;若水体覆盖的任一地块对应的水域属性为禁止游泳的深水区域,则在计算寻路数据时将任一地块设置为禁止通行。
例如,被水覆盖的Road(道路标记,计算寻路时优先级高于普通地块)会被擦除,不可游泳的深水地块属性改为Unpass(客户端不可通过标记,在AI和寻路判断中该处不可通行)和Unwalkable(服务器不可通过标记,所有对象不可进入或通过该地块,可以理解为是无限高度的空气墙)。
下面介绍生态数据的确定方式。可选地,可以根据水体的水域属性,设置目标操控对象对应的对抗对象在地图中的随机生成位置范围,位置范围外禁止生成陆生属性的对抗对象;若对抗对象的物种属性为陆生属性,则在位置范围内随机生成对抗对象。
在实际应用中,在生成水体的过程中,可以自动调整地块的CellMask的值。CellMask是一种地块的属性,可以记录区域是否可对对抗对象进行攻击,还可以记录区域是否属于沼泽或其他生态区域类型。通过调整CellMask的值,可以控制符合设计要求的对对抗对象进行攻击的位置范围。例如,在自动随机生成陆生属性的对抗对象时,通过参照CellMask的值,能够达到禁止将具有陆生属性的对抗对象随机生成在海底中。
综上,如图8所示,是生成水体以及在生成水体的过程中确定水体的逻辑数据的总流程示意图。首先,可以新建水体,然后策划人员可以输入配置数据,接着可以将水源点加入到搜索队列中,并选水源点为当前点。随后,可以判断参考平面与当前点地块的高度差是否小于或者等于0。如果参考平面与当前点地块的高度差小于或者等于0,则可以记录当前点为已生成逻辑数据的非法点,转至执行判断搜索队列是否为空的步骤。如果参考平面与当前点地块的高度差大于0,则可以判断参考平面与当前点地块的高度差是否小于或者等于0.5。
如果参考平面与当前点地块的高度差小于或者等于0.5,则可以将配置数据 中浅水类型的值赋值到该地块的CellType。然后,可以判断配置数据中是否勾选了使用Mask的选项。如果配置数据中勾选了使用Mask的选项,则可以自动将当前点所在地块的Mask属性设置为符合浅水区定义的值,然后记录当前点为已生成逻辑数据的合法点,并放入水体列表中。如果配置数据中未勾选使用Mask的选项,则直接转至记录当前点为已生成逻辑数据的合法点并放入水体列表中的步骤。
如果参考平面与当前点地块的高度差大于0.5,则可以判断参考平面与当前点地块的高度差是否小于或者等于1.5.如果参考平面与当前点地块的高度差小于或者等于1.5,则判断配置数据中是否勾选了游泳水的选项。如果配置数据中未勾选游泳水的选项,则可以将配置数据中中水类型的值赋值到该地块的CellType。然后,可以判断配置数据中是否勾选了使用Mask的选项。如果配置数据中勾选了使用Mask的选项,则可以自动将当前点所在地块的Mask属性设置为符合中水区定义的值。接着,可以记录当前点为已生成逻辑数据的合法点,并放入水体列表中。如果配置数据中未勾选使用Mask的选项,则直接转至记录当前点为已生成逻辑数据的合法点并放入水体列表中的步骤。
如果参考平面与当前点地块的高度差小于或者等于1.5,则可以将配置数据中深水类型的值赋值到该地块的CellType。然后,可以判断配置数据中是否勾选了游泳水。如果配置数据中未勾选游泳水,则可以将配置数据中深水类型的值赋值到该地块的CellType。接着,可以判断配置数据中是否勾选了使用Mask的选项。如果配置数据中勾选了使用Mask的选项,则可以自动将当前点所在地块的Mask属性设置为符合深水区定义的值。然后,可以根据配置数据中的提示范围,搜索合法地块,将提示类型的值赋值到该地块对应的属性。最后,可以记录当前点为已生成逻辑数据的合法点,并放入水体列表中。如果配置数据中未勾选使用Mask的选项,则直接转至记录当前点为已生成逻辑数据的合法点并放入水体列表中的步骤。
如果配置数据中勾选了游泳水的选项,则可以将配置数据中游泳水类型的值赋值到该地块的CellType,自动生成水下逻辑块。然后,可以判断配置数据 中是否勾选了使用Mask的选项。如果配置数据中勾选了使用Mask的选项,则可以自动将当前点所在地块的Mask属性设置为符合游泳区定义的值。然后,可以记录当前点为已生成逻辑数据的合法点,并放入水体列表中。如果配置数据中未勾选使用Mask的选项,则直接转至记录当前点为已生成逻辑数据的合法点并放入水体列表中的步骤。
在记录当前点为已生成逻辑数据的合法点并放入水体列表之后,可以判断邻接点中是否有未生成逻辑数据的点。如果邻接点中有未生成逻辑数据的点,则将这些点都加入到搜索队列的尾部,选定搜索队列中的下一个点作为当前点。如果邻接点中不存在未生成逻辑数据的点,则判断搜索队列是否为空。
如果搜索队列不为空,则可以判断水体列表是否不为空。如果水体列表为空,则生成水体失败,打印错误报告。如果水体列表不空,则可以按照水体列表中的点创建水体,且根据配置数据设置LOD和材质,最终水体创建完毕。
采用本发明,可以从水源点出发自动根据水面点与对应的水下地面之间的高度差生成水体,且在生成水体的过程中,自动确定水体的逻辑数据。通过这样的方式,可以避免再让技术人员手动划分水域并手动配置每个地块的逻辑数据,进而可以减少配置水体的工作量,降低配置过程中产生错误的概率。通过这样的方式,还可以为技术人员节省创建水体的时间,有利于让技术人员把更多的时间用在丰富水体环境上。
以下将详细描述本发明的一个或多个实施例的水体配置装置。本领域技术人员可以理解,这些水体配置装置均可使用市售的硬件组件通过本方案所教导的步骤进行配置来构成。
图9为本发明实施例提供的一种水体配置装置的结构示意图,如图9所示,该装置包括:
获取模块91,用于获取地图中设定的水体的水源点,由所述水源点出发搜索所述水源点相邻的搜索点;
确定模块92,用于基于所述地图中包含的各水面点与对应的水下地面点之间的高度差,在所述搜索点中确定与所述水源点同属于所述水体的目标水面点;
拼接模块93,用于对所述目标水面点对应的地块进行拼接并添加材质,得到从所述水源点出发的水体;
所述确定模块92,用于基于所述目标水面点与对应的地下水面之间的高度差,确定所述水体的逻辑数据。
可选地,所述确定模块92,用于:
确定预设数量的与待检测水面点相邻接的第一搜索点,所述待检测水面点在首次检测与所述水源点同属于所述水体的目标水面点的过程中为所述水源点;
计算所述第一搜索点与对应的水下地面点之间的第一高度差;
若所述第一高度差满足预设条件,则确定所述第一搜索点为所述水体覆盖的目标水面点,确定所述预设数量的与所述第一搜索点相邻接的第二搜索点,将所述第二搜索点确定为所述待检测水面点,转至执行所述确定预设数量的与待检测水面点相邻接的第一搜索点的步骤。
可选地,所述确定模块92,用于:
若所述第一高度差大于第一预设阈值,则确定所述第一搜索点为所述水体覆盖的目标水面点;
若所述第一高度差小于或者等于所述第一预设阈值,则标记已检查所述第一搜索点。
可选地,所述逻辑数据包括水体的水深区域类型,所述确定模块92,用于:
若所述目标水面点中的任一水面点与对应的地下水面之间的高度差小于第二预设阈值,则所述任一水面点属于浅水;
若所述目标水面点中的任一水面点与对应的地下水面之间的高度差大于或者等于所述第二预设阈值、且小于或者等于第三预设阈值,则所述任一水面点属于中水;
若所述目标水面点中的任一水面点与对应的地下水面之间的高度差大于所述第三预设阈值,则所述任一水面点属于深水;
基于所述目标水面点中各水面点所属的水深类型,将所述水体划分为浅水区域、中水区域以及深水区域。
可选地,所述装置还包括配置模块,所述配置模块,用于:
获取输入的所述水体覆盖的各地块分别对应的水域属性;
基于输入的水域属性,对应于所述水体覆盖的各地块配置所述水体的水域属性。
可选地,所述配置模块,还用于:
若所述水体覆盖的任一地块对应的水域属性为允许游泳,则允许目标操控对象在所述任一地块对应的水域中进行游泳操作,并根据所述任一地块对应的水域的游泳参数,确定所述游泳参数对应的游泳动作特效以及游泳音效。
可选地,所述配置模块,还用于:
若所述水体覆盖的地块属于道路且所述道路被所述水体覆盖,则在计算寻路数据时将被所述水体覆盖的道路删除;
若所述水体覆盖的任一地块对应的水域属性为禁止游泳的深水区域,则在计算寻路数据时将所述任一地块设置为禁止通行。
可选地,所述配置模块,还用于:
根据所述水体的水域属性,设置目标操控对象对应的对抗对象在所述地图中的随机生成位置范围,所述位置范围外禁止生成陆生属性的对抗对象;
若所述对抗对象的物种属性为陆生属性,则在所述位置范围内随机生成所述对抗对象。
图9所示装置可以执行前述图1至图8所示实施例中提供的水体配置方法,详细的执行过程和技术效果参见前述实施例中的描述,在此不再赘述。
本发明的各个部件实施例可以以硬件实现,或者以在一个或者多个处理器上运行的软件模块实现,或者以它们的组合实现。本领域的技术人员应当理解,可以在实践中使用微处理器或者数字信号处理器(DSP)来实现根据本发明实施例的电子设备中的一些或者全部部件的一些或者全部功能。本发明还可以实现为用于执行这里所描述的方法的一部分或者全部的设备或者装置程序(例如,计算机程序和计算机程序产品)。这样的实现本发明的程序可以存储在计算机可读介质上,或者可以具有一个或者多个信号的形式。这样的信号可以从因特网 网站上下载得到,或者在载体信号上提供,或者以任何其他形式提供。
例如,图10示出了可以实现用于执行根据本发明的方法的电子设备。该电子设备传统上包括处理器410和以存储器420形式的计算机程序产品或者计算机可读介质。存储器420可以是诸如闪存、EEPROM(电可擦除可编程只读存储器)、EPROM、硬盘或者ROM之类的电子存储器。存储器420具有用于执行上述方法中的任何方法步骤的程序代码431的存储空间430。例如,用于存储程序代码的存储空间430可以包括分别用于实现上面的方法中的各种步骤的各个程序代码431。这些程序代码可以从一个或者多个计算机程序产品中读出或者写入到这一个或者多个计算机程序产品中。这些计算机程序产品包括诸如硬盘,激光盘(CD)、存储卡或者软盘之类的程序代码载体。这样的计算机程序产品通常为如参考图11所述的便携式或者固定存储单元。该存储单元可以具有与图10的电子设备中的存储器420类似布置的存储段、存储空间等。程序代码可以例如以适当形式进行压缩。通常,存储单元包括计算机可读代码431’,即可以由例如诸如410之类的处理器读取的代码,这些代码当由电子设备运行时,导致该电子设备执行上面所描述的方法中的各个步骤。
本文中所称的“一个实施例”、“实施例”或者“一个或者多个实施例”意味着,结合实施例描述的特定特征、结构或者特性包括在本发明的至少一个实施例中。此外,请注意,这里“在一个实施例中”的词语例子不一定全指同一个实施例。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本发明的实施例可以在没有这些具体细节的情况下被实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
应该注意的是上述实施例对本发明进行说明而不是对本发明进行限制,并且本领域技术人员在不脱离所附权利要求的范围的情况下可设计出替换实施例。在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。本发明可以借助于包括有若 干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
此外,还应当注意,本说明书中使用的语言主要是为了可读性和教导的目的而选择的,而不是为了解释或者限定本发明的主题而选择的。因此,在不偏离所附权利要求书的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。对于本发明的范围,对本发明所做的公开是说明性的,而非限制性的,本发明的范围由所附权利要求书限定。

Claims (11)

  1. 一种水体配置方法,包括:
    获取地图中设定的水体的水源点,由所述水源点出发搜索所述水源点相邻的搜索点;
    基于所述地图中包含的各水面点与对应的水下地面点之间的高度差,在所述搜索点中确定与所述水源点同属于所述水体的目标水面点;
    对所述目标水面点对应的地块进行拼接并添加材质,得到从所述水源点出发的水体;
    基于所述目标水面点与对应的地下水面之间的高度差,确定所述水体的逻辑数据。
  2. 根据权利要求1所述的方法,所述基于所述地图中包含的各水面点与对应的水下地面点之间的高度差,在所述搜索点中确定与所述水源点同属于所述水体的目标水面点,包括:
    确定预设数量的与待检测水面点相邻接的第一搜索点,所述待检测水面点在首次检测与所述水源点同属于所述水体的目标水面点的过程中为所述水源点;
    计算所述第一搜索点与对应的水下地面点之间的第一高度差;
    若所述第一高度差满足预设条件,则确定所述第一搜索点为所述水体覆盖的目标水面点,确定所述预设数量的与所述第一搜索点相邻接的第二搜索点,将所述第二搜索点确定为所述待检测水面点,转至执行所述确定预设数量的与待检测水面点相邻接的第一搜索点的步骤。
  3. 根据权利要求2所述的方法,所述若所述第一高度差满足预设条件,则确定所述第一搜索点为所述水体覆盖的目标水面点,包括:
    若所述第一高度差大于第一预设阈值,则确定所述第一搜索点为所述水体覆盖的目标水面点;
    所述方法还包括:
    若所述第一高度差小于或者等于所述第一预设阈值,则标记已检查所述第 一搜索点。
  4. 根据权利要求1所述的方法,所述逻辑数据包括水体的水深区域类型,所述基于所述目标水面点与对应的地下水面之间的高度差,确定所述水体的逻辑数据,包括:
    若所述目标水面点中的任一水面点与对应的地下水面之间的高度差小于第二预设阈值,则所述任一水面点属于浅水;
    若所述目标水面点中的任一水面点与对应的地下水面之间的高度差大于或者等于所述第二预设阈值、且小于或者等于第三预设阈值,则所述任一水面点属于中水;
    若所述目标水面点中的任一水面点与对应的地下水面之间的高度差大于所述第三预设阈值,则所述任一水面点属于深水;
    基于所述目标水面点中各水面点所属的水深类型,将所述水体划分为浅水区域、中水区域以及深水区域。
  5. 根据权利要求1所述的方法,所述方法还包括:
    获取输入的所述水体覆盖的各地块分别对应的水域属性;
    基于输入的水域属性,对应于所述水体覆盖的各地块配置所述水体的水域属性。
  6. 根据权利要求5所述的方法,所述方法还包括:
    若所述水体覆盖的任一地块对应的水域属性为允许游泳,则允许目标操控对象在所述任一地块对应的水域中进行游泳操作,并根据所述任一地块对应的水域的游泳参数,确定所述游泳参数对应的游泳动作特效以及游泳音效。
  7. 根据权利要求5所述的方法,所述方法还包括:
    若所述水体覆盖的地块属于道路且所述道路被所述水体覆盖,则在计算寻路数据时将被所述水体覆盖的道路删除;
    若所述水体覆盖的任一地块对应的水域属性为禁止游泳的深水区域,则在计算寻路数据时将所述任一地块设置为禁止通行。
  8. 根据权利要求5所述的方法,所述方法还包括:
    根据所述水体的水域属性,设置目标操控对象对应的对抗对象在所述地图中的随机生成位置范围,所述位置范围外禁止生成陆生属性的对抗对象;
    若所述对抗对象的物种属性为陆生属性,则在所述位置范围内随机生成所述对抗对象。
  9. 一种水体配置装置,包括:
    获取模块,用于获取地图中设定的水体的水源点,由所述水源点出发搜索所述水源点相邻的搜索点;
    确定模块,用于基于所述地图中包含的各水面点与对应的水下地面点之间的高度差,在所述搜索点中确定与所述水源点同属于所述水体的目标水面点;
    拼接模块,用于对所述目标水面点对应的地块进行拼接并添加材质,得到从所述水源点出发的水体;
    所述确定模块,用于基于所述目标水面点与对应的地下水面之间的高度差,确定所述水体的逻辑数据。
  10. 一种计算机程序,包括计算机可读代码,当所述计算机可读代码在电子设备上运行时,导致所述电子设备执行根据权利要求1-8中的任一个所述的水体配置方法。
  11. 一种计算机可读介质,其中存储了如权利要求10所述的计算机程序。
PCT/CN2020/130366 2020-09-02 2020-11-20 水体配置方法、装置、设备和存储介质 WO2022048036A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010912007.6A CN112044077B (zh) 2020-09-02 2020-09-02 水体配置方法、装置、设备和存储介质
CN202010912007.6 2020-09-02

Publications (1)

Publication Number Publication Date
WO2022048036A1 true WO2022048036A1 (zh) 2022-03-10

Family

ID=73607197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/130366 WO2022048036A1 (zh) 2020-09-02 2020-11-20 水体配置方法、装置、设备和存储介质

Country Status (2)

Country Link
CN (1) CN112044077B (zh)
WO (1) WO2022048036A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101650837A (zh) * 2009-07-16 2010-02-17 浙江大学 一种海洋水体虚拟现实的建模方法
US20110054784A1 (en) * 2009-09-03 2011-03-03 ProMap Technologies, Inc. Shallow water highlight method and display systems
US20160047099A1 (en) * 2014-08-13 2016-02-18 Intermap Technologies, Inc. Systems and methods for flood zone modeling
US20160318589A1 (en) * 2015-03-30 2016-11-03 Gregory Ward Book System and method for generating dynamic maps for bodies of water
US20170192092A1 (en) * 2015-12-30 2017-07-06 Sean Seifert Updating contour maps for bodies of water
CN111524445A (zh) * 2019-02-01 2020-08-11 阿里巴巴集团控股有限公司 地图生成方法、装置、电子设备及可读存储介质

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106355636B (zh) * 2016-08-30 2019-05-14 北京像素软件科技股份有限公司 虚拟现实三维水体渲染中水体网格的处理方法
US11107025B2 (en) * 2016-12-13 2021-08-31 STREAM METHODS, Inc. System and method for producing and distributing information relevant to water events
CN106981092B (zh) * 2017-03-28 2020-02-07 南京师范大学 基于Priority-Flood的内流流域提取方法
CN109509243B (zh) * 2017-09-13 2022-11-11 腾讯科技(深圳)有限公司 一种液体仿真方法、液体交互方法及装置
CN107886562B (zh) * 2017-12-05 2021-08-31 北京像素软件科技股份有限公司 水面渲染方法、装置及可读存储介质
CN108470369B (zh) * 2018-03-26 2022-03-15 城市生活(北京)资讯有限公司 一种水面渲染方法及装置
CN109876441B (zh) * 2019-03-13 2022-06-14 网易(杭州)网络有限公司 游戏中的渲染方法及装置、存储介质及电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101650837A (zh) * 2009-07-16 2010-02-17 浙江大学 一种海洋水体虚拟现实的建模方法
US20110054784A1 (en) * 2009-09-03 2011-03-03 ProMap Technologies, Inc. Shallow water highlight method and display systems
US20160047099A1 (en) * 2014-08-13 2016-02-18 Intermap Technologies, Inc. Systems and methods for flood zone modeling
US20160318589A1 (en) * 2015-03-30 2016-11-03 Gregory Ward Book System and method for generating dynamic maps for bodies of water
US20170192092A1 (en) * 2015-12-30 2017-07-06 Sean Seifert Updating contour maps for bodies of water
CN111524445A (zh) * 2019-02-01 2020-08-11 阿里巴巴集团控股有限公司 地图生成方法、装置、电子设备及可读存储介质

Also Published As

Publication number Publication date
CN112044077A (zh) 2020-12-08
CN112044077B (zh) 2022-02-11

Similar Documents

Publication Publication Date Title
Salge et al. Generative design in minecraft (gdmc) settlement generation competition
KR100948738B1 (ko) 동적 난이도 게임 방법 및 그 시스템
US20100279762A1 (en) Apparatus and method for adjusting difficulty level of game
WO2017133601A1 (zh) 一种确定移动轨迹的方法、及用户设备
Kyaw et al. Unity 4. x Game AI programming
US20060030405A1 (en) Apparatus, system, and method for automated generation of a virtual environment for software applications
Barros et al. Balanced civilization map generation based on open data
KR102338768B1 (ko) 기능적 안전성을 위해 극한 상황에서 폴트 톨러런스 및 플럭츄에이션 로버스트를 향상시키도록 테스트 패턴을 이용해 cnn의 파라미터의 무결성을 검증하기 위한 방법 및 장치
WO2022048036A1 (zh) 水体配置方法、装置、设备和存储介质
Griffith Real-world Flash game development: how to follow best practices and keep your sanity
CN115957505A (zh) 游戏中的寻路方法、装置、计算机设备及可读存储介质
JP2020119557A (ja) コンボリューション演算の無欠性を検証するためにテストパターンを生成し、前記テストパターンの中から最適化テストパターンを選択して、極度の状況で欠陥許容能力及び揺れに強靭な性質を向上させる方法及び装置
CN115222304A (zh) 兵棋博弈策略的生成方法、装置及存储介质
Håkansson et al. Application of machine learning to construct advanced NPC behaviors in Unity 3D.
Iramanesh et al. Agentcraft: An agent-based minecraft settlement generator
CN113934766A (zh) 围棋定式对弈方法、装置、电子设备及存储介质
KR102589453B1 (ko) 게임 환경을 시뮬레이트 하는 시스템 및 방법
Sandhu et al. A framework for integrating architectural design patterns into PCG
Louis et al. Combining Case-Based Memory with Genetic Algorithm Search for Competent Game AI.
Mendes A Path-based Procedural Approach for Inferring Playable Game Levels
Buck Procedural content generation in strategy/role-playing games
Guggiari Emergent Personalized Content in Video Games
Grosu et al. Serious gaming: Environmental impact through math
Game School of Computing
Miloslavov Desired Path-Dependent Enemy Placement in Stealth Video Games

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20952277

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20952277

Country of ref document: EP

Kind code of ref document: A1