WO2022044805A1 - Imaging device, imaging method, and electronic apparatus - Google Patents

Imaging device, imaging method, and electronic apparatus Download PDF

Info

Publication number
WO2022044805A1
WO2022044805A1 PCT/JP2021/029624 JP2021029624W WO2022044805A1 WO 2022044805 A1 WO2022044805 A1 WO 2022044805A1 JP 2021029624 W JP2021029624 W JP 2021029624W WO 2022044805 A1 WO2022044805 A1 WO 2022044805A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
switch
control unit
transfer transistor
driver
Prior art date
Application number
PCT/JP2021/029624
Other languages
French (fr)
Japanese (ja)
Inventor
有輝 森川
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Publication of WO2022044805A1 publication Critical patent/WO2022044805A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith

Definitions

  • the present technology relates to an image pickup device, an image pickup method, and an electronic device, for example, an image pickup device, an image pickup method, and an electronic device capable of performing charging with reduced power consumption.
  • the method for measuring the distance is a stereo sensor that uses triangular distance measurement by pattern matching as a basic technology, or the distance is measured by irradiating active light and measuring the time until the reflected light returns.
  • There is a ToF (Time of Flight) method for measuring see, for example, Patent Document 1).
  • the distance is indirectly measured by performing photoelectric conversion in the sensor, distributing the charges between two or more existing electrodes, and taking the difference between the charges.
  • This technology was made in view of such a situation, and makes it possible to reduce power consumption.
  • the image pickup device on one aspect of the present technology is generated by the photodiode, the first transfer transistor that transfers the charge generated by the photodiode to the first charge storage unit, and the photodiode.
  • the pixels including the second transfer transistor for transferring the charged charge to the second charge storage unit include the pixel array unit arranged in a matrix, the first transfer transistor, and the second transfer transistor.
  • a control that controls the switch to be turned on for a predetermined time from the time when the switch arranged at the connection position and the start of the charge transfer are instructed to the first transfer transistor or the second transfer transistor.
  • the control unit is an imaging device including a time control unit that controls a predetermined time.
  • the imaging method of one aspect of the present technology includes a photodiode, a first transfer transistor that transfers the charge generated by the photodiode to the first charge storage unit, and the photodiode.
  • the pixels including the second transfer transistor for transferring the charged charge to the second charge storage unit include the pixel array unit arranged in a matrix, the first transfer transistor, and the second transfer transistor.
  • the switch is operated for a predetermined time from the time when the image pickup apparatus including the switch arranged at the connecting position instructs the first transfer transistor or the second transfer transistor to start the transfer of the electric charge. This is an imaging method in which the control unit is turned on and the predetermined time is controlled by the time control unit included in the control unit.
  • the electronic device of one aspect of the present technology includes a photodiode, a first transfer transistor that transfers the charge generated by the photodiode to the first charge storage unit, and the photodiode.
  • the pixels including the second transfer transistor for transferring the charged charge to the second charge storage unit include the pixel array unit arranged in a matrix, the first transfer transistor, and the second transfer transistor.
  • a control that controls the switch to be turned on for a predetermined time from the time when the switch arranged at the connection position and the start of the charge transfer are instructed to the first transfer transistor or the second transfer transistor.
  • the control unit controls an image pickup device including a time control unit that controls a predetermined time, a light source that irradiates irradiation light whose brightness changes periodically, and an irradiation timing of the irradiation light. It is an electronic device provided with a light emission control unit.
  • a photodiode In the image pickup device, the image pickup method, and the electronic device of one aspect of the present technology, a photodiode, a first transfer transistor that transfers the charge generated by the photodiode to the first charge storage unit, and the like.
  • the pixel array unit in which the pixels including the second transfer transistor that transfers the electric charge generated by the photodiode to the second charge storage unit are arranged in a matrix, and the first transfer transistor
  • the switch arranged at a position for connecting the second transfer transistor and the charge transfer start are instructed to the first transfer transistor or the second transfer transistor for a predetermined time. It is equipped with a control unit that controls the switch on.
  • the control unit includes a time control unit that controls the predetermined time.
  • This technology can be applied to, for example, a light receiving element constituting a distance measuring system that measures a distance by an indirect TOF method, an image pickup device having such a light receiving element, and the like.
  • a distance measuring system is an in-vehicle system that is mounted on a vehicle and measures the distance to an object outside the vehicle, or measures the distance to an object such as a user's hand and is based on the measurement result. It can be applied to a gesture recognition system that recognizes a user's gesture. In this case, the result of gesture recognition can be used, for example, for operating a car navigation system.
  • FIG. 1 shows a configuration example of an embodiment of a ranging device to which the present technology is applied.
  • the distance measuring device 10 includes a lens 11, a light receiving unit 12, a signal processing unit 13, a light emitting unit 14, a light emitting control unit 15, and a filter unit 16.
  • the distance measuring device 10 of FIG. 1 irradiates an object with light, and the light (irradiation light) receives the light reflected by the object (reflected light) to measure the distance to the object.
  • the light emitting system of the distance measuring device 10 includes a light emitting unit 14 and a light emitting control unit 15.
  • the light emitting control unit 15 irradiates infrared light (IR) with the light emitting unit 14 according to the control from the signal processing unit 13.
  • An IR band filter may be provided between the lens 11 and the light receiving unit 12, and the light emitting unit 14 may emit infrared light corresponding to the transmission wavelength band of the IR bandpass filter.
  • the light emitting unit 14 may be arranged inside the housing of the distance measuring device 10 or may be arranged outside the housing of the distance measuring device 10.
  • the light emission control unit 15 causes the light emission unit 14 to emit light at a predetermined frequency.
  • the signal processing unit 13 functions as a calculation unit that calculates the distance (depth value) from the distance measuring device 10 to the object based on the detection signal (pixel data) supplied from the light receiving unit 12, for example.
  • the signal processing unit 13 generates a depth map in which the depth value (depth information) is stored as the pixel value of each pixel 50 (FIG. 2) of the light receiving unit 12, and outputs the depth map to the filter unit 16. Further, the signal processing unit 13 also calculates the reliability of the calculated depth value for each pixel 50 of the light receiving unit 12, and stores the reliability (luminance information) as the pixel value of each pixel 50 of the light receiving unit 12. A map is generated and output to the filter unit 16.
  • FIG. 2 is a block diagram showing a configuration example of the light receiving unit 12.
  • the light receiving unit 12 can be a CMOS (Complementary Metal Oxide Semiconductor) image sensor.
  • the light receiving unit 12 includes a pixel array unit 41, a vertical drive unit 42, a column processing unit 43, a horizontal drive unit 44, and a system control unit 45.
  • the pixel array unit 41, the vertical drive unit 42, the column processing unit 43, the horizontal drive unit 44, the system control unit 45, and the gate voltage control unit 46 are formed on a semiconductor substrate (chip) (not shown).
  • the light receiving unit 12 functions as a photographing device that captures an image, and can generate a distance image by analyzing the image captured by the photographing device.
  • unit pixels for example, pixel 50 in FIG. 3 having a photoelectric conversion element that generates an electric charge of an amount corresponding to the amount of incident light and accumulates it inside are two-dimensionally arranged in a matrix.
  • charge the light charge of the amount of charge corresponding to the amount of incident light
  • unit pixel may be simply described as "pixel”.
  • a pixel drive line 47 is formed row by row with respect to a matrix-shaped pixel array along the left-right direction (arrangement direction of pixels in the pixel row) in the figure, and a vertical signal line 48 is formed for each column. Is formed along the vertical direction of the figure (the arrangement direction of the pixels of the pixel array).
  • One end of the pixel drive line 47 is connected to the output end corresponding to each line of the vertical drive unit 42.
  • the vertical drive unit 42 is composed of a shift register, an address recorder, and the like, and is a pixel drive unit that drives each pixel of the pixel array unit 41 simultaneously for all pixels or in line units.
  • the pixel signal output from each unit pixel of the pixel row selectively scanned by the vertical drive unit 42 is supplied to the column processing unit 43 through each of the vertical signal lines 48.
  • the column processing unit 43 performs predetermined signal processing on the pixel signal output from each unit pixel of the selected row through the vertical signal line 48 for each pixel column of the pixel array unit 41, and also performs predetermined signal processing on the pixel signal after signal processing. Temporarily hold.
  • the column processing unit 43 performs at least noise reduction processing, for example, CDS (Correlated Double Sampling) processing as signal processing.
  • CDS Correlated Double Sampling
  • the column processing unit 43 can be provided with, for example, an AD (analog-digital) conversion function, and the signal level can be output as a digital signal.
  • the horizontal drive unit 44 is composed of a shift register, an address recorder, and the like, and sequentially selects unit circuits corresponding to the pixel strings of the column processing unit 43. By the selective scanning by the horizontal drive unit 44, the pixel signals signal-processed by the column processing unit 43 are sequentially output to the signal processing unit (not shown).
  • the system control unit 45 is composed of a timing generator or the like that generates various timing signals, and is a vertical drive unit 42, a column processing unit 43, and a horizontal drive based on various timing signals generated by the timing generator. Drive control of the unit 44 and the like is performed.
  • the gate voltage control unit 46 controls the supply of the transfer control signal TRT instructing the start of transfer in the transfer transistor (details will be described later).
  • the pixel drive line 47 is wired along the row direction for each pixel row with respect to the matrix-shaped pixel array, and two vertical signal lines 48 are wired along the column direction in each pixel row. ing.
  • the pixel drive line 47 transmits a drive signal for driving when reading a signal from a pixel.
  • the pixel drive line 47 is shown as one wiring, but the wiring is not limited to one.
  • One end of the pixel drive line 47 is connected to the output end corresponding to each line of the vertical drive unit 42.
  • the pixel 50 includes a photodiode 61 (hereinafter referred to as PD61) which is a photoelectric conversion element, and is configured so that the electric charge generated by the PD 61 is distributed to the tap 51-1 and the tap 51-2. Then, among the charges generated by the PD 61, the charges distributed to the taps 51-1 are read out from the vertical signal line 48-1 and output as the detection signal SIG1. Further, the electric charge distributed to the tap 51-2 is read out from the vertical signal line 48-2 and output as a detection signal SIG2.
  • PD61 photodiode 61
  • the tap 51-1 is composed of a transfer transistor 62-1, an FD (Floating Diffusion) 63-1, a reset transistor 64, an amplification transistor 65-1, and a selection transistor 66-1.
  • the tap 51-2 is composed of a transfer transistor 62-2, an FD63-2, a reset transistor 64, an amplification transistor 65-2, and a selection transistor 66-2.
  • the reset transistor 64 may be shared by the FD63-1 and the FD63-2, or may be provided in each of the FD63-1 and the FD63-2.
  • the reset transistor 64 When the reset transistor 64 is provided in each of the FD63-1 and the FD63-2, the reset timing can be controlled individually for the FD63-1 and the FD63-2, so that fine control can be performed. ..
  • the reset transistor 64 common to the FD63-1 and the FD63-2 When the reset transistor 64 common to the FD63-1 and the FD63-2 is provided, the reset timing can be made the same for the FD63-1 and the FD63-2, the control becomes simple, and the circuit configuration is also simple. Can be reset.
  • the distribution means that the electric charges accumulated in the pixel 50 (PD61) are read out at different timings, so that the electric charges are read out for each tap.
  • the transfer control signal TRT_A controls the on / off of the transfer transistor 62-1, and the transfer control signal TRT_B controls the on / off of the transfer transistor 62-2.
  • the transfer control signal TRT_A has the same phase as the irradiation light, while the transfer control signal TRT_B has the phase in which the transfer control signal TRT_A is inverted.
  • the electric charge generated by the photodiode 61 receiving the reflected light is transferred to the FD63-1 while the transfer transistor 62-1 is on according to the transfer control signal TRT_A. Further, it is transferred to the FD 63-2 while the transfer transistor 62-2 is turned on according to the transfer control signal TRT_B.
  • the charges transferred via the transfer transistor 62-1 are sequentially accumulated in the FD63-1 during a predetermined period in which the irradiation of the irradiation light having the irradiation time T is periodically performed, and the charges are sequentially accumulated in the FD63-1 and via the transfer transistor 62-2.
  • the transferred charges are sequentially accumulated in the FD63-2.
  • the selection transistor 66-1 is turned on according to the selection signal SELm1 after the end of the charge storage period, the charge stored in the FD63-1 is read out via the vertical signal line 48-1, and the charge is read out.
  • the detection signal A corresponding to the amount is output from the light receiving unit 12.
  • the selection transistor 66-2 is turned on according to the selection signal SELm2
  • the electric charge stored in the FD63-2 is read out via the vertical signal line 48-2
  • the detection signal B corresponding to the amount of the electric charge is generated. It is output from the light receiving unit 12.
  • the electric charge stored in the FD63-1 is discharged when the reset transistor 64 is turned on according to the reset signal RST.
  • the charge stored in the FD63-2 is discharged when the reset transistor 64 is turned on according to the reset signal RST.
  • the pixel 50 distributes the electric charge generated by the reflected light received by the photodiode 61 to the taps 51-1 and the taps 51-2 according to the delay time Td, and the detection signal A and the detection signal B. Can be output.
  • the delay time Td corresponds to the time during which the light emitted by the light emitting unit 14 flies to the object, is reflected by the object, and then flies to the light receiving unit 12, that is, according to the distance to the object. Therefore, the distance measuring device 10 can obtain the distance (depth) to the object according to the delay time Td based on the detection signal A and the detection signal B.
  • FIG. 5 is a diagram showing the configuration of a conventional gate voltage control unit.
  • the conventional gate voltage control unit will be referred to as a gate voltage control unit 46'.
  • the gate voltage control unit 46' is provided, for example, for each row of the pixel array unit 41 or for each row of a plurality of rows.
  • FIG. 6 illustrates a predetermined row and a gate voltage control unit 46'provided in the row.
  • the gate voltage control unit 46' is provided with two drivers.
  • the pixel 50 includes two taps, a tap 51-1 and a tap 51-2, as described with reference to FIG.
  • the tap 51-1 includes a transfer transistor 62-1
  • the tap 51-2 includes a transfer transistor 62-2.
  • the gate voltage control unit 46' controls the transfer control signal TRT_A and the transfer control signal TRT_B supplied to the transfer transistor 62-1 and the transfer transistor 62-2.
  • the transfer control signal TRG is a High (1) signal when the transfer transistor 62 is on, and a Low (0) signal when the transfer transistor 62 is off. As shown in FIG. 3, the transfer control signal TRT_A is supplied to the transfer transistor 62-1 via the pixel drive line 47-1, and the transfer control signal TRT_B is transferred via the pixel drive line 47.2. It is supplied to the transistor 62-2.
  • the driver 101a for controlling the transfer control signal TRT_A and the driver 101b for controlling the transfer control signal TRT_B are included in the gate voltage control unit 46'.
  • FIG. 5 shows a gate voltage control unit 46'that controls the gate voltage of a plurality of pixels 50 arranged in the vertical direction of the pixel array unit 41. For example, when N pixels 50 are arranged in the vertical direction of the pixel array unit 41, two drivers 101 are provided for the N pixels 50.
  • the driver 101a is configured to include the MIMO 121a and the MIMO 122a.
  • the source side of the photoresist121a is connected to the power supply line on the high potential side of the potential Vdd, and the drain side is connected to the drain side of the MIMO 122a.
  • the source side of the nanotube 122a is connected to a power line on the low potential side of the potential Vss such as GND.
  • Vss such as GND.
  • a pixel drive line 47-1 is connected to the line connecting the PMS 121a and the MIMO 122a.
  • the pixel drive line 47-1 is connected to the gate side of the transfer transistor 62-1 of the pixel 50.
  • the gates of the transfer transistors 62-1-1 to 62-1-N of the plurality of pixels 50 arranged in a predetermined direction, for example, in the column direction of the pixel array unit 41, are connected to the pixel drive line 47-1.
  • each transfer transistor 62 is represented by the capacitance C.
  • Vdd the voltage applied to the gate
  • the transfer transistor 62 starts the transfer of the charge from the PD 61 to the FD 63.
  • the driver 101b also has the same configuration as the driver 101a, and the gates of the transfer transistors 62-2-1 to 62-2N are connected to the pixel drive line 47-2 connected to the driver 101b.
  • Driver 101a and driver 101b operate differentially.
  • the transfer control signal TRT_A output from the driver 101a is High
  • the transfer control signal TRT_B output from the driver 101b is set to Low.
  • the transfer transistor 62-1 connected to the pixel drive line 47-1- 1 to 62-1-N are charged until the voltage becomes Vdd.
  • the transfer transistors 62-2-1 to 62-2-N connected to the pixel drive line 47-2 are discharged until the voltage Vss is reached.
  • the gate voltage is controlled by charging and discharging the gate of the transfer transistor of the pixel 50.
  • f is the frequency
  • C is the capacitance
  • V is the voltage.
  • the gate wiring of the pixel 50 Since the gate wiring of the pixel 50 is charged at the same time for all the pixels arranged in the pixel array unit 41, a large peak current flows when the gate wiring of the pixel 50 is charged, the power supply has a large IR drop, and a pulse is generated. There is a possibility that the rising time of the waveform will be significantly deteriorated.
  • FIG. 6 is a diagram showing a configuration of an embodiment of the gate voltage control unit 46 to which the present technology is applied.
  • the parts having the same functions as the gate voltage control unit 46 shown in FIG. 5 are designated by the same reference numerals, and the description thereof will be omitted as appropriate.
  • the gate voltage control unit 46 is configured to include a driver 201a, a driver 201b, a DLL (DelayLockedLoop) 203, a delay unit 205, an XOR circuit 207, and a NOT circuit 209.
  • the driver 201a is configured to include the MIMO 121a, the MIMO 122a, the EN switch 221a, the EN switch 222a, the XEN switch 223a, and the XEN switch 224a.
  • the driver 201b is configured to include the MIMO 121b, the MIMO 122b, the EN switch 221b, the EN switch 222b, the XEN switch 223b, and the XEN switch 224b.
  • the driver 201a Since the driver 201a and the driver 201b have the same configuration, the driver 201a will be described as an example.
  • the driver 201a shown in FIG. 6 and the driver 101a shown in FIG. 5 are compared.
  • the driver 201a shown in FIG. 6 is different in that the driver 101a shown in FIG. 5 is configured by adding the EN switch 221a, the EN switch 222a, the XEN switch 223a, and the XEN switch 224a, except that the other points are the same. Is.
  • the driver 201a is a driver that controls the transfer control signal TRT_A supplied to the transfer transistor 62-1.
  • the transfer control signal TRT_A When the transfer control signal TRT_A is High, the power of the voltage Vdd from the power supply (not shown) is the transfer transistor 62-1. Control so that it is supplied to the gate of.
  • an EN switch 221a, an EN switch 222a, an XEN switch 223a, and a XEN switch 224a are provided to provide a period in which power is supplied from the power source and a period in which power is not supplied.
  • the EN switch 221a and the EN switch 222a are turned on during the period during which the power from the power supply is not supplied, and turned off during the period during which the power from the power supply is supplied.
  • the XEN switch 223a and the XEN switch 224a operate in the opposite manner to the EN switch 221a and the EN switch 222a.
  • the EN switch 221a and the EN switch 222a are on, the EN switch 221a and the EN switch 222a are turned off, and when the EN switch 221a and the EN switch 222a are off, the EN switch 221a and the EN switch 222a are turned on.
  • the EN switch is also provided at a position where the pixel drive line 47-1 and the pixel drive line 47.2 are connected.
  • the EN switch 231 is provided in the wiring connecting the pixel drive line 47-1 and the pixel drive line 47-2. This EN switch 231 also operates in the same manner as the EN switch 221a and the EN switch 222a.
  • the EN switch 221b, EN switch 222b, XEN switch 223b, and XEN switch 224b of the driver 201b also operate in the same manner as the EN switch 221a, EN switch 222a, XEN switch 223a, and XEN switch 224a of the driver 201a, respectively.
  • the control signal EN that controls the ON / OFF of the EN switch 221a, EN switch 222a, EN switch 221b, EN switch 222b, and EN switch 331 is output from the XOR circuit 207.
  • the control signal XEN that controls the on / off of the XEN switch 223a, the XEN switch 224a, the XEN switch 223b, and the XEN switch 224b is an output from the NOT circuit 209.
  • the control signal CLK_A to the driver 201a becomes a signal from High to Low
  • the control signal CLK_B to the driver 201b becomes a signal from Low to High.
  • the transfer control signal TRT_A output from the driver 201a is a High signal, so that the gates of the transfer transistors 62-1-1 to 62-1-N are charged. It will be started.
  • the control signal CLK_B to the driver 201b is High
  • the transfer control signal TRT_B output from the driver 201b is a Low signal, so that the gates of the transfer transistors 62-2-1 to 62-2-N are charged. It will be started.
  • the control signal CLK_B is also supplied to the delay unit 205 and the XOR circuit 207.
  • FIG. 6 shows a configuration in which the control signal CLK_B is supplied to the delay unit 205 and the XOR circuit 207 as an example, but the control signal CLK_A is supplied to the delay unit 205 and the XOR circuit 207. You can also.
  • the delay unit 205 delays the control signal CLK_B input for a predetermined time, and supplies the control signal CLK_B to the XOR circuit 207.
  • the delay unit 205 will continue the description assuming that the signal input for the time D1 is delayed and output.
  • the XOR circuit 207 calculates the exclusive OR of the control signal CLK_B and the control signal CLK_B delayed by the predetermined delay time D1 by the delay unit 205.
  • the low control signal CLK_B and the high signal are supplied from the delay unit 205 to the XOR circuit 207, so that the calculation result of the XOR circuit 207, that is, the control signal EN becomes a high signal. ..
  • the output from the XOR circuit 207 is supplied to the NOT circuit 209.
  • the NOT circuit 209 inverts the input result from the XOR circuit 207 and outputs the inverted result.
  • the NOT circuit 209 is supplied with the High signal from the XOR circuit 207, so that the output from the NOT circuit 209, that is, the control signal XOR becomes a Low signal.
  • the control signal EN from the XOR circuit 207 is supplied to the EN switch 221a and the EN switch 222a of the driver 201a, the EN switch 221b and the EN switch 222b of the driver 201b, and the EN switch 231. Since these EN switches are supplied with a High signal as the control signal EN at time t1, they are turned on.
  • the control signal XEN from the NOT circuit 209 is supplied to the XEN switch 223a and the XEN switch 224a of the driver 201a, and the XEN switch 223b and the XEN switch 224b of the driver 201b. Since these XEN switches are supplied with a Low signal as the control signal XEN at time t1, they are turned off.
  • the signal from the delay unit 205 changes from Low to High
  • the control signal EN from the XOR circuit 207 changes from High to Low
  • the signal XEN changes from Low to High.
  • control signal EN is a signal that is set to High during the delay time D1 of the delay unit 205.
  • the EN switch is turned on.
  • the EN switch will be on during the delay time D1.
  • the time this EN switch is on is the period during which the charge is being reused.
  • the driver 201a is in a state of outputting a High signal as the transfer control signal TRT_A, so that the gates of the transfer transistors 62-1-1 to 62-1-N are in a state of being charged, respectively.
  • the driver 201b since the driver 201b outputs a low signal as the transfer control signal TRT_B, the gates of the transfer transistors 62-2-1 to 62-2-N are in a state of being discharged, respectively.
  • the EN switch 231 When the EN switch 231 is turned on (closed) in such a state where charging and discharging are performed, the electric charge charged in the transfer transistors 62-2-1 to 62-2-N is EN. It moves to the transfer transistors 62-1-1 to 62-1-N side via the switch 231 and charges the gates of the transfer transistors 62-1-1 to 62-1-N.
  • the transfer transistors 62-2-1 to 62-2-N have a voltage Vdd, and the transfer transistors 62-1-1 to 62-1-N have a voltage Vss (0V). Therefore, if the EN switch 231 is closed for a sufficient time, the voltages of the transfer transistors 62-1-1 to 62-1-N and the transfer transistors 62-2-1 to 62-2-N become equal, and the voltage is intermediate.
  • the voltage is Vdd / 2, which is the potential.
  • the delay time D1 of the delay unit 205 is set so that the signal from the delay unit 205 changes from Low to High at the timing when each of the transfer transistors 62 reaches the intermediate potential.
  • the control signal EN from the XOR circuit 207 becomes Low, so that the EN switch is opened and the XEN switch is closed.
  • the voltage from the power supply is applied to the transfer transistor 62 side from the driver 201.
  • a voltage from a power source is applied to the transfer transistors 62-1-1 to 62-1-N from the driver 201a, and charging is performed until the voltage reaches Vdd.
  • the driver 201b side is in a grounded state, and the transfer transistors 62-2-1 to 62-2-N are discharged until the voltage Vss is reached.
  • charging is performed by supply from a power source from the potential Vss to the potential Vdd, but according to the gate voltage control unit 46 shown in FIG. Charging is performed by supplying from a power source from the potential Vdd / 2 to the potential Vdd. Therefore, the power consumption is reduced.
  • the transfer transistor 62-1 side maintains the state of the potential Vdd, so that the electric charge is transferred from PD61 to FD63.
  • the control signal CLK_A changes from High to Low
  • the control signal CLK_B changes from Low to High
  • the control signal EN changes from Low to High
  • the control signal XOR changes from High to Low.
  • the control signal EN changes from High to Low
  • the control signal XOR changes from Low to High.
  • the transfer transistor 62-2 is in a state where the voltage Vdd from the power supply is applied via the driver 201b, and the transfer transistor 62-2 is charged by the voltage Vdd from the power supply. From time t5 to time t6, the driver 201a is in a state of being grounded, and the transfer transistor 62-1 is in a state of being discharged.
  • the charge charged in the discharging transfer transistor 62 is charged.
  • the power consumption can be reduced. Control of such a period can be performed by providing an EN switch or a XEN switch and controlling the opening / closing of the EN switch or the XEN switch.
  • the period during which the control signal EN is turned on is substantially the same as the delay time D1 of the delay unit 205. If this delay time D1 is not properly set, the voltage may not be charged up to the voltage Vdd / 2, or the voltage Vdd / 2 may be maintained for a long time after reaching the voltage Vdd / 2. This will be described with reference to FIG.
  • the upper part of FIG. 8 shows the pulse of the control signal EN.
  • the pulse width of the control signal EN becomes the delay time D1.
  • the second stage of FIG. 8 shows the change in the potential of the gate of the transfer transistor 62 when the pulse width of the control signal EN is short, in other words, when the delay time is short.
  • the short delay time is referred to as a delay time D11.
  • charging by reusing the electric charge is completed and charging from the power source is started before the voltage becomes Vdd / 2.
  • the period of charging from this power source is defined as the power supply charging period C11.
  • the third stage of FIG. 8 shows the change in the potential of the gate of the transfer transistor 62 when the pulse width of the control signal EN is appropriate, in other words, when the delay time is appropriate.
  • the appropriate delay time is represented by the delay time D12.
  • the delay time D12 when the voltage reaches Vdd / 2, charging by reusing the electric charge is completed, and charging from the power source is started.
  • the period of charging from this power source is defined as the power supply charging period C12.
  • the delay time D12 is appropriate, the electric charge can be reused up to the voltage Vdd / 2, and the power supply charging period C12 can also be shortened, so that the effect of reducing power consumption can be obtained most.
  • the fourth stage of FIG. 8 shows the change in the potential of the gate of the transfer transistor 62 when the pulse width of the control signal EN is large, in other words, when the delay time is long.
  • the long delay time is referred to as a delay time D13.
  • the delay time D13 even after the voltage becomes Vdd / 2, there is a time in which the charge remains in the charged state due to the reuse of the electric charge, and then the charge from the power source is started.
  • the period of charging from this power source is defined as the power supply charging period C13.
  • the delay time D13 is long, the charge can be reused up to the voltage Vdd / 2, but even after the voltage reaches Vdd / 2, there is a possibility that wasteful time will occur without shifting to charging from the power supply. be. Since the power supply charging period C13 is the same as the power supply charging period C12, the effect of reducing power consumption can be obtained. The total charging period of the delay time D13 and the power supply charging period C13 may be long.
  • the delay time D1 should be set to an appropriate time.
  • the appropriate time is the time during which charging is performed by reusing the electric charge until the potential on the side to be charged reaches the intermediate potential, and when the potential reaches the intermediate potential, the charging can be switched to the charging from the power supply. be.
  • the delay time D1 is the delay time of the delay unit 205. Therefore, it is desirable that the delay time of the delay unit 205 is set to an appropriate delay time, and the delay time is controlled so as not to be deviated by a change in temperature or voltage.
  • the gate voltage control unit 46 shown in FIG. 6 is provided with a PLL 203 in order to control the delay time of the delay unit 205 so that the delay time does not change due to changes in temperature or voltage. That is, the PLL 203 functions as a time control unit that controls the delay time of the delay unit 205.
  • the DLL203 has, for example, a configuration as shown in FIG.
  • the PLL 203 is configured to include a phase detection unit 321, a charge pump 322, and a delay unit 323.
  • the charge pump 322 may be configured to include an LPF (Low Pass Filter) for smoothing.
  • An input signal is input to the phase detection unit 321 and the delay unit 323 of the PLL 203.
  • the input signal is, for example, a 1 GHz clock signal.
  • the delay unit 323 delays the input signal for a predetermined time, and returns the delayed input signal to the phase detection unit 321.
  • the phase detection unit 321 detects the phase difference between the input signal and the delayed input signal, and outputs the phase difference to the charge pump 322.
  • the charge pump 322 outputs a voltage at a level corresponding to the phase difference to the delay unit 323 and the delay unit 205 (FIG. 6) (not shown in FIG. 9) as a bias voltage.
  • the output from the charge pump 322 may be the output from which the high frequency component has been removed by the LPF.
  • the output from the charge pump 322 is supplied to the delay unit 205 as a delay control signal (bias voltage) based on the voltage corresponding to the phase difference at that time.
  • the delay unit 323 included in the PLL 203 can be configured in the same manner as the delay unit 205 (FIG. 6).
  • the delay unit 323 has the same configuration as the delay unit 205 shown in FIG.
  • FIG. 10 is a diagram showing the configuration of an example of the delay portion 205.
  • the delay unit 205 is configured to include a NOT circuit 351-1, a NOT circuit 351-2, a current source 352-1 and a current source 352-2.
  • the delay section 323 of the PLL 203 shown in FIG. 9 also includes a NOT circuit 333-1, a NOT circuit 333.2, a current source 334-1 and a current source 334-2, and has the same configuration as the delay section 205.
  • the configuration of the delay unit 205 is an example, and is not limited to a configuration including two NOT circuits 351. For example, it may be configured to include two or more NOT circuits 351.
  • the delay amount of the delay unit 323 of the DDL 203 is also set to 1 ns.
  • the difference from 1 ns is detected as the phase difference by the phase detection unit 321 and the bias voltage for eliminating the phase difference is the char. It is output from the dipump 322.
  • the bias voltage from the charge pump 322 is supplied to the current source 334 of the delay unit 323.
  • the delay amount of the delay unit 323 is adjusted.
  • the delay amount when it becomes 1 ns, the phase is not detected by the phase detection unit 321. In this way, a bias voltage is generated in the PLL 203 so that the delay portion 323 can obtain a delay amount of 1 ns.
  • the bias voltage generated by the PLL 203 is also supplied to the current source 352 of the delay portion 205 (FIG. 10). Similarly to the delay unit 323, the delay unit 205 also adjusts the delay amount as the delay unit 205 by adjusting the current source 352 by the bias voltage.
  • the delay amount can be maintained at a constant value even if the temperature or voltage changes.
  • the delay amount of the delay unit 205 By keeping the delay amount of the delay unit 205 at the desired delay amount, it is possible to always perform the charging period in which the electric charge is reused for an appropriate period. Therefore, the power consumption can be reduced and the time required for charging / discharging can be set to an appropriate time.
  • the gate voltage control unit 46 shown in FIG. 6 is configured to provide one EN switch 231 for a plurality of pixels 50 arranged in a predetermined row of the pixel array unit 41 and control the EN switch 231. Indicated.
  • a plurality of EN switches 231 provided in the pixel array unit 41 may be provided in one row.
  • EN switches 231 may be provided at both ends of the pixels 50 arranged in a predetermined row of the pixel array unit 41.
  • the EN switch 231-1 is provided on the side of the pixels 50 arranged in a predetermined row of the pixel array unit 41 near the driver 201, and the EN switch 231-1 is provided from the driver 201.
  • An EN switch 231-2 is provided on the far side. In other words, an EN switch 231-1 is provided at a position between the driver 201 and the transfer transistor 62-1-1 (transfer transistor 62-1-2), and the transfer transistor 62-1-N (transfer transistor 62) is provided.
  • An EN switch 231-2 is provided on the outside of ⁇ 2-N) (the side where the column processing unit 43 is located).
  • the EN switches 231 provided in the pixel array unit 41 are not only provided at both ends (two are provided), but a plurality of EN switches 231 may be further provided.
  • One EN switch 231 may be provided for each of the plurality of transfer transistors 62.
  • an EN switch 231 may be provided for every five transfer transistors 62. Further, for example, an EN switch 231 may be provided for each transfer transistor 62.
  • FIG. 6 shows an example in which the driver 201 is provided at one end of a predetermined row of the pixel array unit 41, it may be provided at both ends as shown in FIG.
  • the driver 201a-1 is provided on the transfer transistor 62-1-1 side
  • the driver 201b-1 is provided on the transfer transistor 62-2-1 side
  • the driver 201a-2 is provided on the transfer transistor 62-1-1N side
  • the driver 201b-2 is provided on the transfer transistor 62-2-N side.
  • FIG. 6 shows a gate voltage control unit 46 for pixels 50 arranged in a predetermined row of the pixel array unit 41, but the pixel array unit 41 has a plurality of rows of pixels 50.
  • One gate voltage control unit 46 may be provided for all the pixels 50 arranged in the pixel array unit 41. In this case, wiring is provided so that the transfer control signal TRT_A and the transfer control signal TRT_B can be supplied not only in the column direction but also in the row direction.
  • a gate voltage control unit 46 may be provided for each of a plurality of rows. For example, one gate voltage control unit 46 that outputs a transfer control signal TRT_A or a transfer control signal TRT_B for the pixels 50 arranged in the five columns may be provided for every five columns.
  • a gate voltage control unit 46 may be provided for each row. A description will be given of the configuration when the gate voltage control unit 46 is provided for each of a plurality of columns or for each column.
  • FIG. 13 shows a configuration when a gate voltage control unit 46 is provided for each row. Even when the gate voltage control unit 46 is provided for each row, one DLL 203 can be provided and a bias voltage can be supplied in common to a plurality of gate voltage control units 46.
  • the wiring 261 connecting the PLL 203 and the delay portions 205-1 to 205-M is provided.
  • the pixels 50 arranged in the first row of the pixel array unit 41 are provided with the driver 201a-1 and the driver 201b-1 shared by the pixels 50 arranged in the first row, and these drivers 201 provide.
  • a shared delay section 205-1 and an XOR circuit 207-1 are provided.
  • An EN switch 231-1 is provided in the wiring connecting the driver 201a-1 and the driver 201b-2.
  • a NOT circuit 209 is also provided for each row, and is configured to control the driver 201 provided for each row. As described with reference to FIG. 11, a plurality of EN switches 231 may be provided in one row. This also applies to the following description.
  • the pixels 50 arranged in the second row of the pixel array unit 41 are provided with the driver 201a-2 and the driver 201b-2 shared by the pixels 50 arranged in the second row, and these are provided.
  • a delay section 205-2 and an XOR circuit 207-2 shared by the driver 201 are provided.
  • An EN switch 231-2 is provided in the wiring connecting the driver 201a-1 and the driver 201b-2.
  • the pixels 50 arranged in the M-th row of the pixel array unit 41 are provided with the drivers 201a-M and the drivers 201b-M shared by the pixels 50 arranged in the M-th row, and these are provided.
  • a delay section 205-M and an XOR circuit 207-M shared by the driver 201 are provided.
  • An EN switch 231-M is provided in the wiring connecting the driver 201a-M and the driver 201b-M.
  • the gate voltage control unit 46 may be provided for each row.
  • the delay time of the delay unit 205 may differ among the individual gate voltage control units 46. there is a possibility.
  • FIG. 8 again, the noise generated when the delay time of the delay unit 205 is different will be described.
  • the delay time of the delay unit 205-1 is the delay time D11
  • the delay time of the delay unit 205-2 is the delay time D12
  • the delay time of the delay unit 205-M is the delay time D13.
  • the on and off timings of the transfer transistor 62 will be different.
  • Such a timing shift is a timing shift in which the electric charge is transferred from the PD 61 to the FD 63 (FIG. 3). If such a deviation occurs, the transfer will be performed at different timings for each column. Such deviation may affect the distance measurement performance as distance noise.
  • each delay unit 205 is configured so as not to be deviated.
  • the delay portion 205 is shorted for each column to average the process variation.
  • the input side of the delay portions 205-1 to 205-M is short-circuited by being connected by the wiring 251-1.
  • the output sides of the delay portions 205-1 to 205-M are short-circuited by being connected by the wiring 252-1.
  • both the input side and the output side of the delay unit 205 are shorted for each column, but as shown in FIG. 14, only the input side of the delay unit 205 is shown. May be shorted.
  • the input side of the delay portions 205-1 to 205-M is shorted by the wiring 251-1.
  • a configuration in which only the output side of the delay unit 205 is shorted may be used.
  • the output side of the delay portions 205-1 to 205-M is shorted by the wiring 251-2.
  • the process variation can be averaged by setting at least one of the input side and the output side of the delay unit 205 as short. For example, as shown in FIG. 16, consider a case where there is process variation in the delay unit 205-1 and the delay unit 205-2, and the delay time is different. If the delay time of the delay section 205-2 is longer than the delay time of the delay section 205-1, the output of the delay section 205-1 helps the delay section 205-2 to charge the delay section 205-2. The delay of -2 is shortened, and as a result, the difference in delay can be reduced.
  • the delay portion 205 having the smaller delay assists in charging the delay portion 205 having the larger delay, so that the delays are averaged as a whole. Therefore, even if there is an individual difference in the delay portion 205, the processing that absorbs the difference can be performed by averaging. Therefore, it is possible to suppress the generation of ranging noise and suppress the deterioration of ranging performance.
  • FIG. 17 is a graph showing a case where charging / discharging is performed by the gate voltage control unit 46'shown in FIG. 5 and a case where charging / discharging is performed by the gate voltage control unit 46 shown in FIG. 6 (FIG. 13). Is.
  • the upper part of FIG. 17 shows the pulse of the control signal EN when the gate voltage control unit 46 shown in FIG. 6 is used.
  • the second-stage graph in FIG. 17 is a change in voltage applied to the pixel drive line 47, and is a graph corresponding to, for example, the third-stage waveform in FIG. 7.
  • the graph shown by the dotted line represents the case where the gate voltage control unit 46'shown in FIG. 5 is used, and the graph shown by the solid line is The case where the gate voltage control unit 46 shown in FIG. 6 is used is shown. Further, the graph shown in FIG. 17 is an example of the result obtained by the applicant performing the simulation.
  • the third-stage graph in FIG. 17 is a graph showing changes in the charging current flowing through the pixel drive line 47.
  • the graph shown by the dotted line is shown by the solid line, whereas there is one peak through which current flows in one section (from the time when the EN signal is turned on to the time when it is turned on next).
  • the graph differs in two points.
  • the graph shown by the dotted line is a graph in which one peak for charging from the power source appears in one section because the gate voltage control unit 46'shown in FIG. 5 charges only from the power source.
  • the solid line graph shows the peak in which the gate voltage control unit 46 shown in FIG. 6 performs charging by reusing the electric charge and charging from the power source, so that charging by reusing is performed in one section.
  • the graph shows two peaks that are charged from the power source.
  • the fourth graph in FIG. 17 is a graph showing changes in the voltage of the power supply.
  • the drop amount of the power supply voltage is about 340 mVpp.
  • the drop amount of the power supply voltage is about 200 mVpp.
  • the power consumption is about 1/1 as compared with the charging without reusing the electric charge. It has also been confirmed by the applicant that it can be set to 2.
  • FIG. 18 is a diagram showing a configuration of an example of a gate voltage control unit 46 in which a bias voltage is controlled by using a circuit other than the DLL 203.
  • the gate voltage control unit 46 shown in FIG. 18 has a configuration in which a thermometer 401 and a DAC (Digital Analog Converter) 402 are used instead of the PLL 203.
  • the thermometer 401 measures the temperature of, for example, the light receiving unit 12 (FIG. 1) provided with the gate voltage control unit 46, and supplies the measurement result (temperature information) to the DAC 402.
  • the DAC 402 converts the temperature information of the digital signal into an analog signal, and uses the temperature information of the analog signal as a signal for setting the value of the bias voltage. According to this configuration, it is possible to generate a bias voltage according to the amount of change in temperature and control the delay unit 205.
  • thermometer 401 and DAC402 have the advantages of a smaller installation area and easier design.
  • the PLL 203 can cope with not only the temperature change but also the fluctuation of the power supply, but when the thermometer 401 or the DAC 402 is used, there is a possibility that the fluctuation of the power supply cannot be sufficiently suppressed.
  • the gate voltage control unit 46 (a part constituting the gate voltage control unit 46) is provided for each row of the pixel array unit 41.
  • the pixels 50 are arranged in the matrix direction, and one delay unit 205 (including the gate voltage control unit 46) is arranged per row. Further, the columns of the column processing unit 43 are connected to each column.
  • split drive Driving at different drive timings for each column is referred to as split drive here.
  • the split drive since it is driven for each column, the peak current can be reduced as compared with the case where all the pixels 50 of the pixel array unit 41 are driven at once, and the momentary power drop can be reduced. ..
  • the divided power supply currents overlap to form a steady current.
  • This steady-state current causes an IR drop, which can be a problem for a steady power supply voltage drop. This problem can be improved by combining the present technology with the split drive.
  • the applicant has a steady drop in the power supply voltage when the gate voltage control unit of the conventional method shown in FIG. 5 is used for the divided drive and when the gate voltage control unit 46 shown in FIG. 13 is used for the divided drive. The amount was measured.
  • the steady power supply voltage drop amount in the conventional gate voltage control unit shown in FIG. 5 when not divided drive was 310 mV
  • the gate voltage control unit 46 shown in FIG. 13 The amount of steady power supply voltage drop in the split drive was 190 mV. From this result, it was confirmed that the steady drop amount can be reduced by using the gate voltage control unit 46 and driving by split drive.
  • the distance measuring device 10 may be configured as a distance measuring module.
  • the range-finding device 10 can be applied to a range-finding module, and is also applicable to various electronic devices such as an image pickup device such as a digital still camera and a digital video camera having a range-finding function, and a smartphone having a range-finding function. Can be applied.
  • FIG. 19 is a block diagram showing a configuration example of a smart phone as an electronic device to which the present technology is applied.
  • the smart phone 601 includes a distance measuring module 602, an image pickup device 603, a display 604, a speaker 605, a microphone 606, a communication module 607, a sensor unit 608, a touch panel 609, and a touch panel 609.
  • the control unit 610 is connected and configured via the bus 611. Further, the control unit 610 has functions as an application processing unit 621 and an operation system processing unit 622 by executing a program by the CPU.
  • the distance measuring device 10 of FIG. 1 is applied to the distance measuring module 602.
  • the distance measuring module 602 is arranged in front of the smart phone 601 and performs distance measurement for the user of the smart phone 601 such as the face, hands, and fingers of the user.
  • the depth value of the surface shape of can be output as a distance measurement result.
  • the image pickup device 603 is arranged in front of the smartphone 601 and acquires an image of the user by taking an image of the user of the smartphone 601 as a subject. Although not shown, the image pickup device 603 may be arranged on the back surface of the smart phone 601.
  • the display 604 displays an operation screen for processing by the application processing unit 621 and the operation system processing unit 622, an image captured by the image pickup device 603, and the like.
  • the communication module 607 is an internet, a public telephone network, a wide area communication network for wireless mobiles such as so-called 4G lines and 5G lines, and a communication network such as WAN (Wide Area Network) and LAN (Local Area Network). Performs short-range wireless communication such as network communication, Bluetooth (registered trademark), and NFC (Near Field Communication).
  • the sensor unit 608 senses speed, acceleration, proximity, etc., and the touch panel 609 acquires a touch operation by the user on the operation screen displayed on the display 604.
  • the application processing unit 621 performs processing for providing various services by the smart phone 601. For example, the application processing unit 621 creates a face with computer graphics that virtually reproduces the facial expression of the user based on the depth value supplied from the distance measuring module 602, and displays the face. The process of displaying on 604 can be performed. Further, the application processing unit 621 can perform a process of creating, for example, three-dimensional shape data of an arbitrary three-dimensional object based on the depth value supplied from the ranging module 602. ..
  • the operation system processing unit 622 performs processing for realizing the basic functions and operations of the smartphone 601. For example, the operation system processing unit 622 may perform a process of authenticating the user's face and unlocking the smart phone 601 based on the depth value supplied from the ranging module 602. can. Further, the operation system processing unit 622 performs a process of recognizing, for example, a gesture of the user based on the depth value supplied from the ranging module 602, and performs various operations according to the gesture. You can perform input processing.
  • the distance measuring device 10 as the distance measuring module 602
  • the distance to a predetermined object can be measured and displayed, or a predetermined object can be measured. It is possible to perform processing such as creating and displaying three-dimensional shape data of.
  • the technology according to the present disclosure can be applied to various products.
  • the technology according to the present disclosure is mounted on a moving body of any kind such as an automobile, an electric vehicle, a hybrid electric vehicle, a motorcycle, a bicycle, a personal mobility, an airplane, a drone, a ship, and a robot. It may be realized as a device.
  • FIG. 20 is a block diagram showing a schematic configuration example of a vehicle control system, which is an example of a mobile control system to which the technique according to the present disclosure can be applied.
  • the vehicle control system 12000 includes a plurality of electronic control units connected via a communication network 12001.
  • the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, an outside information detection unit 12030, an in-vehicle information detection unit 12040, and an integrated control unit 12050.
  • a microcomputer 12051, an audio image output unit 12052, and an in-vehicle network I / F (Interface) 12053 are shown as a functional configuration of the integrated control unit 12050.
  • the drive system control unit 12010 controls the operation of the device related to the drive system of the vehicle according to various programs.
  • the drive system control unit 12010 includes a drive force generator for generating a drive force of a vehicle such as an internal combustion engine or a drive motor, a drive force transmission mechanism for transmitting the drive force to the wheels, and a steering wheel of the vehicle. It functions as a control device such as a steering mechanism that adjusts the angle and a braking device that generates braking force of the vehicle.
  • the body system control unit 12020 controls the operation of various devices mounted on the vehicle body according to various programs.
  • the body system control unit 12020 is used as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as headlamps, back lamps, brake lamps, winkers, or fog lamps. Function.
  • the body system control unit 12020 may be input with radio waves transmitted from a portable device that substitutes for the key or signals of various switches.
  • the body system control unit 12020 receives inputs of these radio waves or signals and controls a vehicle door lock device, a power window device, a lamp, and the like.
  • the vehicle outside information detection unit 12030 detects information outside the vehicle equipped with the vehicle control system 12000.
  • the image pickup unit 12031 is connected to the vehicle outside information detection unit 12030.
  • the vehicle outside information detection unit 12030 causes the image pickup unit 12031 to capture an image of the outside of the vehicle and receives the captured image.
  • the out-of-vehicle information detection unit 12030 may perform object detection processing or distance detection processing such as a person, a vehicle, an obstacle, a sign, or a character on the road surface based on the received image.
  • the image pickup unit 12031 is an optical sensor that receives light and outputs an electric signal according to the amount of the light received.
  • the image pickup unit 12031 can output an electric signal as an image or can output it as distance measurement information. Further, the light received by the image pickup unit 12031 may be visible light or invisible light such as infrared light.
  • the in-vehicle information detection unit 12040 detects the in-vehicle information.
  • a driver state detection unit 12041 that detects the driver's state is connected to the in-vehicle information detection unit 12040.
  • the driver state detection unit 12041 includes, for example, a camera that images the driver, and the in-vehicle information detection unit 12040 determines the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 12041. It may be calculated, or it may be determined whether or not the driver has fallen asleep.
  • the microcomputer 12051 calculates the control target value of the driving force generator, the steering mechanism or the braking device based on the information inside and outside the vehicle acquired by the information detection unit 12030 outside the vehicle or the information inside the vehicle 12040, and the drive system.
  • a control command can be output to the control unit 12010.
  • the microcomputer 12051 is an ADAS (Advanced Driver Assistance System) including vehicle collision avoidance or impact mitigation, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, vehicle lane deviation warning, and the like. ) Can be coordinated for the purpose of realizing the function.
  • ADAS Advanced Driver Assistance System
  • the microcomputer 12051 operates by controlling a driving force generating device, a steering mechanism, a braking device, or the like based on the information around the vehicle acquired by the outside information detection unit 12030 or the inside information detection unit 12040. It is possible to perform coordinated control for the purpose of automatic driving, etc., which runs autonomously without relying on the operation of a person.
  • the microcomputer 12051 can output a control command to the body system control unit 12030 based on the information outside the vehicle acquired by the vehicle exterior information detection unit 12030.
  • the microcomputer 12051 controls the headlamps according to the position of the preceding vehicle or the oncoming vehicle detected by the vehicle exterior information detection unit 12030 to prevent glare such as switching the high beam to the low beam. Coordinated control can be performed for the purpose of this.
  • the audio image output unit 12052 transmits an output signal of at least one of audio and image to an output device capable of visually or audibly notifying information to the passenger or the outside of the vehicle.
  • an output device capable of visually or audibly notifying information to the passenger or the outside of the vehicle.
  • an audio speaker 12061 a display unit 12062, and an instrument panel 12063 are exemplified.
  • the display unit 12062 may include, for example, at least one of an onboard display and a head-up display.
  • FIG. 21 is a diagram showing an example of the installation position of the image pickup unit 12031.
  • the image pickup unit 12031 has image pickup units 12101, 12102, 12103, 12104, and 12105.
  • the image pickup units 12101, 12102, 12103, 12104, 12105 are provided at positions such as, for example, the front nose, side mirror, rear bumper, back door, and the upper part of the windshield in the vehicle interior of the vehicle 12100.
  • the image pickup unit 12101 provided in the front nose and the image pickup unit 12105 provided in the upper part of the windshield in the vehicle interior mainly acquire an image in front of the vehicle 12100.
  • the image pickup units 12102 and 12103 provided in the side mirror mainly acquire images of the side of the vehicle 12100.
  • the image pickup unit 12104 provided in the rear bumper or the back door mainly acquires an image of the rear of the vehicle 12100.
  • the image pickup unit 12105 provided on the upper part of the windshield in the vehicle interior is mainly used for detecting a preceding vehicle, a pedestrian, an obstacle, a traffic light, a traffic sign, a lane, or the like.
  • FIG. 21 shows an example of the shooting range of the imaging units 12101 to 12104.
  • the imaging range 12111 indicates the imaging range of the imaging unit 12101 provided on the front nose
  • the imaging ranges 12112 and 12113 indicate the imaging range of the imaging units 12102 and 12103 provided on the side mirrors, respectively, and the imaging range 12114.
  • At least one of the image pickup units 12101 to 12104 may have a function of acquiring distance information.
  • at least one of the image pickup units 12101 to 12104 may be a stereo camera including a plurality of image pickup elements, or may be an image pickup element having pixels for phase difference detection.
  • the microcomputer 12051 has a distance to each three-dimensional object within the imaging range 12111 to 12114 based on the distance information obtained from the imaging unit 12101 to 12104, and a temporal change of this distance (relative to the vehicle 12100).
  • a three-dimensional object that is the closest three-dimensional object on the traveling path of the vehicle 12100 and travels at a predetermined speed (for example, 0 km / h or more) in substantially the same direction as the vehicle 12100 is extracted as a preceding vehicle. be able to.
  • the microcomputer 12051 sets an inter-vehicle distance to be secured in advance in front of the preceding vehicle, and performs automatic brake control (including follow-up stop control), automatic acceleration control (including follow-up start control), and the like. be able to. In this way, it is possible to perform coordinated control for the purpose of automatic driving or the like in which the vehicle travels autonomously without depending on the operation of the driver.
  • the microcomputer 12051 uses the distance information obtained from the image pickup units 12101 to 12104 to obtain three-dimensional object data related to a three-dimensional object, such as a two-wheeled vehicle, an ordinary vehicle, a large vehicle, a pedestrian, a utility pole, and the like. It can be classified into three-dimensional objects and extracted, and used for automatic avoidance of obstacles. For example, the microcomputer 12051 distinguishes obstacles around the vehicle 12100 into obstacles that are visible to the driver of the vehicle 12100 and obstacles that are difficult to see. Then, the microcomputer 12051 determines the collision risk indicating the risk of collision with each obstacle, and when the collision risk is equal to or higher than the set value and there is a possibility of collision, the audio speaker 12061 or the like. By outputting an alarm to the driver via the display unit 12062 and performing forced deceleration and avoidance steering via the drive system control unit 12010, it is possible to provide driving support for collision avoidance.
  • a three-dimensional object such as a two-wheeled vehicle, an ordinary vehicle, a
  • At least one of the image pickup units 12101 to 12104 may be an infrared camera that detects infrared rays.
  • the microcomputer 12051 can recognize a pedestrian by determining whether or not a pedestrian is present in the captured image of the imaging unit 12101 to 12104.
  • recognition of a pedestrian is, for example, a procedure for extracting feature points in an image captured by an image pickup unit 12101 to 12104 as an infrared camera, and a pattern matching process for a series of feature points indicating the outline of an object to determine whether the pedestrian is a pedestrian. It is done by the procedure of determining whether or not.
  • the audio image output unit 12052 is a square for emphasizing the recognized pedestrian.
  • the display unit 12062 is controlled so that the contour lines are superimposed and displayed. Further, the audio image output unit 12052 may control the display unit 12062 so as to display an icon or the like indicating a pedestrian at a desired position.
  • the system represents the entire device composed of a plurality of devices.
  • the present technology can also have the following configurations.
  • a switch arranged at a position connecting the first transfer transistor and the second transfer transistor, and A control unit for controlling the switch to be turned on for a predetermined time from the time when the first transfer transistor or the second transfer transistor is instructed to start the transfer of electric charges is provided.
  • the control unit is an image pickup apparatus including a time control unit that controls the predetermined time.
  • the imaging device wherein the time control unit is a DLL (Delay Locked Loop).
  • the control unit includes a delay unit, and the time control unit controls the delay time of the delay unit.
  • the control unit controls the delay time of the delay unit to be a time during which the switch is turned on.
  • the image pickup apparatus according to any one of (1) to (4), wherein one or a plurality of the switches are arranged with respect to the plurality of pixels arranged in the column direction of the pixel array unit.
  • the time control unit measures the temperature, generates a bias voltage according to the measured temperature, and supplies the bias voltage to the control unit. Any one of (1), (3), and (9).
  • the imaging device according to. (11)
  • the control unit includes a first driver that controls charging / discharging of the first transfer transistor and a second driver that controls charging / discharging of the second transfer transistor.
  • the first driver and the second driver control so that charging / discharging is not performed via the first driver and the second driver when the switch is on (1) to (1).
  • the image pickup apparatus according to any one of 10).
  • the first driver and the second driver have a MIMO connected to a high potential and an MIMO connected to a low potential, respectively.
  • the imaging apparatus When the switch is controlled to be on, the first switch that is turned on and The imaging apparatus according to (11) above, which includes a second switch that is turned on when the switch is controlled to be off. (13) The result of the exclusive OR of the first signal input to the first driver or the second driver and the second signal in which the first signal is delayed by a predetermined delay time by the delay unit.
  • the image pickup apparatus according to (12) above, wherein the image is used as a signal for controlling the opening and closing of the first switch.
  • the image pickup apparatus (14)
  • the image pickup apparatus 13), wherein the result of inverting the result of the exclusive OR is used as a signal for controlling the opening and closing of the first switch.
  • Photodiode and A first transfer transistor that transfers the charge generated by the photodiode to the first charge storage unit, and A pixel array unit in which pixels including a second transfer transistor that transfers the electric charge generated by the photodiode to a second charge storage unit are arranged in a matrix are used.
  • An image pickup device including a switch arranged at a position connecting the first transfer transistor and the second transfer transistor is provided. From the time when the first transfer transistor or the second transfer transistor is instructed to start the transfer of the electric charge, the switch is controlled to be turned on for a predetermined time.
  • An imaging method in which a predetermined time is controlled by a time control unit included in the control unit.
  • a switch arranged at a position connecting the first transfer transistor and the second transfer transistor, and A control unit for controlling the switch to be turned on for a predetermined time from the time when the first transfer transistor or the second transfer transistor is instructed to start the transfer of electric charges is provided.
  • the control unit includes an image pickup device including a time control unit that controls the predetermined time, and an image pickup device.
  • a light source that irradiates irradiation light whose brightness fluctuates periodically
  • An electronic device including a light emission control unit that controls the irradiation timing of the irradiation light.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

The present technology relates to an imaging device, an imaging method, and an electronic apparatus that make it possible to reduce power consumption. The present technology comprises: a pixel array unit in which pixels are arrayed in matrix form, the pixels including a photodiode, a first transfer transistor for transferring electric charges generated by the photodiode to a first electric charge accumulation unit, and a second transfer transistor for transferring electric charges generated by the photodiode to a second electric charge accumulation unit; a switch arranged at a position that connects the first and second transfer transistors; and a control unit for controlling the switch to be turned on for a prescribed time from when the first or the second transfer transistor is instructed to start electric charge transfer. The control unit is provided with a time control unit for controlling the prescribed time. The present technology can be applied to, for example, captured images for performing distance measurement.

Description

撮像装置、撮像方法、電子機器Imaging device, imaging method, electronic equipment
 本技術は、撮像装置、撮像方法、電子機器に関し、例えば、電力消費を低減した充電を行えるようにした撮像装置、撮像方法、電子機器に関する。 The present technology relates to an image pickup device, an image pickup method, and an electronic device, for example, an image pickup device, an image pickup method, and an electronic device capable of performing charging with reduced power consumption.
 距離を測定するための方式は、パタ-ンマッチングによる三角測距を基本技術に使うステレオセンサや、アクティブ光を照射して、反射した光が帰ってくるまでの時間を計測することによって距離を計測するToF(Time of Flight)方式などが存在する(例えば、特許文献1を参照)。 The method for measuring the distance is a stereo sensor that uses triangular distance measurement by pattern matching as a basic technology, or the distance is measured by irradiating active light and measuring the time until the reflected light returns. There is a ToF (Time of Flight) method for measuring (see, for example, Patent Document 1).
 またToF方式には直接ToF方式と間接ToF方式が存在する。間接ToF方式は、センサ内で光電変換を行い、電荷を2以上存在する電極で振り分けし、電荷の差分をとることにより、距離を間接的に計測している。 In addition, there are direct ToF method and indirect ToF method in ToF method. In the indirect ToF method, the distance is indirectly measured by performing photoelectric conversion in the sensor, distributing the charges between two or more existing electrodes, and taking the difference between the charges.
特開2016-090268号公報Japanese Unexamined Patent Publication No. 2016-090268
 間接ToF方式では、センサ内で光電変換した、電荷を2以上ある電極に高速に振り分けて、それを転送する必要がある。測距装置においても近年、多画素化、高精度化が望まれているが、多画素化、高精度化することで、消費電力が大きくなる傾向にあるため、消費電力を低減させることが望まれている。 In the indirect ToF method, it is necessary to distribute the charge photoelectrically converted in the sensor to two or more electrodes at high speed and transfer it. In recent years, it has been desired to increase the number of pixels and the accuracy of distance measuring devices, but it is desired to reduce the power consumption because the power consumption tends to increase by increasing the number of pixels and the accuracy. It is rare.
 本技術は、このような状況に鑑みてなされたものであり、消費電力を低減させることができるようにするものである。 This technology was made in view of such a situation, and makes it possible to reduce power consumption.
 本技術の一側面の撮像装置は、フォトダイオ-ドと、前記フォトダイオ-ドで生成された電荷を第1の電荷蓄積部に転送する第1の転送トランジスタと、前記フォトダイオ-ドで生成された電荷を第2の電荷蓄積部に転送する第2の転送トランジスタとを含む画素が、行列状に配置されている画素アレイ部と、前記第1の転送トランジスタと前記第2の転送トランジスタを接続する位置に配置されているスイッチと、前記電荷の転送の開始を、前記第1の転送トランジスタまたは前記第2の転送トランジスタに指示したときから、所定の時間、前記スイッチをオンに制御する制御部とを備え、前記制御部は、前記所定の時間を制御する時間制御部を備える撮像装置である。 The image pickup device on one aspect of the present technology is generated by the photodiode, the first transfer transistor that transfers the charge generated by the photodiode to the first charge storage unit, and the photodiode. The pixels including the second transfer transistor for transferring the charged charge to the second charge storage unit include the pixel array unit arranged in a matrix, the first transfer transistor, and the second transfer transistor. A control that controls the switch to be turned on for a predetermined time from the time when the switch arranged at the connection position and the start of the charge transfer are instructed to the first transfer transistor or the second transfer transistor. The control unit is an imaging device including a time control unit that controls a predetermined time.
 本技術の一側面の撮像方法は、フォトダイオ-ドと、前記フォトダイオ-ドで生成された電荷を第1の電荷蓄積部に転送する第1の転送トランジスタと、前記フォトダイオ-ドで生成された電荷を第2の電荷蓄積部に転送する第2の転送トランジスタとを含む画素が、行列状に配置されている画素アレイ部と、前記第1の転送トランジスタと前記第2の転送トランジスタを接続する位置に配置されているスイッチとを備える撮像装置が、前記電荷の転送の開始を、前記第1の転送トランジスタまたは前記第2の転送トランジスタに指示したときから、所定の時間、前記スイッチをオンに制御し、前記制御部に含まれる時間制御部により前記所定の時間を制御する撮像方法である。 The imaging method of one aspect of the present technology includes a photodiode, a first transfer transistor that transfers the charge generated by the photodiode to the first charge storage unit, and the photodiode. The pixels including the second transfer transistor for transferring the charged charge to the second charge storage unit include the pixel array unit arranged in a matrix, the first transfer transistor, and the second transfer transistor. The switch is operated for a predetermined time from the time when the image pickup apparatus including the switch arranged at the connecting position instructs the first transfer transistor or the second transfer transistor to start the transfer of the electric charge. This is an imaging method in which the control unit is turned on and the predetermined time is controlled by the time control unit included in the control unit.
 本技術の一側面の電子機器は、フォトダイオ-ドと、前記フォトダイオ-ドで生成された電荷を第1の電荷蓄積部に転送する第1の転送トランジスタと、前記フォトダイオ-ドで生成された電荷を第2の電荷蓄積部に転送する第2の転送トランジスタとを含む画素が、行列状に配置されている画素アレイ部と、前記第1の転送トランジスタと前記第2の転送トランジスタを接続する位置に配置されているスイッチと、前記電荷の転送の開始を、前記第1の転送トランジスタまたは前記第2の転送トランジスタに指示したときから、所定の時間、前記スイッチをオンに制御する制御部とを備え、前記制御部は、前記所定の時間を制御する時間制御部を備える撮像装置と、周期的に明るさが変動する照射光を照射する光源と、前記照射光の照射タイミングを制御する発光制御部とを備える電子機器である。 The electronic device of one aspect of the present technology includes a photodiode, a first transfer transistor that transfers the charge generated by the photodiode to the first charge storage unit, and the photodiode. The pixels including the second transfer transistor for transferring the charged charge to the second charge storage unit include the pixel array unit arranged in a matrix, the first transfer transistor, and the second transfer transistor. A control that controls the switch to be turned on for a predetermined time from the time when the switch arranged at the connection position and the start of the charge transfer are instructed to the first transfer transistor or the second transfer transistor. The control unit controls an image pickup device including a time control unit that controls a predetermined time, a light source that irradiates irradiation light whose brightness changes periodically, and an irradiation timing of the irradiation light. It is an electronic device provided with a light emission control unit.
 本技術の一側面の撮像装置、撮像方法、電子機器においては、フォトダイオ-ドと、前記フォトダイオ-ドで生成された電荷を第1の電荷蓄積部に転送する第1の転送トランジスタと、前記フォトダイオ-ドで生成された電荷を第2の電荷蓄積部に転送する第2の転送トランジスタとを含む画素が、行列状に配置されている画素アレイ部と、前記第1の転送トランジスタと前記第2の転送トランジスタを接続する位置に配置されているスイッチと、前記電荷の転送の開始を、前記第1の転送トランジスタまたは前記第2の転送トランジスタに指示したときから、所定の時間、前記スイッチをオンに制御する制御部とが備えられる。前記制御部には、前記所定の時間を制御する時間制御部が備えられる。 In the image pickup device, the image pickup method, and the electronic device of one aspect of the present technology, a photodiode, a first transfer transistor that transfers the charge generated by the photodiode to the first charge storage unit, and the like. The pixel array unit in which the pixels including the second transfer transistor that transfers the electric charge generated by the photodiode to the second charge storage unit are arranged in a matrix, and the first transfer transistor The switch arranged at a position for connecting the second transfer transistor and the charge transfer start are instructed to the first transfer transistor or the second transfer transistor for a predetermined time. It is equipped with a control unit that controls the switch on. The control unit includes a time control unit that controls the predetermined time.
本技術を適用した測距装置の一実施の形態の構成を示す図である。It is a figure which shows the structure of one Embodiment of the distance measuring apparatus to which this technique is applied. 受光部の構成例を示す図である。It is a figure which shows the structural example of the light receiving part. 画素の構成例を示す図である。It is a figure which shows the structural example of a pixel. 画素における電荷の振り分けを説明する図である。It is a figure explaining the distribution of electric charge in a pixel. ゲート電圧制御部の一例の構成を示す図である。It is a figure which shows the structure of an example of a gate voltage control part. 本技術を適用したゲート電圧制御部の一実施の形態の構成を示す図である。It is a figure which shows the structure of one Embodiment of the gate voltage control part which applied this technique. ゲート電圧制御部の動作について説明するための図である。It is a figure for demonstrating the operation of a gate voltage control part. ノイズの発生について説明するための図である。It is a figure for demonstrating the generation of noise. DLLの構成例を示す図である。It is a figure which shows the structural example of DLL. 遅延部の構成例を示す図である。It is a figure which shows the structural example of the delay part. ゲート電圧制御部の他の構成例を示す図である。It is a figure which shows the other structural example of a gate voltage control part. ゲート電圧制御部の他の構成例を示す図である。It is a figure which shows the other structural example of a gate voltage control part. ゲート電圧制御部の他の構成例を示す図である。It is a figure which shows the other structural example of a gate voltage control part. ゲート電圧制御部の他の構成例を示す図である。It is a figure which shows the other structural example of a gate voltage control part. ゲート電圧制御部の他の構成例を示す図である。It is a figure which shows the other structural example of a gate voltage control part. プロセスばらつきによる影響の低減について説明するための図である。It is a figure for demonstrating reduction of influence by process variation. ゲート電圧制御部を用いることによる効果について説明するための図である。It is a figure for demonstrating the effect by using a gate voltage control part. ゲート電圧制御部の他の構成例を示す図である。It is a figure which shows the other structural example of a gate voltage control part. 電子機器の構成例を示す図である。It is a figure which shows the structural example of the electronic device. 車両制御システムの概略的な構成の一例を示すブロック図である。It is a block diagram which shows an example of the schematic structure of a vehicle control system. 車外情報検出部及び撮像部の設置位置の一例を示す説明図である。It is explanatory drawing which shows an example of the installation position of the vehicle outside information detection unit and the image pickup unit.
 以下に、本技術を実施するための形態(以下、実施の形態という)について説明する。 The embodiment for implementing the present technology (hereinafter referred to as the embodiment) will be described below.
 本技術は、例えば間接TOF方式により測距を行う測距システムを構成する受光素子や、そのような受光素子を有する撮像装置などに適用することが可能である。 This technology can be applied to, for example, a light receiving element constituting a distance measuring system that measures a distance by an indirect TOF method, an image pickup device having such a light receiving element, and the like.
 例えば測距システムは、車両に搭載され、車外にある対象物までの距離を測定する車載用のシステムや、ユ-ザの手等の対象物までの距離を測定し、その測定結果に基づいてユ-ザのジェスチャを認識するジェスチャ認識用のシステムなどに適用することができる。この場合、ジェスチャ認識の結果は、例えばカ-ナビゲ-ションシステムの操作等に用いることができる。 For example, a distance measuring system is an in-vehicle system that is mounted on a vehicle and measures the distance to an object outside the vehicle, or measures the distance to an object such as a user's hand and is based on the measurement result. It can be applied to a gesture recognition system that recognizes a user's gesture. In this case, the result of gesture recognition can be used, for example, for operating a car navigation system.
 <測距装置の構成例>
 図1は、本技術を適用した測距装置の一実施の形態の構成例を示している。
<Configuration example of ranging device>
FIG. 1 shows a configuration example of an embodiment of a ranging device to which the present technology is applied.
 測距装置10は、レンズ11、受光部12、信号処理部13、発光部14、発光制御部15、およびフィルタ部16を備える。図1の測距装置10は、物体に対して光を照射し、その光(照射光)が物体で反射した光(反射光)を受光することで物体までの距離を測定する。 The distance measuring device 10 includes a lens 11, a light receiving unit 12, a signal processing unit 13, a light emitting unit 14, a light emitting control unit 15, and a filter unit 16. The distance measuring device 10 of FIG. 1 irradiates an object with light, and the light (irradiation light) receives the light reflected by the object (reflected light) to measure the distance to the object.
 測距装置10の発光系は、発光部14と発光制御部15から成る。発光系においては、発光制御部15が、信号処理部13からの制御に従い、発光部14により赤外光(IR)を照射させる。レンズ11と受光部12の間にIRバンドフィルタを設け、IRバンドパスフィルタの透過波長帯に対応する赤外光を発光部14が発光する構成とするようにしても良い。 The light emitting system of the distance measuring device 10 includes a light emitting unit 14 and a light emitting control unit 15. In the light emitting system, the light emitting control unit 15 irradiates infrared light (IR) with the light emitting unit 14 according to the control from the signal processing unit 13. An IR band filter may be provided between the lens 11 and the light receiving unit 12, and the light emitting unit 14 may emit infrared light corresponding to the transmission wavelength band of the IR bandpass filter.
 発光部14は、測距装置10の筐体内に配置してもよいし、測距装置10の筐体外部に配置してもよい。発光制御部15は、発光部14を、所定の周波数で発光させる。 The light emitting unit 14 may be arranged inside the housing of the distance measuring device 10 or may be arranged outside the housing of the distance measuring device 10. The light emission control unit 15 causes the light emission unit 14 to emit light at a predetermined frequency.
 信号処理部13は、例えば、受光部12から供給される検出信号(画素デ-タ)に基づいて、測距装置10から物体までの距離(デプス値)を算出する算出部として機能する。信号処理部13は、受光部12の各画素50(図2)の画素値としてデプス値(奥行き情報)が格納されたデプスマップを生成してフィルタ部16に出力する。また、信号処理部13は、受光部12の各画素50について、算出したデプス値の信頼度も算出し、受光部12の各画素50の画素値として信頼度(輝度情報)を格納した信頼度マップを生成してフィルタ部16に出力する。 The signal processing unit 13 functions as a calculation unit that calculates the distance (depth value) from the distance measuring device 10 to the object based on the detection signal (pixel data) supplied from the light receiving unit 12, for example. The signal processing unit 13 generates a depth map in which the depth value (depth information) is stored as the pixel value of each pixel 50 (FIG. 2) of the light receiving unit 12, and outputs the depth map to the filter unit 16. Further, the signal processing unit 13 also calculates the reliability of the calculated depth value for each pixel 50 of the light receiving unit 12, and stores the reliability (luminance information) as the pixel value of each pixel 50 of the light receiving unit 12. A map is generated and output to the filter unit 16.
 <撮像素子の構成>
 図2は、受光部12の構成例を示すブロック図である。受光部12は、CMOS(Complementary Metal Oxide Semiconductor)イメ-ジセンサとすることができる。
<Structure of image sensor>
FIG. 2 is a block diagram showing a configuration example of the light receiving unit 12. The light receiving unit 12 can be a CMOS (Complementary Metal Oxide Semiconductor) image sensor.
 受光部12は、画素アレイ部41、垂直駆動部42、カラム処理部43、水平駆動部44、およびシステム制御部45を含む。画素アレイ部41、垂直駆動部42、カラム処理部43、水平駆動部44、システム制御部45、およびゲート電圧制御部46は、図示しない半導体基板(チップ)上に形成されている。受光部12は、画像を撮影する撮影装置として機能し、その撮影装置により撮影された画像を解析することで距離画像を生成することができる。 The light receiving unit 12 includes a pixel array unit 41, a vertical drive unit 42, a column processing unit 43, a horizontal drive unit 44, and a system control unit 45. The pixel array unit 41, the vertical drive unit 42, the column processing unit 43, the horizontal drive unit 44, the system control unit 45, and the gate voltage control unit 46 are formed on a semiconductor substrate (chip) (not shown). The light receiving unit 12 functions as a photographing device that captures an image, and can generate a distance image by analyzing the image captured by the photographing device.
 画素アレイ部41には、入射光量に応じた電荷量の光電荷を発生して内部に蓄積する光電変換素子を有する単位画素(例えば、図3の画素50)が行列状に2次元配置されている。なお、以下では、入射光量に応じた電荷量の光電荷を、単に「電荷」と記述し、単位画素を、単に「画素」と記述する場合もある。 In the pixel array unit 41, unit pixels (for example, pixel 50 in FIG. 3) having a photoelectric conversion element that generates an electric charge of an amount corresponding to the amount of incident light and accumulates it inside are two-dimensionally arranged in a matrix. There is. In the following, the light charge of the amount of charge corresponding to the amount of incident light may be simply described as "charge", and the unit pixel may be simply described as "pixel".
 画素アレイ部41にはさらに、行列状の画素配列に対して行毎に画素駆動線47が図の左右方向(画素行の画素の配列方向)に沿って形成され、列毎に垂直信号線48が図の上下方向(画素列の画素の配列方向)に沿って形成されている。画素駆動線47の一端は、垂直駆動部42の各行に対応した出力端に接続されている。 Further, in the pixel array unit 41, a pixel drive line 47 is formed row by row with respect to a matrix-shaped pixel array along the left-right direction (arrangement direction of pixels in the pixel row) in the figure, and a vertical signal line 48 is formed for each column. Is formed along the vertical direction of the figure (the arrangement direction of the pixels of the pixel array). One end of the pixel drive line 47 is connected to the output end corresponding to each line of the vertical drive unit 42.
 垂直駆動部42は、シフトレジスタやアドレスデコ-ダなどによって構成され、画素アレイ部41の各画素を、全画素同時あるいは行単位等で駆動する画素駆動部である。垂直駆動部42によって選択走査された画素行の各単位画素から出力される画素信号は、垂直信号線48の各々を通してカラム処理部43に供給される。カラム処理部43は、画素アレイ部41の画素列毎に、選択行の各単位画素から垂直信号線48を通して出力される画素信号に対して所定の信号処理を行うとともに、信号処理後の画素信号を一時的に保持する。 The vertical drive unit 42 is composed of a shift register, an address recorder, and the like, and is a pixel drive unit that drives each pixel of the pixel array unit 41 simultaneously for all pixels or in line units. The pixel signal output from each unit pixel of the pixel row selectively scanned by the vertical drive unit 42 is supplied to the column processing unit 43 through each of the vertical signal lines 48. The column processing unit 43 performs predetermined signal processing on the pixel signal output from each unit pixel of the selected row through the vertical signal line 48 for each pixel column of the pixel array unit 41, and also performs predetermined signal processing on the pixel signal after signal processing. Temporarily hold.
 具体的には、カラム処理部43は、信号処理として少なくとも、ノイズ除去処理、例えばCDS(Correlated Double Sampling;相関二重サンプリング)処理を行う。このカラム処理部43による相関二重サンプリングにより、リセットノイズや増幅トランジスタの閾値ばらつき等の画素固有の固定パタ-ンノイズが除去される。なお、カラム処理部43にノイズ除去処理以外に、例えば、AD(アナログデジタル)変換機能を持たせ、信号レベルをデジタル信号で出力することも可能である。 Specifically, the column processing unit 43 performs at least noise reduction processing, for example, CDS (Correlated Double Sampling) processing as signal processing. By the correlated double sampling by the column processing unit 43, the fixed pattern noise peculiar to the pixel such as the reset noise and the threshold variation of the amplification transistor is removed. In addition to the noise reduction processing, the column processing unit 43 can be provided with, for example, an AD (analog-digital) conversion function, and the signal level can be output as a digital signal.
 水平駆動部44は、シフトレジスタやアドレスデコ-ダなどによって構成され、カラム処理部43の画素列に対応する単位回路を順番に選択する。この水平駆動部44による選択走査により、カラム処理部43で信号処理された画素信号が順番に信号処理部(不図示)に出力される。 The horizontal drive unit 44 is composed of a shift register, an address recorder, and the like, and sequentially selects unit circuits corresponding to the pixel strings of the column processing unit 43. By the selective scanning by the horizontal drive unit 44, the pixel signals signal-processed by the column processing unit 43 are sequentially output to the signal processing unit (not shown).
 システム制御部45は、各種のタイミング信号を生成するタイミングジェネレ-タ等によって構成され、タイミングジェネレ-タで生成された各種のタイミング信号を基に垂直駆動部42、カラム処理部43、および水平駆動部44などの駆動制御を行う。 The system control unit 45 is composed of a timing generator or the like that generates various timing signals, and is a vertical drive unit 42, a column processing unit 43, and a horizontal drive based on various timing signals generated by the timing generator. Drive control of the unit 44 and the like is performed.
 ゲート電圧制御部46は、転送トランジスタにおける転送の開始を指示する転送制御信号TRTの供給を制御する(詳細は後述する)。 The gate voltage control unit 46 controls the supply of the transfer control signal TRT instructing the start of transfer in the transfer transistor (details will be described later).
 画素アレイ部41において、行列状の画素配列に対して、画素行毎に画素駆動線47が行方向に沿って配線され、各画素列に2つの垂直信号線48が列方向に沿って配線されている。例えば画素駆動線47は、画素から信号を読み出す際の駆動を行うための駆動信号を伝送する。なお、図2では、画素駆動線47について1本の配線として示しているが、1本に限られるものではない。画素駆動線47の一端は、垂直駆動部42の各行に対応した出力端に接続されている。 In the pixel array unit 41, the pixel drive line 47 is wired along the row direction for each pixel row with respect to the matrix-shaped pixel array, and two vertical signal lines 48 are wired along the column direction in each pixel row. ing. For example, the pixel drive line 47 transmits a drive signal for driving when reading a signal from a pixel. In FIG. 2, the pixel drive line 47 is shown as one wiring, but the wiring is not limited to one. One end of the pixel drive line 47 is connected to the output end corresponding to each line of the vertical drive unit 42.
 <単位画素の構造>
 次に、画素アレイ部41に行列状に配置されている単位画素50の具体的な構造について説明する。
<Structure of unit pixel>
Next, a specific structure of the unit pixels 50 arranged in a matrix in the pixel array unit 41 will be described.
 画素50は、光電変換素子であるフォトダイオ-ド61(以下、PD61と記述する)を備え、PD61で発生した電荷がタップ51-1およびタップ51-2に振り分けられるように構成されている。そして、PD61で発生した電荷のうち、タップ51-1に振り分けられた電荷が垂直信号線48-1から読み出されて検出信号SIG1として出力される。また、タップ51-2に振り分けられた電荷が垂直信号線48-2から読み出されて検出信号SIG2として出力される。 The pixel 50 includes a photodiode 61 (hereinafter referred to as PD61) which is a photoelectric conversion element, and is configured so that the electric charge generated by the PD 61 is distributed to the tap 51-1 and the tap 51-2. Then, among the charges generated by the PD 61, the charges distributed to the taps 51-1 are read out from the vertical signal line 48-1 and output as the detection signal SIG1. Further, the electric charge distributed to the tap 51-2 is read out from the vertical signal line 48-2 and output as a detection signal SIG2.
 タップ51-1は、転送トランジスタ62-1、FD(Floating Diffusion)63-1、リセットトランジスタ64、増幅トランジスタ65-1、および選択トランジスタ66-1により構成される。同様に、タップ51-2は、転送トランジスタ62-2、FD63-2、リセットトランジスタ64、増幅トランジスタ65-2、および選択トランジスタ66-2により構成される。 The tap 51-1 is composed of a transfer transistor 62-1, an FD (Floating Diffusion) 63-1, a reset transistor 64, an amplification transistor 65-1, and a selection transistor 66-1. Similarly, the tap 51-2 is composed of a transfer transistor 62-2, an FD63-2, a reset transistor 64, an amplification transistor 65-2, and a selection transistor 66-2.
 なお、図3に示したようにリセットトランジスタ64を、FD63-1とFD63-2で共用する構成としても良いし、FD63-1とFD63-2のそれぞれに設けられている構成としても良い。 As shown in FIG. 3, the reset transistor 64 may be shared by the FD63-1 and the FD63-2, or may be provided in each of the FD63-1 and the FD63-2.
 FD63-1とFD63-2のそれぞれにリセットトランジスタ64を設ける構成とした場合、リセットのタイミングを、FD63-1とFD63-2をそれぞれ個別に制御できるため、細かな制御を行うことが可能となる。FD63-1とFD63-2に共通したリセットトランジスタ64を設ける構成とした場合、リセットのタイミングを、FD63-1とFD63-2で同一にすることができ、制御が簡便になり、回路構成も簡便化することができる。 When the reset transistor 64 is provided in each of the FD63-1 and the FD63-2, the reset timing can be controlled individually for the FD63-1 and the FD63-2, so that fine control can be performed. .. When the reset transistor 64 common to the FD63-1 and the FD63-2 is provided, the reset timing can be made the same for the FD63-1 and the FD63-2, the control becomes simple, and the circuit configuration is also simple. Can be reset.
 以下の説明においては、FD63-1とFD63-2に共通のリセットトランジスタ64を設けた場合を例に挙げて説明を続ける。 In the following description, the description will be continued by taking as an example the case where the reset transistor 64 common to the FD63-1 and the FD63-2 is provided.
 図4を参照して、画素50における電荷の振り分けについて説明する。ここで、振り分けとは、画素50(PD61)に蓄積された電荷を異なるタイミングで読み出すことで、タップ毎に読み出しを行うことを意味する。 With reference to FIG. 4, the distribution of electric charges in the pixel 50 will be described. Here, the distribution means that the electric charges accumulated in the pixel 50 (PD61) are read out at different timings, so that the electric charges are read out for each tap.
 図4に示すように、照射時間内に照射のオン/オフを繰り返すように変調(1周期=Tp)された照射光が発光部14から出力され、物体までの距離に応じた遅延時間Tdだけ遅れて、PD61において反射光が受光される。 As shown in FIG. 4, the irradiation light modulated (1 cycle = Tp) so as to repeat the irradiation on / off within the irradiation time is output from the light emitting unit 14, and only the delay time Td according to the distance to the object is obtained. With a delay, the reflected light is received by the PD61.
 転送制御信号TRT_Aは、転送トランジスタ62-1のオン/オフを制御し、転送制御信号TRT_Bは、転送トランジスタ62-2のオン/オフを制御する。図示するように、転送制御信号TRT_Aが、照射光と同一の位相である一方で、転送制御信号TRT_Bは、転送制御信号TRT_Aを反転した位相となっている。 The transfer control signal TRT_A controls the on / off of the transfer transistor 62-1, and the transfer control signal TRT_B controls the on / off of the transfer transistor 62-2. As shown in the figure, the transfer control signal TRT_A has the same phase as the irradiation light, while the transfer control signal TRT_B has the phase in which the transfer control signal TRT_A is inverted.
 従って、フォトダイオ-ド61が反射光を受光することにより発生する電荷は、転送制御信号TRT_Aに従って転送トランジスタ62-1がオンとなっている間ではFD63-1に転送される。また転送制御信号TRT_Bに従って転送トランジスタ62-2のオンとなっている間ではFD63-2に転送される。これにより、照射時間Tの照射光の照射が周期的に行われる所定の期間において、転送トランジスタ62-1を介して転送された電荷はFD63-1に順次蓄積され、転送トランジスタ62-2を介して転送された電荷はFD63-2に順次蓄積される。 Therefore, the electric charge generated by the photodiode 61 receiving the reflected light is transferred to the FD63-1 while the transfer transistor 62-1 is on according to the transfer control signal TRT_A. Further, it is transferred to the FD 63-2 while the transfer transistor 62-2 is turned on according to the transfer control signal TRT_B. As a result, the charges transferred via the transfer transistor 62-1 are sequentially accumulated in the FD63-1 during a predetermined period in which the irradiation of the irradiation light having the irradiation time T is periodically performed, and the charges are sequentially accumulated in the FD63-1 and via the transfer transistor 62-2. The transferred charges are sequentially accumulated in the FD63-2.
 そして、電荷を蓄積する期間の終了後、選択信号SELm1に従って選択トランジスタ66-1がオンとなると、FD63-1に蓄積されている電荷が垂直信号線48-1を介して読み出され、その電荷量に応じた検出信号Aが受光部12から出力される。同様に、選択信号SELm2に従って選択トランジスタ66-2がオンとなると、FD63-2に蓄積されている電荷が垂直信号線48-2を介して読み出され、その電荷量に応じた検出信号Bが受光部12から出力される。 Then, when the selection transistor 66-1 is turned on according to the selection signal SELm1 after the end of the charge storage period, the charge stored in the FD63-1 is read out via the vertical signal line 48-1, and the charge is read out. The detection signal A corresponding to the amount is output from the light receiving unit 12. Similarly, when the selection transistor 66-2 is turned on according to the selection signal SELm2, the electric charge stored in the FD63-2 is read out via the vertical signal line 48-2, and the detection signal B corresponding to the amount of the electric charge is generated. It is output from the light receiving unit 12.
 FD63-1に蓄積されている電荷は、リセット信号RSTに従ってリセットトランジスタ64がオンになると排出される。同様にFD63-2に蓄積されている電荷は、リセット信号RSTに従ってリセットトランジスタ64がオンになると排出される。 The electric charge stored in the FD63-1 is discharged when the reset transistor 64 is turned on according to the reset signal RST. Similarly, the charge stored in the FD63-2 is discharged when the reset transistor 64 is turned on according to the reset signal RST.
 このように、画素50は、フォトダイオ-ド61が受光した反射光により発生する電荷を、遅延時間Tdに応じてタップ51-1およびタップ51-2に振り分けて、検出信号Aおよび検出信号Bを出力することができる。そして、遅延時間Tdは、発光部14で発光した光が物体まで飛行し、物体で反射した後に受光部12まで飛行する時間に応じたもの、即ち、物体までの距離に応じたものである。従って、測距装置10は、検出信号Aおよび検出信号Bに基づき、遅延時間Tdに従って物体までの距離(デプス)を求めることができる。 As described above, the pixel 50 distributes the electric charge generated by the reflected light received by the photodiode 61 to the taps 51-1 and the taps 51-2 according to the delay time Td, and the detection signal A and the detection signal B. Can be output. The delay time Td corresponds to the time during which the light emitted by the light emitting unit 14 flies to the object, is reflected by the object, and then flies to the light receiving unit 12, that is, according to the distance to the object. Therefore, the distance measuring device 10 can obtain the distance (depth) to the object according to the delay time Td based on the detection signal A and the detection signal B.
 <ゲート電圧制御部の構成>
 ゲート電圧制御部46の構成について説明を加える。本技術を適用することで、電源が大きくIRドロップするようなことを抑制し、消費電力を低減することができる。このような本技術を適用することで得られる効果について明確にするために、従来のゲート電圧制御部と比較する。
<Structure of gate voltage control unit>
The configuration of the gate voltage control unit 46 will be described. By applying this technology, it is possible to suppress a large IR drop of the power supply and reduce power consumption. In order to clarify the effect obtained by applying this technique, it is compared with the conventional gate voltage control unit.
 図5は、従来のゲート電圧制御部の構成を示す図である。以下、従来のゲート電圧制御部は、ゲート電圧制御部46’と記述する。ゲート電圧制御部46’は、例えば画素アレイ部41の1列毎や、複数の列毎に設けられている。図6では、所定の1列と、その1列に設けられたゲート電圧制御部46’を図示している。 FIG. 5 is a diagram showing the configuration of a conventional gate voltage control unit. Hereinafter, the conventional gate voltage control unit will be referred to as a gate voltage control unit 46'. The gate voltage control unit 46'is provided, for example, for each row of the pixel array unit 41 or for each row of a plurality of rows. FIG. 6 illustrates a predetermined row and a gate voltage control unit 46'provided in the row.
 ゲート電圧制御部46’は、2つのドライバを備える。画素50は、図3を参照して説明したように、タップ51-1とタップ51-2の2つのタップを備える。タップ51-1には、転送トランジスタ62-1が含まれ、タップ51-2には、転送トランジスタ62-2が含まれる。この転送トランジスタ62-1と転送トランジスタ62-2に供給する転送制御信号TRT_Aと転送制御信号TRT_Bを制御するのがゲート電圧制御部46’である。 The gate voltage control unit 46'is provided with two drivers. The pixel 50 includes two taps, a tap 51-1 and a tap 51-2, as described with reference to FIG. The tap 51-1 includes a transfer transistor 62-1, and the tap 51-2 includes a transfer transistor 62-2. The gate voltage control unit 46'controls the transfer control signal TRT_A and the transfer control signal TRT_B supplied to the transfer transistor 62-1 and the transfer transistor 62-2.
 転送制御信号TRGは、転送トランジスタ62をオンの状態のときにHigh(1)の信号となり、オフの状態のときにLow(0)の信号となる。図3に示したように、転送制御信号TRT_Aは、画素駆動線47-1を介して、転送トランジスタ62-1に供給され、転送制御信号TRT_Bは、画素駆動線47-2を介して、転送トランジスタ62-2に供給される。 The transfer control signal TRG is a High (1) signal when the transfer transistor 62 is on, and a Low (0) signal when the transfer transistor 62 is off. As shown in FIG. 3, the transfer control signal TRT_A is supplied to the transfer transistor 62-1 via the pixel drive line 47-1, and the transfer control signal TRT_B is transferred via the pixel drive line 47.2. It is supplied to the transistor 62-2.
 転送制御信号TRT_Aを制御するドライバ101aと転送制御信号TRT_Bを制御するドライバ101bが、ゲート電圧制御部46’に含まれる。図5では、画素アレイ部41の垂直方向に配置されている複数の画素50のゲート電圧を制御するゲート電圧制御部46’を示している。例えば、画素アレイ部41の垂直方向に、N個の画素50が配置されている場合、N個の画素50に対して、2つのドライバ101が備えられている。 The driver 101a for controlling the transfer control signal TRT_A and the driver 101b for controlling the transfer control signal TRT_B are included in the gate voltage control unit 46'. FIG. 5 shows a gate voltage control unit 46'that controls the gate voltage of a plurality of pixels 50 arranged in the vertical direction of the pixel array unit 41. For example, when N pixels 50 are arranged in the vertical direction of the pixel array unit 41, two drivers 101 are provided for the N pixels 50.
 ドライバ101aとドライバ101bは、基本的に同様の構成を有してるため、ドライバ101aを例に挙げて説明を加える。ドライバ101aは、PMOS121aとNMOS122aを含む構成とされている。PMOS121aのソース側は、電位Vddの高電位側の電源線に接続され、ドレイン側は、NMOS122aのドレイン側に接続されている。NMOS122aのソース側は、GNDなどの電位Vssの低電位側の電源線に接続されている。ここでは電位Vssは、接地されているとして説明を続ける。 Since the driver 101a and the driver 101b basically have the same configuration, the explanation will be added by taking the driver 101a as an example. The driver 101a is configured to include the MIMO 121a and the MIMO 122a. The source side of the photoresist121a is connected to the power supply line on the high potential side of the potential Vdd, and the drain side is connected to the drain side of the MIMO 122a. The source side of the nanotube 122a is connected to a power line on the low potential side of the potential Vss such as GND. Here, the explanation is continued assuming that the potential Vss is grounded.
 PMOS121aのゲートとNMOS122aのゲートは、制御信号CLK_Aを供給する信号線に接続されている。PMS121aとNMOS122aが接続されている線には、画素駆動線47-1が接続されている。画素駆動線47-1は、画素50の転送トランジスタ62-1のゲート側に接続されている。画素駆動線47-1には、所定の方向、例えば画素アレイ部41の列方向に配置されている複数の画素50の転送トランジスタ62-1-1乃至62-1-Nのそれぞれのゲートが接続されている The gate of MIMO121a and the gate of MIMO122a are connected to the signal line that supplies the control signal CLK_A. A pixel drive line 47-1 is connected to the line connecting the PMS 121a and the MIMO 122a. The pixel drive line 47-1 is connected to the gate side of the transfer transistor 62-1 of the pixel 50. The gates of the transfer transistors 62-1-1 to 62-1-N of the plurality of pixels 50 arranged in a predetermined direction, for example, in the column direction of the pixel array unit 41, are connected to the pixel drive line 47-1. Has been
 図5では図示していないが、画素駆動線47などの配線には、配線負荷がある。 Although not shown in FIG. 5, there is a wiring load in the wiring such as the pixel drive line 47.
 図5では、各転送トランジスタ62のゲートを容量Cで表している。ゲートにかかる電圧が、電圧Vddになると、換言すれば、容量Cの電圧が電圧Vddになると、転送トランジスタ62によりPD61からFD63への電荷の転送が開始される。 In FIG. 5, the gate of each transfer transistor 62 is represented by the capacitance C. When the voltage applied to the gate becomes the voltage Vdd, in other words, when the voltage of the capacitance C becomes the voltage Vdd, the transfer transistor 62 starts the transfer of the charge from the PD 61 to the FD 63.
 ドライバ101bも、ドライバ101aと同様の構成であり、ドライバ101bと接続されている画素駆動線47-2には、転送トランジスタ62-2-1乃至62-2Nのそれぞれのゲートが接続されている。 The driver 101b also has the same configuration as the driver 101a, and the gates of the transfer transistors 62-2-1 to 62-2N are connected to the pixel drive line 47-2 connected to the driver 101b.
 ドライバ101aとドライバ101bは、差動で動作する。ドライバ101aから出力されている転送制御信号TRT_AがHighの場合、ドライバ101bから出力されている転送制御信号TRT_BはLowとされている。ドライバ101aにより出されている転送制御信号TRT_AがHighであり、ドライバ101bにより出されている転送制御信号TRT_BがLowである場合、画素駆動線47-1に接続されている転送トランジスタ62-1-1乃至62-1-Nが電圧Vddになるまで充電される。一方で、画素駆動線47-2に接続されている転送トランジスタ62-2-1乃至62-2-Nは、電圧Vssになるまで放電される。 Driver 101a and driver 101b operate differentially. When the transfer control signal TRT_A output from the driver 101a is High, the transfer control signal TRT_B output from the driver 101b is set to Low. When the transfer control signal TRT_A issued by the driver 101a is High and the transfer control signal TRT_B issued by the driver 101b is Low, the transfer transistor 62-1 connected to the pixel drive line 47-1- 1 to 62-1-N are charged until the voltage becomes Vdd. On the other hand, the transfer transistors 62-2-1 to 62-2-N connected to the pixel drive line 47-2 are discharged until the voltage Vss is reached.
 このように、画素50の転送トランジスタのゲートの充放電が行われることで、ゲート電圧が制御されている。この場合の消費電力Pは、P=fCVで表される。fは周波数であり、Cは容量であり、Vは電圧である。近年、測距装置においても、多画素化、高精度化が望まれている。多画素化することで、容量Cや電圧Vが増え、高精度化することで周波数が高くなる。よって、消費電力Pは大きくなる。 In this way, the gate voltage is controlled by charging and discharging the gate of the transfer transistor of the pixel 50. The power consumption P in this case is represented by P = fCV 2 . f is the frequency, C is the capacitance, and V is the voltage. In recent years, it has been desired to increase the number of pixels and the accuracy of distance measuring devices. By increasing the number of pixels, the capacity C and the voltage V increase, and by increasing the accuracy, the frequency increases. Therefore, the power consumption P becomes large.
 画素50のゲート配線の充電は、画素アレイ部41に配置されている全画素同時に行われるため、画素50のゲート配線の充電時には、大きなピ-ク電流が流れる、電源が大きくIRドロップし、パルス波形の立ち上がり時間が大きく劣化してしまう可能性がある。 Since the gate wiring of the pixel 50 is charged at the same time for all the pixels arranged in the pixel array unit 41, a large peak current flows when the gate wiring of the pixel 50 is charged, the power supply has a large IR drop, and a pulse is generated. There is a possibility that the rising time of the waveform will be significantly deteriorated.
 以下に説明する本技術を適用したゲート電圧制御部46によれば、消費電力を小さくすることができ、IRドロップを抑制することができる。 According to the gate voltage control unit 46 to which the present technology described below is applied, power consumption can be reduced and IR drop can be suppressed.
 <ゲート電圧制御部の構成>
 図6は、本技術を適用したゲート電圧制御部46の一実施の形態の構成を示す図である。図5に示したゲート電圧制御部46と同一の機能を有する部分には、同一の符号を付し、適宜その説明は省略する。
<Structure of gate voltage control unit>
FIG. 6 is a diagram showing a configuration of an embodiment of the gate voltage control unit 46 to which the present technology is applied. The parts having the same functions as the gate voltage control unit 46 shown in FIG. 5 are designated by the same reference numerals, and the description thereof will be omitted as appropriate.
 ゲート電圧制御部46は、ドライバ201a、ドライバ201b、DLL(Delay Locked Loop)203、遅延部205、XOR回路207、NOT回路209を含む構成とされている。ドライバ201aは、PMOS121a、NMOS122a、ENスイッチ221a、ENスイッチ222a、XENスイッチ223a、XENスイッチ224aを含む構成とされている。ドライバ201bは、PMOS121b、NMOS122b、ENスイッチ221b、ENスイッチ222b、XENスイッチ223b、XENスイッチ224bを含む構成とされている。 The gate voltage control unit 46 is configured to include a driver 201a, a driver 201b, a DLL (DelayLockedLoop) 203, a delay unit 205, an XOR circuit 207, and a NOT circuit 209. The driver 201a is configured to include the MIMO 121a, the MIMO 122a, the EN switch 221a, the EN switch 222a, the XEN switch 223a, and the XEN switch 224a. The driver 201b is configured to include the MIMO 121b, the MIMO 122b, the EN switch 221b, the EN switch 222b, the XEN switch 223b, and the XEN switch 224b.
 ドライバ201aとドライバ201bは、同一の構成を有しているため、ドライバ201aを例に挙げて説明する。図6に示したドライバ201aと、図5に示したドライバ101aを比較する。図6に示したドライバ201aは、図5に示したドライバ101aに、ENスイッチ221a、ENスイッチ222a、XENスイッチ223a、XENスイッチ224aを加えた構成とされている点が異なり、他の点は同様である。 Since the driver 201a and the driver 201b have the same configuration, the driver 201a will be described as an example. The driver 201a shown in FIG. 6 and the driver 101a shown in FIG. 5 are compared. The driver 201a shown in FIG. 6 is different in that the driver 101a shown in FIG. 5 is configured by adding the EN switch 221a, the EN switch 222a, the XEN switch 223a, and the XEN switch 224a, except that the other points are the same. Is.
 ドライバ201aは、転送トランジスタ62-1に供給する転送制御信号TRT_Aを制御するドライバであり、転送制御信号TRT_AがHighのときには、電源(不図示)からの電圧Vddの電力が、転送トランジスタ62-1のゲートに供給されるように制御を行う。転送制御信号TRT_AがHighのときに、電源からの電力が供給される期間と、供給されない期間を設けるために、ENスイッチ221a、ENスイッチ222a、XENスイッチ223a、XENスイッチ224aが設けられている。 The driver 201a is a driver that controls the transfer control signal TRT_A supplied to the transfer transistor 62-1. When the transfer control signal TRT_A is High, the power of the voltage Vdd from the power supply (not shown) is the transfer transistor 62-1. Control so that it is supplied to the gate of. When the transfer control signal TRT_A is High, an EN switch 221a, an EN switch 222a, an XEN switch 223a, and a XEN switch 224a are provided to provide a period in which power is supplied from the power source and a period in which power is not supplied.
 ENスイッチ221aとENスイッチ222aは、電源からの電力が供給されないようにする期間にオンにされ、電源からの電力が供給されるようにする期間にオフにされる。XENスイッチ223aとXENスイッチ224aは、ENスイッチ221aとENスイッチ222aと逆の動作を行う。ENスイッチ221aとENスイッチ222aがオンのときには、ENスイッチ221aとENスイッチ222aはオフにされ、ENスイッチ221aとENスイッチ222aがオフのときには、ENスイッチ221aとENスイッチ222aはオンにされる。 The EN switch 221a and the EN switch 222a are turned on during the period during which the power from the power supply is not supplied, and turned off during the period during which the power from the power supply is supplied. The XEN switch 223a and the XEN switch 224a operate in the opposite manner to the EN switch 221a and the EN switch 222a. When the EN switch 221a and the EN switch 222a are on, the EN switch 221a and the EN switch 222a are turned off, and when the EN switch 221a and the EN switch 222a are off, the EN switch 221a and the EN switch 222a are turned on.
 ENスイッチは、画素駆動線47-1と画素駆動線47-2とを接続する位置にも設けられている。図6では、ENスイッチ231が、画素駆動線47-1と画素駆動線47-2とを接続する配線に設けられている。このENスイッチ231も、ENスイッチ221aやENスイッチ222aと同様に動作する。 The EN switch is also provided at a position where the pixel drive line 47-1 and the pixel drive line 47.2 are connected. In FIG. 6, the EN switch 231 is provided in the wiring connecting the pixel drive line 47-1 and the pixel drive line 47-2. This EN switch 231 also operates in the same manner as the EN switch 221a and the EN switch 222a.
 また、ドライバ201bのENスイッチ221b、ENスイッチ222b、XENスイッチ223b、XENスイッチ224bも、それぞれ、ドライバ201aのENスイッチ221a、ENスイッチ222a、XENスイッチ223a、XENスイッチ224aと同様に動作する。 Further, the EN switch 221b, EN switch 222b, XEN switch 223b, and XEN switch 224b of the driver 201b also operate in the same manner as the EN switch 221a, EN switch 222a, XEN switch 223a, and XEN switch 224a of the driver 201a, respectively.
 ENスイッチ221a、ENスイッチ222a、ENスイッチ221b、ENスイッチ222b、およびENスイッチ331のオン、オフを制御する制御信号ENは、XOR回路207からの出力とされる。XENスイッチ223a、XENスイッチ224a、XENスイッチ223b、およびXENスイッチ224bのオン、オフを制御する制御信号XENは、NOT回路209からの出力とされる。 The control signal EN that controls the ON / OFF of the EN switch 221a, EN switch 222a, EN switch 221b, EN switch 222b, and EN switch 331 is output from the XOR circuit 207. The control signal XEN that controls the on / off of the XEN switch 223a, the XEN switch 224a, the XEN switch 223b, and the XEN switch 224b is an output from the NOT circuit 209.
 図7を参照し、ゲート電圧制御部46の動作について説明する。時刻t1において、ドライバ201aへの制御信号CLK_AがHighからLowへの信号になり、ドライバ201bへの制御信号CLK_BがLowからHighへの信号となる。ドライバ201aへの制御信号CLK_AがLowの場合、ドライバ201aから出力される転送制御信号TRT_Aは、Highの信号となるため、転送トランジスタ62-1-1乃至62-1-Nのゲートへの充電が開始される。ドライバ201bへの制御信号CLK_BがHighの場合、ドライバ201bから出力される転送制御信号TRT_Bは、Lowの信号となるため、転送トランジスタ62-2-1乃至62-2-Nのゲートへの充電が開始される。 The operation of the gate voltage control unit 46 will be described with reference to FIG. 7. At time t1, the control signal CLK_A to the driver 201a becomes a signal from High to Low, and the control signal CLK_B to the driver 201b becomes a signal from Low to High. When the control signal CLK_A to the driver 201a is Low, the transfer control signal TRT_A output from the driver 201a is a High signal, so that the gates of the transfer transistors 62-1-1 to 62-1-N are charged. It will be started. When the control signal CLK_B to the driver 201b is High, the transfer control signal TRT_B output from the driver 201b is a Low signal, so that the gates of the transfer transistors 62-2-1 to 62-2-N are charged. It will be started.
 制御信号CLK_Bは、遅延部205とXOR回路207にも供給される。なお、図6では、制御信号CLK_Bが、遅延部205とXOR回路207に供給される構成を一例として示したが、制御信号CLK_Aが、遅延部205とXOR回路207に供給される構成とすることもできる。 The control signal CLK_B is also supplied to the delay unit 205 and the XOR circuit 207. Note that FIG. 6 shows a configuration in which the control signal CLK_B is supplied to the delay unit 205 and the XOR circuit 207 as an example, but the control signal CLK_A is supplied to the delay unit 205 and the XOR circuit 207. You can also.
 遅延部205は、所定の時間だけ入力された制御信号CLK_Bを遅延させ、XOR回路207に制御信号CLK_Bを供給する。ここでは、遅延部205は、時間D1だけ入力された信号を遅延して出力するとして説明を続ける。XOR回路207は、制御信号CLK_Bと、遅延部205により所定の遅延時間D1だけ遅延された制御信号CLK_Bの排他的論理和を演算する。時刻t1の時点では、XOR回路207には、Lowの制御信号CLK_Bと、遅延部205からHighの信号が供給されるため、XOR回路207の演算結果、すなわち制御信号ENは、Highの信号となる。 The delay unit 205 delays the control signal CLK_B input for a predetermined time, and supplies the control signal CLK_B to the XOR circuit 207. Here, the delay unit 205 will continue the description assuming that the signal input for the time D1 is delayed and output. The XOR circuit 207 calculates the exclusive OR of the control signal CLK_B and the control signal CLK_B delayed by the predetermined delay time D1 by the delay unit 205. At the time t1, the low control signal CLK_B and the high signal are supplied from the delay unit 205 to the XOR circuit 207, so that the calculation result of the XOR circuit 207, that is, the control signal EN becomes a high signal. ..
 XOR回路207からの出力は、NOT回路209に供給される。NOT回路209は、入力されるXOR回路207からの結果を、反転し、反転した結果を出力する。時刻t1の時点では、NOT回路209には、XOR回路207からのHighの信号が供給されるため、NOT回路209からの出力、すなわち制御信号XORは、Lowの信号となる。 The output from the XOR circuit 207 is supplied to the NOT circuit 209. The NOT circuit 209 inverts the input result from the XOR circuit 207 and outputs the inverted result. At the time t1, the NOT circuit 209 is supplied with the High signal from the XOR circuit 207, so that the output from the NOT circuit 209, that is, the control signal XOR becomes a Low signal.
 XOR回路207からの制御信号ENは、ドライバ201aのENスイッチ221aとENスイッチ222a、ドライバ201bのENスイッチ221bとENスイッチ222b、およびENスイッチ231に供給される。これらのENスイッチは、時刻t1において、制御信号ENとしてHighの信号が供給されるため、オンの状態となる。 The control signal EN from the XOR circuit 207 is supplied to the EN switch 221a and the EN switch 222a of the driver 201a, the EN switch 221b and the EN switch 222b of the driver 201b, and the EN switch 231. Since these EN switches are supplied with a High signal as the control signal EN at time t1, they are turned on.
 NOT回路209からの制御信号XENは、ドライバ201aのXENスイッチ223aとXENスイッチ224a、ドライバ201bのXENスイッチ223bとXENスイッチ224bに供給される。これらのXENスイッチは、時刻t1において、制御信号XENとしてLowの信号が供給されるため、オフの状態となる。 The control signal XEN from the NOT circuit 209 is supplied to the XEN switch 223a and the XEN switch 224a of the driver 201a, and the XEN switch 223b and the XEN switch 224b of the driver 201b. Since these XEN switches are supplied with a Low signal as the control signal XEN at time t1, they are turned off.
 時刻t1から遅延時間D1だけ時間が経過した時刻t2において、遅延部205からの信号がLowからHighに変わり、XOR回路207からの制御信号ENが、HighからLowに変わり、NOT回路209からの制御信号XENが、LowからHighに変わる。このように制御信号が変わることで、ENスイッチ221a、ENスイッチ222a、ENスイッチ221b、ENスイッチ222b、およびENスイッチ231は、オフの状態になり、XENスイッチ223a、XENスイッチ224a、XENスイッチ223b、およびXENスイッチ224bは、オンの状態になる。 At time t2, when the delay time D1 has elapsed from time t1, the signal from the delay unit 205 changes from Low to High, the control signal EN from the XOR circuit 207 changes from High to Low, and the control from the NOT circuit 209. The signal XEN changes from Low to High. By changing the control signal in this way, the EN switch 221a, EN switch 222a, EN switch 221b, EN switch 222b, and EN switch 231 are turned off, and the XEN switch 223a, XEN switch 224a, and XEN switch 223b, And the XEN switch 224b is turned on.
 このように、制御信号ENは、遅延部205の遅延時間D1の間、Highにされる信号である。制御信号ENがHighのときには、ENスイッチがオンにされる。ENスイッチは、遅延時間D1の間、オンにされていることになる。このENスイッチがオンにされている時間は、電荷が再利用されている期間である。 As described above, the control signal EN is a signal that is set to High during the delay time D1 of the delay unit 205. When the control signal EN is High, the EN switch is turned on. The EN switch will be on during the delay time D1. The time this EN switch is on is the period during which the charge is being reused.
 時刻t1において、ドライバ201aは転送制御信号TRT_AとしてHighの信号を出す状態であるため、転送トランジスタ62-1-1乃至62-1-Nのゲートは、それぞれ充電される状態である。一方で、時刻t1において、ドライバ201bは転送制御信号TRT_BとしてLowの信号を出す状態であるため、転送トランジスタ62-2-1乃至62-2-Nのゲートは、それぞれ放電される状態である。 At time t1, the driver 201a is in a state of outputting a High signal as the transfer control signal TRT_A, so that the gates of the transfer transistors 62-1-1 to 62-1-N are in a state of being charged, respectively. On the other hand, at time t1, since the driver 201b outputs a low signal as the transfer control signal TRT_B, the gates of the transfer transistors 62-2-1 to 62-2-N are in a state of being discharged, respectively.
 このような充電と放電が行われる状態のときに、ENスイッチ231がオンにされる(閉じられる)と、転送トランジスタ62-2-1乃至62-2-Nに充電されていた電荷が、ENスイッチ231を介して、転送トランジスタ62-1-1乃至62-1-N側に移動し、転送トランジスタ62-1-1乃至62-1-Nのゲートが充電される。 When the EN switch 231 is turned on (closed) in such a state where charging and discharging are performed, the electric charge charged in the transfer transistors 62-2-1 to 62-2-N is EN. It moves to the transfer transistors 62-1-1 to 62-1-N side via the switch 231 and charges the gates of the transfer transistors 62-1-1 to 62-1-N.
 時刻t1においては、転送トランジスタ62-2-1乃至62-2-Nは、電圧Vddであり、転送トランジスタ62-1-1乃至62-1-Nは、電圧Vss(0V)である。よって、十分な時間、ENスイッチ231が閉じられていれば、転送トランジスタ62-1-1乃至62-1-Nと転送トランジスタ62-2-1乃至62-2-Nの電圧は等しくなり、中間電位である電圧Vdd/2となる。 At time t1, the transfer transistors 62-2-1 to 62-2-N have a voltage Vdd, and the transfer transistors 62-1-1 to 62-1-N have a voltage Vss (0V). Therefore, if the EN switch 231 is closed for a sufficient time, the voltages of the transfer transistors 62-1-1 to 62-1-N and the transfer transistors 62-2-1 to 62-2-N become equal, and the voltage is intermediate. The voltage is Vdd / 2, which is the potential.
 時刻t1から時刻t2の間は、XENスイッチは開放されている状態のため、ドライバ102a(電源(不図示))から転送トランジスタ62-1-1乃至62-1-Nに流れる電流はない状態である。よって、時刻t1から時刻t2の間に流れる電流を削減することができ、消費電力を低減させることができる。 Since the XEN switch is open between time t1 and time t2, there is no current flowing from the driver 102a (power supply (not shown)) to the transfer transistors 62-1-1 to 62-1-N. be. Therefore, the current flowing between the time t1 and the time t2 can be reduced, and the power consumption can be reduced.
 時刻t1から時刻t2の間は、ドライバ102bは接地(電位Vss)されている状態であるが、XENスイッチは開放されている状態のため、転送トランジスタ62-2-1乃至62-2-Nからドライバ102bに流れる電流はない状態である。よって、時刻t1から時刻t2の間、ENスイッチ231を介して、転送トランジスタ62-2-1乃至62-2-Nから転送トランジスタ62-1-1乃至62-1-Nに電流を流すことができる。 From time t1 to time t2, the driver 102b is in the grounded state (potential Vss), but the XEN switch is open, so the transfer transistors 62-2-1 to 62-2-N There is no current flowing through the driver 102b. Therefore, from time t1 to time t2, a current can be passed from the transfer transistors 62-2-1 to 62-2-N to the transfer transistors 62-1-1 to 62-1-N via the EN switch 231. can.
 転送トランジスタ62のそれぞれが中間電位になったタイミングで、遅延部205からの信号が、LowからHighに変わるように遅延部205の遅延時間D1は設定されている。時刻t2において、XOR回路207からの制御信号ENがLowになるため、ENスイッチは開放され、XENスイッチが閉じられる状態に移行される。 The delay time D1 of the delay unit 205 is set so that the signal from the delay unit 205 changes from Low to High at the timing when each of the transfer transistors 62 reaches the intermediate potential. At time t2, the control signal EN from the XOR circuit 207 becomes Low, so that the EN switch is opened and the XEN switch is closed.
 ENスイッチが開放され、XENスイッチが閉じられている状態のときは、ドライバ201から、電源からの電圧が転送トランジスタ62側にかけられる状態である。時刻t2においては、ドライバ201aから転送トランジスタ62-1-1乃至62-1-Nに電源からの電圧がかけられ、電圧Vddになるまで充電が行われる。ドライバ201b側は、接地された状態となり、転送トランジスタ62-2-1乃至62-2-Nは、電圧Vssになるまで放電される。 When the EN switch is open and the XEN switch is closed, the voltage from the power supply is applied to the transfer transistor 62 side from the driver 201. At time t2, a voltage from a power source is applied to the transfer transistors 62-1-1 to 62-1-N from the driver 201a, and charging is performed until the voltage reaches Vdd. The driver 201b side is in a grounded state, and the transfer transistors 62-2-1 to 62-2-N are discharged until the voltage Vss is reached.
 このように、充放電が行われる。転送トランジスタ62-1に注目した場合、時刻t1から時刻t3の間に、電位Vss(0V)から電位Vddとなるまで充電が行われるが、その半分の電圧Vdd/2は、転送トランジスタ62-2が放電した電荷を蓄積することで充電され、残りの電圧Vdd/2は、電源からの供給により充電される。 In this way, charging and discharging are performed. When paying attention to the transfer transistor 62-1, charging is performed from the potential Vss (0V) to the potential Vdd between the time t1 and the time t3, but the half voltage Vdd / 2 is the transfer transistor 62-2. Is charged by accumulating the discharged charge, and the remaining voltage Vdd / 2 is charged by being supplied from the power source.
 例えば、図5に示したゲート電圧制御部46’の場合、電位Vssから電位Vddになるまで、電源からの供給により充電が行われるが、図6に示したゲート電圧制御部46によれば、電位Vdd/2から電位Vddになるまで、電源からの供給による充電が行われる。よって、消費電力が低減される。 For example, in the case of the gate voltage control unit 46'shown in FIG. 5, charging is performed by supply from a power source from the potential Vss to the potential Vdd, but according to the gate voltage control unit 46 shown in FIG. Charging is performed by supplying from a power source from the potential Vdd / 2 to the potential Vdd. Therefore, the power consumption is reduced.
 時刻t3から時刻t4までは、転送トランジスタ62-1側は、電位Vddの状態が維持されるため、PD61からFD63への電荷の転送が行われる。 From time t3 to time t4, the transfer transistor 62-1 side maintains the state of the potential Vdd, so that the electric charge is transferred from PD61 to FD63.
 時刻t4において、制御信号CLK_Aは、HighからLowに変わり、制御信号CLK_Bは、LowからHighに変わり、制御信号ENは、LowからHighに変わり、制御信号XORは、HighからLowに変わる。時刻t4から遅延時間D1だけ経過した時刻t5において、制御信号ENは、HighからLowに変わり、制御信号XORは、LowからHighに変わる。 At time t4, the control signal CLK_A changes from High to Low, the control signal CLK_B changes from Low to High, the control signal EN changes from Low to High, and the control signal XOR changes from High to Low. At time t5, when the delay time D1 has elapsed from time t4, the control signal EN changes from High to Low, and the control signal XOR changes from Low to High.
 時刻t4から、転送トランジスタ62-1側では放電が開始され、転送トランジスタ62-2側では充電が開始される。時刻t4から時刻t5においては、転送トランジスタ62-1側で充電されていた電荷が、転送トランジスタ62-2側に移動し、転送トランジスタ62-2が充電される状態となる。 From time t4, discharging is started on the transfer transistor 62-1 side, and charging is started on the transfer transistor 62-2 side. From time t4 to time t5, the electric charge charged on the transfer transistor 62-1 side moves to the transfer transistor 62-2 side, and the transfer transistor 62-2 is charged.
 時刻t5から時刻t6においては、転送トランジスタ62-2は、ドライバ201bを介して電源からの電圧Vddがかけられる状態であり、電源からの電圧Vddにより充電が行われる。時刻t5から時刻t6においては、ドライバ201aが接地されている状態となり、転送トランジスタ62-1の放電が行われている状態である。 From time t5 to time t6, the transfer transistor 62-2 is in a state where the voltage Vdd from the power supply is applied via the driver 201b, and the transfer transistor 62-2 is charged by the voltage Vdd from the power supply. From time t5 to time t6, the driver 201a is in a state of being grounded, and the transfer transistor 62-1 is in a state of being discharged.
 このように、一方の転送トランジスタ62が充電されているとき、他方の転送トランジスタ62は放電される関係がある転送トランジスタ62を備える画素50の場合、放電する転送トランジスタ62に充電されている電荷が、充電される転送トランジスタ62に移動する期間を設けることで、消費電力を低減させることができる。そのような期間の制御は、ENスイッチやXENスイッチを設け、ENスイッチやXENスイッチの開閉を制御することで行うことができる。 As described above, when one transfer transistor 62 is charged, in the case of the pixel 50 including the transfer transistor 62 having a relationship with the other transfer transistor 62 being discharged, the charge charged in the discharging transfer transistor 62 is charged. By providing a period for moving to the transfer transistor 62 to be charged, the power consumption can be reduced. Control of such a period can be performed by providing an EN switch or a XEN switch and controlling the opening / closing of the EN switch or the XEN switch.
 制御信号ENがオンにされている期間は、遅延部205の遅延時間D1と略同じとなる。この遅延時間D1が適切に設定されていないと、電圧が電圧Vdd/2まで充電されなかったり、電圧Vdd/2になった後、電圧Vdd/2が維持される時間が長くなったりする。このことについて、図8を参照して説明する。 The period during which the control signal EN is turned on is substantially the same as the delay time D1 of the delay unit 205. If this delay time D1 is not properly set, the voltage may not be charged up to the voltage Vdd / 2, or the voltage Vdd / 2 may be maintained for a long time after reaching the voltage Vdd / 2. This will be described with reference to FIG.
 図8の上段には、制御信号ENのパルスを示した。制御信号ENのパルス幅が、遅延時間D1となる。図8の2段目に、制御信号ENのパルス幅が短い場合、換言すれば、遅延時間が短い場合の転送トランジスタ62のゲートの電位の変化を示す。短い遅延時間を遅延時間D11と表す。遅延時間D11の場合、電圧Vdd/2になる前に、電荷の再利用による充電が終了し、電源からの充電が開始される。この電源からの充電の期間を、電源充電期間C11とする。 The upper part of FIG. 8 shows the pulse of the control signal EN. The pulse width of the control signal EN becomes the delay time D1. The second stage of FIG. 8 shows the change in the potential of the gate of the transfer transistor 62 when the pulse width of the control signal EN is short, in other words, when the delay time is short. The short delay time is referred to as a delay time D11. In the case of the delay time D11, charging by reusing the electric charge is completed and charging from the power source is started before the voltage becomes Vdd / 2. The period of charging from this power source is defined as the power supply charging period C11.
 遅延時間D11が不十分である場合、電圧Vdd/2まで電荷を再利用できず、電源充電期間C11が長くなってしまうため、消費電力の低減効果が薄れてしまう。 If the delay time D11 is insufficient, the electric charge cannot be reused up to the voltage Vdd / 2, and the power supply charging period C11 becomes long, so that the effect of reducing power consumption diminishes.
 図8の3段目に、制御信号ENのパルス幅が適切である場合、換言すれば、遅延時間が適切である場合の転送トランジスタ62のゲートの電位の変化を示す。適切な遅延時間を遅延時間D12と表す。遅延時間D12の場合、電圧Vdd/2になったときに、電荷の再利用による充電が終了し、電源からの充電が開始される。この電源からの充電の期間を、電源充電期間C12とする。 The third stage of FIG. 8 shows the change in the potential of the gate of the transfer transistor 62 when the pulse width of the control signal EN is appropriate, in other words, when the delay time is appropriate. The appropriate delay time is represented by the delay time D12. In the case of the delay time D12, when the voltage reaches Vdd / 2, charging by reusing the electric charge is completed, and charging from the power source is started. The period of charging from this power source is defined as the power supply charging period C12.
 遅延時間D12が適切である場合、電圧Vdd/2まで電荷を再利用でき、電源充電期間C12も短くすることができるため、消費電力の低減効果を最も得ることができる。 If the delay time D12 is appropriate, the electric charge can be reused up to the voltage Vdd / 2, and the power supply charging period C12 can also be shortened, so that the effect of reducing power consumption can be obtained most.
 図8の4段目に、制御信号ENのパルス幅が太い場合、換言すれば、遅延時間が長い場合の転送トランジスタ62のゲートの電位の変化を示す。長い遅延時間を遅延時間D13と表す。遅延時間D13の場合、電圧Vdd/2になった後も、電荷の再利用による充電の状態のままの時間があり、その後電源からの充電が開始される。この電源からの充電の期間を、電源充電期間C13とする。 The fourth stage of FIG. 8 shows the change in the potential of the gate of the transfer transistor 62 when the pulse width of the control signal EN is large, in other words, when the delay time is long. The long delay time is referred to as a delay time D13. In the case of the delay time D13, even after the voltage becomes Vdd / 2, there is a time in which the charge remains in the charged state due to the reuse of the electric charge, and then the charge from the power source is started. The period of charging from this power source is defined as the power supply charging period C13.
 遅延時間D13が長い場合、電圧Vdd/2まで電荷を再利用できるが、電圧Vdd/2になった後も、電源からの充電に移行せずに、無駄な時間が発生してしまう可能性がある。電源充電期間C13は、電源充電期間C12と同じであるため、消費電力の低減効果が得ることはできる。遅延時間D13と電源充電期間C13を合わせた充電期間は長くなる可能性はある。 If the delay time D13 is long, the charge can be reused up to the voltage Vdd / 2, but even after the voltage reaches Vdd / 2, there is a possibility that wasteful time will occur without shifting to charging from the power supply. be. Since the power supply charging period C13 is the same as the power supply charging period C12, the effect of reducing power consumption can be obtained. The total charging period of the delay time D13 and the power supply charging period C13 may be long.
 このようなことから、遅延時間D1は、適切な時間に設定されるのが良い。適切な時間とは、充電される側の電位が中間電位になるまで電荷の再利用による充電が行われ、中間電位になった時点で、電源からの充電に切り替わるようにすることができる時間である。 For this reason, the delay time D1 should be set to an appropriate time. The appropriate time is the time during which charging is performed by reusing the electric charge until the potential on the side to be charged reaches the intermediate potential, and when the potential reaches the intermediate potential, the charging can be switched to the charging from the power supply. be.
 遅延時間D1は、遅延部205の遅延時間である。よって、遅延部205の遅延時間が適切な遅延時間に設定され、その遅延時間が、温度や電圧の変化などによりずれることがないように制御されているのが望ましい。図6に示したゲート電圧制御部46は、遅延部205の遅延時間が、温度や電圧の変化などにより変わることがないように制御するために、DLL203が備えられている。すなわちDLL203は、遅延部205の遅延時間を制御する時間制御部として機能する。 The delay time D1 is the delay time of the delay unit 205. Therefore, it is desirable that the delay time of the delay unit 205 is set to an appropriate delay time, and the delay time is controlled so as not to be deviated by a change in temperature or voltage. The gate voltage control unit 46 shown in FIG. 6 is provided with a PLL 203 in order to control the delay time of the delay unit 205 so that the delay time does not change due to changes in temperature or voltage. That is, the PLL 203 functions as a time control unit that controls the delay time of the delay unit 205.
 DLL203は、例えば、図9に示すような構成を有する。DLL203は、位相検出部321、チャ-ジポンプ322、遅延部323を含む構成とされている。チャ-ジポンプ322に、LPF(Low Pass Filter)を含ませ平滑化がなされる構成としても良い。DLL203の位相検出部321と遅延部323には、入力信号が入力される。入力信号は、例えば、1GHzのクロック信号である。 DLL203 has, for example, a configuration as shown in FIG. The PLL 203 is configured to include a phase detection unit 321, a charge pump 322, and a delay unit 323. The charge pump 322 may be configured to include an LPF (Low Pass Filter) for smoothing. An input signal is input to the phase detection unit 321 and the delay unit 323 of the PLL 203. The input signal is, for example, a 1 GHz clock signal.
 遅延部323は、所定の時間、入力信号を遅延させ、遅延させた入力信号を、位相検出部321に戻す。位相検出部321は、入力された入力信号と、遅延された入力信号との位相差を検出し、チャ-ジポンプ322に出力する。チャ-ジポンプ322は、位相差に応じたレベルの電圧を、遅延部323と、図9には図示していない遅延部205(図6)にバイアス電圧として出力する。チャ-ジポンプ322からの出力は、LPFにより高周波成分が除去された出力とされても良い。 The delay unit 323 delays the input signal for a predetermined time, and returns the delayed input signal to the phase detection unit 321. The phase detection unit 321 detects the phase difference between the input signal and the delayed input signal, and outputs the phase difference to the charge pump 322. The charge pump 322 outputs a voltage at a level corresponding to the phase difference to the delay unit 323 and the delay unit 205 (FIG. 6) (not shown in FIG. 9) as a bias voltage. The output from the charge pump 322 may be the output from which the high frequency component has been removed by the LPF.
 チャ-ジポンプ322からの出力は、その時点での位相差に応じた電圧に基づいた遅延制御信号(バイアス電圧)として、遅延部205に供給される。DLL203に含まれる遅延部323は、遅延部205(図6)と同様の構成することができる。遅延部323は、図10に示した遅延部205の構成と同様の構成とされている。 The output from the charge pump 322 is supplied to the delay unit 205 as a delay control signal (bias voltage) based on the voltage corresponding to the phase difference at that time. The delay unit 323 included in the PLL 203 can be configured in the same manner as the delay unit 205 (FIG. 6). The delay unit 323 has the same configuration as the delay unit 205 shown in FIG.
 図10は、遅延部205の一例の構成を示す図である。遅延部205は、NOT回路351-1、NOT回路351-2、電流源352-1、電流源352-2を含む構成とされている。図9に示したDLL203の遅延部323も、NOT回路333-1、NOT回路333-2、電流源334-1、電流源334-2を含み、遅延部205と同様の構成とされている。 FIG. 10 is a diagram showing the configuration of an example of the delay portion 205. The delay unit 205 is configured to include a NOT circuit 351-1, a NOT circuit 351-2, a current source 352-1 and a current source 352-2. The delay section 323 of the PLL 203 shown in FIG. 9 also includes a NOT circuit 333-1, a NOT circuit 333.2, a current source 334-1 and a current source 334-2, and has the same configuration as the delay section 205.
 遅延部205の構成は、一例であり、2個のNOT回路351を含む構成に限定される記載ではない。例えば、2以上のNOT回路351を含む構成としても良い。 The configuration of the delay unit 205 is an example, and is not limited to a configuration including two NOT circuits 351. For example, it may be configured to include two or more NOT circuits 351.
 遅延部205の遅延量が1nsである場合、DLL203の遅延部323の遅延量も1nsに設定されている。DLL203は、遅延部323の遅延量が1ns以外の遅延量になった場合、1nsとの差分が、位相検出部321で位相差として検出され、その位相差を無くすためのバイアス電圧が、チャ-ジポンプ322から出力される。 When the delay amount of the delay unit 205 is 1 ns, the delay amount of the delay unit 323 of the DDL 203 is also set to 1 ns. In the DDL 203, when the delay amount of the delay unit 323 becomes a delay amount other than 1 ns, the difference from 1 ns is detected as the phase difference by the phase detection unit 321 and the bias voltage for eliminating the phase difference is the char. It is output from the dipump 322.
 チャ-ジポンプ322からのバイアス電圧は、遅延部323の電流源334に供給される。電流源324が、バイアス電圧により調整されることで、遅延部323の遅延量が調整される。遅延量が調整されることで、1nsになった場合、位相検出部321で位相が検出されなくなる。このようにして、DLL203内で、遅延部323で1nsの遅延量が得られるようにするためのバイアス電圧が生成される。 The bias voltage from the charge pump 322 is supplied to the current source 334 of the delay unit 323. By adjusting the current source 324 by the bias voltage, the delay amount of the delay unit 323 is adjusted. By adjusting the delay amount, when it becomes 1 ns, the phase is not detected by the phase detection unit 321. In this way, a bias voltage is generated in the PLL 203 so that the delay portion 323 can obtain a delay amount of 1 ns.
 DLL203で生成されたバイアス電圧は、遅延部205(図10)の電流源352にも供給される。遅延部205も、遅延部323と同じく、電流源352が、バイアス電圧により調整されることで、遅延部205としての遅延量が調整される。 The bias voltage generated by the PLL 203 is also supplied to the current source 352 of the delay portion 205 (FIG. 10). Similarly to the delay unit 323, the delay unit 205 also adjusts the delay amount as the delay unit 205 by adjusting the current source 352 by the bias voltage.
 DLL203を設け、DLL203からのバイアス電圧で、遅延部205の遅延量が調整されるようにすることで、温度や電圧が変化しても、遅延量を一定値に保つことができる。 By providing the PLL 203 and adjusting the delay amount of the delay unit 205 with the bias voltage from the DL 203, the delay amount can be maintained at a constant value even if the temperature or voltage changes.
 遅延部205の遅延量が、所望とされる遅延量で保たれることで、電荷を再利用した充電期間を適切な期間で常に行えるようにすることができる。よって、消費電力を低減し、充放電にかかる時間を適切な時間とすることができる。 By keeping the delay amount of the delay unit 205 at the desired delay amount, it is possible to always perform the charging period in which the electric charge is reused for an appropriate period. Therefore, the power consumption can be reduced and the time required for charging / discharging can be set to an appropriate time.
 <ゲート電圧制御部の他の構成>
 図6に示したゲート電圧制御部46は、画素アレイ部41の所定の1列に配置されている複数の画素50に対して1つのENスイッチ231を設け、そのENスイッチ231を制御する構成を示した。
<Other configurations of gate voltage control unit>
The gate voltage control unit 46 shown in FIG. 6 is configured to provide one EN switch 231 for a plurality of pixels 50 arranged in a predetermined row of the pixel array unit 41 and control the EN switch 231. Indicated.
 画素アレイ部41に設けられるENスイッチ231は、1列において複数設けられていても良い。例えば、図11に示すように、画素アレイ部41の所定の列に配置されている画素50の両端に、ENスイッチ231を設ける構成としても良い。 A plurality of EN switches 231 provided in the pixel array unit 41 may be provided in one row. For example, as shown in FIG. 11, EN switches 231 may be provided at both ends of the pixels 50 arranged in a predetermined row of the pixel array unit 41.
 図7に示したゲート電圧制御部46を含む構成においては、画素アレイ部41の所定の列に配置されている画素50のドライバ201に近い側にENスイッチ231-1が設けられ、ドライバ201から遠い側にENスイッチ231-2が設けられている。換言すれば、ドライバ201と転送トランジスタ62-1-1(転送トランジスタ62-1-2)との間の位置に、ENスイッチ231-1が設けられ、転送トランジスタ62-1-N(転送トランジスタ62-2-N)の外側(カラム処理部43がある側)に、ENスイッチ231-2が設けられている。 In the configuration including the gate voltage control unit 46 shown in FIG. 7, the EN switch 231-1 is provided on the side of the pixels 50 arranged in a predetermined row of the pixel array unit 41 near the driver 201, and the EN switch 231-1 is provided from the driver 201. An EN switch 231-2 is provided on the far side. In other words, an EN switch 231-1 is provided at a position between the driver 201 and the transfer transistor 62-1-1 (transfer transistor 62-1-2), and the transfer transistor 62-1-N (transfer transistor 62) is provided. An EN switch 231-2 is provided on the outside of −2-N) (the side where the column processing unit 43 is located).
 画素アレイ部41に設けられるENスイッチ231は、両端にそれぞれ設ける(2個設ける)だけでなく、さらに複数のENスイッチ231が設けられても良い。複数の転送トランジスタ62毎に1つのENスイッチ231を設けるようにしても良い。例えば、5個の転送トランジスタ62毎にENスイッチ231を設けるようにしても良い。また例えば、転送トランジスタ62毎にENスイッチ231を設けても良い。 The EN switches 231 provided in the pixel array unit 41 are not only provided at both ends (two are provided), but a plurality of EN switches 231 may be further provided. One EN switch 231 may be provided for each of the plurality of transfer transistors 62. For example, an EN switch 231 may be provided for every five transfer transistors 62. Further, for example, an EN switch 231 may be provided for each transfer transistor 62.
 複数のENスイッチ231を設けることで、電荷を再利用して充電を行う時間を短縮することができる。 By providing a plurality of EN switches 231, it is possible to shorten the time for reusing the electric charge and performing charging.
 図6では、ドライバ201が、画素アレイ部41の所定の列の一端に設けられている例を示したが、図12に示すように両端に設けられていても良い。図12に示した構成では、ドライバ201a-1は、転送トランジスタ62-1-1側に設けられ、ドライバ201b-1は、転送トランジスタ62-2-1側に設けられている。ドライバ201a-2は、転送トランジスタ62-1-1N側に設けられ、ドライバ201b-2は、転送トランジスタ62-2-N側に設けられている。 Although FIG. 6 shows an example in which the driver 201 is provided at one end of a predetermined row of the pixel array unit 41, it may be provided at both ends as shown in FIG. In the configuration shown in FIG. 12, the driver 201a-1 is provided on the transfer transistor 62-1-1 side, and the driver 201b-1 is provided on the transfer transistor 62-2-1 side. The driver 201a-2 is provided on the transfer transistor 62-1-1N side, and the driver 201b-2 is provided on the transfer transistor 62-2-N side.
 このようにドライバ201を、画素アレイ部41の列方向の両端に設ける構成とすることで、充放電にかかる時間を短縮することができる。 By providing the driver 201 at both ends of the pixel array unit 41 in the column direction in this way, the time required for charging and discharging can be shortened.
 <ゲート電圧制御部の横繋ぎ構成について>
 図6では、画素アレイ部41の所定の一列に配置されている画素50に関するゲート電圧制御部46を示したが、画素アレイ部41には、画素50が複数列配置されている。画素アレイ部41に配置されている全画素50に対して、ゲート電圧制御部46を1つ設ける構成としても良い。この場合、列方向だけで無く、行方向に関しても、転送制御信号TRT_Aや転送制御信号TRT_Bを供給できるように配線が設けられる。
<About the horizontal connection configuration of the gate voltage control unit>
FIG. 6 shows a gate voltage control unit 46 for pixels 50 arranged in a predetermined row of the pixel array unit 41, but the pixel array unit 41 has a plurality of rows of pixels 50. One gate voltage control unit 46 may be provided for all the pixels 50 arranged in the pixel array unit 41. In this case, wiring is provided so that the transfer control signal TRT_A and the transfer control signal TRT_B can be supplied not only in the column direction but also in the row direction.
 複数の列毎に、ゲート電圧制御部46を設けても良い。例えば、5列毎に、その5列に配置されている画素50に対する転送制御信号TRT_Aや転送制御信号TRT_Bを出力するゲート電圧制御部46を1つ設ける構成としても良い。 A gate voltage control unit 46 may be provided for each of a plurality of rows. For example, one gate voltage control unit 46 that outputs a transfer control signal TRT_A or a transfer control signal TRT_B for the pixels 50 arranged in the five columns may be provided for every five columns.
 列毎にゲート電圧制御部46を設けてもよい。複数の列毎、または列毎にゲート電圧制御部46を設けた場合の構成について説明を加える。 A gate voltage control unit 46 may be provided for each row. A description will be given of the configuration when the gate voltage control unit 46 is provided for each of a plurality of columns or for each column.
 図13は、列毎にゲート電圧制御部46を設けた場合の構成を示している。列毎にゲート電圧制御部46を設けた場合であっても、DLL203は、1つ設けられ、複数のゲート電圧制御部46に共通してバイアス電圧を供給する構成とすることができる。 FIG. 13 shows a configuration when a gate voltage control unit 46 is provided for each row. Even when the gate voltage control unit 46 is provided for each row, one DLL 203 can be provided and a bias voltage can be supplied in common to a plurality of gate voltage control units 46.
 DLL203からのバイアス電圧を供給するために、DLL203と遅延部205-1乃至205-Mを接続する配線261が設けられている。 In order to supply the bias voltage from the PLL 203, the wiring 261 connecting the PLL 203 and the delay portions 205-1 to 205-M is provided.
 画素アレイ部41の1列目に配置されている画素50には、1列目に配置されている画素50で共有されるドライバ201a-1とドライバ201b-1が設けられ、これらのドライバ201で共有される遅延部205-1とXOR回路207-1が設けられている。ドライバ201a-1とドライバ201b-2を接続する配線に、ENスイッチ231-1が設けられている。 The pixels 50 arranged in the first row of the pixel array unit 41 are provided with the driver 201a-1 and the driver 201b-1 shared by the pixels 50 arranged in the first row, and these drivers 201 provide. A shared delay section 205-1 and an XOR circuit 207-1 are provided. An EN switch 231-1 is provided in the wiring connecting the driver 201a-1 and the driver 201b-2.
 なお、図示していないが、NOT回路209も列毎に設けられ、列毎に設けられているドライバ201を制御する構成とされている。ENスイッチ231は、図11を参照して説明したように、1列に複数設けられていても良い。このようなことは、以下の説明においても同様である。 Although not shown, a NOT circuit 209 is also provided for each row, and is configured to control the driver 201 provided for each row. As described with reference to FIG. 11, a plurality of EN switches 231 may be provided in one row. This also applies to the following description.
 同様に、画素アレイ部41の2列目に配置されている画素50には、2列目に配置されている画素50で共有されるドライバ201a-2とドライバ201b-2が設けられ、これらのドライバ201で共有される遅延部205-2とXOR回路207-2が設けられている。ドライバ201a-1とドライバ201b-2を接続する配線に、ENスイッチ231-2が設けられている。 Similarly, the pixels 50 arranged in the second row of the pixel array unit 41 are provided with the driver 201a-2 and the driver 201b-2 shared by the pixels 50 arranged in the second row, and these are provided. A delay section 205-2 and an XOR circuit 207-2 shared by the driver 201 are provided. An EN switch 231-2 is provided in the wiring connecting the driver 201a-1 and the driver 201b-2.
 同様に、画素アレイ部41のM列目に配置されている画素50には、M列目に配置されている画素50で共有されるドライバ201a-Mとドライバ201b-Mが設けられ、これらのドライバ201で共有される遅延部205-MとXOR回路207-Mが設けられている。ドライバ201a-Mとドライバ201b-Mを接続する配線に、ENスイッチ231-Mが設けられている。 Similarly, the pixels 50 arranged in the M-th row of the pixel array unit 41 are provided with the drivers 201a-M and the drivers 201b-M shared by the pixels 50 arranged in the M-th row, and these are provided. A delay section 205-M and an XOR circuit 207-M shared by the driver 201 are provided. An EN switch 231-M is provided in the wiring connecting the driver 201a-M and the driver 201b-M.
 このように、列毎に、ゲート電圧制御部46を設けた構成とすることもできる。このように複数のゲート電圧制御部46を設けた場合、個々のゲート電圧制御部46のばらつきがあると、遅延部205の遅延時間が個々のゲート電圧制御部46で異なるようなことが発生する可能性がある。図8を再度参照して遅延部205の遅延時間が異なる場合に発生するノイズについて説明を加える。 In this way, the gate voltage control unit 46 may be provided for each row. When a plurality of gate voltage control units 46 are provided in this way, if there are variations in the individual gate voltage control units 46, the delay time of the delay unit 205 may differ among the individual gate voltage control units 46. there is a possibility. With reference to FIG. 8 again, the noise generated when the delay time of the delay unit 205 is different will be described.
 仮に、遅延部205-1の遅延時間が、遅延時間D11であり、遅延部205-2の遅延時間が、遅延時間D12であり、遅延部205-Mの遅延時間が、遅延時間D13であった場合、転送トランジスタ62のオン、オフのタイミングが、それぞれ異なることになる。このようなタイミングのズレは、PD61からFD63(図3)に電荷を転送するタイミングのズレとなる。このようなズレが発生すると、列毎に異なるタイミングで転送が行われることになる。このようなズレは、距離ノイズとして測距性能に影響を与える可能性がある。 Temporarily, the delay time of the delay unit 205-1 is the delay time D11, the delay time of the delay unit 205-2 is the delay time D12, and the delay time of the delay unit 205-M is the delay time D13. In this case, the on and off timings of the transfer transistor 62 will be different. Such a timing shift is a timing shift in which the electric charge is transferred from the PD 61 to the FD 63 (FIG. 3). If such a deviation occurs, the transfer will be performed at different timings for each column. Such deviation may affect the distance measurement performance as distance noise.
 よって、各遅延部205における遅延時間にずれが生じないように構成されるのが望ましい。図13では、遅延部205をカラム毎にショ-トすることで、プロセスばらつきを平均化する構成としてある。図13を参照するに、遅延部205-1乃至205-Mの入力側は、配線251-1により接続されることによりショートされている。遅延部205-1乃至205-Mの出力側は、配線252-1により接続されることによりショートされている。 Therefore, it is desirable that the delay time in each delay unit 205 is configured so as not to be deviated. In FIG. 13, the delay portion 205 is shorted for each column to average the process variation. Referring to FIG. 13, the input side of the delay portions 205-1 to 205-M is short-circuited by being connected by the wiring 251-1. The output sides of the delay portions 205-1 to 205-M are short-circuited by being connected by the wiring 252-1.
 図13に示した例では、カラム毎に、遅延部205の入力側と出力側の両方がショ-トされている例を示したが、図14に示すように、遅延部205の入力側のみがショ-トされている構成としても良い。図14に示した構成では、遅延部205-1乃至205-Mの入力側が、配線251-1によりショ-トされている。 In the example shown in FIG. 13, both the input side and the output side of the delay unit 205 are shorted for each column, but as shown in FIG. 14, only the input side of the delay unit 205 is shown. May be shorted. In the configuration shown in FIG. 14, the input side of the delay portions 205-1 to 205-M is shorted by the wiring 251-1.
 図15に示すように、遅延部205の出力側のみがショ-トされている構成としても良い。図15に示した構成では、遅延部205-1乃至205-Mの出力側が、配線251-2によりショ-トされている。 As shown in FIG. 15, a configuration in which only the output side of the delay unit 205 is shorted may be used. In the configuration shown in FIG. 15, the output side of the delay portions 205-1 to 205-M is shorted by the wiring 251-2.
 このように、遅延部205の入力側と出力側の少なくとも一方をショ-トした構成とすることで、プロセスばらつきを平均化することができる。例えば、図16に示すように、遅延部205-1と遅延部205-2において、プロセスばらつきが有り、遅延時間が異なる場合を考える。遅延部205-2の遅延時間の方が、遅延部205-1の遅延時間よりも長かった場合、遅延部205-1の出力が、遅延部205-2の充電を助けるために、遅延部205-2の遅延が短くなり、結果として遅延の差を小さくすることができる。 In this way, the process variation can be averaged by setting at least one of the input side and the output side of the delay unit 205 as short. For example, as shown in FIG. 16, consider a case where there is process variation in the delay unit 205-1 and the delay unit 205-2, and the delay time is different. If the delay time of the delay section 205-2 is longer than the delay time of the delay section 205-1, the output of the delay section 205-1 helps the delay section 205-2 to charge the delay section 205-2. The delay of -2 is shortened, and as a result, the difference in delay can be reduced.
 すなわち、遅延が小さい方の遅延部205が、遅延の大きい方の遅延部205の充電を助けるため、全体として遅延が平均化される。よって、遅延部205の個々の差があったとしても、平均化されることで、その差を吸収した処理を行うことができる。よって、測距ノイズの発生を抑制することができ、測距性能が低下するようなことを抑制することができる。 That is, the delay portion 205 having the smaller delay assists in charging the delay portion 205 having the larger delay, so that the delays are averaged as a whole. Therefore, even if there is an individual difference in the delay portion 205, the processing that absorbs the difference can be performed by averaging. Therefore, it is possible to suppress the generation of ranging noise and suppress the deterioration of ranging performance.
 図17を参照して、本技術を適用した場合における効果について説明する。図17は、図5に示したゲート電圧制御部46’により充放電を行った場合と、図6(図13)に示したゲート電圧制御部46により充放電を行った場合を、それぞれ示すグラフである。図17の上段に、図6に示したゲート電圧制御部46を用いたときの制御信号ENのパルスを示す。 With reference to FIG. 17, the effect when this technology is applied will be described. FIG. 17 is a graph showing a case where charging / discharging is performed by the gate voltage control unit 46'shown in FIG. 5 and a case where charging / discharging is performed by the gate voltage control unit 46 shown in FIG. 6 (FIG. 13). Is. The upper part of FIG. 17 shows the pulse of the control signal EN when the gate voltage control unit 46 shown in FIG. 6 is used.
 図17の2段目のグラフは、画素駆動線47にかかる電圧の変化であり、図7の例えば3段目の波形に該当するグラフである。 The second-stage graph in FIG. 17 is a change in voltage applied to the pixel drive line 47, and is a graph corresponding to, for example, the third-stage waveform in FIG. 7.
 図17の2,3,4段落目にそれぞれ示したグラフのうち、点線で示したグラフは、図5に示したゲート電圧制御部46’を用いた場合を表し、実線で示したグラフは、図6に示したゲート電圧制御部46を用いた場合を表す。また、図17に示しグラフは、本出願人がシミュレ-ションを行うことにより得られた結果の一例である。 Of the graphs shown in the second, third, and fourth paragraphs of FIG. 17, the graph shown by the dotted line represents the case where the gate voltage control unit 46'shown in FIG. 5 is used, and the graph shown by the solid line is The case where the gate voltage control unit 46 shown in FIG. 6 is used is shown. Further, the graph shown in FIG. 17 is an example of the result obtained by the applicant performing the simulation.
 図17の3段目のグラフは、画素駆動線47に流れる充電電流の変化を示すグラフである。点線で示したグラフは、1区間(EN信号がオンになった時刻から、次にオンになった時刻まで)において、電流が流れるピ-クが1つであるのに対して、実線で示したグラフは、2つある点が異なる。点線で示したグラフは、図5に示したゲート電圧制御部46’により、電源のみから充電を行うため、1区間において、電源からの充電が行われるピ-クが1つ現れるグラフとなる。 The third-stage graph in FIG. 17 is a graph showing changes in the charging current flowing through the pixel drive line 47. The graph shown by the dotted line is shown by the solid line, whereas there is one peak through which current flows in one section (from the time when the EN signal is turned on to the time when it is turned on next). The graph differs in two points. The graph shown by the dotted line is a graph in which one peak for charging from the power source appears in one section because the gate voltage control unit 46'shown in FIG. 5 charges only from the power source.
 実線のグラフは、図6に示したゲート電圧制御部46により、電荷の再利用による充電と、電源からの充電が行われるため、1区間において、再利用による充電が行われるピ-クと、電源からの充電が行われるピ-クの2つが現れるグラフとなる。 The solid line graph shows the peak in which the gate voltage control unit 46 shown in FIG. 6 performs charging by reusing the electric charge and charging from the power source, so that charging by reusing is performed in one section. The graph shows two peaks that are charged from the power source.
 放電時においても充電時と同じく、点線で示した図5に示したゲート電圧制御部46’に関するグラフでは、1区間に1つのピークが現れるのに対して、実線で示した図6に示したゲート電圧制御部46に関するグラフでは、1区間に2つのピークが現れるグラフとなる。 In the graph relating to the gate voltage control unit 46'shown in FIG. 5 shown by the dotted line, one peak appears in one section during the discharge as in the case of charging, whereas it is shown in FIG. 6 shown by the solid line. The graph relating to the gate voltage control unit 46 is a graph in which two peaks appear in one section.
 図17の4段目のグラフは、電源の電圧の変化を示すグラフである。点線で示したゲート電圧制御部46’を用いた場合の電源電圧のドロップ量は、約340mVppである。これに対して、実線で示したゲート電圧制御部46を用いた場合の電源電圧のドロップ量は、約200mVppである。電荷を再利用することで、340mVppのドロップ量を、200mVppまで低減することができる。 The fourth graph in FIG. 17 is a graph showing changes in the voltage of the power supply. When the gate voltage control unit 46'shown by the dotted line is used, the drop amount of the power supply voltage is about 340 mVpp. On the other hand, when the gate voltage control unit 46 shown by the solid line is used, the drop amount of the power supply voltage is about 200 mVpp. By reusing the electric charge, the drop amount of 340 mVpp can be reduced to 200 mVpp.
 図示はしていないが、図6に示したゲート電圧制御部46を用いて、電荷を再利用した充電を行うことで、電荷を再利用しない充電を行うときよりも、消費電力を約1/2にすることできることも、本出願人により確認されている。 Although not shown, by using the gate voltage control unit 46 shown in FIG. 6 for charging by reusing the electric charge, the power consumption is about 1/1 as compared with the charging without reusing the electric charge. It has also been confirmed by the applicant that it can be set to 2.
 このように、本技術によれば、画素を駆動するための消費電力を低減させることができる。温度や電圧の変化があったような場合においても、電荷の再利用期間が変化するようなことを防ぐことができる。プロセスばらつきにより、例えば測距ノイズが発生するようなことを低減することができる。電源電圧のドロップを小さくすることができる。 As described above, according to this technology, it is possible to reduce the power consumption for driving the pixels. Even when there is a change in temperature or voltage, it is possible to prevent the charge reuse period from changing. It is possible to reduce, for example, the occurrence of ranging noise due to process variation. The drop in power supply voltage can be reduced.
 <ゲート電圧制御部のさらに他の構成>
 上述した実施の形態においてはDLL203を用いる場合を例に挙げて説明したが、DLL203以外の回路を用いてバイアス電圧が制御されるようにしても良い。図18は、DLL203以外の回路を用いてバイアス電圧が制御されるようにしたゲート電圧制御部46の一例の構成を示す図である。
<Other configurations of the gate voltage control unit>
In the above-described embodiment, the case where the PLL 203 is used has been described as an example, but the bias voltage may be controlled by using a circuit other than the PLL 203. FIG. 18 is a diagram showing a configuration of an example of a gate voltage control unit 46 in which a bias voltage is controlled by using a circuit other than the DLL 203.
 図18に示したゲート電圧制御部46は、DLL203の代わりに、温度計401とDAC(Digital Analog Converter)402が用いられた構成とされている。温度計401は、ゲート電圧制御部46が備えられている例えば受光部12(図1)の温度を計測し、その計測結果(温度情報)を、DAC402に供給する。DAC402は、デジタル信号の温度情報を、アナログ信号に変換し、そのアナログ信号の温度情報を、バイアス電圧の値を設定する信号として用いる。この構成によれば、温度の変化量に応じたバイアス電圧を生成し、遅延部205を制御することができる。 The gate voltage control unit 46 shown in FIG. 18 has a configuration in which a thermometer 401 and a DAC (Digital Analog Converter) 402 are used instead of the PLL 203. The thermometer 401 measures the temperature of, for example, the light receiving unit 12 (FIG. 1) provided with the gate voltage control unit 46, and supplies the measurement result (temperature information) to the DAC 402. The DAC 402 converts the temperature information of the digital signal into an analog signal, and uses the temperature information of the analog signal as a signal for setting the value of the bias voltage. According to this configuration, it is possible to generate a bias voltage according to the amount of change in temperature and control the delay unit 205.
 DLL203に比べて、温度計401やDAC402は設置面積を小さくすることや、設計が容易であるという利点がある。一方で、DLL203は、温度変化だけでなく電源の変動にも対応できるが、温度計401やDAC402を用いた場合には、電源変動に対する抑制が十分に行えない可能性がある。設計時には、このようなことを考慮して、DLL203で構成するか、温度計401とDAC402を用いた構成とするかが決定されるようにしても良い。 Compared to DLL203, the thermometer 401 and DAC402 have the advantages of a smaller installation area and easier design. On the other hand, the PLL 203 can cope with not only the temperature change but also the fluctuation of the power supply, but when the thermometer 401 or the DAC 402 is used, there is a possibility that the fluctuation of the power supply cannot be sufficiently suppressed. At the time of design, in consideration of such a thing, it may be decided whether to configure with the PLL 203 or to use the thermometer 401 and the DAC 402.
 <分割駆動に適用した場合>
 図17を参照して説明したように、本技術を適用することで、電源電圧の瞬時的なドロップ量を低減させることができる。さらに、分割駆動に適応することで、分割駆動で問題となり得る定常的な電源電圧のドロップを半分に抑えることができる。
<When applied to split drive>
As described with reference to FIG. 17, by applying the present technology, it is possible to reduce the instantaneous drop amount of the power supply voltage. Further, by adapting to the split drive, it is possible to suppress the steady drop of the power supply voltage, which may be a problem in the split drive, by half.
 再度図13を参照する。図13を参照して説明したように、ゲート電圧制御部46(を構成する一部)は、画素アレイ部41の列毎に設けられている。図2を再度参照するに、画素アレイ部41には、行列方向に画素50が配置され、1列当たり1つの遅延部205(を含むゲート電圧制御部46)が配置されている。また、1列毎にカラム処理部43のカラムが接続されている。 Refer to FIG. 13 again. As described with reference to FIG. 13, the gate voltage control unit 46 (a part constituting the gate voltage control unit 46) is provided for each row of the pixel array unit 41. Referring to FIG. 2 again, in the pixel array unit 41, the pixels 50 are arranged in the matrix direction, and one delay unit 205 (including the gate voltage control unit 46) is arranged per row. Further, the columns of the column processing unit 43 are connected to each column.
 カラム毎の駆動タイミングをずらして駆動することを、ここでは分割駆動と称する。分割駆動の場合、列毎に駆動されるため、画素アレイ部41の全画素50を一度に駆動する場合に比べてピーク電流を小さくすることができ、瞬間的な電源ドロップを低減することができる。しかしながら、分割された電源電流が重なり合い定常的な電流となる。この定常電流によりIRドロップが発生し、定常的な電源電圧のドロップが問題となる場合がある。この課題に対して、分割駆動に本技術を組み合わせることで改善することができる。 Driving at different drive timings for each column is referred to as split drive here. In the case of the split drive, since it is driven for each column, the peak current can be reduced as compared with the case where all the pixels 50 of the pixel array unit 41 are driven at once, and the momentary power drop can be reduced. .. However, the divided power supply currents overlap to form a steady current. This steady-state current causes an IR drop, which can be a problem for a steady power supply voltage drop. This problem can be improved by combining the present technology with the split drive.
 本技術と分割駆動を組み合わせる場合、本技術により電荷を再利用することができるため、上記の定常的な電流を半分にすることができる。これにより、分割駆動で問題となり得る定常的な電源電圧のドロップを略半分に抑えることができる。 When this technology and split drive are combined, the above-mentioned steady current can be halved because the electric charge can be reused by this technology. As a result, it is possible to suppress the steady drop of the power supply voltage, which may be a problem in the divided drive, to about half.
 本出願人は、図5に示した従来方式のゲート電圧制御部で分割駆動をした場合と図13に示したゲート電圧制御部46を用いて分割駆動した場合において、定常的な電源電圧のドロップ量を測定した。 The applicant has a steady drop in the power supply voltage when the gate voltage control unit of the conventional method shown in FIG. 5 is used for the divided drive and when the gate voltage control unit 46 shown in FIG. 13 is used for the divided drive. The amount was measured.
 その結果、図5に示した従来方式のゲート電圧制御部における分割駆動ではないときの定常的な電源電圧のドロップ量は310mVであったのに対して、図13に示したゲート電圧制御部46における分割駆動における定常的な電源電圧のドロップ量は190mVであった。この結果からも、ゲート電圧制御部46を用い、分割駆動で駆動させることにより、定常的なドロップ量を低減することができることが確認された。 As a result, the steady power supply voltage drop amount in the conventional gate voltage control unit shown in FIG. 5 when not divided drive was 310 mV, whereas the gate voltage control unit 46 shown in FIG. 13 The amount of steady power supply voltage drop in the split drive was 190 mV. From this result, it was confirmed that the steady drop amount can be reduced by using the gate voltage control unit 46 and driving by split drive.
 なお、上記した実施の形態は、測距を行う撮像装置を例に挙げて説明したが、測距以外の処理を行う装置に対しても、本技術を適用できる。 Although the above-described embodiment has been described by taking an image pickup device that performs distance measurement as an example, the present technology can also be applied to a device that performs processing other than distance measurement.
 <電子機器の構成例>
 測距装置10を、測距モジュ-ルとして構成しても良い。測距装置10は、測距モジュ-ルに適用できる他、例えば、測距機能を備えるデジタルスチルカメラやデジタルビデオカメラなどの撮像装置、測距機能を備えたスマ-トフォンといった各種の電子機器に適用することができる。
<Example of electronic device configuration>
The distance measuring device 10 may be configured as a distance measuring module. The range-finding device 10 can be applied to a range-finding module, and is also applicable to various electronic devices such as an image pickup device such as a digital still camera and a digital video camera having a range-finding function, and a smartphone having a range-finding function. Can be applied.
 図19は、本技術を適用した電子機器としての、スマ-トフォンの構成例を示すブロック図である。 FIG. 19 is a block diagram showing a configuration example of a smart phone as an electronic device to which the present technology is applied.
 スマ-トフォン601は、図19に示されるように、測距モジュ-ル602、撮像装置603、ディスプレイ604、スピ-カ605、マイクロフォン606、通信モジュ-ル607、センサユニット608、タッチパネル609、および制御ユニット610が、バス611を介して接続されて構成される。また、制御ユニット610では、CPUがプログラムを実行することによって、アプリケ-ション処理部621およびオペレ-ションシステム処理部622としての機能を備える。 As shown in FIG. 19, the smart phone 601 includes a distance measuring module 602, an image pickup device 603, a display 604, a speaker 605, a microphone 606, a communication module 607, a sensor unit 608, a touch panel 609, and a touch panel 609. The control unit 610 is connected and configured via the bus 611. Further, the control unit 610 has functions as an application processing unit 621 and an operation system processing unit 622 by executing a program by the CPU.
 測距モジュ-ル602には、図1の測距装置10が適用される。例えば、測距モジュ-ル602は、スマ-トフォン601の前面に配置され、スマ-トフォン601のユ-ザを対象とした測距を行うことにより、そのユ-ザの顔や手、指などの表面形状のデプス値を測距結果として出力することができる。 The distance measuring device 10 of FIG. 1 is applied to the distance measuring module 602. For example, the distance measuring module 602 is arranged in front of the smart phone 601 and performs distance measurement for the user of the smart phone 601 such as the face, hands, and fingers of the user. The depth value of the surface shape of can be output as a distance measurement result.
 撮像装置603は、スマ-トフォン601の前面に配置され、スマ-トフォン601のユ-ザを被写体とした撮像を行うことにより、そのユ-ザが写された画像を取得する。なお、図示しないが、スマ-トフォン601の背面にも撮像装置603が配置された構成としてもよい。 The image pickup device 603 is arranged in front of the smartphone 601 and acquires an image of the user by taking an image of the user of the smartphone 601 as a subject. Although not shown, the image pickup device 603 may be arranged on the back surface of the smart phone 601.
 ディスプレイ604は、アプリケ-ション処理部621およびオペレ-ションシステム処理部622による処理を行うための操作画面や、撮像装置603が撮像した画像などを表示する。スピ-カ605およびマイクロフォン606は、例えば、スマ-トフォン601により通話を行う際に、相手側の音声の出力、および、ユ-ザの音声の集音を行う。 The display 604 displays an operation screen for processing by the application processing unit 621 and the operation system processing unit 622, an image captured by the image pickup device 603, and the like. The speaker 605 and the microphone 606, for example, output the voice of the other party and collect the voice of the user when making a call by the smartphone 601.
 通信モジュ-ル607は、インタ-ネット、公衆電話回線網、所謂4G回線や5G回線等の無線移動体用の広域通信網、WAN(Wide Area Network)、LAN(Local Area Network)等の通信網を介したネットワ-ク通信、Bluetooth(登録商標)、NFC(Near Field Communication)等の近距離無線通信などを行う。センサユニット608は、速度や加速度、近接などをセンシングし、タッチパネル609は、ディスプレイ604に表示されている操作画面に対するユ-ザによるタッチ操作を取得する。 The communication module 607 is an internet, a public telephone network, a wide area communication network for wireless mobiles such as so-called 4G lines and 5G lines, and a communication network such as WAN (Wide Area Network) and LAN (Local Area Network). Performs short-range wireless communication such as network communication, Bluetooth (registered trademark), and NFC (Near Field Communication). The sensor unit 608 senses speed, acceleration, proximity, etc., and the touch panel 609 acquires a touch operation by the user on the operation screen displayed on the display 604.
 アプリケ-ション処理部621は、スマ-トフォン601によって様々なサ-ビスを提供するための処理を行う。例えば、アプリケ-ション処理部621は、測距モジュ-ル602から供給されるデプス値に基づいて、ユ-ザの表情をバ-チャルに再現したコンピュ-タグラフィックスによる顔を作成し、ディスプレイ604に表示する処理を行うことができる。また、アプリケ-ション処理部621は、測距モジュ-ル602から供給されるデプス値に基づいて、例えば、任意の立体的な物体の三次元形状デ-タを作成する処理を行うことができる。 The application processing unit 621 performs processing for providing various services by the smart phone 601. For example, the application processing unit 621 creates a face with computer graphics that virtually reproduces the facial expression of the user based on the depth value supplied from the distance measuring module 602, and displays the face. The process of displaying on 604 can be performed. Further, the application processing unit 621 can perform a process of creating, for example, three-dimensional shape data of an arbitrary three-dimensional object based on the depth value supplied from the ranging module 602. ..
 オペレ-ションシステム処理部622は、スマ-トフォン601の基本的な機能および動作を実現するための処理を行う。例えば、オペレ-ションシステム処理部622は、測距モジュ-ル602から供給されるデプス値に基づいて、ユ-ザの顔を認証し、スマ-トフォン601のロックを解除する処理を行うことができる。また、オペレ-ションシステム処理部622は、測距モジュ-ル602から供給されるデプス値に基づいて、例えば、ユ-ザのジェスチャを認識する処理を行い、そのジェスチャに従った各種の操作を入力する処理を行うことができる。 The operation system processing unit 622 performs processing for realizing the basic functions and operations of the smartphone 601. For example, the operation system processing unit 622 may perform a process of authenticating the user's face and unlocking the smart phone 601 based on the depth value supplied from the ranging module 602. can. Further, the operation system processing unit 622 performs a process of recognizing, for example, a gesture of the user based on the depth value supplied from the ranging module 602, and performs various operations according to the gesture. You can perform input processing.
 このように構成されているスマ-トフォン601では、測距モジュ-ル602として、測距装置10を適用することで、例えば、所定の物体までの距離を測定して表示したり、所定の物体の三次元形状デ-タを作成して表示したりする処理などを行うことができる。 In the smart phone 601 configured in this way, by applying the distance measuring device 10 as the distance measuring module 602, for example, the distance to a predetermined object can be measured and displayed, or a predetermined object can be measured. It is possible to perform processing such as creating and displaying three-dimensional shape data of.
 <移動体への応用例>
 本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パ-ソナルモビリティ、飛行機、ドロ-ン、船舶、ロボット等のいずれかの種類の移動体に搭載される装置として実現されてもよい。
<Application example to mobile>
The technology according to the present disclosure (the present technology) can be applied to various products. For example, the technology according to the present disclosure is mounted on a moving body of any kind such as an automobile, an electric vehicle, a hybrid electric vehicle, a motorcycle, a bicycle, a personal mobility, an airplane, a drone, a ship, and a robot. It may be realized as a device.
 図20は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な構成例を示すブロック図である。 FIG. 20 is a block diagram showing a schematic configuration example of a vehicle control system, which is an example of a mobile control system to which the technique according to the present disclosure can be applied.
 車両制御システム12000は、通信ネットワ-ク12001を介して接続された複数の電子制御ユニットを備える。図20に示した例では、車両制御システム12000は、駆動系制御ユニット12010、ボディ系制御ユニット12020、車外情報検出ユニット12030、車内情報検出ユニット12040、及び統合制御ユニット12050を備える。また、統合制御ユニット12050の機能構成として、マイクロコンピュ-タ12051、音声画像出力部12052、及び車載ネットワ-クI/F(Interface)12053が図示されている。 The vehicle control system 12000 includes a plurality of electronic control units connected via a communication network 12001. In the example shown in FIG. 20, the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, an outside information detection unit 12030, an in-vehicle information detection unit 12040, and an integrated control unit 12050. Further, as a functional configuration of the integrated control unit 12050, a microcomputer 12051, an audio image output unit 12052, and an in-vehicle network I / F (Interface) 12053 are shown.
 駆動系制御ユニット12010は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット12010は、内燃機関又は駆動用モ-タ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。 The drive system control unit 12010 controls the operation of the device related to the drive system of the vehicle according to various programs. For example, the drive system control unit 12010 includes a drive force generator for generating a drive force of a vehicle such as an internal combustion engine or a drive motor, a drive force transmission mechanism for transmitting the drive force to the wheels, and a steering wheel of the vehicle. It functions as a control device such as a steering mechanism that adjusts the angle and a braking device that generates braking force of the vehicle.
 ボディ系制御ユニット12020は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット12020は、キ-レスエントリシステム、スマ-トキ-システム、パワ-ウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレ-キランプ、ウィンカ-又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット12020には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット12020は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワ-ウィンドウ装置、ランプ等を制御する。 The body system control unit 12020 controls the operation of various devices mounted on the vehicle body according to various programs. For example, the body system control unit 12020 is used as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as headlamps, back lamps, brake lamps, winkers, or fog lamps. Function. In this case, the body system control unit 12020 may be input with radio waves transmitted from a portable device that substitutes for the key or signals of various switches. The body system control unit 12020 receives inputs of these radio waves or signals and controls a vehicle door lock device, a power window device, a lamp, and the like.
 車外情報検出ユニット12030は、車両制御システム12000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット12030には、撮像部12031が接続される。車外情報検出ユニット12030は、撮像部12031に車外の画像を撮像させるとともに、撮像された画像を受信する。車外情報検出ユニット12030は、受信した画像に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。 The vehicle outside information detection unit 12030 detects information outside the vehicle equipped with the vehicle control system 12000. For example, the image pickup unit 12031 is connected to the vehicle outside information detection unit 12030. The vehicle outside information detection unit 12030 causes the image pickup unit 12031 to capture an image of the outside of the vehicle and receives the captured image. The out-of-vehicle information detection unit 12030 may perform object detection processing or distance detection processing such as a person, a vehicle, an obstacle, a sign, or a character on the road surface based on the received image.
 撮像部12031は、光を受光し、その光の受光量に応じた電気信号を出力する光センサである。撮像部12031は、電気信号を画像として出力することもできるし、測距の情報として出力することもできる。また、撮像部12031が受光する光は、可視光であっても良いし、赤外線等の非可視光であっても良い。 The image pickup unit 12031 is an optical sensor that receives light and outputs an electric signal according to the amount of the light received. The image pickup unit 12031 can output an electric signal as an image or can output it as distance measurement information. Further, the light received by the image pickup unit 12031 may be visible light or invisible light such as infrared light.
 車内情報検出ユニット12040は、車内の情報を検出する。車内情報検出ユニット12040には、例えば、運転者の状態を検出する運転者状態検出部12041が接続される。運転者状態検出部12041は、例えば運転者を撮像するカメラを含み、車内情報検出ユニット12040は、運転者状態検出部12041から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。 The in-vehicle information detection unit 12040 detects the in-vehicle information. For example, a driver state detection unit 12041 that detects the driver's state is connected to the in-vehicle information detection unit 12040. The driver state detection unit 12041 includes, for example, a camera that images the driver, and the in-vehicle information detection unit 12040 determines the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 12041. It may be calculated, or it may be determined whether or not the driver has fallen asleep.
 マイクロコンピュ-タ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット12010に対して制御指令を出力することができる。例えば、マイクロコンピュ-タ12051は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレ-ン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行うことができる。 The microcomputer 12051 calculates the control target value of the driving force generator, the steering mechanism or the braking device based on the information inside and outside the vehicle acquired by the information detection unit 12030 outside the vehicle or the information inside the vehicle 12040, and the drive system. A control command can be output to the control unit 12010. For example, the microcomputer 12051 is an ADAS (Advanced Driver Assistance System) including vehicle collision avoidance or impact mitigation, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, vehicle lane deviation warning, and the like. ) Can be coordinated for the purpose of realizing the function.
 また、マイクロコンピュ-タ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。 Further, the microcomputer 12051 operates by controlling a driving force generating device, a steering mechanism, a braking device, or the like based on the information around the vehicle acquired by the outside information detection unit 12030 or the inside information detection unit 12040. It is possible to perform coordinated control for the purpose of automatic driving, etc., which runs autonomously without relying on the operation of a person.
 また、マイクロコンピュ-タ12051は、車外情報検出ユニット12030で取得される車外の情報に基づいて、ボディ系制御ユニット12030に対して制御指令を出力することができる。例えば、マイクロコンピュ-タ12051は、車外情報検出ユニット12030で検知した先行車又は対向車の位置に応じてヘッドランプを制御し、ハイビ-ムをロ-ビ-ムに切り替える等の防眩を図ることを目的とした協調制御を行うことができる。 Further, the microcomputer 12051 can output a control command to the body system control unit 12030 based on the information outside the vehicle acquired by the vehicle exterior information detection unit 12030. For example, the microcomputer 12051 controls the headlamps according to the position of the preceding vehicle or the oncoming vehicle detected by the vehicle exterior information detection unit 12030 to prevent glare such as switching the high beam to the low beam. Coordinated control can be performed for the purpose of this.
 音声画像出力部12052は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。図20の例では、出力装置として、オ-ディオスピ-カ12061、表示部12062及びインストルメントパネル12063が例示されている。表示部12062は、例えば、オンボ-ドディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。 The audio image output unit 12052 transmits an output signal of at least one of audio and image to an output device capable of visually or audibly notifying information to the passenger or the outside of the vehicle. In the example of FIG. 20, as an output device, an audio speaker 12061, a display unit 12062, and an instrument panel 12063 are exemplified. The display unit 12062 may include, for example, at least one of an onboard display and a head-up display.
 図21は、撮像部12031の設置位置の例を示す図である。 FIG. 21 is a diagram showing an example of the installation position of the image pickup unit 12031.
 図21では、撮像部12031として、撮像部12101、12102、12103、12104、12105を有する。 In FIG. 21, the image pickup unit 12031 has image pickup units 12101, 12102, 12103, 12104, and 12105.
 撮像部12101、12102、12103、12104、12105は、例えば、車両12100のフロントノ-ズ、サイドミラ-、リアバンパ、バックドア及び車室内のフロントガラスの上部等の位置に設けられる。フロントノ-ズに備えられる撮像部12101及び車室内のフロントガラスの上部に備えられる撮像部12105は、主として車両12100の前方の画像を取得する。サイドミラ-に備えられる撮像部12102、12103は、主として車両12100の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部12104は、主として車両12100の後方の画像を取得する。車室内のフロントガラスの上部に備えられる撮像部12105は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。 The image pickup units 12101, 12102, 12103, 12104, 12105 are provided at positions such as, for example, the front nose, side mirror, rear bumper, back door, and the upper part of the windshield in the vehicle interior of the vehicle 12100. The image pickup unit 12101 provided in the front nose and the image pickup unit 12105 provided in the upper part of the windshield in the vehicle interior mainly acquire an image in front of the vehicle 12100. The image pickup units 12102 and 12103 provided in the side mirror mainly acquire images of the side of the vehicle 12100. The image pickup unit 12104 provided in the rear bumper or the back door mainly acquires an image of the rear of the vehicle 12100. The image pickup unit 12105 provided on the upper part of the windshield in the vehicle interior is mainly used for detecting a preceding vehicle, a pedestrian, an obstacle, a traffic light, a traffic sign, a lane, or the like.
 なお、図21には、撮像部12101ないし12104の撮影範囲の一例が示されている。撮像範囲12111は、フロントノ-ズに設けられた撮像部12101の撮像範囲を示し、撮像範囲12112,12113は、それぞれサイドミラ-に設けられた撮像部12102,12103の撮像範囲を示し、撮像範囲12114は、リアバンパ又はバックドアに設けられた撮像部12104の撮像範囲を示す。例えば、撮像部12101ないし12104で撮像された画像デ-タが重ね合わせられることにより、車両12100を上方から見た俯瞰画像が得られる。 Note that FIG. 21 shows an example of the shooting range of the imaging units 12101 to 12104. The imaging range 12111 indicates the imaging range of the imaging unit 12101 provided on the front nose, and the imaging ranges 12112 and 12113 indicate the imaging range of the imaging units 12102 and 12103 provided on the side mirrors, respectively, and the imaging range 12114. Indicates the imaging range of the imaging unit 12104 provided on the rear bumper or the back door. For example, by superimposing the image data captured by the image pickup units 12101 to 12104, a bird's-eye view image of the vehicle 12100 as viewed from above can be obtained.
 撮像部12101ないし12104の少なくとも1つは、距離情報を取得する機能を有していてもよい。例えば、撮像部12101ないし12104の少なくとも1つは、複数の撮像素子からなるステレオカメラであってもよいし、位相差検出用の画素を有する撮像素子であってもよい。 At least one of the image pickup units 12101 to 12104 may have a function of acquiring distance information. For example, at least one of the image pickup units 12101 to 12104 may be a stereo camera including a plurality of image pickup elements, or may be an image pickup element having pixels for phase difference detection.
 例えば、マイクロコンピュ-タ12051は、撮像部12101ないし12104から得られた距離情報を基に、撮像範囲12111ないし12114内における各立体物までの距離と、この距離の時間的変化(車両12100に対する相対速度)を求めることにより、特に車両12100の進行路上にある最も近い立体物で、車両12100と略同じ方向に所定の速度(例えば、0km/h以上)で走行する立体物を先行車として抽出することができる。さらに、マイクロコンピュ-タ12051は、先行車の手前に予め確保すべき車間距離を設定し、自動ブレ-キ制御(追従停止制御も含む)や自動加速制御(追従発進制御も含む)等を行うことができる。このように運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。 For example, the microcomputer 12051 has a distance to each three-dimensional object within the imaging range 12111 to 12114 based on the distance information obtained from the imaging unit 12101 to 12104, and a temporal change of this distance (relative to the vehicle 12100). By obtaining the speed), a three-dimensional object that is the closest three-dimensional object on the traveling path of the vehicle 12100 and travels at a predetermined speed (for example, 0 km / h or more) in substantially the same direction as the vehicle 12100 is extracted as a preceding vehicle. be able to. Further, the microcomputer 12051 sets an inter-vehicle distance to be secured in advance in front of the preceding vehicle, and performs automatic brake control (including follow-up stop control), automatic acceleration control (including follow-up start control), and the like. be able to. In this way, it is possible to perform coordinated control for the purpose of automatic driving or the like in which the vehicle travels autonomously without depending on the operation of the driver.
 例えば、マイクロコンピュ-タ12051は、撮像部12101ないし12104から得られた距離情報を元に、立体物に関する立体物デ-タを、2輪車、普通車両、大型車両、歩行者、電柱等その他の立体物に分類して抽出し、障害物の自動回避に用いることができる。例えば、マイクロコンピュ-タ12051は、車両12100の周辺の障害物を、車両12100のドライバが視認可能な障害物と視認困難な障害物とに識別する。そして、マイクロコンピュ-タ12051は、各障害物との衝突の危険度を示す衝突リスクを判断し、衝突リスクが設定値以上で衝突可能性がある状況であるときには、オ-ディオスピ-カ12061や表示部12062を介してドライバに警報を出力することや、駆動系制御ユニット12010を介して強制減速や回避操舵を行うことで、衝突回避のための運転支援を行うことができる。 For example, the microcomputer 12051 uses the distance information obtained from the image pickup units 12101 to 12104 to obtain three-dimensional object data related to a three-dimensional object, such as a two-wheeled vehicle, an ordinary vehicle, a large vehicle, a pedestrian, a utility pole, and the like. It can be classified into three-dimensional objects and extracted, and used for automatic avoidance of obstacles. For example, the microcomputer 12051 distinguishes obstacles around the vehicle 12100 into obstacles that are visible to the driver of the vehicle 12100 and obstacles that are difficult to see. Then, the microcomputer 12051 determines the collision risk indicating the risk of collision with each obstacle, and when the collision risk is equal to or higher than the set value and there is a possibility of collision, the audio speaker 12061 or the like. By outputting an alarm to the driver via the display unit 12062 and performing forced deceleration and avoidance steering via the drive system control unit 12010, it is possible to provide driving support for collision avoidance.
 撮像部12101ないし12104の少なくとも1つは、赤外線を検出する赤外線カメラであってもよい。例えば、マイクロコンピュ-タ12051は、撮像部12101ないし12104の撮像画像中に歩行者が存在するか否かを判定することで歩行者を認識することができる。かかる歩行者の認識は、例えば赤外線カメラとしての撮像部12101ないし12104の撮像画像における特徴点を抽出する手順と、物体の輪郭を示す一連の特徴点にパタ-ンマッチング処理を行って歩行者か否かを判別する手順によって行われる。マイクロコンピュ-タ12051が、撮像部12101ないし12104の撮像画像中に歩行者が存在すると判定し、歩行者を認識すると、音声画像出力部12052は、当該認識された歩行者に強調のための方形輪郭線を重畳表示するように、表示部12062を制御する。また、音声画像出力部12052は、歩行者を示すアイコン等を所望の位置に表示するように表示部12062を制御してもよい。 At least one of the image pickup units 12101 to 12104 may be an infrared camera that detects infrared rays. For example, the microcomputer 12051 can recognize a pedestrian by determining whether or not a pedestrian is present in the captured image of the imaging unit 12101 to 12104. Such recognition of a pedestrian is, for example, a procedure for extracting feature points in an image captured by an image pickup unit 12101 to 12104 as an infrared camera, and a pattern matching process for a series of feature points indicating the outline of an object to determine whether the pedestrian is a pedestrian. It is done by the procedure of determining whether or not. When the microcomputer 12051 determines that a pedestrian is present in the captured image of the image pickup unit 12101 to 12104 and recognizes the pedestrian, the audio image output unit 12052 is a square for emphasizing the recognized pedestrian. The display unit 12062 is controlled so that the contour lines are superimposed and displayed. Further, the audio image output unit 12052 may control the display unit 12062 so as to display an icon or the like indicating a pedestrian at a desired position.
 本明細書において、システムとは、複数の装置により構成される装置全体を表すものである。 In the present specification, the system represents the entire device composed of a plurality of devices.
 なお、本明細書に記載された効果はあくまで例示であって限定されるものでは無く、また他の効果があってもよい。 It should be noted that the effects described in the present specification are merely examples and are not limited, and other effects may be obtained.
 なお、本技術の実施の形態は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。 The embodiment of the present technology is not limited to the above-described embodiment, and various changes can be made without departing from the gist of the present technology.
 なお、本技術は以下のような構成も取ることができる。
(1)
 フォトダイオ-ドと、
 前記フォトダイオ-ドで生成された電荷を第1の電荷蓄積部に転送する第1の転送トランジスタと、
 前記フォトダイオ-ドで生成された電荷を第2の電荷蓄積部に転送する第2の転送トランジスタと
 を含む画素が、行列状に配置されている画素アレイ部と、
 前記第1の転送トランジスタと前記第2の転送トランジスタを接続する位置に配置されているスイッチと、
 前記電荷の転送の開始を、前記第1の転送トランジスタまたは前記第2の転送トランジスタに指示したときから、所定の時間、前記スイッチをオンに制御する制御部と
 を備え、
 前記制御部は、前記所定の時間を制御する時間制御部を備える
 撮像装置。
(2)
 前記時間制御部は、DLL(Delay Locked Loop)である
 前記(1)に記載の撮像装置。
(3)
 前記制御部は、遅延部を備え、前記遅延部の遅延時間を前記時間制御部は制御する
 前記(1)または(2)に記載の撮像装置。
(4)
 前記制御部は、前記遅延部の遅延時間が、前記スイッチをオンにしている時間となるように制御を行う
 前記(3)に記載の撮像装置。
(5)
 前記画素アレイ部の列方向に配置されている複数の画素に対して、1または複数の前記スイッチが配置されている
 前記(1)乃至(4)のいずれかに記載の撮像装置。
(6)
 前記画素アレイ部の列方向に配置されている複数の画素に対して、前記列の両端に、前記スイッチは配置されている
 前記(1)乃至(4)のいずれかに記載の撮像装置。
(7)
 前記画素アレイ部の列方向に配置されている画素毎に、前記スイッチは配置されている
 前記(1)乃至(4)のいずれかに記載の撮像装置。
(8)
 前記画素アレイ部の列方向に配置されている複数の画素に対して、前記列毎に前記制御部は設けられている
 前記(1)乃至(7)のいずれかに記載の撮像装置。
(9)
 前記画素アレイ部の列方向に配置されている複数の画素に対して、所定数の前記列毎に前記制御部は設けられている
 前記(1)乃至(7)のいずれかに記載の撮像装置。
(10)
 前記時間制御部は、温度を計測し、計測された温度に応じたバイアス電圧を生成し、前記バイアス電圧を、前記制御部に供給する
 前記(1)、(3)乃至(9)のいずれかに記載の撮像装置。
(11)
 前記制御部は、前記第1の転送トランジスタの充放電を制御する第1のドライバと、前記第2の転送トランジスタの充放電を制御する第2のドライバを備え、
 前記第1のドライバと前記第2のドライバは、前記スイッチがオンのときには、前記第1のドライバと前記第2のドライバを介して充放電が行われないように制御する
 前記(1)乃至(10)のいずれかに記載の撮像装置。
(12)
 前記第1のドライバと前記第2のドライバは、それぞれ、高電位に接続されているPMOSと低電位に接続されているNMOSと、
 前記スイッチがオンに制御されるときに、オンにされる第1のスイッチと、
 前記スイッチがオフに制御されるときに、オンにされる第2のスイッチと
 を含む
 前記(11)に記載の撮像装置。
(13)
 前記第1のドライバまたは前記第2のドライバに入力される第1の信号と、前記第1の信号が遅延部により所定の遅延時間だけ遅延された第2の信号との排他的論理和の結果を、前記第1のスイッチの開閉を制御する信号として用いる
 前記(12)に記載の撮像装置。
(14)
 前記排他的論理和の結果を反転した結果を、前記第1のスイッチの開閉を制御する信号として用いる
 前記(13)に記載の撮像装置。
(15)
 フォトダイオ-ドと、
 前記フォトダイオ-ドで生成された電荷を第1の電荷蓄積部に転送する第1の転送トランジスタと、
 前記フォトダイオ-ドで生成された電荷を第2の電荷蓄積部に転送する第2の転送トランジスタと
 を含む画素が、行列状に配置されている画素アレイ部と、
 前記第1の転送トランジスタと前記第2の転送トランジスタを接続する位置に配置されているスイッチと
 を備える撮像装置が、
 前記電荷の転送の開始を、前記第1の転送トランジスタまたは前記第2の転送トランジスタに指示したときから、所定の時間、前記スイッチをオンに制御し、
 前記制御部に含まれる時間制御部により前記所定の時間を制御する
 撮像方法。
(16)
 フォトダイオ-ドと、
 前記フォトダイオ-ドで生成された電荷を第1の電荷蓄積部に転送する第1の転送トランジスタと、
 前記フォトダイオ-ドで生成された電荷を第2の電荷蓄積部に転送する第2の転送トランジスタと
 を含む画素が、行列状に配置されている画素アレイ部と、
 前記第1の転送トランジスタと前記第2の転送トランジスタを接続する位置に配置されているスイッチと、
 前記電荷の転送の開始を、前記第1の転送トランジスタまたは前記第2の転送トランジスタに指示したときから、所定の時間、前記スイッチをオンに制御する制御部と
 を備え、
 前記制御部は、前記所定の時間を制御する時間制御部を備える
 撮像装置と、
 周期的に明るさが変動する照射光を照射する光源と、
 前記照射光の照射タイミングを制御する発光制御部と
 を備える電子機器。
The present technology can also have the following configurations.
(1)
Photodiode and
A first transfer transistor that transfers the charge generated by the photodiode to the first charge storage unit, and
A pixel array unit in which pixels including a second transfer transistor that transfers the electric charge generated by the photodiode to a second charge storage unit are arranged in a matrix are used.
A switch arranged at a position connecting the first transfer transistor and the second transfer transistor, and
A control unit for controlling the switch to be turned on for a predetermined time from the time when the first transfer transistor or the second transfer transistor is instructed to start the transfer of electric charges is provided.
The control unit is an image pickup apparatus including a time control unit that controls the predetermined time.
(2)
The imaging device according to (1) above, wherein the time control unit is a DLL (Delay Locked Loop).
(3)
The image pickup apparatus according to (1) or (2), wherein the control unit includes a delay unit, and the time control unit controls the delay time of the delay unit.
(4)
The image pickup apparatus according to (3), wherein the control unit controls the delay time of the delay unit to be a time during which the switch is turned on.
(5)
The image pickup apparatus according to any one of (1) to (4), wherein one or a plurality of the switches are arranged with respect to the plurality of pixels arranged in the column direction of the pixel array unit.
(6)
The image pickup apparatus according to any one of (1) to (4), wherein the switches are arranged at both ends of the row with respect to a plurality of pixels arranged in the row direction of the pixel array unit.
(7)
The image pickup apparatus according to any one of (1) to (4), wherein the switch is arranged for each pixel arranged in the column direction of the pixel array unit.
(8)
The image pickup apparatus according to any one of (1) to (7), wherein the control unit is provided for each of the plurality of pixels arranged in the row direction of the pixel array unit.
(9)
The image pickup apparatus according to any one of (1) to (7), wherein the control unit is provided for each of a predetermined number of the rows of a plurality of pixels arranged in the column direction of the pixel array unit. ..
(10)
The time control unit measures the temperature, generates a bias voltage according to the measured temperature, and supplies the bias voltage to the control unit. Any one of (1), (3), and (9). The imaging device according to.
(11)
The control unit includes a first driver that controls charging / discharging of the first transfer transistor and a second driver that controls charging / discharging of the second transfer transistor.
The first driver and the second driver control so that charging / discharging is not performed via the first driver and the second driver when the switch is on (1) to (1). The image pickup apparatus according to any one of 10).
(12)
The first driver and the second driver have a MIMO connected to a high potential and an MIMO connected to a low potential, respectively.
When the switch is controlled to be on, the first switch that is turned on and
The imaging apparatus according to (11) above, which includes a second switch that is turned on when the switch is controlled to be off.
(13)
The result of the exclusive OR of the first signal input to the first driver or the second driver and the second signal in which the first signal is delayed by a predetermined delay time by the delay unit. The image pickup apparatus according to (12) above, wherein the image is used as a signal for controlling the opening and closing of the first switch.
(14)
The image pickup apparatus according to (13), wherein the result of inverting the result of the exclusive OR is used as a signal for controlling the opening and closing of the first switch.
(15)
Photodiode and
A first transfer transistor that transfers the charge generated by the photodiode to the first charge storage unit, and
A pixel array unit in which pixels including a second transfer transistor that transfers the electric charge generated by the photodiode to a second charge storage unit are arranged in a matrix are used.
An image pickup device including a switch arranged at a position connecting the first transfer transistor and the second transfer transistor is provided.
From the time when the first transfer transistor or the second transfer transistor is instructed to start the transfer of the electric charge, the switch is controlled to be turned on for a predetermined time.
An imaging method in which a predetermined time is controlled by a time control unit included in the control unit.
(16)
Photodiode and
A first transfer transistor that transfers the charge generated by the photodiode to the first charge storage unit, and
A pixel array unit in which pixels including a second transfer transistor that transfers the electric charge generated by the photodiode to a second charge storage unit are arranged in a matrix are used.
A switch arranged at a position connecting the first transfer transistor and the second transfer transistor, and
A control unit for controlling the switch to be turned on for a predetermined time from the time when the first transfer transistor or the second transfer transistor is instructed to start the transfer of electric charges is provided.
The control unit includes an image pickup device including a time control unit that controls the predetermined time, and an image pickup device.
A light source that irradiates irradiation light whose brightness fluctuates periodically,
An electronic device including a light emission control unit that controls the irradiation timing of the irradiation light.
 10 測距装置, 11 レンズ, 12 受光部, 13 信号処理部, 14 発光部, 15 発光制御部, 16 フィルタ部, 41 画素アレイ部, 42 垂直駆動部, 43 カラム処理部, 44 水平駆動部, 45 システム制御部, 46 ゲート電圧制御部, 47 画素駆動線, 48 垂直信号線, 50 画素, 51 タップ, 61 フォトダイオ-ド, 62 転送トランジスタ, 63 FD, 64 リセットトランジスタ, 65 増幅トランジスタ, 66 選択トランジスタ, 201 ドライバ, 203 DLL, 205 遅延部, 207 XOR回路, 209 NOT回路, 221 ENスイッチ, 222 ENスイッチ, 223 XENスイッチ, 224 XENスイッチ, 231 ENスイッチ, 251 配線, 321 位相検出部, 322 チャ-ジポンプ, 323 遅延部, 324 電流源, 331 ENスイッチ, 333 NOT回路, 334 電流源, 351 NOT回路, 352 電流源, 401 温度計, 402 DAC 10 ranging device, 11 lens, 12 light receiving unit, 13 signal processing unit, 14 light emitting unit, 15 light emitting control unit, 16 filter unit, 41 pixel array unit, 42 vertical drive unit, 43 column processing unit, 44 horizontal drive unit, 45 system control unit, 46 gate voltage control unit, 47 pixel drive line, 48 vertical signal line, 50 pixels, 51 taps, 61 photodiode, 62 transfer transistor, 63 FD, 64 reset transistor, 65 amplification transistor, 66 selection Transistor, 201 driver, 203 DLL, 205 delay part, 207 XOR circuit, 209 NOT circuit, 221 EN switch, 222 EN switch, 223 XEN switch, 224 XEN switch, 231 EN switch, 251 wiring, 321 phase detector, 322 cha -The pump, 323 delay part, 324 current source, 331 EN switch, 333 NOT circuit, 334 current source, 351 NOT circuit, 352 current source, 401 thermometer, 402 DAC

Claims (16)

  1.  フォトダイオ-ドと、
     前記フォトダイオ-ドで生成された電荷を第1の電荷蓄積部に転送する第1の転送トランジスタと、
     前記フォトダイオ-ドで生成された電荷を第2の電荷蓄積部に転送する第2の転送トランジスタと
     を含む画素が、行列状に配置されている画素アレイ部と、
     前記第1の転送トランジスタと前記第2の転送トランジスタを接続する位置に配置されているスイッチと、
     前記電荷の転送の開始を、前記第1の転送トランジスタまたは前記第2の転送トランジスタに指示したときから、所定の時間、前記スイッチをオンに制御する制御部と
     を備え、
     前記制御部は、前記所定の時間を制御する時間制御部を備える
     撮像装置。
    Photodiode and
    A first transfer transistor that transfers the charge generated by the photodiode to the first charge storage unit, and
    A pixel array unit in which pixels including a second transfer transistor that transfers the electric charge generated by the photodiode to a second charge storage unit are arranged in a matrix are used.
    A switch arranged at a position connecting the first transfer transistor and the second transfer transistor, and
    A control unit for controlling the switch to be turned on for a predetermined time from the time when the first transfer transistor or the second transfer transistor is instructed to start the transfer of electric charges is provided.
    The control unit is an image pickup apparatus including a time control unit that controls the predetermined time.
  2.  前記時間制御部は、DLL(Delay Locked Loop)である
     請求項1に記載の撮像装置。
    The imaging device according to claim 1, wherein the time control unit is a DLL (Delay Locked Loop).
  3.  前記制御部は、遅延部を備え、前記遅延部の遅延時間を前記時間制御部は制御する
     請求項1に記載の撮像装置。
    The imaging device according to claim 1, wherein the control unit includes a delay unit, and the time control unit controls the delay time of the delay unit.
  4.  前記制御部は、前記遅延部の遅延時間が、前記スイッチをオンにしている時間となるように制御を行う
     請求項3に記載の撮像装置。
    The imaging device according to claim 3, wherein the control unit controls the delay time of the delay unit to be a time during which the switch is turned on.
  5.  前記画素アレイ部の列方向に配置されている複数の画素に対して、1または複数の前記スイッチが配置されている
     請求項1に記載の撮像装置。
    The image pickup apparatus according to claim 1, wherein one or a plurality of the switches are arranged with respect to the plurality of pixels arranged in the column direction of the pixel array unit.
  6.  前記画素アレイ部の列方向に配置されている複数の画素に対して、前記列の両端に、前記スイッチは配置されている
     請求項1に記載の撮像装置。
    The image pickup apparatus according to claim 1, wherein switches are arranged at both ends of the row with respect to a plurality of pixels arranged in the row direction of the pixel array unit.
  7.  前記画素アレイ部の列方向に配置されている画素毎に、前記スイッチは配置されている
     請求項1に記載の撮像装置。
    The image pickup apparatus according to claim 1, wherein the switch is arranged for each pixel arranged in the column direction of the pixel array unit.
  8.  前記画素アレイ部の列方向に配置されている複数の画素に対して、前記列毎に前記制御部は設けられている
     請求項1に記載の撮像装置。
    The image pickup apparatus according to claim 1, wherein the control unit is provided for each of the plurality of pixels arranged in the column direction of the pixel array unit.
  9.  前記画素アレイ部の列方向に配置されている複数の画素に対して、所定数の前記列毎に前記制御部は設けられている
     請求項1に記載の撮像装置。
    The image pickup apparatus according to claim 1, wherein the control unit is provided for each of a predetermined number of the rows of a plurality of pixels arranged in the column direction of the pixel array unit.
  10.  前記時間制御部は、温度を計測し、計測された温度に応じたバイアス電圧を生成し、前記バイアス電圧を、前記制御部に供給する
     請求項1に記載の撮像装置。
    The imaging device according to claim 1, wherein the time control unit measures a temperature, generates a bias voltage according to the measured temperature, and supplies the bias voltage to the control unit.
  11.  前記制御部は、前記第1の転送トランジスタの充放電を制御する第1のドライバと、前記第2の転送トランジスタの充放電を制御する第2のドライバを備え、
     前記第1のドライバと前記第2のドライバは、前記スイッチがオンのときには、前記第1のドライバと前記第2のドライバを介して充放電が行われないように制御する
     請求項1に記載の撮像装置。
    The control unit includes a first driver that controls charging / discharging of the first transfer transistor and a second driver that controls charging / discharging of the second transfer transistor.
    The first driver and the second driver are according to claim 1, wherein when the switch is turned on, the first driver and the second driver are controlled so that charging / discharging is not performed via the first driver and the second driver. Imaging device.
  12.  前記第1のドライバと前記第2のドライバは、それぞれ、高電位に接続されているPMOSと低電位に接続されているNMOSと、
     前記スイッチがオンに制御されるときに、オンにされる第1のスイッチと、
     前記スイッチがオフに制御されるときに、オンにされる第2のスイッチと
     を含む
     請求項11に記載の撮像装置。
    The first driver and the second driver have a MIMO connected to a high potential and an MIMO connected to a low potential, respectively.
    When the switch is controlled to be on, the first switch that is turned on and
    The imaging apparatus according to claim 11, further comprising a second switch that is turned on when the switch is controlled to be off.
  13.  前記第1のドライバまたは前記第2のドライバに入力される第1の信号と、前記第1の信号が遅延部により所定の遅延時間だけ遅延された第2の信号との排他的論理和の結果を、前記第1のスイッチの開閉を制御する信号として用いる
     請求項12に記載の撮像装置。
    The result of the exclusive OR of the first signal input to the first driver or the second driver and the second signal in which the first signal is delayed by a predetermined delay time by the delay unit. 12. The image pickup apparatus according to claim 12, wherein the image is used as a signal for controlling the opening and closing of the first switch.
  14.  前記排他的論理和の結果を反転した結果を、前記第1のスイッチの開閉を制御する信号として用いる
     請求項13に記載の撮像装置。
    The image pickup apparatus according to claim 13, wherein the result of inverting the result of the exclusive OR is used as a signal for controlling the opening and closing of the first switch.
  15.  フォトダイオ-ドと、
     前記フォトダイオ-ドで生成された電荷を第1の電荷蓄積部に転送する第1の転送トランジスタと、
     前記フォトダイオ-ドで生成された電荷を第2の電荷蓄積部に転送する第2の転送トランジスタと
     を含む画素が、行列状に配置されている画素アレイ部と、
     前記第1の転送トランジスタと前記第2の転送トランジスタを接続する位置に配置されているスイッチと
     を備える撮像装置が、
     前記電荷の転送の開始を、前記第1の転送トランジスタまたは前記第2の転送トランジスタに指示したときから、所定の時間、前記スイッチをオンに制御し、
     前記制御部に含まれる時間制御部により前記所定の時間を制御する
     撮像方法。
    Photodiode and
    A first transfer transistor that transfers the charge generated by the photodiode to the first charge storage unit, and
    A pixel array unit in which pixels including a second transfer transistor that transfers the electric charge generated by the photodiode to a second charge storage unit are arranged in a matrix are used.
    An image pickup device including a switch arranged at a position connecting the first transfer transistor and the second transfer transistor is provided.
    From the time when the first transfer transistor or the second transfer transistor is instructed to start the transfer of the electric charge, the switch is controlled to be turned on for a predetermined time.
    An imaging method in which a predetermined time is controlled by a time control unit included in the control unit.
  16.  フォトダイオ-ドと、
     前記フォトダイオ-ドで生成された電荷を第1の電荷蓄積部に転送する第1の転送トランジスタと、
     前記フォトダイオ-ドで生成された電荷を第2の電荷蓄積部に転送する第2の転送トランジスタと
     を含む画素が、行列状に配置されている画素アレイ部と、
     前記第1の転送トランジスタと前記第2の転送トランジスタを接続する位置に配置されているスイッチと、
     前記電荷の転送の開始を、前記第1の転送トランジスタまたは前記第2の転送トランジスタに指示したときから、所定の時間、前記スイッチをオンに制御する制御部と
     を備え、
     前記制御部は、前記所定の時間を制御する時間制御部を備える
     撮像装置と、
     周期的に明るさが変動する照射光を照射する光源と、
     前記照射光の照射タイミングを制御する発光制御部と
     を備える電子機器。
    Photodiode and
    A first transfer transistor that transfers the charge generated by the photodiode to the first charge storage unit, and
    A pixel array unit in which pixels including a second transfer transistor that transfers the electric charge generated by the photodiode to a second charge storage unit are arranged in a matrix are used.
    A switch arranged at a position connecting the first transfer transistor and the second transfer transistor, and
    A control unit for controlling the switch to be turned on for a predetermined time from the time when the first transfer transistor or the second transfer transistor is instructed to start the transfer of electric charges is provided.
    The control unit includes an image pickup device including a time control unit that controls the predetermined time, and an image pickup device.
    A light source that irradiates irradiation light whose brightness fluctuates periodically,
    An electronic device including a light emission control unit that controls the irradiation timing of the irradiation light.
PCT/JP2021/029624 2020-08-24 2021-08-11 Imaging device, imaging method, and electronic apparatus WO2022044805A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020140805 2020-08-24
JP2020-140805 2020-08-24

Publications (1)

Publication Number Publication Date
WO2022044805A1 true WO2022044805A1 (en) 2022-03-03

Family

ID=80352240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/029624 WO2022044805A1 (en) 2020-08-24 2021-08-11 Imaging device, imaging method, and electronic apparatus

Country Status (1)

Country Link
WO (1) WO2022044805A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016121522A1 (en) * 2015-01-30 2016-08-04 ソニー株式会社 Solid state image pickup device and electronic apparatus
WO2017022220A1 (en) * 2015-08-04 2017-02-09 パナソニックIpマネジメント株式会社 Solid-state imaging device
WO2020008962A1 (en) * 2018-07-02 2020-01-09 株式会社ブルックマンテクノロジ Distance measurement device, camera, inspection adjustment device, distance measurement device drive adjustment method, and distance measurement device inspection adjustment method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016121522A1 (en) * 2015-01-30 2016-08-04 ソニー株式会社 Solid state image pickup device and electronic apparatus
WO2017022220A1 (en) * 2015-08-04 2017-02-09 パナソニックIpマネジメント株式会社 Solid-state imaging device
WO2020008962A1 (en) * 2018-07-02 2020-01-09 株式会社ブルックマンテクノロジ Distance measurement device, camera, inspection adjustment device, distance measurement device drive adjustment method, and distance measurement device inspection adjustment method

Similar Documents

Publication Publication Date Title
JP2020136958A (en) Event signal detection sensor and control method
WO2020110484A1 (en) Solid-state image sensor, imaging device, and control method of solid-state image sensor
JP2020072471A (en) Solid state image sensor, imaging apparatus, and control method of solid state image sensor
WO2021085128A1 (en) Distance measurement device, measurement method, and distance measurement system
JPWO2019017092A1 (en) Analog-digital converter, solid-state image sensor, and method of controlling analog-digital converter
WO2021085125A1 (en) Ranging system, drive method, and electronic device
WO2021010036A1 (en) Solid-state image capturing element, image capturing device, and method for controlling solid-state image capturing element
WO2022044805A1 (en) Imaging device, imaging method, and electronic apparatus
WO2022149388A1 (en) Imaging device and ranging system
WO2022153746A1 (en) Imaging device
WO2021235222A1 (en) Light-receiving device, driving control method for same, and distance-measuring device
US20230254604A1 (en) Photodetection device and electronic apparatus
WO2021220682A1 (en) Imaging device
WO2020179288A1 (en) Light detection device
JP2021141516A (en) Solid-state imaging element, imaging device, and control method for solid-state imaging element
WO2020090311A1 (en) Solid-state imaging element
US20230232128A1 (en) Photodetection device and electronic apparatus
WO2022209368A1 (en) Solid-state imaging element and solid-state imaging device
WO2022130832A1 (en) Solid-state imaging element
WO2022064867A1 (en) Solid-state imaging element, and imaging device
WO2021085025A1 (en) Solid-state imaging device
WO2021124628A1 (en) Solid-state imaging element and imaging device
WO2022254792A1 (en) Light receiving element, driving method therefor, and distance measuring system
US20240121531A1 (en) Image capturing apparatus and electronic device
WO2023089958A1 (en) Solid-state imaging element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21861233

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21861233

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP