WO2022044536A1 - Exhaust gas purifying device - Google Patents

Exhaust gas purifying device Download PDF

Info

Publication number
WO2022044536A1
WO2022044536A1 PCT/JP2021/024748 JP2021024748W WO2022044536A1 WO 2022044536 A1 WO2022044536 A1 WO 2022044536A1 JP 2021024748 W JP2021024748 W JP 2021024748W WO 2022044536 A1 WO2022044536 A1 WO 2022044536A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
purification device
drain pipe
gas purification
absorption tower
Prior art date
Application number
PCT/JP2021/024748
Other languages
French (fr)
Japanese (ja)
Inventor
広幸 當山
義晶 榎並
邦彦 岸
晶義 枝川
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to KR1020227025652A priority Critical patent/KR20220113536A/en
Priority to CN202180011054.6A priority patent/CN115003403A/en
Priority to JP2022545490A priority patent/JP7323076B2/en
Publication of WO2022044536A1 publication Critical patent/WO2022044536A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/18Absorbing units; Liquid distributors therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D47/00Separating dispersed particles from gases, air or vapours by liquid as separating agent
    • B01D47/06Spray cleaning
    • B01D47/063Spray cleaning with two or more jets impinging against each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D47/00Separating dispersed particles from gases, air or vapours by liquid as separating agent
    • B01D47/12Washers with plural different washing sections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/10Inorganic absorbents
    • B01D2252/103Water
    • B01D2252/1035Sea water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/302Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases

Definitions

  • the present disclosure relates to an exhaust gas purification device that reduces sulfur oxides contained in exhaust gas generated by combustion of fossil fuels such as coal or heavy oil.
  • An example of an exhaust gas purification device that reduces sulfur oxides contained in exhaust gas generated by combustion of fossil fuels is a device that uses an absorbing liquid containing an alkaline component.
  • Exhaust gas purification devices that use an absorbent liquid are roughly classified into an open loop type and a closed loop type.
  • the open-loop type exhaust gas purification device the absorbed liquid used for absorbing sulfur oxides is stored in a tank or the like and then discarded.
  • the used absorption liquid is stored in a tank or the like and reused as the absorption liquid.
  • Patent Document 1 discloses a closed-loop type exhaust gas purification device.
  • the exhaust gas purification device disclosed in Patent Document 1 has an absorption tower integrated with a chimney. Inside the absorption tower, a spray nozzle that sprays the absorption liquid onto the exhaust gas flowing into the absorption tower is arranged. On the inner surface of the upper part of the absorption tower, guide blades that give centrifugal force to the exhaust gas rising toward the chimney are arranged. Exhaust gas centrifugally applied by the guide blades rises along the inner surface of the chimney. Droplets may accompany the exhaust gas rising along the inner surface of the chimney. On the inner surface of the upper part of the chimney, a scraping portion for collecting droplets accompanying the exhaust gas is arranged. A drain pipe that returns the droplets into the absorption tower is connected to the scraping portion, and the droplets that are returned into the absorption tower via the drain pipe are used again as the absorbing liquid.
  • the present disclosure has been made in view of the above-described problems, and the collection of droplets is not hindered in the exhaust gas purification device having a configuration for collecting droplets accompanying the exhaust gas rising toward the exhaust stack.
  • the purpose is to provide the technology to do so.
  • the exhaust gas purifying device of the present disclosure communicates with an exhaust pipe, and has an absorption tower through which exhaust gas generated by combustion of fossil fuel flows in and an absorption tower for absorbing sulfur oxide.
  • a collection section provided in the exhaust stack for collecting droplets accompanying the exhaust gas rising toward the exhaust stack, and a drain that communicates with the drain pipe and is collected by the collection portion. It is provided with a drain pipe for draining as water.
  • the exhaust gas purification device of another aspect of the present disclosure communicates with the exhaust stack and absorbs the absorption tower in which the exhaust gas generated by the combustion of fossil fuel flows in and the sulfur oxide.
  • the collecting portion provided in the exhaust stack for collecting the droplets accompanying the exhaust gas rising from the absorption tower toward the exhaust stack, and the droplets collected by the collecting portion are drain water.
  • a drain pipe for draining water to the tank and a degassing mechanism for communicating the tank with the external space are provided.
  • FIG. 1 is a diagram showing a configuration example of an exhaust gas purification device 1A according to the first embodiment of the present disclosure.
  • the exhaust gas purification device 1A is mounted on a ship 2 that generates propulsive force by burning fossil fuels such as heavy oil or coal.
  • Examples of the engine that generates propulsive force in the ship 2 include an internal combustion engine such as a gasoline engine or a diesel engine, or an external combustion engine including a turbine and a boiler that supplies steam to the turbine.
  • the exhaust gas purification device 1A shown in FIG. 1 is a device that reduces sulfur oxides such as sulfur dioxide contained in exhaust gas generated by combustion of fossil fuels.
  • the exhaust gas whose sulfur oxides have been reduced by the exhaust gas purification device 1A is discharged from the exhaust pipe 3 provided in the chimney (funnel) to the external space, specifically, the atmosphere.
  • the exhaust gas purification device 1A includes an absorption tower 10, a spray unit 20, a supply pipe 30, a water pipe 32, a drain pipe 34 and a drain pipe 36, a tank 40, and a collection unit 50. , A drain pipe 60, a pump 70, and a swirl 80.
  • Exhaust gas generated by burning fossil fuel in the engine of the ship 2 flows into the absorption tower 10 through the exhaust pipe 5.
  • the exhaust pipe 5 is an example of an exhaust pipe that communicates the engine of the ship 2, that is, the source of exhaust gas, with the absorption tower 10.
  • the absorption tower 10 communicates with the exhaust stack 3.
  • the absorption tower 10 may be integrated with the exhaust stack 3.
  • the spray unit 20 includes, for example, a plurality of spray nozzles.
  • the spraying unit 20 sprays the absorbing liquid for absorbing the sulfur oxide contained in the exhaust gas flowing into the absorbing tower 10 into the absorbing tower 10.
  • the ship 2 is a ship navigating in the ocean, and seawater SW is used as an absorbing liquid for absorbing sulfur oxides.
  • the pump 70 sucks the seawater SW around the ship 2 and sends the sucked seawater SW to the spray unit 20.
  • a supply pipe 30 that opens to the bottom of the ship 2 is connected to the suction port of the pump 70.
  • the pump 70 sucks the seawater SW around the ship 2 through the supply pipe 30.
  • One end of the water pipe 32 is connected to the discharge port of the pump 70.
  • the other end of the water pipe 32 is branched into a plurality of branches, each of which is connected to the spray portion 20.
  • the pump 70 sends the seawater SW sucked through the supply pipe 30 to the spray unit 20 via the water pipe 32.
  • the spray unit 20 is provided in three stages in the vertical direction of the absorption tower 10.
  • the inner diameter of the absorption tower 10 cannot be made sufficiently large, and a sufficient number of spray portions 20 may not be provided in the radial direction of the absorption tower 10. .
  • the reason why the spraying portions 20 are provided in three stages in the vertical direction of the absorption tower 10 is that a sufficient number of spraying portions 20 are provided for the entire absorption tower 10 even if the inner diameter of the absorption tower 10 cannot be sufficiently obtained. Is.
  • the number of steps in the vertical direction of the spray portion 20 may be one or two. If it is necessary to further reduce the inner diameter of the absorption tower 10, the number of steps in the spray section 20 in the vertical direction may be four or more.
  • the absorption liquid sprayed into the absorption tower 10 by the spray unit 20 and used for absorbing sulfur dioxide contained in the exhaust gas is drained from the absorption tower 10 to the tank 40 via the drain pipe 34.
  • the liquid drained from the absorption tower 10 via the drain pipe 34 may be referred to as a waste liquid.
  • sulfur oxides in the exhaust gas are absorbed by utilizing the alkaline component (HCO 3- ) contained in the seawater SW. More specifically, when the absorption liquid sprayed by the spray unit 20 comes into contact with the exhaust gas, the sulfur oxides contained in the exhaust gas are absorbed into the absorption liquid. Sulfurous acid ion (HSO 3- ) is generated in the absorption liquid in the process of absorbing sulfur oxides.
  • the absorbed liquid used for absorbing sulfur oxides is oxidized by contact with a large amount of air in the tank 40, and the sulfite ion in the used absorbed liquid is detoxified as sulfate ion (SO 4-2 ) . ..
  • the used absorption liquid that has undergone the oxidation treatment is released into the ocean after adjusting the pH and recovering the dissolved oxygen by neutralization and aeration treatment in the tank 40.
  • the chemical reactions of the absorption, oxidation, and neutralization treatments in the exhaust gas purification device 1A are as follows. Absorption : SO 2 + H 2 O ⁇ H + + HSO 3- Oxidation : HSO 3- + (1/2) O 2 ⁇ H + + SO 4 2- Neutralization : HCO 3- + H + ⁇ H 2 O + CO 2 ⁇
  • the exhaust gas flowing into the absorption tower 10 comes into contact with the absorption liquid sprayed by the spray unit 20, absorbs and removes at least a part of the sulfur oxide contained therein, and then rises toward the exhaust stack 3.
  • the exhaust gas in which at least a part of the sulfur oxide is absorbed is referred to as a treated exhaust gas.
  • the swirl 80 is a guide blade that applies centrifugal force to the treated exhaust gas rising from the absorption tower 10 toward the exhaust stack 3.
  • the swirl 80 is provided at the boundary between the absorption tower 10 and the exhaust stack 3. That is, in the present embodiment, the portion below the swirl 80 is the absorption tower 10, and the portion above the swirl 80 is the exhaust stack 3.
  • the treated exhaust gas is given centrifugal force by rising along the swirl 80, and rises along the inner surface of the exhaust stack 3.
  • the treated exhaust gas rising along the inner surface of the exhaust stack 3 may be accompanied by droplets of an unused absorption liquid or a used absorption liquid. ..
  • the collecting unit 50 is for separating the droplets from the treated exhaust gas accompanying the droplets.
  • the collecting unit 50 corresponds to the scraping unit in Patent Document 1.
  • the collecting portion 50 is provided at the upper end portion of the exhaust stack 3, but may be provided at a position below the upper end portion of the exhaust stack 3 and above the swirl 80.
  • the collecting unit 50 has an opening that opens on the inner surface of the exhaust gas cylinder 3, and collects droplets that rise along the inner surface of the exhaust gas cylinder 3 together with the treated exhaust gas through the opening portion.
  • the collecting portion 50 and the drain pipe 34 communicate with each other via the drain pipe 60.
  • the drain pipe 60 drains the droplets collected by the collecting unit 50 to the drain pipe 34 as drain water.
  • the drain water drained from the drain pipe 60 flows into the tank 40 together with the waste liquid through the drain pipe 34 and is stored in the tank 40.
  • the tank 40 is, for example, a gas seal chamber. As shown in FIG. 1, in the tank 40, the waste liquid drained from the drain pipe 34 and the drain water drained from the drain pipe 60 are stored together with the air. Further, a drainage pipe 36 that opens to the bottom of the ship 2 projects into the internal space of the tank 40. The liquid stored in the tank 40, that is, a mixture of the waste liquid and the drain water, is discharged to the ocean through the drain pipe 36 after being inspected for pH and dissolved oxygen amount by the water treatment system 4. That is, the exhaust gas purification device 1A of the present embodiment is an open-loop type exhaust gas purification device that disposes of the used absorption liquid for absorbing sulfur oxides contained in the exhaust gas without reusing it. The sea navigating by the ship 2 equipped with the exhaust gas purification device 1A serves as an external water source for the absorbing liquid.
  • a valve that opens and closes under the control of the water treatment system 4 is provided at the upper end of the drainage pipe 36.
  • the water treatment system 4 opens the valve at the upper end of the drain pipe 36 when the pH of the liquid stored in the tank 40 and the amount of dissolved oxygen satisfy a predetermined reference value.
  • the valve at the upper end of the drain pipe 36 is open, the liquid exceeding the height of the drain pipe 36 protruding into the internal space of the tank 40 is discharged to the ocean outside the ship 2 through the drain pipe 36. ..
  • the pH and the amount of dissolved oxygen have predetermined reference values, which are determined according to the sea area in which the ship 2 is navigating.
  • the above is the configuration of the exhaust gas purification device 1A.
  • FIG. 2 is a diagram showing a configuration example of an open-loop type exhaust gas purification device 1E having a structure in which a drain pipe 60 is communicated with a tank 40.
  • the exhaust gas purification device 1E is an open loop type, it has the same configuration as the exhaust gas purification device disclosed in Patent Document 1 in that the drain pipe 60 is connected to the storage destination of the used absorbent liquid, that is, the tank 40. be.
  • the effect of the present embodiment will be described in comparison with the exhaust gas purification device 1E and the exhaust gas purification device 1A.
  • the liquid level of the liquid stored in the tank 40 fluctuates every time the waste liquid flows down to the tank 40 through the drain pipe 34, and the tank responds to the fluctuation of the liquid level.
  • the pressure of the air in the 40 that is, the internal pressure of the tank 40 fluctuates.
  • the drain pipe 60 communicates with the tank 40. Therefore, in the exhaust gas purifying device 1E, the fluctuation of the internal pressure of the tank 40 directly propagates into the pipe of the drain pipe 60, and this pressure fluctuation may make it difficult for the drain water to flow. If it becomes difficult for the drain water to flow into the drain pipe 60, the function of the collecting unit 50 deteriorates. That is, the collection of droplets by the collection unit 50 is hindered. As a result, the treated exhaust gas accompanying the droplets is discharged from the exhaust stack 3, and the acid generated by the reaction between the sulfur oxide remaining in the treated exhaust gas and the water content of the droplets is generated around the exhaust stack 3. Problems such as corroding certain metal products occur.
  • the drain pipe 60 communicates with the drain pipe 34. Since the drain pipe 34 communicates with the tank 40, the fluctuation of the internal pressure of the tank 40 propagates to the drain pipe 34. However, since the drain pipe 34 communicates with the external space via the absorption tower 10 and the exhaust pipe 3, the pressure fluctuation in the drain pipe 34 becomes gentle, and the pressure fluctuation propagating in the drain pipe 60 also purifies the exhaust gas. This is slower than in the case of the device 1E. Therefore, in the exhaust gas purification device 1A, the occurrence of a phenomenon that the drain water becomes difficult to flow is suppressed as compared with the exhaust gas purification device 1E, and the collection of droplets by the collection unit 50 is less likely to be hindered.
  • the collection of droplets accompanying the exhaust gas rising toward the exhaust stack 3 is less likely to be hindered.
  • FIG. 3 is a diagram showing a configuration example of the exhaust gas purification device 1B according to the second embodiment of the present disclosure.
  • the exhaust gas purification device 1B of the present embodiment is an open-loop type exhaust gas purification device like the exhaust gas purification device 1A.
  • FIG. 3 the same components as those in FIG. 1 are designated by the same reference numerals as those in FIG.
  • the first difference is that the drain pipe 60 is provided with a drain trap 90.
  • the drain trap is a structure in which a part of the drain pipe is bent so that water can be collected in order to prevent the inflow of gas or the like from the drain destination.
  • Specific examples of the drain trap include a U-shaped trap in which the drain pipe is bent into a U shape, and an S-shaped trap in which the drain pipe is bent into an S shape.
  • the drain trap 90 in this embodiment is a U-shaped trap, but it may be an S-shaped trap.
  • the second difference is that a degassing mechanism 100 that allows the drain pipe 60 to communicate with the external space, specifically in the atmosphere, is provided on the upper end side of the drain pipe 60, that is, near the connection portion to the collecting portion 50. It is a point.
  • the drain pipe 60 since the drain pipe 60 communicates with the drainage pipe 34, the collection of droplets by the collection unit 50 is less likely to be hindered as in the exhaust gas purification device 1A of the first embodiment.
  • the drain pipe 60 is provided with a drain trap 90, and the drain water flowing through the drain pipe 60 collects in the drain trap 90 to form a drain pool W. Since the exhaust gas purification device 1B has a drainage pool W, it is possible to prevent the exhaust gas flowing into the absorption tower 10 from being discharged into the atmosphere through the drainage pipe 34 and the drainage pipe 60.
  • the depth of the drainage pool W may be determined according to the pressure of the exhaust gas in the drainage pipe 34, and may be determined according to the maximum value of the pressure when the pressure of the exhaust gas in the drainage pipe 34 fluctuates. .. For example, if the maximum value of the pressure of the exhaust gas in the drain pipe 34 is about 200 mmAq, the depth of the drainage pool W may be set to at least 500 mm.
  • a gas venting mechanism 100 for communicating the drain pipe 60 to the external space is provided near the connection portion between the drain pipe 60 and the collection unit 50. Therefore, a flow of exhaust gas is generated from the inlet portion of the drain pipe 60 toward the degassing mechanism 100, and the collection of droplets by the collection unit 50 can be promoted. That is, according to the exhaust gas purification device 1B of the present embodiment, it is possible to efficiently collect the droplets in the collection unit 50 as compared with the exhaust gas purification device 1A of the first embodiment.
  • the exhaust gas purification device 1B of the present embodiment has a drain trap 90 and a degassing mechanism 100, but either one may be omitted. Even if the drain trap 90 is omitted from the exhaust gas purification device 1B, it is possible to efficiently collect the droplets in the collection unit 50 as compared with the exhaust gas purification device 1A. Further, even if the degassing mechanism 100 is omitted from the exhaust gas purifying device 1B, it is possible to prevent the exhaust gas flowing into the absorption tower 10 from being discharged into the atmosphere through the drain pipe 34 and the drain pipe 60.
  • FIG. 4 is a diagram showing a configuration example of the exhaust gas purification device 1C according to the third embodiment of the present disclosure.
  • the exhaust gas purification device 1C of the present embodiment is also an open-loop type exhaust gas purification device like the exhaust gas purification device 1A.
  • FIG. 4 the same components as those in FIG. 1 are designated by the same reference numerals as those in FIG.
  • FIGS. 4 and 1 there are the following two differences in the configurations of the exhaust gas purification device 1C and the exhaust gas purification device 1A.
  • the first difference is that the collection unit 50 and the tank 40 communicate with each other via the drain pipe 60.
  • the second difference is that a degassing mechanism 102 for communicating the tank 40 to the external space is provided.
  • the tank 40 since the tank 40 communicates with the external space via the degassing mechanism 102, the fluctuation of the internal pressure of the tank 40 is gradual as compared with the embodiment in which the degassing mechanism 102 is not provided. Become. Therefore, in the exhaust gas purification device 1C, the occurrence of a phenomenon that makes it difficult for drain water to flow into the drain pipe 60 is suppressed as compared with the above-mentioned exhaust gas purification device 1E, and the collection of droplets by the collection unit 50 is less likely to be hindered. Become.
  • the exhaust gas purification device 1A in the first embodiment is an open-loop type exhaust gas purification device that takes in the seawater SW that plays the role of an absorption liquid from the periphery of the ship 2 and discharges the used absorption liquid and the drain water to the outside of the ship 2. Met.
  • the technical features of the first embodiment may be adopted for a closed-loop type exhaust gas purifying device having a collecting portion and a drain pipe.
  • the technical features of the second or third embodiment may be adopted in a closed-loop type exhaust gas purification device having a collecting portion and a drain pipe.
  • FIG. 5 is a diagram showing an example of adoption of the technical features of the first embodiment in a closed-loop type exhaust gas purification device having a collecting portion and a drain pipe.
  • the exhaust gas purification device 1D a certain amount of absorbing liquid is stored in the tank 40 in advance.
  • the supply pipe 30 is connected to the tank 40.
  • the pump 70 sucks the absorbing liquid stored in the tank 40 through the supply pipe 30 and sends it out to the spraying unit 20 via the water pipe 32.
  • the exhaust gas purification device 1D shown in FIG. 5 is not provided with the drain pipe 36, and the used absorbed liquid and drain water returned to the tank 40 are reused as the absorbed liquid after being neutralized and aerated. ..
  • the liquid by the collection unit 50 is the same as in the exhaust gas purification device 1A of the first embodiment. Drop collection is less likely to be hindered.
  • FIG. 6 is a diagram showing an example of adoption of the technical features of the first embodiment in the exhaust gas purification device of the hybrid system.
  • the exhaust gas purification device 1F shown in FIG. 6 includes a supply pipe 30a and a supply pipe 30b connected to a suction port of the pump 70 via a switching valve (not shown).
  • the supply pipe 30a opens at the bottom of the ship 2.
  • the supply pipe 30b is connected to the tank 40.
  • one of the supply pipe 30a and the supply pipe 30b communicates with the suction port of the pump 70 by switching a switching valve (not shown).
  • the exhaust gas purification device 1F functions as an open-loop type exhaust gas purification device.
  • the exhaust gas purification device 1F functions as a closed-loop type exhaust gas purification device.
  • the exhaust gas can be purified by the open loop type in the sea area where the drainage regulation to the ocean is loose, while the exhaust gas can be purified by the closed loop type in the sea area where the drainage regulation is strict.
  • the open ocean is an example of a sea area where drainage regulations are loose.
  • a coastal sea area is an example of a sea area where drainage regulations are strict.
  • the exhaust gas purification device 1F shown in FIG. 6 may be modified to have a configuration in which the supply pipe 30b is connected to the supply pipe 30a via a switching valve. This configuration may be modified to a configuration in which a second pump separate from the pump 70 is further provided, and seawater sucked by the second pump is injected into the tank 40 via the supply pipe 30b.
  • a configuration in which the supply pipe 30b is connected to the water supply pipe 32 is also conceivable, but in the configuration in which the supply pipe 30b is connected to the water supply pipe 32, a pump for delivering the absorption liquid from the supply pipe 30b to the water supply pipe 32 is provided in the supply pipe 30b. Is required.
  • the ship 2 in each of the above embodiments is a ship navigating in the ocean, but may be a vessel navigating in a freshwater area.
  • sodium hydroxide, magnesium hydroxide, or the like may be added to the water sucked from the periphery of the ship 2 to replenish the alkaline component.
  • the absorption liquid in the present disclosure is not limited to seawater, and may be an alkaline aqueous solution containing an alkaline component.
  • the alkaline component is not limited to HCO 3- .
  • One aspect of the exhaust gas purification device of the present disclosure includes an absorption tower, a spray part, a drainage pipe, a tank, a collection part, and a drain pipe.
  • Exhaust gas generated by the combustion of fossil fuels flows into the absorption tower.
  • the absorption tower communicates with the exhaust pipe that discharges the exhaust gas with reduced sulfur oxides to the external space.
  • the spraying unit sprays an absorbing liquid for absorbing sulfur oxides into the absorption tower.
  • the drain pipe is provided to drain the absorbing liquid sprayed by the spraying portion from the absorption tower.
  • the tank stores the absorbent liquid drained from the drain pipe.
  • the collecting unit is provided in the exhaust stack to collect the droplets accompanying the exhaust gas rising from the absorption tower toward the exhaust stack.
  • the drain pipe communicates with the drain pipe and drains the droplets collected by the collecting portion as drain water.
  • the drain pipe communicates with the drain pipe. Since the drainage pipe communicates with the external space via the absorption tower and the exhaust pipe, the pressure fluctuation in the drainage pipe is gentler than the fluctuation in the internal pressure of the tank. Therefore, in the exhaust gas purification device of this embodiment, the occurrence of a phenomenon that the drain water becomes difficult to flow due to the pressure fluctuation at the communication destination of the drain pipe is suppressed as compared with the mode in which the drain pipe is communicated with the tank. The collection of droplets by the collecting part is less likely to be hindered.
  • the exhaust gas purification device may be provided with a drain trap in the drain pipe.
  • the following effects are exhibited in addition to the effect that the collection of droplets by the collection unit is less likely to be hindered. That is, according to the exhaust gas purification device of this embodiment, it is possible to prevent the exhaust gas flowing into the absorption tower from being discharged to the external space through the drain pipe and the drain pipe by the drain pool of the drain trap.
  • the depth of the drainage pool in the drainage trap may be determined according to the pressure of the exhaust gas flowing into the absorption tower.
  • Yet another preferred embodiment of the exhaust gas purification device may be provided with a degassing mechanism communicating with the external space in the upper part of the drain pipe. According to this aspect, it becomes possible to collect the droplets in the collecting portion more efficiently than in the aspect in which the degassing mechanism is not provided.
  • water sucked from an external water source by a pump is used as the absorbing liquid sent out to the spraying portion, and the absorbing liquid stored in the tank is drained to the external water source. May be done.
  • an open-loop type exhaust gas purification device provided with a collecting portion and a drain pipe, the collection of droplets by the collecting portion is less likely to be hindered.
  • the pump may suck the absorbing liquid stored in the tank and send it out to the spraying unit.
  • the collection of droplets by the collecting portion is less likely to be hindered.
  • the exhaust gas purifying device includes an absorption tower, a spraying portion, a drain pipe, a tank, a degassing mechanism for communicating the tank to an external space, a collecting portion, and a drain pipe.
  • an absorption tower To prepare for. Exhaust gas generated by the combustion of fossil fuels flows into the absorption tower.
  • the absorption tower communicates with the exhaust pipe that discharges the exhaust gas with reduced sulfur oxides to the external space.
  • the spraying unit sprays an absorbing liquid for absorbing sulfur oxides into the absorption tower.
  • the drain pipe is provided to drain the absorption liquid sprayed by the spray portion from the absorption tower.
  • the tank stores the absorbent liquid drained from the drain pipe.
  • the collecting part is provided in the exhaust stack.
  • the collection unit collects droplets accompanying the exhaust gas rising from the absorption tower toward the exhaust stack.
  • the drain pipe drains the droplets collected by the collecting portion into the tank as drain water.
  • the tank since the tank communicates with the external space via the degassing mechanism, the fluctuation of the internal pressure of the tank becomes gradual as compared with the mode without the degassing mechanism. Therefore, the phenomenon that the drain water becomes difficult to flow due to the fluctuation of the internal pressure of the tank is suppressed, and the collection of the droplets by the collecting portion is less likely to be hindered.
  • This aspect is also applicable to both closed-loop type and open-loop type exhaust gas purification devices.
  • Exhaust gas purification device 2 ... Ship, 3 ... Exhaust pipe, 4 ... Water treatment system, 5 ... Exhaust pipe, 10 ... Absorption tower, 20 ... Spray part, 30 ... Supply pipe, 32 ... Water pipe, 34, 36 ... Drain pipe, 40 ... Tank, 50 ... Collection part, 60 ... Drain, 70 ... Pump, 80 ... Swala, 90 ... Drain trap, 100, 102 ... Degassing mechanism.

Abstract

Provided is an exhaust gas purifying device comprising: an absorption tower that communicates with a flue and into which flows an exhaust gas generated by burning a fossil fuel; a spraying unit that sprays, into the absorption tower, an absorbent for absorbing sulfur oxide; a discharge pipe that discharges the absorbent from the absorption tower; a tank that stores the absorbent drained from the discharge pipe; a collecting unit provided in the flue for collecting droplets accompanying the exhaust gas that rises upward from the absorption tower toward the flue; and a drain pipe that is in communication with the discharge pipe and drains the droplets collected by the collecting unit as drain water to the discharge pipe.

Description

排ガス浄化装置Exhaust gas purification device
 本開示は、石炭又は重油等の化石燃料の燃焼により発生する排ガスに含まれる硫黄酸化物を低減させる排ガス浄化装置に関する。 The present disclosure relates to an exhaust gas purification device that reduces sulfur oxides contained in exhaust gas generated by combustion of fossil fuels such as coal or heavy oil.
 化石燃料の燃焼により発生する排ガスに含まれる硫黄酸化物を低減させる排ガス浄化装置の一例としてはアルカリ成分を含む吸収液を用いる装置が挙げられる。吸収液を用いる排ガス浄化装置は、オープンループ型とクローズドループ型とに大別される。オープンループ型の排ガス浄化装置では、硫黄酸化物の吸収に使用済みの吸収液はタンク等に貯留され、その後廃棄される。クローズドループ型の排ガス浄化装置では、使用済の吸収液はタンク等に貯留され、吸収液として再利用される。 An example of an exhaust gas purification device that reduces sulfur oxides contained in exhaust gas generated by combustion of fossil fuels is a device that uses an absorbing liquid containing an alkaline component. Exhaust gas purification devices that use an absorbent liquid are roughly classified into an open loop type and a closed loop type. In the open-loop type exhaust gas purification device, the absorbed liquid used for absorbing sulfur oxides is stored in a tank or the like and then discarded. In the closed-loop type exhaust gas purification device, the used absorption liquid is stored in a tank or the like and reused as the absorption liquid.
 特許文献1には、クローズドループ型の排ガス浄化装置が開示されている。特許文献1に開示の排ガス浄化装置は煙突と一体の吸収塔を有する。吸収塔の内部には、吸収塔に流入する排ガスに吸収液を噴霧するスプレーノズルが配置される。吸収塔の上部内面には、煙突に向かって上昇する排ガスに遠心力を与えるガイド翼が配置される。ガイド翼によって遠心力を与えられた排ガスは煙突の内面に沿って上昇する。煙突の内面に沿って上昇する排ガスには液滴が同伴する場合がある。煙突の上部の内面には、排ガスに同伴する液滴を捕集するための掻き取り部が配置される。掻き取り部には液滴を吸収塔内へ戻すドレイン管が接続され、ドレイン管経由で吸収塔内に戻される液滴は再度吸収液として利用される。 Patent Document 1 discloses a closed-loop type exhaust gas purification device. The exhaust gas purification device disclosed in Patent Document 1 has an absorption tower integrated with a chimney. Inside the absorption tower, a spray nozzle that sprays the absorption liquid onto the exhaust gas flowing into the absorption tower is arranged. On the inner surface of the upper part of the absorption tower, guide blades that give centrifugal force to the exhaust gas rising toward the chimney are arranged. Exhaust gas centrifugally applied by the guide blades rises along the inner surface of the chimney. Droplets may accompany the exhaust gas rising along the inner surface of the chimney. On the inner surface of the upper part of the chimney, a scraping portion for collecting droplets accompanying the exhaust gas is arranged. A drain pipe that returns the droplets into the absorption tower is connected to the scraping portion, and the droplets that are returned into the absorption tower via the drain pipe are used again as the absorbing liquid.
特開平11-151426号公報Japanese Unexamined Patent Publication No. 11-151426
 掻き取り部により捕集した液滴がドレイン管に円滑に流れないと、掻き取り部による液滴の捕集が阻害され、液滴を伴う排ガスが煙突から排出される。排ガスに液滴が伴っていると、排ガスに残留する硫黄酸化物が液滴の水分に溶け込んで酸が生成され、煙突の周囲にある金属製品を腐食させる場合がある。この問題は、オープンループ型の排ガス浄化装置であっても同様に発生する。 If the droplets collected by the scraper do not flow smoothly into the drain pipe, the collection of droplets by the scraper is hindered and the exhaust gas with the droplets is discharged from the chimney. When the exhaust gas is accompanied by droplets, the sulfur oxides remaining in the exhaust gas dissolve in the water content of the droplets to generate acid, which may corrode the metal products around the chimney. This problem also occurs in an open-loop type exhaust gas purification device.
 本開示は以上に説明した課題に鑑みて為されたものであり、排気筒に向かって上昇する排ガスに同伴する液滴を捕集する構成の排ガス浄化装置において、液滴の捕集が阻害されないようにする技術を提供することを目的とする。 The present disclosure has been made in view of the above-described problems, and the collection of droplets is not hindered in the exhaust gas purification device having a configuration for collecting droplets accompanying the exhaust gas rising toward the exhaust stack. The purpose is to provide the technology to do so.
 上記課題を解決するために本開示の排ガス浄化装置は、排気筒に連通し、化石燃料の燃焼により発生する排ガスが流入する吸収塔と、硫黄酸化物を吸収するための吸収液を前記吸収塔内に噴霧する噴霧部と、前記噴霧部により噴霧された吸収液を前記吸収塔から排水するための排水管と、前記排水管から排水される吸収液を貯留するタンクと、前記吸収塔から前記排気筒に向かって上昇する排ガスに同伴する液滴を捕集するために前記排気筒に設けられる捕集部と、前記排水管に連通し、前記捕集部により捕集される液滴をドレイン水として排水するドレイン管と、を備える。 In order to solve the above problems, the exhaust gas purifying device of the present disclosure communicates with an exhaust pipe, and has an absorption tower through which exhaust gas generated by combustion of fossil fuel flows in and an absorption tower for absorbing sulfur oxide. A spray unit for spraying inside, a drain pipe for draining the absorption liquid sprayed by the spray unit from the absorption tower, a tank for storing the absorption liquid drained from the drain pipe, and the absorption tower. A collection section provided in the exhaust stack for collecting droplets accompanying the exhaust gas rising toward the exhaust stack, and a drain that communicates with the drain pipe and is collected by the collection portion. It is provided with a drain pipe for draining as water.
 また、上記課題を解決するために本開示の別の態様の排ガス浄化装置は、排気筒に連通し、化石燃料の燃焼により発生する排ガスが流入する吸収塔と、硫黄酸化物を吸収するための吸収液を前記吸収塔内に噴霧する噴霧部と、前記噴霧部により噴霧される吸収液を前記吸収塔から排水するための排水管と、前記排水管から排水される吸収液を貯留するタンクと、前記吸収塔から前記排気筒に向かって上昇する排ガスに同伴する液滴を捕集するために前記排気筒に設けられる捕集部と、前記捕集部により捕集される液滴をドレイン水として前記タンクへ排水するドレイン管と、前記タンクを外部空間に連通させるガス抜き機構と、を備える。 Further, in order to solve the above-mentioned problems, the exhaust gas purification device of another aspect of the present disclosure communicates with the exhaust stack and absorbs the absorption tower in which the exhaust gas generated by the combustion of fossil fuel flows in and the sulfur oxide. A spray unit that sprays the absorption liquid into the absorption tower, a drain pipe for draining the absorption liquid sprayed by the spray unit from the absorption tower, and a tank for storing the absorption liquid drained from the drain pipe. , The collecting portion provided in the exhaust stack for collecting the droplets accompanying the exhaust gas rising from the absorption tower toward the exhaust stack, and the droplets collected by the collecting portion are drain water. A drain pipe for draining water to the tank and a degassing mechanism for communicating the tank with the external space are provided.
本開示の第1実施形態に係る排ガス浄化装置1Aの構成例を示す図である。It is a figure which shows the structural example of the exhaust gas purification apparatus 1A which concerns on 1st Embodiment of this disclosure. ドレイン管60をタンク40に連通させた構成の排ガス浄化装置1Eの構成例を示す図である。It is a figure which shows the structural example of the exhaust gas purification apparatus 1E which has the structure which communicated the drain pipe 60 with the tank 40. 本開示の第2実施形態に係る排ガス浄化装置1Bの構成例を示す図である。It is a figure which shows the structural example of the exhaust gas purification apparatus 1B which concerns on the 2nd Embodiment of this disclosure. 本開示の第3実施形態に係る排ガス浄化装置1Cの構成例を示す図である。It is a figure which shows the structural example of the exhaust gas purification apparatus 1C which concerns on 3rd Embodiment of this disclosure. 変形例1の排ガス浄化装置1Dの構成例を示す図である。It is a figure which shows the structural example of the exhaust gas purification apparatus 1D of the modification 1. FIG. 変形例1の排ガス浄化装置1Fの他の構成例を示す図である。It is a figure which shows the other configuration example of the exhaust gas purification apparatus 1F of the modification 1.
 以下、図面を参照しながら本開示に係る実施形態を説明する。なお、図面において各部の寸法及び縮尺は実際のものと適宜異なる。また、以下に記載する実施形態は、本開示の好適な具体例である。このため、以下の実施形態には、技術的に好ましい種々の限定が付されている。しかし、本開示の範囲は、以下の説明において特に本開示を限定する旨の記載がない限り、これらの形態に限られるものではない。 Hereinafter, embodiments according to the present disclosure will be described with reference to the drawings. In the drawings, the dimensions and scale of each part may differ from the actual ones. Moreover, the embodiment described below is a preferable specific example of the present disclosure. For this reason, the following embodiments are subject to various technically preferred limitations. However, the scope of the present disclosure is not limited to these forms unless otherwise stated in the following description to limit the present disclosure.
1.第1実施形態
 図1は、本開示の第1実施形態に係る排ガス浄化装置1Aの構成例を示す図である。排ガス浄化装置1Aは、重油又は石炭等の化石燃料を燃焼させて推進力を発生させる船舶2に搭載される。船舶2において推進力を発生される機関としては、ガソリンエンジン又はディーゼルエンジン等の内燃機関、或いはタービンとタービンに蒸気を供給するボイラとを含む外燃機関が挙げられる。図1に示す排ガス浄化装置1Aは、化石燃料の燃焼により発生する排ガスに含まれる二酸化硫黄等の硫黄酸化物を低減させる装置である。排ガス浄化装置1Aにより硫黄酸化物を低減済の排ガスは、煙突(funnel)に設けられる排気筒3から、外部空間、具体的には大気中、へ放出される。
1. 1. 1st Embodiment FIG. 1 is a diagram showing a configuration example of an exhaust gas purification device 1A according to the first embodiment of the present disclosure. The exhaust gas purification device 1A is mounted on a ship 2 that generates propulsive force by burning fossil fuels such as heavy oil or coal. Examples of the engine that generates propulsive force in the ship 2 include an internal combustion engine such as a gasoline engine or a diesel engine, or an external combustion engine including a turbine and a boiler that supplies steam to the turbine. The exhaust gas purification device 1A shown in FIG. 1 is a device that reduces sulfur oxides such as sulfur dioxide contained in exhaust gas generated by combustion of fossil fuels. The exhaust gas whose sulfur oxides have been reduced by the exhaust gas purification device 1A is discharged from the exhaust pipe 3 provided in the chimney (funnel) to the external space, specifically, the atmosphere.
 図1に示すように、排ガス浄化装置1Aは、吸収塔10と、噴霧部20と、供給管30と、送水管32と、排水管34及び排水管36と、タンク40と、捕集部50と、ドレイン管60と、ポンプ70と、スワラ80と、を備える。吸収塔10には、船舶2の機関にて化石燃料を燃焼させることにより発生する排ガスが排気管5を介して流入する。排気管5は、船舶2の機関、即ち排ガスの発生源と、吸収塔10とを連通させる排気管の一例である。吸収塔10は、排気筒3に連通する。吸収塔10は排気筒3と一体であってもよい。 As shown in FIG. 1, the exhaust gas purification device 1A includes an absorption tower 10, a spray unit 20, a supply pipe 30, a water pipe 32, a drain pipe 34 and a drain pipe 36, a tank 40, and a collection unit 50. , A drain pipe 60, a pump 70, and a swirl 80. Exhaust gas generated by burning fossil fuel in the engine of the ship 2 flows into the absorption tower 10 through the exhaust pipe 5. The exhaust pipe 5 is an example of an exhaust pipe that communicates the engine of the ship 2, that is, the source of exhaust gas, with the absorption tower 10. The absorption tower 10 communicates with the exhaust stack 3. The absorption tower 10 may be integrated with the exhaust stack 3.
 噴霧部20は、例えば、複数のスプレーノズルを備える。噴霧部20は、吸収塔10に流入する排ガスに含まれる硫黄酸化物を吸収するための吸収液を吸収塔10内に噴霧する。本実施形態では、船舶2は海洋を航行する船舶であり、硫黄酸化物を吸収するための吸収液として海水SWが利用される。 The spray unit 20 includes, for example, a plurality of spray nozzles. The spraying unit 20 sprays the absorbing liquid for absorbing the sulfur oxide contained in the exhaust gas flowing into the absorbing tower 10 into the absorbing tower 10. In the present embodiment, the ship 2 is a ship navigating in the ocean, and seawater SW is used as an absorbing liquid for absorbing sulfur oxides.
 ポンプ70は、船舶2の周囲の海水SWを吸引し、吸引した海水SWを噴霧部20へ送り出す。ポンプ70の吸引口には、船舶2の船底に開口する供給管30が接続される。ポンプ70は、供給管30を介して船舶2の周囲の海水SWを吸引する。ポンプ70の吐出口には送水管32の一端が接続される。送水管32の他端は複数に分岐し、各々噴霧部20に接続される。ポンプ70は、供給管30を介して吸引した海水SWを送水管32を介して噴霧部20へ送り出す。 The pump 70 sucks the seawater SW around the ship 2 and sends the sucked seawater SW to the spray unit 20. A supply pipe 30 that opens to the bottom of the ship 2 is connected to the suction port of the pump 70. The pump 70 sucks the seawater SW around the ship 2 through the supply pipe 30. One end of the water pipe 32 is connected to the discharge port of the pump 70. The other end of the water pipe 32 is branched into a plurality of branches, each of which is connected to the spray portion 20. The pump 70 sends the seawater SW sucked through the supply pipe 30 to the spray unit 20 via the water pipe 32.
 本実施形態の排ガス浄化装置1Aでは、噴霧部20は吸収塔10の鉛直方向に三段に設けられる。船舶では搭載する機器に対して割り当て可能な面積に制限があり、吸収塔10の内径を十分に大きく取れず、十分な個数の噴霧部20を吸収塔10の径方向に設けられない場合がある。噴霧部20を吸収塔10の鉛直方向に三段に設けたのは、吸収塔10の内径を十分に取れない場合であっても、吸収塔10全体として十分な個数の噴霧部20を設けるためである。従って、吸収塔10の内径を十分に大きくとれる場合には噴霧部20の鉛直方向の段数を一段又は二段にしてもよい。また、吸収塔10の内径を更に小さくする必要がある場合には、噴霧部20の鉛直方向の段数を四段以上にしてもよい。 In the exhaust gas purification device 1A of the present embodiment, the spray unit 20 is provided in three stages in the vertical direction of the absorption tower 10. In a ship, there is a limit to the area that can be allocated to the equipment to be mounted, the inner diameter of the absorption tower 10 cannot be made sufficiently large, and a sufficient number of spray portions 20 may not be provided in the radial direction of the absorption tower 10. .. The reason why the spraying portions 20 are provided in three stages in the vertical direction of the absorption tower 10 is that a sufficient number of spraying portions 20 are provided for the entire absorption tower 10 even if the inner diameter of the absorption tower 10 cannot be sufficiently obtained. Is. Therefore, if the inner diameter of the absorption tower 10 can be made sufficiently large, the number of steps in the vertical direction of the spray portion 20 may be one or two. If it is necessary to further reduce the inner diameter of the absorption tower 10, the number of steps in the spray section 20 in the vertical direction may be four or more.
 噴霧部20により吸収塔10内に噴霧され、排ガスに含まれる二酸化硫黄の吸収に利用された吸収液は、排水管34を介して吸収塔10からタンク40へ排水される。以下では、排水管34を介して吸収塔10から排水される液体のことを廃液と呼ぶ場合がある。 The absorption liquid sprayed into the absorption tower 10 by the spray unit 20 and used for absorbing sulfur dioxide contained in the exhaust gas is drained from the absorption tower 10 to the tank 40 via the drain pipe 34. Hereinafter, the liquid drained from the absorption tower 10 via the drain pipe 34 may be referred to as a waste liquid.
 本実施形態の排ガス浄化装置1Aでは、海水SW中に含まれるアルカリ成分(HCO )を利用して排ガス中の硫黄酸化物の吸収が行われる。より詳細には、噴霧部20により噴霧された吸収液と排ガスとが接触すると、排ガスに含まれる硫黄酸化物は吸収液中に吸収される。硫黄酸化物を吸収する過程で吸収液中には亜硫酸イオン(HSO )が発生する。硫黄酸化物の吸収に使用済の吸収液はタンク40内で大量の空気と接触することで酸化され、使用済みの吸収液中の亜硫酸イオンは硫酸イオン(SO 2-)として無害化される。酸化処理を経た使用済の吸収液はタンク40内で中和及び曝気処理によりpHの調整及び溶存酸素の回復を経て海洋へ放出される。なお、排ガス浄化装置1Aにおける吸収、酸化、及び中和の各処理の化学反応は以下の通りである。
 吸収:SO+HO→H+HSO
 酸化:HSO +(1/2)O→H+SO 2-
 中和:HCO +H→HO+CO
In the exhaust gas purification device 1A of the present embodiment, sulfur oxides in the exhaust gas are absorbed by utilizing the alkaline component (HCO 3- ) contained in the seawater SW. More specifically, when the absorption liquid sprayed by the spray unit 20 comes into contact with the exhaust gas, the sulfur oxides contained in the exhaust gas are absorbed into the absorption liquid. Sulfurous acid ion (HSO 3- ) is generated in the absorption liquid in the process of absorbing sulfur oxides. The absorbed liquid used for absorbing sulfur oxides is oxidized by contact with a large amount of air in the tank 40, and the sulfite ion in the used absorbed liquid is detoxified as sulfate ion (SO 4-2 ) . .. The used absorption liquid that has undergone the oxidation treatment is released into the ocean after adjusting the pH and recovering the dissolved oxygen by neutralization and aeration treatment in the tank 40. The chemical reactions of the absorption, oxidation, and neutralization treatments in the exhaust gas purification device 1A are as follows.
Absorption : SO 2 + H 2 O → H + + HSO 3-
Oxidation : HSO 3- + (1/2) O 2 → H + + SO 4 2-
Neutralization : HCO 3- + H + → H 2 O + CO 2
 吸収塔10に流入した排ガスは、噴霧部20により噴霧される吸収液と接触し、含有する硫黄酸化物の少なくとも一部を吸収除去された後、排気筒3に向かって上昇する。以下では、硫黄酸化物の少なくとも一部を吸収された排ガスを処理済排ガスと呼ぶ。スワラ80は、吸収塔10から排気筒3に向かって上昇する処理済排ガスに遠心力を与えるガイド翼である。スワラ80は吸収塔10と排気筒3との境界に設けられる。つまり、本実施形態では、スワラ80以下の部分が吸収塔10であり、スワラ80より上の部分が排気筒3である。処理済排ガスは、スワラ80に沿って上昇することにより遠心力を与えられ、排気筒3の内面に沿って上昇する。 The exhaust gas flowing into the absorption tower 10 comes into contact with the absorption liquid sprayed by the spray unit 20, absorbs and removes at least a part of the sulfur oxide contained therein, and then rises toward the exhaust stack 3. Hereinafter, the exhaust gas in which at least a part of the sulfur oxide is absorbed is referred to as a treated exhaust gas. The swirl 80 is a guide blade that applies centrifugal force to the treated exhaust gas rising from the absorption tower 10 toward the exhaust stack 3. The swirl 80 is provided at the boundary between the absorption tower 10 and the exhaust stack 3. That is, in the present embodiment, the portion below the swirl 80 is the absorption tower 10, and the portion above the swirl 80 is the exhaust stack 3. The treated exhaust gas is given centrifugal force by rising along the swirl 80, and rises along the inner surface of the exhaust stack 3.
 吸収塔10に流入する排ガスの流速が速い場合、排気筒3の内面に沿って上昇する処理済排ガスには、未使用の吸収液又は使用済の吸収液等の液滴が同伴する場合がある。捕集部50は、液滴を同伴する処理済排ガスから液滴を分離するためのものである。捕集部50は特許文献1における掻き取り部に対応する。図1に示すように、本実施形態では、捕集部50は排気筒3の上端部に設けられるが、排気筒3の上端部以下、かつ、スワラ80より上方の位置に設けられればよい。捕集部50は排気筒3の内面に開口する開口部を有し、処理済排ガスと共に排気筒3の内面に沿って上昇する液滴を当該開口部を介して捕集する。 When the flow velocity of the exhaust gas flowing into the absorption tower 10 is high, the treated exhaust gas rising along the inner surface of the exhaust stack 3 may be accompanied by droplets of an unused absorption liquid or a used absorption liquid. .. The collecting unit 50 is for separating the droplets from the treated exhaust gas accompanying the droplets. The collecting unit 50 corresponds to the scraping unit in Patent Document 1. As shown in FIG. 1, in the present embodiment, the collecting portion 50 is provided at the upper end portion of the exhaust stack 3, but may be provided at a position below the upper end portion of the exhaust stack 3 and above the swirl 80. The collecting unit 50 has an opening that opens on the inner surface of the exhaust gas cylinder 3, and collects droplets that rise along the inner surface of the exhaust gas cylinder 3 together with the treated exhaust gas through the opening portion.
 図1に示すように、ドレイン管60を介して、捕集部50と排水管34とが連通する。ドレイン管60は、捕集部50により捕集される液滴をドレイン水として排水管34へ排水する。ドレイン管60から排水されるドレイン水は、廃液と共に排水管34を介してタンク40に流れ込み、タンク40に貯留される。 As shown in FIG. 1, the collecting portion 50 and the drain pipe 34 communicate with each other via the drain pipe 60. The drain pipe 60 drains the droplets collected by the collecting unit 50 to the drain pipe 34 as drain water. The drain water drained from the drain pipe 60 flows into the tank 40 together with the waste liquid through the drain pipe 34 and is stored in the tank 40.
 タンク40は例えばガスシールチャンバである。図1に示すように、タンク40には、排水管34から排水される廃液とドレイン管60から排水されるドレイン水とが空気と共に貯留される。また、タンク40の内部空間には、船舶2の船底に開口する排水管36が突出する。タンク40に貯留される液体、即ち廃液とドレイン水との混合物は、水処理システム4によるpH及び溶存酸素量の検査を経て排水管36を介して海洋へ放出される。つまり、本実施形態の排ガス浄化装置1Aは、排ガスに含まれる硫黄酸化物の吸収に使用済の吸収液を再利用せずに廃棄するオープンループ型の排ガス浄化装置である。排ガス浄化装置1Aを搭載する船舶2が航行する海は吸収液の外部水源となる。 The tank 40 is, for example, a gas seal chamber. As shown in FIG. 1, in the tank 40, the waste liquid drained from the drain pipe 34 and the drain water drained from the drain pipe 60 are stored together with the air. Further, a drainage pipe 36 that opens to the bottom of the ship 2 projects into the internal space of the tank 40. The liquid stored in the tank 40, that is, a mixture of the waste liquid and the drain water, is discharged to the ocean through the drain pipe 36 after being inspected for pH and dissolved oxygen amount by the water treatment system 4. That is, the exhaust gas purification device 1A of the present embodiment is an open-loop type exhaust gas purification device that disposes of the used absorption liquid for absorbing sulfur oxides contained in the exhaust gas without reusing it. The sea navigating by the ship 2 equipped with the exhaust gas purification device 1A serves as an external water source for the absorbing liquid.
 図1では詳細な図示を省略したが、排水管36の上端には水処理システム4による制御の下で開閉する弁が設けられる。水処理システム4は、タンク40に貯留されている液体のpH及び溶存酸素量が所定の基準値を満たしている場合に排水管36の上端の弁を開く。排水管36の上端の弁が開いた状態では、タンク40の内部空間に突出する排水管36の高さを上回る分の液体は、排水管36を介して船舶2の外部の海洋へ放出される。なお、pH及び溶存酸素量が所定の基準値については船舶2が航行する海域に応じて定められる。
 以上が排ガス浄化装置1Aの構成である。
Although detailed illustration is omitted in FIG. 1, a valve that opens and closes under the control of the water treatment system 4 is provided at the upper end of the drainage pipe 36. The water treatment system 4 opens the valve at the upper end of the drain pipe 36 when the pH of the liquid stored in the tank 40 and the amount of dissolved oxygen satisfy a predetermined reference value. When the valve at the upper end of the drain pipe 36 is open, the liquid exceeding the height of the drain pipe 36 protruding into the internal space of the tank 40 is discharged to the ocean outside the ship 2 through the drain pipe 36. .. The pH and the amount of dissolved oxygen have predetermined reference values, which are determined according to the sea area in which the ship 2 is navigating.
The above is the configuration of the exhaust gas purification device 1A.
 図2は、ドレイン管60をタンク40に連通させた構成のオープンループ型の排ガス浄化装置1Eの構成例を示す図である。排ガス浄化装置1Eは、オープンループ型ではあるものの、使用済み吸収液の貯留先、即ちタンク40にドレイン管60が接続されている点では、特許文献1に開示の排ガス浄化装置の構成と同一である。以下、排ガス浄化装置1Eと排ガス浄化装置1Aとを対比して本実施形態の効果を説明する。 FIG. 2 is a diagram showing a configuration example of an open-loop type exhaust gas purification device 1E having a structure in which a drain pipe 60 is communicated with a tank 40. Although the exhaust gas purification device 1E is an open loop type, it has the same configuration as the exhaust gas purification device disclosed in Patent Document 1 in that the drain pipe 60 is connected to the storage destination of the used absorbent liquid, that is, the tank 40. be. Hereinafter, the effect of the present embodiment will be described in comparison with the exhaust gas purification device 1E and the exhaust gas purification device 1A.
 排ガス浄化装置1A及び排ガス浄化装置1Eでは、排水管34を介して廃液がタンク40に流れ落ちる毎にタンク40に貯留されている液体の液面が揺動し、液面の揺動に応じてタンク40内の空気の圧力、即ちタンク40の内圧が変動する。 In the exhaust gas purification device 1A and the exhaust gas purification device 1E, the liquid level of the liquid stored in the tank 40 fluctuates every time the waste liquid flows down to the tank 40 through the drain pipe 34, and the tank responds to the fluctuation of the liquid level. The pressure of the air in the 40, that is, the internal pressure of the tank 40 fluctuates.
 排ガス浄化装置1Eではドレイン管60はタンク40に連通している。このため、排ガス浄化装置1Eでは、タンク40の内圧の変動がドレイン管60の管内に直接伝搬し、この圧力変動によりドレイン水が流れ難くなる場合がある。ドレイン管60にドレイン水が流れ難くなると、捕集部50の機能が低下する。つまり、捕集部50による液滴の捕集が阻害される。その結果、液滴を同伴する処理済排ガスが排気筒3から放出され、処理済排ガスに残っている硫黄酸化物と液滴の水分との反応により生成される酸により、排気筒3の周囲にある金属製品を腐食させる等の問題が発生する。 In the exhaust gas purification device 1E, the drain pipe 60 communicates with the tank 40. Therefore, in the exhaust gas purifying device 1E, the fluctuation of the internal pressure of the tank 40 directly propagates into the pipe of the drain pipe 60, and this pressure fluctuation may make it difficult for the drain water to flow. If it becomes difficult for the drain water to flow into the drain pipe 60, the function of the collecting unit 50 deteriorates. That is, the collection of droplets by the collection unit 50 is hindered. As a result, the treated exhaust gas accompanying the droplets is discharged from the exhaust stack 3, and the acid generated by the reaction between the sulfur oxide remaining in the treated exhaust gas and the water content of the droplets is generated around the exhaust stack 3. Problems such as corroding certain metal products occur.
 本実施形態の排ガス浄化装置1Aでは、ドレイン管60は排水管34に連通している。排水管34はタンク40に連通しているため、タンク40の内圧の変動は排水管34に伝搬する。しかし、排水管34は吸収塔10及び排気筒3を介して外部空間とも連通しているため、排水管34内の圧力変動は緩やかになり、ドレイン管60の管内に伝搬する圧力変動も排ガス浄化装置1Eにおける場合に比較して緩やかになる。このため、排ガス浄化装置1Aでは、排ガス浄化装置1Eに比較してドレイン水が流れ難くなる現象の発生が抑えられ、捕集部50による液滴の捕集が阻害され難くなる。 In the exhaust gas purification device 1A of the present embodiment, the drain pipe 60 communicates with the drain pipe 34. Since the drain pipe 34 communicates with the tank 40, the fluctuation of the internal pressure of the tank 40 propagates to the drain pipe 34. However, since the drain pipe 34 communicates with the external space via the absorption tower 10 and the exhaust pipe 3, the pressure fluctuation in the drain pipe 34 becomes gentle, and the pressure fluctuation propagating in the drain pipe 60 also purifies the exhaust gas. This is slower than in the case of the device 1E. Therefore, in the exhaust gas purification device 1A, the occurrence of a phenomenon that the drain water becomes difficult to flow is suppressed as compared with the exhaust gas purification device 1E, and the collection of droplets by the collection unit 50 is less likely to be hindered.
 以上説明したように、本実施形態の排ガス浄化装置1Aによれば、排気筒3に向かって上昇する排ガスに同伴する液滴の捕集が阻害され難くなる。 As described above, according to the exhaust gas purification device 1A of the present embodiment, the collection of droplets accompanying the exhaust gas rising toward the exhaust stack 3 is less likely to be hindered.
2.第2実施形態
 図3は、本開示の第2実施形態に係る排ガス浄化装置1Bの構成例を示す図である。本実施形態の排ガス浄化装置1Bは、排ガス浄化装置1Aと同様にオープンループ型の排ガス浄化装置である。図3では、図1におけるものと同じ構成要素には図1におけるものと同一の符号が付されている。図3と図1とを対比すれば明らかなように、排ガス浄化装置1Bと排ガス浄化装置1Aとの構成の相違点は以下の2点である。第1の相違点は、ドレイン管60に排水トラップ90が設けられている点である。排水トラップとは、排水先からのガス等の流入を防止するために、排水管の一部を屈曲させて水が溜まるようにした構造のことをいう。排水トラップの具体例としては、排水管をU型に屈曲させたU型トラップ、又は排水管をS型に屈曲させたS型トラップが挙げられる。本実施形態における排水トラップ90はU型トラップであるが、S型トラップであってもよい。第2の相違点は、ドレイン管60を外部空間、具体的には大気中、に連通させるガス抜き機構100がドレイン管60の上端側、即ち捕集部50への接続部分付近に設けられている点である。
2. 2. 2nd Embodiment FIG. 3 is a diagram showing a configuration example of the exhaust gas purification device 1B according to the second embodiment of the present disclosure. The exhaust gas purification device 1B of the present embodiment is an open-loop type exhaust gas purification device like the exhaust gas purification device 1A. In FIG. 3, the same components as those in FIG. 1 are designated by the same reference numerals as those in FIG. As is clear from the comparison between FIGS. 3 and 1, there are the following two differences in the configurations of the exhaust gas purification device 1B and the exhaust gas purification device 1A. The first difference is that the drain pipe 60 is provided with a drain trap 90. The drain trap is a structure in which a part of the drain pipe is bent so that water can be collected in order to prevent the inflow of gas or the like from the drain destination. Specific examples of the drain trap include a U-shaped trap in which the drain pipe is bent into a U shape, and an S-shaped trap in which the drain pipe is bent into an S shape. The drain trap 90 in this embodiment is a U-shaped trap, but it may be an S-shaped trap. The second difference is that a degassing mechanism 100 that allows the drain pipe 60 to communicate with the external space, specifically in the atmosphere, is provided on the upper end side of the drain pipe 60, that is, near the connection portion to the collecting portion 50. It is a point.
 本実施形態の排ガス浄化装置1Bでは、ドレイン管60は排水管34に連通するため、第1実施形態の排ガス浄化装置1Aと同様に捕集部50による液滴の捕集が阻害され難くなる。加えて、本実施形態の排ガス浄化装置1Bでは、ドレイン管60には排水トラップ90が設けられており、ドレイン管60を流れるドレイン水は排水トラップ90に溜まり、排水溜まりWを形成する。排ガス浄化装置1Bは、排水溜まりWを有するので、吸収塔10に流入した排ガスが排水管34及びドレイン管60を介して大気中に放出されることを防止できる。排水管34内における排ガスの圧力に比較して排水トラップ90における排水溜まりWの深さ、即ち排水溜まりWの水量が十分でないと、排水管34から流入する排ガスを排水溜まりWが封止しきれず、ドレイン管60を介して排ガスが大気中に放出される。排水溜まりWの深さは、排水管34内における排ガスの圧力に応じて定められればよく、排水管34内における排ガスの圧力が変動する場合には当該圧力の最大値に応じて定められればよい。例えば、排水管34内における排ガスの圧力の最大値が約200mmAqであれば、排水溜まりWの深さを少なくとも500mmにしておけばよい。 In the exhaust gas purification device 1B of the present embodiment, since the drain pipe 60 communicates with the drainage pipe 34, the collection of droplets by the collection unit 50 is less likely to be hindered as in the exhaust gas purification device 1A of the first embodiment. In addition, in the exhaust gas purification device 1B of the present embodiment, the drain pipe 60 is provided with a drain trap 90, and the drain water flowing through the drain pipe 60 collects in the drain trap 90 to form a drain pool W. Since the exhaust gas purification device 1B has a drainage pool W, it is possible to prevent the exhaust gas flowing into the absorption tower 10 from being discharged into the atmosphere through the drainage pipe 34 and the drainage pipe 60. If the depth of the drainage pool W in the drainage trap 90, that is, the amount of water in the drainage pool W is not sufficient as compared with the pressure of the exhaust gas in the drainage pipe 34, the drainage pool W cannot completely seal the exhaust gas flowing from the drainage pipe 34. , Exhaust gas is discharged into the atmosphere through the drain pipe 60. The depth of the drainage pool W may be determined according to the pressure of the exhaust gas in the drainage pipe 34, and may be determined according to the maximum value of the pressure when the pressure of the exhaust gas in the drainage pipe 34 fluctuates. .. For example, if the maximum value of the pressure of the exhaust gas in the drain pipe 34 is about 200 mmAq, the depth of the drainage pool W may be set to at least 500 mm.
 また、本実施形態の排ガス浄化装置1Bでは、ドレイン管60と捕集部50との接続部分付近にドレイン管60を外部空間へ連通させるガス抜き機構100が設けられている。このため、ドレイン管60の入口部からガス抜き機構100に向かう排ガスの流れが発生し、捕集部50による液滴の捕集を促進させることができる。つまり、本実施形態の排ガス浄化装置1Bによれば、第1実施形態の排ガス浄化装置1Aに比較して捕集部50における液滴の捕集を効率よく行うことが可能になる。 Further, in the exhaust gas purification device 1B of the present embodiment, a gas venting mechanism 100 for communicating the drain pipe 60 to the external space is provided near the connection portion between the drain pipe 60 and the collection unit 50. Therefore, a flow of exhaust gas is generated from the inlet portion of the drain pipe 60 toward the degassing mechanism 100, and the collection of droplets by the collection unit 50 can be promoted. That is, according to the exhaust gas purification device 1B of the present embodiment, it is possible to efficiently collect the droplets in the collection unit 50 as compared with the exhaust gas purification device 1A of the first embodiment.
 本実施形態の排ガス浄化装置1Bは、排水トラップ90と、ガス抜き機構100とを有するが、何れか一方を省略してもよい。排ガス浄化装置1Bから排水トラップ90を省略しても、排ガス浄化装置1Aに比較して捕集部50における液滴の捕集を効率よく行うことが可能になる。また、排ガス浄化装置1Bからガス抜き機構100を省略しても、吸収塔10に流れ込んだ排ガスが排水管34及びドレイン管60を介して大気中へ放出されることを防止できる。 The exhaust gas purification device 1B of the present embodiment has a drain trap 90 and a degassing mechanism 100, but either one may be omitted. Even if the drain trap 90 is omitted from the exhaust gas purification device 1B, it is possible to efficiently collect the droplets in the collection unit 50 as compared with the exhaust gas purification device 1A. Further, even if the degassing mechanism 100 is omitted from the exhaust gas purifying device 1B, it is possible to prevent the exhaust gas flowing into the absorption tower 10 from being discharged into the atmosphere through the drain pipe 34 and the drain pipe 60.
3.第3実施形態
 図4は、本開示の第3実施形態に係る排ガス浄化装置1Cの構成例を示す図である。本実施形態の排ガス浄化装置1Cも、排ガス浄化装置1Aと同様にオープンループ型の排ガス浄化装置である。図4では、図1におけるものと同じ構成要素には図1におけるものと同一の符号が付されている。図4と図1とを対比すれば明らかなように、排ガス浄化装置1Cと排ガス浄化装置1Aとの構成の相違点は以下の2点である。第1の相違点は、ドレイン管60を介して捕集部50とタンク40とが連通している点である。第2の相違点は、タンク40を外部空間へ連通させるガス抜き機構102が設けられている点である。
3. 3. Third Embodiment FIG. 4 is a diagram showing a configuration example of the exhaust gas purification device 1C according to the third embodiment of the present disclosure. The exhaust gas purification device 1C of the present embodiment is also an open-loop type exhaust gas purification device like the exhaust gas purification device 1A. In FIG. 4, the same components as those in FIG. 1 are designated by the same reference numerals as those in FIG. As is clear from the comparison between FIGS. 4 and 1, there are the following two differences in the configurations of the exhaust gas purification device 1C and the exhaust gas purification device 1A. The first difference is that the collection unit 50 and the tank 40 communicate with each other via the drain pipe 60. The second difference is that a degassing mechanism 102 for communicating the tank 40 to the external space is provided.
 本実施形態の排ガス浄化装置1Cでは、タンク40はガス抜き機構102を介して外部空間へ連通しているため、ガス抜き機構102を設けない態様に比較してタンク40の内圧の変動は緩やかになる。このため、排ガス浄化装置1Cでは、前述の排ガス浄化装置1Eに比較してドレイン管60にドレイン水が流れ難くなる現象の発生が抑えられ、捕集部50による液滴の捕集が阻害され難くなる。 In the exhaust gas purification device 1C of the present embodiment, since the tank 40 communicates with the external space via the degassing mechanism 102, the fluctuation of the internal pressure of the tank 40 is gradual as compared with the embodiment in which the degassing mechanism 102 is not provided. Become. Therefore, in the exhaust gas purification device 1C, the occurrence of a phenomenon that makes it difficult for drain water to flow into the drain pipe 60 is suppressed as compared with the above-mentioned exhaust gas purification device 1E, and the collection of droplets by the collection unit 50 is less likely to be hindered. Become.
4.変形例
 以上の各実施態様は多様に変形され得る。具体的な変形の態様を以下に例示する。以下の例示から任意に選択された2以上の態様は相矛盾しない限り適宜に併合され得る。
4. Modifications Each of the above embodiments can be variously modified. Specific modes of modification are illustrated below. Two or more embodiments arbitrarily selected from the following examples can be appropriately merged as long as they do not conflict with each other.
4-1.変形例1
 上記第1実施形態における排ガス浄化装置1Aは、吸収液の役割を果たす海水SWを船舶2の周囲から取り込み、使用済み吸収液及びドレイン水を船舶2の外部へ放出するオープンループ型の排ガス浄化装置であった。しかし、捕集部及びドレイン管を有するクローズドループ型の排ガス浄化装置に第1実施形態の技術的特徴を採用してもよい。同様に、第2実施形態又は第3実施形態の技術的特徴を、捕集部及びドレイン管を有するクローズドループ型の排ガス浄化装置に採用してもよい。捕集部及びドレイン管を有するクローズドループ型の排ガス浄化装置においても、捕集部により捕集された液滴がドレイン管に円滑に流れないと、捕集部による液滴の捕集が阻害され、液滴を伴う排ガスが排気筒から排出されるからである。
4-1. Modification 1
The exhaust gas purification device 1A in the first embodiment is an open-loop type exhaust gas purification device that takes in the seawater SW that plays the role of an absorption liquid from the periphery of the ship 2 and discharges the used absorption liquid and the drain water to the outside of the ship 2. Met. However, the technical features of the first embodiment may be adopted for a closed-loop type exhaust gas purifying device having a collecting portion and a drain pipe. Similarly, the technical features of the second or third embodiment may be adopted in a closed-loop type exhaust gas purification device having a collecting portion and a drain pipe. Even in a closed-loop type exhaust gas purification device having a collection section and a drain pipe, if the droplets collected by the collection section do not flow smoothly into the drain pipe, the collection of the droplets by the collection section is hindered. This is because the exhaust gas with droplets is discharged from the exhaust stack.
 図5は、捕集部及びドレイン管を有するクローズドループ型の排ガス浄化装置への第1実施形態の技術的特徴の採用例を示す図である。排ガス浄化装置1Dでは、一定量の吸収液がタンク40に予め貯留されている。図5に示す排ガス浄化装置1Dでは、供給管30はタンク40に接続される。ポンプ70は、タンク40に貯留されている吸収液を供給管30を介して吸引し、送水管32を介して噴霧部20へ送り出す。図5に示す排ガス浄化装置1Dには排水管36は設けられておらず、タンク40に戻された使用済の吸収液及びドレイン水は、中和及び曝気を経て、吸収液として再利用される。図5に示す排ガス浄化装置1Dでは、ドレイン管60を介して捕集部50と排水管34とが連通しているため、第1実施形態の排ガス浄化装置1Aと同様に捕集部50による液滴の捕集が阻害され難くなる。 FIG. 5 is a diagram showing an example of adoption of the technical features of the first embodiment in a closed-loop type exhaust gas purification device having a collecting portion and a drain pipe. In the exhaust gas purification device 1D, a certain amount of absorbing liquid is stored in the tank 40 in advance. In the exhaust gas purification device 1D shown in FIG. 5, the supply pipe 30 is connected to the tank 40. The pump 70 sucks the absorbing liquid stored in the tank 40 through the supply pipe 30 and sends it out to the spraying unit 20 via the water pipe 32. The exhaust gas purification device 1D shown in FIG. 5 is not provided with the drain pipe 36, and the used absorbed liquid and drain water returned to the tank 40 are reused as the absorbed liquid after being neutralized and aerated. .. In the exhaust gas purification device 1D shown in FIG. 5, since the collection unit 50 and the drain pipe 34 communicate with each other via the drain pipe 60, the liquid by the collection unit 50 is the same as in the exhaust gas purification device 1A of the first embodiment. Drop collection is less likely to be hindered.
 図6は、ハイブリッドシステムの排ガス浄化装置への第1実施形態の技術的特徴の採用例を示す図である。図6に示す排ガス浄化装置1Fは、図示しない切換え弁を介してポンプ70の吸引口に接続される供給管30aと供給管30bとを備える。供給管30aは、船舶2の船底に開口する。供給管30bは、タンク40に接続される。排ガス浄化装置1Fでは、図示しない切換え弁を切り換えることにより、供給管30aと供給管30bとの何れか一方がポンプ70の吸引口に連通する。供給管30aをポンプ70の吸引口を連通させた状態では、排ガス浄化装置1Fはオープンループ型の排ガス浄化装置として機能する。供給管30bをポンプ70の吸引口を連通させた状態では、排ガス浄化装置1Fはクローズドループ型の排ガス浄化装置として機能する。 FIG. 6 is a diagram showing an example of adoption of the technical features of the first embodiment in the exhaust gas purification device of the hybrid system. The exhaust gas purification device 1F shown in FIG. 6 includes a supply pipe 30a and a supply pipe 30b connected to a suction port of the pump 70 via a switching valve (not shown). The supply pipe 30a opens at the bottom of the ship 2. The supply pipe 30b is connected to the tank 40. In the exhaust gas purification device 1F, one of the supply pipe 30a and the supply pipe 30b communicates with the suction port of the pump 70 by switching a switching valve (not shown). When the supply pipe 30a communicates with the suction port of the pump 70, the exhaust gas purification device 1F functions as an open-loop type exhaust gas purification device. When the supply pipe 30b communicates with the suction port of the pump 70, the exhaust gas purification device 1F functions as a closed-loop type exhaust gas purification device.
 排ガス浄化装置1Fによれば、海洋への排水規制が緩やかな海域ではオープンループ型で排ガスの浄化を行う一方、排水規制が厳しい海域ではクローズドループ型で排ガスの浄化を行うことができる。排水規制が緩やかな海域の一例としては、外洋が挙げられる。排水規制が厳しい海域の一例としては、沿岸海域が挙げられる。図6に示す排ガス浄化装置1Fは、切換え弁を介して供給管30bを供給管30aに接続する構成に変形されてもよい。この構成は、ポンプ70とは別途の第2のポンプを更に設け、第2のポンプにより吸引した海水を供給管30bを介してタンク40へ注水する構成に変形されてもよい。なお、供給管30bを送水管32に接続する構成も考えられるが、供給管30bを送水管32に接続する構成では、供給管30bから送水管32へ吸収液を送り出すポンプを供給管30bに設けることが必要となる。 According to the exhaust gas purification device 1F, the exhaust gas can be purified by the open loop type in the sea area where the drainage regulation to the ocean is loose, while the exhaust gas can be purified by the closed loop type in the sea area where the drainage regulation is strict. The open ocean is an example of a sea area where drainage regulations are loose. A coastal sea area is an example of a sea area where drainage regulations are strict. The exhaust gas purification device 1F shown in FIG. 6 may be modified to have a configuration in which the supply pipe 30b is connected to the supply pipe 30a via a switching valve. This configuration may be modified to a configuration in which a second pump separate from the pump 70 is further provided, and seawater sucked by the second pump is injected into the tank 40 via the supply pipe 30b. A configuration in which the supply pipe 30b is connected to the water supply pipe 32 is also conceivable, but in the configuration in which the supply pipe 30b is connected to the water supply pipe 32, a pump for delivering the absorption liquid from the supply pipe 30b to the water supply pipe 32 is provided in the supply pipe 30b. Is required.
4-2.変形例2
 上記各実施形態における船舶2は海洋を航行する船舶であったが、淡水域を航行する船舶であってもよい。この場合、船舶2の周囲から吸引した水に水酸化ナトリウム又は水酸化マグネシウム等を添加してアルカリ成分を補充すればよい。つまり、本開示における吸収液は海水には限定されず、アルカリ成分を含むアルカリ水溶液であればよい。また、アルカリ成分もHCO には限定されない。
4-2. Modification 2
The ship 2 in each of the above embodiments is a ship navigating in the ocean, but may be a vessel navigating in a freshwater area. In this case, sodium hydroxide, magnesium hydroxide, or the like may be added to the water sucked from the periphery of the ship 2 to replenish the alkaline component. That is, the absorption liquid in the present disclosure is not limited to seawater, and may be an alkaline aqueous solution containing an alkaline component. Also, the alkaline component is not limited to HCO 3- .
4-3.変形例3
 上記各実施形態では、化石燃料を燃焼させて推進力を発生させる船舶に搭載される排ガス浄化装置への本開示の適用例を説明した。しかし、本開示の排ガス浄化装置を、火力発電所又は製鉄所等の陸上の固定施設、内燃機関を用いた発電機、或いは内燃機関或いは外燃機関により推進力を発生させる車両において化石燃料を燃焼させることにより発生する排ガスの浄化に本開示を適用してもよい。また、上記各実施形態におけるスワラ80は本開示の必須構成要素ではなく、省略されてもよい。
4-3. Modification 3
In each of the above embodiments, an example of application of the present disclosure to an exhaust gas purification device mounted on a ship that burns fossil fuel to generate propulsive force has been described. However, the exhaust gas purification device of the present disclosure burns fossil fuels in a fixed facility on land such as a thermal power plant or a steel mill, a generator using an internal combustion engine, or a vehicle in which propulsive force is generated by an internal combustion engine or an external combustion engine. The present disclosure may be applied to the purification of the exhaust gas generated by the production. Further, the swala 80 in each of the above embodiments is not an essential component of the present disclosure and may be omitted.
5.実施形態及び各変形例の少なくとも1つから把握される態様
 本開示の排ガス浄化装置の一態様は、吸収塔と、噴霧部と、排水管と、タンクと、捕集部と、ドレイン管と、を備える。吸収塔には、化石燃料の燃焼により発生する排ガスが流入する。吸収塔は、硫黄酸化物を低減済の排ガスを外部空間に放出する排気筒に連通する。噴霧部は、硫黄酸化物を吸収するための吸収液を吸収塔内に噴霧する。排水管は、噴霧部により噴霧される吸収液を吸収塔から排水するために設けられる。タンクは、排水管から排水される吸収液を貯留する。捕集部は、吸収塔から排気筒に向かって上昇する排ガスに同伴する液滴を捕集するために排気筒に設けられる。ドレイン管は、排水管に連通し、捕集部により捕集される液滴をドレイン水として排水する。本態様の排ガス浄化装置では、ドレイン管は排水管に連通している。排水管は吸収塔及び排気筒を介して外部空間に連通しているため、排水管内の圧力変動はタンクの内圧の変動に比較して緩やかである。このため、本態様の排ガス浄化装置では、ドレイン管をタンクに連通させる態様に比較して、ドレイン管の連通先の圧力変動に起因してドレイン水が流れ難くなる現象の発生が抑えられ、捕集部による液滴の捕集が阻害され難くなる。
5. Aspects grasped from at least one of the embodiments and each modification One aspect of the exhaust gas purification device of the present disclosure includes an absorption tower, a spray part, a drainage pipe, a tank, a collection part, and a drain pipe. To prepare for. Exhaust gas generated by the combustion of fossil fuels flows into the absorption tower. The absorption tower communicates with the exhaust pipe that discharges the exhaust gas with reduced sulfur oxides to the external space. The spraying unit sprays an absorbing liquid for absorbing sulfur oxides into the absorption tower. The drain pipe is provided to drain the absorbing liquid sprayed by the spraying portion from the absorption tower. The tank stores the absorbent liquid drained from the drain pipe. The collecting unit is provided in the exhaust stack to collect the droplets accompanying the exhaust gas rising from the absorption tower toward the exhaust stack. The drain pipe communicates with the drain pipe and drains the droplets collected by the collecting portion as drain water. In the exhaust gas purification device of this embodiment, the drain pipe communicates with the drain pipe. Since the drainage pipe communicates with the external space via the absorption tower and the exhaust pipe, the pressure fluctuation in the drainage pipe is gentler than the fluctuation in the internal pressure of the tank. Therefore, in the exhaust gas purification device of this embodiment, the occurrence of a phenomenon that the drain water becomes difficult to flow due to the pressure fluctuation at the communication destination of the drain pipe is suppressed as compared with the mode in which the drain pipe is communicated with the tank. The collection of droplets by the collecting part is less likely to be hindered.
 より好ましい態様に排ガス浄化装置では、ドレイン管に排水トラップが設けられてもよい。本態様の排ガス浄化装置によれば、捕集部による液滴の捕集が阻害され難くなるという効果に加えて以下の効果が奏される。即ち、本態様の排ガス浄化装置によれば、吸収塔に流入した排ガスが排水管及びドレイン管を介して外部空間に放出されることを排水トラップの排水溜まりにより防止することが可能になる。なお、排水トラップにおける排水溜まりの深さは、吸収塔に流入する排ガスの圧力に応じて定めればよい。 In a more preferable embodiment, the exhaust gas purification device may be provided with a drain trap in the drain pipe. According to the exhaust gas purification device of this embodiment, the following effects are exhibited in addition to the effect that the collection of droplets by the collection unit is less likely to be hindered. That is, according to the exhaust gas purification device of this embodiment, it is possible to prevent the exhaust gas flowing into the absorption tower from being discharged to the external space through the drain pipe and the drain pipe by the drain pool of the drain trap. The depth of the drainage pool in the drainage trap may be determined according to the pressure of the exhaust gas flowing into the absorption tower.
 更に別の好ましい態様の排ガス浄化装置は、外部空間と連通するガス抜き機構をドレイン管の上部に備えてもよい。本態様によれば、捕集部における液滴の捕集を当該ガス抜き機構を設けない態様よりも効率よく行うことが可能になる。 Yet another preferred embodiment of the exhaust gas purification device may be provided with a degassing mechanism communicating with the external space in the upper part of the drain pipe. According to this aspect, it becomes possible to collect the droplets in the collecting portion more efficiently than in the aspect in which the degassing mechanism is not provided.
 更に別の好ましい態様の排ガス浄化装置においては、前記噴霧部へ送り出される吸収液には、ポンプにより外部水源から吸引された水が利用され、前記タンクに貯留される吸収液は前記外部水源へ排水されてもよい。本態様によれば、捕集部及びドレイン管を備えるオープンループ型の排ガス浄化装置において、捕集部による液滴の捕集が阻害され難くなる。 In still another preferred embodiment of the exhaust gas purification device, water sucked from an external water source by a pump is used as the absorbing liquid sent out to the spraying portion, and the absorbing liquid stored in the tank is drained to the external water source. May be done. According to this aspect, in an open-loop type exhaust gas purification device provided with a collecting portion and a drain pipe, the collection of droplets by the collecting portion is less likely to be hindered.
 更に別の好ましい態様の排ガス浄化装置においては、前記ポンプは、前記タンクに貯留される吸収液を吸引し、前記噴霧部へ送り出してもよい。本態様によれば、捕集部及びドレイン管を備えるクローズドループ型の排ガス浄化装置において、捕集部による液滴の捕集が阻害され難くなる。 In still another preferred embodiment of the exhaust gas purification device, the pump may suck the absorbing liquid stored in the tank and send it out to the spraying unit. According to this aspect, in a closed-loop type exhaust gas purification device provided with a collecting portion and a drain pipe, the collection of droplets by the collecting portion is less likely to be hindered.
 また、本開示の別の態様の排ガス浄化装置は、吸収塔と、噴霧部と、排水管と、タンクと、タンクを外部空間に連通させるガス抜き機構と、捕集部と、ドレイン管と、を備える。吸収塔には、化石燃料の燃焼により発生する排ガスが流入する。吸収塔は、硫黄酸化物を低減済の排ガスを外部空間に放出する排気筒に連通する。噴霧部は、硫黄酸化物を吸収するための吸収液を吸収塔内に噴霧する。排水管は、噴霧部により噴霧された吸収液を吸収塔から排水するために設けられる。タンクは、排水管から排水される吸収液を貯留する。捕集部は排気筒に設けられる。捕集部は、吸収塔から排気筒に向かって上昇する排ガスに同伴する液滴を捕集する。ドレイン管は、捕集部により捕集される液滴をドレイン水としてタンクへ排水する。本態様の排ガス浄化装置では、タンクはガス抜き機構を介して外部空間に連通しているため、ガス抜き機構を有さない態様に比較しタンクの内圧の変動が緩やかになる。このため、タンクの内圧の変動に起因してドレイン水が流れ難くなる現象の発生が抑えられ、捕集部による液滴の捕集が阻害され難くなる。本態様についても、クローズドループ型及びオープンループ型の排ガス浄化装置の何れにも適用可能である。 Further, the exhaust gas purifying device according to another aspect of the present disclosure includes an absorption tower, a spraying portion, a drain pipe, a tank, a degassing mechanism for communicating the tank to an external space, a collecting portion, and a drain pipe. To prepare for. Exhaust gas generated by the combustion of fossil fuels flows into the absorption tower. The absorption tower communicates with the exhaust pipe that discharges the exhaust gas with reduced sulfur oxides to the external space. The spraying unit sprays an absorbing liquid for absorbing sulfur oxides into the absorption tower. The drain pipe is provided to drain the absorption liquid sprayed by the spray portion from the absorption tower. The tank stores the absorbent liquid drained from the drain pipe. The collecting part is provided in the exhaust stack. The collection unit collects droplets accompanying the exhaust gas rising from the absorption tower toward the exhaust stack. The drain pipe drains the droplets collected by the collecting portion into the tank as drain water. In the exhaust gas purification device of this embodiment, since the tank communicates with the external space via the degassing mechanism, the fluctuation of the internal pressure of the tank becomes gradual as compared with the mode without the degassing mechanism. Therefore, the phenomenon that the drain water becomes difficult to flow due to the fluctuation of the internal pressure of the tank is suppressed, and the collection of the droplets by the collecting portion is less likely to be hindered. This aspect is also applicable to both closed-loop type and open-loop type exhaust gas purification devices.
1A、1B、1C、1D、1E…排ガス浄化装置、2…船舶、3…排気筒、4…水処理システム、5…排気管、10…吸収塔、20…噴霧部、30…供給管、32…送水管、34,36…排水管、40…タンク、50…捕集部、60…ドレイン、70…ポンプ、80…スワラ、90…排水トラップ、100,102…ガス抜き機構。 1A, 1B, 1C, 1D, 1E ... Exhaust gas purification device, 2 ... Ship, 3 ... Exhaust pipe, 4 ... Water treatment system, 5 ... Exhaust pipe, 10 ... Absorption tower, 20 ... Spray part, 30 ... Supply pipe, 32 ... Water pipe, 34, 36 ... Drain pipe, 40 ... Tank, 50 ... Collection part, 60 ... Drain, 70 ... Pump, 80 ... Swala, 90 ... Drain trap, 100, 102 ... Degassing mechanism.

Claims (7)

  1.  排気筒に連通し、化石燃料の燃焼により発生する排ガスが流入する吸収塔と、
     硫黄酸化物を吸収するための吸収液を前記吸収塔内に噴霧する噴霧部と、
     前記噴霧部により噴霧された吸収液を前記吸収塔から排水するための排水管と、
     前記排水管から排水される吸収液を貯留するタンクと、
     前記吸収塔から前記排気筒に向かって上昇する排ガスに同伴する液滴を捕集するために前記排気筒に設けられる捕集部と、
     前記排水管に連通し、前記捕集部により捕集された液滴をドレイン水として排水するドレイン管と、
     を備える排ガス浄化装置。
    An absorption tower that communicates with the exhaust stack and inflows the exhaust gas generated by the combustion of fossil fuels.
    A spraying unit that sprays an absorbing liquid for absorbing sulfur oxides into the absorption tower,
    A drain pipe for draining the absorption liquid sprayed by the spray unit from the absorption tower,
    A tank for storing the absorbent liquid drained from the drain pipe and
    A collecting unit provided in the exhaust stack for collecting droplets accompanying the exhaust gas rising from the absorption tower toward the exhaust stack.
    A drain pipe that communicates with the drain pipe and drains the droplets collected by the collection unit as drain water.
    Exhaust gas purification device equipped with.
  2.  前記ドレイン管に排水トラップが設けられる、請求項1に記載の排ガス浄化装置。 The exhaust gas purification device according to claim 1, wherein a drain trap is provided in the drain pipe.
  3.  前記排水トラップにおける排水溜まりの深さは、前記吸収塔に流入する排ガスの圧力に応じて定められる、請求項2に記載の排ガス浄化装置。 The exhaust gas purification device according to claim 2, wherein the depth of the drainage pool in the drainage trap is determined according to the pressure of the exhaust gas flowing into the absorption tower.
  4.  外部空間と連通するガス抜き機構を前記ドレイン管の上部に備える、請求項1乃至3のうちの何れか1項に記載の排ガス浄化装置。 The exhaust gas purification device according to any one of claims 1 to 3, wherein a degassing mechanism communicating with an external space is provided in the upper part of the drain pipe.
  5.  前記噴霧部へ送り出される吸収液には、ポンプにより外部水源から吸引された水が利用され、
     前記タンクに貯留される吸収液は前記外部水源へ排水される、ことを特徴とする請求項1乃至4のうちの何れか1項に記載の排ガス浄化装置。
    Water sucked from an external water source by a pump is used as the absorbing liquid sent out to the spraying portion.
    The exhaust gas purification device according to any one of claims 1 to 4, wherein the absorbing liquid stored in the tank is drained to the external water source.
  6.  前記ポンプは、前記タンクに貯留される吸収液を吸引し、前記噴霧部へ送り出す、ことを特徴とする請求項5に記載の排ガス浄化装置。 The exhaust gas purification device according to claim 5, wherein the pump sucks the absorbing liquid stored in the tank and sends it out to the spraying portion.
  7.  排気筒に連通し、化石燃料の燃焼により発生する排ガスが流入する吸収塔と、
     硫黄酸化物を吸収するための吸収液を前記吸収塔内に噴霧する噴霧部と、
     前記噴霧部により噴霧される吸収液を前記吸収塔から排水するための排水管と、
     前記排水管から排水される吸収液を貯留するタンクと、
     前記吸収塔から前記排気筒に向かって上昇する排ガスに同伴する液滴を捕集するために前記排気筒に設けられる捕集部と、
     前記捕集部により捕集される液滴をドレイン水として前記タンクへ排水するドレイン管と、
     前記タンクを外部空間に連通させるガス抜き機構と、
     を備える排ガス浄化装置。
    An absorption tower that communicates with the exhaust stack and inflows the exhaust gas generated by the combustion of fossil fuels.
    A spraying unit that sprays an absorbing liquid for absorbing sulfur oxides into the absorption tower,
    A drain pipe for draining the absorption liquid sprayed by the spray unit from the absorption tower,
    A tank for storing the absorbent liquid drained from the drain pipe and
    A collecting unit provided in the exhaust stack for collecting droplets accompanying the exhaust gas rising from the absorption tower toward the exhaust stack.
    A drain pipe that drains the droplets collected by the collection unit as drain water to the tank,
    A degassing mechanism that allows the tank to communicate with the external space,
    Exhaust gas purification device equipped with.
PCT/JP2021/024748 2020-08-24 2021-06-30 Exhaust gas purifying device WO2022044536A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020227025652A KR20220113536A (en) 2020-08-24 2021-06-30 exhaust gas purification device
CN202180011054.6A CN115003403A (en) 2020-08-24 2021-06-30 Exhaust gas purification device
JP2022545490A JP7323076B2 (en) 2020-08-24 2021-06-30 Exhaust gas purifier

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-141226 2020-08-24
JP2020141226 2020-08-24

Publications (1)

Publication Number Publication Date
WO2022044536A1 true WO2022044536A1 (en) 2022-03-03

Family

ID=80353131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/024748 WO2022044536A1 (en) 2020-08-24 2021-06-30 Exhaust gas purifying device

Country Status (4)

Country Link
JP (1) JP7323076B2 (en)
KR (1) KR20220113536A (en)
CN (1) CN115003403A (en)
WO (1) WO2022044536A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994023826A1 (en) * 1993-04-09 1994-10-27 Babcock-Hitachi Kabushiki Kaisha Wet type flue gas desulfurizer
JPH11128671A (en) * 1997-11-05 1999-05-18 Mitsubishi Heavy Ind Ltd Wet type flue gas desulfurization device
JPH11151426A (en) * 1997-11-19 1999-06-08 Ishikawajima Harima Heavy Ind Co Ltd Flue gas desulfurizer integrated to chimney
WO2014098081A1 (en) * 2012-12-19 2014-06-26 富士電機株式会社 Exhaust gas processing apparatus

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58170520A (en) * 1982-03-30 1983-10-07 Arakawa Yoshinobu Gas pufirication apparatus
JPS60235627A (en) * 1984-05-09 1985-11-22 Mitsubishi Heavy Ind Ltd Level controlling process of absorption tower in stack gas desulfurization apparatus for wet slaking gypsum production
KR100355506B1 (en) * 1997-11-11 2002-10-11 미츠비시 쥬고교 가부시키가이샤 A wet gas processing method and the apparatus using the same
JP3923681B2 (en) * 1999-07-13 2007-06-06 バブコック日立株式会社 Exhaust gas dedusting apparatus and method
CN102527193A (en) * 2010-12-23 2012-07-04 江苏德克环保设备有限公司 Defogging device for absorption tower
CN202778256U (en) * 2012-08-10 2013-03-13 北京中科创新园环境技术有限公司 Desulfurizing tower of dewatering and demisting straight moisture-removing chimney arranged at device
CN104043291A (en) * 2013-03-11 2014-09-17 神华集团有限责任公司 Diversion-type gas-liquid separation unit, gas-liquid separation device and multi-phase flow reactor
KR20160010035A (en) * 2014-07-18 2016-01-27 김용섭 Wet Dust Collector
CN206587499U (en) * 2017-02-07 2017-10-27 中国石油化工股份有限公司 A kind of demister
CN208670591U (en) * 2018-07-05 2019-03-29 秦皇岛烟草机械有限责任公司 A kind of carbon dioxide fluid reservoir
CN109603479A (en) * 2018-12-29 2019-04-12 中国大唐集团科学技术研究院有限公司华东电力试验研究院 A kind of recovery and processing system for collecting desulfurizer mist eliminator flushing water

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994023826A1 (en) * 1993-04-09 1994-10-27 Babcock-Hitachi Kabushiki Kaisha Wet type flue gas desulfurizer
JPH11128671A (en) * 1997-11-05 1999-05-18 Mitsubishi Heavy Ind Ltd Wet type flue gas desulfurization device
JPH11151426A (en) * 1997-11-19 1999-06-08 Ishikawajima Harima Heavy Ind Co Ltd Flue gas desulfurizer integrated to chimney
WO2014098081A1 (en) * 2012-12-19 2014-06-26 富士電機株式会社 Exhaust gas processing apparatus

Also Published As

Publication number Publication date
JPWO2022044536A1 (en) 2022-03-03
KR20220113536A (en) 2022-08-12
CN115003403A (en) 2022-09-02
JP7323076B2 (en) 2023-08-08

Similar Documents

Publication Publication Date Title
JP6329971B2 (en) Scrubber for exhaust gas from ships
KR101959401B1 (en) A System for Removing Harmful Gas in the Scrubbing Solution Discharged from the Exhaust Gas Treatment Apparatus and a Method thereof
CN110621853B (en) Exhaust gas treatment device equipped with diffuser
KR101530499B1 (en) Scrubber system and method
WO2014156985A1 (en) Seawater flue-gas desulfurization device and method for operating same
JP6663481B2 (en) In-line dual water scrubber and method for cleaning gas inside a ship
JP2007263078A (en) Emission gas treatment apparatus and method for marine vessel
KR102231449B1 (en) Apparatus for reducing greenhouse gas emission in vessel and vessel including the same
JP4381064B2 (en) Exhaust gas treatment apparatus and treatment method
JP5106479B2 (en) Method and apparatus for suppressing mercury re-release in desulfurization equipment
KR101981066B1 (en) Exhaust Gas Treatment System Capable of Preventing Corrosion
WO2022044536A1 (en) Exhaust gas purifying device
WO2022044537A1 (en) Exhaust gas purification device
WO2022158116A1 (en) Cyclonic exhaust gas purification system
KR20130078125A (en) Scr system comprising with multi-reactor and direct straight connector
KR20220022133A (en) Apparatus for reducing greenhouse gas emission in vessel and vessel including the same
JP2008080261A (en) Exhaust gas treatment method
KR20180127581A (en) A Hybrid Type Exhaust Gas Treatment System Having Improved Space Efficiency
JP3525369B2 (en) Spray absorption tower and flue gas desulfurization unit
KR101964959B1 (en) A Hybrid Type Exhaust Gas Treatment System for Automatic Control on Supply Mode of Scrubbing Solution Based on the Location Information and a Method thereof
KR102054865B1 (en) An Exhaust Gas Treatment System Having Backflow Prevention Means
KR101838591B1 (en) Monitoring Device for Sulfur Oxides Removal Equipment of Ships with Automatic Purging Function and Method thereof
JP3388984B2 (en) Flue gas treatment equipment
RU2096636C1 (en) Device for protection of atmosphere against exhaust gases of engine
JPH05285339A (en) Wet desulfurizer for flue gas

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21860966

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227025652

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022545490

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21860966

Country of ref document: EP

Kind code of ref document: A1