WO2022044511A1 - Air composition adjusting device, refrigeration device, container, and air composition adjusting method - Google Patents

Air composition adjusting device, refrigeration device, container, and air composition adjusting method Download PDF

Info

Publication number
WO2022044511A1
WO2022044511A1 PCT/JP2021/023566 JP2021023566W WO2022044511A1 WO 2022044511 A1 WO2022044511 A1 WO 2022044511A1 JP 2021023566 W JP2021023566 W JP 2021023566W WO 2022044511 A1 WO2022044511 A1 WO 2022044511A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
sensor
passage
outside
composition
Prior art date
Application number
PCT/JP2021/023566
Other languages
French (fr)
Japanese (ja)
Inventor
完 池宮
紀考 亀井
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2022044511A1 publication Critical patent/WO2022044511A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01FPROCESSING OF HARVESTED PRODUCE; HAY OR STRAW PRESSES; DEVICES FOR STORING AGRICULTURAL OR HORTICULTURAL PRODUCE
    • A01F25/00Storing agricultural or horticultural produce; Hanging-up harvested fruit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices

Definitions

  • the present disclosure relates to an air composition adjusting device, a refrigerating device, a container, and an air composition adjusting method.
  • Patent Document 1 discloses a refrigerated container provided with an air composition adjusting device.
  • the air composition adjusting device adjusts the oxygen concentration and the carbon dioxide concentration in the space inside the container.
  • the air composition adjusting device of Patent Document 1 has a sensor for measuring the composition of air.
  • corrosive components may be generated from objects to be cooled such as cargo.
  • the corrosive component flows into the sensor casing together with the air in the refrigerator.
  • the corrosive component stays in the sensor casing, and the sensor may be deteriorated due to the corrosive component. ..
  • the purpose of this disclosure is to suppress deterioration of the sensor due to corrosive components.
  • the first aspect of the present disclosure is an air composition adjusting device for introducing air adjusted to a composition different from that of the outside air into the target space, the adjusting unit (34,35) for adjusting the composition of the air, and the target space.
  • a transport unit (31) that conveys air to the air
  • a sensor (51) that measures the concentration of components in the air in the target space
  • a sensor casing (90) that houses the sensor (51)
  • the air composition adjustment is provided in conjunction with the operation stop operation of the device (60).
  • the air whose composition has been adjusted is conveyed to the target space.
  • the concentration of components in the air in the target space is measured by the sensor (51).
  • the sensor (51) is housed in the sensor casing (90).
  • the control unit (55) executes the first operation.
  • the first operation is an operation of introducing outside air into the inside of the sensor casing (90) in conjunction with the operation stop operation of the air composition adjusting device (60).
  • a second aspect of the present disclosure comprises, in the first aspect, a passage (75,76) for introducing outside air into the sensor casing (90), wherein the control unit (55) is in the first operation. , The transport unit (31) is controlled so as to introduce outside air into the inside of the sensor casing (90) through the passage (75,76).
  • the outside air in the first operation, can be introduced into the inside of the sensor casing (90) through the passage (75,76) by controlling the transport unit (31).
  • the third aspect of the present disclosure is a refrigerating device provided with the air composition adjusting device (60) according to the first or second aspect.
  • the deterioration of the sensor (51) due to the corrosive component can be suppressed by discharging the corrosive component to the outside of the sensor casing (90). ..
  • a fourth aspect of the present disclosure includes, in the third aspect, a ventilation port (16D) that communicates the inside and the outside of the target space, and an opening / closing mechanism (16C) that opens and closes the ventilation port (16D). During the first operation, the opening / closing mechanism (16C) is in an open state.
  • the inside and the outside of the target space are communicated by a ventilation port (16D).
  • the ventilation port (16D) is opened and closed by the opening / closing mechanism (16C).
  • the opening / closing mechanism (16C) is in the open state during the first operation.
  • a fifth aspect of the present disclosure is, in the third or fourth aspect, the control unit (55) is linked to the operation stop operation of the refrigerating apparatus (10), and the outside air is inside the sensor casing (90). The second operation of introducing is executed.
  • control unit (55) executes the second operation.
  • the second operation is an operation of introducing outside air into the inside of the sensor casing (90) in conjunction with the operation of stopping the operation of the refrigerating device (10).
  • the sixth aspect of the present disclosure is a container provided with the refrigerating apparatus (10) according to any one of the third to fifth aspects.
  • the deterioration of the sensor (51) due to the corrosive component can be suppressed by discharging the corrosive component to the outside of the sensor casing (90).
  • a seventh aspect of the present disclosure is an air composition adjusting device (60) using an air composition adjusting device (60) that introduces air adjusted to a composition different from that of the outside air into the target space, wherein the air composition adjusting device (60) is used.
  • a sensor (51) for measuring the concentration of components in the air in the target space is housed in the sensor casing (90), and a step of adjusting the composition of the air and a step of transporting the air to the target space.
  • the senor (51) is housed in the sensor casing (90).
  • the air composition adjusting device (60) adjusts the composition of the air and conveys the air to the target space.
  • the outside air is introduced into the sensor casing (90) in conjunction with the stop operation of the air composition adjusting device (60).
  • FIG. 1 is a perspective view of the transport refrigerating apparatus according to the first embodiment as viewed from the outside of the refrigerator.
  • FIG. 2 is a side sectional view showing a schematic configuration of a refrigerating apparatus for transportation.
  • FIG. 3 is a piping system diagram showing the configuration of the refrigerant circuit of the transport refrigerating device.
  • FIG. 4 is a piping system diagram showing an air circuit of an air composition adjusting device, and shows an air flow in the first generation operation.
  • FIG. 5 is a piping system diagram showing the air circuit of the air composition adjusting device, and shows the air flow in the second generation operation.
  • FIG. 6 is a piping system diagram showing an air circuit of an air composition adjusting device, and shows an air flow in an outside air introduction operation.
  • FIG. 1 is a perspective view of the transport refrigerating apparatus according to the first embodiment as viewed from the outside of the refrigerator.
  • FIG. 2 is a side sectional view showing a schematic configuration of a refrigerating apparatus
  • FIG. 7 is a piping system diagram showing an air circuit of an air composition adjusting device, and shows an air flow in a sensor calibration operation.
  • FIG. 8 is a rear perspective view of the casing of the refrigerating apparatus for transportation, showing the arrangement of the sensor unit.
  • FIG. 9 is a flowchart showing the procedure of the first operation.
  • FIG. 10 is a flowchart showing the procedure of the second operation.
  • FIG. 11 is a perspective view of the transport refrigerating apparatus according to the second embodiment.
  • FIG. 12 is a piping system diagram showing an air circuit of the air composition adjusting device.
  • Embodiment 1 of the present invention will be described in detail with reference to the drawings.
  • the present embodiment relates to a transport container (1) provided with an air composition adjusting device (60).
  • the air composition adjusting device (60) introduces air adjusted to a composition different from that of the outside air into the target space.
  • the air composition adjusting device (60) includes a gas supply unit (30) and a sensor unit (50).
  • the gas supply unit (30) has an adjusting unit for adjusting the composition of air, a transport unit for transporting air, and an air circuit (3).
  • the adjusting unit includes a first suction cylinder (34) and a second suction cylinder (35), which will be described later (see FIG. 4).
  • the transport unit includes an air pump (31) described later (see FIG. 4).
  • the air circuit (3) introduces air into the first suction cylinder (34) and the second suction cylinder (35) by the air pump (31), and supplies the air having the adjusted composition to the target space.
  • the sensor unit (50) has a sensor that measures the concentration of components in the air in the target space. Sensors include an oxygen sensor (51) and a carbon dioxide sensor (52).
  • the transportation container (1) includes a container body (2) and a transportation refrigerating device (10).
  • the transportation container (1) is used for marine transportation and the like.
  • the transport refrigerating device (10) cools the air in the internal space (target space) of the container body (2).
  • Plants (15) as perishables are stored in a box in the interior space of the container body (2).
  • the plant (15) is, for example, fruits and vegetables such as bananas and avocados, vegetables, grains, bulbs, fresh flowers and the like.
  • the plant (15) breathes by taking in oxygen (O2) in the air and releasing carbon dioxide (CO2).
  • the container body (2) is formed in the shape of an elongated rectangular parallelepiped box with one end face open.
  • the transport refrigerating device (10) includes a refrigerating casing (12), a refrigerant circuit (20), and an air composition adjusting device (60) (Controlled Atmosphere System).
  • the freezing casing (12) is attached so as to close the open end of the container body (2).
  • the transport refrigeration system (10) includes a refrigerant circuit (20) that performs a refrigeration cycle.
  • the transport refrigerating device (10) cools the air inside the container body (2) by the evaporator (24) of the refrigerant circuit (20).
  • the freezing casing (12) has an outer wall (12a) and an inner wall (12b).
  • the outer wall (12a) is located on the outside of the container body (2).
  • the inner wall (12b) is located inside the container body (2).
  • the outer wall (12a) and the inner wall (12b) of the refrigerator are made of, for example, an aluminum alloy.
  • the outer wall (12a) is attached to the peripheral edge of the opening of the container body (2) so as to close the opening end of the container body (2).
  • the lower part of the outer wall (12a) bulges toward the inside of the container body (2).
  • the inner wall (12b) is placed facing the outer wall (12a).
  • the inner wall (12b) bulges inward corresponding to the lower part of the outer wall (12a).
  • a heat insulating material (12c) is provided in the space between the inner wall (12b) and the outer wall (12a).
  • an outside storage space (S1) is formed on the outside of the container body (2) at the bottom of the freezing casing (12).
  • an internal storage space (S2) is formed inside the container body (2) at the upper part of the freezing casing (12).
  • the refrigerating casing (12) is formed with two service openings (14) for maintenance arranged side by side in the width direction.
  • the two service openings (14) are closed by a first service door (16A) and a second service door (16B) that can be opened and closed, respectively.
  • a ventilation port (16D) is formed on the second service door (16B).
  • the ventilation port (16D) communicates with the space inside and outside the container body (2).
  • the ventilation port (16D) is opened and closed by a rotating lid (16C) as an opening / closing mechanism.
  • the rotary lid (16C) can rotate around the central axis.
  • the rotary lid (16C) is manually rotated by the user to switch between an open state in which the ventilation port (16D) is opened and a closed state in which the ventilation port (16D) is closed.
  • an opening is formed in the rotary lid (16C).
  • the ventilation port (16D) is opened.
  • the second service door (16B) is formed with two ventilation ports, a first ventilation port and a second ventilation port, at positions symmetrical with respect to the central axis.
  • the rotary lid (16C) is formed with two openings corresponding to the first ventilation port and the second ventilation port.
  • the first ventilation port communicates with the primary space (S21) on the suction side of the internal fan (26) and the external space in the open state.
  • the second ventilation port communicates with the secondary space (S22) on the outlet side of the internal fan (26) and the external space in the open state.
  • a motor (not shown) for rotating the rotary lid (16C) may be provided.
  • the unit control unit (100) may control the opening / closing operation of the rotary lid (16C).
  • a partition plate (18) is arranged in the container body (2).
  • the partition plate (18) is composed of a substantially rectangular plate member.
  • the partition plate (18) is arranged to face the inner surface of the freezing casing (12).
  • the partition plate (18) divides the interior space (target space) in which the plants (15) in the refrigerator of the container body (2) are stored and the interior storage space (S2).
  • a suction port (18a) is formed between the upper end of the partition plate (18) and the ceiling surface in the container body (2).
  • the air inside the container body (2) is taken into the storage space (S2) inside the refrigerator through the suction port (18a).
  • the storage space (S2) in the refrigerator will be provided with a partition wall (13) extending in the horizontal direction.
  • the partition wall (13) is attached to the upper end of the partition plate (18).
  • the partition wall (13) has an opening in which the internal fan (26) is installed.
  • the partition wall (13) has a storage space (S2) in the refrigerator, a primary space (S21) on the suction side of the fan (26) in the refrigerator, and a secondary space (S22) on the outlet side of the fan (26) in the refrigerator. And partition.
  • the primary space (S21) is provided on the upper side of the partition wall (13)
  • the secondary space (S22) is provided on the lower side of the partition wall (13).
  • a floor plate (19) is provided above the bottom surface of the container body (2). Boxed plants (15) are placed on the floorboard (19).
  • An underfloor flow path (19a) is formed between the bottom surface of the container body (2) and the floor plate (19).
  • a gap is provided between the lower end of the partition plate (18) and the bottom surface in the container body (2), and the storage space (S2) in the refrigerator communicates with the underfloor flow path (19a).
  • An outlet (18b) is formed on the back side (right side in FIG. 2) of the container body (2) on the floor plate (19).
  • the air outlet (18b) blows the air cooled by the transport refrigerating device (10) into the container body (2).
  • An outside fan (25) is installed near the condenser (22).
  • the outside fan (25) is rotationally driven by the outside fan motor (25a).
  • the outside fan (25) sends the air (outside air) in the outside space of the container body (2) to the condenser (22).
  • heat is generated between the refrigerant compressed by the compressor (21) and flowing inside the condenser (22) and the outside air sent to the condenser (22) by the outside fan (25). The exchange will take place.
  • Two internal fans (26) are installed near the evaporator (24).
  • the internal fan (26) is rotationally driven by the internal fan motor (26a).
  • the internal fan (26) sucks in the internal air of the container body (2) from the suction port (18a) and blows it out to the evaporator (24).
  • the evaporator (24) between the refrigerant decompressed by the expansion valve (23) and flowing inside the evaporator (24) and the internal air sent to the evaporator (24) by the internal fan (26). Heat exchange takes place at.
  • the compressor (21) and the condenser (22) are stored in the storage space (S1) outside the refrigerator.
  • the condenser (22) is arranged in the central part in the vertical direction of the storage space (S1) outside the refrigerator.
  • the condenser (22) divides the storage space (S1) outside the refrigerator into a first space (S11) on the lower side and a second space (S12) on the upper side.
  • the first space (S11) is provided with a compressor (21), an inverter box (29), and a gas supply unit (30) of the air composition adjusting device (60).
  • the inverter box (29) houses a drive circuit that drives the compressor (21) at a variable speed.
  • an outside fan (25) and an electrical component box (17) are provided in the second space (S12).
  • the evaporator (24) is stored in the secondary space (S22) of the storage space (S2) in the refrigerator.
  • the above-mentioned two internal fans (26) are arranged side by side in the width direction of the refrigerating casing (12) (see FIG. 1).
  • the air composition adjusting device (60) includes a gas supply unit (30), an exhaust unit (46), a sensor unit (50), and a control unit (55).
  • the air composition adjusting device (60) adjusts the oxygen concentration and the carbon dioxide concentration of the air inside the container body (2).
  • concentration used in the following description refer to "volume concentration”.
  • the gas supply unit (30) is a unit for producing air whose composition has been adjusted.
  • the gas supply unit (30) generates nitrogen-concentrated air having a low oxygen concentration for supplying into the refrigerator of the container body (2).
  • the gas supply unit (30) is configured by VPSA (Vacuum Pressure Swing Adsorption). As shown in FIG. 1, the gas supply unit (30) is arranged in the lower left corner portion of the storage space (S1) outside the refrigerator.
  • the gas supply unit (30) has an air pump (31), a first-direction control valve (32), a second-direction control valve (33), and an air circuit (3).
  • the first suction cylinder (34) and the second suction cylinder (35) are connected to the air circuit (3).
  • an adsorbent for adsorbing a nitrogen component in the air is provided inside the first adsorption cylinder (34) and the second adsorption cylinder (35).
  • the components of the air circuit (3) are housed in the unit case (36).
  • the air pump (31) has a first pump mechanism (31a) and a second pump mechanism (31b).
  • the first pump mechanism (31a) constitutes a pressure pump mechanism that pressurizes and discharges the sucked air.
  • the second pump mechanism (31b) constitutes a decompression pump mechanism.
  • the first pump mechanism (31a) and the second pump mechanism (31b) are connected to the drive shaft of the motor (31c).
  • Air circuit Components such as an air pump (31) are connected to the air circuit (3).
  • the air circuit (3) includes an outside air passage (41), a pressurized passage (42), a decompression passage (43), and a supply passage (44).
  • the outside air passage (41) penetrates the unit case (36) inside and outside.
  • One end of the outside air passage (41) is connected to the suction port of the first pump mechanism (31a).
  • a membrane filter (37) is provided at the other end of the outside air passage (41).
  • the membrane filter (37) is a filter having both breathability and waterproofness.
  • the other end of the outside air passage (41) provided with the membrane filter (37) is arranged in the second space (S12) above the condenser (22) of the outside storage space (S1). ..
  • One end of the pressurizing passage (42) is connected to the discharge port of the first pump mechanism (31a).
  • the other end of the pressurizing passage (42) branches into two and is connected to the first direction control valve (32) and the second direction control valve (33).
  • One end of the decompression passage (43) is connected to the suction port of the second pump mechanism (31b).
  • the other end of the pressure reducing passage (43) branches into two and is connected to the first direction control valve (32) and the second direction control valve (33).
  • One end of the supply passage (44) is connected to the discharge port of the second pump mechanism (31b).
  • the other end of the supply passage (44) opens to the secondary space (S22) on the outlet side of the internal fan (26) in the internal storage space (S2) of the container body (2).
  • a check valve (65) is provided at the other end of the supply passage (44). The check valve (65) allows the flow of air toward the storage space (S2) in the refrigerator and prevents the backflow of air.
  • blower fans (49) are installed on the side of the air pump (31).
  • the blower fan (49) cools the air pump (31) by blowing air toward the air pump (31).
  • the first pump mechanism (31a) which is a pressure pump mechanism, supplies pressurized air to one of the first suction cylinders (34) and the second suction cylinder (35).
  • An adsorption operation is performed in which the nitrogen component in the pressurized air is adsorbed on the adsorbent in the adsorption cylinder.
  • the second pump mechanism (31b) which is a decompression pump mechanism, sucks air from the other suction cylinder of the first suction cylinder (34) and the second suction cylinder (35), thereby sucking air into the adsorption cylinder. Performs a desorption operation to desorb the nitrogen component adsorbed on the water. The desorption operation produces nitrogen-enriched air.
  • the supply passage (44) is a passage for supplying the nitrogen-enriched air generated by the desorption operation into the refrigerator of the container body (2).
  • the outlet portion of the first pump mechanism (31a) of the pressurizing passage (42) and the outlet portion of the second pump mechanism (31b) of the supply passage (44) are connected by a bypass passage (47).
  • the outlet portion of the first pump mechanism (31a) is between the first pump mechanism (31a) and the first direction control valve (32) and the second direction control valve (33).
  • a bypass on-off valve (48) is provided in the bypass passage (47). The bypass on-off valve (48) is controlled to open and close by the control unit (55).
  • the outside air introduction passage (40) is composed of an outside air passage (41), a part of the pressure passage (42), a bypass passage (47), and a part of the supply passage (44).
  • the outside air introduction passage (40) supplies pressurized air that has passed through the first pump mechanism (31a) into the refrigerator.
  • the composition of the pressurized air is equal to the composition of the outside air.
  • a cooling unit (40a) is provided in the outside air introduction passage (40).
  • the cooling unit (40a) passes through the space outside the unit case (36).
  • the first direction control valve (32) and the second direction control valve (33) are provided in the air circuit (3).
  • the first direction control valve (32) and the second direction control valve (33) are arranged between the air pump (31) and the first suction cylinder (34) and the second suction cylinder (35).
  • the first-direction control valve (32) and the second-direction control valve (33) have two connections, which will be described later, in which the air pump (31) is connected to the first suction cylinder (34) and the second suction cylinder (35). Switch to the state (first or second connection state).
  • the switching operation of the first direction control valve (32) and the second direction control valve (33) is controlled by the control unit (55).
  • the first direction control valve (32) is connected to the pressurizing passage (42), the depressurizing passage (43), and one end of the first suction cylinder (34).
  • the pressurizing passage (42) is connected to the discharge port of the first pump mechanism (31a).
  • the decompression passage (43) is connected to the suction port of the second pump mechanism (31b).
  • One end of the first suction cylinder (34) is an inflow port at the time of pressurization.
  • the first direction control valve (32) switches between the first state (state shown in FIG. 4) and the second state (state shown in FIG. 5).
  • the first suction cylinder (34) is communicated with the discharge port of the first pump mechanism (31a) and shut off from the suction port of the second pump mechanism (31b).
  • the first suction cylinder (34) is communicated with the suction port of the second pump mechanism (31b) and shut off from the discharge port of the first pump mechanism (31a).
  • the second direction control valve (33) is connected to the pressurizing passage (42), the depressurizing passage (43), and one end of the second suction cylinder (35).
  • the second direction control valve (33) switches between the first state (state shown in FIG. 4) and the second state (state shown in FIG. 5).
  • the first state the second suction cylinder (35) is communicated with the suction port of the second pump mechanism (31b) and shut off from the discharge port of the first pump mechanism (31a).
  • the second suction cylinder (35) is communicated with the discharge port of the first pump mechanism (31a) and shut off from the suction port of the second pump mechanism (31b).
  • the air circuit (3) is switched to the first connection state (see FIG. 4).
  • the discharge port of the first pump mechanism (31a) and the first suction cylinder (34) are connected, and the suction port of the second pump mechanism (31b) and the second suction cylinder (35) are connected. Will be done.
  • the adsorption operation of adsorbing the nitrogen component in the outside air to the adsorbent is performed in the first adsorption cylinder (34), and the nitrogen component adsorbed by the adsorbent is desorbed in the second adsorption cylinder (35). Desorption operation is performed.
  • the air circuit (3) is switched to the second connection state (see FIG. 5).
  • the discharge port of the first pump mechanism (31a) and the second suction cylinder (35) are connected, and the suction port of the second pump mechanism (31b) and the first suction cylinder (34) are connected. Will be done.
  • the suction operation is performed by the second suction cylinder (35), and the desorption operation is performed by the first suction cylinder (34).
  • the first suction cylinder (34) and the second suction cylinder (35) are composed of cylindrical members.
  • the inside of the first adsorption cylinder (34) and the second adsorption cylinder (35) is filled with an adsorbent.
  • the adsorbent has the property of adsorbing the nitrogen component under pressure and desorbing the adsorbed nitrogen component under reduced pressure.
  • the adsorbent is, for example, a porous zeolite having pores having pores smaller than the molecular diameter of nitrogen molecule (3.0 angstrom) and larger than the molecular diameter of oxygen molecule (2.8 angstrom).
  • a zeolite having such a pore size is used as an adsorbent, a nitrogen component in the air can be adsorbed.
  • the nitrogen component in the outside air is adsorbed on the adsorbent. ..
  • oxygen-concentrated air having less nitrogen component than the outside air is generated.
  • Oxygen-concentrated air has a lower nitrogen concentration and a higher oxygen concentration than the outside air.
  • Nitrogen-concentrated air has a higher nitrogen concentration and a lower oxygen concentration than the outside air. In the present embodiment, for example, nitrogen-concentrated air having a component ratio of 92% nitrogen concentration and 8% oxygen concentration is generated.
  • One end of the oxygen discharge passage (45) is connected to the other end (outlet at the time of pressurization) of the first suction cylinder (34) and the second suction cylinder (35).
  • the oxygen discharge passage (45) guides the oxygen-concentrated air generated from the pressurized outside air to the outside of the container body (2).
  • One end of the oxygen discharge passage (45) branches into two and is connected to each of the other ends of the first suction cylinder (34) and the second suction cylinder (35).
  • the other end of the oxygen discharge passage (45) opens to the outside of the gas supply unit (30), that is, to the outside of the container body (2).
  • a check valve (61) is provided at each of the branch portion where the oxygen discharge passage (45) is connected to the first suction cylinder (34) and the branch portion connected to the second suction cylinder (35). The check valve (61) prevents the backflow of air from the oxygen discharge passage (45) to the first suction cylinder (34) and the second suction cylinder (35).
  • a check valve (62) and an orifice (63) are provided in order from one end to the other in the middle of the oxygen discharge passage (45).
  • the check valve (62) prevents the nitrogen-concentrated air from the exhaust connection passage (71), which will be described later, from flowing back to the first suction cylinder (34) and the second suction cylinder (35).
  • the orifice (63) decompresses the oxygen-concentrated air flowing out of the first adsorption cylinder (34) and the second adsorption cylinder (35) before discharging the oxygen-concentrated air to the outside of the refrigerator.
  • the oxygen discharge passage (45) is a passage for discharging the oxygen-concentrated air generated by the first adsorption cylinder (34) and the second adsorption cylinder (35) to the outside of the refrigerator.
  • a pressure sensor (66) is connected to the oxygen discharge passage (45). The pressure sensor (66) is arranged between the confluence point (P0) of the first suction cylinder (34) and the second suction cylinder (35) and the check valve (62).
  • the exhaust connection passage (71) is a passage that connects the discharge port of the second pump mechanism (31b) to the oxygen discharge passage (45) on the downstream side of the pressure sensor (66).
  • the check valve (62) is provided between the first connection point (P1) and the second connection point (P2). At the first connection point (P1), the pressure sensor (66) and the oxygen discharge passage (45) are connected. At the second connection point (P2), the oxygen discharge passage (45) and the exhaust connection passage (71) are connected.
  • the check valve (62) allows air flow from the first connection point (P1) to the second connection point (P2) and prohibits air flow in the reverse direction.
  • the air circuit (3) is provided with a supply / discharge switching mechanism (70).
  • the supply / discharge switching mechanism (70) switches between a gas supply operation and a gas discharge operation.
  • the gas supply operation is an operation of supplying nitrogen-concentrated air from the first adsorption cylinder (34) and the second adsorption cylinder (35) into the container main body (2).
  • the gas discharge operation is an operation of discharging nitrogen-concentrated air from the first adsorption cylinder (34) and the second adsorption cylinder (35) to the outside of the refrigerator.
  • the supply / discharge switching mechanism (70) has an exhaust connection passage (71), an exhaust on-off valve (72), and a supply on-off valve (73).
  • One end of the exhaust connection passage (71) is connected to the supply passage (44), and the other end is connected to the oxygen discharge passage (45).
  • the other end of the exhaust connection passage (71) is connected to the oxygen discharge passage (45) on the outside of the refrigerator rather than the orifice (63).
  • the exhaust on-off valve (72) is provided in the exhaust connection passage (71).
  • the exhaust on-off valve (72) is composed of a solenoid valve arranged in the middle of the exhaust connection passage (71).
  • the exhaust on-off valve (72) switches between an open state that allows the flow of nitrogen-enriched air flowing in from the supply passage (44) and a closed state that blocks the flow of nitrogen-concentrated air.
  • the opening / closing operation of the exhaust on-off valve (72) is controlled by the control unit (55).
  • the supply on-off valve (73) is provided in the supply passage (44).
  • the supply on-off valve (73) is arranged inside the refrigerator from the connection portion between the supply passage (44) and the exhaust connection passage (71).
  • the supply on-off valve (73) is composed of a solenoid valve that switches between an open state that allows the flow of air to the inside of the refrigerator and a closed state that blocks the flow of air to the inside of the refrigerator.
  • the opening / closing operation of the supply on-off valve (73) is controlled by the control unit (55).
  • the exhaust unit (46) has an exhaust passage (46a), an exhaust valve (46b), and a membrane filter (46c).
  • the membrane filter (46c) is provided at the inflow end (inner end of the refrigerator) of the exhaust passage (46a).
  • the exhaust passage (46a) penetrates the refrigerating casing (12) inside and outside.
  • the exhaust passage (46a) connects the storage space inside the refrigerator (S2) and the space outside the refrigerator.
  • the exhaust valve (46b) is connected to the exhaust passage (46a).
  • the exhaust valve (46b) is provided inside the exhaust passage (46a).
  • the exhaust valve (46b) is composed of a solenoid valve that switches between an open state that allows the flow of air in the exhaust passage (46a) and a closed state that blocks the flow of air in the exhaust passage (46a).
  • the opening / closing operation of the exhaust valve (46b) is controlled by the control unit (55).
  • the sensor unit (50) is provided in the secondary space (S22) on the outlet side of the internal fan (26) in the internal storage space (S2).
  • the sensor unit (50) has an oxygen sensor (51), a carbon dioxide sensor (52), a membrane filter (54), and an exhaust pipe (57).
  • the oxygen sensor (51) and the carbon dioxide sensor (52) are housed in the sensor casing (90).
  • An introduction port (not shown) that opens into the storage space (S2) inside the refrigerator is provided on the side surface of the sensor casing (90).
  • a membrane filter (54) is attached to the inlet of the sensor casing (90).
  • the air inside the refrigerator that has passed through the membrane filter (54) flows into the inside of the sensor casing (90).
  • the sensor casing (90) is provided with an exhaust port (not shown).
  • An exhaust pipe (57) is connected to the exhaust port.
  • the oxygen sensor (51) is composed of, for example, a zirconia type sensor.
  • the carbon dioxide sensor (52) is composed of, for example, a non-dispersive infrared (NDIR) sensor.
  • One end of the exhaust pipe (57) is connected to the sensor casing (90). The other end of the exhaust pipe (57) opens near the suction port of the internal fan (26).
  • the secondary space (S22) and the primary space (S21) of the storage space (S2) in the refrigerator are communicated with each other via a communication passage (58).
  • the communication passage (58) includes a membrane filter (54), an oxygen sensor (51), a carbon dioxide sensor (52), and an exhaust pipe (57).
  • the pressure in the primary space (S21) becomes lower than the pressure in the secondary space (S22), and this pressure difference causes the oxygen sensor (51) and the carbon dioxide sensor (51).
  • the communication passage (58) including 52) the air inside the refrigerator flows from the secondary space (S22) side to the primary space (S21) side.
  • the internal air flows into the sensor casing (90) through the membrane filter (54).
  • the air inside the refrigerator passes through the oxygen sensor (51) and the carbon dioxide sensor (52).
  • the oxygen sensor (51) measures the oxygen concentration of the air inside the refrigerator.
  • the carbon dioxide sensor (52) measures the carbon dioxide concentration in the air inside the refrigerator.
  • the air circuit (3) is provided with a sensor circuit (80).
  • the sensor circuit (80) performs an air supply measurement operation in which the concentration of the nitrogen-concentrated air generated in the first adsorption cylinder (34) and the second adsorption cylinder (35) is measured by the oxygen sensor (51).
  • the sensor circuit (80) includes a branch pipe (81) and a branch on-off valve (82).
  • the sensor circuit (80) branches a part of the air flowing through the supply passage (44) to lead to the oxygen sensor (51) and the carbon dioxide sensor (52).
  • branch pipe (81) One end of the branch pipe (81) is connected to the supply passage (44), and the other end is connected to the sensor casing (90).
  • the branch pipe (81) branches from the supply passage (44) in the unit case (36) and communicates with the internal space.
  • a check valve (64) is provided at the other end (inside the refrigerator) of the branch pipe (81). The check valve (64) allows air flow from one end to the other end of the branch pipe (81) and prevents air backflow.
  • the branch on-off valve (82) is provided inside the unit case (36).
  • the branch on-off valve (82) is composed of a solenoid valve that switches between an open state that allows the air flow of the branch pipe (81) and a closed state that blocks the air flow of the branch pipe (81).
  • the opening / closing operation of the branch on-off valve (82) is controlled by the control unit (55).
  • the nitrogen-concentrated air generated by the gas supply unit (30) is sent to the oxygen sensor (51) via the branch pipe (81). Guided, the oxygen concentration of the nitrogen-enriched air is measured by the oxygen sensor (51).
  • the concentration adjustment becomes unstable. Therefore, outside air is introduced into the oxygen sensor (51) at a predetermined timing to perform calibration (correction of measured values).
  • the outside air pressurized by the air pump (31) passes through the branch pipe (81), bypassing the first suction cylinder (34) and the second suction cylinder (35). Introduced to the oxygen sensor (51) in the sensor casing (90).
  • the air circuit (3) introduces outside air into the sensor casing (90).
  • the air circuit (3) has a first passage (75) and a second passage (76).
  • the first passage (75) includes an outside air passage (41) and a pressurized passage (42).
  • the second passage (76) includes a bypass passage (47) and a branch pipe (81).
  • the first passage (75) introduces the outside air into the first suction cylinder (34) and the second suction cylinder (35) by the air pump (31).
  • the second passage (76) branches from the first passage (75) between the air pump (31) and the first suction cylinder (34) and the second suction cylinder (35) to the sensor casing (90). Communicate.
  • a gas-liquid separator (85) is provided in the second passage (76).
  • the gas-liquid separator (85) removes the moisture in the air introduced into the oxygen sensor (51).
  • a drain pipe (77) is connected to the gas-liquid separator (85). The drain pipe (77) drains the moisture separated from the air.
  • An oxygen sensor (51) and a carbon dioxide sensor (52) are housed inside the sensor casing (90).
  • the gas-liquid separator (85) is fixed to the sensor casing (90).
  • the gas-liquid separator (85) is connected to a branch pipe (81), which is a part of the second passage (76), and a drain pipe (77).
  • the refrigerating casing (12) of the transport refrigerating device (10) is provided with a drain pan (28) for receiving the drain water generated by the transport refrigerating device (10).
  • the drain pipe (77) extends downward from the gas-liquid separator (85) to drain water into the drain pan (28).
  • the sensor casing (90) is fixed to the refrigerating casing (12) of the transport refrigerating device (10) by a bracket (not shown).
  • the sensor casing (90) is located in the storage space (S2) in the refrigerator. The air inside the refrigerator that has passed through the membrane filter (54) flows into the inside of the sensor casing (90).
  • the gas-liquid separator (85) and the sensor casing (90) are connected by a connecting pipe (59). Inside the sensor casing (90), the air conveyed from the air pump (31) and from which the moisture has been removed by the gas-liquid separator (85) flows in through the connecting pipe (59).
  • An exhaust pipe (57) is connected to the sensor casing (90).
  • the exhaust pipe (57) is open on the suction port side of the internal fan (26). The air that has flowed into the inside of the sensor casing (90) is discharged from the exhaust pipe (57).
  • the control unit (55) controls the concentration adjustment operation for adjusting the oxygen concentration and the carbon dioxide concentration of the air inside the container body (2) to a desired concentration. Specifically, the control unit (55) determines the composition (oxygen concentration and carbon dioxide concentration) of the air inside the container body (2) based on the measurement results of the oxygen sensor (51) and the carbon dioxide sensor (52). The operation of the gas supply unit (30), the exhaust unit (46) and the sensor unit (50) is controlled so as to have a desired composition (for example, oxygen concentration 5%, carbon dioxide concentration 5%).
  • the control unit (55) includes, for example, a microcomputer that controls each element of the air composition adjusting device (60), and a storage medium such as a memory or a disk in which an implementable control program is stored.
  • the detailed structure and algorithm of the control unit (55) may be any combination of hardware and software.
  • the unit control unit (100) shown in FIG. 3 executes a cooling operation for cooling the air inside the container body (2).
  • the operation of the compressor (21), expansion valve (23), outside fan (25) and inside fan (26) by the unit control unit (100) is based on the measurement results of the temperature sensor (not shown).
  • the temperature of the air inside the refrigerator is controlled so as to reach a desired target temperature.
  • the refrigerant circulates and a steam compression refrigeration cycle is performed.
  • the internal air of the container body (2) guided to the internal storage space (S2) by the internal fan (26) is a refrigerant that flows inside the evaporator (24) when passing through the evaporator (24). Cooled by.
  • the air inside the refrigerator cooled by the evaporator (24) is blown out from the outlet (18b) again into the refrigerator of the container body (2) through the underfloor flow path (19a). As a result, the air inside the container body (2) is cooled.
  • the first generation operation is an operation in which the first suction cylinder (34) is pressurized and the second suction cylinder (35) is depressurized at the same time (see FIG. 4).
  • the second generation operation is an operation in which the first suction cylinder (34) is depressurized and the second suction cylinder (35) is pressurized at the same time (see FIG. 5).
  • the switching of each operation is performed by the control unit (55) operating the first direction control valve (32) and the second direction control valve (33).
  • ⁇ 1st generation operation the control unit (55) switches both the first direction control valve (32) and the second direction control valve (33) to the first state shown in FIG.
  • the first suction cylinder (34) communicates with the discharge port of the first pump mechanism (31a) and is shut off from the suction port of the second pump mechanism (31b), and the second suction is performed.
  • the cylinder (35) communicates with the suction port of the second pump mechanism (31b) and is in the first connection state in which it is cut off from the discharge port of the first pump mechanism (31a).
  • the outside air pressurized by the first pump mechanism (31a) is supplied to the first suction cylinder (34), while the second pump mechanism (31b) is supplied from the second suction cylinder (35).
  • the first pump mechanism (31a) sucks in the outside air through the outside air passage (41) and pressurizes it, and discharges the pressurized outside air (pressurized air) to the pressurized passage (42).
  • the pressurized air discharged to the pressurized passage (42) flows through the pressurized passage (42). Then, the pressurized air is supplied to the first adsorption cylinder (34) via the pressurized passage (42).
  • pressurized air flows into the first adsorption cylinder (34), and the nitrogen component contained in the pressurized air is adsorbed by the adsorbent.
  • pressurized outside air is supplied from the first pump mechanism (31a), and the nitrogen component in the outside air is adsorbed by the adsorbent, whereby the nitrogen concentration.
  • oxygen-concentrated air which is lower than the outside air and has a higher oxygen concentration than the outside air.
  • the oxygen-concentrated air flows out from the first adsorption cylinder (34) to the oxygen discharge passage (45).
  • the second pump mechanism (31b) sucks air from the second suction cylinder (35). At that time, the nitrogen component adsorbed by the adsorbent of the second adsorption cylinder (35) is sucked by the second pump mechanism (31b) together with air and desorbed from the adsorbent. As described above, during the first generation operation, in the second adsorption cylinder (35), the air inside is sucked by the second pump mechanism (31b), and the nitrogen component adsorbed by the adsorbent is desorbed. As a result, nitrogen-concentrated air containing a nitrogen component desorbed from the adsorbent and having a nitrogen concentration higher than that of the outside air and an oxygen concentration lower than that of the outside air is generated. The nitrogen-concentrated air is sucked into the second pump mechanism (31b), pressurized, and then discharged to the supply passage (44).
  • Second generation operation the control unit (55) switches both the first direction control valve (32) and the second direction control valve (33) to the second state shown in FIG.
  • the first suction cylinder (34) communicates with the suction port of the second pump mechanism (31b) and is shut off from the discharge port of the first pump mechanism (31a), and the second suction is performed.
  • the cylinder (35) communicates with the discharge port of the first pump mechanism (31a) and is in the second connection state in which the suction port of the second pump mechanism (31b) is cut off.
  • the first pump mechanism (31a) sucks in the outside air through the outside air passage (41) and pressurizes it, and discharges the pressurized outside air (pressurized air) to the pressurized passage (42).
  • the pressurized air discharged to the pressurized passage (42) flows through the pressurized passage (42).
  • the pressurized air is supplied to the second suction cylinder (35) via the pressurized passage (42).
  • pressurized air flows into the second adsorption cylinder (35), and the nitrogen component contained in the pressurized air is adsorbed by the adsorbent.
  • pressurized outside air is supplied from the first pump mechanism (31a), and the nitrogen component in the outside air is adsorbed by the adsorbent, whereby nitrogen is produced.
  • Oxygen-enriched air with a lower concentration than the outside air and a higher oxygen concentration than the outside air is produced.
  • the oxygen-concentrated air flows out from the second adsorption cylinder (35) to the oxygen discharge passage (45).
  • the second pump mechanism (31b) sucks air from the first suction cylinder (34). At that time, the nitrogen component adsorbed by the adsorbent of the first adsorption cylinder (34) is sucked by the second pump mechanism (31b) together with air and desorbed from the adsorbent. As described above, during the second generation operation, the air inside the first suction cylinder (34) is sucked by the second pump mechanism (31b), and the nitrogen component adsorbed by the adsorbent is desorbed. As a result, nitrogen-concentrated air containing a nitrogen component desorbed from the adsorbent and having a nitrogen concentration higher than that of the outside air and an oxygen concentration lower than that of the outside air is generated. The nitrogen-concentrated air is sucked into the second pump mechanism (31b), pressurized, and then discharged to the supply passage (44).
  • the gas supply operation is an operation of supplying the nitrogen-enriched air generated in the air circuit (3) into the refrigerator of the container body (2).
  • the gas discharge operation is an operation in which the generated nitrogen-enriched air is exhausted without being supplied to the inside of the container body (2) for a predetermined time from the start of the desorption operation.
  • the exhaust on-off valve (72) is controlled to the closed state and the supply on-off valve (73) is controlled to the open state by the control unit (55). ..
  • the nitrogen-enriched air alternately generated in the first adsorption cylinder (34) and the second adsorption cylinder (35) is supplied into the refrigerator of the container body (2) through the supply passage (44).
  • the oxygen-concentrated air is discharged to the outside of the refrigerator through the oxygen discharge passage (45).
  • the exhaust on-off valve (72) is controlled to the open state and the supply on-off valve (73) is controlled to the closed state by the control unit (55).
  • the nitrogen-concentrated air that is alternately generated in the first adsorption cylinder (34) and the second adsorption cylinder (35) and discharged to the supply passage (44) is discharged from the oxygen discharge passage (71) to the oxygen discharge passage (71). It flows into 45) and is discharged to the outside of the refrigerator together with the oxygen-concentrated air flowing through the oxygen discharge passage (45).
  • the outside air introduction operation of introducing the outside air into the refrigerator of the container body (2) is also possible.
  • the first direction control valve (32) is set to the first state
  • the second direction control valve (33) is set to the second state
  • the bypass on-off valve (48) is opened. ..
  • the supply on-off valve (73) is opened and the branch on-off valve (82) is closed.
  • the air pump (31) is started in this state, the outside air is composed of an outside air passage (41), a part of the pressurizing passage (42), a bypass passage (47), and a part of the supply passage (44). It flows through the outside air introduction passage (40) shown by the thick solid line.
  • the passage resistance of the outside air introduction passage (40) passes through the first direction control valve (32), the second direction control valve (33), the first suction cylinder (34), and the second suction cylinder (35). This is because it is smaller than the passage resistance. Then, the air having the same composition as the outside air flowing through the outside air introduction passage (40) is pushed into the refrigerator of the container body (2).
  • the air composition adjusting device (60) uses the control unit (55) to change the composition (oxygen concentration and carbon dioxide concentration) of the air inside the container body (2) to a desired composition (for example, oxygen concentration 5). %, Carbon dioxide concentration 5%).
  • the concentration adjustment operation the gas supply unit (30) is used so that the composition of the air inside the container body (2) becomes a desired composition based on the measurement results of the oxygen sensor (51) and the carbon dioxide sensor (52). And the operation of the exhaust unit (46) is controlled.
  • control unit (55) controls the branch on-off valve (82) to the closed state. Further, during the concentration adjustment operation, the control unit (55) communicates with the unit control unit (100), and the unit control unit (100) rotates the internal fan (26). As a result, the internal air is supplied to the oxygen sensor (51) and the carbon dioxide sensor (52) by the internal fan (26), and the oxygen concentration and the carbon dioxide concentration of the internal air are measured.
  • the gas supply operation is performed by alternately repeating the first generation operation and the second generation operation to adjust the oxygen concentration in the refrigerator.
  • the exhaust valve (46b) of the exhaust unit (46) is controlled to be in the open state, and the amount of nitrogen-enriched air supplied to the inside of the container body (2) by the gas supply operation is taken out of the refrigerator. Discharge.
  • the control unit (55) stops the operation of the gas supply unit (30) to stop the gas supply operation, and the exhaust valve (46b). Close to stop the exhaust operation. Since the plant (15) breathes in the container body (2), the oxygen concentration in the air inside the container body (2) decreases, eventually reaching 5% of the target oxygen concentration.
  • the bypass on-off valve (48) is opened to bypass the outside air sucked by the air pump (31) to the first suction cylinder (34) and the second suction cylinder (35). It can be performed by the outside air introduction operation supplied to the inside of the container body (2). At this time, since the outside air passes through the cooling unit (40a), the temperature rise of the air inside the refrigerator is suppressed.
  • the oxygen concentration (and carbon dioxide concentration) of the air inside the refrigerator can be adjusted by appropriately switching between the gas supply operation, the gas discharge operation, and the outside air introduction operation.
  • an air supply measurement operation for measuring the oxygen concentration of the nitrogen-concentrated air generated in the gas supply unit (30) is performed according to a command from the user or periodically (for example, every 10 days).
  • the air supply measurement operation is performed in parallel when the internal fan (26) is stopped during the gas supply operation such as the above-mentioned concentration adjustment operation or test run.
  • the control unit (55) controls the branch on-off valve (82) to the open state and the supply on-off valve (73) to the closed state during the gas supply operation. As a result, all of the nitrogen-enriched air flowing through the supply passage (44) flows into the branch pipe (81). The nitrogen-enriched air flowing into the branch pipe (81) is introduced into the oxygen sensor (51), and the oxygen concentration is measured.
  • the composition (oxygen concentration, nitrogen concentration) of the nitrogen-concentrated air generated in the gas supply unit (30) is desired. It is possible to confirm whether it is in the state of.
  • the sensor calibration operation of FIG. 7 can be performed by introducing outside air into the sensor unit (50) to calibrate the oxygen sensor (51).
  • the sensor calibration operation can be performed, for example, by temporarily stopping the concentration adjustment while cooling the inside of the refrigerator, performing the sensor calibration operation in a short time (about 10 minutes), and then returning to the concentration adjustment operation.
  • the first direction control valve (32) is set to the first state
  • the second direction control valve (33) is set to the second state
  • the bypass on-off valve (48) is opened.
  • the supply on-off valve (73) is closed and the branch on-off valve (82) is opened.
  • the outside air passes through the gas-liquid separator (85). Therefore, the oxygen sensor (51) is in contact with the outside air from which at least a part of the moisture has been removed.
  • the oxygen sensor (51) of the present embodiment is a zirconia type sensor.
  • the element of the oxygen sensor (51) is composed of platinum and zirconia.
  • the oxygen sensor (51) measures the oxygen concentration by electrically measuring the amount of oxygen ions moving in the solid electrolytes of platinum and zirconia.
  • a small amount of metal oxide is added to platinum and zirconia of the oxygen sensor (51) as a bonding aid. Platinum and zirconia are bonded by binding the bonding aids to each other at the interface between platinum and zirconia.
  • Corrosive components may be generated from the packaging container housed in the internal space of the container body (2) or the fresh food packed in the packaging container.
  • the corrosive component is a component that corrodes the oxygen sensor (51).
  • the corrosive component circulates in the transportation container (1) together with the air in the refrigerator.
  • the oxygen sensor (51) When the oxygen sensor (51) is energized, the oxygen sensor (51) generates heat and becomes hot. On the other hand, when the oxygen sensor (51) switches from the energized state to the non-energized state, the oxygen sensor (51) does not generate heat and the temperature drops. When the temperature of the oxygen sensor (51) decreases, the temperature inside the sensor casing (90) decreases, and the relative humidity inside the sensor casing (90) increases. When the relative humidity in the sensor casing (90) rises, moisture condenses and a water film is formed on the surface of the oxygen sensor (51).
  • the corrosive component that has flowed into the sensor casing (90) together with the air inside the refrigerator enters the water film on the surface of the oxygen sensor (51)
  • the corrosive component reacts with the bonding aid of the oxygen sensor (51) in the water film.
  • the bonding auxiliary agent of the oxygen sensor (51) reacts with the bonding force of the bonding auxiliary agent is weakened, the bonding force of platinum and zirconia is reduced, and the output of the oxygen sensor (51) is reduced. This is the deterioration of the oxygen sensor (51).
  • the corrosive component contains a sulfur component.
  • Sulfate ions can be mentioned as a corrosive component that easily penetrates into the water film.
  • the control unit (55) performs the following control while the air composition adjusting device (60) and the transport refrigerating device (10) are in operation.
  • step ST11 the control unit (55) controls the air composition adjusting device (60) to execute a concentration adjusting operation for adjusting the air composition.
  • step ST12 the control unit (55) controls the air pump (31) to convey the concentration-adjusted air to the space inside the container body (2).
  • step ST13 the control unit (55) determines whether or not the operation stop command of the air composition adjusting device (60) has been received. If the determination in step ST13 is "YES”, branch to step ST14. If the determination in step ST13 is "NO”, step ST13 is repeated.
  • the operation stop command of the air composition adjusting device (60) is output, for example, when the stop button is pressed by the user.
  • the operation stop command of the transport refrigerating device (10) may be output.
  • step ST14 the control unit (55) controls the air composition adjusting device (60) to perform the first operation of introducing outside air into the sensor casing (90).
  • the first direction control valve (32) is set to the first state
  • the second direction control valve (33) is set to the second state
  • the bypass on-off valve (48). Is opened.
  • the supply on-off valve (73) is closed and the branch on-off valve (82) is opened.
  • the corrosive component staying inside the sensor casing (90) is discharged to the outside of the sensor casing (90). Specifically, the corrosive component is discharged to the outside of the sensor casing (90) from the exhaust port.
  • the corrosive component that has passed through the exhaust pipe (57) from the exhaust port is discharged to the primary space (S21) on the suction side of the internal fan (26). As a result, it is possible to prevent the sensor (51) from being deteriorated by the corrosive component while the operation of the air composition adjusting device (60) is stopped.
  • step ST14 the rotating lid (16C) may be opened and the ventilation port (16D) may be opened to introduce outside air into the interior space through the ventilation port (16D).
  • the outside air introduced into the interior space through the ventilation port (16D) is circulated in the interior space by the interior fan (26).
  • the air inside the refrigerator including the outside air passes through the membrane filter (54) of the sensor casing (90) and flows into the inside of the sensor casing (90).
  • the ventilation port (16D) communicates with the primary space (S21) on the suction side of the internal fan (26). Therefore, the outside air taken in from the ventilation port (16D) is introduced from the primary space (S21) to the secondary space (S22) on the outlet side of the casing fan (26) and placed in the secondary space (S22). It flows into the inside of the sensor casing (90). As a result, the corrosive component can be discharged from the inside of the sensor casing (90).
  • the timing of performing the first operation in conjunction with the operation stop operation of the air composition adjusting device (60) was immediately before the operation of the air composition adjusting device (60) was stopped, and at the same time as the operation stop operation, the operation was stopped. It may be either immediately after.
  • the control unit (55) may perform the first operation when receiving a stop command for monitoring the oxygen sensor (51).
  • the monitoring of the oxygen sensor (51) is stopped, for example, when the concentration adjustment operation is completed in the air composition adjusting device (60), the air supply measurement operation is completed, and the sensor calibration operation is completed.
  • the control unit (55) performs the following control while the air composition adjusting device (60) is stopped and the transport refrigerating device (10) is operated.
  • step ST21 the unit control unit (100) controls the transport refrigerating device (10) to execute a cooling operation for cooling the internal space of the container body (2).
  • step ST22 the unit control unit (100) controls the internal fan (26) to convey the temperature-controlled air to the internal space of the container body (2).
  • step ST23 the unit control unit (100) determines whether or not the operation stop command of the transport refrigerating device (10) has been received. If the judgment in step ST23 is "YES”, the process branches to step ST24. If the determination in step ST23 is "NO”, step ST23 is repeated.
  • the operation stop command of the transport refrigerating device (10) is output, for example, when the stop button is pressed by the user.
  • step ST24 the control unit (55) controls the air composition adjusting device (60) to perform a second operation of introducing outside air into the sensor casing (90).
  • the first direction control valve (32) is set to the first state
  • the second direction control valve (33) is set to the second state
  • the bypass on-off valve (48) is set. Is opened.
  • the supply on-off valve (73) is closed and the branch on-off valve (82) is opened.
  • the corrosive component staying inside the sensor casing (90) is discharged to the outside of the sensor casing (90). Specifically, the corrosive component is discharged to the outside of the sensor casing (90) from the exhaust port.
  • the corrosive component that has passed through the exhaust pipe (57) from the exhaust port is discharged to the primary space (S21) on the suction side of the internal fan (26).
  • the air whose composition has been adjusted is conveyed to the target space.
  • the concentration of components in the air in the target space is measured by the sensor (51).
  • the sensor (51) is housed in the sensor casing (90).
  • the control unit (55) executes the first operation.
  • the first operation is an operation of introducing outside air into the inside of the sensor casing (90) in conjunction with the operation stop operation of the air composition adjusting device (60).
  • the outside air in the first operation, can be introduced into the inside of the sensor casing (90) through the passage (75,76) by controlling the transport unit (31).
  • the deterioration of the sensor (51) due to the corrosive component is suppressed by discharging the corrosive component to the outside of the sensor casing (90). be able to.
  • the inside and the outside of the target space are communicated by the ventilation port (16D).
  • the ventilation port (16D) is opened and closed by the opening / closing mechanism (16C).
  • the opening / closing mechanism (16C) is in the open state during the first operation.
  • control unit (55) executes the second operation.
  • the second operation is an operation of introducing outside air into the inside of the sensor casing (90) in conjunction with the operation of stopping the operation of the refrigerating device (10).
  • the deterioration of the sensor (51) due to the corrosive component can be suppressed by discharging the corrosive component to the outside of the sensor casing (90). ..
  • the senor (51) is housed in the sensor casing (90).
  • the air composition adjusting device (60) adjusts the composition of the air and conveys the air to the target space.
  • the outside air is introduced into the sensor casing (90) in conjunction with the stop operation of the air composition adjusting device (60).
  • FIG. 11 is a perspective view of the transport refrigerating apparatus according to the second embodiment.
  • the same parts as those in the first embodiment are designated by the same reference numerals, and only the differences will be described.
  • the sensor casing (90) is arranged outside the refrigerator. Specifically, the sensor casing (90) is arranged on the left side of the electrical component box (17) in the second space (S12) of the storage space (S1) outside the refrigerator.
  • the "left side” means the direction when the surface of the transport refrigerating device (10) exposed to the outside of the transport container (1) is viewed from the front.
  • one end of the air supply pipe (78) is connected to the sensor casing (90).
  • the other end of the air supply pipe (78) opens into the storage space (S2) inside the refrigerator.
  • a membrane filter (54) is attached to the other end of the air supply pipe (78).
  • the air supply pipe (78) is provided to introduce the air inside the refrigerator into the inside of the sensor casing (90) arranged outside the refrigerator.
  • the embodiment may have the following configuration.
  • the oxygen sensor (51) has been described as a target sensor for suppressing deterioration due to a corrosive component, but the target sensor is not limited to the oxygen sensor (51).
  • the target sensor may be a sensor that measures the concentration of the components of the air inside the refrigerator.
  • the carbon dioxide sensor (52) may be targeted instead of the oxygen sensor (51) or in addition to the oxygen sensor (51).
  • the target sensor may be an ethylene sensor that detects the ethylene concentration or a leak detection sensor that detects the leakage of the refrigerant into the refrigerator. Further, if there is a risk of deterioration of the sensor due to a corrosive component in a configuration in which another sensor is used, that sensor may be targeted.
  • the zirconia type sensor has been described as the target oxygen sensor (51) that suppresses deterioration due to the corrosive component, but the target sensor is not limited to the zirconia type sensor.
  • a galvanic cell-powered sensor may be used.
  • sulfate ion is exemplified as a corrosive component, but the outside air is inside the sensor casing (90) against sulfur components other than sulfate ion, phosphoric acid, calcium, chlorine, ammonia and other corrosive components. May be performed to introduce.
  • one air pump (31) has a first pump mechanism (31a) and a second pump mechanism (31b), but the first pump mechanism (31a) and the second pump mechanism (31b) May consist of two separate air pumps.
  • the transport unit of the embodiment may be configured by using a blower.
  • nitrogen is adsorbed and desorbed by using one first adsorption cylinder (34) and one second adsorption cylinder (35), but the number of adsorption cylinders is one. Not limited to. For example, three suction cylinders (34) and three second suction cylinders (35) may be used to provide a total of six suction cylinders.
  • the first adsorption cylinder (34) and the second adsorption cylinder (35) as the adjusting unit of the embodiment are not limited to the configuration using an adsorbent such as zeolite, and for example, the permeability of nitrogen and oxygen (and carbon dioxide). ) May be configured to generate nitrogen-concentrated air and oxygen-concentrated air using gas separation membranes having different permeability, and adjust the composition of the air inside the refrigerator by these concentrated air.
  • the air composition adjusting device (60) can be used for adjusting the composition of the air inside the warehouse, for example, a container for land transportation, a simple freezing and refrigerating warehouse, a warehouse at room temperature, etc., in addition to the container for marine transportation.
  • the freezing device may be a device that cools the internal space of a stationary storage (freezing / refrigerating warehouse), not for transportation.
  • the present disclosure is useful for an air composition adjusting device, a refrigerating device, a container, and an air composition adjusting method.
  • Transport container (container) 10 Transport refrigeration equipment (refrigeration equipment) 16C rotary lid (opening and closing mechanism) 16D Ventilation port 31
  • Air pump (conveyor) 34 1st adsorption cylinder (adjustment part) 35 2nd adsorption cylinder (adjustment part) 51
  • Oxygen sensor (sensor) 55
  • Control unit 60
  • Air composition regulator 75 1st passage 76 2nd passage 90 Sensor casing

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Storage Of Harvested Produce (AREA)

Abstract

According to the present invention, air of which the composition has been an adjusted is delivered to a target space. The concentration of components in the air in the target space are measured by a sensor (51). The sensor (51) is accommodated in a sensor casing (90). A control unit (55) executes a first action. The first action introduces external air into the inside of the sensor casing (90) in conjunction with an operation stopping action of an air composition adjusting device (60).

Description

空気組成調整装置、冷凍装置、コンテナ、及び空気組成調整方法Air composition adjusting device, refrigerating device, container, and air composition adjusting method
 本開示は、空気組成調整装置、冷凍装置、コンテナ、及び空気組成調整方法に関するものである。 The present disclosure relates to an air composition adjusting device, a refrigerating device, a container, and an air composition adjusting method.
 特許文献1には、空気組成調整装置を備えた冷凍コンテナが開示されている。空気組成調整装置は、コンテナの庫内空間の酸素濃度や二酸化炭素濃度を調整する。特許文献1の空気組成調整装置は、空気の組成を測定するセンサを有する。 Patent Document 1 discloses a refrigerated container provided with an air composition adjusting device. The air composition adjusting device adjusts the oxygen concentration and the carbon dioxide concentration in the space inside the container. The air composition adjusting device of Patent Document 1 has a sensor for measuring the composition of air.
特開平08-000168号公報Japanese Unexamined Patent Publication No. 08-000168
 ところで、コンテナの庫内空間では、貨物などの冷却対象物から腐食成分が発生することがある。センサがセンサケーシングに収容された構成では、センサケーシング内に、庫内の空気とともに腐食成分が流入する。 By the way, in the space inside the container, corrosive components may be generated from objects to be cooled such as cargo. In the configuration in which the sensor is housed in the sensor casing, the corrosive component flows into the sensor casing together with the air in the refrigerator.
 ここで、空気組成調整装置の運転停止に伴って、センサケーシング内を空気が流れなくなった場合、センサケーシング内に腐食成分が滞留してしまい、腐食成分に起因してセンサが劣化するおそれがある。 Here, if the air does not flow in the sensor casing due to the stop of the operation of the air composition adjusting device, the corrosive component stays in the sensor casing, and the sensor may be deteriorated due to the corrosive component. ..
 本開示の目的は、腐食成分によるセンサの劣化を抑えることである。 The purpose of this disclosure is to suppress deterioration of the sensor due to corrosive components.
 本開示の第1の態様は、外気とは異なる組成に調整した空気を対象空間に導入する空気組成調整装置であって、空気の組成を調整する調整部(34,35)と、前記対象空間に空気を搬送する搬送部(31)と、前記対象空間における空気中の成分の濃度を測定するセンサ(51)と、前記センサ(51)を収容するセンサケーシング(90)と、前記空気組成調整装置(60)の運転停止動作に連動して、前記センサケーシング(90)の内部に外気を導入する第1動作を実行する制御部(55)とを備える。 The first aspect of the present disclosure is an air composition adjusting device for introducing air adjusted to a composition different from that of the outside air into the target space, the adjusting unit (34,35) for adjusting the composition of the air, and the target space. A transport unit (31) that conveys air to the air, a sensor (51) that measures the concentration of components in the air in the target space, a sensor casing (90) that houses the sensor (51), and the air composition adjustment. A control unit (55) for executing a first operation of introducing outside air into the inside of the sensor casing (90) is provided in conjunction with the operation stop operation of the device (60).
 第1の態様では、組成が調整された空気が対象空間に搬送される。対象空間における空気中の成分の濃度がセンサ(51)で測定される。センサ(51)は、センサケーシング(90)に収容される。制御部(55)は、第1動作を実行する。第1動作は、空気組成調整装置(60)の運転停止動作に連動して、センサケーシング(90)の内部に外気を導入する動作である。 In the first aspect, the air whose composition has been adjusted is conveyed to the target space. The concentration of components in the air in the target space is measured by the sensor (51). The sensor (51) is housed in the sensor casing (90). The control unit (55) executes the first operation. The first operation is an operation of introducing outside air into the inside of the sensor casing (90) in conjunction with the operation stop operation of the air composition adjusting device (60).
 センサケーシング(90)の内部に外気を導入すると、センサケーシング(90)の内部に滞留する腐食成分が、センサケーシング(90)の外部に排出される。これにより、空気組成調整装置(60)の運転停止中に、腐食成分によってセンサ(51)が劣化するのを抑えることができる。 When outside air is introduced inside the sensor casing (90), the corrosive component staying inside the sensor casing (90) is discharged to the outside of the sensor casing (90). As a result, it is possible to prevent the sensor (51) from being deteriorated by the corrosive component while the operation of the air composition adjusting device (60) is stopped.
 本開示の第2の態様は、第1の態様において、前記センサケーシング(90)の内部に外気を導入する通路(75,76)を備え、前記制御部(55)は、前記第1動作において、前記通路(75,76)を通して前記センサケーシング(90)の内部に外気を導入するように、前記搬送部(31)を制御する。 A second aspect of the present disclosure comprises, in the first aspect, a passage (75,76) for introducing outside air into the sensor casing (90), wherein the control unit (55) is in the first operation. , The transport unit (31) is controlled so as to introduce outside air into the inside of the sensor casing (90) through the passage (75,76).
 第2の態様では、第1動作では、搬送部(31)を制御することで、通路(75,76)を通してセンサケーシング(90)の内部に外気を導入することができる。 In the second aspect, in the first operation, the outside air can be introduced into the inside of the sensor casing (90) through the passage (75,76) by controlling the transport unit (31).
 本開示の第3の態様は、第1又は2の態様に記載の空気組成調整装置(60)を備えた冷凍装置である。 The third aspect of the present disclosure is a refrigerating device provided with the air composition adjusting device (60) according to the first or second aspect.
 第3の態様では、空気組成調整装置(60)を備えた冷凍装置において、センサケーシング(90)の外部に腐食成分を排出することで、腐食成分によるセンサ(51)の劣化を抑えることができる。 In the third aspect, in the refrigerating apparatus provided with the air composition adjusting device (60), the deterioration of the sensor (51) due to the corrosive component can be suppressed by discharging the corrosive component to the outside of the sensor casing (90). ..
 本開示の第4の態様は、第3の態様において、前記対象空間の内部と外部とを連通する換気口(16D)と、前記換気口(16D)を開閉する開閉機構(16C)とを備え、前記第1動作中に、前記開閉機構(16C)が開状態である。 A fourth aspect of the present disclosure includes, in the third aspect, a ventilation port (16D) that communicates the inside and the outside of the target space, and an opening / closing mechanism (16C) that opens and closes the ventilation port (16D). During the first operation, the opening / closing mechanism (16C) is in an open state.
 第4の態様では、対象空間の内部と外部とが換気口(16D)で連通される。換気口(16D)は、開閉機構(16C)で開閉される。開閉機構(16C)は、第1動作中に開状態となっている。 In the fourth aspect, the inside and the outside of the target space are communicated by a ventilation port (16D). The ventilation port (16D) is opened and closed by the opening / closing mechanism (16C). The opening / closing mechanism (16C) is in the open state during the first operation.
 これにより、第1動作中に開閉機構(16C)を開状態とすることで、換気口(16D)を通して、対象空間の内部に外気を導入することができる。 As a result, by opening the opening / closing mechanism (16C) during the first operation, outside air can be introduced into the target space through the ventilation port (16D).
 本開示の第5の態様は、第3又は4の態様において、前記制御部(55)は、前記冷凍装置(10)の運転停止動作に連動して、前記センサケーシング(90)の内部に外気を導入する第2動作を実行する。 A fifth aspect of the present disclosure is, in the third or fourth aspect, the control unit (55) is linked to the operation stop operation of the refrigerating apparatus (10), and the outside air is inside the sensor casing (90). The second operation of introducing is executed.
 第5の態様では、制御部(55)は、第2動作を実行する。第2動作は、冷凍装置(10)の運転停止動作に連動して、センサケーシング(90)の内部に外気を導入する動作である。 In the fifth aspect, the control unit (55) executes the second operation. The second operation is an operation of introducing outside air into the inside of the sensor casing (90) in conjunction with the operation of stopping the operation of the refrigerating device (10).
 センサケーシング(90)の内部に外気を導入すると、センサケーシング(90)の内部に滞留する腐食成分が、センサケーシング(90)の外部に排出される。これにより、冷凍装置(10)の運転停止中に、腐食成分によってセンサ(51)が劣化するのを抑えることができる。 When outside air is introduced inside the sensor casing (90), the corrosive component staying inside the sensor casing (90) is discharged to the outside of the sensor casing (90). As a result, it is possible to prevent the sensor (51) from being deteriorated by the corrosive component while the refrigerating device (10) is stopped.
 本開示の第6の態様は、第3乃至5の態様のうち何れか1つに記載の冷凍装置(10)を備えたコンテナである。 The sixth aspect of the present disclosure is a container provided with the refrigerating apparatus (10) according to any one of the third to fifth aspects.
 第6の態様では、冷凍装置(10)を備えたコンテナにおいて、センサケーシング(90)の外部に腐食成分を排出することで、腐食成分によるセンサ(51)の劣化を抑えることができる。 In the sixth aspect, in the container provided with the refrigerating device (10), the deterioration of the sensor (51) due to the corrosive component can be suppressed by discharging the corrosive component to the outside of the sensor casing (90).
 本開示の第7の態様は、外気とは異なる組成に調整した空気を対象空間に導入する空気組成調整装置(60)を用いた空気組成調整方法であって、前記空気組成調整装置(60)では、前記対象空間における空気中の成分の濃度を測定するセンサ(51)が、センサケーシング(90)に収容されており、空気の組成を調整する工程と、前記対象空間に空気を搬送する工程と、前記空気組成調整装置(60)の運転停止動作に連動して、前記センサケーシング(90)の内部に外気を導入する工程とを備える。 A seventh aspect of the present disclosure is an air composition adjusting device (60) using an air composition adjusting device (60) that introduces air adjusted to a composition different from that of the outside air into the target space, wherein the air composition adjusting device (60) is used. Then, a sensor (51) for measuring the concentration of components in the air in the target space is housed in the sensor casing (90), and a step of adjusting the composition of the air and a step of transporting the air to the target space. And a step of introducing outside air into the inside of the sensor casing (90) in conjunction with the operation stop operation of the air composition adjusting device (60).
 第7の態様では、センサケーシング(90)には、センサ(51)が収容される。空気組成調整装置(60)は、空気の組成を調整し、対象空間に空気を搬送する。空気組成調整装置(60)の運転停止動作に連動して、センサケーシング(90)の内部に外気を導入する。 In the seventh aspect, the sensor (51) is housed in the sensor casing (90). The air composition adjusting device (60) adjusts the composition of the air and conveys the air to the target space. The outside air is introduced into the sensor casing (90) in conjunction with the stop operation of the air composition adjusting device (60).
 センサケーシング(90)の内部に外気を導入すると、センサケーシング(90)の内部に滞留する腐食成分が、センサケーシング(90)の外部に排出される。これにより、空気組成調整装置(60)の運転停止中に、腐食成分によってセンサ(51)が劣化するのを抑えることができる。 When outside air is introduced inside the sensor casing (90), the corrosive component staying inside the sensor casing (90) is discharged to the outside of the sensor casing (90). As a result, it is possible to prevent the sensor (51) from being deteriorated by the corrosive component while the operation of the air composition adjusting device (60) is stopped.
図1は、本実施形態1に係る輸送用冷凍装置を庫外側から見た斜視図である。FIG. 1 is a perspective view of the transport refrigerating apparatus according to the first embodiment as viewed from the outside of the refrigerator. 図2は、輸送用冷凍装置の概略構成を示す側面断面図である。FIG. 2 is a side sectional view showing a schematic configuration of a refrigerating apparatus for transportation. 図3は、輸送用冷凍装置の冷媒回路の構成を示す配管系統図である。FIG. 3 is a piping system diagram showing the configuration of the refrigerant circuit of the transport refrigerating device. 図4は、空気組成調整装置の空気回路を示す配管系統図であり、第1生成動作における空気の流れを示す。FIG. 4 is a piping system diagram showing an air circuit of an air composition adjusting device, and shows an air flow in the first generation operation. 図5は、空気組成調整装置の空気回路を示す配管系統図であり、第2生成動作における空気の流れを示す。FIG. 5 is a piping system diagram showing the air circuit of the air composition adjusting device, and shows the air flow in the second generation operation. 図6は、空気組成調整装置の空気回路を示す配管系統図であり、外気導入動作における空気の流れを示す。FIG. 6 is a piping system diagram showing an air circuit of an air composition adjusting device, and shows an air flow in an outside air introduction operation. 図7は、空気組成調整装置の空気回路を示す配管系統図であり、センサ校正動作における空気の流れを示す。FIG. 7 is a piping system diagram showing an air circuit of an air composition adjusting device, and shows an air flow in a sensor calibration operation. 図8は、輸送用冷凍装置のケーシングの背面側斜視図であり、センサユニットの配置を示す。FIG. 8 is a rear perspective view of the casing of the refrigerating apparatus for transportation, showing the arrangement of the sensor unit. 図9は、第1動作の手順を示すフローチャート図である。FIG. 9 is a flowchart showing the procedure of the first operation. 図10は、第2動作の手順を示すフローチャート図である。FIG. 10 is a flowchart showing the procedure of the second operation. 図11は、本実施形態2に係る輸送用冷凍装置の斜視図である。FIG. 11 is a perspective view of the transport refrigerating apparatus according to the second embodiment. 図12は、空気組成調整装置の空気回路を示す配管系統図である。FIG. 12 is a piping system diagram showing an air circuit of the air composition adjusting device.
 《実施形態1》
 以下、本発明の実施形態1を図面に基づいて詳細に説明する。
<< Embodiment 1 >>
Hereinafter, Embodiment 1 of the present invention will be described in detail with reference to the drawings.
 〈全体構成〉
 図1及び図2に示すように、本実施形態は、空気組成調整装置(60)を備えた輸送用コンテナ(1)に関する。空気組成調整装置(60)は、外気とは異なる組成に調整した空気を対象空間に導入する。空気組成調整装置(60)は、ガス供給ユニット(30)と、センサユニット(50)とを備える。
<overall structure>
As shown in FIGS. 1 and 2, the present embodiment relates to a transport container (1) provided with an air composition adjusting device (60). The air composition adjusting device (60) introduces air adjusted to a composition different from that of the outside air into the target space. The air composition adjusting device (60) includes a gas supply unit (30) and a sensor unit (50).
 ガス供給ユニット(30)は、空気の組成を調整する調整部と、空気を搬送する搬送部と、空気回路(3)とを有する。調整部は、後述する第1吸着筒(34)及び第2吸着筒(35)を含む(図4参照)。搬送部は、後述するエアポンプ(31)を含む(図4参照)。空気回路(3)は、エアポンプ(31)によって空気を第1吸着筒(34)及び第2吸着筒(35)に導入し、組成を調整した空気を対象空間へ供給する。 The gas supply unit (30) has an adjusting unit for adjusting the composition of air, a transport unit for transporting air, and an air circuit (3). The adjusting unit includes a first suction cylinder (34) and a second suction cylinder (35), which will be described later (see FIG. 4). The transport unit includes an air pump (31) described later (see FIG. 4). The air circuit (3) introduces air into the first suction cylinder (34) and the second suction cylinder (35) by the air pump (31), and supplies the air having the adjusted composition to the target space.
 センサユニット(50)は、対象空間における空気中の成分の濃度を測定するセンサを有する。センサは、酸素センサ(51)及び二酸化炭素センサ(52)を含む。 The sensor unit (50) has a sensor that measures the concentration of components in the air in the target space. Sensors include an oxygen sensor (51) and a carbon dioxide sensor (52).
 〈輸送用コンテナ〉
 輸送用コンテナ(1)は、コンテナ本体(2)と、輸送用冷凍装置(10)とを備える。輸送用コンテナ(1)は、海上輸送等に用いられる。輸送用冷凍装置(10)は、コンテナ本体(2)の庫内空間(対象空間)の空気を冷却する。
<Transport container>
The transportation container (1) includes a container body (2) and a transportation refrigerating device (10). The transportation container (1) is used for marine transportation and the like. The transport refrigerating device (10) cools the air in the internal space (target space) of the container body (2).
 コンテナ本体(2)の庫内空間には、生鮮物としての植物(15)が箱詰めされた状態で収納される。植物(15)は、例えば、バナナやアボカド等の青果物、野菜、穀物、球根、生花等である。植物(15)は、空気中の酸素(O2)を取り込んで二酸化炭素(CO2)を放出する呼吸を行う。 Plants (15) as perishables are stored in a box in the interior space of the container body (2). The plant (15) is, for example, fruits and vegetables such as bananas and avocados, vegetables, grains, bulbs, fresh flowers and the like. The plant (15) breathes by taking in oxygen (O2) in the air and releasing carbon dioxide (CO2).
 コンテナ本体(2)は、一方の端面が開口する細長い直方体の箱状に形成される。輸送用冷凍装置(10)は、冷凍ケーシング(12)と、冷媒回路(20)と、空気組成調整装置(60)(Controlled Atmosphere System)とを備える。冷凍ケーシング(12)は、コンテナ本体(2)の開口端を塞ぐように取り付けられる。 The container body (2) is formed in the shape of an elongated rectangular parallelepiped box with one end face open. The transport refrigerating device (10) includes a refrigerating casing (12), a refrigerant circuit (20), and an air composition adjusting device (60) (Controlled Atmosphere System). The freezing casing (12) is attached so as to close the open end of the container body (2).
 〈輸送用冷凍装置〉
 輸送用冷凍装置(10)は、冷凍サイクルを行う冷媒回路(20)を備える。輸送用冷凍装置(10)は、コンテナ本体(2)の庫内空気を、冷媒回路(20)の蒸発器(24)で冷却する。
<Transport refrigeration equipment>
The transport refrigeration system (10) includes a refrigerant circuit (20) that performs a refrigeration cycle. The transport refrigerating device (10) cools the air inside the container body (2) by the evaporator (24) of the refrigerant circuit (20).
  〈ケーシング〉
 冷凍ケーシング(12)は、庫外壁(12a)と、庫内壁(12b)とを有する。庫外壁(12a)は、コンテナ本体(2)の庫外側に位置する。庫内壁(12b)は、コンテナ本体(2)の庫内側に位置する。庫外壁(12a)及び庫内壁(12b)は、例えば、アルミニウム合金によって構成される。
<casing>
The freezing casing (12) has an outer wall (12a) and an inner wall (12b). The outer wall (12a) is located on the outside of the container body (2). The inner wall (12b) is located inside the container body (2). The outer wall (12a) and the inner wall (12b) of the refrigerator are made of, for example, an aluminum alloy.
 庫外壁(12a)は、コンテナ本体(2)の開口端を塞ぐように、コンテナ本体(2)の開口の周縁部に取り付けられる。庫外壁(12a)は、下部がコンテナ本体(2)の庫内側へ膨出している。 The outer wall (12a) is attached to the peripheral edge of the opening of the container body (2) so as to close the opening end of the container body (2). The lower part of the outer wall (12a) bulges toward the inside of the container body (2).
 庫内壁(12b)は、庫外壁(12a)と対向して配置される。庫内壁(12b)は、庫外壁(12a)の下部に対応して庫内側へ膨出している。庫内壁(12b)と庫外壁(12a)との間の空間には、断熱材(12c)が設けられる。 The inner wall (12b) is placed facing the outer wall (12a). The inner wall (12b) bulges inward corresponding to the lower part of the outer wall (12a). A heat insulating material (12c) is provided in the space between the inner wall (12b) and the outer wall (12a).
 このように、冷凍ケーシング(12)の下部は、コンテナ本体(2)の庫内側に向かって膨出している。これにより、冷凍ケーシング(12)の下部におけるコンテナ本体(2)の庫外側には、庫外収納空間(S1)が形成される。また、冷凍ケーシング(12)の上部におけるコンテナ本体(2)の庫内側には、庫内収納空間(S2)が形成される。 In this way, the lower part of the freezing casing (12) bulges toward the inside of the container body (2). As a result, an outside storage space (S1) is formed on the outside of the container body (2) at the bottom of the freezing casing (12). Further, an internal storage space (S2) is formed inside the container body (2) at the upper part of the freezing casing (12).
 図1に示すように、冷凍ケーシング(12)には、メンテナンス用の2つのサービス用開口(14)が幅方向に並んで形成される。2つのサービス用開口(14)は、それぞれ開閉自在な第1サービス扉(16A)及び第2サービス扉(16B)によって閉塞される。 As shown in FIG. 1, the refrigerating casing (12) is formed with two service openings (14) for maintenance arranged side by side in the width direction. The two service openings (14) are closed by a first service door (16A) and a second service door (16B) that can be opened and closed, respectively.
 第2サービス扉(16B)には、換気口(16D)が形成される。換気口(16D)は、コンテナ本体(2)の庫内空間と庫外空間とに連通する。換気口(16D)は、開閉機構としての回転蓋(16C)によって開閉される。回転蓋(16C)は、中心軸を中心に回転可能となっている。回転蓋(16C)は、ユーザが手動で回転させることで、換気口(16D)を開く開状態と、換気口(16D)を閉じる閉状態とに切り換わる。 A ventilation port (16D) is formed on the second service door (16B). The ventilation port (16D) communicates with the space inside and outside the container body (2). The ventilation port (16D) is opened and closed by a rotating lid (16C) as an opening / closing mechanism. The rotary lid (16C) can rotate around the central axis. The rotary lid (16C) is manually rotated by the user to switch between an open state in which the ventilation port (16D) is opened and a closed state in which the ventilation port (16D) is closed.
 具体的に、回転蓋(16C)には、開口が形成される。回転蓋(16C)の開口を第2サービス扉(16B)の換気口(16D)に連通させることで、換気口(16D)が開状態となる。本実施形態では、第2サービス扉(16B)には、中心軸に対して対称な位置に、第1換気口と第2換気口の2つの換気口が形成される。回転蓋(16C)には、第1換気口と第2換気口に対応して2つの開口が形成される。 Specifically, an opening is formed in the rotary lid (16C). By communicating the opening of the rotary lid (16C) with the ventilation port (16D) of the second service door (16B), the ventilation port (16D) is opened. In the present embodiment, the second service door (16B) is formed with two ventilation ports, a first ventilation port and a second ventilation port, at positions symmetrical with respect to the central axis. The rotary lid (16C) is formed with two openings corresponding to the first ventilation port and the second ventilation port.
 第1換気口は、開状態において、庫内ファン(26)の吸込側の1次空間(S21)と庫外空間とに連通している。第2換気口は、開状態において、庫内ファン(26)の吹出側の2次空間(S22)と庫外空間とに連通している。庫内ファン(26)を回転駆動することで、庫外空間から第1換気口を通って1次空間(S21)へ外気が給気される。庫内ファン(26)を回転駆動することで、2次空間(S22)から第2換気口を通って庫外空間へ庫内空気が排気される。 The first ventilation port communicates with the primary space (S21) on the suction side of the internal fan (26) and the external space in the open state. The second ventilation port communicates with the secondary space (S22) on the outlet side of the internal fan (26) and the external space in the open state. By rotationally driving the internal fan (26), outside air is supplied from the external space to the primary space (S21) through the first ventilation port. By rotationally driving the internal fan (26), the internal air is exhausted from the secondary space (S22) to the external space through the second ventilation port.
 なお、回転蓋(16C)を回転させるモータ(図示省略)を備えた構成としてもよい。この場合、ユニット制御部(100)によって、回転蓋(16C)の開閉動作を制御すればよい。 A motor (not shown) for rotating the rotary lid (16C) may be provided. In this case, the unit control unit (100) may control the opening / closing operation of the rotary lid (16C).
 図2に示すように、コンテナ本体(2)の庫内には、仕切板(18)が配置される。仕切板(18)は、略矩形状の板部材で構成される。仕切板(18)は、冷凍ケーシング(12)の庫内側の面と対向して配置される。仕切板(18)によって、コンテナ本体(2)の庫内の植物(15)が収納される庫内空間(対象空間)と、庫内収納空間(S2)とが区画される。 As shown in FIG. 2, a partition plate (18) is arranged in the container body (2). The partition plate (18) is composed of a substantially rectangular plate member. The partition plate (18) is arranged to face the inner surface of the freezing casing (12). The partition plate (18) divides the interior space (target space) in which the plants (15) in the refrigerator of the container body (2) are stored and the interior storage space (S2).
 仕切板(18)の上端と、コンテナ本体(2)内の天井面との間には、吸込口(18a)が形成される。コンテナ本体(2)の庫内空気は、吸込口(18a)を通って庫内収納空間(S2)に取り込まれる。 A suction port (18a) is formed between the upper end of the partition plate (18) and the ceiling surface in the container body (2). The air inside the container body (2) is taken into the storage space (S2) inside the refrigerator through the suction port (18a).
 庫内収納空間(S2)には、水平方向に延びる区画壁(13)が設けられる。区画壁(13)は、仕切板(18)の上端部に取り付けられる。区画壁(13)は、庫内ファン(26)が設置される開口を有する。区画壁(13)は、庫内収納空間(S2)を、庫内ファン(26)の吸込側の1次空間(S21)と、庫内ファン(26)の吹出側の2次空間(S22)とに区画する。本実施形態では、区画壁(13)の上側に1次空間(S21)が設けられ、区画壁(13)の下側に2次空間(S22)が設けられる。 The storage space (S2) in the refrigerator will be provided with a partition wall (13) extending in the horizontal direction. The partition wall (13) is attached to the upper end of the partition plate (18). The partition wall (13) has an opening in which the internal fan (26) is installed. The partition wall (13) has a storage space (S2) in the refrigerator, a primary space (S21) on the suction side of the fan (26) in the refrigerator, and a secondary space (S22) on the outlet side of the fan (26) in the refrigerator. And partition. In the present embodiment, the primary space (S21) is provided on the upper side of the partition wall (13), and the secondary space (S22) is provided on the lower side of the partition wall (13).
 コンテナ本体(2)内には、コンテナ本体(2)の底面の上方に、床板(19)が設けられる。床板(19)には、箱詰めされた植物(15)が載置される。コンテナ本体(2)内の底面と床板(19)との間には、床下流路(19a)が形成される。仕切板(18)の下端とコンテナ本体(2)内の底面との間には、隙間が設けられ、庫内収納空間(S2)が床下流路(19a)に連通している。 Inside the container body (2), a floor plate (19) is provided above the bottom surface of the container body (2). Boxed plants (15) are placed on the floorboard (19). An underfloor flow path (19a) is formed between the bottom surface of the container body (2) and the floor plate (19). A gap is provided between the lower end of the partition plate (18) and the bottom surface in the container body (2), and the storage space (S2) in the refrigerator communicates with the underfloor flow path (19a).
 床板(19)におけるコンテナ本体(2)の奥側(図2で右側)には、吹出口(18b)が形成される。吹出口(18b)は、輸送用冷凍装置(10)によって冷却された空気をコンテナ本体(2)の庫内へ吹き出す。 An outlet (18b) is formed on the back side (right side in FIG. 2) of the container body (2) on the floor plate (19). The air outlet (18b) blows the air cooled by the transport refrigerating device (10) into the container body (2).
  〈冷媒回路の構成と機器配置〉
 図3に示すように、冷媒回路(20)は、圧縮機(21)と、凝縮器(22)と、膨張弁(23)と、蒸発器(24)とを、冷媒配管(20a)で順に接続することで構成された閉回路である。ユニット制御部(100)は、圧縮機(21)、膨張弁(23)、庫外ファン(25)及び庫内ファン(26)の動作を制御する。
<Refrigerant circuit configuration and equipment layout>
As shown in FIG. 3, in the refrigerant circuit (20), the compressor (21), the condenser (22), the expansion valve (23), and the evaporator (24) are sequentially connected by the refrigerant pipe (20a). It is a closed circuit configured by connecting. The unit control unit (100) controls the operation of the compressor (21), the expansion valve (23), the outside fan (25), and the inside fan (26).
 凝縮器(22)の近傍には、庫外ファン(25)が設けられる。庫外ファン(25)は、庫外ファンモータ(25a)によって回転駆動される。庫外ファン(25)は、コンテナ本体(2)の庫外空間の空気(外気)を凝縮器(22)へ送る。凝縮器(22)では、圧縮機(21)で圧縮されて凝縮器(22)の内部を流れる冷媒と、庫外ファン(25)によって凝縮器(22)に送られた外気との間で熱交換が行われる。 An outside fan (25) is installed near the condenser (22). The outside fan (25) is rotationally driven by the outside fan motor (25a). The outside fan (25) sends the air (outside air) in the outside space of the container body (2) to the condenser (22). In the condenser (22), heat is generated between the refrigerant compressed by the compressor (21) and flowing inside the condenser (22) and the outside air sent to the condenser (22) by the outside fan (25). The exchange will take place.
 蒸発器(24)の近傍には、庫内ファン(26)が2つ設けられる。庫内ファン(26)は、庫内ファンモータ(26a)によって回転駆動される。庫内ファン(26)は、コンテナ本体(2)の庫内空気を吸込口(18a)から吸い込んで蒸発器(24)へ吹き出す。蒸発器(24)では、膨張弁(23)で減圧されて蒸発器(24)の内部を流れる冷媒と、庫内ファン(26)によって蒸発器(24)に送られた庫内空気との間で熱交換が行われる。 Two internal fans (26) are installed near the evaporator (24). The internal fan (26) is rotationally driven by the internal fan motor (26a). The internal fan (26) sucks in the internal air of the container body (2) from the suction port (18a) and blows it out to the evaporator (24). In the evaporator (24), between the refrigerant decompressed by the expansion valve (23) and flowing inside the evaporator (24) and the internal air sent to the evaporator (24) by the internal fan (26). Heat exchange takes place at.
 図1に示すように、圧縮機(21)及び凝縮器(22)は、庫外収納空間(S1)に収納される。凝縮器(22)は、庫外収納空間(S1)の上下方向の中央部分に配置される。凝縮器(22)は、庫外収納空間(S1)を、下側の第1空間(S11)と上側の第2空間(S12)とに区画する。 As shown in FIG. 1, the compressor (21) and the condenser (22) are stored in the storage space (S1) outside the refrigerator. The condenser (22) is arranged in the central part in the vertical direction of the storage space (S1) outside the refrigerator. The condenser (22) divides the storage space (S1) outside the refrigerator into a first space (S11) on the lower side and a second space (S12) on the upper side.
 第1空間(S11)には、圧縮機(21)と、インバータボックス(29)と、空気組成調整装置(60)のガス供給ユニット(30)とが設けられる。インバータボックス(29)には、圧縮機(21)を可変速で駆動する駆動回路が収納される。第2空間(S12)には、庫外ファン(25)と、電装品ボックス(17)とが設けられる。 The first space (S11) is provided with a compressor (21), an inverter box (29), and a gas supply unit (30) of the air composition adjusting device (60). The inverter box (29) houses a drive circuit that drives the compressor (21) at a variable speed. In the second space (S12), an outside fan (25) and an electrical component box (17) are provided.
 図2に示すように、蒸発器(24)は、庫内収納空間(S2)の2次空間(S22)に収納される。庫内収納空間(S2)の蒸発器(24)の上方には、上述した2つの庫内ファン(26)が、冷凍ケーシング(12)の幅方向に並んで配置される(図1参照)。 As shown in FIG. 2, the evaporator (24) is stored in the secondary space (S22) of the storage space (S2) in the refrigerator. Above the evaporator (24) of the internal storage space (S2), the above-mentioned two internal fans (26) are arranged side by side in the width direction of the refrigerating casing (12) (see FIG. 1).
 〈空気組成調整装置〉
 図4~図7に示すように、空気組成調整装置(60)は、ガス供給ユニット(30)と、排気部(46)と、センサユニット(50)と、制御部(55)とを備える。空気組成調整装置(60)は、コンテナ本体(2)の庫内空気の酸素濃度と二酸化炭素濃度とを調整する。なお、以下の説明で用いる「濃度」は、全て「体積濃度」を指す。
<Air composition adjuster>
As shown in FIGS. 4 to 7, the air composition adjusting device (60) includes a gas supply unit (30), an exhaust unit (46), a sensor unit (50), and a control unit (55). The air composition adjusting device (60) adjusts the oxygen concentration and the carbon dioxide concentration of the air inside the container body (2). In addition, all "concentrations" used in the following description refer to "volume concentration".
  〈ガス供給ユニット〉
 ガス供給ユニット(30)は、成分調整された空気を生成するためのユニットである。本実施形態では、ガス供給ユニット(30)は、コンテナ本体(2)の庫内に供給するための低酸素濃度の窒素濃縮空気を生成する。ガス供給ユニット(30)は、VPSA(Vacuum Pressure Swing Adsorption)によって構成される。ガス供給ユニット(30)は、図1に示すように、庫外収納空間(S1)の左下のコーナー部に配置される。
<Gas supply unit>
The gas supply unit (30) is a unit for producing air whose composition has been adjusted. In the present embodiment, the gas supply unit (30) generates nitrogen-concentrated air having a low oxygen concentration for supplying into the refrigerator of the container body (2). The gas supply unit (30) is configured by VPSA (Vacuum Pressure Swing Adsorption). As shown in FIG. 1, the gas supply unit (30) is arranged in the lower left corner portion of the storage space (S1) outside the refrigerator.
 図4に示すように、ガス供給ユニット(30)は、エアポンプ(31)と、第1方向制御弁(32)と、第2方向制御弁(33)と、空気回路(3)とを有する。空気回路(3)には、第1吸着筒(34)及び第2吸着筒(35)が接続される。第1吸着筒(34)及び第2吸着筒(35)の内部には、空気中の窒素成分を吸着するための吸着剤が設けられる。空気回路(3)の構成部品は、ユニットケース(36)に収容される。 As shown in FIG. 4, the gas supply unit (30) has an air pump (31), a first-direction control valve (32), a second-direction control valve (33), and an air circuit (3). The first suction cylinder (34) and the second suction cylinder (35) are connected to the air circuit (3). Inside the first adsorption cylinder (34) and the second adsorption cylinder (35), an adsorbent for adsorbing a nitrogen component in the air is provided. The components of the air circuit (3) are housed in the unit case (36).
   (エアポンプ)
 エアポンプ(31)は、第1ポンプ機構(31a)と、第2ポンプ機構(31b)とを有する。第1ポンプ機構(31a)は、吸引した空気を加圧して吐出する加圧ポンプ機構を構成する。第2ポンプ機構(31b)は、減圧ポンプ機構を構成する。第1ポンプ機構(31a)及び第2ポンプ機構(31b)は、モータ(31c)の駆動軸に接続される。
(air pump)
The air pump (31) has a first pump mechanism (31a) and a second pump mechanism (31b). The first pump mechanism (31a) constitutes a pressure pump mechanism that pressurizes and discharges the sucked air. The second pump mechanism (31b) constitutes a decompression pump mechanism. The first pump mechanism (31a) and the second pump mechanism (31b) are connected to the drive shaft of the motor (31c).
   (空気回路)
 空気回路(3)には、エアポンプ(31)等の構成部品が接続される。空気回路(3)は、外気通路(41)、加圧通路(42)、減圧通路(43)、及び供給通路(44)を含む。
(Air circuit)
Components such as an air pump (31) are connected to the air circuit (3). The air circuit (3) includes an outside air passage (41), a pressurized passage (42), a decompression passage (43), and a supply passage (44).
 外気通路(41)は、ユニットケース(36)を内外に貫通する。第1ポンプ機構(31a)の吸込口には、外気通路(41)の一端が接続される。外気通路(41)の他端には、メンブレンフィルタ(37)が設けられる。メンブレンフィルタ(37)は、通気性と防水性とを有するフィルタである。図示していないが、メンブレンフィルタ(37)が設けられる外気通路(41)の他端は、庫外収納空間(S1)の凝縮器(22)の上方の第2空間(S12)に配置される。 The outside air passage (41) penetrates the unit case (36) inside and outside. One end of the outside air passage (41) is connected to the suction port of the first pump mechanism (31a). A membrane filter (37) is provided at the other end of the outside air passage (41). The membrane filter (37) is a filter having both breathability and waterproofness. Although not shown, the other end of the outside air passage (41) provided with the membrane filter (37) is arranged in the second space (S12) above the condenser (22) of the outside storage space (S1). ..
 第1ポンプ機構(31a)の吐出口には、加圧通路(42)の一端が接続される。加圧通路(42)の他端は2つに分岐して、第1方向制御弁(32)及び第2方向制御弁(33)に接続される。 One end of the pressurizing passage (42) is connected to the discharge port of the first pump mechanism (31a). The other end of the pressurizing passage (42) branches into two and is connected to the first direction control valve (32) and the second direction control valve (33).
 第2ポンプ機構(31b)の吸込口には、減圧通路(43)の一端が接続される。減圧通路(43)の他端は2つに分岐して、第1方向制御弁(32)及び第2方向制御弁(33)に接続される。第2ポンプ機構(31b)の吐出口には、供給通路(44)の一端が接続される。供給通路(44)の他端は、コンテナ本体(2)の庫内収納空間(S2)において、庫内ファン(26)の吹出側の2次空間(S22)に開口する。供給通路(44)の他端部には、逆止弁(65)が設けられる。逆止弁(65)は、庫内収納空間(S2)へ向かう空気の流通を許容し、空気の逆流を防止する。 One end of the decompression passage (43) is connected to the suction port of the second pump mechanism (31b). The other end of the pressure reducing passage (43) branches into two and is connected to the first direction control valve (32) and the second direction control valve (33). One end of the supply passage (44) is connected to the discharge port of the second pump mechanism (31b). The other end of the supply passage (44) opens to the secondary space (S22) on the outlet side of the internal fan (26) in the internal storage space (S2) of the container body (2). A check valve (65) is provided at the other end of the supply passage (44). The check valve (65) allows the flow of air toward the storage space (S2) in the refrigerator and prevents the backflow of air.
 エアポンプ(31)の側方には、送風ファン(49)が2つ設けられる。送風ファン(49)は、エアポンプ(31)に向かって送風することで、エアポンプ(31)を冷却する。 Two blower fans (49) are installed on the side of the air pump (31). The blower fan (49) cools the air pump (31) by blowing air toward the air pump (31).
 加圧ポンプ機構である第1ポンプ機構(31a)は、第1吸着筒(34)及び第2吸着筒(35)のうち一方の吸着筒に対して加圧した空気を供給することで、その吸着筒において加圧空気中の窒素成分を吸着剤に吸着する吸着動作を行う。 The first pump mechanism (31a), which is a pressure pump mechanism, supplies pressurized air to one of the first suction cylinders (34) and the second suction cylinder (35). An adsorption operation is performed in which the nitrogen component in the pressurized air is adsorbed on the adsorbent in the adsorption cylinder.
 減圧ポンプ機構である第2ポンプ機構(31b)は、第1吸着筒(34)及び第2吸着筒(35)のうち他方の吸着筒内から空気を吸引することで、その吸着筒の吸着剤に吸着している窒素成分を脱着する脱着動作を行う。脱着動作により、窒素濃縮空気が生成される。 The second pump mechanism (31b), which is a decompression pump mechanism, sucks air from the other suction cylinder of the first suction cylinder (34) and the second suction cylinder (35), thereby sucking air into the adsorption cylinder. Performs a desorption operation to desorb the nitrogen component adsorbed on the water. The desorption operation produces nitrogen-enriched air.
 第1吸着筒(34)及び第2吸着筒(35)では、吸着動作と脱着動作とが交互に行われる。供給通路(44)は、脱着動作で生成された窒素濃縮空気をコンテナ本体(2)の庫内に供給する通路である。 In the first suction cylinder (34) and the second suction cylinder (35), the suction operation and the desorption operation are alternately performed. The supply passage (44) is a passage for supplying the nitrogen-enriched air generated by the desorption operation into the refrigerator of the container body (2).
 加圧通路(42)の第1ポンプ機構(31a)の出口部と、供給通路(44)の第2ポンプ機構(31b)の出口部とは、バイパス通路(47)で接続される。第1ポンプ機構(31a)の出口部は、第1ポンプ機構(31a)と第1方向制御弁(32)及び第2方向制御弁(33)との間である。バイパス通路(47)には、バイパス開閉弁(48)が設けられる。バイパス開閉弁(48)は、制御部(55)によって開閉制御される。 The outlet portion of the first pump mechanism (31a) of the pressurizing passage (42) and the outlet portion of the second pump mechanism (31b) of the supply passage (44) are connected by a bypass passage (47). The outlet portion of the first pump mechanism (31a) is between the first pump mechanism (31a) and the first direction control valve (32) and the second direction control valve (33). A bypass on-off valve (48) is provided in the bypass passage (47). The bypass on-off valve (48) is controlled to open and close by the control unit (55).
 外気導入通路(40)は、外気通路(41)と、加圧通路(42)の一部と、バイパス通路(47)と、供給通路(44)の一部とで構成される。外気導入通路(40)は、第1ポンプ機構(31a)を通過した加圧空気を庫内へ供給する。加圧空気の組成は、外気の組成と等しい。外気導入通路(40)には、冷却部(40a)が設けられる。冷却部(40a)は、ユニットケース(36)の外部の空間を通る。 The outside air introduction passage (40) is composed of an outside air passage (41), a part of the pressure passage (42), a bypass passage (47), and a part of the supply passage (44). The outside air introduction passage (40) supplies pressurized air that has passed through the first pump mechanism (31a) into the refrigerator. The composition of the pressurized air is equal to the composition of the outside air. A cooling unit (40a) is provided in the outside air introduction passage (40). The cooling unit (40a) passes through the space outside the unit case (36).
   (方向制御弁)
 第1方向制御弁(32)及び第2方向制御弁(33)は、空気回路(3)に設けられる。第1方向制御弁(32)及び第2方向制御弁(33)は、エアポンプ(31)と、第1吸着筒(34)及び第2吸着筒(35)との間に配置される。第1方向制御弁(32)及び第2方向制御弁(33)は、エアポンプ(31)と第1吸着筒(34)及び第2吸着筒(35)との接続状態を、後述する2つの接続状態(第1又は第2接続状態)に切り換える。第1方向制御弁(32)及び第2方向制御弁(33)の切り換え動作は、制御部(55)によって制御される。
(Direction control valve)
The first direction control valve (32) and the second direction control valve (33) are provided in the air circuit (3). The first direction control valve (32) and the second direction control valve (33) are arranged between the air pump (31) and the first suction cylinder (34) and the second suction cylinder (35). The first-direction control valve (32) and the second-direction control valve (33) have two connections, which will be described later, in which the air pump (31) is connected to the first suction cylinder (34) and the second suction cylinder (35). Switch to the state (first or second connection state). The switching operation of the first direction control valve (32) and the second direction control valve (33) is controlled by the control unit (55).
 第1方向制御弁(32)は、加圧通路(42)と、減圧通路(43)と、第1吸着筒(34)の一端部とに接続される。加圧通路(42)は、第1ポンプ機構(31a)の吐出口に接続される。減圧通路(43)は、第2ポンプ機構(31b)の吸込口に接続される。第1吸着筒(34)の一端部は、加圧時の流入口である。 The first direction control valve (32) is connected to the pressurizing passage (42), the depressurizing passage (43), and one end of the first suction cylinder (34). The pressurizing passage (42) is connected to the discharge port of the first pump mechanism (31a). The decompression passage (43) is connected to the suction port of the second pump mechanism (31b). One end of the first suction cylinder (34) is an inflow port at the time of pressurization.
 第1方向制御弁(32)は、第1状態(図4に示す状態)と、第2状態(図5に示す状態)とに切り換わる。第1状態では、第1吸着筒(34)を第1ポンプ機構(31a)の吐出口に連通させ、第2ポンプ機構(31b)の吸込口から遮断する。第2状態では、第1吸着筒(34)を第2ポンプ機構(31b)の吸込口に連通させ、第1ポンプ機構(31a)の吐出口から遮断する。 The first direction control valve (32) switches between the first state (state shown in FIG. 4) and the second state (state shown in FIG. 5). In the first state, the first suction cylinder (34) is communicated with the discharge port of the first pump mechanism (31a) and shut off from the suction port of the second pump mechanism (31b). In the second state, the first suction cylinder (34) is communicated with the suction port of the second pump mechanism (31b) and shut off from the discharge port of the first pump mechanism (31a).
 第2方向制御弁(33)は、加圧通路(42)と、減圧通路(43)と、第2吸着筒(35)の一端部とに接続される。 The second direction control valve (33) is connected to the pressurizing passage (42), the depressurizing passage (43), and one end of the second suction cylinder (35).
 第2方向制御弁(33)は、第1状態(図4に示す状態)と、第2状態(図5に示す状態)とに切り換わる。第1状態では、第2吸着筒(35)を第2ポンプ機構(31b)の吸込口に連通させ、第1ポンプ機構(31a)の吐出口から遮断する。第2状態では、第2吸着筒(35)を第1ポンプ機構(31a)の吐出口に連通させ、第2ポンプ機構(31b)の吸込口から遮断する。 The second direction control valve (33) switches between the first state (state shown in FIG. 4) and the second state (state shown in FIG. 5). In the first state, the second suction cylinder (35) is communicated with the suction port of the second pump mechanism (31b) and shut off from the discharge port of the first pump mechanism (31a). In the second state, the second suction cylinder (35) is communicated with the discharge port of the first pump mechanism (31a) and shut off from the suction port of the second pump mechanism (31b).
 第1方向制御弁(32)及び第2方向制御弁(33)を両方とも第1状態に設定すると、空気回路(3)が第1接続状態に切り換わる(図4を参照)。第1接続状態では、第1ポンプ機構(31a)の吐出口と第1吸着筒(34)とが接続され、第2ポンプ機構(31b)の吸込口と第2吸着筒(35)とが接続される。第1接続状態では、第1吸着筒(34)において外気中の窒素成分を吸着剤に吸着させる吸着動作が行われ、第2吸着筒(35)において吸着剤に吸着された窒素成分を脱着させる脱着動作が行われる。 When both the first direction control valve (32) and the second direction control valve (33) are set to the first state, the air circuit (3) is switched to the first connection state (see FIG. 4). In the first connection state, the discharge port of the first pump mechanism (31a) and the first suction cylinder (34) are connected, and the suction port of the second pump mechanism (31b) and the second suction cylinder (35) are connected. Will be done. In the first connection state, the adsorption operation of adsorbing the nitrogen component in the outside air to the adsorbent is performed in the first adsorption cylinder (34), and the nitrogen component adsorbed by the adsorbent is desorbed in the second adsorption cylinder (35). Desorption operation is performed.
 第1方向制御弁(32)及び第2方向制御弁(33)を両方とも第2状態に設定すると、空気回路(3)が第2接続状態に切り換わる(図5を参照)。第2接続状態では、第1ポンプ機構(31a)の吐出口と第2吸着筒(35)とが接続され、第2ポンプ機構(31b)の吸込口と第1吸着筒(34)とが接続される。第2接続状態では、第2吸着筒(35)で吸着動作が行われ、第1吸着筒(34)で脱着動作が行われる。 When both the first direction control valve (32) and the second direction control valve (33) are set to the second state, the air circuit (3) is switched to the second connection state (see FIG. 5). In the second connection state, the discharge port of the first pump mechanism (31a) and the second suction cylinder (35) are connected, and the suction port of the second pump mechanism (31b) and the first suction cylinder (34) are connected. Will be done. In the second connection state, the suction operation is performed by the second suction cylinder (35), and the desorption operation is performed by the first suction cylinder (34).
   (吸着筒)
 第1吸着筒(34)及び第2吸着筒(35)は、円筒部材で構成される。第1吸着筒(34)及び第2吸着筒(35)の内部には、吸着剤が充填される。吸着剤は、加圧下では窒素成分を吸着し、減圧下では吸着した窒素成分を脱着させる性質を有する。
(Suction tube)
The first suction cylinder (34) and the second suction cylinder (35) are composed of cylindrical members. The inside of the first adsorption cylinder (34) and the second adsorption cylinder (35) is filled with an adsorbent. The adsorbent has the property of adsorbing the nitrogen component under pressure and desorbing the adsorbed nitrogen component under reduced pressure.
 吸着剤は、例えば、窒素分子の分子径(3.0オングストローム)よりも小さく且つ酸素分子の分子径(2.8オングストローム)よりも大きな孔径の細孔を有する多孔体のゼオライトである。このような孔径のゼオライトを吸着剤に用いると、空気中の窒素成分を吸着することができる。 The adsorbent is, for example, a porous zeolite having pores having pores smaller than the molecular diameter of nitrogen molecule (3.0 angstrom) and larger than the molecular diameter of oxygen molecule (2.8 angstrom). When a zeolite having such a pore size is used as an adsorbent, a nitrogen component in the air can be adsorbed.
 第1吸着筒(34)及び第2吸着筒(35)において、エアポンプ(31)から加圧された外気が供給されて内部が加圧されると、外気中の窒素成分が吸着剤に吸着する。その結果、外気よりも窒素成分が少ない酸素濃縮空気が生成される。酸素濃縮空気は、外気よりも窒素濃度が低く酸素濃度が高い。 In the first adsorption cylinder (34) and the second adsorption cylinder (35), when the pressurized outside air is supplied from the air pump (31) and the inside is pressurized, the nitrogen component in the outside air is adsorbed on the adsorbent. .. As a result, oxygen-concentrated air having less nitrogen component than the outside air is generated. Oxygen-concentrated air has a lower nitrogen concentration and a higher oxygen concentration than the outside air.
 一方、第1吸着筒(34)及び第2吸着筒(35)において、エアポンプ(31)によって内部の空気が吸引されて減圧されると、吸着剤に吸着されていた窒素成分が脱着する。その結果、外気よりも窒素成分を多く含む窒素濃縮空気が生成される。窒素濃縮空気は、外気よりも窒素濃度が高く酸素濃度が低い。本実施形態では、例えば、窒素濃度92%、酸素濃度8%の成分比率の窒素濃縮空気が生成される。 On the other hand, in the first adsorption cylinder (34) and the second adsorption cylinder (35), when the internal air is sucked by the air pump (31) and the pressure is reduced, the nitrogen component adsorbed by the adsorbent is desorbed. As a result, nitrogen-concentrated air containing more nitrogen components than the outside air is generated. Nitrogen-concentrated air has a higher nitrogen concentration and a lower oxygen concentration than the outside air. In the present embodiment, for example, nitrogen-concentrated air having a component ratio of 92% nitrogen concentration and 8% oxygen concentration is generated.
 第1吸着筒(34)及び第2吸着筒(35)の他端部(加圧時の流出口)には、酸素排出通路(45)の一端が接続される。酸素排出通路(45)は、加圧された外気から生成された酸素濃縮空気をコンテナ本体(2)の庫外へ導く。 One end of the oxygen discharge passage (45) is connected to the other end (outlet at the time of pressurization) of the first suction cylinder (34) and the second suction cylinder (35). The oxygen discharge passage (45) guides the oxygen-concentrated air generated from the pressurized outside air to the outside of the container body (2).
 酸素排出通路(45)の一端は、2つに分岐し、第1吸着筒(34)及び第2吸着筒(35)の他端部のそれぞれに接続される。酸素排出通路(45)の他端は、ガス供給ユニット(30)の外部、すなわち、コンテナ本体(2)の庫外に開口する。酸素排出通路(45)が第1吸着筒(34)に接続された分岐部分及び第2吸着筒(35)に接続された分岐部分には、逆止弁(61)がそれぞれ設けられる。逆止弁(61)は、酸素排出通路(45)から第1吸着筒(34)及び第2吸着筒(35)への空気の逆流を防止する。 One end of the oxygen discharge passage (45) branches into two and is connected to each of the other ends of the first suction cylinder (34) and the second suction cylinder (35). The other end of the oxygen discharge passage (45) opens to the outside of the gas supply unit (30), that is, to the outside of the container body (2). A check valve (61) is provided at each of the branch portion where the oxygen discharge passage (45) is connected to the first suction cylinder (34) and the branch portion connected to the second suction cylinder (35). The check valve (61) prevents the backflow of air from the oxygen discharge passage (45) to the first suction cylinder (34) and the second suction cylinder (35).
 酸素排出通路(45)の途中には、逆止弁(62)と、オリフィス(63)とが、一端から他端に向かって順に設けられる。逆止弁(62)は、後述する排気用接続通路(71)からの窒素濃縮空気が、第1吸着筒(34)及び第2吸着筒(35)側へ逆流するのを防止する。オリフィス(63)は、第1吸着筒(34)及び第2吸着筒(35)から流出した酸素濃縮空気を、庫外への排出前に減圧する。 A check valve (62) and an orifice (63) are provided in order from one end to the other in the middle of the oxygen discharge passage (45). The check valve (62) prevents the nitrogen-concentrated air from the exhaust connection passage (71), which will be described later, from flowing back to the first suction cylinder (34) and the second suction cylinder (35). The orifice (63) decompresses the oxygen-concentrated air flowing out of the first adsorption cylinder (34) and the second adsorption cylinder (35) before discharging the oxygen-concentrated air to the outside of the refrigerator.
 酸素排出通路(45)は、第1吸着筒(34)及び第2吸着筒(35)で生成された酸素濃縮空気を庫外へ排出する通路である。酸素排出通路(45)には、圧力センサ(66)が接続される。圧力センサ(66)は、第1吸着筒(34)及び第2吸着筒(35)の合流点(P0)と逆止弁(62)との間に配置される。 The oxygen discharge passage (45) is a passage for discharging the oxygen-concentrated air generated by the first adsorption cylinder (34) and the second adsorption cylinder (35) to the outside of the refrigerator. A pressure sensor (66) is connected to the oxygen discharge passage (45). The pressure sensor (66) is arranged between the confluence point (P0) of the first suction cylinder (34) and the second suction cylinder (35) and the check valve (62).
 排気用接続通路(71)は、圧力センサ(66)の下流側で、第2ポンプ機構(31b)の吐出口を酸素排出通路(45)に接続する通路である。逆止弁(62)は、第1接続点(P1)と、第2接続点(P2)との間に設けられる。第1接続点(P1)では、圧力センサ(66)と酸素排出通路(45)とが接続される。第2接続点(P2)では、酸素排出通路(45)と排気用接続通路(71)とが接続される。逆止弁(62)は、第1接続点(P1)から第2接続点(P2)への空気の流れを許容し、逆方向への空気の流れを禁止する。 The exhaust connection passage (71) is a passage that connects the discharge port of the second pump mechanism (31b) to the oxygen discharge passage (45) on the downstream side of the pressure sensor (66). The check valve (62) is provided between the first connection point (P1) and the second connection point (P2). At the first connection point (P1), the pressure sensor (66) and the oxygen discharge passage (45) are connected. At the second connection point (P2), the oxygen discharge passage (45) and the exhaust connection passage (71) are connected. The check valve (62) allows air flow from the first connection point (P1) to the second connection point (P2) and prohibits air flow in the reverse direction.
   (給排切換機構)
 空気回路(3)には、給排切換機構(70)が設けられる。給排切換機構(70)は、ガス供給動作と、ガス排出動作とを切り換える。ガス供給動作は、窒素濃縮空気を第1吸着筒(34)及び第2吸着筒(35)からコンテナ本体(2)の庫内に供給する動作である。ガス排出動作は、窒素濃縮空気を第1吸着筒(34)及び第2吸着筒(35)から庫外へ排出する動作である。給排切換機構(70)は、排気用接続通路(71)と、排気用開閉弁(72)と、供給用開閉弁(73)とを有する。
(Supply / discharge switching mechanism)
The air circuit (3) is provided with a supply / discharge switching mechanism (70). The supply / discharge switching mechanism (70) switches between a gas supply operation and a gas discharge operation. The gas supply operation is an operation of supplying nitrogen-concentrated air from the first adsorption cylinder (34) and the second adsorption cylinder (35) into the container main body (2). The gas discharge operation is an operation of discharging nitrogen-concentrated air from the first adsorption cylinder (34) and the second adsorption cylinder (35) to the outside of the refrigerator. The supply / discharge switching mechanism (70) has an exhaust connection passage (71), an exhaust on-off valve (72), and a supply on-off valve (73).
 排気用接続通路(71)は、一端が供給通路(44)に接続され、他端が酸素排出通路(45)に接続される。排気用接続通路(71)の他端は、酸素排出通路(45)にオリフィス(63)よりも庫外側で接続される。 One end of the exhaust connection passage (71) is connected to the supply passage (44), and the other end is connected to the oxygen discharge passage (45). The other end of the exhaust connection passage (71) is connected to the oxygen discharge passage (45) on the outside of the refrigerator rather than the orifice (63).
 排気用開閉弁(72)は、排気用接続通路(71)に設けられる。排気用開閉弁(72)は、排気用接続通路(71)の中途部に配置された電磁弁で構成される。排気用開閉弁(72)は、供給通路(44)から流入した窒素濃縮空気の流通を許容する開状態と、窒素濃縮空気の流通を遮断する閉状態とに切り換わる。排気用開閉弁(72)の開閉動作は、制御部(55)によって制御される。 The exhaust on-off valve (72) is provided in the exhaust connection passage (71). The exhaust on-off valve (72) is composed of a solenoid valve arranged in the middle of the exhaust connection passage (71). The exhaust on-off valve (72) switches between an open state that allows the flow of nitrogen-enriched air flowing in from the supply passage (44) and a closed state that blocks the flow of nitrogen-concentrated air. The opening / closing operation of the exhaust on-off valve (72) is controlled by the control unit (55).
 供給用開閉弁(73)は、供給通路(44)に設けられる。供給用開閉弁(73)は、供給通路(44)と排気用接続通路(71)の接続部よりも庫内側に配置される。供給用開閉弁(73)は、庫内側への空気の流通を許容する開状態と、庫内側への空気の流通を遮断する閉状態とに切り換わる電磁弁で構成される。供給用開閉弁(73)の開閉動作は、制御部(55)によって制御される。 The supply on-off valve (73) is provided in the supply passage (44). The supply on-off valve (73) is arranged inside the refrigerator from the connection portion between the supply passage (44) and the exhaust connection passage (71). The supply on-off valve (73) is composed of a solenoid valve that switches between an open state that allows the flow of air to the inside of the refrigerator and a closed state that blocks the flow of air to the inside of the refrigerator. The opening / closing operation of the supply on-off valve (73) is controlled by the control unit (55).
  〈排気部〉
 図2及び図4に示すように、排気部(46)は、排気通路(46a)と、排気弁(46b)と、メンブレンフィルタ(46c)とを有する。メンブレンフィルタ(46c)は、排気通路(46a)の流入端部(庫内側端部)に設けられる。
<Exhaust part>
As shown in FIGS. 2 and 4, the exhaust unit (46) has an exhaust passage (46a), an exhaust valve (46b), and a membrane filter (46c). The membrane filter (46c) is provided at the inflow end (inner end of the refrigerator) of the exhaust passage (46a).
 排気通路(46a)は、冷凍ケーシング(12)を内外に貫通している。排気通路(46a)は、庫内収納空間(S2)と庫外空間とを繋ぐ。 The exhaust passage (46a) penetrates the refrigerating casing (12) inside and outside. The exhaust passage (46a) connects the storage space inside the refrigerator (S2) and the space outside the refrigerator.
 排気弁(46b)は、排気通路(46a)に接続される。排気弁(46b)は、排気通路(46a)の庫内側に設けられる。排気弁(46b)は、排気通路(46a)における空気の流通を許容する開状態と、排気通路(46a)における空気の流通を遮断する閉状態とに切り換わる電磁弁で構成される。排気弁(46b)の開閉動作は、制御部(55)によって制御される。 The exhaust valve (46b) is connected to the exhaust passage (46a). The exhaust valve (46b) is provided inside the exhaust passage (46a). The exhaust valve (46b) is composed of a solenoid valve that switches between an open state that allows the flow of air in the exhaust passage (46a) and a closed state that blocks the flow of air in the exhaust passage (46a). The opening / closing operation of the exhaust valve (46b) is controlled by the control unit (55).
 庫内ファン(26)の回転中に、制御部(55)によって排気弁(46b)を開くと、庫内空間に繋がる庫内収納空間(S2)の空気(庫内空気)が庫外へ排出される排気動作が行われる。 When the exhaust valve (46b) is opened by the control unit (55) while the internal fan (26) is rotating, the air (internal air) in the internal storage space (S2) connected to the internal space is discharged to the outside. Exhaust operation is performed.
 具体的には、庫内ファン(26)が回転すると、吹出側の2次空間(S22)の圧力が、庫外空間の圧力(大気圧)よりも高くなる。これにより、排気弁(46b)が開状態であるときには、排気通路(46a)の両端部の間で生じる圧力差(庫外空間と2次空間(S22)との間の圧力差)により、庫内空間に繋がる庫内収納空間(S2)の空気(庫内空気)が排気通路(46a)を通って庫外空間へ排出される。 Specifically, when the internal fan (26) rotates, the pressure in the secondary space (S22) on the outlet side becomes higher than the pressure in the external space (atmospheric pressure). As a result, when the exhaust valve (46b) is in the open state, the pressure difference (pressure difference between the outer space and the secondary space (S22)) generated between both ends of the exhaust passage (46a) causes the storage. The air (inside air) in the inside storage space (S2) connected to the inside space is discharged to the outside space through the exhaust passage (46a).
  〈センサユニットの回路構成〉
 図2及び図4に示すように、センサユニット(50)は、庫内収納空間(S2)における庫内ファン(26)の吹出側の2次空間(S22)に設けられる。センサユニット(50)は、酸素センサ(51)と、二酸化炭素センサ(52)と、メンブレンフィルタ(54)と、排気管(57)とを有する。
<Circuit configuration of sensor unit>
As shown in FIGS. 2 and 4, the sensor unit (50) is provided in the secondary space (S22) on the outlet side of the internal fan (26) in the internal storage space (S2). The sensor unit (50) has an oxygen sensor (51), a carbon dioxide sensor (52), a membrane filter (54), and an exhaust pipe (57).
 酸素センサ(51)及び二酸化炭素センサ(52)は、センサケーシング(90)に収容される。センサケーシング(90)の側面には、庫内収納空間(S2)に開口する導入口(図示省略)が設けられる。センサケーシング(90)の導入口には、メンブレンフィルタ(54)が装着される。センサケーシング(90)の内部には、メンブレンフィルタ(54)を通過した庫内空気が流入する。センサケーシング(90)には、排気口(図示省略)が設けられる。排気口には、排気管(57)が接続される。 The oxygen sensor (51) and the carbon dioxide sensor (52) are housed in the sensor casing (90). An introduction port (not shown) that opens into the storage space (S2) inside the refrigerator is provided on the side surface of the sensor casing (90). A membrane filter (54) is attached to the inlet of the sensor casing (90). The air inside the refrigerator that has passed through the membrane filter (54) flows into the inside of the sensor casing (90). The sensor casing (90) is provided with an exhaust port (not shown). An exhaust pipe (57) is connected to the exhaust port.
 酸素センサ(51)は、例えば、ジルコニア式センサで構成される。二酸化炭素センサ(52)は、例えば、非分散型赤外線方式(NDIR:non dispersive infrared)のセンサで構成される。排気管(57)の一端は、センサケーシング(90)に連結される。排気管(57)の他端は、庫内ファン(26)の吸込口の近傍で開口する。 The oxygen sensor (51) is composed of, for example, a zirconia type sensor. The carbon dioxide sensor (52) is composed of, for example, a non-dispersive infrared (NDIR) sensor. One end of the exhaust pipe (57) is connected to the sensor casing (90). The other end of the exhaust pipe (57) opens near the suction port of the internal fan (26).
 庫内収納空間(S2)の2次空間(S22)と1次空間(S21)とは、連通路(58)を介して連通している。連通路(58)は、メンブレンフィルタ(54)、酸素センサ(51)、二酸化炭素センサ(52)、及び排気管(57)を含む。 The secondary space (S22) and the primary space (S21) of the storage space (S2) in the refrigerator are communicated with each other via a communication passage (58). The communication passage (58) includes a membrane filter (54), an oxygen sensor (51), a carbon dioxide sensor (52), and an exhaust pipe (57).
 庫内ファン(26)の運転中には、1次空間(S21)の圧力が2次空間(S22)の圧力よりも低くなるので、この圧力差により、酸素センサ(51)と二酸化炭素センサ(52)とを含む連通路(58)において、2次空間(S22)側から1次空間(S21)側へ庫内空気が流れる。 During the operation of the internal fan (26), the pressure in the primary space (S21) becomes lower than the pressure in the secondary space (S22), and this pressure difference causes the oxygen sensor (51) and the carbon dioxide sensor (51). In the communication passage (58) including 52), the air inside the refrigerator flows from the secondary space (S22) side to the primary space (S21) side.
 庫内ファン(26)の運転中に、メンブレンフィルタ(54)を通って庫内空気がセンサケーシング(90)内に流入する。センサケーシング(90)内では、庫内空気が酸素センサ(51)と二酸化炭素センサ(52)とを通過する。酸素センサ(51)は、庫内空気の酸素濃度を測定する。二酸化炭素センサ(52)は、庫内空気の二酸化炭素濃度を測定する。 During the operation of the internal fan (26), the internal air flows into the sensor casing (90) through the membrane filter (54). Inside the sensor casing (90), the air inside the refrigerator passes through the oxygen sensor (51) and the carbon dioxide sensor (52). The oxygen sensor (51) measures the oxygen concentration of the air inside the refrigerator. The carbon dioxide sensor (52) measures the carbon dioxide concentration in the air inside the refrigerator.
 空気回路(3)には、センサ回路(80)が設けられる。センサ回路(80)は、第1吸着筒(34)及び第2吸着筒(35)で生成した窒素濃縮空気の濃度を酸素センサ(51)で測定する給気測定動作を行う。センサ回路(80)は、分岐管(81)と、分岐開閉弁(82)とを備える。センサ回路(80)は、供給通路(44)を流れる空気の一部を分岐させて酸素センサ(51)及び二酸化炭素センサ(52)に導く。 The air circuit (3) is provided with a sensor circuit (80). The sensor circuit (80) performs an air supply measurement operation in which the concentration of the nitrogen-concentrated air generated in the first adsorption cylinder (34) and the second adsorption cylinder (35) is measured by the oxygen sensor (51). The sensor circuit (80) includes a branch pipe (81) and a branch on-off valve (82). The sensor circuit (80) branches a part of the air flowing through the supply passage (44) to lead to the oxygen sensor (51) and the carbon dioxide sensor (52).
 分岐管(81)は、一端が供給通路(44)に接続され、他端がセンサケーシング(90)に連結される。分岐管(81)は、ユニットケース(36)内において供給通路(44)から分岐して庫内空間に連通している。分岐管(81)の他端部(庫内部分)には、逆止弁(64)が設けられる。逆止弁(64)は、分岐管(81)の一端から他端へ向かう空気の流れを許容し、空気の逆流を防止する。 One end of the branch pipe (81) is connected to the supply passage (44), and the other end is connected to the sensor casing (90). The branch pipe (81) branches from the supply passage (44) in the unit case (36) and communicates with the internal space. A check valve (64) is provided at the other end (inside the refrigerator) of the branch pipe (81). The check valve (64) allows air flow from one end to the other end of the branch pipe (81) and prevents air backflow.
 分岐開閉弁(82)は、ユニットケース(36)の内部に設けられる。分岐開閉弁(82)は、分岐管(81)の空気の流通を許容する開状態と、分岐管(81)の空気の流通を遮断する閉状態とに切り換わる電磁弁で構成される。分岐開閉弁(82)の開閉動作は、制御部(55)によって制御される。 The branch on-off valve (82) is provided inside the unit case (36). The branch on-off valve (82) is composed of a solenoid valve that switches between an open state that allows the air flow of the branch pipe (81) and a closed state that blocks the air flow of the branch pipe (81). The opening / closing operation of the branch on-off valve (82) is controlled by the control unit (55).
 庫内ファン(26)の運転停止中に給気測定動作を行う場合には、ガス供給ユニット(30)で生成された窒素濃縮空気が、分岐管(81)を介して酸素センサ(51)に導かれ、酸素センサ(51)において窒素濃縮空気の酸素濃度が測定される。 When the air supply measurement operation is performed while the operation of the internal fan (26) is stopped, the nitrogen-concentrated air generated by the gas supply unit (30) is sent to the oxygen sensor (51) via the branch pipe (81). Guided, the oxygen concentration of the nitrogen-enriched air is measured by the oxygen sensor (51).
 空気組成調整装置(60)では、センサの測定値が実際の値からずれると、濃度の調整が不安定になる。そのため、所定のタイミングで酸素センサ(51)に外気を導入して校正(測定値の補正)が行われる。酸素センサ(51)の校正中には、エアポンプ(31)で加圧された外気が、第1吸着筒(34)及び第2吸着筒(35)をバイパスして分岐管(81)を通り、センサケーシング(90)内の酸素センサ(51)に導入される。 In the air composition adjuster (60), if the measured value of the sensor deviates from the actual value, the concentration adjustment becomes unstable. Therefore, outside air is introduced into the oxygen sensor (51) at a predetermined timing to perform calibration (correction of measured values). During the calibration of the oxygen sensor (51), the outside air pressurized by the air pump (31) passes through the branch pipe (81), bypassing the first suction cylinder (34) and the second suction cylinder (35). Introduced to the oxygen sensor (51) in the sensor casing (90).
 空気回路(3)は、センサケーシング(90)内に外気を導入する。空気回路(3)は、第1通路(75)と、第2通路(76)とを有する。第1通路(75)は、外気通路(41)と、加圧通路(42)とを含む。第2通路(76)は、バイパス通路(47)と、分岐管(81)とを含む。 The air circuit (3) introduces outside air into the sensor casing (90). The air circuit (3) has a first passage (75) and a second passage (76). The first passage (75) includes an outside air passage (41) and a pressurized passage (42). The second passage (76) includes a bypass passage (47) and a branch pipe (81).
 第1通路(75)は、エアポンプ(31)により、外気を第1吸着筒(34)及び第2吸着筒(35)に導入する。第2通路(76)は、エアポンプ(31)と第1吸着筒(34)及び第2吸着筒(35)との間で、第1通路(75)から分岐して、センサケーシング(90)に連通する。 The first passage (75) introduces the outside air into the first suction cylinder (34) and the second suction cylinder (35) by the air pump (31). The second passage (76) branches from the first passage (75) between the air pump (31) and the first suction cylinder (34) and the second suction cylinder (35) to the sensor casing (90). Communicate.
 第2通路(76)には、気液分離器(85)が設けられる。気液分離器(85)は、酸素センサ(51)に導入される空気の水分を除去する。気液分離器(85)には、ドレン管(77)が接続される。ドレン管(77)は、空気から分離された水分を排出する。 A gas-liquid separator (85) is provided in the second passage (76). The gas-liquid separator (85) removes the moisture in the air introduced into the oxygen sensor (51). A drain pipe (77) is connected to the gas-liquid separator (85). The drain pipe (77) drains the moisture separated from the air.
  〈センサユニットの配置と構造〉
 センサケーシング(90)の内部には、酸素センサ(51)及び二酸化炭素センサ(52)が収容される。気液分離器(85)は、センサケーシング(90)に固定される。
<Arrangement and structure of sensor unit>
An oxygen sensor (51) and a carbon dioxide sensor (52) are housed inside the sensor casing (90). The gas-liquid separator (85) is fixed to the sensor casing (90).
 図8に示すように、気液分離器(85)には、第2通路(76)の一部である分岐管(81)と、ドレン管(77)とが接続される。輸送用冷凍装置(10)の冷凍ケーシング(12)には、輸送用冷凍装置(10)で発生するドレン水を受けるためのドレンパン(28)が設けられる。ドレン管(77)は、ドレンパン(28)に水分を排出するように、気液分離器(85)から下方へ延びる。 As shown in FIG. 8, the gas-liquid separator (85) is connected to a branch pipe (81), which is a part of the second passage (76), and a drain pipe (77). The refrigerating casing (12) of the transport refrigerating device (10) is provided with a drain pan (28) for receiving the drain water generated by the transport refrigerating device (10). The drain pipe (77) extends downward from the gas-liquid separator (85) to drain water into the drain pan (28).
 センサケーシング(90)は、図示しないブラケットにより輸送用冷凍装置(10)の冷凍ケーシング(12)に固定される。本実施形態では、センサケーシング(90)は、庫内収納空間(S2)に位置する。センサケーシング(90)の内部には、メンブレンフィルタ(54)を通過した庫内空気が流入する。 The sensor casing (90) is fixed to the refrigerating casing (12) of the transport refrigerating device (10) by a bracket (not shown). In the present embodiment, the sensor casing (90) is located in the storage space (S2) in the refrigerator. The air inside the refrigerator that has passed through the membrane filter (54) flows into the inside of the sensor casing (90).
 気液分離器(85)とセンサケーシング(90)とは、連絡管(59)で接続される。センサケーシング(90)の内部には、エアポンプ(31)から搬送されて気液分離器(85)で水分が除去された空気が、連絡管(59)を介して流入する。 The gas-liquid separator (85) and the sensor casing (90) are connected by a connecting pipe (59). Inside the sensor casing (90), the air conveyed from the air pump (31) and from which the moisture has been removed by the gas-liquid separator (85) flows in through the connecting pipe (59).
 センサケーシング(90)には、排気管(57)が接続される。排気管(57)は、庫内ファン(26)の吸込口側で開口している。センサケーシング(90)の内部に流入した空気は、排気管(57)から排出される。 An exhaust pipe (57) is connected to the sensor casing (90). The exhaust pipe (57) is open on the suction port side of the internal fan (26). The air that has flowed into the inside of the sensor casing (90) is discharged from the exhaust pipe (57).
  〈制御部〉
 制御部(55)は、コンテナ本体(2)の庫内空気の酸素濃度及び二酸化炭素濃度を所望の濃度に調整する濃度調整運転の制御を実行する。具体的に、制御部(55)は、酸素センサ(51)及び二酸化炭素センサ(52)の測定結果に基づいて、コンテナ本体(2)の庫内空気の組成(酸素濃度及び二酸化炭素濃度)が所望の組成(例えば、酸素濃度5%、二酸化炭素濃度5%)になるように、ガス供給ユニット(30)、排気部(46)及びセンサユニット(50)の動作を制御する。
<Control unit>
The control unit (55) controls the concentration adjustment operation for adjusting the oxygen concentration and the carbon dioxide concentration of the air inside the container body (2) to a desired concentration. Specifically, the control unit (55) determines the composition (oxygen concentration and carbon dioxide concentration) of the air inside the container body (2) based on the measurement results of the oxygen sensor (51) and the carbon dioxide sensor (52). The operation of the gas supply unit (30), the exhaust unit (46) and the sensor unit (50) is controlled so as to have a desired composition (for example, oxygen concentration 5%, carbon dioxide concentration 5%).
 制御部(55)は、例えば、空気組成調整装置(60)の各要素を制御するマイクロコンピュータと、実施可能な制御プログラムが記憶されたメモリやディスク等の記憶媒体とを含む。制御部(55)の詳細な構造やアルゴリズムは、どのようなハードウェアとソフトウェアとの組み合わせであってもよい。 The control unit (55) includes, for example, a microcomputer that controls each element of the air composition adjusting device (60), and a storage medium such as a memory or a disk in which an implementable control program is stored. The detailed structure and algorithm of the control unit (55) may be any combination of hardware and software.
 -運転動作-
 〈冷媒回路の運転動作〉
 本実施形態では、図3に示すユニット制御部(100)によって、コンテナ本体(2)の庫内空気を冷却する冷却運転が実行される。
-Driving operation-
<Operating operation of refrigerant circuit>
In the present embodiment, the unit control unit (100) shown in FIG. 3 executes a cooling operation for cooling the air inside the container body (2).
 冷却運転では、ユニット制御部(100)により、圧縮機(21)、膨張弁(23)、庫外ファン(25)及び庫内ファン(26)の動作が、図示しない温度センサの測定結果に基づいて庫内空気の温度が所望の目標温度になるように制御される。 In the cooling operation, the operation of the compressor (21), expansion valve (23), outside fan (25) and inside fan (26) by the unit control unit (100) is based on the measurement results of the temperature sensor (not shown). The temperature of the air inside the refrigerator is controlled so as to reach a desired target temperature.
 冷媒回路(20)では、冷媒が循環して蒸気圧縮式冷凍サイクルが行われる。庫内ファン(26)によって庫内収納空間(S2)へ導かれたコンテナ本体(2)の庫内空気は、蒸発器(24)を通過する際に、蒸発器(24)の内部を流れる冷媒によって冷却される。蒸発器(24)で冷却された庫内空気は、床下流路(19a)を通って吹出口(18b)から再びコンテナ本体(2)の庫内へ吹き出される。これにより、コンテナ本体(2)の庫内空気が冷却される。 In the refrigerant circuit (20), the refrigerant circulates and a steam compression refrigeration cycle is performed. The internal air of the container body (2) guided to the internal storage space (S2) by the internal fan (26) is a refrigerant that flows inside the evaporator (24) when passing through the evaporator (24). Cooled by. The air inside the refrigerator cooled by the evaporator (24) is blown out from the outlet (18b) again into the refrigerator of the container body (2) through the underfloor flow path (19a). As a result, the air inside the container body (2) is cooled.
 〈ガス供給ユニットの動作〉
  (ガス生成動作)
 ガス供給ユニット(30)では、第1生成動作と第2生成動作とが、所定の時間で交互に繰り返されることで、窒素濃縮空気と酸素濃縮空気とが生成される。第1生成動作は、第1吸着筒(34)が加圧されると同時に第2吸着筒(35)が減圧される動作(図4を参照)である。第2生成動作は、第1吸着筒(34)が減圧されると同時に第2吸着筒(35)が加圧される動作(図5を参照)である。各動作の切り換えは、制御部(55)が第1方向制御弁(32)及び第2方向制御弁(33)を操作することによって行われる。
<Operation of gas supply unit>
(Gas generation operation)
In the gas supply unit (30), the first generation operation and the second generation operation are alternately repeated at a predetermined time to generate nitrogen-enriched air and oxygen-enriched air. The first generation operation is an operation in which the first suction cylinder (34) is pressurized and the second suction cylinder (35) is depressurized at the same time (see FIG. 4). The second generation operation is an operation in which the first suction cylinder (34) is depressurized and the second suction cylinder (35) is pressurized at the same time (see FIG. 5). The switching of each operation is performed by the control unit (55) operating the first direction control valve (32) and the second direction control valve (33).
   《第1生成動作》
 第1生成動作では、制御部(55)によって、第1方向制御弁(32)及び第2方向制御弁(33)が両方とも、図4に示す第1状態に切り換えられる。これにより、空気回路(3)は、第1吸着筒(34)が第1ポンプ機構(31a)の吐出口に連通して第2ポンプ機構(31b)の吸込口から遮断され、且つ第2吸着筒(35)が第2ポンプ機構(31b)の吸込口に連通して第1ポンプ機構(31a)の吐出口から遮断された第1接続状態となる。
<< 1st generation operation >>
In the first generation operation, the control unit (55) switches both the first direction control valve (32) and the second direction control valve (33) to the first state shown in FIG. As a result, in the air circuit (3), the first suction cylinder (34) communicates with the discharge port of the first pump mechanism (31a) and is shut off from the suction port of the second pump mechanism (31b), and the second suction is performed. The cylinder (35) communicates with the suction port of the second pump mechanism (31b) and is in the first connection state in which it is cut off from the discharge port of the first pump mechanism (31a).
 第1接続状態では、第1ポンプ機構(31a)によって加圧された外気が第1吸着筒(34)に供給される一方、第2ポンプ機構(31b)が、第2吸着筒(35)から窒素濃度が外気よりも高く酸素濃度が外気よりも低い窒素濃縮空気を吸引する。 In the first connection state, the outside air pressurized by the first pump mechanism (31a) is supplied to the first suction cylinder (34), while the second pump mechanism (31b) is supplied from the second suction cylinder (35). Aspirate nitrogen-concentrated air with a higher nitrogen concentration than the outside air and a lower oxygen concentration than the outside air.
 具体的に、第1ポンプ機構(31a)は、外気通路(41)を介して外気を吸い込んで加圧し、加圧した外気(加圧空気)を加圧通路(42)に吐出する。加圧通路(42)に吐出された加圧空気は、加圧通路(42)を流れる。そして、加圧空気が加圧通路(42)を介して第1吸着筒(34)へ供給される。 Specifically, the first pump mechanism (31a) sucks in the outside air through the outside air passage (41) and pressurizes it, and discharges the pressurized outside air (pressurized air) to the pressurized passage (42). The pressurized air discharged to the pressurized passage (42) flows through the pressurized passage (42). Then, the pressurized air is supplied to the first adsorption cylinder (34) via the pressurized passage (42).
 このようにして、第1吸着筒(34)には、加圧空気が流入し、加圧空気に含まれる窒素成分が吸着剤に吸着される。第1生成動作中に、第1吸着筒(34)では、第1ポンプ機構(31a)から加圧された外気が供給されて外気中の窒素成分が吸着剤に吸着されることにより、窒素濃度が外気よりも低く酸素濃度が外気よりも高い酸素濃縮空気が生成される。酸素濃縮空気は、第1吸着筒(34)から酸素排出通路(45)に流出する。 In this way, pressurized air flows into the first adsorption cylinder (34), and the nitrogen component contained in the pressurized air is adsorbed by the adsorbent. During the first generation operation, in the first adsorption cylinder (34), pressurized outside air is supplied from the first pump mechanism (31a), and the nitrogen component in the outside air is adsorbed by the adsorbent, whereby the nitrogen concentration. Is produced oxygen-concentrated air, which is lower than the outside air and has a higher oxygen concentration than the outside air. The oxygen-concentrated air flows out from the first adsorption cylinder (34) to the oxygen discharge passage (45).
 第2ポンプ機構(31b)は、第2吸着筒(35)から空気を吸引する。その際、第2吸着筒(35)の吸着剤に吸着された窒素成分が、空気と共に第2ポンプ機構(31b)に吸引されて吸着剤から脱着する。このように、第1生成動作中に、第2吸着筒(35)では、第2ポンプ機構(31b)によって内部の空気が吸引されて、吸着剤に吸着された窒素成分が脱着する。このことにより、吸着剤から脱着した窒素成分を含み、窒素濃度が外気よりも高く酸素濃度が外気よりも低い窒素濃縮空気が生成される。窒素濃縮空気は、第2ポンプ機構(31b)に吸い込まれ、加圧された後、供給通路(44)に吐出される。 The second pump mechanism (31b) sucks air from the second suction cylinder (35). At that time, the nitrogen component adsorbed by the adsorbent of the second adsorption cylinder (35) is sucked by the second pump mechanism (31b) together with air and desorbed from the adsorbent. As described above, during the first generation operation, in the second adsorption cylinder (35), the air inside is sucked by the second pump mechanism (31b), and the nitrogen component adsorbed by the adsorbent is desorbed. As a result, nitrogen-concentrated air containing a nitrogen component desorbed from the adsorbent and having a nitrogen concentration higher than that of the outside air and an oxygen concentration lower than that of the outside air is generated. The nitrogen-concentrated air is sucked into the second pump mechanism (31b), pressurized, and then discharged to the supply passage (44).
   《第2生成動作》
 第2生成動作では、制御部(55)によって、第1方向制御弁(32)及び第2方向制御弁(33)が両方とも、図5に示す第2状態に切り換えられる。これにより、空気回路(3)は、第1吸着筒(34)が第2ポンプ機構(31b)の吸込口に連通して第1ポンプ機構(31a)の吐出口から遮断され、且つ第2吸着筒(35)が第1ポンプ機構(31a)の吐出口に連通して第2ポンプ機構(31b)の吸込口から遮断された第2接続状態となる。この第2接続状態では、第1ポンプ機構(31a)によって加圧された外気が第2吸着筒(35)に供給される一方、第2ポンプ機構(31b)が、第1吸着筒(34)から窒素濃縮空気を吸引する。
<< Second generation operation >>
In the second generation operation, the control unit (55) switches both the first direction control valve (32) and the second direction control valve (33) to the second state shown in FIG. As a result, in the air circuit (3), the first suction cylinder (34) communicates with the suction port of the second pump mechanism (31b) and is shut off from the discharge port of the first pump mechanism (31a), and the second suction is performed. The cylinder (35) communicates with the discharge port of the first pump mechanism (31a) and is in the second connection state in which the suction port of the second pump mechanism (31b) is cut off. In this second connection state, the outside air pressurized by the first pump mechanism (31a) is supplied to the second suction cylinder (35), while the second pump mechanism (31b) is supplied to the first suction cylinder (34). Aspirate nitrogen-concentrated air from.
 具体的に、第1ポンプ機構(31a)は、外気通路(41)を介して外気を吸い込んで加圧し、加圧した外気(加圧空気)を加圧通路(42)に吐出する。加圧通路(42)に吐出された加圧空気は、加圧通路(42)を流れる。そして、第1生成動作と同様に、加圧空気が加圧通路(42)を介して第2吸着筒(35)へ供給される。 Specifically, the first pump mechanism (31a) sucks in the outside air through the outside air passage (41) and pressurizes it, and discharges the pressurized outside air (pressurized air) to the pressurized passage (42). The pressurized air discharged to the pressurized passage (42) flows through the pressurized passage (42). Then, similarly to the first generation operation, the pressurized air is supplied to the second suction cylinder (35) via the pressurized passage (42).
 このようにして、第2吸着筒(35)には、加圧空気が流入し、該加圧空気に含まれる窒素成分が吸着剤に吸着される。第2生成動作中に、第2吸着筒(35)では、第1ポンプ機構(31a)から加圧された外気が供給されて該外気中の窒素成分が吸着剤に吸着されることにより、窒素濃度が外気よりも低く酸素濃度が外気よりも高い酸素濃縮空気が生成される。酸素濃縮空気は、第2吸着筒(35)から酸素排出通路(45)に流出する。 In this way, pressurized air flows into the second adsorption cylinder (35), and the nitrogen component contained in the pressurized air is adsorbed by the adsorbent. During the second generation operation, in the second adsorption cylinder (35), pressurized outside air is supplied from the first pump mechanism (31a), and the nitrogen component in the outside air is adsorbed by the adsorbent, whereby nitrogen is produced. Oxygen-enriched air with a lower concentration than the outside air and a higher oxygen concentration than the outside air is produced. The oxygen-concentrated air flows out from the second adsorption cylinder (35) to the oxygen discharge passage (45).
 第2ポンプ機構(31b)は、第1吸着筒(34)から空気を吸引する。その際、第1吸着筒(34)の吸着剤に吸着された窒素成分が、空気と共に第2ポンプ機構(31b)に吸引されて吸着剤から脱着する。このように、第2生成動作中に、第1吸着筒(34)では、第2ポンプ機構(31b)によって内部の空気が吸引されて、吸着剤に吸着された窒素成分が脱着する。このことにより、吸着剤から脱着した窒素成分を含み、窒素濃度が外気よりも高く酸素濃度が外気よりも低い窒素濃縮空気が生成される。窒素濃縮空気は、第2ポンプ機構(31b)に吸い込まれ、加圧された後、供給通路(44)に吐出される。 The second pump mechanism (31b) sucks air from the first suction cylinder (34). At that time, the nitrogen component adsorbed by the adsorbent of the first adsorption cylinder (34) is sucked by the second pump mechanism (31b) together with air and desorbed from the adsorbent. As described above, during the second generation operation, the air inside the first suction cylinder (34) is sucked by the second pump mechanism (31b), and the nitrogen component adsorbed by the adsorbent is desorbed. As a result, nitrogen-concentrated air containing a nitrogen component desorbed from the adsorbent and having a nitrogen concentration higher than that of the outside air and an oxygen concentration lower than that of the outside air is generated. The nitrogen-concentrated air is sucked into the second pump mechanism (31b), pressurized, and then discharged to the supply passage (44).
  (ガス供給動作及びガス排出動作)
 ガス供給ユニット(30)では、給排切換機構(70)によって、ガス供給動作とガス排出動作とが切り換えられる。ガス供給動作は、空気回路(3)において生成した窒素濃縮空気をコンテナ本体(2)の庫内に供給する動作である。ガス排出動作は、脱着動作の開始時点から所定時間の間、生成した窒素濃縮空気をコンテナ本体(2)の庫内へ供給せずに排気する動作である。
(Gas supply operation and gas discharge operation)
In the gas supply unit (30), the gas supply operation and the gas discharge operation are switched by the supply / discharge switching mechanism (70). The gas supply operation is an operation of supplying the nitrogen-enriched air generated in the air circuit (3) into the refrigerator of the container body (2). The gas discharge operation is an operation in which the generated nitrogen-enriched air is exhausted without being supplied to the inside of the container body (2) for a predetermined time from the start of the desorption operation.
 図4及び図5に示すように、ガス供給動作では、制御部(55)によって、排気用開閉弁(72)が閉状態に制御され、供給用開閉弁(73)が開状態に制御される。これにより、第1吸着筒(34)及び第2吸着筒(35)において交互に生成された窒素濃縮空気が、供給通路(44)を通ってコンテナ本体(2)の庫内へ供給される。酸素濃縮空気は、酸素排出通路(45)を通って庫外へ排出される。 As shown in FIGS. 4 and 5, in the gas supply operation, the exhaust on-off valve (72) is controlled to the closed state and the supply on-off valve (73) is controlled to the open state by the control unit (55). .. As a result, the nitrogen-enriched air alternately generated in the first adsorption cylinder (34) and the second adsorption cylinder (35) is supplied into the refrigerator of the container body (2) through the supply passage (44). The oxygen-concentrated air is discharged to the outside of the refrigerator through the oxygen discharge passage (45).
 図示を省略するが、ガス排出動作では、制御部(55)によって、排気用開閉弁(72)が開状態に制御され、供給用開閉弁(73)が閉状態に制御される。これにより、第1吸着筒(34)及び第2吸着筒(35)において交互に生成されて供給通路(44)に吐出された窒素濃縮空気は、排気用接続通路(71)から酸素排出通路(45)に流入し、酸素排出通路(45)を流れる酸素濃縮空気と共に庫外へ排出される。 Although not shown, in the gas discharge operation, the exhaust on-off valve (72) is controlled to the open state and the supply on-off valve (73) is controlled to the closed state by the control unit (55). As a result, the nitrogen-concentrated air that is alternately generated in the first adsorption cylinder (34) and the second adsorption cylinder (35) and discharged to the supply passage (44) is discharged from the oxygen discharge passage (71) to the oxygen discharge passage (71). It flows into 45) and is discharged to the outside of the refrigerator together with the oxygen-concentrated air flowing through the oxygen discharge passage (45).
  (外気導入動作)
 本実施形態では、外気をコンテナ本体(2)の庫内へ導入する外気導入動作も可能である。図6に示す外気導入動作では、第1方向制御弁(32)が第1状態に設定され、第2方向制御弁(33)が第2状態に設定され、バイパス開閉弁(48)が開かれる。供給用開閉弁(73)は開かれ、分岐開閉弁(82)は閉じられる。この状態でエアポンプ(31)を起動すると、外気が、外気通路(41)と加圧通路(42)の一部とバイパス通路(47)と供給通路(44)の一部とにより構成された、太い実線で示した外気導入通路(40)を流れる。外気導入通路(40)の通路抵抗が、第1方向制御弁(32)、第2方向制御弁(33)、第1吸着筒(34)、及び第2吸着筒(35)を通る流路の通路抵抗よりも小さいためである。そして、外気導入通路(40)を流れる外気と組成の同じ空気が、コンテナ本体(2)の庫内へ押し込まれる。
(Outside air introduction operation)
In the present embodiment, the outside air introduction operation of introducing the outside air into the refrigerator of the container body (2) is also possible. In the outside air introduction operation shown in FIG. 6, the first direction control valve (32) is set to the first state, the second direction control valve (33) is set to the second state, and the bypass on-off valve (48) is opened. .. The supply on-off valve (73) is opened and the branch on-off valve (82) is closed. When the air pump (31) is started in this state, the outside air is composed of an outside air passage (41), a part of the pressurizing passage (42), a bypass passage (47), and a part of the supply passage (44). It flows through the outside air introduction passage (40) shown by the thick solid line. The passage resistance of the outside air introduction passage (40) passes through the first direction control valve (32), the second direction control valve (33), the first suction cylinder (34), and the second suction cylinder (35). This is because it is smaller than the passage resistance. Then, the air having the same composition as the outside air flowing through the outside air introduction passage (40) is pushed into the refrigerator of the container body (2).
 〈空気組成調整装置の濃度調整運転〉
 本実施形態では、空気組成調整装置(60)は、制御部(55)によって、コンテナ本体(2)の庫内空気の組成(酸素濃度及び二酸化炭素濃度)を所望の組成(例えば、酸素濃度5%、二酸化炭素濃度5%)に調整する濃度調整運転を行う。濃度調整運転では、酸素センサ(51)及び二酸化炭素センサ(52)の測定結果に基づいて、コンテナ本体(2)の庫内空気の組成が所望の組成となるように、ガス供給ユニット(30)及び排気部(46)の動作が制御される。
<Concentration adjustment operation of air composition adjustment device>
In the present embodiment, the air composition adjusting device (60) uses the control unit (55) to change the composition (oxygen concentration and carbon dioxide concentration) of the air inside the container body (2) to a desired composition (for example, oxygen concentration 5). %, Carbon dioxide concentration 5%). In the concentration adjustment operation, the gas supply unit (30) is used so that the composition of the air inside the container body (2) becomes a desired composition based on the measurement results of the oxygen sensor (51) and the carbon dioxide sensor (52). And the operation of the exhaust unit (46) is controlled.
 濃度調整運転中、制御部(55)は、分岐開閉弁(82)を閉状態に制御する。また、濃度調整運転中、制御部(55)は、ユニット制御部(100)と通信し、ユニット制御部(100)によって庫内ファン(26)を回転させる。これにより、酸素センサ(51)及び二酸化炭素センサ(52)には、庫内ファン(26)によって庫内空気が供給され、庫内空気の酸素濃度と二酸化炭素濃度とが測定される。 During the concentration adjustment operation, the control unit (55) controls the branch on-off valve (82) to the closed state. Further, during the concentration adjustment operation, the control unit (55) communicates with the unit control unit (100), and the unit control unit (100) rotates the internal fan (26). As a result, the internal air is supplied to the oxygen sensor (51) and the carbon dioxide sensor (52) by the internal fan (26), and the oxygen concentration and the carbon dioxide concentration of the internal air are measured.
 濃度調整運転中、第1生成動作及び第2生成動作を交互に繰り返してガス供給動作を行い、庫内の酸素濃度を調整する。このとき、排気部(46)の排気弁(46b)を開状態に制御して、ガス供給動作によって窒素濃縮空気をコンテナ本体(2)の庫内に供給した分だけ庫内空気を庫外へ排出する。庫内空気の酸素濃度が所定値(例えば8%)まで低下すると、制御部(55)は、ガス供給ユニット(30)の運転を停止してガス供給動作を停止すると共に、排気弁(46b)を閉じて排気動作を停止する。コンテナ本体(2)の庫内では、植物(15)が呼吸を行うため、コンテナ本体(2)の庫内空気の酸素濃度が減少し、やがて目標酸素濃度の5%に至る。 During the concentration adjustment operation, the gas supply operation is performed by alternately repeating the first generation operation and the second generation operation to adjust the oxygen concentration in the refrigerator. At this time, the exhaust valve (46b) of the exhaust unit (46) is controlled to be in the open state, and the amount of nitrogen-enriched air supplied to the inside of the container body (2) by the gas supply operation is taken out of the refrigerator. Discharge. When the oxygen concentration in the refrigerator air drops to a predetermined value (for example, 8%), the control unit (55) stops the operation of the gas supply unit (30) to stop the gas supply operation, and the exhaust valve (46b). Close to stop the exhaust operation. Since the plant (15) breathes in the container body (2), the oxygen concentration in the air inside the container body (2) decreases, eventually reaching 5% of the target oxygen concentration.
 庫内空気の酸素濃度を上昇させる運転は、バイパス開閉弁(48)を開いて、エアポンプ(31)に吸引した外気を、第1吸着筒(34)及び第2吸着筒(35)をバイパスさせてコンテナ本体(2)の庫内に供給する外気導入動作で行うことができる。このとき、外気は冷却部(40a)を通るので、庫内空気の温度上昇が抑えられる。 In the operation of increasing the oxygen concentration of the air inside the refrigerator, the bypass on-off valve (48) is opened to bypass the outside air sucked by the air pump (31) to the first suction cylinder (34) and the second suction cylinder (35). It can be performed by the outside air introduction operation supplied to the inside of the container body (2). At this time, since the outside air passes through the cooling unit (40a), the temperature rise of the air inside the refrigerator is suppressed.
 また、詳細は省略するが、庫内空気の酸素濃度(及び二酸化炭素濃度)の調整は、ガス供給動作、ガス排出動作、及び外気導入動作を適宜切り換えて行うこともできる。 Although details are omitted, the oxygen concentration (and carbon dioxide concentration) of the air inside the refrigerator can be adjusted by appropriately switching between the gas supply operation, the gas discharge operation, and the outside air introduction operation.
  (給気測定動作)
 本実施形態では、ユーザからの指令により又は定期的(例えば、10日毎)に、ガス供給ユニット(30)において生成された窒素濃縮空気の酸素濃度を測定する給気測定動作が行われる。給気測定動作は、上述の濃度調整運転や試運転等のガス供給動作中に庫内ファン(26)が停止した際に並行して行われる。
(Air supply measurement operation)
In the present embodiment, an air supply measurement operation for measuring the oxygen concentration of the nitrogen-concentrated air generated in the gas supply unit (30) is performed according to a command from the user or periodically (for example, every 10 days). The air supply measurement operation is performed in parallel when the internal fan (26) is stopped during the gas supply operation such as the above-mentioned concentration adjustment operation or test run.
 制御部(55)は、ガス供給動作中に、分岐開閉弁(82)を開状態に制御すると共に供給用開閉弁(73)を閉状態に制御する。これにより、供給通路(44)を流れる窒素濃縮空気の全てが分岐管(81)に流入する。分岐管(81)に流入した窒素濃縮空気は、酸素センサ(51)に導入され、酸素濃度が測定される。 The control unit (55) controls the branch on-off valve (82) to the open state and the supply on-off valve (73) to the closed state during the gas supply operation. As a result, all of the nitrogen-enriched air flowing through the supply passage (44) flows into the branch pipe (81). The nitrogen-enriched air flowing into the branch pipe (81) is introduced into the oxygen sensor (51), and the oxygen concentration is measured.
 このように、ガス供給ユニット(30)において生成された窒素濃縮空気の酸素濃度を測定することにより、ガス供給ユニット(30)において生成された窒素濃縮空気の組成(酸素濃度、窒素濃度)が所望の状態であるかを確認することができる。 By measuring the oxygen concentration of the nitrogen-concentrated air generated in the gas supply unit (30) in this way, the composition (oxygen concentration, nitrogen concentration) of the nitrogen-concentrated air generated in the gas supply unit (30) is desired. It is possible to confirm whether it is in the state of.
  (センサ校正動作)
 本実施形態では、外気をセンサユニット(50)に導入して酸素センサ(51)を校正する図7のセンサ校正動作を行うことができる。センサ校正動作は、例えば庫内を冷却しながら濃度調整を一旦停止して短時間(10分程度)で行い、その後に濃度調整運転に戻すことができる。
(Sensor calibration operation)
In the present embodiment, the sensor calibration operation of FIG. 7 can be performed by introducing outside air into the sensor unit (50) to calibrate the oxygen sensor (51). The sensor calibration operation can be performed, for example, by temporarily stopping the concentration adjustment while cooling the inside of the refrigerator, performing the sensor calibration operation in a short time (about 10 minutes), and then returning to the concentration adjustment operation.
 センサ校正動作では、第1方向制御弁(32)が第1状態に設定され、第2方向制御弁(33)が第2状態に設定され、バイパス開閉弁(48)が開かれる。供給用開閉弁(73)は閉じられ、分岐開閉弁(82)は開かれる。この状態でエアポンプ(31)を起動すると、外気が、第1通路(75)と第2通路(76)を流れ、センサユニット(50)に導入される。酸素センサ(51)は、検出値が外気の酸素濃度を示すように校正される。 In the sensor calibration operation, the first direction control valve (32) is set to the first state, the second direction control valve (33) is set to the second state, and the bypass on-off valve (48) is opened. The supply on-off valve (73) is closed and the branch on-off valve (82) is opened. When the air pump (31) is started in this state, outside air flows through the first passage (75) and the second passage (76) and is introduced into the sensor unit (50). The oxygen sensor (51) is calibrated so that the detected value indicates the oxygen concentration in the outside air.
 センサ校正動作中に、外気は気液分離器(85)を通過する。そのため、酸素センサ(51)には、水分の少なくとも一部が除去された外気が接触する。 During the sensor calibration operation, the outside air passes through the gas-liquid separator (85). Therefore, the oxygen sensor (51) is in contact with the outside air from which at least a part of the moisture has been removed.
 〈センサの劣化について〉
 次に、酸素センサ(51)の劣化について説明する。
<About sensor deterioration>
Next, the deterioration of the oxygen sensor (51) will be described.
  (酸素センサの構造)
 本実施形態の酸素センサ(51)は、ジルコニア式のセンサである。酸素センサ(51)の素子は、白金及びジルコニアで構成される。酸素センサ(51)は、白金及びジルコニアの固体電解質中を移動する酸素イオンの量を電気的に測定することで酸素濃度を測定する。
(Structure of oxygen sensor)
The oxygen sensor (51) of the present embodiment is a zirconia type sensor. The element of the oxygen sensor (51) is composed of platinum and zirconia. The oxygen sensor (51) measures the oxygen concentration by electrically measuring the amount of oxygen ions moving in the solid electrolytes of platinum and zirconia.
 酸素センサ(51)の白金及びジルコニアには、接合補助剤として微量の金属酸化物が添加されている。白金とジルコニアとの界面で接合補助剤同士が結合することで、白金及びジルコニアが接合される。 A small amount of metal oxide is added to platinum and zirconia of the oxygen sensor (51) as a bonding aid. Platinum and zirconia are bonded by binding the bonding aids to each other at the interface between platinum and zirconia.
  (酸素センサの劣化の課題)
 コンテナ本体(2)の庫内空間に収容された包装容器又は包装容器に梱包された生鮮物などから腐食成分が発生することがある。ここで、腐食成分とは、酸素センサ(51)を腐食させる成分のことである。腐食成分は、庫内の空気とともに輸送用コンテナ(1)内を循環する。
(Issues of deterioration of oxygen sensor)
Corrosive components may be generated from the packaging container housed in the internal space of the container body (2) or the fresh food packed in the packaging container. Here, the corrosive component is a component that corrodes the oxygen sensor (51). The corrosive component circulates in the transportation container (1) together with the air in the refrigerator.
 酸素センサ(51)が通電状態の場合、酸素センサ(51)は発熱し高温になる。一方、酸素センサ(51)が通電状態から非通電状態に切り替わると、酸素センサ(51)は発熱しなくなるので温度が下がる。酸素センサ(51)の温度が下がると、センサケーシング(90)内の温度が低下し、センサケーシング(90)内の相対湿度が上昇する。センサケーシング(90)内の相対湿度が上昇すると、水分が結露して、酸素センサ(51)の表面に水膜が形成される。 When the oxygen sensor (51) is energized, the oxygen sensor (51) generates heat and becomes hot. On the other hand, when the oxygen sensor (51) switches from the energized state to the non-energized state, the oxygen sensor (51) does not generate heat and the temperature drops. When the temperature of the oxygen sensor (51) decreases, the temperature inside the sensor casing (90) decreases, and the relative humidity inside the sensor casing (90) increases. When the relative humidity in the sensor casing (90) rises, moisture condenses and a water film is formed on the surface of the oxygen sensor (51).
 庫内の空気とともにセンサケーシング(90)に流入した腐食成分が酸素センサ(51)表面の水膜中に侵入すると、水膜内で腐食成分と酸素センサ(51)の接合補助剤が反応する。腐食成分と酸素センサ(51)の接合補助剤が反応すると、接合補助剤の結合力が弱まり、白金とジルコニアの接合力が低下し、酸素センサ(51)の出力が低下する。これが酸素センサ(51)の劣化である。 When the corrosive component that has flowed into the sensor casing (90) together with the air inside the refrigerator enters the water film on the surface of the oxygen sensor (51), the corrosive component reacts with the bonding aid of the oxygen sensor (51) in the water film. When the corrosive component reacts with the bonding auxiliary agent of the oxygen sensor (51), the bonding force of the bonding auxiliary agent is weakened, the bonding force of platinum and zirconia is reduced, and the output of the oxygen sensor (51) is reduced. This is the deterioration of the oxygen sensor (51).
 ここで、腐食成分は、硫黄成分を含む。水膜中に侵入しやすい腐食成分としては、硫酸イオンが挙げられる。 Here, the corrosive component contains a sulfur component. Sulfate ions can be mentioned as a corrosive component that easily penetrates into the water film.
 〈第1動作〉
 制御部(55)は、空気組成調整装置(60)及び輸送用冷凍装置(10)が運転された状態において、以下の制御を行う。
<First operation>
The control unit (55) performs the following control while the air composition adjusting device (60) and the transport refrigerating device (10) are in operation.
 図9に示すように、ステップST11において、制御部(55)は、空気組成調整装置(60)を制御して、空気の組成を調整する濃度調整運転を実行する。 As shown in FIG. 9, in step ST11, the control unit (55) controls the air composition adjusting device (60) to execute a concentration adjusting operation for adjusting the air composition.
 ステップST12において、制御部(55)は、エアポンプ(31)を制御して、濃度調整された空気をコンテナ本体(2)の庫内空間に搬送する。 In step ST12, the control unit (55) controls the air pump (31) to convey the concentration-adjusted air to the space inside the container body (2).
 ステップST13において、制御部(55)は、空気組成調整装置(60)の運転停止指令を受けたかを判定する。ステップST13での判定が「YES」の場合、ステップST14に分岐する。ステップST13での判定が「NO」の場合、ステップST13を繰り返し行う。 In step ST13, the control unit (55) determines whether or not the operation stop command of the air composition adjusting device (60) has been received. If the determination in step ST13 is "YES", branch to step ST14. If the determination in step ST13 is "NO", step ST13 is repeated.
 ここで、空気組成調整装置(60)の運転停止指令は、例えば、ユーザによって停止ボタンが押された場合に出力される。なお、空気組成調整装置(60)の運転停止指令と同時に、輸送用冷凍装置(10)の運転停止指令を出力するようにしてもよい。 Here, the operation stop command of the air composition adjusting device (60) is output, for example, when the stop button is pressed by the user. At the same time as the operation stop command of the air composition adjusting device (60), the operation stop command of the transport refrigerating device (10) may be output.
 ステップST14において、制御部(55)は、空気組成調整装置(60)を制御して、センサケーシング(90)の内部に外気を導入する第1動作を行う。 In step ST14, the control unit (55) controls the air composition adjusting device (60) to perform the first operation of introducing outside air into the sensor casing (90).
 第1動作では、図7に示すように、第1方向制御弁(32)が第1状態に設定され、第2方向制御弁(33)が第2状態に設定され、バイパス開閉弁(48)が開かれる。供給用開閉弁(73)は閉じられ、分岐開閉弁(82)は開かれる。この状態でエアポンプ(31)を起動すると、外気が、第1通路(75)と第2通路(76)を流れ、センサケーシング(90)の内部に導入される。 In the first operation, as shown in FIG. 7, the first direction control valve (32) is set to the first state, the second direction control valve (33) is set to the second state, and the bypass on-off valve (48). Is opened. The supply on-off valve (73) is closed and the branch on-off valve (82) is opened. When the air pump (31) is started in this state, outside air flows through the first passage (75) and the second passage (76) and is introduced into the sensor casing (90).
 センサケーシング(90)の内部に外気を導入すると、センサケーシング(90)の内部に滞留する腐食成分が、センサケーシング(90)の外部に排出される。具体的には、腐食成分は、排気口からセンサケーシング(90)の外部に排出される。本実施形態においては、排気口から排気管(57)を通った腐食成分は、庫内ファン(26)の吸込側の1次空間(S21)に排出される。これにより、空気組成調整装置(60)の運転停止中に、腐食成分によってセンサ(51)が劣化するのを抑えることができる。 When outside air is introduced inside the sensor casing (90), the corrosive component staying inside the sensor casing (90) is discharged to the outside of the sensor casing (90). Specifically, the corrosive component is discharged to the outside of the sensor casing (90) from the exhaust port. In the present embodiment, the corrosive component that has passed through the exhaust pipe (57) from the exhaust port is discharged to the primary space (S21) on the suction side of the internal fan (26). As a result, it is possible to prevent the sensor (51) from being deteriorated by the corrosive component while the operation of the air composition adjusting device (60) is stopped.
 なお、ステップST14では、回転蓋(16C)を開状態として換気口(16D)を開くことで、換気口(16D)を通して、庫内空間に外気を導入するようにしてもよい。換気口(16D)を通して庫内空間に導入された外気は、庫内ファン(26)によって庫内空間を流通する。外気を含む庫内空気は、センサケーシング(90)のメンブレンフィルタ(54)を通過して、センサケーシング(90)の内部に流入する。 In step ST14, the rotating lid (16C) may be opened and the ventilation port (16D) may be opened to introduce outside air into the interior space through the ventilation port (16D). The outside air introduced into the interior space through the ventilation port (16D) is circulated in the interior space by the interior fan (26). The air inside the refrigerator including the outside air passes through the membrane filter (54) of the sensor casing (90) and flows into the inside of the sensor casing (90).
 本実施形態においては、換気口(16D)が庫内ファン(26)の吸込側の1次空間(S21)と連通している。このため、換気口(16D)から取り込まれた外気が、1次空間(S21)から庫内ファン(26)の吹出側の2次空間(S22)に導入され、2次空間(S22)に配置されたセンサケーシング(90)の内部に流入する。その結果、センサケーシング(90)の内部から腐食成分を排出することができる。 In this embodiment, the ventilation port (16D) communicates with the primary space (S21) on the suction side of the internal fan (26). Therefore, the outside air taken in from the ventilation port (16D) is introduced from the primary space (S21) to the secondary space (S22) on the outlet side of the casing fan (26) and placed in the secondary space (S22). It flows into the inside of the sensor casing (90). As a result, the corrosive component can be discharged from the inside of the sensor casing (90).
 なお、空気組成調整装置(60)の運転停止動作に連動して第1動作を行うタイミングは、空気組成調整装置(60)の運転を停止させる直前、運転停止動作と同時、運転を停止させた直後の何れかであればよい。 The timing of performing the first operation in conjunction with the operation stop operation of the air composition adjusting device (60) was immediately before the operation of the air composition adjusting device (60) was stopped, and at the same time as the operation stop operation, the operation was stopped. It may be either immediately after.
 なお、制御部(55)は、酸素センサ(51)のモニタリングの停止指令を受けた場合に、第1動作を行うようにしてもよい。酸素センサ(51)のモニタリングは、例えば、空気組成調整装置(60)において濃度調整運転が終了した場合、給気測定動作が終了した場合、及びセンサ校正動作が終了した場合に停止する。 The control unit (55) may perform the first operation when receiving a stop command for monitoring the oxygen sensor (51). The monitoring of the oxygen sensor (51) is stopped, for example, when the concentration adjustment operation is completed in the air composition adjusting device (60), the air supply measurement operation is completed, and the sensor calibration operation is completed.
 〈第2動作〉
 制御部(55)は、空気組成調整装置(60)が運転停止された状態で且つ輸送用冷凍装置(10)が運転された状態において、以下の制御を行う。
<Second operation>
The control unit (55) performs the following control while the air composition adjusting device (60) is stopped and the transport refrigerating device (10) is operated.
 図10に示すように、ステップST21において、ユニット制御部(100)は、輸送用冷凍装置(10)を制御して、コンテナ本体(2)の庫内空間を冷却する冷却運転を実行する。 As shown in FIG. 10, in step ST21, the unit control unit (100) controls the transport refrigerating device (10) to execute a cooling operation for cooling the internal space of the container body (2).
 ステップST22において、ユニット制御部(100)は、庫内ファン(26)を制御して、温度調整された空気をコンテナ本体(2)の庫内空間に搬送する。 In step ST22, the unit control unit (100) controls the internal fan (26) to convey the temperature-controlled air to the internal space of the container body (2).
 ステップST23において、ユニット制御部(100)は、輸送用冷凍装置(10)の運転停止指令を受けたかを判定する。ステップST23での判定が「YES」の場合、ステップST24に分岐する。ステップST23での判定が「NO」の場合、ステップST23を繰り返し行う。 In step ST23, the unit control unit (100) determines whether or not the operation stop command of the transport refrigerating device (10) has been received. If the judgment in step ST23 is "YES", the process branches to step ST24. If the determination in step ST23 is "NO", step ST23 is repeated.
 ここで、輸送用冷凍装置(10)の運転停止指令は、例えば、ユーザによって停止ボタンが押された場合に出力される。 Here, the operation stop command of the transport refrigerating device (10) is output, for example, when the stop button is pressed by the user.
 ステップST24において、制御部(55)は、空気組成調整装置(60)を制御して、センサケーシング(90)の内部に外気を導入する第2動作を行う。 In step ST24, the control unit (55) controls the air composition adjusting device (60) to perform a second operation of introducing outside air into the sensor casing (90).
 第2動作では、図7に示すように、第1方向制御弁(32)が第1状態に設定され、第2方向制御弁(33)が第2状態に設定され、バイパス開閉弁(48)が開かれる。供給用開閉弁(73)は閉じられ、分岐開閉弁(82)は開かれる。この状態でエアポンプ(31)を起動すると、外気が、第1通路(75)と第2通路(76)を流れ、センサユニット(50)に導入される。 In the second operation, as shown in FIG. 7, the first direction control valve (32) is set to the first state, the second direction control valve (33) is set to the second state, and the bypass on-off valve (48) is set. Is opened. The supply on-off valve (73) is closed and the branch on-off valve (82) is opened. When the air pump (31) is started in this state, outside air flows through the first passage (75) and the second passage (76) and is introduced into the sensor unit (50).
 センサケーシング(90)の内部に外気を導入すると、センサケーシング(90)の内部に滞留する腐食成分が、センサケーシング(90)の外部に排出される。具体的には、腐食成分は、排気口からセンサケーシング(90)の外部に排出される。本実施形態においては、排気口から排気管(57)を通った腐食成分は、庫内ファン(26)の吸込側の1次空間(S21)に排出される。これにより、輸送用冷凍装置(10)の運転停止中に、腐食成分によってセンサ(51)が劣化するのを抑えることができる。 When outside air is introduced inside the sensor casing (90), the corrosive component staying inside the sensor casing (90) is discharged to the outside of the sensor casing (90). Specifically, the corrosive component is discharged to the outside of the sensor casing (90) from the exhaust port. In the present embodiment, the corrosive component that has passed through the exhaust pipe (57) from the exhaust port is discharged to the primary space (S21) on the suction side of the internal fan (26). As a result, it is possible to prevent the sensor (51) from being deteriorated by the corrosive component while the operation of the freezing device (10) for transportation is stopped.
  -実施形態1の効果-
 本実施形態の特徴によれば、組成が調整された空気が対象空間に搬送される。対象空間における空気中の成分の濃度がセンサ(51)で測定される。センサ(51)は、センサケーシング(90)に収容される。制御部(55)は、第1動作を実行する。第1動作は、空気組成調整装置(60)の運転停止動作に連動して、センサケーシング(90)の内部に外気を導入する動作である。
-Effect of Embodiment 1-
According to the characteristics of the present embodiment, the air whose composition has been adjusted is conveyed to the target space. The concentration of components in the air in the target space is measured by the sensor (51). The sensor (51) is housed in the sensor casing (90). The control unit (55) executes the first operation. The first operation is an operation of introducing outside air into the inside of the sensor casing (90) in conjunction with the operation stop operation of the air composition adjusting device (60).
 センサケーシング(90)の内部に外気を導入すると、センサケーシング(90)の内部に滞留する腐食成分が、センサケーシング(90)の外部に排出される。これにより、空気組成調整装置(60)の運転停止中に、腐食成分によってセンサ(51)が劣化するのを抑えることができる。 When outside air is introduced inside the sensor casing (90), the corrosive component staying inside the sensor casing (90) is discharged to the outside of the sensor casing (90). As a result, it is possible to prevent the sensor (51) from being deteriorated by the corrosive component while the operation of the air composition adjusting device (60) is stopped.
 本実施形態の特徴によれば、第1動作では、搬送部(31)を制御することで、通路(75,76)を通してセンサケーシング(90)の内部に外気を導入することができる。 According to the feature of this embodiment, in the first operation, the outside air can be introduced into the inside of the sensor casing (90) through the passage (75,76) by controlling the transport unit (31).
 本実施形態の特徴によれば、空気組成調整装置(60)を備えた冷凍装置において、センサケーシング(90)の外部に腐食成分を排出することで、腐食成分によるセンサ(51)の劣化を抑えることができる。 According to the feature of the present embodiment, in the refrigerating apparatus provided with the air composition adjusting device (60), the deterioration of the sensor (51) due to the corrosive component is suppressed by discharging the corrosive component to the outside of the sensor casing (90). be able to.
 本実施形態の特徴によれば、対象空間の内部と外部とが換気口(16D)で連通される。換気口(16D)は、開閉機構(16C)で開閉される。開閉機構(16C)は、第1動作中に開状態となっている。 According to the feature of this embodiment, the inside and the outside of the target space are communicated by the ventilation port (16D). The ventilation port (16D) is opened and closed by the opening / closing mechanism (16C). The opening / closing mechanism (16C) is in the open state during the first operation.
 これにより、第1動作中に開閉機構(16C)を開状態とすることで、換気口(16D)を通して、対象空間の内部に外気を導入することができる。 As a result, by opening the opening / closing mechanism (16C) during the first operation, outside air can be introduced into the target space through the ventilation port (16D).
 本実施形態の特徴によれば、制御部(55)は、第2動作を実行する。第2動作は、冷凍装置(10)の運転停止動作に連動して、センサケーシング(90)の内部に外気を導入する動作である。 According to the feature of this embodiment, the control unit (55) executes the second operation. The second operation is an operation of introducing outside air into the inside of the sensor casing (90) in conjunction with the operation of stopping the operation of the refrigerating device (10).
 センサケーシング(90)の内部に外気を導入すると、センサケーシング(90)の内部に滞留する腐食成分が、センサケーシング(90)の外部に排出される。これにより、冷凍装置(10)の運転停止中に、腐食成分によってセンサ(51)が劣化するのを抑えることができる。 When outside air is introduced inside the sensor casing (90), the corrosive component staying inside the sensor casing (90) is discharged to the outside of the sensor casing (90). As a result, it is possible to prevent the sensor (51) from being deteriorated by the corrosive component while the refrigerating device (10) is stopped.
 本実施形態の特徴によれば、冷凍装置(10)を備えたコンテナにおいて、センサケーシング(90)の外部に腐食成分を排出することで、腐食成分によるセンサ(51)の劣化を抑えることができる。 According to the feature of the present embodiment, in the container provided with the refrigerating device (10), the deterioration of the sensor (51) due to the corrosive component can be suppressed by discharging the corrosive component to the outside of the sensor casing (90). ..
 本実施形態の特徴によれば、センサケーシング(90)には、センサ(51)が収容される。空気組成調整装置(60)は、空気の組成を調整し、対象空間に空気を搬送する。空気組成調整装置(60)の運転停止動作に連動して、センサケーシング(90)の内部に外気を導入する。 According to the feature of this embodiment, the sensor (51) is housed in the sensor casing (90). The air composition adjusting device (60) adjusts the composition of the air and conveys the air to the target space. The outside air is introduced into the sensor casing (90) in conjunction with the stop operation of the air composition adjusting device (60).
 センサケーシング(90)の内部に外気を導入すると、センサケーシング(90)の内部に滞留する腐食成分が、センサケーシング(90)の外部に排出される。これにより、空気組成調整装置(60)の運転停止中に、腐食成分によってセンサ(51)が劣化するのを抑えることができる。 When outside air is introduced inside the sensor casing (90), the corrosive component staying inside the sensor casing (90) is discharged to the outside of the sensor casing (90). As a result, it is possible to prevent the sensor (51) from being deteriorated by the corrosive component while the operation of the air composition adjusting device (60) is stopped.
 《実施形態2》
 図11は、本実施形態2に係る輸送用冷凍装置の斜視図である。以下、前記実施形態1と同じ部分については同じ符号を付し、相違点についてのみ説明する。
<< Embodiment 2 >>
FIG. 11 is a perspective view of the transport refrigerating apparatus according to the second embodiment. Hereinafter, the same parts as those in the first embodiment are designated by the same reference numerals, and only the differences will be described.
 図11に示すように、センサケーシング(90)は、庫外に配置されている。具体的には、センサケーシング(90)は、庫外収納空間(S1)の第2空間(S12)における電装品ボックス(17)の左側に配置される。ここで、「左側」は、輸送用コンテナ(1)の外部に露出した輸送用冷凍装置(10)の面を正面から見たときの方向を意味する。 As shown in FIG. 11, the sensor casing (90) is arranged outside the refrigerator. Specifically, the sensor casing (90) is arranged on the left side of the electrical component box (17) in the second space (S12) of the storage space (S1) outside the refrigerator. Here, the "left side" means the direction when the surface of the transport refrigerating device (10) exposed to the outside of the transport container (1) is viewed from the front.
 図12に示すように、センサケーシング(90)には、給気管(78)の一端が接続されている。給気管(78)の他端は、庫内収納空間(S2)に開口する。給気管(78)の他端には、メンブレンフィルタ(54)が取り付けられる。給気管(78)は、庫内空気を、庫外に配置されたセンサケーシング(90)の内部に導入するために設けられる。 As shown in FIG. 12, one end of the air supply pipe (78) is connected to the sensor casing (90). The other end of the air supply pipe (78) opens into the storage space (S2) inside the refrigerator. A membrane filter (54) is attached to the other end of the air supply pipe (78). The air supply pipe (78) is provided to introduce the air inside the refrigerator into the inside of the sensor casing (90) arranged outside the refrigerator.
 《その他の実施形態》
 前記実施形態については、以下のような構成としてもよい。
<< Other Embodiments >>
The embodiment may have the following configuration.
 前記実施形態では、腐食成分による劣化を抑える対象のセンサとして酸素センサ(51)について説明したが、対象のセンサは、酸素センサ(51)には限定されない。対象のセンサは、庫内空気の成分の濃度を測定するセンサであればよい。例えば、酸素センサ(51)の代わりに、あるいは酸素センサ(51)に加えて、二酸化炭素センサ(52)を対象としてもよい。また、対象のセンサは、エチレン濃度を検知するエチレンセンサ、あるいは庫内への冷媒漏れを検知する漏洩検知センサでもよい。また、他のセンサが用いられる構成でそのセンサが腐食成分による劣化のおそれがある場合はそのセンサを対象としてもよい。 In the above embodiment, the oxygen sensor (51) has been described as a target sensor for suppressing deterioration due to a corrosive component, but the target sensor is not limited to the oxygen sensor (51). The target sensor may be a sensor that measures the concentration of the components of the air inside the refrigerator. For example, the carbon dioxide sensor (52) may be targeted instead of the oxygen sensor (51) or in addition to the oxygen sensor (51). Further, the target sensor may be an ethylene sensor that detects the ethylene concentration or a leak detection sensor that detects the leakage of the refrigerant into the refrigerator. Further, if there is a risk of deterioration of the sensor due to a corrosive component in a configuration in which another sensor is used, that sensor may be targeted.
 前記実施形態では、腐食成分による劣化を抑える対象の酸素センサ(51)としてジルコニア式のセンサについて説明したが、対象のセンサはジルコニア式のセンサには限定されない。例えば、ガルバニ電池式のセンサでもよい。 In the above embodiment, the zirconia type sensor has been described as the target oxygen sensor (51) that suppresses deterioration due to the corrosive component, but the target sensor is not limited to the zirconia type sensor. For example, a galvanic cell-powered sensor may be used.
 前記実施形態では、腐食成分として硫酸イオンを例示したが、硫酸イオン以外の硫黄成分、リン酸、カルシウム、塩素、アンモニアなどを含む他の腐食成分に対して、センサケーシング(90)の内部に外気を導入する動作を行うようにしてもよい。 In the above embodiment, sulfate ion is exemplified as a corrosive component, but the outside air is inside the sensor casing (90) against sulfur components other than sulfate ion, phosphoric acid, calcium, chlorine, ammonia and other corrosive components. May be performed to introduce.
 前記実施形態では、1つのエアポンプ(31)が第1ポンプ機構(31a)と第2ポンプ機構(31b)とを有する構成としていたが、第1ポンプ機構(31a)と第2ポンプ機構(31b)とは、2つの個別のエアポンプによって構成されていてもよい。 In the above embodiment, one air pump (31) has a first pump mechanism (31a) and a second pump mechanism (31b), but the first pump mechanism (31a) and the second pump mechanism (31b) May consist of two separate air pumps.
 前記実施形態の搬送部は、送風機を用いて構成してもよい。 The transport unit of the embodiment may be configured by using a blower.
 前記各実施形態では、第1吸着筒(34)及び第2吸着筒(35)をそれぞれ1本ずつ用いて、窒素の吸着及び脱着を行うようにしていたが、吸着筒の本数は1本ずつに限定されない。例えば、第1吸着筒(34)及び第2吸着筒(35)をそれぞれ3本ずつ用いて、合計6本の吸着筒を備えた構成としてもよい。 In each of the above embodiments, nitrogen is adsorbed and desorbed by using one first adsorption cylinder (34) and one second adsorption cylinder (35), but the number of adsorption cylinders is one. Not limited to. For example, three suction cylinders (34) and three second suction cylinders (35) may be used to provide a total of six suction cylinders.
 前記実施形態の調整部としての第1吸着筒(34)及び第2吸着筒(35)は、ゼオライトなどの吸着剤を用いる構成に限定されず、例えば、窒素の透過率と酸素(及び二酸化炭素)の透過率が異なるガス分離膜を用いて窒素濃縮空気及び酸素濃縮空気を生成し、これらの濃縮空気により庫内空気の組成を調整する構成であってもよい。 The first adsorption cylinder (34) and the second adsorption cylinder (35) as the adjusting unit of the embodiment are not limited to the configuration using an adsorbent such as zeolite, and for example, the permeability of nitrogen and oxygen (and carbon dioxide). ) May be configured to generate nitrogen-concentrated air and oxygen-concentrated air using gas separation membranes having different permeability, and adjust the composition of the air inside the refrigerator by these concentrated air.
 前記実施形態では、海上輸送用のコンテナ本体(2)に設けられる輸送用冷凍装置(10)に対して、空気組成調整装置(60)を適用した例について説明したが、空気組成調整装置(60)の用途はこれに限られない。空気組成調整装置(60)は、海上輸送用のコンテナの他、例えば、陸上輸送用のコンテナ、単なる冷凍冷蔵倉庫、常温の倉庫等の庫内空気の組成の調整に用いることができる。冷凍装置は、輸送用でなく、定置型の貯蔵庫(冷凍冷蔵倉庫)の庫内空間を冷却する装置であってもよい。 In the above embodiment, an example in which the air composition adjusting device (60) is applied to the transport refrigerating device (10) provided in the container body (2) for marine transportation has been described, but the air composition adjusting device (60) has been described. ) Is not limited to this. The air composition adjusting device (60) can be used for adjusting the composition of the air inside the warehouse, for example, a container for land transportation, a simple freezing and refrigerating warehouse, a warehouse at room temperature, etc., in addition to the container for marine transportation. The freezing device may be a device that cools the internal space of a stationary storage (freezing / refrigerating warehouse), not for transportation.
 以上、実施形態及び変形例を説明したが、特許請求の範囲の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。また、以上の実施形態及び変形例は、本開示の対象の機能を損なわない限り、適宜組み合わせたり、置換したりしてもよい。また、明細書及び特許請求の範囲の「第1」、「第2」、「第3」…という記載は、これらの記載が付与された語句を区別するために用いられており、その語句の数や順序までも限定するものではない。 Although the embodiments and modifications have been described above, it will be understood that various changes in the form and details are possible without departing from the purpose and scope of the claims. Further, the above embodiments and modifications may be appropriately combined or replaced as long as the functions of the subject of the present disclosure are not impaired. In addition, the description "first", "second", "third" ... In the description and claims is used to distinguish the words and phrases to which these descriptions are given, and the words and phrases are used. The number and order are not limited.
 以上説明したように、本開示は、空気組成調整装置、冷凍装置、コンテナ、及び空気組成調整方法について有用である。 As described above, the present disclosure is useful for an air composition adjusting device, a refrigerating device, a container, and an air composition adjusting method.
  1  輸送用コンテナ(コンテナ)
 10  輸送用冷凍装置(冷凍装置)
 16C  回転蓋(開閉機構)
 16D  換気口
 31  エアポンプ(搬送部)
 34  第1吸着筒(調整部)
 35  第2吸着筒(調整部)
 51  酸素センサ(センサ)
 55  制御部
 60  空気組成調整装置
 75  第1通路
 76  第2通路
 90  センサケーシング
1 Transport container (container)
10 Transport refrigeration equipment (refrigeration equipment)
16C rotary lid (opening and closing mechanism)
16D Ventilation port 31 Air pump (conveyor)
34 1st adsorption cylinder (adjustment part)
35 2nd adsorption cylinder (adjustment part)
51 Oxygen sensor (sensor)
55 Control unit 60 Air composition regulator 75 1st passage 76 2nd passage 90 Sensor casing

Claims (7)

  1.  外気とは異なる組成に調整した空気を対象空間に導入する空気組成調整装置であって、
     空気の組成を調整する調整部(34,35)と、
     前記対象空間に空気を搬送する搬送部(31)と、
     前記対象空間における空気中の成分の濃度を測定するセンサ(51)と、
     前記センサ(51)を収容するセンサケーシング(90)と、
     前記空気組成調整装置(60)の運転停止動作に連動して、前記センサケーシング(90)の内部に外気を導入する第1動作を実行する制御部(55)とを備えた
    ことを特徴とする空気組成調整装置。
    It is an air composition adjusting device that introduces air adjusted to a composition different from the outside air into the target space.
    Adjustment unit (34,35) that adjusts the composition of air,
    A transport unit (31) that transports air to the target space,
    A sensor (51) that measures the concentration of components in the air in the target space, and
    A sensor casing (90) accommodating the sensor (51) and
    A control unit (55) for executing a first operation of introducing outside air into the inside of the sensor casing (90) is provided in conjunction with the operation stop operation of the air composition adjusting device (60). Air composition regulator.
  2.  請求項1において、
     前記センサケーシング(90)の内部に外気を導入する通路(75,76)を備え、
     前記制御部(55)は、前記第1動作において、前記通路(75,76)を通して前記センサケーシング(90)の内部に外気を導入するように、前記搬送部(31)を制御する
    ことを特徴とする空気組成調整装置。
    In claim 1,
    A passage (75,76) for introducing outside air is provided inside the sensor casing (90).
    The control unit (55) is characterized in that, in the first operation, the transport unit (31) is controlled so as to introduce outside air into the inside of the sensor casing (90) through the passage (75,76). Air composition adjusting device.
  3.  請求項1又は2に記載の空気組成調整装置(60)を備えた
    ことを特徴とする冷凍装置。
    A refrigerating apparatus provided with the air composition adjusting apparatus (60) according to claim 1 or 2.
  4.  請求項3において、
     前記対象空間の内部と外部とを連通する換気口(16D)と、
     前記換気口(16D)を開閉する開閉機構(16C)とを備え、
     前記第1動作中に、前記開閉機構(16C)が開状態である
    ことを特徴とする冷凍装置。
    In claim 3,
    A ventilation port (16D) that communicates the inside and outside of the target space,
    It is equipped with an opening / closing mechanism (16C) that opens and closes the ventilation port (16D).
    A refrigerating device characterized in that the opening / closing mechanism (16C) is in an open state during the first operation.
  5.  請求項3又は4において、
     前記制御部(55)は、前記冷凍装置(10)の運転停止動作に連動して、前記センサケーシング(90)の内部に外気を導入する第2動作を実行する
    ことを特徴とする冷凍装置。
    In claim 3 or 4,
    The control unit (55) is characterized in that it executes a second operation of introducing outside air into the inside of the sensor casing (90) in conjunction with the operation stop operation of the refrigerating device (10).
  6.  請求項3乃至5のうち何れか1つに記載の冷凍装置(10)を備えた
    ことを特徴とするコンテナ。
    A container comprising the refrigerating apparatus (10) according to any one of claims 3 to 5.
  7.  外気とは異なる組成に調整した空気を対象空間に導入する空気組成調整装置(60)を用いた空気組成調整方法であって、
     前記空気組成調整装置(60)では、前記対象空間における空気中の成分の濃度を測定するセンサ(51)が、センサケーシング(90)に収容されており、
     空気の組成を調整する工程と、
     前記対象空間に空気を搬送する工程と、
     前記空気組成調整装置(60)の運転停止動作に連動して、前記センサケーシング(90)の内部に外気を導入する工程とを備えた
    ことを特徴とする空気組成調整方法。
    It is an air composition adjusting method using an air composition adjusting device (60) that introduces air adjusted to a composition different from the outside air into the target space.
    In the air composition adjusting device (60), a sensor (51) for measuring the concentration of components in the air in the target space is housed in a sensor casing (90).
    The process of adjusting the composition of the air and
    The process of transporting air to the target space and
    A method for adjusting an air composition, which comprises a step of introducing outside air into the inside of the sensor casing (90) in conjunction with an operation of stopping the operation of the air composition adjusting device (60).
PCT/JP2021/023566 2020-08-31 2021-06-22 Air composition adjusting device, refrigeration device, container, and air composition adjusting method WO2022044511A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020145226A JP7064154B2 (en) 2020-08-31 2020-08-31 Air composition adjusting device, refrigerating device, container, and air composition adjusting method
JP2020-145226 2020-08-31

Publications (1)

Publication Number Publication Date
WO2022044511A1 true WO2022044511A1 (en) 2022-03-03

Family

ID=80355017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/023566 WO2022044511A1 (en) 2020-08-31 2021-06-22 Air composition adjusting device, refrigeration device, container, and air composition adjusting method

Country Status (2)

Country Link
JP (1) JP7064154B2 (en)
WO (1) WO2022044511A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08233321A (en) * 1995-02-27 1996-09-13 Fuji Electric Co Ltd Ventilator for fuel battery power generating device
JP2004222505A (en) * 2003-01-17 2004-08-12 Matsushita Electric Works Ltd Ventilating device of housing cabinet for root vegetable and housing cabinet for root vegetable
JP2016164485A (en) * 2015-02-27 2016-09-08 ダイキン工業株式会社 Refrigeration device for container
JP2017227514A (en) * 2016-06-21 2017-12-28 富士通株式会社 Gas sensor
US20190265082A1 (en) * 2018-02-27 2019-08-29 TeleSense, Inc. Method and Apparatus for Remote Monitoring and Management of Storage Using Machine Learning and Data Analystics
JP2020094764A (en) * 2018-12-13 2020-06-18 大阪瓦斯株式会社 Heat source having fan, exhaust system comprising the same, and exhaust treatment method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08233321A (en) * 1995-02-27 1996-09-13 Fuji Electric Co Ltd Ventilator for fuel battery power generating device
JP2004222505A (en) * 2003-01-17 2004-08-12 Matsushita Electric Works Ltd Ventilating device of housing cabinet for root vegetable and housing cabinet for root vegetable
JP2016164485A (en) * 2015-02-27 2016-09-08 ダイキン工業株式会社 Refrigeration device for container
JP2017227514A (en) * 2016-06-21 2017-12-28 富士通株式会社 Gas sensor
US20190265082A1 (en) * 2018-02-27 2019-08-29 TeleSense, Inc. Method and Apparatus for Remote Monitoring and Management of Storage Using Machine Learning and Data Analystics
JP2020094764A (en) * 2018-12-13 2020-06-18 大阪瓦斯株式会社 Heat source having fan, exhaust system comprising the same, and exhaust treatment method

Also Published As

Publication number Publication date
JP7064154B2 (en) 2022-05-10
JP2022040482A (en) 2022-03-11

Similar Documents

Publication Publication Date Title
JP5804215B1 (en) Container refrigeration equipment
JP6137249B2 (en) Internal air conditioner and container refrigeration apparatus having the same
JP6056993B2 (en) Container refrigeration equipment
CN109073314B (en) Air conditioner in container and container refrigeration device including the same
JP6665909B2 (en) Cabin air conditioner
WO2019168055A1 (en) Interior air-conditioning device
US20230192395A1 (en) Air composition adjustment device, refrigeration apparatus, and transportation container
JP2017125670A (en) Gas supply device
JP6551592B2 (en) Gas supply device, internal air conditioning device, and container refrigeration device
JP6662427B2 (en) Cabin air conditioner
JP2016191532A (en) Container freezer device
JP6572782B2 (en) Gas supply apparatus and container refrigeration apparatus including the same
WO2019103045A1 (en) Air-tightness evaluation device, in-compartment air conditioning device, and refrigeration device
JP7064154B2 (en) Air composition adjusting device, refrigerating device, container, and air composition adjusting method
JP7161116B2 (en) Air composition conditioners, refrigeration equipment, and containers
WO2022045369A1 (en) Air composition adjustment device, refrigeration device, and container for transportation
JP2017219287A (en) Gas supply device and container freezing device including the same
JP2022040585A (en) Air composition regulator, freezer, and transport container
WO2022004548A1 (en) Air composition adjustment device, refrigeration device for transportation, and container for transportation
JP2022040583A (en) Air composition regulator, freezer, and transport container
JP7057518B2 (en) Refrigerating equipment for containers
JP6743480B2 (en) Gas supply device and container refrigeration device including the same
JP2019152421A (en) Inside air conditioning device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21860941

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21860941

Country of ref document: EP

Kind code of ref document: A1