WO2022047940A1 - 直线电机 - Google Patents

直线电机 Download PDF

Info

Publication number
WO2022047940A1
WO2022047940A1 PCT/CN2020/123427 CN2020123427W WO2022047940A1 WO 2022047940 A1 WO2022047940 A1 WO 2022047940A1 CN 2020123427 W CN2020123427 W CN 2020123427W WO 2022047940 A1 WO2022047940 A1 WO 2022047940A1
Authority
WO
WIPO (PCT)
Prior art keywords
primary
linear motor
sliding seat
fixed
yoke
Prior art date
Application number
PCT/CN2020/123427
Other languages
English (en)
French (fr)
Inventor
郭顺
史卫领
翁兆勇
Original Assignee
瑞声声学科技(深圳)有限公司
瑞声科技(南京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声声学科技(深圳)有限公司, 瑞声科技(南京)有限公司 filed Critical 瑞声声学科技(深圳)有限公司
Publication of WO2022047940A1 publication Critical patent/WO2022047940A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors

Definitions

  • the invention relates to the technical field of motor manufacturing, in particular to a linear motor.
  • the motor is the main component of the transmission system, and a reasonable selection of the motor can improve the performance of the entire system and improve the efficiency.
  • traditional rotary motors require certain mechanical transmission components to convert rotary motion into linear motion. This brings many problems, such as bulky system, increased weight, high noise, increased maintenance cost, and in rail transit applications, wheel-rail slippage will occur if the speed is too high. Therefore, using the linear motor instead of the rotary motor can overcome the above shortcomings of the rotary motor in this application and improve the efficiency of the entire system.
  • a linear motor of the related art generally includes a housing, a primary assembly and a secondary assembly mounted on the housing, the housing includes a base and a sliding seat slidably connected to the base, and the primary assembly includes an iron core , a coil wound around the iron core and a plurality of permanent magnets embedded in the teeth of the iron core.
  • the purpose of the present invention is to provide a linear motor with stronger breath magnetic field, higher motor thrust density, and stronger working efficiency and reliability.
  • a linear motor which includes a housing and a primary component and a secondary component mounted on the housing, the housing includes a base and a connection with the base.
  • a sliding seat that is slidably connected, one of the primary assembly and the secondary assembly is fixed on the base, and the other is fixed on the sliding seat, the primary assembly and the secondary assembly are relatively spaced apart
  • An air gap is formed, wherein the primary assembly includes an iron core and a winding wound around one end of the iron core close to the air gap, the iron core includes a primary yoke fixed on the housing and a primary yoke connected to the primary
  • a plurality of primary teeth are formed by extending the yoke in a direction close to the air gap, the winding is wound around the primary teeth, and the primary assembly further includes a plurality of primary teeth embedded in the primary teeth of the iron core.
  • the magnetization directions of the adjacent second permanent magnets are opposite, and the magnetic poles of the end of the first permanent magnet and the second permanent magnet that are close to each other are opposite.
  • the orthographic projection of the second permanent magnet to the slide does not overlap with the orthographic projection of the first permanent magnet to the slide.
  • the base comprises a base plate opposite to the sliding seat, a side plate vertically bent and extended from two sides of the base plate in a direction close to the sliding seat, and a side plate installed on the side plate away from the sliding seat.
  • a guide rail at one end of the base plate, and the sliding seat is slidably connected to the side plate through the guide rail.
  • the primary component is fixed on the sliding seat
  • the secondary component is fixed on the base plate
  • the primary component is fixed on the base plate, and the secondary component is fixed on the sliding seat.
  • the number of the primary assemblies is not less than two, a plurality of the primary assemblies are arranged at intervals along the sliding direction of the sliding seat, and the distances between the adjacent primary assemblies are equal.
  • the linear motor further comprises a scale and a scale read head mounted on the housing, one of the scale and the scale read head is fixed on the base plate, and the other is fixed on the base plate
  • the sliding seat, the scale and the scale read head are relatively spaced apart.
  • the secondary assembly includes a secondary yoke fixedly connected to the housing and a plurality of secondary teeth extending from the secondary yoke in a direction close to the air gap, the iron core It also includes an end yoke that is fixedly connected to the housing and is opposite to the secondary yoke, and a plurality of end teeth extending from the end yoke toward the air gap.
  • the secondary teeth and a plurality of the end teeth are arranged at intervals along the sliding direction of the sliding seat, and the end yokes extend from both ends of the primary yokes along the sliding direction.
  • the number of the primary components is two
  • the base further includes a first extension plate bent and extended from one end of the side plate away from the base plate toward the direction of approaching the other side plate, so A gap is left between the first extension plate and the other side plate
  • the sliding seat includes a main body portion and a second extension that is bent and extended from the main body portion corresponding to the gap toward the substrate.
  • the two primary components are respectively fixed on the base plate and the first extension plate, and the secondary components are fixed on the second extension plate.
  • the number of the secondary components is two
  • the base further includes a first extension plate bent and extended from one end of the side plate away from the base plate toward the direction of approaching the other side plate, A gap is left between the first extension plate and the other side plate, and the sliding seat includes a main body portion and a second extension extending from the main body portion corresponding to the gap toward the substrate.
  • the extension board, the two secondary components are respectively fixed on the base plate and the first extension board, and the primary component is fixed on the second extension board.
  • the linear motor provided by the present invention not only embeds a plurality of first permanent magnets in the teeth of the iron core, but also embeds a plurality of second permanent magnets in the yoke of the iron core.
  • the first permanent magnet is matched with a plurality of transversely magnetized second permanent magnets, which increases the air gap magnetic field, thereby increasing the thrust density of the linear motor; by setting the number of the primary components to be no less than two, And a plurality of the primary components are arranged at intervals along the sliding direction of the sliding seat, and the distance between the adjacent primary components is equal, so that the linear motor can adjust the distance between the adjacent primary components, Reduce the end positioning force of the original structure, thereby reducing the thrust fluctuation.
  • FIG. 1 is a schematic three-dimensional structure diagram of a linear motor provided in Embodiment 1 of the present invention.
  • FIG. 2 is an exploded schematic diagram of the three-dimensional structure of the linear motor provided in the first embodiment of the present invention.
  • FIG. 3 is a cross-sectional view of the linear motor shown in FIG. 1 along the line A-A.
  • FIG. 4 is an enlarged view of part B of the linear motor shown in FIG. 3 .
  • FIG. 5 is a schematic three-dimensional structural diagram of a linear motor according to Embodiment 2 of the present invention.
  • FIG. 6 is a schematic structural diagram of the linear motor provided in Embodiment 3 of the present invention after removing the sliding seat.
  • FIG. 7 is a schematic structural diagram of a primary assembly and a secondary assembly according to Embodiment 3 of the present invention.
  • FIG. 8 is a schematic structural diagram of the linear motor provided in Embodiment 4 of the present invention after the base is removed.
  • FIG. 9 is a schematic three-dimensional structural diagram of a linear motor according to Embodiment 5 of the present invention.
  • FIG. 10 is a schematic three-dimensional structural diagram of a linear motor according to Embodiment 6 of the present invention.
  • the linear motor 100 includes a housing 110 , a primary component 120 and a secondary component 130 mounted on the housing 110 and mounted on the housing 110 .
  • the primary assembly 120 and the secondary assembly 130 are spaced apart from each other to form an air gap 101 .
  • the housing 110 includes a base 111 and a sliding seat 112 slidably connected to the base 111 .
  • the sliding seat 112 slides relatively along the sliding direction X relative to the base 111 .
  • one of the primary assembly 120 and the secondary assembly 130 is fixed on the base 111 , and the other is fixed on the sliding seat 112 .
  • the base 111 includes a base plate 1111 opposite to the sliding seat 112 , a side plate 1112 vertically bent and extending from two sides of the base plate 1111 toward the sliding seat 112 , and mounted on the side plate 1112 is away from the guide rail 1113 at one end of the base plate 1111 , and the sliding seat 112 is slidably connected to the side plate 1112 through the guide rail 1113 .
  • the primary assembly 120 includes an iron core 121 and a winding 122 wound around one end of the iron core 121 close to the air gap 101 .
  • the iron core 121 includes a primary yoke 12 fixed to the base 111 and a plurality of primary teeth 13 extending from the primary yoke 12 toward the air gap 101 .
  • the windings 122 are wound around the primary teeth 13 .
  • a plurality of the primary teeth 13 are arranged along the sliding direction X at intervals.
  • the primary assembly 120 further includes a plurality of first permanent magnets 123 embedded in the primary teeth 13 of the iron core 121 and arranged in parallel and spaced apart, and the primary yoke 12 embedded in the iron core 121 .
  • a plurality of second permanent magnets 124 are arranged in parallel and spaced apart.
  • the magnetization directions of the adjacent first permanent magnets 123 are opposite, the magnetization directions of the adjacent second permanent magnets 124 are opposite, and the first permanent magnets 123 and the second permanent magnets 124 are close to one end.
  • the magnetic poles are opposite. In this way, by embedding the second permanent magnet 124 in the primary yoke 12 of the iron core 121, the air gap magnetic field can be effectively increased, thereby increasing the thrust density of the motor.
  • the iron core 121 further includes an end yoke 1211 fixedly connected to the housing 110 and a plurality of end teeth 1212 extending from the end yoke 1211 toward the air gap 101 .
  • a plurality of the end teeth 1212 are arranged at intervals along the sliding direction of the sliding seat 112 in sequence.
  • the end yoke portion 1211 extends along the sliding direction X from both ends of the primary yoke portion 12 .
  • the windings 122 are not wound on the end teeth 1212 .
  • the winding 122 is connected to an external power source, and when the winding 122 is supplied with current, the primary component 120 generates a traveling wave magnetic field, so that a thrust is generated between the primary component 120 and the secondary component 130, thereby driving
  • the sliding seat 112 moves linearly along the guide rail 1113 .
  • the plurality of first permanent magnets 123 are in the same plane, and the plurality of first permanent magnets 123 are arranged at intervals along the sliding direction of the sliding seat 112 in sequence.
  • the magnetization direction of the first permanent magnet 123 is the longitudinal direction.
  • the arrangement direction of the plurality of second permanent magnets 124 is perpendicular to the first permanent magnet 123 , and the orthographic projection of the second permanent magnets 124 to the sliding seat 112 is the same as the direction of the first permanent magnet 123 to the sliding seat 112 .
  • the orthographic projections of the carriage 112 do not overlap.
  • a plurality of the first permanent magnets 123 and a plurality of the second permanent magnets 124 are arranged to intersect in sequence along the sliding direction of the sliding seat 112 .
  • the primary component 120 is fixed on the sliding seat 112
  • the secondary component 130 is fixed on the base plate 1111 .
  • the secondary assembly 130 includes a secondary yoke 131 fixedly connected to the housing 110 and a plurality of secondary teeth 132 extending from the secondary yoke 131 toward the air gap 101 .
  • the secondary yoke portion 131 is disposed opposite to the end yoke portion 1211 , and a plurality of the secondary tooth portions 132 are disposed in sequence along the sliding direction of the sliding seat 112 at intervals.
  • the material of the first permanent magnet 123 and the second permanent magnet 124 is ferrite or NdFeB, and the iron core 121 and the secondary component 130 are silicon steel sheets.
  • the first permanent magnet 123 and the second permanent magnet 124 may also be other types of permanent magnet materials, and the iron core 121 and the secondary component 130 may also be iron or other magnetically conductive materials.
  • One of the scale 140 and the scale reading head 150 is fixed on the base plate 1111 , and the other is fixed on the sliding seat 112 , and the scale 140 and the scale reading head 150 are relatively spaced apart. set up.
  • the linear motor 200 provided in this embodiment is basically the same in structure as the linear motor 100 provided in the first embodiment, and the difference lies in the connection structure of the primary assembly 220 and the secondary assembly 230 and the housing 210 .
  • the primary component 220 is fixed on the substrate 2111
  • the secondary component 230 is fixed on the sliding seat 212 .
  • the linear motor 300 provided in this embodiment is basically the same in structure as the linear motor 100 provided in the first embodiment, and the difference lies in the number of the primary components 320 .
  • the number of the primary components 320 is not less than two, and a plurality of the primary components 320 are arranged at intervals along the sliding direction of the sliding seat, and are adjacent to all the primary components 320 .
  • the distances between the primary assemblies 320 are equal.
  • the number of components 320, p is the sum of the distance between two adjacent secondary teeth 332 and the width of the secondary teeth 332 along the sliding direction.
  • the magnetic circuits at both ends of the primary assembly 320 can be compensated so that the flux linkage of the linear motor 300 changes uniformly.
  • the linear motor 300 can reduce the end positioning force of the original structure by adjusting the distance between the adjacent primary assemblies 320, thereby reducing the thrust fluctuation.
  • the structure of the linear motor 400 provided in this embodiment is basically the same as that of the linear motor 100 provided in the first embodiment, and the difference lies in the connection structure of the primary assembly 420 and the secondary The number of primary assemblies 420 .
  • the primary component 420 is fixed on the substrate, and the secondary component 430 is fixed on the sliding seat 412 .
  • the number of the primary assemblies 420 is not less than two, and the plurality of the primary assemblies 420 are arranged at intervals along the sliding direction of the sliding seat 412, and the distances between adjacent primary assemblies 420 are equal.
  • the linear motor 400 can reduce the end positioning force of the original structure by adjusting the distance between the adjacent primary assemblies 420, thereby reducing the thrust fluctuation.
  • the linear motor 500 provided in this embodiment is basically the same in structure as the linear motor 100 provided in the first embodiment, and the difference is that the linear motor 500 is a bilateral structure.
  • the number of the primary components 520 is two.
  • the base 511 also includes a first extension plate 5114 that is vertically bent and extended from one end of the side plate 5112 away from the base plate 5111 to the direction close to the other side plate 5112 , the first extension plate 5114 and the other side plate 5112 There is a gap in between.
  • the sliding seat 512 includes a main body portion 5121 and a second extension plate 5122 that is vertically bent and extended from the main body portion 5121 corresponding to the gap toward the base plate 5111 .
  • the two primary assemblies 520 are respectively fixed on the The base plate 5111 and the first extension plate 5114 , and the secondary component 530 is fixed on the second extension plate 5122 .
  • two sides of the secondary assembly 530 form air gaps with the two primary assemblies 520 respectively, which further increases the air gap magnetic field, thereby increasing the thrust density of the motor.
  • the linear motor 600 provided in this embodiment is basically the same in structure as the linear motor 100 provided in the first embodiment, and the difference is that the linear motor 600 is a bilateral structure.
  • the number of the secondary components 630 is two.
  • the base 611 further includes a first extension plate 6114 that is vertically bent and extended from one end of the side plate 6112 away from the base plate 6111 to the direction close to the other side plate 6112 , the first extension plate 6114 and the other side plate 6112 There is a gap in between.
  • the sliding seat 612 includes a main body portion 6121 and a second extension plate 6122 that is vertically bent and extended from the main body portion 6121 corresponding to the gap toward the base plate 6111 .
  • the two secondary components 630 are respectively fixed on The base plate 6111 and the first extension plate 6114 and the primary assembly 620 are fixed on the second extension plate 6122 . In this way, two sides of the primary assembly 620 and the two secondary assemblies 630 respectively form air gaps, which further increases the air gap magnetic field, thereby increasing the thrust density of the motor.
  • the linear motor provided by the present invention not only embeds a plurality of first permanent magnets in the teeth of the iron core, but also embeds a plurality of second permanent magnets in the yoke of the iron core.
  • the first permanent magnet is matched with a plurality of transversely magnetized second permanent magnets, which increases the air gap magnetic field, thereby increasing the thrust density of the linear motor; by setting the number of the primary components to be no less than two, And a plurality of the primary components are arranged at intervals along the sliding direction of the sliding seat, and the distance between the adjacent primary components is equal, so that the linear motor can adjust the distance between the adjacent primary components, Reduce the end positioning force of the original structure, thereby reducing the thrust fluctuation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Linear Motors (AREA)

Abstract

一种直线电机(100),其包括壳体(110)及安装于所述壳体(110)的初级组件(120)和与初级组件(120)间隔形成气隙(101)的次级组件(130)。壳体(110)包括基座(111)及与基座(111)滑动连接的滑座(112)。初级组件(120)包括铁芯(121)和绕设于铁芯(121)的绕组(122)。铁芯(121)包括固定于壳体(110)上的初级轭部(12)和及自初级轭部(12)向靠近气隙(101)方向延伸形成的多个初级齿部(13);绕组(122)缠绕于所述初级齿部(13)。初级组件(120)还包括内嵌于初级齿部(13)的多个平行间隔设置的第一永磁体(123)及内嵌于初级轭部(12)的多个平行间隔设置的第二永磁体(124),相邻所述第一永磁体(123)的充磁方向相反,相邻所述第二永磁体(124)的充磁方向相反,且所述第一永磁体(123)与所述第二永磁体(124)相近的一端的磁极相反。该直线电机(100),气息磁场更强、电机推力密度更高、工作效率及可靠度更强。

Description

直线电机 技术领域
本发明涉及电机制造的技术领域,尤其涉及一种直线电机。
背景技术
电机是传动系统的主要部件,合理的选择电机可以提高整个系统的性能,提高效率。在直线应用场合,传统的旋转电机都需要一定的机械传动部件将旋转运动转换为直线运动。这样带来了许多问题,比如,系统体积庞大,重量增加,噪声高,维护成本增加,而在轨道交通应用中,速度过高会出现轮轨滑动等问题。因此,采用直线电机代替旋转电机这一技术手段,可以克服旋转电机在此应用场合中的上述缺点,提高整个系统的效率。
相关技术的直线电机通常包括壳体及安装于所述壳体的初级组件与次级组件,所述壳体包括基座及与所述基座滑动连接的滑座,所述初级组件包括铁芯、绕设于所述铁芯的绕组及内嵌于所述铁芯齿部的多个永磁体。
然而,这样的结构中,铁芯中嵌入的永磁体体积有限,初级组件与次级组件之间气隙磁场较弱,进而导致直线电机推力密度相对较低。
因此,有必要提供一种新的气息磁场更强、电机推力密度更高、工作效率及可靠度更强的直线电机来解决上述问题。
技术问题
针对上述问题,本发明的目的在于提供一种气息磁场更强、电机推力密度更高、工作效率及可靠度更强的直线电机。
技术解决方案
为解决上述技术问题,本发明的实施方式提供了一种直线电机,其包括壳体及安装于所述壳体的初级组件与次级组件,所述壳体包括基座及与所述基座滑动连接的滑座,所述初级组件与所述次级组件中的一个固设于所述基座,另一个固设于所述滑座,所述初级组件与所述次级组件相对间隔设置形成气隙,其中,所述初级组件包括铁芯和绕设于所述铁芯靠近所述气隙一端的绕组,所述铁芯包括固定于壳体上的初级轭部和及自所述初级轭部向靠近所述气隙方向延伸形成的多个初级齿部,所述绕组缠绕于所述初级齿部,所述初级组件还包括内嵌于所述铁芯的所述初级齿部的多个平行间隔设置的第一永磁体及内嵌于所述铁芯的所述初级轭部的多个平行间隔设置的第二永磁体,相邻所述第一永磁体的充磁方向相反,相邻所述第二永磁体的充磁方向相反,且所述第一永磁体与所述第二永磁体相近的一端的磁极相反。
优选地,所述第二永磁体向所述滑座的正投影与所述第一永磁向所述滑座的正投影不重叠。
优选地,所述基座包括与所述滑座相对间隔设置的基板、自所述基板的两侧向靠近所述滑座方向垂直弯折延伸出的侧板及安装于所述侧板远离所述基板一端的导轨,所述滑座通过所述导轨与所述侧板滑动连接。
优选地,所述初级组件固设于所述滑座,所述次级组件固设于所述基板。
优选地,所述初级组件固设于所述基板,所述次级组件固设于所述滑座。
优选地,所述初级组件的数量不小于两个,多个所述初级组件沿所述滑座的滑动方向依次间隔设置,且相邻所述初级组件之间的间距相等。
优选地,所述直线电机还包括安装于所述壳体的栅尺及栅尺读头,所述栅尺与所述栅尺读头中的一个固设于所述基板,另一个固设于所述滑座,所述栅尺与所述栅尺读头相对间隔设置。
优选地,所述次级组件包括与所述壳体固定连接的次级轭部及自所述次级轭部向靠近所述气隙方向延伸出的多个次级齿部,所述铁芯还包括与所述壳体固定连接并与所述次级轭部相对设置的端轭部及自所述端轭部向靠近所述气隙方向延伸出的多个端齿部,多个所述次级齿部及多个所述端齿部沿所述滑座的滑动方向依次间隔设置,所述端轭部自所述初级轭部的两端沿所述滑动方向延伸。
优选地,所述初级组件的数量为两个,所述基座还包括自一所述侧板远离所述基板一端向靠近另一所述侧板方向弯折延伸出的第一延伸板,所述第一延伸板与另一所述侧板之间留有间隙,所述滑座包括本体部及自所述本体部对应所述间隙处向靠近所述基板方向弯折延伸出的第二延伸板,两个所述初级组件分别固设于所述基板与所述第一延伸板,所述次级组件固设于所述第二延伸板。
优选地,所述次级组件的数量为两个,所述基座还包括自一所述侧板远离所述基板一端向靠近另一所述侧板方向弯折延伸出的第一延伸板,所述第一延伸板与另一所述侧板之间留有间隙,所述滑座包括本体部及自所述本体部对应所述间隙处向靠近所述基板方向弯折延伸出的第二延伸板,两个所述次级组件分别固设于所述基板与所述第一延伸板,所述初级组件固设于所述第二延伸板。
有益效果
与相关技术相比,本发明提供的直线电机,除了在铁芯齿部嵌入多个第一永磁体外,还在所述铁芯的轭部嵌入多个第二永磁体,多个纵向充磁的所述第一永磁体配合多个横向充磁的第二永磁体,增大了气隙磁场,进而增加了所述直线电机的推力密度;通过设置所述初级组件的数量不小于两个,且多个所述初级组件沿所述滑座的滑动方向依次间隔设置,相邻所述初级组件之间的间距相等,使得所述直线电机可以通过调整相邻所述初级组件之间的距离,降低原有结构的端部定位力,从而降低推力波动。
附图说明
为了更清楚地说明本发明实施方式中的技术方案,下面将对实施方式描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图,其中:图1为本发明实施例一提供的直线电机的立体结构示意图。
图2为本发明实施例一提供的直线电机的立体结构分解示意图。
图3为图1所示的直线电机沿A-A线的剖视图。
图4为图3所示的直线电机的B部分放大图。
图5为本发明实施例二提供的直线电机的立体结构示意图。
图6为本发明实施例三提供的直线电机除去滑座后的结构示意图。
图7为本发明实施例三提供的初级组件与次级组件的结构示意图。
图8为本发明实施例四提供的直线电机除去基座后的结构示意图。
图9为本发明实施例五提供的直线电机的立体结构示意图。
图10为本发明实施例六提供的直线电机的立体结构示意图。
本发明的实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明的各实施方式进行详细的阐述。然而,本领域的普通技术人员可以理解,在本发明各实施方式中,为了使读者更好地理解本发明而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施方式的种种变化和修改,也可以实现本发明所要求保护的技术方案。
实施例一。
请结合参阅图1至图4,本发明提供了一种直线电机100,所述直线电机100包括壳体110、安装于所述壳体110的初级组件120与次级组件130及安装于所述壳体10的栅尺140及栅尺读头150。所述初级组件120与所述次级组件130相对间隔设置形成气隙101。
所述壳体110包括基座111及与所述基座111滑动连接的滑座112。工作时,所述滑座112相对于所述基座111沿滑动方向X相对滑动。其中,所述初级组件120与所述次级组件130中的一个固设于所述基座111,另一个固设于所述滑座112。
所述基座111包括与所述滑座112相对设置的基板1111、自所述基板1111的两侧向靠近所述滑座112方向垂直弯折延伸出的侧板1112及安装于所述侧板1112远离所述基板1111一端的导轨1113,所述滑座112通过所述导轨1113与所述侧板1112滑动连接。
所述初级组件120包括铁芯121和绕设于所述铁芯121靠近所述气隙101一端的绕组122。所述铁芯121包括固定于所述基座111的初级轭部12和及自所述初级轭部12向靠近所述气隙101方向延伸形成的多个初级齿部13。所述绕组122绕设于所述初级齿部13。多个所述初级齿部13沿所述滑动方向X间隔设置。所述初级组件120还包括内嵌于所述铁芯121的所述初级齿部13的多个平行间隔设置的第一永磁体123及内嵌与所述铁芯121的所述初级轭部12的多个平行间隔设置的第二永磁体124。相邻所述第一永磁体123的充磁方向相反,相邻所述第二永磁体124的充磁方向相反,且所述第一永磁体123与所述第二永磁体124相近的一端的磁极相反。如此设置,通过在所述铁芯121的初级轭部12嵌入所述第二永磁体124,可有效增加气隙磁场,从而增加电机推力密度。
具体的,所述铁芯121还包括与所述壳体110固定连接的端轭部1211及自所述端轭部1211向靠近所述气隙101方向延伸出的多个端齿部1212。多个所述端齿部1212沿所述滑座112的滑动方向依次间隔设置。本实施方式中,所述端轭部1211自所述初级轭部12的两端沿所述滑动方向X延伸。所述绕组122不缠绕在所述端齿部1212上。
所述绕组122与外部电源连接,当所述绕组122通入电流时,所述初级组件120即产生行波磁场,使得所述初级组件120与所述次级组件130之间产生推力,进而驱动所述滑座112沿所述导轨1113进行直线运动。
多个所述第一永磁体123处于同一平面,且多个所述第一永磁体123沿所述滑座112的滑动方向依次间隔设置。在所述直线电机100的工作过程中,所述第一永磁体123的充磁方向为纵向。
多个所述第二永磁体124的设置方向与所述第一永磁体123垂直,且所述第二永磁体124向所述滑座112的正投影与所述第一永磁123向所述滑座112的正投影不重叠。同时,多个所述第一永磁体123与多个所述第二永磁体124沿所述滑座112的滑动方向依次交叉设置。
具体的,在本实施方式中,所述初级组件120固设于所述滑座112,所述次级组件130固设于所述基板1111。
所述次级组件130包括与所述壳体110固定连接的次级轭部131及自所述次级轭部131向靠近所述气隙101方向延伸出的多个次级齿部132。所述次级轭部131与所述端轭部1211相对设置,多个所述次级齿部132沿所述滑座112的滑动方向依次间隔设置。
优选的,所述第一永磁体123及所述第二永磁体124的材料为铁氧体或钕铁硼,所述铁芯121及所述次级组件130为硅钢片。当然,所述第一永磁体123及所述第二永磁体124也可以为其他类型的永磁材料,所述铁芯121及所述次级组件130也可以为铁或其他导磁材料。
所述栅尺140及所述栅尺读头150中的一个固设于所述基板1111,另一个固设于所述滑座112,所述栅尺140与所述栅尺读头150相对间隔设置。
实施例二。
本实施例提供的直线电机200与实施例一提供的直线电机100的结构基本相同,不同点在于所述初级组件220及所述次级组件230与所述壳体210的连接结构。
请具体参阅图5,在本实施方式中,所述初级组件220固设于所述基板2111,所述次级组件230固设于所述滑座212。
实施例三。
本实施例提供的直线电机300与实施例一提供的直线电机100的结构基本相同,不同点在于所述初级组件320的数量。
请具体参与图6和图7,在本实施方式中,所述初级组件320的数量不小于两个,多个所述初级组件320沿所述滑座的滑动方向依次间隔设置,且相邻所述初级组件320之间的间距相等。所述初级组件320沿滑动方向X的长度与相邻所述初级组件320的间距之和为d,d=(N+1/m)*p,其中,N为正整数,m为所述初级组件320的个数,p为相邻两个次级齿部332之间的间距与所述次级齿部332沿所述滑动方向上的宽度之和。通过调整d值的大小,可以补偿初级组件320两端的磁路以使得所述直线电机300的磁链变化一致。如此设置,使得所述直线电机300可以通过调整相邻所述初级组件320之间的距离,降低原有结构的端部定位力,从而降低推力波动。
实施例四。
本实施例提供的直线电机400与实施例一提供的直线电机100的结构基本相同,不同点在于所述初级组件420及所述次级组件430与所述壳体410的连接结构,以及所述初级组件420的数量。
请具体参与图7,在本实施方式中,所述初级组件420固设于所述基板,所述次级组件430固设于所述滑座412。
同时,所述初级组件420的数量不小于两个,多个所述初级组件420沿所述滑座412的滑动方向依次间隔设置,且相邻所述初级组件420之间的间距相等。如此设置,使得所述直线电机400可以通过调整相邻所述初级组件420之间的距离,降低原有结构的端部定位力,从而降低推力波动。
实施例五。
本实施例提供的直线电机500与实施例一提供的直线电机100的结构基本相同,不同点在于所述直线电机500为双边型结构。
请具体参阅图8,在本实施例中,所述初级组件520的数量为两个。
基座511还包括自一侧板5112远离基板5111一端向靠近另一侧板5112方向垂直弯折延伸出的第一延伸板5114,所述第一延伸板5114与另一所述侧板5112之间留有间隙。
滑座512包括本体部5121及自所述本体部5121对应所述间隙处向靠近所述基板5111方向垂直弯折延伸出的第二延伸板5122,两个所述初级组件520分别固设于所述基板5111与所述第一延伸板5114,所述次级组件530固设于所述第二延伸板5122。如此设置,使得所述次级组件530的两侧分别与两个所述初级组件520形成气隙,进一步增加了气隙磁场,从而增加电机推力密度。
实施例六。
本实施例提供的直线电机600与实施例一提供的直线电机100的结构基本相同,不同点在于所述直线电机600为双边型结构。
请具体参阅图9,在本实施例中,所述次级组件630的数量为两个。
基座611还包括自一侧板6112远离基板6111一端向靠近另一侧板6112方向垂直弯折延伸出的第一延伸板6114,所述第一延伸板6114与另一所述侧板6112之间留有间隙。
滑座612包括本体部6121及自所述本体部6121对应所述间隙处向靠近所述基板6111方向垂直弯折延伸出的第二延伸板6122,两个所述次级组件630分别固设于所述基板6111与所述第一延伸板6114,所述初级组件620固设于所述第二延伸板6122。如此设置,使得所述初级组件620的两侧分别与两个所述次级组件630形成气隙,进一步增加了气隙磁场,从而增加电机推力密度。
与相关技术相比,本发明提供的直线电机,除了在铁芯齿部嵌入多个第一永磁体外,还在所述铁芯的轭部嵌入多个第二永磁体,多个纵向充磁的所述第一永磁体配合多个横向充磁的第二永磁体,增大了气隙磁场,进而增加了所述直线电机的推力密度;通过设置所述初级组件的数量不小于两个,且多个所述初级组件沿所述滑座的滑动方向依次间隔设置,相邻所述初级组件之间的间距相等,使得所述直线电机可以通过调整相邻所述初级组件之间的距离,降低原有结构的端部定位力,从而降低推力波动。
本领域的普通技术人员可以理解,上述各实施方式是实现本发明的具体实施方式,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本发明的精神和范围。

Claims (10)

  1. 一种直线电机,其包括壳体及安装于所述壳体的初级组件与次级组件,所述壳体包括基座及与所述基座滑动连接的滑座,所述初级组件与所述次级组件中的一个固设于所述基座,另一个固设于所述滑座,所述初级组件与所述次级组件相对间隔设置形成气隙,其特征在于,所述初级组件包括铁芯和绕设于所述铁芯靠近所述气隙一端的绕组,所述铁芯包括固定于壳体上的初级轭部和及自所述初级轭部向靠近所述气隙方向延伸形成的多个初级齿部,所述绕组缠绕于所述初级齿部,所述初级组件还包括内嵌于所述铁芯的所述初级齿部的多个平行间隔设置的第一永磁体及内嵌于所述铁芯的所述初级轭部的多个平行间隔设置的第二永磁体,相邻所述第一永磁体的充磁方向相反,相邻所述第二永磁体的充磁方向相反,且所述第一永磁体与所述第二永磁体相近的一端的磁极相反。
  2. 根据权利要求1所述的直线电机,其特征在于,所述第二永磁体向所述滑座的正投影与所述第一永磁向所述滑座的正投影不重叠。
  3. 根据权利要求1所述的直线电机,其特征在于,所述基座包括与所述滑座相对间隔设置的基板、自所述基板的两侧向靠近所述滑座方向垂直弯折延伸出的侧板及安装于所述侧板远离所述基板一端的导轨,所述滑座通过所述导轨与所述侧板滑动连接。
  4. 根据权利要求3所述的直线电机,其特征在于,所述初级组件固设于所述滑座,所述次级组件固设于所述基板。
  5. 根据权利要求3所述的直线电机,其特征在于,所述初级组件固设于所述基板,所述次级组件固设于所述滑座。
  6. 根据权利要求4或5所述的直线电机,其特征在于,所述初级组件的数量不小于两个,多个所述初级组件沿所述滑座的滑动方向依次间隔设置,且相邻所述初级组件之间的间距相等。
  7. 根据权利要求6所述的直线电机,其特征在于,所述直线电机还包括安装于所述壳体的栅尺及栅尺读头,所述栅尺与所述栅尺读头中的一个固设于所述基板,另一个固设于所述滑座,所述栅尺与所述栅尺读头相对间隔设置。
  8. 根据权利要求1所述的直线电机,其特征在于,所述次级组件包括与所述壳体固定连接的次级轭部及自所述次级轭部向靠近所述气隙方向延伸出的多个次级齿部,所述铁芯还包括与所述壳体固定连接并与所述次级轭部相对设置的端轭部及自所述端轭部向靠近所述气隙方向延伸出的多个端齿部,多个所述次级齿部及多个所述端齿部沿所述滑座的滑动方向依次间隔设置,所述端轭部自所述初级轭部的两端沿所述滑动方向延伸。
  9. 根据权利要求2所述的直线电机,其特征在于,所述初级组件的数量为两个,所述基座还包括自一所述侧板远离所述基板一端向靠近另一所述侧板方向弯折延伸出的第一延伸板,所述第一延伸板与另一所述侧板之间留有间隙,所述滑座包括本体部及自所述本体部对应所述间隙处向靠近所述基板方向弯折延伸出的第二延伸板,两个所述初级组件分别固设于所述基板与所述第一延伸板,所述次级组件固设于所述第二延伸板。
  10. 根据权利要求2所述的直线电机,其特征在于,所述次级组件的数量为两个,所述基座还包括自一所述侧板远离所述基板一端向靠近另一所述侧板方向弯折延伸出的第一延伸板,所述第一延伸板与另一所述侧板之间留有间隙,所述滑座包括本体部及自所述本体部对应所述间隙处向靠近所述基板方向弯折延伸出的第二延伸板,两个所述次级组件分别固设于所述基板与所述第一延伸板,所述初级组件固设于所述第二延伸板。
PCT/CN2020/123427 2020-09-03 2020-10-23 直线电机 WO2022047940A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202021908863.6 2020-09-03
CN202021908863.6U CN213461500U (zh) 2020-09-03 2020-09-03 直线电机

Publications (1)

Publication Number Publication Date
WO2022047940A1 true WO2022047940A1 (zh) 2022-03-10

Family

ID=76320283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/123427 WO2022047940A1 (zh) 2020-09-03 2020-10-23 直线电机

Country Status (2)

Country Link
CN (1) CN213461500U (zh)
WO (1) WO2022047940A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090140583A1 (en) * 2005-07-05 2009-06-04 Siemens Aktiengesellschaft Synchronous Linear Motor
EP2091137A1 (de) * 2008-02-18 2009-08-19 Siemens Aktiengesellschaft Primärteil und lineare elektrische Maschine mit Kraftwelligkeitsausgleich
CN101741213A (zh) * 2010-02-21 2010-06-16 哈尔滨工业大学 圆筒形永磁直线电机
CN104319976A (zh) * 2014-11-18 2015-01-28 南京航空航天大学 内电枢磁场增强型永磁磁通切换直线电机
CN108270338A (zh) * 2018-02-11 2018-07-10 南京航空航天大学 齿槽型双边初级永磁体同步直线电机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090140583A1 (en) * 2005-07-05 2009-06-04 Siemens Aktiengesellschaft Synchronous Linear Motor
EP2091137A1 (de) * 2008-02-18 2009-08-19 Siemens Aktiengesellschaft Primärteil und lineare elektrische Maschine mit Kraftwelligkeitsausgleich
CN101741213A (zh) * 2010-02-21 2010-06-16 哈尔滨工业大学 圆筒形永磁直线电机
CN104319976A (zh) * 2014-11-18 2015-01-28 南京航空航天大学 内电枢磁场增强型永磁磁通切换直线电机
CN108270338A (zh) * 2018-02-11 2018-07-10 南京航空航天大学 齿槽型双边初级永磁体同步直线电机

Also Published As

Publication number Publication date
CN213461500U (zh) 2021-06-15

Similar Documents

Publication Publication Date Title
CN102255470B (zh) 低推力波动直线永磁同步电机
CN109921600A (zh) 直线电机
JP3916048B2 (ja) リニアモータ
CN104052238A (zh) 一种双边初级永磁游标直线电机
WO2014148434A1 (ja) リニアモータ
CN102299607B (zh) 永磁偏置型横向磁通直线磁阻电机
JP2002238241A (ja) リニアモータ
CN113572338B (zh) 一种环形绕组永磁直线同步电机的推力波动补偿型次级
CN102185443A (zh) 有限行程高动态平面电机
JP2015171285A (ja) 電気機械
CN117335633A (zh) 具有内嵌柔顺机构的法应力电磁致动器
WO2022047940A1 (zh) 直线电机
JP6455061B2 (ja) リニアモータ用固定子
CN111934461B (zh) 双层整距绕组无铁心直线永磁同步电机
JP2785406B2 (ja) リニアサーボモータ
CN204835886U (zh) 一种凸杆式无铁芯直线电机
WO2018167970A1 (ja) リニアモータ
JPS63503496A (ja) 電磁駆動装置
JP2022035832A (ja) 永久磁石界磁、製造方法、リニアモータ
US20230421035A1 (en) Linear motor
US20240006973A1 (en) Permanent field magnet and linear motor
CN113629973B (zh) 内置式混合励磁双边磁通道直线电机
JPH05111229A (ja) 電気エネルギーと機械エネルギーとの変換装置
JP7124981B1 (ja) 界磁装置、リニアモータ
CN209526648U (zh) 直线电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20952182

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20952182

Country of ref document: EP

Kind code of ref document: A1