WO2022044111A1 - Error cause estimating device and error cause estimating method - Google Patents

Error cause estimating device and error cause estimating method Download PDF

Info

Publication number
WO2022044111A1
WO2022044111A1 PCT/JP2020/031971 JP2020031971W WO2022044111A1 WO 2022044111 A1 WO2022044111 A1 WO 2022044111A1 JP 2020031971 W JP2020031971 W JP 2020031971W WO 2022044111 A1 WO2022044111 A1 WO 2022044111A1
Authority
WO
WIPO (PCT)
Prior art keywords
evaluation
error
target
evaluation target
work
Prior art date
Application number
PCT/JP2020/031971
Other languages
French (fr)
Japanese (ja)
Inventor
郁夫 鈴木
Original Assignee
株式会社Fuji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Fuji filed Critical 株式会社Fuji
Priority to PCT/JP2020/031971 priority Critical patent/WO2022044111A1/en
Priority to DE112020007552.4T priority patent/DE112020007552T5/en
Priority to JP2022544925A priority patent/JP7326631B2/en
Priority to CN202080104674.XA priority patent/CN116114390A/en
Publication of WO2022044111A1 publication Critical patent/WO2022044111A1/en
Priority to JP2023125906A priority patent/JP7466746B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages
    • H05K13/083Quality monitoring using results from monitoring devices, e.g. feedback loops

Definitions

  • This specification discloses a technique relating to an error cause estimation device and an error cause estimation method.
  • the arithmetic unit described in Patent Document 1 includes a storage unit and a control unit.
  • the storage unit stores device operation information and abnormality history information.
  • the device operation information specifies the number of operations of the first component and the second component used when mounting the component on the board for each combination of the first component and the second component.
  • the abnormality history information specifies the number of abnormalities in which an abnormality occurs in the first component and the second component when the component is mounted on the substrate for each combination of the first component and the second component.
  • the control unit compares the dispersion value of the first component with a high abnormality occurrence rate with the dispersion value of the second component with a high abnormality occurrence rate, and determines the type to which the component with the smaller value belongs as the cause of the abnormality. It is judged that there is a high possibility that it has become.
  • the abnormality history information described in Patent Document 1 is information indicating the number of abnormalities that have occurred with respect to the combination of the first component and the second component. Therefore, the abnormality history information contains a mixture of abnormality histories caused by various causes. Therefore, the control unit may not always be able to properly extract the component causing the abnormality.
  • the present specification discloses an error cause estimation device and an error cause estimation method capable of extracting a specific target that has caused a work error from the evaluation targets.
  • an error cause estimation device including a storage unit, an aggregation unit, and an extraction unit.
  • the storage unit is an evaluation target, which is at least one of the equipment used for the anti-board work and the usage data used for the anti-board work of the anti-board work machine that performs a predetermined anti-board work on the substrate.
  • an error code indicating a work error of the work on the board using the evaluation target is associated and stored in the storage device.
  • the aggregation unit aggregates the evaluation values of the error occurrence status for the plurality of types of the evaluation targets stored in the storage device for each error code.
  • the extraction unit is the evaluation target that caused the work error based on the significant difference in the evaluation value of the error occurrence status among the plurality of types of the evaluation targets aggregated for each error code. Extract a specific target.
  • an error cause estimation method including a storage process, an aggregation process, and an extraction process.
  • the storage step is an evaluation target, which is at least one of the equipment used for the anti-board work and the usage data used for the anti-board work of the anti-board work machine that performs a predetermined anti-board work on the substrate.
  • an error code indicating a work error of the work on the board using the evaluation target is associated and stored in the storage device.
  • the evaluation values of the error occurrence status for the plurality of types of the evaluation targets stored in the storage device are aggregated for each error code.
  • the extraction step is the evaluation target that caused the work error based on the significant difference in the evaluation value of the error occurrence status among the plurality of types of the evaluation targets aggregated for each error code. Extract a specific target.
  • the error cause estimation device it is equipped with an extraction unit.
  • the extraction unit extracts a specific target that is the evaluation target that caused the work error, based on the significant difference in the evaluation value of the error occurrence status among the plurality of types of evaluation targets aggregated for each error code. Therefore, the error cause estimation device can appropriately extract the specific target that caused the work error from the evaluation targets, as compared with the case where the evaluation values are not aggregated for each error code.
  • the above-mentioned matters regarding the error cause estimation device can be applied to the error cause estimation method as well.
  • Embodiment 1-1 Configuration example of the substrate work line WL0
  • a predetermined anti-board work is performed on the substrate 90.
  • the type and number of the anti-board work machines WM0 constituting the anti-board work line WL0 are not limited.
  • the substrate-to-board work line WL0 of the present embodiment is a plurality (five) anti-board work of a printing machine WM1, a printing inspection machine WM2, a component mounting machine WM3, a reflow furnace WM4, and an appearance inspection machine WM5.
  • the machine WM0 is provided, and the substrate 90 is conveyed in this order by the substrate transfer device.
  • the printing machine WM1 prints solder at the mounting positions of a plurality of parts 91 on the substrate 90.
  • the printing inspection machine WM2 inspects the printing state of the solder printed by the printing machine WM1.
  • the component mounting machine WM3 mounts a plurality of components 91 on a substrate 90 on which solder is printed by the printing machine WM1.
  • the component mounting machine WM3 may be one or a plurality. When a plurality of component mounting machines WM3 are provided, the plurality of component mounting machines WM3 can share and mount the plurality of components 91.
  • the reflow furnace WM4 heats the substrate 90 on which a plurality of parts 91 are mounted by the parts mounting machine WM3, melts the solder, and performs soldering.
  • the visual inspection machine WM5 inspects the mounting state of a plurality of parts 91 mounted by the component mounting machine WM3.
  • the board-to-board work line WL0 uses a plurality of (five) board-to-board work machines WM0 to sequentially convey the boards 90 and execute a production process including an inspection process to produce the board product 900. Can be done.
  • the board work line WL0 includes, for example, a board work machine WM0 such as a function inspection machine, a buffer device, a board supply device, a board reversing device, a shield mounting device, an adhesive coating device, and an ultraviolet irradiation device. You can also prepare.
  • a board work machine WM0 such as a function inspection machine, a buffer device, a board supply device, a board reversing device, a shield mounting device, an adhesive coating device, and an ultraviolet irradiation device. You can also prepare.
  • the plurality of (five) anti-board work machines WM0 and the line management device LC0 constituting the anti-board work line WL0 are communicably connected by a communication unit. Further, the line management device LC0 and the management device HC0 are communicably connected by a communication unit.
  • the communication unit can connect these in a communicable manner by wire or wirelessly, and the communication method may be various methods.
  • a premises information communication network (LAN: Local Area Network) is configured by a plurality of (five) anti-board work machines WM0, a line management device LC0, and a management device HC0. Therefore, the plurality (five) anti-board working machines WM0 can communicate with each other via the communication unit. Further, the plurality (five) anti-board working machines WM0 can communicate with the line management device LC0 via the communication unit. Further, the line management device LC0 and the management device HC0 can communicate with each other via the communication unit.
  • LAN Local Area Network
  • the line management device LC0 controls a plurality of (five) anti-board work machines WM0 constituting the anti-board work line WL0, and monitors the operating status of the anti-board work line WL0.
  • the line management device LC0 stores various control data for controlling a plurality of (five) anti-board working machines WM0.
  • the line management device LC0 transmits control data to each of the plurality (five) anti-board working machines WM0. Further, each of the plurality (five) anti-board working machines WM0 transmits the operation status and the production status to the line management device LC0.
  • the management device HC0 manages at least one line management device LC0. For example, the operating status and the production status of the anti-board working machine WM0 acquired by the line management device LC0 are transmitted to the management device HC0 as needed.
  • the management device HC0 is provided with a storage device DS0.
  • the storage device DS0 can store various acquired data acquired by the board working machine WM0. For example, various image data captured by the anti-board working machine WM0 are included in the acquired data.
  • the recording (log data) of the operating status acquired by the anti-board working machine WM0 is included in the acquired data. Further, the storage device DS0 can store various production information regarding the production of the substrate product 900.
  • the component mounting machine WM3 mounts a plurality of components 91 on the substrate 90. As shown in FIG. 2, the component mounting machine WM3 includes a board transfer device 11, a component supply device 12, a component transfer device 13, a component camera 14, a board camera 15, and a control device 16.
  • the substrate transfer device 11 is configured by, for example, a belt conveyor or the like, and conveys the substrate 90 in the transfer direction (X-axis direction).
  • the board 90 is a circuit board, and an electronic circuit, an electric circuit, a magnetic circuit, and the like are formed.
  • the board transfer device 11 carries the board 90 into the machine of the component mounting machine WM3, and positions the board 90 at a predetermined position in the machine.
  • the board transfer device 11 carries out the board 90 to the outside of the component mounting machine WM3 after the mounting process of the plurality of components 91 by the component mounting machine WM3 is completed.
  • the component supply device 12 supplies a plurality of components 91 mounted on the substrate 90.
  • the component supply device 12 includes a plurality of feeders 121 provided along the transport direction (X-axis direction) of the substrate 90. As shown in FIG. 3, each of the plurality of feeders 121 is equipped with a reel RL0. A carrier tape CT0 containing a plurality of parts 91 is wound around the reel RL0. The feeder 121 feeds the carrier tape CT0 at a pitch so that the component 91 can be collected at the supply position PU0 located on the tip end side of the feeder 121. Further, the component supply device 12 can also supply an electronic component (for example, a lead component) having a relatively large size as compared with a chip component or the like in a state of being arranged on a tray.
  • an electronic component for example, a lead component
  • the parts transfer device 13 includes a head drive device 131 and a moving table 132.
  • the head drive device 131 is configured to be able to move the moving table 132 in the X-axis direction and the Y-axis direction by a linear motion mechanism.
  • the moving table 132 is provided with a mounting head 20 detachably (replaceable) by a clamp member.
  • the mounting head 20 uses at least one holding member 30 to collect and hold the component 91 supplied by the component supply device 12, and mounts the component 91 on the substrate 90 positioned by the substrate transfer device 11.
  • the holding member 30 for example, a suction nozzle, a chuck, or the like can be used.
  • a known imaging device can be used for the component camera 14 and the board camera 15.
  • the component camera 14 is fixed to the base of the component mounting machine WM3 so that the optical axis faces upward in the vertical direction (Z-axis direction).
  • the component camera 14 can take an image of the component 91 held by the holding member 30 from below.
  • the board camera 15 is provided on the moving table 132 of the component transfer device 13 so that the optical axis faces downward in the vertical direction (Z-axis direction).
  • the board camera 15 can take an image of the board 90 from above.
  • the component camera 14 and the board camera 15 perform imaging based on a control signal transmitted from the control device 16.
  • the image data of the captured image captured by the component camera 14 and the substrate camera 15 is transmitted to the control device 16.
  • the control device 16 includes a known arithmetic unit and a storage device, and constitutes a control circuit. Information, image data, and the like output from various sensors provided in the component mounting machine WM3 are input to the control device 16. The control device 16 sends a control signal to each device based on a control program, predetermined mounting conditions, and the like.
  • control device 16 causes the board camera 15 to image the board 90 positioned by the board transfer device 11.
  • the control device 16 processes the image captured by the substrate camera 15 and recognizes the positioning state of the substrate 90.
  • the control device 16 causes the holding member 30 to collect and hold the parts 91 supplied by the parts supply device 12, and causes the parts camera 14 to image the parts 91 held by the holding member 30.
  • the control device 16 processes the image captured by the component camera 14 to recognize the holding posture of the component 91.
  • the control device 16 moves the holding member 30 toward the upper side of the planned mounting position preset by a control program or the like. Further, the control device 16 corrects the planned mounting position based on the positioning state of the board 90, the holding posture of the component 91, and the like, and sets the mounting position where the component 91 is actually mounted.
  • the planned mounting position and the mounting position include the rotation angle in addition to the position (X-axis coordinate and Y-axis coordinate).
  • the control device 16 corrects the target position (X-axis coordinate and Y-axis coordinate) and rotation angle of the holding member 30 according to the mounting position.
  • the control device 16 lowers the holding member 30 at the corrected rotation angle at the corrected target position, and mounts the component 91 on the substrate 90.
  • the control device 16 executes a mounting process for mounting a plurality of components 91 on the substrate 90.
  • the component 91 is supplied from the feeder 121 of the component supply device 12, the component 91 supplied from the feeder 121 is collected by the holding member 30, and the substrate 90 is collected.
  • Various devices and data are used by the time the component 91 is mounted on the. When an error occurs in these operations due to a malfunction of a specific device, it becomes more difficult to identify the device that caused the work error as the number of intervening devices increases. The same is true for data and for other board-to-board operations.
  • the error cause estimation device 70 is provided on the board-to-board work line WL0 of the present embodiment.
  • the error cause estimation device 70 extracts the specific target ST0 that caused the work error from the evaluation target ET0.
  • the error cause estimation device 70 can be provided in various arithmetic units.
  • the error cause estimation device 70 can be provided in the analysis device, the line management device LC0, the management device HC0, the control device 16 of the component mounting machine WM3, and the like.
  • the error cause estimation device 70 can also be formed on the cloud. As shown in FIG. 4, the error cause estimation device 70 of the present embodiment is provided in the management device HC0.
  • the error cause estimation device 70 includes a storage unit 71, a tabulation unit 72, and an extraction unit 73 when regarded as a control block.
  • the error cause estimation device 70 may also include a first determination unit 74 and a second determination unit 75.
  • the error cause estimation device 70 may also include a guide unit 76.
  • the error cause estimation device 70 of the present embodiment includes a storage unit 71, an aggregation unit 72, an extraction unit 73, a first determination unit 74, a second determination unit 75, and a guide unit 76. And have.
  • the error cause estimation device 70 of the present embodiment executes control according to the flowchart shown in FIG.
  • the storage unit 71 performs the process shown in step S11.
  • the tabulation unit 72 performs the process shown in step S12.
  • the extraction unit 73, the first determination unit 74, and the second determination unit 75 perform the process shown in step S13.
  • the guide unit 76 performs the process shown in step S14.
  • the storage unit 71 stores the evaluation target ET0 and the error code EC0 in the storage device DS0 in association with each other (step S11 shown in FIG. 5).
  • the evaluation target ET0 refers to at least one of the equipment used UM0 and the data used UD0.
  • the device used UM0 refers to the device used for the board-to-board work of the board-to-board work machine WM0.
  • the usage data UD0 refers to the data used for the board-to-board work of the board-to-board work machine WM0.
  • the error code EC0 indicates a work error of the work on the board using the evaluation target ET0.
  • the board-to-board working machine WM0 includes a component mounting machine WM3 that mounts the component 91 on the board 90.
  • the board-to-board work includes a supply work of supplying the parts 91 from the parts supply device 12, a collection work of collecting the parts 91 supplied from the parts supply device 12, and a board of the parts 91. At least one of the mounting operations to be mounted on the 90 is included.
  • the equipment used UM0 includes a reel RL0, a feeder 121, a mounting head 20, a holding member 30, a component camera 14, and the like.
  • the reel RL0 and the feeder 121 are involved in the supply work of the component 91.
  • the mounting head 20, the holding member 30, and the component camera 14 are involved in the sampling work and the mounting work of the component 91.
  • the usage data UD0 includes parts data including shape data, array data, coordinate data, and the like.
  • the component data defines the properties and handling conditions of the component 91. Specifically, the component data defines the electrical characteristic values of the component 91, its error, properties such as operating environment conditions, as well as the packaging form and storage conditions. Further, the component data defines handling conditions such as the specifications of the reel RL0, the feeder 121 used, the type of the holding member 30, the moving speed of the mounting head 20, and the ascending / descending speed of the holding member 30. Further, the component data includes shape data.
  • the shape data defines the outer shape of the part 91.
  • the shape data defines, for example, the size (vertical dimension, horizontal dimension, and height dimension) of the component 91, size tolerance, lead position, appearance color, and the like.
  • the shape data may specify imaging conditions, lighting conditions, and the like when the component 91 held by the holding member 30 is imaged by the component camera 14.
  • the component mounting machine WM3 processes the image data of the component 91 imaged by the component camera 14 and compares it with the outer shape defined in the shape data, so that the presence or absence of the component 91 held by the holding member 30 is present. , Judge the type of error, etc. Similarly, the component mounting machine WM3 acquires a holding posture such as a position and a rotation angle of the component 91 with respect to the holding member 30.
  • the arrangement data defines the slot positions of the pallet members in which a plurality of feeders 121 are arranged.
  • the coordinate data defines the position of the board 90 on which the component 91 is mounted.
  • These usage data UD0 are stored in the storage device DS0 shown in FIGS. 1 and 4.
  • the control device 16 of the component mounting machine WM3 can acquire and use these data together with, for example, a control program.
  • the component data and the array data are involved in the supply operation of the component 91.
  • the component data and the coordinate data are involved in the sampling operation and the mounting operation of the component 91.
  • the work error of the supply work and the collection work of the part 91 is determined based on the image of the part 91 captured by the part camera 14.
  • the work error of the mounting work of the component 91 is determined based on the image of the board 90 captured by the board camera 15.
  • the component mounting machine WM3 can determine the quality of the work on the substrate depending on whether or not the measured value of the object extracted from the image is included in the allowable range. Further, the quality of the work with the board can be judged by another work machine with the board WM0.
  • the visual inspection machine WM5 can determine the quality of the work on the board by the component mounting machine WM3.
  • the error code EC0 is assigned to each type of work error.
  • the error code EC0 may take various forms as long as it can identify the work error of the work with the board. As shown in FIG. 6, the error code EC0 of this embodiment is represented by, for example, a character string (alphanumerical characters).
  • the storage unit 71 stores the evaluation target ET0 and the error code EC0 in the storage device DS0 in association with each other. Specifically, the storage unit 71 stores the identification code for identifying the evaluation target ET0 and the error code EC0 in the storage device DS0 in association with each other.
  • the storage unit 71 sequentially stores the evaluation target ET0 and the error code EC0 in the storage device DS0. Further, the storage unit 71 can store the evaluation target ET0 and the error code EC0 for a predetermined number of times in the storage device DS0 when a predetermined number of work errors occur. If the board-to-board work machine WM0 performs the board-to-board work, but no work error occurs, the storage unit 71 stores only the evaluation target ET0 in the storage device DS0.
  • FIG. 6 shows an example of a state in which the error code EC0, the device used UM0, and the data used UD0 are associated and stored in the storage device DS0.
  • the work error of the work on the board using the used equipment UM1, the used equipment UM2, and the used data UD1 is indicated by the error code EC0001.
  • the aggregation unit 72 aggregates the evaluation value EV0 of the error occurrence status for the plurality of types of evaluation target ET0 stored in the storage device DS0 for each error code EC0 (step S12 shown in FIG. 5).
  • the evaluation value EV0 is not limited as long as it can evaluate the error occurrence status.
  • the evaluation value EV0 of the error occurrence status can be expressed by a combination of the number of times the evaluation target ET0 is used for the work on the board and the number of times the work error occurs.
  • the totaling unit 72 totals the number of times of use for the board work and the number of times of occurrence of work errors for each of the used equipment UM1, the used equipment UM2, and the used data UD1. ..
  • the aggregation unit 72 aggregates the evaluation value EV0 in the same manner.
  • the tabulation unit 72 can also generate a ranking of the error code EC0 stored in the storage device DS0.
  • the extraction unit 73 can extract the specific target ST0 from the error code EC0 having a higher ranking.
  • the error code EC0170 shown in FIG. 6 and the error code EC0174 differ only in the lowest digit.
  • the error code EC0 is often assigned to related work errors in order, and grouping similar error codes EC0 (for example, when only the lowest digit is different) makes it easier to aggregate the evaluation values EV0. .. Therefore, the aggregation unit 72 may group similar error codes EC0 and aggregate the evaluation value EV0 of the error occurrence status.
  • the aggregation unit 72 aggregates the evaluation value EV0 of the error occurrence status by combining the evaluation target ET0 associated with the error code EC0170 and the evaluation target ET0 associated with the error code EC0174.
  • the totaling unit 72 can also group the error codes EC0 having the same or similar measures for improving the work error, and totalize the evaluation value EV0 of the error occurrence status.
  • the tabulation unit 72 may group error code EC0s having similar error codes EC0 and having the same or similar measures for improving work errors, and tabulate the evaluation value EV0 of the error occurrence status.
  • Extraction unit 73 is a specific target that is the evaluation target ET0 that caused the work error, based on the significant difference in the evaluation value EV0 of the error occurrence status among the plurality of types of evaluation target ET0 aggregated for each error code EC0. Extract ST0 (step S13 shown in FIG. 5).
  • one type of evaluation target ET0 selected from a plurality of types of evaluation target ET0 stored in association with one error code EC0 is set as the first-class evaluation target ET1, and is referred to as the first-class evaluation target ET1.
  • the first determination unit 74 evaluates the error occurrence status of a plurality of evaluation target ET0s included in the second type evaluation target ET2 based on one evaluation target ET0 included in the first type evaluation target ET1. The presence or absence of a significant difference in EV0 is determined for each of the plurality of evaluation target ET0s included in the first-class evaluation target ET1.
  • the second determination unit 75 is significant in the evaluation value EV0 of the error occurrence status for a plurality of evaluation target ET0s included in the first type evaluation target ET1 based on one evaluation target ET0 included in the second type evaluation target ET2. The presence or absence of the difference is determined for each of the plurality of evaluation target ET0s included in the type 2 evaluation target ET2.
  • the extraction unit 73 is based on the first determination result, which is the determination result determined by the first determination unit 74, and the second determination result, which is the determination result determined by the second determination unit 75.
  • the specific target ST0 can be extracted.
  • FIG. 7 shows an example of the evaluation value EV0 of the error occurrence status of the feeder 121 which is the first type evaluation target ET1 and the holding member 30 (suction nozzle) which is the second type evaluation target ET2.
  • the figure schematically shows the evaluation value EV0 of the error occurrence status for one error code EC0001, and the description is omitted for other types of error codes EC0.
  • the feeder 121 is assumed to be the feeder FD1, the feeder FD2, and the feeder FD3.
  • the holding member 30 suction nozzle
  • three suction nozzles NZ1, suction nozzle NZ2, and suction nozzle NZ3 are assumed for convenience of explanation.
  • the fractional notation in the figure shows an example of the evaluation value EV0 of the error occurrence status.
  • the denominator indicates the number of times of use for the substrate work (for example, collection work).
  • the numerator indicates the number of times a work error (eg, collection error) has occurred.
  • the combination of the feeder FD1 and the suction nozzle NZ1 shows that the number of times the work error occurred was 4 times out of the number of times of use 100 times.
  • the first determination unit 74 uses the feeder FD1 as a reference as one evaluation target ET0 included in the first-class evaluation target ET1.
  • the first determination unit 74 has a significance of the evaluation value EV0 of the error occurrence status for the three evaluation target ET0s of the suction nozzle NZ1, the suction nozzle NZ2 and the suction nozzle NZ3 included in the second type evaluation target ET2 with the feeder FD1 as a reference. Determine if there is a difference.
  • the evaluation value EV0 of the error occurrence status for the suction nozzle NZ1 based on the feeder FD1 is expressed as a situation in which the number of work error occurrences is 4 out of 100 times of use.
  • the evaluation value EV0 of the error occurrence status for the suction nozzle NZ2 with respect to the feeder FD1 is represented as a situation in which the number of work errors occurrence is 1 out of 100 times of use.
  • the evaluation value EV0 of the error occurrence status for the suction nozzle NZ3 with respect to the feeder FD1 is represented as a situation in which the number of work error occurrences is 0 out of 100 times of use.
  • the first determination unit 74 uses, for example, a statistical test method, specifically, a method called "test of difference in population ratio" in determining the presence or absence of a significant difference in the evaluation value EV0 of the error occurrence status. Can be done. In this verification method, statistical processing is performed using the number of times the work is used for the board work and the number of times work errors occur, and whether or not there is a significant difference between multiple events (evaluation value EV0 of the error occurrence status). Is tested. A 5% probability of occurrence is exemplified as a criterion for determining a significant difference.
  • the test accuracy increases as the number of times of use increases.
  • the first determination unit 74 may select the evaluation target ET0 that has been used for the substrate work more than a predetermined number of times as the first-class evaluation target ET1.
  • the second determination unit 75 may select the evaluation target ET0 that has been used for the substrate work more than a predetermined number of times as the second type evaluation target ET2.
  • the error occurrence rate is calculated by dividing the number of work error occurrences by the number of times the evaluation target ET0 is used for the board work.
  • the first determination unit 74 may provide a minimum number of uses and select the evaluation target ET0 having the minimum number of uses or more as the first-class evaluation target ET1.
  • the second determination unit 75 sets the minimum number of uses and selects the evaluation target ET0 equal to or more than the minimum number of uses as the second type evaluation target ET2. good.
  • the evaluation target ET0 as the reference is not the specific target ST0, and the evaluation target ET0 whose error occurrence status evaluation value EV0 included in the type 2 evaluation target ET2 is defective is the specific target. It is determined that there is a possibility of ST0. For convenience of explanation, this determination is referred to as determination A.
  • the first determination unit 74 determines that the reference evaluation target ET0 is not the specific target ST0 and that the second type evaluation target ET2 does not include the specific target ST0. For convenience of explanation, this determination is referred to as determination B.
  • the first determination unit 74 determines that the evaluation target ET0 as the reference may be the specific target ST0. For convenience of explanation, this determination is referred to as determination C.
  • the second determination unit 75 makes a determination by exchanging the first type evaluation target ET1 and the second type evaluation target ET2 as compared with the first determination unit 74. That is, when a significant difference in the evaluation value EV0 of the error occurrence status is recognized for a plurality of evaluation target ET0s included in the first-class evaluation target ET1 based on one evaluation target ET0 included in the second-class evaluation target ET2.
  • the evaluation target ET0 as the reference is not the specific target ST0
  • the evaluation target ET0 whose error occurrence status evaluation value EV0 included in the first-class evaluation target ET1 is defective is the specific target. It is determined that there is a possibility of ST0. For convenience of explanation, this determination is referred to as determination D.
  • the second determination unit 75 determines that the evaluation target ET0 as the reference is not the specific target ST0 and that the first-class evaluation target ET1 does not include the specific target ST0. For convenience of explanation, this determination is referred to as determination E.
  • the second determination unit 75 determines that the evaluation target ET0 as the reference may be the specific target ST0. For convenience of explanation, this determination is referred to as determination F.
  • the extraction unit 73 may be able to extract the specific target ST0.
  • the extraction unit 73 may be able to extract the specific target ST0.
  • the feeder FD1 as the reference is specified in the first determination unit 74. It is determined that it is not the target ST0 (determination A). Further, the first determination unit 74 determines (determination A) that the suction nozzle NZ1 having a defective error occurrence status evaluation value EV0 may be the specific target ST0, and uses it as the first first determination result. ..
  • the first determination unit 74 uses the feeder FD2 as a reference. It is determined that it is not the specific target ST0 (determination A). Further, the first determination unit 74 determines (determination A) that the suction nozzle NZ1 having a defective error occurrence status evaluation value EV0 may be the specific target ST0, and obtains the second first determination result. ..
  • the feeder FD3 as the reference is specified in the first determination unit 74. It is determined that it is not the target ST0 (determination A). Further, the first determination unit 74 determines (determination A) that the suction nozzle NZ1 having a defective error occurrence status evaluation value EV0 may be the specific target ST0, and uses it as the third first determination result. ..
  • the second determination unit 75 determines (determination F) that the suction nozzle NZ1 as the reference may be the specific target ST0, and obtains the first second determination result.
  • the second determination unit 75 determines that the reference suction nozzle NZ2 is not the specific target ST0, and the first-class evaluation target ET1 (feeder FD1, feeder FD2, and feeder FD3) does not include the specific target ST0. (Judgment E) is performed to obtain the second second judgment result.
  • the second determination unit 75 determines that the reference suction nozzle NZ3 is not the specific target ST0, and the first-class evaluation target ET1 (feeder FD1, feeder FD2, and feeder FD3) does not include the specific target ST0. (Judgment E) is performed to obtain the third second judgment result.
  • the extraction unit 73 determines the specific target ST0 based on the first determination result, which is the determination result determined by the first determination unit 74, and the second determination result, which is the determination result determined by the second determination unit 75. Extract.
  • the extraction unit 73 is the first determination result to the third first determination result determined by the first determination unit 74, and the first determination result determined by the second determination unit 75.
  • the specific target ST0 is extracted based on the second judgment result to the third second judgment result of.
  • the extraction unit 73 extracts the evaluation target ET0 that satisfies the first determination result and the second determination result as the specific target ST0 when the first determination result and the second determination result do not contradict each other.
  • the extraction unit 73 can extract the evaluation target ET0 that satisfies the first determination result and the second determination result as the specific target ST0.
  • the extraction unit 73 extracts the suction nozzle NZ1 as the specific target ST0.
  • the extraction unit 73 estimates that the feeder FD1, the feeder FD2, and the feeder FD3 are not the specific target ST0.
  • the extraction unit 73 estimates that the suction nozzle NZ2 and the suction nozzle NZ3 are not the specific target ST0.
  • the guide unit 76 guides the specific target ST0 extracted by the extraction unit 73 (step S14 shown in FIG. 5).
  • the guide unit 76 can display the specific target ST0 on the display device 80 to guide the specific target ST0.
  • the display device 80 a known display device can be used.
  • the display device 80 can be provided in an analysis device, a management device HC0, a line management device LC0, a component mounting machine WM3, and the like. As shown in FIGS. 1 and 4, the display device 80 of this embodiment is provided in the management device HC0.
  • FIG. 8 shows an example of guidance by the guide unit 76.
  • the guide unit 76 guides that the specific target ST0 that caused the work error is the suction nozzle NZ1. As a result, the worker can know the specific target ST0. However, when only the specific target ST0 is guided, the worker needs to confirm the work error separately. Therefore, the guide unit 76 may guide the error code EC0 associated with the specific target ST0 together with the specific target ST0.
  • the guide unit 76 guides the error code EC0 (in this example, the error code EC0001) associated with the suction nozzle NZ1 which is the specific target ST0. Further, the guide unit 76 may also indicate that the error code EC0001 indicates, for example, a component standing abnormality (an abnormal state in which the suction nozzle NZ1 sucks a corner portion of the component 91 and the component 91 stands up). can. Further, the guide unit 76 can also indicate that the type of work for the substrate is collection work.
  • the experienced worker can take measures to improve the work error of the work on the board using the specific target ST0 based on the accumulated knowledge.
  • the guide unit 76 may guide the specific target ST0 together with the countermeasure information EI0 for improving the work error of the work on the board using the specific target ST0.
  • EI0 countermeasure information
  • the guide unit 76 guides the skip of the suction nozzle NZ1 which is the specific target ST0 as the countermeasure information EI0 for improving the work error.
  • the skip of the suction nozzle NZ1 indicates that when the mounting head 20 includes a plurality of suction nozzles, the suction nozzle NZ1 is not used and another suction nozzle is used. Further, the guide unit 76 guides the replacement of the suction nozzle NZ1 which is the specific target ST0 as the countermeasure information EI0 for improving the work error.
  • the guide unit 76 refers to the comparison table stored in the storage device DS0, acquires a countermeasure candidate (countermeasure information EI0) for the combination of the error code EC0 and the specific target ST0, and obtains the countermeasure information EI0. I can guide you.
  • the guidance unit 76 can guide various countermeasure information EI0 according to the types of the specific target ST0 and the error code EC0. For example, when the specific target ST0 is the mounting head 20 and the error code EC0 indicates an abnormality regarding the internal structure of the mounting head 20, the guide unit 76 can guide the maintenance of the mounting head 20 as countermeasure information EI0. Further, when the specific target ST0 is the holding member 30 (suction nozzle) and the error code EC0 is a front / back determination abnormality, a mounting load abnormality, a suction load abnormality, etc. of the component 91, the guide unit 76 uses the shape data as countermeasure information EI0. It is possible to guide the correction of.
  • the board-to-board work is not limited to the supply work, collection work, and mounting work of the component 91.
  • the board-to-board work may be a transfer work in which the board 90 is carried into the machine, positioned at a predetermined position, and the board 90 is carried out from the machine after the predetermined board-to-board work.
  • the specific target ST0 is the substrate transfer device 11
  • the error code EC0 indicates a reading error of the positioning reference unit provided on the substrate 90, a detection error of a plurality of positioning reference units, and the like.
  • the guide unit 76 can guide the correction of data related to the positioning reference unit specified in the production program as the countermeasure information EI0.
  • the specific target ST0 is the board transfer device 11, and the error code EC0 indicates an error related to the loading / unloading of the board 90 in the specific anti-board working machine WM0.
  • the guide unit 76 can guide the cleaning, calibration, and the like of the board transfer device 11 as the countermeasure information EI0.
  • the board working machine WM0 is not limited to the component mounting machine WM3, and may be, for example, a printing machine WM1, a printing inspection machine WM2, an appearance inspection machine WM5, or the like.
  • the error cause estimation method includes a storage process, an aggregation process, and an extraction process.
  • the storage process corresponds to the control performed by the storage unit 71.
  • the aggregation process corresponds to the control performed by the aggregation unit 72.
  • the extraction step corresponds to the control performed by the extraction unit 73.
  • the error cause estimation method can include a first determination step and a second determination step.
  • the first determination step corresponds to the control performed by the first determination unit 74.
  • the second determination step corresponds to the control performed by the second determination unit 75.
  • the error cause estimation method can include a guidance process.
  • the guidance process corresponds to the control performed by the guidance unit 76.
  • the extraction unit 73 is provided.
  • the extraction unit 73 is a specific target that is the evaluation target ET0 that caused the work error, based on the significant difference in the evaluation value EV0 of the error occurrence status among the plurality of types of evaluation target ET0 aggregated for each error code EC0. Extract ST0. Therefore, the error cause estimation device 70 can appropriately extract the specific target ST0 that caused the work error from the evaluation target ET0 as compared with the case where the evaluation value EV0 is not aggregated for each error code EC0. can.
  • the above-mentioned matters regarding the error cause estimation device 70 can be applied to the error cause estimation method as well.

Abstract

An error cause estimating device provided with a storing unit, a tallying unit, and an extracting unit. The storing unit causes an evaluation object and an error code indicating a work error of a substrate work using the evaluation object to be associated with each other and stored in a storage device, the evaluation object being at least one of an employed apparatus employed for the substrate work of a substrate work machine for performing a predetermined substrate work on a substrate, and employed data employed for the substrate work. The tallying unit tallies, for each error code, an evaluation value of an error occurrence circumstance with respect to a plurality of types of evaluation objects stored in the storage device. The extracting unit, on the basis of a significant difference in the evaluation values of the error occurrence circumstances between a plurality of types of evaluation objects tallied for each error code, extracts a specific object that is an evaluation object causing the work error.

Description

エラー原因推定装置およびエラー原因推定方法Error cause estimation device and error cause estimation method
 本明細書は、エラー原因推定装置およびエラー原因推定方法に関する技術を開示する。 This specification discloses a technique relating to an error cause estimation device and an error cause estimation method.
 特許文献1に記載の演算装置は、記憶部と、制御部とを備える。記憶部は、装置動作情報と異常履歴情報とを記憶する。装置動作情報は、部品を基板に装着する際に使用する第一部品および第二部品の動作回数を、第一部品および第二部品の組合せ毎に特定する。異常履歴情報は、部品を基板に装着する際に第一部品および第二部品において異常が発生した異常回数を、第一部品および第二部品の組合せ毎に特定する。制御部は、異常発生率の高い第一部品の分散の値と、異常発生率の高い第二部品の分散の値とを比較して、値の小さい方の部品が属する種別を異常の原因となっている可能性が高いと判断する。 The arithmetic unit described in Patent Document 1 includes a storage unit and a control unit. The storage unit stores device operation information and abnormality history information. The device operation information specifies the number of operations of the first component and the second component used when mounting the component on the board for each combination of the first component and the second component. The abnormality history information specifies the number of abnormalities in which an abnormality occurs in the first component and the second component when the component is mounted on the substrate for each combination of the first component and the second component. The control unit compares the dispersion value of the first component with a high abnormality occurrence rate with the dispersion value of the second component with a high abnormality occurrence rate, and determines the type to which the component with the smaller value belongs as the cause of the abnormality. It is judged that there is a high possibility that it has become.
特開2010-238689号公報Japanese Unexamined Patent Publication No. 2010-238689
 しかしながら、特許文献1に記載の異常履歴情報は、第一部品および第二部品の組合せに対して、発生した異常回数を示す情報である。よって、異常履歴情報には、種々の原因によって生じた異常の履歴が混在している。そのため、制御部は、異常の原因となっている部品を適切に抽出することができるとは限らない。 However, the abnormality history information described in Patent Document 1 is information indicating the number of abnormalities that have occurred with respect to the combination of the first component and the second component. Therefore, the abnormality history information contains a mixture of abnormality histories caused by various causes. Therefore, the control unit may not always be able to properly extract the component causing the abnormality.
 このような事情に鑑みて、本明細書は、評価対象の中から作業エラーの原因となった特定対象を抽出可能なエラー原因推定装置およびエラー原因推定方法を開示する。 In view of such circumstances, the present specification discloses an error cause estimation device and an error cause estimation method capable of extracting a specific target that has caused a work error from the evaluation targets.
 本明細書は、記憶部と、集計部と、抽出部とを備えるエラー原因推定装置を開示する。前記記憶部は、基板に所定の対基板作業を行う対基板作業機の前記対基板作業に使用された使用機器および前記対基板作業に使用された使用データのうちの少なくとも一方である評価対象、並びに、前記評価対象を使用した前記対基板作業の作業エラーを示すエラーコードを関連付けて記憶装置に記憶させる。前記集計部は、前記記憶装置に記憶されている複数種類の前記評価対象についてのエラー発生状況の評価値を前記エラーコードごとに集計する。前記抽出部は、前記エラーコードごとに集計された複数種類の前記評価対象の間の前記エラー発生状況の前記評価値の有意差に基づいて、前記作業エラーの原因となった前記評価対象である特定対象を抽出する。 This specification discloses an error cause estimation device including a storage unit, an aggregation unit, and an extraction unit. The storage unit is an evaluation target, which is at least one of the equipment used for the anti-board work and the usage data used for the anti-board work of the anti-board work machine that performs a predetermined anti-board work on the substrate. In addition, an error code indicating a work error of the work on the board using the evaluation target is associated and stored in the storage device. The aggregation unit aggregates the evaluation values of the error occurrence status for the plurality of types of the evaluation targets stored in the storage device for each error code. The extraction unit is the evaluation target that caused the work error based on the significant difference in the evaluation value of the error occurrence status among the plurality of types of the evaluation targets aggregated for each error code. Extract a specific target.
 また、本明細書は、記憶工程と、集計工程と、抽出工程とを備えるエラー原因推定方法を開示する。前記記憶工程は、基板に所定の対基板作業を行う対基板作業機の前記対基板作業に使用された使用機器および前記対基板作業に使用された使用データのうちの少なくとも一方である評価対象、並びに、前記評価対象を使用した前記対基板作業の作業エラーを示すエラーコードを関連付けて記憶装置に記憶させる。前記集計工程は、前記記憶装置に記憶されている複数種類の前記評価対象についてのエラー発生状況の評価値を前記エラーコードごとに集計する。前記抽出工程は、前記エラーコードごとに集計された複数種類の前記評価対象の間の前記エラー発生状況の前記評価値の有意差に基づいて、前記作業エラーの原因となった前記評価対象である特定対象を抽出する。 Further, this specification discloses an error cause estimation method including a storage process, an aggregation process, and an extraction process. The storage step is an evaluation target, which is at least one of the equipment used for the anti-board work and the usage data used for the anti-board work of the anti-board work machine that performs a predetermined anti-board work on the substrate. In addition, an error code indicating a work error of the work on the board using the evaluation target is associated and stored in the storage device. In the aggregation step, the evaluation values of the error occurrence status for the plurality of types of the evaluation targets stored in the storage device are aggregated for each error code. The extraction step is the evaluation target that caused the work error based on the significant difference in the evaluation value of the error occurrence status among the plurality of types of the evaluation targets aggregated for each error code. Extract a specific target.
 上記のエラー原因推定装置によれば、抽出部を備える。抽出部は、エラーコードごとに集計された複数種類の評価対象の間のエラー発生状況の評価値の有意差に基づいて、作業エラーの原因となった評価対象である特定対象を抽出する。そのため、エラー原因推定装置は、エラーコードごとに評価値が集計されていない場合と比べて、評価対象の中から作業エラーの原因となった特定対象を適切に抽出することができる。エラー原因推定装置について上述されていることは、エラー原因推定方法についても同様に言える。 According to the above error cause estimation device, it is equipped with an extraction unit. The extraction unit extracts a specific target that is the evaluation target that caused the work error, based on the significant difference in the evaluation value of the error occurrence status among the plurality of types of evaluation targets aggregated for each error code. Therefore, the error cause estimation device can appropriately extract the specific target that caused the work error from the evaluation targets, as compared with the case where the evaluation values are not aggregated for each error code. The above-mentioned matters regarding the error cause estimation device can be applied to the error cause estimation method as well.
対基板作業ラインの構成例を示す構成図である。It is a block diagram which shows the structural example of the work line with respect to a board. 部品装着機の構成例を示す平面図である。It is a top view which shows the structural example of the component mounting machine. 使用機器および使用データの一例を示す模式図である。It is a schematic diagram which shows an example of use equipment and use data. エラー原因推定装置の制御ブロックの一例を示すブロック図である。It is a block diagram which shows an example of the control block of the error cause estimation apparatus. エラー原因推定装置による制御手順の一例を示すフローチャートである。It is a flowchart which shows an example of the control procedure by an error cause estimation apparatus. エラーコード、使用機器および使用データが関連付けられて記憶装置に記憶されている状態の一例を示す模式図である。It is a schematic diagram which shows an example of the state in which an error code, a device used, and data used are associated and stored in a storage device. 第一種評価対象であるフィーダと第二種評価対象である保持部材(吸着ノズル)についてのエラー発生状況の評価値の一例を示す模式図である。It is a schematic diagram which shows an example of the evaluation value of the error occurrence situation about the feeder which is the 1st type evaluation target, and the holding member (suction nozzle) which is the 2nd type evaluation target. 案内部による案内例を示す模式図である。It is a schematic diagram which shows the guide example by a guide part.
 1.実施形態
 1-1.対基板作業ラインWL0の構成例
 対基板作業ラインWL0では、基板90に所定の対基板作業を行う。対基板作業ラインWL0を構成する対基板作業機WM0の種類および数は、限定されない。図1に示すように、本実施形態の対基板作業ラインWL0は、印刷機WM1、印刷検査機WM2、部品装着機WM3、リフロー炉WM4および外観検査機WM5の複数(5つ)の対基板作業機WM0を備えており、基板90は、基板搬送装置によって、この順に搬送される。
1. 1. Embodiment 1-1. Configuration example of the substrate work line WL0 In the substrate work line WL0, a predetermined anti-board work is performed on the substrate 90. The type and number of the anti-board work machines WM0 constituting the anti-board work line WL0 are not limited. As shown in FIG. 1, the substrate-to-board work line WL0 of the present embodiment is a plurality (five) anti-board work of a printing machine WM1, a printing inspection machine WM2, a component mounting machine WM3, a reflow furnace WM4, and an appearance inspection machine WM5. The machine WM0 is provided, and the substrate 90 is conveyed in this order by the substrate transfer device.
 印刷機WM1は、基板90の複数の部品91の装着位置に、はんだを印刷する。印刷検査機WM2は、印刷機WM1によって印刷されたはんだの印刷状態を検査する。図2に示すように、部品装着機WM3は、印刷機WM1によってはんだが印刷された基板90に複数の部品91を装着する。部品装着機WM3は、一つであっても良く、複数であっても良い。部品装着機WM3が複数設けられる場合は、複数の部品装着機WM3が分担して、複数の部品91を装着することができる。 The printing machine WM1 prints solder at the mounting positions of a plurality of parts 91 on the substrate 90. The printing inspection machine WM2 inspects the printing state of the solder printed by the printing machine WM1. As shown in FIG. 2, the component mounting machine WM3 mounts a plurality of components 91 on a substrate 90 on which solder is printed by the printing machine WM1. The component mounting machine WM3 may be one or a plurality. When a plurality of component mounting machines WM3 are provided, the plurality of component mounting machines WM3 can share and mount the plurality of components 91.
 リフロー炉WM4は、部品装着機WM3によって複数の部品91が装着された基板90を加熱し、はんだを溶融させて、はんだ付けを行う。外観検査機WM5は、部品装着機WM3によって装着された複数の部品91の装着状態などを検査する。このように、対基板作業ラインWL0は、複数(5つ)の対基板作業機WM0を用いて、基板90を順に搬送し、検査処理を含む生産処理を実行して基板製品900を生産することができる。なお、対基板作業ラインWL0は、例えば、機能検査機、バッファ装置、基板供給装置、基板反転装置、シールド装着装置、接着剤塗布装置、紫外線照射装置などの対基板作業機WM0を必要に応じて備えることもできる。 The reflow furnace WM4 heats the substrate 90 on which a plurality of parts 91 are mounted by the parts mounting machine WM3, melts the solder, and performs soldering. The visual inspection machine WM5 inspects the mounting state of a plurality of parts 91 mounted by the component mounting machine WM3. In this way, the board-to-board work line WL0 uses a plurality of (five) board-to-board work machines WM0 to sequentially convey the boards 90 and execute a production process including an inspection process to produce the board product 900. Can be done. The board work line WL0 includes, for example, a board work machine WM0 such as a function inspection machine, a buffer device, a board supply device, a board reversing device, a shield mounting device, an adhesive coating device, and an ultraviolet irradiation device. You can also prepare.
 対基板作業ラインWL0を構成する複数(5つ)の対基板作業機WM0およびライン管理装置LC0は、通信部によって通信可能に接続されている。また、ライン管理装置LC0および管理装置HC0は、通信部によって通信可能に接続されている。通信部は、有線または無線によって、これらを通信可能に接続することができ、通信方法は、種々の方法をとり得る。 The plurality of (five) anti-board work machines WM0 and the line management device LC0 constituting the anti-board work line WL0 are communicably connected by a communication unit. Further, the line management device LC0 and the management device HC0 are communicably connected by a communication unit. The communication unit can connect these in a communicable manner by wire or wirelessly, and the communication method may be various methods.
 本実施形態では、複数(5つ)の対基板作業機WM0、ライン管理装置LC0および管理装置HC0によって、構内情報通信網(LAN:Local Area Network)が構成されている。よって、複数(5つ)の対基板作業機WM0は、通信部を介して、互いに通信することができる。また、複数(5つ)の対基板作業機WM0は、通信部を介して、ライン管理装置LC0と通信することができる。さらに、ライン管理装置LC0および管理装置HC0は、通信部を介して、互いに通信することができる。 In the present embodiment, a premises information communication network (LAN: Local Area Network) is configured by a plurality of (five) anti-board work machines WM0, a line management device LC0, and a management device HC0. Therefore, the plurality (five) anti-board working machines WM0 can communicate with each other via the communication unit. Further, the plurality (five) anti-board working machines WM0 can communicate with the line management device LC0 via the communication unit. Further, the line management device LC0 and the management device HC0 can communicate with each other via the communication unit.
 ライン管理装置LC0は、対基板作業ラインWL0を構成する複数(5つ)の対基板作業機WM0の制御を行い、対基板作業ラインWL0の動作状況を監視する。ライン管理装置LC0には、複数(5つ)の対基板作業機WM0を制御する種々の制御データが記憶されている。ライン管理装置LC0は、複数(5つ)の対基板作業機WM0の各々に制御データを送信する。また、複数(5つ)の対基板作業機WM0の各々は、ライン管理装置LC0に動作状況および生産状況を送信する。 The line management device LC0 controls a plurality of (five) anti-board work machines WM0 constituting the anti-board work line WL0, and monitors the operating status of the anti-board work line WL0. The line management device LC0 stores various control data for controlling a plurality of (five) anti-board working machines WM0. The line management device LC0 transmits control data to each of the plurality (five) anti-board working machines WM0. Further, each of the plurality (five) anti-board working machines WM0 transmits the operation status and the production status to the line management device LC0.
 管理装置HC0は、少なくとも一つのライン管理装置LC0を管理する。例えば、ライン管理装置LC0によって取得された対基板作業機WM0の動作状況および生産状況は、必要に応じて、管理装置HC0に送信される。管理装置HC0には、記憶装置DS0が設けられている。記憶装置DS0は、対基板作業機WM0が取得した種々の取得データを保存することができる。例えば、対基板作業機WM0によって撮像された種々の画像データは、取得データに含まれる。対基板作業機WM0によって取得された稼働状況の記録(ログデータ)などは、取得データに含まれる。また、記憶装置DS0は、基板製品900の生産に関する種々の生産情報を保存することができる。 The management device HC0 manages at least one line management device LC0. For example, the operating status and the production status of the anti-board working machine WM0 acquired by the line management device LC0 are transmitted to the management device HC0 as needed. The management device HC0 is provided with a storage device DS0. The storage device DS0 can store various acquired data acquired by the board working machine WM0. For example, various image data captured by the anti-board working machine WM0 are included in the acquired data. The recording (log data) of the operating status acquired by the anti-board working machine WM0 is included in the acquired data. Further, the storage device DS0 can store various production information regarding the production of the substrate product 900.
 1-2.部品装着機WM3の構成例
 部品装着機WM3は、基板90に複数の部品91を装着する。図2に示すように、部品装着機WM3は、基板搬送装置11、部品供給装置12、部品移載装置13、部品カメラ14、基板カメラ15および制御装置16を備えている。
1-2. Configuration example of the component mounting machine WM3 The component mounting machine WM3 mounts a plurality of components 91 on the substrate 90. As shown in FIG. 2, the component mounting machine WM3 includes a board transfer device 11, a component supply device 12, a component transfer device 13, a component camera 14, a board camera 15, and a control device 16.
 基板搬送装置11は、例えば、ベルトコンベアなどによって構成され、基板90を搬送方向(X軸方向)に搬送する。基板90は、回路基板であり、電子回路、電気回路、磁気回路などが形成される。基板搬送装置11は、部品装着機WM3の機内に基板90を搬入し、機内の所定位置に基板90を位置決めする。基板搬送装置11は、部品装着機WM3による複数の部品91の装着処理が終了した後に、基板90を部品装着機WM3の機外に搬出する。 The substrate transfer device 11 is configured by, for example, a belt conveyor or the like, and conveys the substrate 90 in the transfer direction (X-axis direction). The board 90 is a circuit board, and an electronic circuit, an electric circuit, a magnetic circuit, and the like are formed. The board transfer device 11 carries the board 90 into the machine of the component mounting machine WM3, and positions the board 90 at a predetermined position in the machine. The board transfer device 11 carries out the board 90 to the outside of the component mounting machine WM3 after the mounting process of the plurality of components 91 by the component mounting machine WM3 is completed.
 部品供給装置12は、基板90に装着される複数の部品91を供給する。部品供給装置12は、基板90の搬送方向(X軸方向)に沿って設けられる複数のフィーダ121を備えている。図3に示すように、複数のフィーダ121の各々には、リールRL0が装備される。リールRL0には、複数の部品91が収納されているキャリアテープCT0が巻回されている。フィーダ121は、キャリアテープCT0をピッチ送りさせて、フィーダ121の先端側に位置する供給位置PU0において部品91を採取可能に供給する。また、部品供給装置12は、チップ部品などと比べて比較的大型の電子部品(例えば、リード部品など)を、トレイ上に配置した状態で供給することもできる。 The component supply device 12 supplies a plurality of components 91 mounted on the substrate 90. The component supply device 12 includes a plurality of feeders 121 provided along the transport direction (X-axis direction) of the substrate 90. As shown in FIG. 3, each of the plurality of feeders 121 is equipped with a reel RL0. A carrier tape CT0 containing a plurality of parts 91 is wound around the reel RL0. The feeder 121 feeds the carrier tape CT0 at a pitch so that the component 91 can be collected at the supply position PU0 located on the tip end side of the feeder 121. Further, the component supply device 12 can also supply an electronic component (for example, a lead component) having a relatively large size as compared with a chip component or the like in a state of being arranged on a tray.
 部品移載装置13は、ヘッド駆動装置131および移動台132を備えている。ヘッド駆動装置131は、直動機構によって移動台132を、X軸方向およびY軸方向に移動可能に構成されている。移動台132には、クランプ部材によって装着ヘッド20が着脱可能(交換可能)に設けられている。装着ヘッド20は、少なくとも一つの保持部材30を用いて、部品供給装置12によって供給される部品91を採取し保持して、基板搬送装置11によって位置決めされた基板90に部品91を装着する。保持部材30は、例えば、吸着ノズル、チャックなどを用いることができる。 The parts transfer device 13 includes a head drive device 131 and a moving table 132. The head drive device 131 is configured to be able to move the moving table 132 in the X-axis direction and the Y-axis direction by a linear motion mechanism. The moving table 132 is provided with a mounting head 20 detachably (replaceable) by a clamp member. The mounting head 20 uses at least one holding member 30 to collect and hold the component 91 supplied by the component supply device 12, and mounts the component 91 on the substrate 90 positioned by the substrate transfer device 11. As the holding member 30, for example, a suction nozzle, a chuck, or the like can be used.
 部品カメラ14および基板カメラ15は、公知の撮像装置を用いることができる。部品カメラ14は、光軸が鉛直方向(Z軸方向)の上向きになるように、部品装着機WM3の基台に固定されている。部品カメラ14は、保持部材30に保持されている部品91を下方から撮像することができる。基板カメラ15は、光軸が鉛直方向(Z軸方向)の下向きになるように、部品移載装置13の移動台132に設けられている。基板カメラ15は、基板90を上方から撮像することができる。部品カメラ14および基板カメラ15は、制御装置16から送出される制御信号に基づいて撮像を行う。部品カメラ14および基板カメラ15によって撮像された撮像画像の画像データは、制御装置16に送信される。 A known imaging device can be used for the component camera 14 and the board camera 15. The component camera 14 is fixed to the base of the component mounting machine WM3 so that the optical axis faces upward in the vertical direction (Z-axis direction). The component camera 14 can take an image of the component 91 held by the holding member 30 from below. The board camera 15 is provided on the moving table 132 of the component transfer device 13 so that the optical axis faces downward in the vertical direction (Z-axis direction). The board camera 15 can take an image of the board 90 from above. The component camera 14 and the board camera 15 perform imaging based on a control signal transmitted from the control device 16. The image data of the captured image captured by the component camera 14 and the substrate camera 15 is transmitted to the control device 16.
 制御装置16は、公知の演算装置および記憶装置を備えており、制御回路が構成されている。制御装置16には、部品装着機WM3に設けられる各種センサから出力される情報、画像データなどが入力される。制御装置16は、制御プログラムおよび予め設定されている所定の装着条件などに基づいて、各装置に対して制御信号を送出する。 The control device 16 includes a known arithmetic unit and a storage device, and constitutes a control circuit. Information, image data, and the like output from various sensors provided in the component mounting machine WM3 are input to the control device 16. The control device 16 sends a control signal to each device based on a control program, predetermined mounting conditions, and the like.
 例えば、制御装置16は、基板搬送装置11によって位置決めされた基板90を基板カメラ15に撮像させる。制御装置16は、基板カメラ15によって撮像された画像を画像処理して、基板90の位置決め状態を認識する。また、制御装置16は、部品供給装置12によって供給された部品91を保持部材30に採取させ保持させて、保持部材30に保持されている部品91を部品カメラ14に撮像させる。図3に示すように、制御装置16は、部品カメラ14によって撮像された画像を画像処理して、部品91の保持姿勢を認識する。 For example, the control device 16 causes the board camera 15 to image the board 90 positioned by the board transfer device 11. The control device 16 processes the image captured by the substrate camera 15 and recognizes the positioning state of the substrate 90. Further, the control device 16 causes the holding member 30 to collect and hold the parts 91 supplied by the parts supply device 12, and causes the parts camera 14 to image the parts 91 held by the holding member 30. As shown in FIG. 3, the control device 16 processes the image captured by the component camera 14 to recognize the holding posture of the component 91.
 制御装置16は、制御プログラムなどによって予め設定される装着予定位置の上方に向かって、保持部材30を移動させる。また、制御装置16は、基板90の位置決め状態、部品91の保持姿勢などに基づいて、装着予定位置を補正して、実際に部品91を装着する装着位置を設定する。装着予定位置および装着位置は、位置(X軸座標およびY軸座標)の他に回転角度を含む。 The control device 16 moves the holding member 30 toward the upper side of the planned mounting position preset by a control program or the like. Further, the control device 16 corrects the planned mounting position based on the positioning state of the board 90, the holding posture of the component 91, and the like, and sets the mounting position where the component 91 is actually mounted. The planned mounting position and the mounting position include the rotation angle in addition to the position (X-axis coordinate and Y-axis coordinate).
 制御装置16は、装着位置に合わせて、保持部材30の目標位置(X軸座標およびY軸座標)および回転角度を補正する。制御装置16は、補正された目標位置において補正された回転角度で保持部材30を下降させて、基板90に部品91を装着する。制御装置16は、上記のピックアンドプレースサイクルを繰り返すことによって、基板90に複数の部品91を装着する装着処理を実行する。 The control device 16 corrects the target position (X-axis coordinate and Y-axis coordinate) and rotation angle of the holding member 30 according to the mounting position. The control device 16 lowers the holding member 30 at the corrected rotation angle at the corrected target position, and mounts the component 91 on the substrate 90. By repeating the above pick-and-place cycle, the control device 16 executes a mounting process for mounting a plurality of components 91 on the substrate 90.
 1-3.エラー原因推定装置70の構成例
 図3に示すように、例えば、部品供給装置12のフィーダ121から部品91が供給され、フィーダ121から供給された部品91を保持部材30が採取して、基板90に部品91が装着されるまでには、種々の機器、データが使用される。特定の機器の不具合に起因して、これらの作業にエラーが生じる場合、介在する機器の数が増加するほど、作業エラーの原因となった機器を特定することが困難になる。このことは、データについても同様に言え、他の対基板作業についても同様に言える。
1-3. Configuration example of error cause estimation device 70 As shown in FIG. 3, for example, the component 91 is supplied from the feeder 121 of the component supply device 12, the component 91 supplied from the feeder 121 is collected by the holding member 30, and the substrate 90 is collected. Various devices and data are used by the time the component 91 is mounted on the. When an error occurs in these operations due to a malfunction of a specific device, it becomes more difficult to identify the device that caused the work error as the number of intervening devices increases. The same is true for data and for other board-to-board operations.
 そこで、本実施形態の対基板作業ラインWL0には、エラー原因推定装置70が設けられている。エラー原因推定装置70は、評価対象ET0の中から作業エラーの原因となった特定対象ST0を抽出する。エラー原因推定装置70は、種々の演算装置に設けることができる。例えば、エラー原因推定装置70は、解析装置、ライン管理装置LC0、管理装置HC0、部品装着機WM3の制御装置16などに設けることができる。エラー原因推定装置70は、クラウド上に形成することもできる。図4に示すように、本実施形態のエラー原因推定装置70は、管理装置HC0に設けられている。 Therefore, the error cause estimation device 70 is provided on the board-to-board work line WL0 of the present embodiment. The error cause estimation device 70 extracts the specific target ST0 that caused the work error from the evaluation target ET0. The error cause estimation device 70 can be provided in various arithmetic units. For example, the error cause estimation device 70 can be provided in the analysis device, the line management device LC0, the management device HC0, the control device 16 of the component mounting machine WM3, and the like. The error cause estimation device 70 can also be formed on the cloud. As shown in FIG. 4, the error cause estimation device 70 of the present embodiment is provided in the management device HC0.
 エラー原因推定装置70は、制御ブロックとして捉えると、記憶部71と、集計部72と、抽出部73とを備えている。エラー原因推定装置70は、第一判定部74および第二判定部75を備えることもできる。エラー原因推定装置70は、案内部76を備えることもできる。図4に示すように、本実施形態のエラー原因推定装置70は、記憶部71と、集計部72と、抽出部73と、第一判定部74と、第二判定部75と、案内部76とを備えている。 The error cause estimation device 70 includes a storage unit 71, a tabulation unit 72, and an extraction unit 73 when regarded as a control block. The error cause estimation device 70 may also include a first determination unit 74 and a second determination unit 75. The error cause estimation device 70 may also include a guide unit 76. As shown in FIG. 4, the error cause estimation device 70 of the present embodiment includes a storage unit 71, an aggregation unit 72, an extraction unit 73, a first determination unit 74, a second determination unit 75, and a guide unit 76. And have.
 また、本実施形態のエラー原因推定装置70は、図5に示すフローチャートに従って、制御を実行する。記憶部71は、ステップS11に示す処理を行う。集計部72は、ステップS12に示す処理を行う。抽出部73、第一判定部74および第二判定部75は、ステップS13に示す処理を行う。案内部76は、ステップS14に示す処理を行う。 Further, the error cause estimation device 70 of the present embodiment executes control according to the flowchart shown in FIG. The storage unit 71 performs the process shown in step S11. The tabulation unit 72 performs the process shown in step S12. The extraction unit 73, the first determination unit 74, and the second determination unit 75 perform the process shown in step S13. The guide unit 76 performs the process shown in step S14.
 1-3-1.記憶部71
 記憶部71は、評価対象ET0並びにエラーコードEC0を関連付けて記憶装置DS0に記憶させる(図5に示すステップS11)。評価対象ET0は、使用機器UM0および使用データUD0のうちの少なくとも一方をいう。使用機器UM0は、対基板作業機WM0の対基板作業に使用された機器をいう。使用データUD0は、対基板作業機WM0の対基板作業に使用されたデータをいう。エラーコードEC0は、評価対象ET0を使用した対基板作業の作業エラーを示すものをいう。
1-3-1. Memory unit 71
The storage unit 71 stores the evaluation target ET0 and the error code EC0 in the storage device DS0 in association with each other (step S11 shown in FIG. 5). The evaluation target ET0 refers to at least one of the equipment used UM0 and the data used UD0. The device used UM0 refers to the device used for the board-to-board work of the board-to-board work machine WM0. The usage data UD0 refers to the data used for the board-to-board work of the board-to-board work machine WM0. The error code EC0 indicates a work error of the work on the board using the evaluation target ET0.
 例えば、対基板作業機WM0には、基板90に部品91を装着する部品装着機WM3が含まれる。この場合、既述したように、対基板作業には、部品供給装置12から部品91を供給する供給作業、部品供給装置12から供給された部品91を採取する採取作業、および、部品91を基板90に装着する装着作業のうちの少なくとも一つが含まれる。また、図3に示すように、例えば、使用機器UM0には、リールRL0、フィーダ121、装着ヘッド20、保持部材30、部品カメラ14などが含まれる。リールRL0およびフィーダ121は、部品91の供給作業に関与する。装着ヘッド20、保持部材30および部品カメラ14は、部品91の採取作業および装着作業に関与する。 For example, the board-to-board working machine WM0 includes a component mounting machine WM3 that mounts the component 91 on the board 90. In this case, as described above, the board-to-board work includes a supply work of supplying the parts 91 from the parts supply device 12, a collection work of collecting the parts 91 supplied from the parts supply device 12, and a board of the parts 91. At least one of the mounting operations to be mounted on the 90 is included. Further, as shown in FIG. 3, for example, the equipment used UM0 includes a reel RL0, a feeder 121, a mounting head 20, a holding member 30, a component camera 14, and the like. The reel RL0 and the feeder 121 are involved in the supply work of the component 91. The mounting head 20, the holding member 30, and the component camera 14 are involved in the sampling work and the mounting work of the component 91.
 使用データUD0には、形状データを含む部品データ、配列データ、座標データなどが含まれる。部品データには、部品91の性状および取り扱い条件が規定されている。具体的には、部品データには、部品91の電気的特性値、その誤差、使用環境条件などの性状に加え、梱包形態および保管条件などが規定されている。また、部品データには、リールRL0の仕様、使用されるフィーダ121、保持部材30の種類、装着ヘッド20の移動速度、保持部材30の昇降速度などの取り扱い条件などが規定されている。さらに、部品データは、形状データを含む。 The usage data UD0 includes parts data including shape data, array data, coordinate data, and the like. The component data defines the properties and handling conditions of the component 91. Specifically, the component data defines the electrical characteristic values of the component 91, its error, properties such as operating environment conditions, as well as the packaging form and storage conditions. Further, the component data defines handling conditions such as the specifications of the reel RL0, the feeder 121 used, the type of the holding member 30, the moving speed of the mounting head 20, and the ascending / descending speed of the holding member 30. Further, the component data includes shape data.
 形状データには、部品91の外形形状が規定されている。具体的には、形状データには、例えば、部品91のサイズ(縦寸法、横寸法および高さ寸法)、サイズの許容誤差、リードの位置、外観色などが規定されている。形状データには、保持部材30に保持されている部品91を部品カメラ14によって撮像する際の撮像条件、照明条件などが規定されても良い。部品装着機WM3は、部品カメラ14によって撮像された部品91の画像データを画像処理し、形状データに規定されている外形形状と比較することにより、保持部材30に保持されている部品91の有無、種類の誤りなどを判定する。部品装着機WM3は、同様にして、保持部材30に対する部品91の位置および回転角度などの保持姿勢を取得する。 The shape data defines the outer shape of the part 91. Specifically, the shape data defines, for example, the size (vertical dimension, horizontal dimension, and height dimension) of the component 91, size tolerance, lead position, appearance color, and the like. The shape data may specify imaging conditions, lighting conditions, and the like when the component 91 held by the holding member 30 is imaged by the component camera 14. The component mounting machine WM3 processes the image data of the component 91 imaged by the component camera 14 and compares it with the outer shape defined in the shape data, so that the presence or absence of the component 91 held by the holding member 30 is present. , Judge the type of error, etc. Similarly, the component mounting machine WM3 acquires a holding posture such as a position and a rotation angle of the component 91 with respect to the holding member 30.
 配列データには、複数のフィーダ121が配列されるパレット部材のスロット位置が規定されている。座標データには、部品91を装着する基板90の位置が規定されている。これらの使用データUD0は、図1および図4に示す記憶装置DS0に記憶されている。部品装着機WM3の制御装置16は、例えば、制御プログラムと共にこれらのデータを取得して使用することができる。部品データおよび配列データは、部品91の供給作業に関与する。部品データおよび座標データは、部品91の採取作業および装着作業に関与する。 The arrangement data defines the slot positions of the pallet members in which a plurality of feeders 121 are arranged. The coordinate data defines the position of the board 90 on which the component 91 is mounted. These usage data UD0 are stored in the storage device DS0 shown in FIGS. 1 and 4. The control device 16 of the component mounting machine WM3 can acquire and use these data together with, for example, a control program. The component data and the array data are involved in the supply operation of the component 91. The component data and the coordinate data are involved in the sampling operation and the mounting operation of the component 91.
 部品91の供給作業および採取作業の作業エラーは、既述したように、部品カメラ14によって撮像された部品91の画像に基づいて判断される。同様に、部品91の装着作業の作業エラーは、基板カメラ15によって撮像された基板90の画像に基づいて判断される。いずれの場合も、部品装着機WM3は、画像から抽出された対象物の測定値が許容範囲に含まれるか否かによって、対基板作業の良否を判断することができる。また、対基板作業の良否は、他の対基板作業機WM0によって判断することもできる。例えば、外観検査機WM5は、部品装着機WM3による対基板作業の良否を判断することができる。 As described above, the work error of the supply work and the collection work of the part 91 is determined based on the image of the part 91 captured by the part camera 14. Similarly, the work error of the mounting work of the component 91 is determined based on the image of the board 90 captured by the board camera 15. In either case, the component mounting machine WM3 can determine the quality of the work on the substrate depending on whether or not the measured value of the object extracted from the image is included in the allowable range. Further, the quality of the work with the board can be judged by another work machine with the board WM0. For example, the visual inspection machine WM5 can determine the quality of the work on the board by the component mounting machine WM3.
 エラーコードEC0は、作業エラーの種類ごとに付与されている。エラーコードEC0は、対基板作業の作業エラーを識別することができれば良く、種々の形態をとり得る。図6に示すように、本実施形態のエラーコードEC0は、例えば、文字列(英数字)で表される。記憶部71は、評価対象ET0並びにエラーコードEC0を関連付けて記憶装置DS0に記憶させる。具体的には、記憶部71は、評価対象ET0を識別する識別コードと、エラーコードEC0とを関連付けて記憶装置DS0に記憶させる。 The error code EC0 is assigned to each type of work error. The error code EC0 may take various forms as long as it can identify the work error of the work with the board. As shown in FIG. 6, the error code EC0 of this embodiment is represented by, for example, a character string (alphanumerical characters). The storage unit 71 stores the evaluation target ET0 and the error code EC0 in the storage device DS0 in association with each other. Specifically, the storage unit 71 stores the identification code for identifying the evaluation target ET0 and the error code EC0 in the storage device DS0 in association with each other.
 記憶部71は、作業エラーが生じたときに、評価対象ET0並びにエラーコードEC0を記憶装置DS0に逐次記憶させる。また、記憶部71は、所定回数の作業エラーが生じたときに、所定回数分の評価対象ET0並びにエラーコードEC0を記憶装置DS0に記憶させることもできる。なお、対基板作業機WM0が対基板作業を行ったが、作業エラーが生じなかった場合、記憶部71は、評価対象ET0のみを記憶装置DS0に記憶させる。 When a work error occurs, the storage unit 71 sequentially stores the evaluation target ET0 and the error code EC0 in the storage device DS0. Further, the storage unit 71 can store the evaluation target ET0 and the error code EC0 for a predetermined number of times in the storage device DS0 when a predetermined number of work errors occur. If the board-to-board work machine WM0 performs the board-to-board work, but no work error occurs, the storage unit 71 stores only the evaluation target ET0 in the storage device DS0.
 図6は、エラーコードEC0、使用機器UM0および使用データUD0が関連付けられて記憶装置DS0に記憶されている状態の一例を示している。例えば、使用機器UM1、使用機器UM2および使用データUD1を使用した対基板作業の作業エラーは、エラーコードEC0001によって示されている。このことは、エラーコードEC0170、エラーコードEC0174およびエラーコードEC0728についても同様に言える。 FIG. 6 shows an example of a state in which the error code EC0, the device used UM0, and the data used UD0 are associated and stored in the storage device DS0. For example, the work error of the work on the board using the used equipment UM1, the used equipment UM2, and the used data UD1 is indicated by the error code EC0001. The same applies to the error code EC0170, the error code EC0174, and the error code EC0728.
 1-3-2.集計部72
 集計部72は、記憶装置DS0に記憶されている複数種類の評価対象ET0についてのエラー発生状況の評価値EV0をエラーコードEC0ごとに集計する(図5に示すステップS12)。評価値EV0は、エラー発生状況を評価することができれば良く、限定されない。
1-3-2. Aggregation unit 72
The aggregation unit 72 aggregates the evaluation value EV0 of the error occurrence status for the plurality of types of evaluation target ET0 stored in the storage device DS0 for each error code EC0 (step S12 shown in FIG. 5). The evaluation value EV0 is not limited as long as it can evaluate the error occurrence status.
 例えば、エラー発生状況の評価値EV0は、評価対象ET0が対基板作業に使用された使用回数と、作業エラーの発生回数との組み合わせによって表すことができる。例えば、図6に示すエラーコードEC0001について、集計部72は、使用機器UM1、使用機器UM2および使用データUD1の各々について、対基板作業に使用された使用回数と、作業エラーの発生回数を集計する。集計部72は、同一のエラーコードEC0001が記憶装置DS0に記憶されていると、同様にして評価値EV0を集計する。 For example, the evaluation value EV0 of the error occurrence status can be expressed by a combination of the number of times the evaluation target ET0 is used for the work on the board and the number of times the work error occurs. For example, with respect to the error code EC0001 shown in FIG. 6, the totaling unit 72 totals the number of times of use for the board work and the number of times of occurrence of work errors for each of the used equipment UM1, the used equipment UM2, and the used data UD1. .. When the same error code EC0001 is stored in the storage device DS0, the aggregation unit 72 aggregates the evaluation value EV0 in the same manner.
 なお、記憶装置DS0に記憶されているエラーコードEC0の数が多いほど、作業エラーが多発していることを示している。そのため、集計部72は、記憶装置DS0に記憶されているエラーコードEC0のランキングを生成することもできる。これにより、抽出部73は、ランキングが上位のエラーコードEC0から特定対象ST0を抽出することができる。 Note that the larger the number of error codes EC0 stored in the storage device DS0, the more frequent the work errors. Therefore, the tabulation unit 72 can also generate a ranking of the error code EC0 stored in the storage device DS0. As a result, the extraction unit 73 can extract the specific target ST0 from the error code EC0 having a higher ranking.
 また、例えば、図6に示すエラーコードEC0170と、エラーコードEC0174とは、最下位の桁のみが異なる。エラーコードEC0は、関連する作業エラーに順番に付与される場合が多く、類似するエラーコードEC0(例えば、最下位の桁のみが異なる場合)をグループ化すると評価値EV0の集計などが簡便になる。そこで、集計部72は、類似するエラーコードEC0をグループ化して、エラー発生状況の評価値EV0を集計すると良い。 Further, for example, the error code EC0170 shown in FIG. 6 and the error code EC0174 differ only in the lowest digit. The error code EC0 is often assigned to related work errors in order, and grouping similar error codes EC0 (for example, when only the lowest digit is different) makes it easier to aggregate the evaluation values EV0. .. Therefore, the aggregation unit 72 may group similar error codes EC0 and aggregate the evaluation value EV0 of the error occurrence status.
 例えば、図6に示すエラーコードEC0170と、エラーコードEC0174とがグループ化されると、新しいエラーコードEC017Xが付与される。集計部72は、エラーコードEC0170に関連付けられていた評価対象ET0と、エラーコードEC0174に関連付けられていた評価対象ET0とを合わせて、エラー発生状況の評価値EV0を集計する。 For example, when the error code EC0170 shown in FIG. 6 and the error code EC0174 are grouped together, a new error code EC017X is assigned. The aggregation unit 72 aggregates the evaluation value EV0 of the error occurrence status by combining the evaluation target ET0 associated with the error code EC0170 and the evaluation target ET0 associated with the error code EC0174.
 また、作業エラーを改善する対策が同一または類似するエラーコードEC0をグループ化すると、対策を実施し易い。そこで、集計部72は、作業エラーを改善する対策が同一または類似するエラーコードEC0をグループ化して、エラー発生状況の評価値EV0を集計することもできる。 Also, if the error code EC0 with the same or similar error code to improve the work error is grouped, it is easy to implement the countermeasure. Therefore, the totaling unit 72 can also group the error codes EC0 having the same or similar measures for improving the work error, and totalize the evaluation value EV0 of the error occurrence status.
 さらに、類似するエラーコードEC0が付与される関連する作業エラーは、作業エラーを改善する対策が同一または類似する場合も多い。そこで、集計部72は、エラーコードEC0が類似し、かつ、作業エラーを改善する対策が同一または類似するエラーコードEC0をグループ化して、エラー発生状況の評価値EV0を集計することもできる。 Furthermore, related work errors to which a similar error code EC0 is given often have the same or similar measures for improving the work error. Therefore, the tabulation unit 72 may group error code EC0s having similar error codes EC0 and having the same or similar measures for improving work errors, and tabulate the evaluation value EV0 of the error occurrence status.
 1-3-3.抽出部73、第一判定部74および第二判定部75
 抽出部73は、エラーコードEC0ごとに集計された複数種類の評価対象ET0の間のエラー発生状況の評価値EV0の有意差に基づいて、作業エラーの原因となった評価対象ET0である特定対象ST0を抽出する(図5に示すステップS13)。
1-3-3. Extraction unit 73, first determination unit 74 and second determination unit 75
The extraction unit 73 is a specific target that is the evaluation target ET0 that caused the work error, based on the significant difference in the evaluation value EV0 of the error occurrence status among the plurality of types of evaluation target ET0 aggregated for each error code EC0. Extract ST0 (step S13 shown in FIG. 5).
 ここで、一のエラーコードEC0に関連付けて記憶されている複数種類の評価対象ET0の中から選択された一の種類の評価対象ET0を第一種評価対象ET1とし、第一種評価対象ET1と異なる一の種類の評価対象ET0を第二種評価対象ET2とする。このとき、第一判定部74は、第一種評価対象ET1に含まれる一の評価対象ET0を基準とした第二種評価対象ET2に含まれる複数の評価対象ET0についてのエラー発生状況の評価値EV0の有意差の有無を、第一種評価対象ET1に含まれる複数の評価対象ET0の各々について判定する。 Here, one type of evaluation target ET0 selected from a plurality of types of evaluation target ET0 stored in association with one error code EC0 is set as the first-class evaluation target ET1, and is referred to as the first-class evaluation target ET1. Let one different type of evaluation target ET0 be the second type evaluation target ET2. At this time, the first determination unit 74 evaluates the error occurrence status of a plurality of evaluation target ET0s included in the second type evaluation target ET2 based on one evaluation target ET0 included in the first type evaluation target ET1. The presence or absence of a significant difference in EV0 is determined for each of the plurality of evaluation target ET0s included in the first-class evaluation target ET1.
 第二判定部75は、第二種評価対象ET2に含まれる一の評価対象ET0を基準とした第一種評価対象ET1に含まれる複数の評価対象ET0についてのエラー発生状況の評価値EV0の有意差の有無を、第二種評価対象ET2に含まれる複数の評価対象ET0の各々について判定する。この形態では、抽出部73は、第一判定部74によって判定された判定結果である第一判定結果、および、第二判定部75によって判定された判定結果である第二判定結果に基づいて、特定対象ST0を抽出することができる。 The second determination unit 75 is significant in the evaluation value EV0 of the error occurrence status for a plurality of evaluation target ET0s included in the first type evaluation target ET1 based on one evaluation target ET0 included in the second type evaluation target ET2. The presence or absence of the difference is determined for each of the plurality of evaluation target ET0s included in the type 2 evaluation target ET2. In this embodiment, the extraction unit 73 is based on the first determination result, which is the determination result determined by the first determination unit 74, and the second determination result, which is the determination result determined by the second determination unit 75. The specific target ST0 can be extracted.
 図7は、第一種評価対象ET1であるフィーダ121と第二種評価対象ET2である保持部材30(吸着ノズル)についてのエラー発生状況の評価値EV0の一例を示している。同図は、一のエラーコードEC0001についてのエラー発生状況の評価値EV0を模式的に示したものであり、他の種類のエラーコードEC0については、記載が省略されている。また、フィーダ121は、説明の便宜上、フィーダFD1、フィーダFD2およびフィーダFD3の3つが想定されている。同様に、保持部材30(吸着ノズル)は、説明の便宜上、吸着ノズルNZ1、吸着ノズルNZ2および吸着ノズルNZ3の3つが想定されている。 FIG. 7 shows an example of the evaluation value EV0 of the error occurrence status of the feeder 121 which is the first type evaluation target ET1 and the holding member 30 (suction nozzle) which is the second type evaluation target ET2. The figure schematically shows the evaluation value EV0 of the error occurrence status for one error code EC0001, and the description is omitted for other types of error codes EC0. Further, for convenience of explanation, the feeder 121 is assumed to be the feeder FD1, the feeder FD2, and the feeder FD3. Similarly, as the holding member 30 (suction nozzle), three suction nozzles NZ1, suction nozzle NZ2, and suction nozzle NZ3 are assumed for convenience of explanation.
 さらに、同図の分数表記は、エラー発生状況の評価値EV0の一例を示している。分母は、対基板作業(例えば、採取作業)に使用された使用回数を示している。分子は、作業エラー(例えば、採取エラー)の発生回数を示している。例えば、フィーダFD1と吸着ノズルNZ1の組み合わせは、100回の使用回数の中で作業エラーの発生回数が4回であったことを示している。 Furthermore, the fractional notation in the figure shows an example of the evaluation value EV0 of the error occurrence status. The denominator indicates the number of times of use for the substrate work (for example, collection work). The numerator indicates the number of times a work error (eg, collection error) has occurred. For example, the combination of the feeder FD1 and the suction nozzle NZ1 shows that the number of times the work error occurred was 4 times out of the number of times of use 100 times.
 第一判定部74は、まず、第一種評価対象ET1に含まれる一の評価対象ET0として、フィーダFD1を基準とする。第一判定部74は、フィーダFD1を基準として、第二種評価対象ET2に含まれる吸着ノズルNZ1、吸着ノズルNZ2および吸着ノズルNZ3の3つの評価対象ET0について、エラー発生状況の評価値EV0の有意差の有無を判定する。 First, the first determination unit 74 uses the feeder FD1 as a reference as one evaluation target ET0 included in the first-class evaluation target ET1. The first determination unit 74 has a significance of the evaluation value EV0 of the error occurrence status for the three evaluation target ET0s of the suction nozzle NZ1, the suction nozzle NZ2 and the suction nozzle NZ3 included in the second type evaluation target ET2 with the feeder FD1 as a reference. Determine if there is a difference.
 なお、フィーダFD1を基準とした吸着ノズルNZ1についてのエラー発生状況の評価値EV0は、100回の使用回数の中で、作業エラーの発生回数が4回であった状況として表される。フィーダFD1を基準とした吸着ノズルNZ2についてのエラー発生状況の評価値EV0は、100回の使用回数の中で、作業エラーの発生回数が1回であった状況として表される。フィーダFD1を基準とした吸着ノズルNZ3についてのエラー発生状況の評価値EV0は、100回の使用回数の中で、作業エラーの発生回数が0回であった状況として表される。 The evaluation value EV0 of the error occurrence status for the suction nozzle NZ1 based on the feeder FD1 is expressed as a situation in which the number of work error occurrences is 4 out of 100 times of use. The evaluation value EV0 of the error occurrence status for the suction nozzle NZ2 with respect to the feeder FD1 is represented as a situation in which the number of work errors occurrence is 1 out of 100 times of use. The evaluation value EV0 of the error occurrence status for the suction nozzle NZ3 with respect to the feeder FD1 is represented as a situation in which the number of work error occurrences is 0 out of 100 times of use.
 第一判定部74は、例えば、エラー発生状況の評価値EV0の有意差の有無の判定において、統計学的な検定方法、具体的には「母比率の差の検定」と呼ばれる方法を用いることができる。この検定方法では、対基板作業に使用された使用回数および作業エラーの発生回数を用いた統計処理を行い、複数の事象(エラー発生状況の評価値EV0)の間に有意差があるか否かを検定する。有意差の判定基準として、5%の生起確率が例示される。 The first determination unit 74 uses, for example, a statistical test method, specifically, a method called "test of difference in population ratio" in determining the presence or absence of a significant difference in the evaluation value EV0 of the error occurrence status. Can be done. In this verification method, statistical processing is performed using the number of times the work is used for the board work and the number of times work errors occur, and whether or not there is a significant difference between multiple events (evaluation value EV0 of the error occurrence status). Is tested. A 5% probability of occurrence is exemplified as a criterion for determining a significant difference.
 例えば、2個のさいころを6回振って「1の目」の出た回数が、第一のさいころでは1回、第二のさいころでは2回であった二つの事象を想定する。「1の目」が出ることは、作業エラーの発生に相当する。ここで、2個のさいころは「1の目」の出る確率が1/6という同一性能を備えるという仮説を立てる。これに対して、実際の事象では、2個のさいころを6回振って「1の目」の出た回数が、1回および2回となっている。1回の「1の目」の出た回数の差は、偶発的に生起し得る範囲であり、その生起確率が判定基準の5%よりも大きい。したがって、仮説は棄却されず、2個のさいころの性能に有意差は無いと検定される。 For example, assume two events in which the number of times the "1 roll" was rolled by shaking two dice 6 times was once for the first dice and twice for the second dice. The appearance of a "1" corresponds to the occurrence of a work error. Here, we hypothesize that the two dice have the same performance with a probability of "1 roll" appearing 1/6. On the other hand, in the actual event, the number of times that the "1 roll" is rolled by shaking the two dice 6 times is 1 time and 2 times. The difference in the number of times that one "1 roll" appears is in the range where it can occur accidentally, and the probability of occurrence is larger than 5% of the criterion. Therefore, the hypothesis is not rejected and it is tested that there is no significant difference in the performance of the two dice.
 これに対比して、2個のさいころを60回振って「1の目」の出た回数が、第一のさいころでは10回、第二のさいころでは20回であった二つの事象を想定する。この事象において、「1の目」が出る確率は、さいころを6回振った場合と同じである。しかしながら、同一の仮説において、第二のさいころで「1の目」が20回出る事象の生起確率は、判定基準の5%よりも小さい。したがって、仮説は棄却され、2個のさいころの性能に有意差(偏り)があると検定される。つまり、第二のさいころにおいて「1の目」の出る確率は(1/6)よりも大きいことが明らかになる。例えば、第二のさいころは、六面中の二つの面が「1の目」になっていると推定される。 In contrast, assume two events in which the number of times the "1 roll" was rolled 60 times on the two dice was 10 on the first die and 20 on the second die. .. In this event, the probability of getting a "1 roll" is the same as when the dice are rolled 6 times. However, in the same hypothesis, the probability of occurrence of an event in which a "1 roll" appears 20 times on the second die is less than 5% of the criterion. Therefore, the hypothesis is rejected and it is tested that there is a significant difference (bias) in the performance of the two dice. In other words, it becomes clear that the probability of getting a "1 roll" on the second die is greater than (1/6). For example, in the second die, it is estimated that two of the six faces are "one rolls".
 上述の例のように、「母比率の差の検定」では、使用回数が大きくなるにしたがい検定精度が高められる。この観点から、第一判定部74は、対基板作業に使用された使用回数が所定回数以上の評価対象ET0を第一種評価対象ET1として選択すると良い。同様に、第二判定部75は、対基板作業に使用された使用回数が所定回数以上の評価対象ET0を第二種評価対象ET2として選択すると良い。 As in the above example, in the "test of difference in population ratio", the test accuracy increases as the number of times of use increases. From this point of view, the first determination unit 74 may select the evaluation target ET0 that has been used for the substrate work more than a predetermined number of times as the first-class evaluation target ET1. Similarly, the second determination unit 75 may select the evaluation target ET0 that has been used for the substrate work more than a predetermined number of times as the second type evaluation target ET2.
 例えば、エラー発生率は、作業エラーの発生回数を、評価対象ET0が対基板作業に使用された使用回数で除算して算出される。特定対象ST0を抽出する指標としてエラー発生率を用いる場合、第一判定部74は、最低使用回数を設けて、最低使用回数以上の評価対象ET0を第一種評価対象ET1として選択すると良い。同様に、特定対象ST0を抽出する指標としてエラー発生率を用いる場合、第二判定部75は、最低使用回数を設けて、最低使用回数以上の評価対象ET0を第二種評価対象ET2として選択すると良い。 For example, the error occurrence rate is calculated by dividing the number of work error occurrences by the number of times the evaluation target ET0 is used for the board work. When the error occurrence rate is used as an index for extracting the specific target ST0, the first determination unit 74 may provide a minimum number of uses and select the evaluation target ET0 having the minimum number of uses or more as the first-class evaluation target ET1. Similarly, when the error occurrence rate is used as an index for extracting the specific target ST0, the second determination unit 75 sets the minimum number of uses and selects the evaluation target ET0 equal to or more than the minimum number of uses as the second type evaluation target ET2. good.
 ここで、第一種評価対象ET1に含まれる一の評価対象ET0を基準とした第二種評価対象ET2に含まれる複数の評価対象ET0についてエラー発生状況の評価値EV0の有意差が認められる場合を想定する。このとき、第一判定部74は、基準とした評価対象ET0が特定対象ST0ではなく、かつ、第二種評価対象ET2に含まれるエラー発生状況の評価値EV0が不良の評価対象ET0が特定対象ST0の可能性がある旨の判定をする。説明の便宜上、この判定を判定Aとする。 Here, when a significant difference in the evaluation value EV0 of the error occurrence status is observed for a plurality of evaluation target ET0s included in the second type evaluation target ET2 based on one evaluation target ET0 included in the first type evaluation target ET1. Is assumed. At this time, in the first determination unit 74, the evaluation target ET0 as the reference is not the specific target ST0, and the evaluation target ET0 whose error occurrence status evaluation value EV0 included in the type 2 evaluation target ET2 is defective is the specific target. It is determined that there is a possibility of ST0. For convenience of explanation, this determination is referred to as determination A.
 また、第一種評価対象ET1に含まれる一の評価対象ET0を基準とした第二種評価対象ET2に含まれる複数の評価対象ET0についてエラー発生状況の評価値EV0の有意差が認められず且つエラー発生状況の評価値EV0が良好の場合を想定する。このとき、第一判定部74は、基準とした評価対象ET0が特定対象ST0ではなく、かつ、第二種評価対象ET2に特定対象ST0を含まない旨の判定をする。説明の便宜上、この判定を判定Bとする。 In addition, no significant difference in the evaluation value EV0 of the error occurrence status was observed for a plurality of evaluation target ET0s included in the second type evaluation target ET2 based on one evaluation target ET0 included in the first type evaluation target ET1. It is assumed that the evaluation value EV0 of the error occurrence status is good. At this time, the first determination unit 74 determines that the reference evaluation target ET0 is not the specific target ST0 and that the second type evaluation target ET2 does not include the specific target ST0. For convenience of explanation, this determination is referred to as determination B.
 さらに、第一種評価対象ET1に含まれる一の評価対象ET0を基準とした第二種評価対象ET2に含まれる複数の評価対象ET0についてエラー発生状況の評価値EV0の有意差が認められず且つエラー発生状況の評価値EV0が不良の場合を想定する。このとき、第一判定部74は、基準とした評価対象ET0が特定対象ST0の可能性がある旨の判定をする。説明の便宜上、この判定を判定Cとする。 Further, no significant difference in the evaluation value EV0 of the error occurrence status was observed for a plurality of evaluation target ET0s included in the second type evaluation target ET2 based on one evaluation target ET0 included in the first type evaluation target ET1. It is assumed that the evaluation value EV0 of the error occurrence status is defective. At this time, the first determination unit 74 determines that the evaluation target ET0 as the reference may be the specific target ST0. For convenience of explanation, this determination is referred to as determination C.
 第二判定部75は、第一判定部74と比べて、第一種評価対象ET1と第二種評価対象ET2とを入れ替えた判定を行う。つまり、第二種評価対象ET2に含まれる一の評価対象ET0を基準とした第一種評価対象ET1に含まれる複数の評価対象ET0についてエラー発生状況の評価値EV0の有意差が認められる場合を想定する。このとき、第二判定部75は、基準とした評価対象ET0が特定対象ST0ではなく、かつ、第一種評価対象ET1に含まれるエラー発生状況の評価値EV0が不良の評価対象ET0が特定対象ST0の可能性がある旨の判定をする。説明の便宜上、この判定を判定Dとする。 The second determination unit 75 makes a determination by exchanging the first type evaluation target ET1 and the second type evaluation target ET2 as compared with the first determination unit 74. That is, when a significant difference in the evaluation value EV0 of the error occurrence status is recognized for a plurality of evaluation target ET0s included in the first-class evaluation target ET1 based on one evaluation target ET0 included in the second-class evaluation target ET2. Suppose. At this time, in the second determination unit 75, the evaluation target ET0 as the reference is not the specific target ST0, and the evaluation target ET0 whose error occurrence status evaluation value EV0 included in the first-class evaluation target ET1 is defective is the specific target. It is determined that there is a possibility of ST0. For convenience of explanation, this determination is referred to as determination D.
 また、第二種評価対象ET2に含まれる一の評価対象ET0を基準とした第一種評価対象ET1に含まれる複数の評価対象ET0についてエラー発生状況の評価値EV0の有意差が認められず且つエラー発生状況の評価値EV0が良好の場合を想定する。このとき、第二判定部75は、基準とした評価対象ET0が特定対象ST0ではなく、かつ、第一種評価対象ET1に特定対象ST0を含まない旨の判定をする。説明の便宜上、この判定を判定Eとする。 In addition, no significant difference in the evaluation value EV0 of the error occurrence status was observed for a plurality of evaluation target ET0s included in the first-class evaluation target ET1 based on one evaluation target ET0 included in the second-class evaluation target ET2. It is assumed that the evaluation value EV0 of the error occurrence status is good. At this time, the second determination unit 75 determines that the evaluation target ET0 as the reference is not the specific target ST0 and that the first-class evaluation target ET1 does not include the specific target ST0. For convenience of explanation, this determination is referred to as determination E.
 さらに、第二種評価対象ET2に含まれる一の評価対象ET0を基準とした第一種評価対象ET1に含まれる複数の評価対象ET0についてエラー発生状況の評価値EV0の有意差が認められず且つエラー発生状況の評価値EV0が不良の場合を想定する。このとき、第二判定部75は、基準とした評価対象ET0が特定対象ST0の可能性がある旨の判定をする。説明の便宜上、この判定を判定Fとする。 Furthermore, no significant difference in the evaluation value EV0 of the error occurrence status was observed for a plurality of evaluation target ET0s included in the first-class evaluation target ET1 based on one evaluation target ET0 included in the second-class evaluation target ET2. It is assumed that the evaluation value EV0 of the error occurrence status is defective. At this time, the second determination unit 75 determines that the evaluation target ET0 as the reference may be the specific target ST0. For convenience of explanation, this determination is referred to as determination F.
 以上から、第一種評価対象ET1に含まれる一の評価対象ET0を基準とした第二種評価対象ET2に含まれる複数の評価対象ET0についてエラー発生状況の評価値EV0の有意差が認められ、かつ、第二種評価対象ET2に含まれる一の評価対象ET0を基準とした第一種評価対象ET1に含まれる複数の評価対象ET0についてエラー発生状況の評価値EV0の有意差が認められず且つエラー発生状況の評価値EV0が不良のときに、抽出部73は、特定対象ST0を抽出できる可能性がある。 From the above, a significant difference in the evaluation value EV0 of the error occurrence status was recognized for a plurality of evaluation target ET0s included in the second type evaluation target ET2 based on one evaluation target ET0 included in the first type evaluation target ET1. In addition, no significant difference in the evaluation value EV0 of the error occurrence status was observed for a plurality of evaluation target ET0s included in the first-class evaluation target ET1 based on one evaluation target ET0 included in the second-class evaluation target ET2. When the evaluation value EV0 of the error occurrence status is defective, the extraction unit 73 may be able to extract the specific target ST0.
 また、第二種評価対象ET2に含まれる一の評価対象ET0を基準とした第一種評価対象ET1に含まれる複数の評価対象ET0についてエラー発生状況の評価値EV0の有意差が認められ、かつ、第一種評価対象ET1に含まれる一の評価対象ET0を基準とした第二種評価対象ET2に含まれる複数の評価対象ET0についてエラー発生状況の評価値EV0の有意差が認められず且つエラー発生状況の評価値EV0が不良のときに、抽出部73は、特定対象ST0を抽出できる可能性がある。 In addition, a significant difference in the evaluation value EV0 of the error occurrence status was observed for a plurality of evaluation target ET0s included in the first-class evaluation target ET1 based on one evaluation target ET0 included in the second-class evaluation target ET2. , No significant difference in the evaluation value EV0 of the error occurrence status is found and an error occurs for a plurality of evaluation target ET0s included in the second type evaluation target ET2 based on one evaluation target ET0 included in the first type evaluation target ET1. When the evaluation value EV0 of the occurrence situation is defective, the extraction unit 73 may be able to extract the specific target ST0.
 図7に示す例では、フィーダFD1を基準とした吸着ノズルNZ2と吸着ノズルNZ3について、エラー発生状況の評価値EV0の有意差が認められない。しかしながら、フィーダFD1を基準とした吸着ノズルNZ1のエラー発生状況の評価値EV0は、吸着ノズルNZ2および吸着ノズルNZ3と比べて不良であり、エラー発生状況の評価値EV0に有意差が認められる。また、フィーダFD1を基準とした吸着ノズルNZ1、吸着ノズルNZ2および吸着ノズルNZ3について、エラー発生状況の評価値EV0に有意差が認められるので、第一判定部74は、基準としたフィーダFD1が特定対象ST0ではないと判定する(判定A)。また、第一判定部74は、エラー発生状況の評価値EV0が不良の吸着ノズルNZ1が特定対象ST0の可能性がある旨の判定(判定A)をして1番目の第一判定結果とする。 In the example shown in FIG. 7, there is no significant difference in the evaluation value EV0 of the error occurrence status between the suction nozzle NZ2 and the suction nozzle NZ3 based on the feeder FD1. However, the evaluation value EV0 of the error occurrence status of the suction nozzle NZ1 based on the feeder FD1 is inferior to that of the suction nozzle NZ2 and the suction nozzle NZ3, and a significant difference is observed in the evaluation value EV0 of the error generation status. Further, since a significant difference is observed in the evaluation value EV0 of the error occurrence status between the suction nozzle NZ1, the suction nozzle NZ2 and the suction nozzle NZ3 based on the feeder FD1, the feeder FD1 as the reference is specified in the first determination unit 74. It is determined that it is not the target ST0 (determination A). Further, the first determination unit 74 determines (determination A) that the suction nozzle NZ1 having a defective error occurrence status evaluation value EV0 may be the specific target ST0, and uses it as the first first determination result. ..
 同様に、フィーダFD2を基準とした吸着ノズルNZ1、吸着ノズルNZ2および吸着ノズルNZ3について、エラー発生状況の評価値EV0に有意差が認められるので、第一判定部74は、基準としたフィーダFD2が特定対象ST0ではないと判定する(判定A)。また、第一判定部74は、エラー発生状況の評価値EV0が不良の吸着ノズルNZ1が特定対象ST0の可能性がある旨の判定(判定A)をして2番目の第一判定結果とする。 Similarly, since a significant difference is observed in the evaluation value EV0 of the error occurrence status between the suction nozzle NZ1, the suction nozzle NZ2 and the suction nozzle NZ3 based on the feeder FD2, the first determination unit 74 uses the feeder FD2 as a reference. It is determined that it is not the specific target ST0 (determination A). Further, the first determination unit 74 determines (determination A) that the suction nozzle NZ1 having a defective error occurrence status evaluation value EV0 may be the specific target ST0, and obtains the second first determination result. ..
 さらに、フィーダFD3を基準とした吸着ノズルNZ1、吸着ノズルNZ2および吸着ノズルNZ3について、エラー発生状況の評価値EV0に有意差が認められるので、第一判定部74は、基準としたフィーダFD3が特定対象ST0ではないと判定する(判定A)。また、第一判定部74は、エラー発生状況の評価値EV0が不良の吸着ノズルNZ1が特定対象ST0の可能性がある旨の判定(判定A)をして3番目の第一判定結果とする。 Further, since a significant difference is observed in the evaluation value EV0 of the error occurrence status between the suction nozzle NZ1, the suction nozzle NZ2 and the suction nozzle NZ3 based on the feeder FD3, the feeder FD3 as the reference is specified in the first determination unit 74. It is determined that it is not the target ST0 (determination A). Further, the first determination unit 74 determines (determination A) that the suction nozzle NZ1 having a defective error occurrence status evaluation value EV0 may be the specific target ST0, and uses it as the third first determination result. ..
 逆に、吸着ノズルNZ1を基準としたフィーダFD1、フィーダFD2およびフィーダFD3について、エラー発生状況の評価値EV0に有意差が認められない。また、吸着ノズルNZ1を基準としたフィーダFD1、フィーダFD2およびフィーダFD3のエラー発生状況の評価値EV0は、吸着ノズルNZ2および吸着ノズルNZ3と比べて不良である。よって、第二判定部75は、基準とした吸着ノズルNZ1が特定対象ST0の可能性がある旨の判定(判定F)をして1番目の第二判定結果とする。 On the contrary, there is no significant difference in the evaluation value EV0 of the error occurrence status for the feeder FD1, the feeder FD2 and the feeder FD3 based on the suction nozzle NZ1. Further, the evaluation value EV0 of the error occurrence status of the feeder FD1, the feeder FD2 and the feeder FD3 with respect to the suction nozzle NZ1 is inferior to the suction nozzle NZ2 and the suction nozzle NZ3. Therefore, the second determination unit 75 determines (determination F) that the suction nozzle NZ1 as the reference may be the specific target ST0, and obtains the first second determination result.
 同様に、吸着ノズルNZ2を基準としたフィーダFD1、フィーダFD2およびフィーダFD3について、エラー発生状況の評価値EV0に有意差が認められない。また、吸着ノズルNZ2を基準としたフィーダFD1、フィーダFD2およびフィーダFD3のエラー発生状況の評価値EV0は、吸着ノズルNZ1と比べて良好である。よって、第二判定部75は、基準とした吸着ノズルNZ2が特定対象ST0ではなく、かつ、第一種評価対象ET1(フィーダFD1、フィーダFD2およびフィーダFD3)に特定対象ST0を含まない旨の判定(判定E)をして2番目の第二判定結果とする。 Similarly, there is no significant difference in the evaluation value EV0 of the error occurrence status for the feeder FD1, feeder FD2 and feeder FD3 based on the suction nozzle NZ2. Further, the evaluation value EV0 of the error occurrence status of the feeder FD1, the feeder FD2 and the feeder FD3 with respect to the suction nozzle NZ2 is better than that of the suction nozzle NZ1. Therefore, the second determination unit 75 determines that the reference suction nozzle NZ2 is not the specific target ST0, and the first-class evaluation target ET1 (feeder FD1, feeder FD2, and feeder FD3) does not include the specific target ST0. (Judgment E) is performed to obtain the second second judgment result.
 また、吸着ノズルNZ3を基準としたフィーダFD1、フィーダFD2およびフィーダFD3について、エラー発生状況の評価値EV0に有意差が認められない。さらに、吸着ノズルNZ3を基準としたフィーダFD1、フィーダFD2およびフィーダFD3のエラー発生状況の評価値EV0は、吸着ノズルNZ1と比べて良好である。よって、第二判定部75は、基準とした吸着ノズルNZ3が特定対象ST0ではなく、かつ、第一種評価対象ET1(フィーダFD1、フィーダFD2およびフィーダFD3)に特定対象ST0を含まない旨の判定(判定E)をして3番目の第二判定結果とする。 Further, there is no significant difference in the evaluation value EV0 of the error occurrence status for the feeder FD1, the feeder FD2 and the feeder FD3 based on the suction nozzle NZ3. Further, the evaluation value EV0 of the error occurrence status of the feeder FD1, the feeder FD2 and the feeder FD3 with respect to the suction nozzle NZ3 is better than that of the suction nozzle NZ1. Therefore, the second determination unit 75 determines that the reference suction nozzle NZ3 is not the specific target ST0, and the first-class evaluation target ET1 (feeder FD1, feeder FD2, and feeder FD3) does not include the specific target ST0. (Judgment E) is performed to obtain the third second judgment result.
 抽出部73は、第一判定部74によって判定された判定結果である第一判定結果、および、第二判定部75によって判定された判定結果である第二判定結果に基づいて、特定対象ST0を抽出する。図7に示す例では、抽出部73は、第一判定部74によって判定された1番目の第一判定結果~3番目の第一判定結果、および、第二判定部75によって判定された1番目の第二判定結果~3番目の第二判定結果に基づいて、特定対象ST0を抽出する。 The extraction unit 73 determines the specific target ST0 based on the first determination result, which is the determination result determined by the first determination unit 74, and the second determination result, which is the determination result determined by the second determination unit 75. Extract. In the example shown in FIG. 7, the extraction unit 73 is the first determination result to the third first determination result determined by the first determination unit 74, and the first determination result determined by the second determination unit 75. The specific target ST0 is extracted based on the second judgment result to the third second judgment result of.
 また、抽出部73は、第一判定結果および第二判定結果が矛盾しないときに、第一判定結果および第二判定結果を満足する評価対象ET0を特定対象ST0として抽出する。上記の6つの判定結果は、矛盾せず、抽出部73は、第一判定結果および第二判定結果を満足する評価対象ET0を特定対象ST0として抽出することができる。具体的には、抽出部73は、吸着ノズルNZ1を特定対象ST0として抽出する。また、抽出部73は、フィーダFD1、フィーダFD2およびフィーダFD3が特定対象ST0ではないと推定する。さらに、抽出部73は、吸着ノズルNZ2および吸着ノズルNZ3が特定対象ST0ではないと推定する。 Further, the extraction unit 73 extracts the evaluation target ET0 that satisfies the first determination result and the second determination result as the specific target ST0 when the first determination result and the second determination result do not contradict each other. The above six determination results are consistent, and the extraction unit 73 can extract the evaluation target ET0 that satisfies the first determination result and the second determination result as the specific target ST0. Specifically, the extraction unit 73 extracts the suction nozzle NZ1 as the specific target ST0. Further, the extraction unit 73 estimates that the feeder FD1, the feeder FD2, and the feeder FD3 are not the specific target ST0. Further, the extraction unit 73 estimates that the suction nozzle NZ2 and the suction nozzle NZ3 are not the specific target ST0.
 1-3-4.案内部76
 案内部76は、抽出部73によって抽出された特定対象ST0を案内する(図5に示すステップS14)。例えば、案内部76は、特定対象ST0を表示装置80に表示して、特定対象ST0を案内することができる。表示装置80は、公知の表示装置を用いることができる。表示装置80は、解析装置、管理装置HC0、ライン管理装置LC0、部品装着機WM3などに設けることができる。図1および図4に示すように、本実施形態の表示装置80は、管理装置HC0に設けられている。
1-3-4. Information section 76
The guide unit 76 guides the specific target ST0 extracted by the extraction unit 73 (step S14 shown in FIG. 5). For example, the guide unit 76 can display the specific target ST0 on the display device 80 to guide the specific target ST0. As the display device 80, a known display device can be used. The display device 80 can be provided in an analysis device, a management device HC0, a line management device LC0, a component mounting machine WM3, and the like. As shown in FIGS. 1 and 4, the display device 80 of this embodiment is provided in the management device HC0.
 図8は、案内部76による案内例を示している。同図に示す例では、案内部76は、作業エラーの原因となった特定対象ST0が吸着ノズルNZ1であることを案内する。これにより、作業者は、特定対象ST0を知得することができる。しかしながら、特定対象ST0のみが案内される場合、作業者は、作業エラーを別途確認する必要がある。そこで、案内部76は、特定対象ST0と共に、当該特定対象ST0が関連付けられているエラーコードEC0を案内すると良い。 FIG. 8 shows an example of guidance by the guide unit 76. In the example shown in the figure, the guide unit 76 guides that the specific target ST0 that caused the work error is the suction nozzle NZ1. As a result, the worker can know the specific target ST0. However, when only the specific target ST0 is guided, the worker needs to confirm the work error separately. Therefore, the guide unit 76 may guide the error code EC0 associated with the specific target ST0 together with the specific target ST0.
 同図に示す例では、案内部76は、特定対象ST0である吸着ノズルNZ1が関連付けられているエラーコードEC0(この例では、エラーコードEC0001)を案内する。また、案内部76は、エラーコードEC0001が、例えば、部品立ち異常(吸着ノズルNZ1が部品91の角部などを吸着して部品91が立ち上がった異常状態)を示していることを案内することもできる。さらに、案内部76は、対基板作業の種類が採取作業であることを案内することもできる。 In the example shown in the figure, the guide unit 76 guides the error code EC0 (in this example, the error code EC0001) associated with the suction nozzle NZ1 which is the specific target ST0. Further, the guide unit 76 may also indicate that the error code EC0001 indicates, for example, a component standing abnormality (an abnormal state in which the suction nozzle NZ1 sucks a corner portion of the component 91 and the component 91 stands up). can. Further, the guide unit 76 can also indicate that the type of work for the substrate is collection work.
 案内部76によって特定対象ST0と共にエラーコードEC0が案内されることにより、経験豊富な作業者は、蓄積された知識に基づいて、特定対象ST0を使用した対基板作業の作業エラーを改善する対策を実施し易い。しかしながら、経験が少ない作業者は、対策を実施することが困難な場合がある。そこで、案内部76は、特定対象ST0と共に、当該特定対象ST0を使用した対基板作業の作業エラーを改善する対策情報EI0を案内すると良い。これにより、経験が少ない作業者であっても、特定対象ST0を使用した対基板作業の作業エラーを改善する対策を実施することができる。 By guiding the error code EC0 together with the specific target ST0 by the guide unit 76, the experienced worker can take measures to improve the work error of the work on the board using the specific target ST0 based on the accumulated knowledge. Easy to implement. However, it may be difficult for inexperienced workers to implement countermeasures. Therefore, the guide unit 76 may guide the specific target ST0 together with the countermeasure information EI0 for improving the work error of the work on the board using the specific target ST0. As a result, even an inexperienced worker can take measures to improve the work error of the work on the board using the specific target ST0.
 同図に示す例では、案内部76は、作業エラーを改善する対策情報EI0として、特定対象ST0である吸着ノズルNZ1のスキップを案内する。吸着ノズルNZ1のスキップは、装着ヘッド20が複数の吸着ノズルを備えるときに、吸着ノズルNZ1を使用しないで他の吸着ノズルを使用することを示している。また、案内部76は、作業エラーを改善する対策情報EI0として、特定対象ST0である吸着ノズルNZ1の交換を案内する。 In the example shown in the figure, the guide unit 76 guides the skip of the suction nozzle NZ1 which is the specific target ST0 as the countermeasure information EI0 for improving the work error. The skip of the suction nozzle NZ1 indicates that when the mounting head 20 includes a plurality of suction nozzles, the suction nozzle NZ1 is not used and another suction nozzle is used. Further, the guide unit 76 guides the replacement of the suction nozzle NZ1 which is the specific target ST0 as the countermeasure information EI0 for improving the work error.
 なお、予め、エラーコードEC0と評価対象ET0との組合せに対して、とり得る対策候補(対策情報EI0)を記載した対照表を記憶装置DS0に記憶させておくと良い。この場合、案内部76は、記憶装置DS0に記憶されている対照表を参照して、エラーコードEC0と特定対象ST0との組合せに対する対策候補(対策情報EI0)を取得して、対策情報EI0を案内することができる。 It is preferable to store in the storage device DS0 in advance a comparison table describing possible countermeasure candidates (countermeasure information EI0) for the combination of the error code EC0 and the evaluation target ET0. In this case, the guide unit 76 refers to the comparison table stored in the storage device DS0, acquires a countermeasure candidate (countermeasure information EI0) for the combination of the error code EC0 and the specific target ST0, and obtains the countermeasure information EI0. I can guide you.
 案内部76は、特定対象ST0およびエラーコードEC0の種類に応じて、種々の対策情報EI0を案内することができる。例えば、特定対象ST0が装着ヘッド20であり、エラーコードEC0が装着ヘッド20の内部構造に関する異常を示す場合、案内部76は、対策情報EI0として、装着ヘッド20のメンテナンスを案内することができる。また、特定対象ST0が保持部材30(吸着ノズル)であり、エラーコードEC0が部品91の表裏判定異常、装着荷重異常、吸着荷重異常などの場合、案内部76は、対策情報EI0として、形状データの修正などを案内することができる。 The guidance unit 76 can guide various countermeasure information EI0 according to the types of the specific target ST0 and the error code EC0. For example, when the specific target ST0 is the mounting head 20 and the error code EC0 indicates an abnormality regarding the internal structure of the mounting head 20, the guide unit 76 can guide the maintenance of the mounting head 20 as countermeasure information EI0. Further, when the specific target ST0 is the holding member 30 (suction nozzle) and the error code EC0 is a front / back determination abnormality, a mounting load abnormality, a suction load abnormality, etc. of the component 91, the guide unit 76 uses the shape data as countermeasure information EI0. It is possible to guide the correction of.
 なお、対基板作業は、部品91の供給作業、採取作業および装着作業に限定されるものではない。例えば、対基板作業は、基板90を機内に搬入し所定位置に位置決めして、所定の対基板作業の後に基板90を機内から搬出する搬送作業などであっても良い。例えば、特定対象ST0が基板搬送装置11であり、エラーコードEC0が基板90に設けられる位置決め基準部の読み取りエラー、複数の位置決め基準部の検出エラーなどを示す場合が想定される。このとき、案内部76は、対策情報EI0として、生産プログラムに規定されている位置決め基準部に関するデータの修正などを案内することができる。 Note that the board-to-board work is not limited to the supply work, collection work, and mounting work of the component 91. For example, the board-to-board work may be a transfer work in which the board 90 is carried into the machine, positioned at a predetermined position, and the board 90 is carried out from the machine after the predetermined board-to-board work. For example, it is assumed that the specific target ST0 is the substrate transfer device 11, and the error code EC0 indicates a reading error of the positioning reference unit provided on the substrate 90, a detection error of a plurality of positioning reference units, and the like. At this time, the guide unit 76 can guide the correction of data related to the positioning reference unit specified in the production program as the countermeasure information EI0.
 また、特定対象ST0が基板搬送装置11であり、エラーコードEC0が特定の対基板作業機WM0における基板90の搬入出に関するエラーなどを示す場合が想定される。このとき、案内部76は、対策情報EI0として、基板搬送装置11の清掃、キャリブレーションなどを案内することができる。さらに、対基板作業機WM0は、部品装着機WM3に限らず、例えば、印刷機WM1、印刷検査機WM2および外観検査機WM5などであっても良い。 Further, it is assumed that the specific target ST0 is the board transfer device 11, and the error code EC0 indicates an error related to the loading / unloading of the board 90 in the specific anti-board working machine WM0. At this time, the guide unit 76 can guide the cleaning, calibration, and the like of the board transfer device 11 as the countermeasure information EI0. Further, the board working machine WM0 is not limited to the component mounting machine WM3, and may be, for example, a printing machine WM1, a printing inspection machine WM2, an appearance inspection machine WM5, or the like.
 2.エラー原因推定方法
 エラー原因推定装置70について既述されていることは、エラー原因推定方法についても同様に言える。具体的には、エラー原因推定方法は、記憶工程と、集計工程と、抽出工程とを備えている。記憶工程は、記憶部71が行う制御に相当する。集計工程は、集計部72が行う制御に相当する。抽出工程は、抽出部73が行う制御に相当する。また、エラー原因推定方法は、第一判定工程および第二判定工程を備えることができる。第一判定工程は、第一判定部74が行う制御に相当する。第二判定工程は、第二判定部75が行う制御に相当する。また、エラー原因推定方法は、案内工程を備えることができる。案内工程は、案内部76が行う制御に相当する。
2. 2. Error cause estimation method The same applies to the error cause estimation method described above for the error cause estimation device 70. Specifically, the error cause estimation method includes a storage process, an aggregation process, and an extraction process. The storage process corresponds to the control performed by the storage unit 71. The aggregation process corresponds to the control performed by the aggregation unit 72. The extraction step corresponds to the control performed by the extraction unit 73. Further, the error cause estimation method can include a first determination step and a second determination step. The first determination step corresponds to the control performed by the first determination unit 74. The second determination step corresponds to the control performed by the second determination unit 75. Further, the error cause estimation method can include a guidance process. The guidance process corresponds to the control performed by the guidance unit 76.
 3.実施形態の効果の一例
 エラー原因推定装置70によれば、抽出部73を備える。抽出部73は、エラーコードEC0ごとに集計された複数種類の評価対象ET0の間のエラー発生状況の評価値EV0の有意差に基づいて、作業エラーの原因となった評価対象ET0である特定対象ST0を抽出する。そのため、エラー原因推定装置70は、エラーコードEC0ごとに評価値EV0が集計されていない場合と比べて、評価対象ET0の中から作業エラーの原因となった特定対象ST0を適切に抽出することができる。エラー原因推定装置70について上述されていることは、エラー原因推定方法についても同様に言える。
3. 3. An example of the effect of the embodiment According to the error cause estimation device 70, the extraction unit 73 is provided. The extraction unit 73 is a specific target that is the evaluation target ET0 that caused the work error, based on the significant difference in the evaluation value EV0 of the error occurrence status among the plurality of types of evaluation target ET0 aggregated for each error code EC0. Extract ST0. Therefore, the error cause estimation device 70 can appropriately extract the specific target ST0 that caused the work error from the evaluation target ET0 as compared with the case where the evaluation value EV0 is not aggregated for each error code EC0. can. The above-mentioned matters regarding the error cause estimation device 70 can be applied to the error cause estimation method as well.
12:部品供給装置、70:エラー原因推定装置、71:記憶部、
72:集計部、73:抽出部、74:第一判定部、75:第二判定部、
76:案内部、90:基板、91:部品、DS0:記憶装置、
UM0:使用機器、UD0:使用データ、ET0:評価対象、
EC0:エラーコード、EV0:評価値、ST0:特定対象、
EI0:対策情報、ET1:第一種評価対象、ET2:第二種評価対象、
WM0:対基板作業機、WM3:部品装着機。
12: Parts supply device, 70: Error cause estimation device, 71: Storage unit,
72: Aggregation unit, 73: Extraction unit, 74: First judgment unit, 75: Second judgment unit,
76: Guide unit, 90: Board, 91: Parts, DS0: Storage device,
UM0: Equipment used, UD0: Data used, ET0: Evaluation target,
EC0: Error code, EV0: Evaluation value, ST0: Specific target,
EI0: Countermeasure information, ET1: Type 1 evaluation target, ET2: Type 2 evaluation target,
WM0: anti-board work machine, WM3: parts mounting machine.

Claims (10)

  1.  基板に所定の対基板作業を行う対基板作業機の前記対基板作業に使用された使用機器および前記対基板作業に使用された使用データのうちの少なくとも一方である評価対象、並びに、前記評価対象を使用した前記対基板作業の作業エラーを示すエラーコードを関連付けて記憶装置に記憶させる記憶部と、
     前記記憶装置に記憶されている複数種類の前記評価対象についてのエラー発生状況の評価値を前記エラーコードごとに集計する集計部と、
     前記エラーコードごとに集計された複数種類の前記評価対象の間の前記エラー発生状況の前記評価値の有意差に基づいて、前記作業エラーの原因となった前記評価対象である特定対象を抽出する抽出部と、
    を備えるエラー原因推定装置。
    An evaluation target, which is at least one of the equipment used for the anti-board work and the usage data used for the anti-board work of the anti-board work machine that performs a predetermined anti-board work on the substrate, and the evaluation target. A storage unit that associates and stores an error code indicating a work error of the work on the board using the above, and stores the error code in the storage device.
    An aggregation unit that aggregates the evaluation values of the error occurrence status of the plurality of types of the evaluation targets stored in the storage device for each error code, and
    Based on the significant difference in the evaluation value of the error occurrence status among the plurality of types of the evaluation targets aggregated for each error code, the specific target that is the evaluation target that caused the work error is extracted. Extractor and
    An error cause estimation device.
  2.  前記抽出部によって抽出された前記特定対象を案内する案内部を備え、
     前記案内部は、前記特定対象と共に、当該特定対象が関連付けられている前記エラーコードを案内する請求項1に記載のエラー原因推定装置。
    A guide unit for guiding the specific target extracted by the extraction unit is provided.
    The error cause estimation device according to claim 1, wherein the guide unit guides the error code associated with the specific target together with the specific target.
  3.  前記抽出部によって抽出された前記特定対象を案内する案内部を備え、
     前記案内部は、前記特定対象と共に、当該特定対象を使用した前記対基板作業の前記作業エラーを改善する対策情報を案内する請求項1または請求項2に記載のエラー原因推定装置。
    A guide unit for guiding the specific target extracted by the extraction unit is provided.
    The error cause estimation device according to claim 1 or 2, wherein the guide unit guides the specific target together with countermeasure information for improving the work error of the work on the substrate using the specific target.
  4.  前記集計部は、類似する前記エラーコードをグループ化して、前記エラー発生状況の前記評価値を集計する請求項1~請求項3のいずれか一項に記載のエラー原因推定装置。 The error cause estimation device according to any one of claims 1 to 3, wherein the aggregation unit groups similar error codes and aggregates the evaluation values of the error occurrence status.
  5.  前記集計部は、前記作業エラーを改善する対策が同一または類似する前記エラーコードをグループ化して、前記エラー発生状況の前記評価値を集計する請求項1~請求項4のいずれか一項に記載のエラー原因推定装置。 The aggregation unit is described in any one of claims 1 to 4, wherein the error codes having the same or similar measures for improving the work error are grouped and the evaluation values of the error occurrence status are aggregated. Error cause estimation device.
  6.  一の前記エラーコードに関連付けて記憶されている複数種類の前記評価対象の中から選択された一の種類の前記評価対象を第一種評価対象とし、前記第一種評価対象と異なる一の種類の前記評価対象を第二種評価対象とするとき、
     前記第一種評価対象に含まれる一の前記評価対象を基準とした前記第二種評価対象に含まれる複数の前記評価対象についての前記エラー発生状況の前記評価値の有意差の有無を、前記第一種評価対象に含まれる複数の前記評価対象の各々について判定する第一判定部と、
     前記第二種評価対象に含まれる一の前記評価対象を基準とした前記第一種評価対象に含まれる複数の前記評価対象についての前記エラー発生状況の前記評価値の有意差の有無を、前記第二種評価対象に含まれる複数の前記評価対象の各々について判定する第二判定部と、
    を備え、
     前記抽出部は、前記第一判定部によって判定された判定結果である第一判定結果、および、前記第二判定部によって判定された判定結果である第二判定結果に基づいて、前記特定対象を抽出する請求項1~請求項5のいずれか一項に記載のエラー原因推定装置。
    One type of evaluation target selected from a plurality of types of evaluation targets stored in association with the error code is set as the first-class evaluation target, and one type different from the first-class evaluation target. When the evaluation target of the above is the second type evaluation target,
    Whether or not there is a significant difference in the evaluation value of the error occurrence status for a plurality of the evaluation targets included in the second-class evaluation target based on the one evaluation target included in the first-class evaluation target. A first determination unit that determines each of the plurality of evaluation targets included in the first-class evaluation target, and
    Whether or not there is a significant difference in the evaluation value of the error occurrence status for a plurality of the evaluation targets included in the first-class evaluation target based on the one evaluation target included in the second-class evaluation target. A second determination unit that determines each of the plurality of evaluation targets included in the second type evaluation target, and
    Equipped with
    The extraction unit determines the specific target based on the first determination result, which is the determination result determined by the first determination unit, and the second determination result, which is the determination result determined by the second determination unit. The error cause estimation device according to any one of claims 1 to 5, which is to be extracted.
  7.  前記第一判定部は、
     前記第一種評価対象に含まれる一の前記評価対象を基準とした前記第二種評価対象に含まれる複数の前記評価対象について前記エラー発生状況の前記評価値の有意差が認められるときに、基準とした前記評価対象が前記特定対象ではなく、かつ、前記第二種評価対象に含まれる前記エラー発生状況の前記評価値が不良の前記評価対象が前記特定対象の可能性がある旨の判定をし、
     前記第一種評価対象に含まれる一の前記評価対象を基準とした前記第二種評価対象に含まれる複数の前記評価対象について前記エラー発生状況の前記評価値の有意差が認められず且つ前記エラー発生状況の前記評価値が良好のときに、基準とした前記評価対象が前記特定対象ではなく、かつ、前記第二種評価対象に前記特定対象を含まない旨の判定をし、
     前記第一種評価対象に含まれる一の前記評価対象を基準とした前記第二種評価対象に含まれる複数の前記評価対象について前記エラー発生状況の前記評価値の有意差が認められず且つ前記エラー発生状況の前記評価値が不良のときに、基準とした前記評価対象が前記特定対象の可能性がある旨の判定をし、
     前記第二判定部は、
     前記第二種評価対象に含まれる一の前記評価対象を基準とした前記第一種評価対象に含まれる複数の前記評価対象について前記エラー発生状況の前記評価値の有意差が認められるときに、基準とした前記評価対象が前記特定対象ではなく、かつ、前記第一種評価対象に含まれる前記エラー発生状況の前記評価値が不良の前記評価対象が前記特定対象の可能性がある旨の判定をし、
     前記第二種評価対象に含まれる一の前記評価対象を基準とした前記第一種評価対象に含まれる複数の前記評価対象について前記エラー発生状況の前記評価値の有意差が認められず且つ前記エラー発生状況の前記評価値が良好のときに、基準とした前記評価対象が前記特定対象ではなく、かつ、前記第一種評価対象に前記特定対象を含まない旨の判定をし、
     前記第二種評価対象に含まれる一の前記評価対象を基準とした前記第一種評価対象に含まれる複数の前記評価対象について前記エラー発生状況の前記評価値の有意差が認められず且つ前記エラー発生状況の前記評価値が不良のときに、基準とした前記評価対象が前記特定対象の可能性がある旨の判定をする請求項6に記載のエラー原因推定装置。
    The first determination unit
    When a significant difference in the evaluation value of the error occurrence status is observed for a plurality of the evaluation targets included in the second type evaluation target based on the one evaluation target included in the first type evaluation target. Judgment that the evaluation target as a reference is not the specific target, and the evaluation target whose evaluation value of the error occurrence status included in the second type evaluation target is defective may be the specific target. And
    No significant difference in the evaluation value of the error occurrence status was observed for a plurality of the evaluation targets included in the second type evaluation target based on the one evaluation target included in the first type evaluation target, and the above. When the evaluation value of the error occurrence situation is good, it is determined that the evaluation target as a reference is not the specific target and the second type evaluation target does not include the specific target.
    No significant difference in the evaluation value of the error occurrence status was observed for a plurality of the evaluation targets included in the second type evaluation target based on the one evaluation target included in the first type evaluation target, and the above. When the evaluation value of the error occurrence status is defective, it is determined that the evaluation target as a reference may be the specific target.
    The second determination unit
    When a significant difference in the evaluation value of the error occurrence status is observed for a plurality of the evaluation targets included in the first-class evaluation target based on the one evaluation target included in the second-class evaluation target. Judgment that the evaluation target as a reference is not the specific target, and the evaluation target whose evaluation value of the error occurrence status included in the first-class evaluation target is defective may be the specific target. And
    No significant difference in the evaluation value of the error occurrence status was observed for a plurality of the evaluation targets included in the first-class evaluation target based on the one evaluation target included in the second-class evaluation target, and the said. When the evaluation value of the error occurrence situation is good, it is determined that the evaluation target as a reference is not the specific target and the first-class evaluation target does not include the specific target.
    No significant difference in the evaluation value of the error occurrence status was observed for a plurality of the evaluation targets included in the first-class evaluation target based on the one evaluation target included in the second-class evaluation target, and the above-mentioned The error cause estimation device according to claim 6, wherein when the evaluation value of the error occurrence status is defective, it is determined that the evaluation target as a reference may be the specific target.
  8.  前記抽出部は、前記第一判定結果および前記第二判定結果が矛盾しないときに、前記第一判定結果および前記第二判定結果を満足する前記評価対象を前記特定対象として抽出する請求項6または請求項7に記載のエラー原因推定装置。 The extraction unit extracts the evaluation target satisfying the first determination result and the second determination result as the specific object when the first determination result and the second determination result do not contradict each other. The error cause estimation device according to claim 7.
  9.  前記対基板作業機は、前記基板に部品を装着する部品装着機であり、
     前記対基板作業は、部品供給装置から前記部品を供給する供給作業、前記部品供給装置から供給された前記部品を採取する採取作業、および、前記部品を前記基板に装着する装着作業のうちの少なくとも一つである請求項1~請求項8のいずれか一項に記載のエラー原因推定装置。
    The anti-board working machine is a component mounting machine that mounts components on the board.
    The board-to-board work is at least one of a supply work of supplying the parts from the parts supply device, a collection work of collecting the parts supplied from the parts supply device, and a mounting work of mounting the parts on the board. The error cause estimation device according to any one of claims 1 to 8, which is one.
  10.  基板に所定の対基板作業を行う対基板作業機の前記対基板作業に使用された使用機器および前記対基板作業に使用された使用データのうちの少なくとも一方である評価対象、並びに、前記評価対象を使用した前記対基板作業の作業エラーを示すエラーコードを関連付けて記憶装置に記憶させる記憶工程と、
     前記記憶装置に記憶されている複数種類の前記評価対象についてのエラー発生状況の評価値を前記エラーコードごとに集計する集計工程と、
     前記エラーコードごとに集計された複数種類の前記評価対象の間の前記エラー発生状況の前記評価値の有意差に基づいて、前記作業エラーの原因となった前記評価対象である特定対象を抽出する抽出工程と、
    を備えるエラー原因推定方法。
    An evaluation target, which is at least one of the equipment used for the anti-board work and the usage data used for the anti-board work of the anti-board work machine that performs a predetermined anti-board work on the substrate, and the evaluation target. A storage process in which an error code indicating a work error of the work on the board using the above is associated and stored in a storage device, and
    An aggregation process for aggregating the evaluation values of error occurrence status for a plurality of types of evaluation targets stored in the storage device for each error code, and
    Based on the significant difference in the evaluation value of the error occurrence status among the plurality of types of the evaluation targets aggregated for each error code, the specific target that is the evaluation target that caused the work error is extracted. Extraction process and
    Error cause estimation method.
PCT/JP2020/031971 2020-08-25 2020-08-25 Error cause estimating device and error cause estimating method WO2022044111A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2020/031971 WO2022044111A1 (en) 2020-08-25 2020-08-25 Error cause estimating device and error cause estimating method
DE112020007552.4T DE112020007552T5 (en) 2020-08-25 2020-08-25 Failure cause estimating device and failure cause estimating method
JP2022544925A JP7326631B2 (en) 2020-08-25 2020-08-25 Error cause estimation device and error cause estimation method
CN202080104674.XA CN116114390A (en) 2020-08-25 2020-08-25 Error cause estimation device and error cause estimation method
JP2023125906A JP7466746B2 (en) 2020-08-25 2023-08-02 Countermeasure information presentation device and countermeasure information presentation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/031971 WO2022044111A1 (en) 2020-08-25 2020-08-25 Error cause estimating device and error cause estimating method

Publications (1)

Publication Number Publication Date
WO2022044111A1 true WO2022044111A1 (en) 2022-03-03

Family

ID=80354855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/031971 WO2022044111A1 (en) 2020-08-25 2020-08-25 Error cause estimating device and error cause estimating method

Country Status (4)

Country Link
JP (2) JP7326631B2 (en)
CN (1) CN116114390A (en)
DE (1) DE112020007552T5 (en)
WO (1) WO2022044111A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006261338A (en) * 2005-03-16 2006-09-28 Yamaha Motor Co Ltd Electronic component mounting machine
JP2010177293A (en) * 2009-01-27 2010-08-12 Omron Corp Information display system and information display method for quality control of component-mounted substrate
WO2019013225A1 (en) * 2017-07-14 2019-01-17 パナソニックIpマネジメント株式会社 Display device, manufacturing system, and display method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010118561A (en) 2008-11-14 2010-05-27 Hitachi High-Tech Instruments Co Ltd Component mounting device, program, and abnormality cause investigating method
JP5172763B2 (en) 2009-03-30 2013-03-27 株式会社日立ハイテクインスツルメンツ Arithmetic apparatus, component mounting apparatus, program, and arithmetic method
JP5427054B2 (en) 2010-01-29 2014-02-26 株式会社日立ハイテクインスツルメンツ Component mounting device with anomaly detection device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006261338A (en) * 2005-03-16 2006-09-28 Yamaha Motor Co Ltd Electronic component mounting machine
JP2010177293A (en) * 2009-01-27 2010-08-12 Omron Corp Information display system and information display method for quality control of component-mounted substrate
WO2019013225A1 (en) * 2017-07-14 2019-01-17 パナソニックIpマネジメント株式会社 Display device, manufacturing system, and display method

Also Published As

Publication number Publication date
DE112020007552T5 (en) 2023-06-15
JP7326631B2 (en) 2023-08-15
CN116114390A (en) 2023-05-12
JP2023133485A (en) 2023-09-22
JP7466746B2 (en) 2024-04-12
JPWO2022044111A1 (en) 2022-03-03

Similar Documents

Publication Publication Date Title
KR101123464B1 (en) Component mounting method, component mounting apparatus, method for determining mounting conditions, and apparatus and program for determining mounting conditions
JP4767995B2 (en) Component mounting method, component mounting machine, mounting condition determining method, mounting condition determining apparatus, and program
EP2902861A1 (en) Production line monitoring device
CN104663016A (en) Recognition device for substrate processing machine
US11330745B2 (en) Management device, mounting-related device, and mounting system
WO2018142532A1 (en) Production management device
CN108142000A (en) Operation system of substrate and element fixing apparatus
KR20140016789A (en) Component mounting system, component mounting device and component inspecting device
WO2022044111A1 (en) Error cause estimating device and error cause estimating method
JP5756713B2 (en) Substrate processing apparatus, substrate processing system
JP7142149B2 (en) Device for estimating cause of mounting error and method for estimating cause of mounting error
JP6904978B2 (en) Parts mounting machine
US11109521B2 (en) Production management system of component mounting line
CN114746817A (en) Operation status display device and operation status display method
US20230217637A1 (en) Component mounting system
JP7427074B2 (en) Malfunction determination device and malfunction determination method for component mounter
JP7161074B2 (en) production management system
JP7398668B2 (en) Parts placement determination method and parts placement determination program
JP7179211B2 (en) Implementation system and error handling method
US10334769B2 (en) Method for allocating electronic component and electronic component mounting system
JP7061703B2 (en) Production control method
JP7094366B2 (en) Inspection setting device and inspection setting method
JP2022053087A (en) Inspection support device and inspection support method
JP2023118217A (en) Abnormality determination device and abnormality determination method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20951366

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022544925

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20951366

Country of ref document: EP

Kind code of ref document: A1