WO2022042721A1 - 光收发器装置和光网络系统 - Google Patents

光收发器装置和光网络系统 Download PDF

Info

Publication number
WO2022042721A1
WO2022042721A1 PCT/CN2021/115328 CN2021115328W WO2022042721A1 WO 2022042721 A1 WO2022042721 A1 WO 2022042721A1 CN 2021115328 W CN2021115328 W CN 2021115328W WO 2022042721 A1 WO2022042721 A1 WO 2022042721A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
mode
optical signal
signal
reflection filter
Prior art date
Application number
PCT/CN2021/115328
Other languages
English (en)
French (fr)
Inventor
雷星宇
张伟良
李明生
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US18/023,863 priority Critical patent/US20230327770A1/en
Priority to EP21860553.3A priority patent/EP4207634A1/en
Publication of WO2022042721A1 publication Critical patent/WO2022042721A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/506Multiwavelength transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/67Optical arrangements in the receiver
    • H04B10/671Optical arrangements in the receiver for controlling the input optical signal
    • H04B10/675Optical arrangements in the receiver for controlling the input optical signal for controlling the optical bandwidth of the input signal, e.g. spectral filtering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0282WDM tree architectures

Definitions

  • Embodiments of the present disclosure relate to, but are not limited to, the field of communication technologies, and in particular, to an optical transceiver device and an optical network system.
  • the large-scale layout is a combination of two signal modes of GPON (Gigabit-Capable Passive Optical Networks, Gigabit Passive Optical Network or Gigabit Passive Optical Network) mode and XG-PON mode.
  • GPON Gigabit-Capable Passive Optical Networks, Gigabit Passive Optical Network or Gigabit Passive Optical Network
  • XG-PON XG-PON
  • the present disclosure aims to solve one of the above technical problems, and proposes an optical transceiver device and an optical network system.
  • an optical transceiver device including: an optical module and at least three transceiver modules, wherein an optical port of the optical module is connected to an external optical fiber; each of the transceiver modules is configured as Processing the optical signal of the corresponding mode, for sending the downlink optical signal of the corresponding mode to the optical module, and receiving the uplink optical signal of the corresponding mode provided by the optical module; the optical module is configured to receive the downlink optical signal Perform multiplexing processing to generate downlink multiplexed optical signals and send them to an external optical fiber, and perform demultiplexing processing on the received uplink multiplexed optical signals to obtain at least one optical signal in a mode corresponding to the transceiver module.
  • the at least three transceiver modules include: a first transceiver module, a second transceiver module, and a third transceiver module;
  • the first transceiver module is configured to send downlink optical signals in the first mode to the optical module, and receiving the uplink optical signal of the first mode provided by the optical module;
  • the second transceiver module is configured to send the downlink optical signal of the second mode to the optical module, and receive the uplink optical signal of the second mode provided by the optical module signal;
  • the third transceiver module is configured to send the downlink optical signal of the third mode to the optical module, and receive the uplink optical signal of the third mode provided by the optical module;
  • the first mode is XG-PON or XGS -PON mode
  • the second mode is a GPON mode
  • the third mode is a low-latency mode.
  • the apparatus further includes: a circuit processing unit; the circuit processing unit is configured to process the downlink electrical signal of the first mode into a downlink optical signal of the first mode, and to process the first mode
  • the uplink optical signal of the second mode is processed into the uplink electrical signal of the first mode
  • the downlink electrical signal of the second mode is processed into the downlink optical signal of the second mode
  • the uplink optical signal of the second mode is processed into the second mode
  • the uplink electrical signal of the third mode is processed into the downlink optical signal of the third mode, and the uplink optical signal of the third mode is processed into the uplink electrical signal of the third mode.
  • the first transceiver module includes: a first transmitter and a first receiver, the first transmitter is configured to send downlink optical signals in a first mode to the optical module, the first The receiver is configured to receive the uplink optical signal of the first mode provided by the optical module;
  • the second transceiver module includes: a second transmitter and a second receiver, the second transmitter is configured to transmit the downlink optical signal of the second mode The optical signal is sent to the optical module, and the second receiver is configured to receive the uplink optical signal of the second mode provided by the optical module;
  • the third transceiver module includes: a third transmitter and a third receiver, the The third transmitter is configured to send the downlink optical signal of the third mode to the optical module, and the third receiver is configured to receive the uplink optical signal of the third mode provided by the optical module.
  • the optical module includes: a first multi-wavelength filter, a second multi-wavelength filter, a third demultiplexed reflection filter, a second reflection filter, and a second demultiplexed reflection filter.
  • filter, a first demultiplexing reflective filter and a first reflective filter, all filters have opposite first and second sides;
  • the first combining filter is configured to The downstream optical signal of one mode is transmitted to the first side of the second multiplexing filter, and the downstream optical signal of the second mode from the second side of itself is reflected to the first side of the second multiplexing filter;
  • the The second multiplexing filter is configured to transmit the optical signal located on the first side of itself and from the first multiplexing filter to the optical port, and to reflect the downlink optical signal of the third mode located on the second side of itself to the optical port.
  • the third demultiplexing reflection filter is configured to receive the uplink multiplexed optical signal located on the second side of itself and from the optical port, and to reflect the uplink optical signal of the first mode in the uplink multiplexed optical signal to the second
  • the first side of the reflection filter transmits the uplink optical signals of the second mode and the third mode in the uplink multiplexed optical signal to the second side of the second demultiplexed reflection filter
  • the second reflection filter is configured In order to reflect the optical signal located on the first side of itself and from the third split-wave reflection filter to the first receiver
  • the second split-wave reflection filter is configured to be located on the second side of itself and from the third split-wave reflection filter.
  • the first demultiplexed reflection filter is configured to reflect the optical signal located on the second side of itself and from the second demultiplexed reflection filter to the first side of the first reflection filter;
  • the first The reflection filter is configured to reflect the optical signal on the first side of itself and from the first demultiplexing reflection filter to the third receiver.
  • the first combining filter, the second combining filter, the first splitting reflective filter, the second splitting reflective filter, the third splitting reflective filter and the The optical port is located on the same preset optical axis; the first sides of all filters face away from the optical port; the plane where the first multi-wavelength filter is located is 45° from the optical axis; the second The plane where the multiplexing filter is located is 45° to the optical axis; the angle between the plane where the first demultiplexing reflection filter is located and the optical axis is 8° to 30°; the first reflection filter The filter is located on one side of the optical axis, and the angle between the filter and the optical axis is such that the optical signal located on the first side of itself and from the first demultiplexing reflection filter is reflected in the direction of the light and the optical axis.
  • the optical axis is vertical; the plane where the second demultiplexing reflection filter is located is 45° to the optical axis; the angle between the plane where the third demultiplexing reflection filter is located and the optical axis is 8° ⁇ 30°; the second reflection filter is located on one side of the optical axis, and the angle between the second reflection filter and the optical axis is such that the light located on the first side of itself and from the third demultiplexing reflection filter After the signal is reflected, the light direction is perpendicular to the optical axis.
  • the direction of the optical signal sent by the first transmitter is parallel to the optical axis; the direction of the optical signal sent by the second transmitter and the third transmitter is perpendicular to the optical axis;
  • the direction of the optical signal from the first side of the second reflection filter received by the first receiver is perpendicular to the optical axis;
  • the direction of the optical signal received by the second receiver from the second demultiplexed reflection filter The direction of the optical signal on the second side of the sheet is perpendicular to the optical axis;
  • the direction of the optical signal from the first side of the first reflection filter received by the third receiver is perpendicular to the optical axis .
  • the wavelength range of the downlink optical signal of the first mode is 1574.5nm ⁇ 1579.5nm, and the wavelength range of the uplink optical signal of the first mode is 1260nm ⁇ 1280nm; the downlink light of the second mode The wavelength range of the signal is from 1480 nm to 1500 nm, and the wavelength range of the upstream optical signal of the second mode is from 1290 nm to 1330 nm.
  • the wavelength difference between the wavelength of the upstream signal of the first mode and the wavelength of the upstream signal of the third mode is less than or equal to 45 nm; the wavelength of the upstream signal of the first mode and the wavelength of the second mode The wavelength difference of the wavelength of the upstream signal is less than or equal to 45nm; the wavelength difference of the wavelength of the upstream signal of the third mode and the wavelength of the upstream signal of the second mode is greater than or equal to 45nm; the wavelength of the downstream signal of the third mode The wavelength difference with the wavelength of the upstream signal of the third mode is less than or equal to 45 nm.
  • the frequency of the downlink electrical signal in the first mode is 10GHZ, and the frequency of the uplink electrical signal is 2.5GHZ or 10GHZ; the frequency of the downlink electrical signal in the second mode is 2.5GHZ, and the frequency of the uplink electrical signal is 2.5GHZ.
  • the frequency is 1.25GHZ; the frequency of the downlink electrical signal in the third mode is 10GHZ, and the frequency of the uplink electrical signal is 10GHZ.
  • the present disclosure further provides an optical network system, including: an optical transceiver device; the optical transceiver device adopts the optical transceiver device provided in the first aspect of the present disclosure.
  • the optical transceiver device and the optical network system provided by the present disclosure can perform multiplexing and demultiplexing processing on optical signals of multiple modes in the PON network system.
  • the multiple modes of optical signals include traditional mode signals and traditional mode signals.
  • a new mode of signal is added under the PON network architecture, so that when the PON network architecture integrates and deploys signals of various modes, there is no need to open additional slots on the OLT board, and no external WDM machine is required, thus avoiding the complexity of the entire network system.
  • the increase in maintenance cost makes the application more convenient.
  • FIG. 1 is a schematic structural diagram of an optical network system according to an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of an optical transceiver device according to an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of another optical transceiver device according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of an optical module provided by an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of another optical module according to an embodiment of the present disclosure.
  • An embodiment of the present disclosure provides an optical transceiver device that can compatibly implement the fusion of traditional mode optical signals and new mode optical signals, thereby avoiding increasing the complexity of the entire PON network system and making maintenance more convenient. And it is especially suitable for the scene where the low-latency mode signal is fused under the traditional mode optical signal.
  • FIG. 1 is a schematic structural diagram of an optical network system according to an embodiment of the present disclosure.
  • the optical network system includes: an optical transceiver device 1, a splitter 2, and three modes of ONU (Optical Network Unit, optical network unit), and the three modes of ONU can be defined as the first mode ONU 31, second mode ONU 32 and third mode ONU 33.
  • FIG. 1 only shows ONUs in three modes. However, in practical applications, the number of ONUs may also be greater than three, and FIG. 1 only serves as an example, and does not limit the present disclosure.
  • the specific mode of the ONU can be selected according to the needs, such as selecting GPON ONU, XG-PON ONU and so on.
  • the optical transceiver device 1 is arranged on the OLT single board, and is connected to the splitter through an external optical fiber 4 .
  • the signal transmitted from the optical transceiver device 1 to the splitter 2 is called a downlink signal
  • the signal transmitted from the splitter 2 to the optical transceiver device is called an uplink signal.
  • optical transceiver device 1 The specific structure of the optical transceiver device 1 in FIG. 1 will be described below.
  • the optical transceiver device includes: an optical module and at least three transceiver modules, an optical port of the optical module is connected to an external optical fiber 4, wherein each transceiver module is configured to process light of a corresponding mode
  • the signal is used to send the downlink optical signal of the corresponding mode to the optical module and receive the uplink optical signal of the corresponding mode provided by the optical module; the optical module is configured to perform multiplexing processing on the received downlink optical signal to generate a downlink
  • the multiplexed optical signal is sent to the external optical fiber 4, and the received uplink multiplexed optical signal is subjected to demultiplexing processing to obtain an optical signal of a mode corresponding to at least one transceiver module.
  • the optical transceiver device can perform multiplexing and demultiplexing processing on optical signals of multiple modes in a PON network system.
  • the multiple modes of optical signals include traditional mode signals and optical signals in traditional modes
  • the new signal mode is added, so that when the PON network architecture integrates and deploys signals of multiple modes, there is no need to create additional slots on the OLT board, and there is no need to install an external WDM machine, thus avoiding the complexity and maintenance of the entire network system.
  • the increase in cost makes the application more convenient.
  • FIG. 2 is a schematic structural diagram of an optical transceiver device according to an embodiment of the present disclosure. As shown in FIG. 2 , the device includes: a first transceiver module 11 , a second transceiver module 12 , a third transceiver module 13 and an optical module 14 .
  • the optical module 14 has an optical port which is connected to the external optical fiber 4 .
  • the first transceiver module 11 is configured to send the downlink optical signal of the first mode to the optical module, and to receive the uplink optical signal of the first mode provided by the optical module 14;
  • the second transceiver module 12 is configured to Send the downlink optical signal of the second mode to the optical module 14, and receive the uplink optical signal of the second mode provided by the optical module 14;
  • the third transceiver module 13 is configured to send the downlink optical signal of the third mode to the optical module. group 14 , and receive the upstream optical signal of the third mode provided by the optical module 14 .
  • the optical module 14 is configured to perform multiplexing processing on the received downstream optical signal, generate a downstream multiplexed optical signal and send it to an external optical fiber, and perform demultiplexing processing on the received upstream multiplexed optical signal to obtain an upstream optical signal of the first mode , at least one of the upstream optical signal of the second mode and the upstream optical signal of the third mode. That is, the optical module 14 performs multiplexing and demultiplexing processing on the optical signals of multiple modes existing in the system, so that the optical signals of multiple modes can be deployed in the PON network system.
  • the first mode refers to the XG-PON or XGS-PON mode
  • the second mode refers to the GPON mode
  • the third mode refers to the low-latency ONU mode.
  • ONUs of different modes generate upstream optical signals and downstream optical signals of corresponding wavelengths.
  • the downlink optical signal in the first mode is defined as ⁇ 1
  • the downlink optical signal in the second mode is defined as ⁇ 2
  • the downlink optical signal in the third mode is ⁇ 3
  • the uplink optical signal in the third mode is defined as ⁇ 1.
  • the signal is ⁇ 4, the upstream optical signal of the second mode is ⁇ 5, and the upstream optical signal of the first mode is ⁇ 6.
  • a low-latency ONU refers to an ONU that sends packets at a variable frequency after the ONU is successfully registered, that is, does not send packets at a fixed frequency, but sends packets at any time according to requirements. Compared with other types of ONUs that send packets at a fixed frequency, the time delay for sending packets is reduced.
  • the embodiments of the present disclosure will not describe the low-latency ONU in detail.
  • the optical transceiver device further includes: a circuit processing unit 15, one end of the circuit processing unit 15 is connected to the system circuit, and the other end is connected to the first transceiver module 11, the first transceiver module 11 of the optical transceiver device, the first The second transceiver module 12 and the third transceiver module 13 are connected.
  • the circuit processing unit 15 is configured to photoelectrically convert signals of various modes existing in the system.
  • the circuit processing unit 15 receives the downlink electrical signal of a certain mode input by the system, and then converts the electrical signal into a downlink optical signal of the corresponding mode, and inputs it into the transceiver module of the corresponding mode, and simultaneously converts the received signal from a certain mode to the downlink optical signal of the corresponding mode.
  • the upstream optical signal of the transceiver module of the mode is converted into the upstream electrical signal of the corresponding mode and input into the system.
  • the circuit processing unit 15 processes the downlink electrical signals of the first mode into the downlink optical signals of the first mode, and processes the uplink optical signals of the first mode into the uplink electrical signals of the first mode;
  • the downlink electrical signal in the second mode is processed as the downlink optical signal in the second mode, and the uplink optical signal in the second mode is processed as the uplink electrical signal in the second mode;
  • the downlink electrical signal in the third mode is processed as the third mode downlink optical signals, and processing the uplink optical signals of the third mode into uplink electrical signals of the third mode.
  • the frequency of the downlink electrical signal in the first mode is 10GHZ, and the frequency of the uplink electrical signal is 2.5GHZ or 10GHZ; the frequency of the downlink electrical signal in the second mode is 2.5GHZ, and the frequency of the uplink electrical signal is 1.25GHZ ; The frequency of the downlink electrical signal in the third mode is 10GHZ, and the frequency of the uplink electrical signal is 10GHZ.
  • FIG. 3 is a schematic structural diagram of another optical transceiver device according to an embodiment of the present disclosure.
  • the first transceiver module 11 includes: a first transmitter 111 and a first receiver 112, wherein the first transmitter 111 is configured to send the downlink optical signal of the first mode to Optical module, the first receiver 112 is configured to receive the uplink optical signal of the first mode provided by the optical module;
  • the second transceiver module 12 includes: a second transmitter 121 and a second receiver 122, the second transmitter 121 is configured In order to send the downlink optical signal of the second mode to the optical module, the second receiver 122 is configured to receive the uplink optical signal of the second mode provided by the optical module;
  • the third transceiver module 13 includes: a third transmitter 131 and a first Three receivers 132, the third transmitter 131 is configured to send the downlink optical signal of the third mode to the optical module, and the third receiver 132 is configured to receive the uplink optical signal of the third mode provided by the optical
  • FIG. 4 is a schematic structural diagram of an optical module according to an embodiment of the present disclosure. As shown in FIG. 4 , the optical module 14 includes: a first combining filter 141 , a second combining filter 142 , a third demultiplexing reflection filter 143 , a second reflection filter 144 , and a second demultiplexing filter 143 .
  • Reflective filter 145 first demultiplexing reflective filter 146, and first reflective filter 147, all of which have opposing first and second sides.
  • first side refers to the side of the filter facing away from the optical port
  • second side refers to the side of the filter facing the optical port.
  • the first multiplexing filter 141 and the second multiplexing filter 142 play the role of performing multiplexing processing on the downlink optical signals ( ⁇ 1, ⁇ 2 and ⁇ 3)
  • the third demultiplexing reflection filter 143, the second The reflection filter 144 , the second demultiplexed reflection filter 145 , the first demultiplexed reflection filter 146 and the first reflection filter 147 function to perform demultiplexing processing on the upstream optical signals ( ⁇ 4, ⁇ 5 and ⁇ 6).
  • the first multiplexing filter 141 is configured to transmit the downlink optical signal ( ⁇ 1) of the first mode from the first side of itself to the first side of the second multiplexing filter 142, and reflecting the downlink optical signal ( ⁇ 2) of the second mode from the second side of itself to the first side of the second multiplexing filter.
  • the second multiplexing filter 142 is configured to transmit the optical signal (including ⁇ 1 and ⁇ 2 ) located on the first side of itself and from the first multiplexing filter 141 to the optical port, and to transmit the first optical signal located on the second side of itself to the optical port.
  • the downlink optical signal ( ⁇ 3) of the three modes is reflected to the optical port.
  • the third demultiplexing reflection filter 143 is configured to receive the upstream multiplexed optical signal located on the second side of itself and from the optical port, and to reflect the first mode upstream optical signal ( ⁇ 6) in the upstream multiplexed optical signal to the second reflection filter
  • the upstream optical signals ( ⁇ 5 and ⁇ 4 ) of the second mode and the third mode in the upstream multiplexed optical signal are transmitted to the second side of the second demultiplexing reflection filter 145 .
  • the second reflection filter 144 is configured to reflect the optical signal ( ⁇ 6 ) located on the first side of itself and from the third demultiplexed reflection filter 143 to the first receiver 112 .
  • the second demultiplexing reflection filter 145 is configured to reflect the upstream optical signal ( ⁇ 5) of the second mode from the third demultiplexing reflection filter 143 on the second side of itself to the second receiver 122, and to The upstream optical signal ( ⁇ 4 ) of the second side and the third mode from the third demultiplexing reflection filter 143 is transmitted to the first demultiplexing reflection filter 146 .
  • the first demultiplexing reflection filter 146 is configured to reflect the optical signal ( ⁇ 4 ) from the second demultiplexing reflection filter 145 on the second side of itself to the first side of the first reflection filter 147 .
  • the first reflection filter 147 is configured to reflect the optical signal ( ⁇ 4 ) from the first demultiplexed reflection filter 146 on the first side of itself to the third receiver 132 .
  • the downlink optical signal ⁇ 1 enters the optical module through the first side of the first optical combining filter 141
  • the downlink optical signal ⁇ 2 enters the optical module through the second side of the first combining filter 141, and passes through the optical module.
  • the reflection of the first multi-wavelength filter 141 and the transmission of the second multi-wavelength filter 142 are transmitted along the horizontal optical axis; the downlink optical signal ⁇ 3 enters the optical module through the second side of the second multi-wavelength filter 142, After being reflected by the second multi-wavelength filter 142, it is transmitted along the horizontal optical axis, and the downlink optical signals ⁇ 1 and ⁇ 2 are realized by the transmission and reflection of the first multi-wavelength filter 141 and the second multi-wavelength filter 142.
  • the multiplexing process with ⁇ 3 makes it synthesized into a beam of optical signals with three wavelengths, so as to enter the external fiber for propagation.
  • the upstream multiplexed optical signal When performing demultiplexing processing on the upstream multiplexed optical signal (the upstream multiplexed optical signal includes the wavelengths of ⁇ 4, ⁇ 5 and ⁇ 6 of the three optical signals), the upstream multiplexed optical signal first enters the third wavelength division reflection filter 143 through the optical port. On the two sides, after being filtered by the third demultiplexing reflection filter 143, the optical signal ⁇ 6 in the uplink multiplexed optical signal is reflected, the optical signals ⁇ 4 and ⁇ 5 are transmitted, and the optical signal ⁇ 6 is further reflected by the second reflection filter 144, and then enters the second reflection filter 144.
  • a receiver 112 so as to realize the demultiplexing processing of the optical signal ⁇ 6; after the optical signals ⁇ 4 and ⁇ 5 are transmitted through the third demultiplexing reflection filter 143, enter the second demultiplexing reflection filter 145, and the second demultiplexing reflection filter 145 The optical signal ⁇ 5 is reflected and the optical signal ⁇ 4 is transmitted.
  • the optical signal ⁇ 5 is reflected by the second demultiplexing reflection filter 145 and then enters the second receiver 122, thereby completing the demultiplexing of the optical signal ⁇ 5; After being transmitted by the demultiplexing reflection filter 145, it is reflected twice by the first demultiplexing reflection filter 146 and the first reflection filter 147, and then enters the third receiver 132, thereby completing the demultiplexing processing of the optical signal ⁇ 4.
  • the first multi-wavelength filter 141 , the second multi-wavelength filter 142 , and the first demultiplexing reflection filter 146 when setting specific positions of each filter in the optical module, the first multi-wavelength filter 141 , the second multi-wavelength filter 142 , and the first demultiplexing reflection filter 146.
  • the second demultiplexing reflection filter 145, the third demultiplexing reflection filter 143 and the optical port can be located on the same preset optical axis, wherein the first multi-wavelength filter 141, the second multi-wavelength filter 142 and the The plane where the second demultiplexing reflection filter 145 is located forms an angle of 45° with the optical axis; the angle between the plane where the first demultiplexing reflection filter 146 and the third demultiplexing reflection filter 143 are located and the optical axis is 8 ° ⁇ 30°.
  • the included angle between the plane where the first demultiplexing reflection filter 146 and the third demultiplexing reflection filter 143 are located and the optical axis is 8° ⁇ 30°
  • the first reflection filter 147 is located at On one side of the optical axis
  • the included angle between the optical axis and the optical axis should satisfy: the light direction of the optical signal located on the first side of itself and from the first demultiplexing reflection filter 146 after reflection is perpendicular to the optical axis.
  • the second reflection filter 144 is also located on one side of the optical axis, and the angle between it and the optical axis should satisfy: the optical signal located on the first side of itself and from the third demultiplexing reflection filter 143 passes through the optical axis.
  • the direction of the light after reflection is perpendicular to the optical axis.
  • each downstream optical signal is processed by the first multiplexing filter 141 and the second multiplexing filter 142
  • the multiplexing process has been completed to form a downstream multiplexed optical signal.
  • the other filters only play a role in transmitting the downstream multiplexed optical signal, that is, the downstream multiplexed optical signal.
  • other filters will not filter the downlink multiplexed optical signal. Therefore, in practical applications, when setting the optical module, the first multiplexing filter can also be directly set.
  • the downlink multiplexed optical signal processed by the light 141 and the second multiplex filter 142 directly reaches the optical port without passing through other filters.
  • the position of the first transmitter 111 is set as: the direction of the optical signal emitted by the first transmitter 111 is parallel to the optical axis;
  • the positions of 121 and the third transmitter 131 are set as follows: the directions of the optical signals sent by the second transmitter 121 and the third transmitter 131 are perpendicular to the optical axis;
  • the position of the first receiver 112 is set as: the received signals from the second The direction of the optical signal on the first side of the reflection filter 144 is perpendicular to the optical axis;
  • the position of the second receiver 122 is set as: the direction of the received optical signal from the second side of the second demultiplexing reflection filter 145 perpendicular to the optical axis;
  • the position of the third receiver 132 is set so that the direction of the received optical signal from the first side
  • FIG. 5 is a schematic structural diagram of another optical module provided by the present disclosure.
  • the first reflection filter 147 and the second reflection filter 144 are rotated, so that the reflection from the first reflection filter 147 and the second reflection filter 147 and the second reflection filter are rotated.
  • the direction of the optical signal reflected by the filter 144 faces the other side of the optical axis while maintaining a vertical relationship with the optical axis.
  • the positions of the first receiver 112 and the third receiver 132 are adjusted to the other side of the optical axis compared with the embodiment shown in FIG. 4 .
  • the wavelength of the downlink optical signal in the first mode is The range is 1574.5nm ⁇ 1579.5nm, and the wavelength range of the uplink optical signal is 1260nm ⁇ 1280nm; the wavelength range of the downlink optical signal of the second mode is 1480nm ⁇ 1500nm, and the wavelength range of the uplink optical signal is 1290nm ⁇ 1330nm;
  • the wavelength of the three-mode signal is limited, which is not specifically limited in the embodiments of the present disclosure, as long as the signal mode of the third-mode signal conforms to the low-latency mode, but in some embodiments, preferably, the wavelength of the third-mode signal It can be limited as follows: the wavelength of the uplink and downlink signals is in the range of 1350-1450nm, and ensure that the wavelength of the downlink signal is greater than the wavelength of the
  • the wavelength difference between the wavelength of the upstream signal ( ⁇ 6) of the first mode and the wavelength of the upstream signal ( ⁇ 4) of the third mode is less than or equal to 45 nm;
  • the wavelength difference of the wavelength of the upstream signal ( ⁇ 5) of the mode is less than or equal to 45 nm;
  • the wavelength difference of the wavelength of the upstream signal ( ⁇ 4) of the third mode and the wavelength of the upstream signal ( ⁇ 5) of the second mode is greater than or equal to 45 nm;
  • the wavelength difference between the wavelength of the downstream signal ( ⁇ 3) and the wavelength of the upstream signal ( ⁇ 4) of the third mode is less than or equal to 45 nm.
  • Embodiments of the present disclosure also provide an optical network system.
  • the optical network system includes: an optical transceiver device, and the optical transceiver device adopts the optical transceiver device provided by the present disclosure.
  • Such software may be distributed on computer-readable media, which may include computer storage media (or non-transitory media) and communication media (or transitory media).
  • computer storage media includes both volatile and nonvolatile implemented in any method or technology for storage of information, such as computer readable instructions, data structures, program modules or other data flexible, removable and non-removable media.
  • Computer storage media include, but are not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cartridges, magnetic tape, magnetic disk storage or other magnetic storage devices, or may Any other medium used to store desired information and which can be accessed by a computer.
  • communication media typically embodies computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transport mechanism, and can include any information delivery media, as is well known to those of ordinary skill in the art .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Signal Processing (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optical Communication System (AREA)

Abstract

本公开提供一种光收发器装置,包括:光学模组和至少三个收发模块,所述光学模组的光口与外接光纤连接;每个所述收发模块配置为处理对应模式的光信号,用于将对应模式的下行光信号发送至光学模组,以及接收光学模组提供的对应模式的上行光信号;所述光学模组配置为将接收到的下行光信号进行合波处理,生成下行合波光信号发送至外接光纤,以及对接收到的上行合波光信号进行分波处理,得到至少一个所述收发模块所对应模式的光信号。本公开还提供一种光网络系统。

Description

光收发器装置和光网络系统
相关申请的交叉引用
本公开要求在2020年8月28日提交国家知识产权局、申请号为202010888154.4、发明名称为“光收发器装置和光网络系统”的中国专利申请的优先权,该申请的全部内容通过引用结合在本公开中。
技术领域
本公开的实施例涉及但不限于通信技术领域,特别涉及一种光收发器装置和光网络系统。
背景技术
随着接入网技术、光纤通信技术及5G的快速发展,人们对于带宽及时延的要求越来越高。因此,提供更高带宽更低时延的需求越来越迫切。现有接入技术中,大规模布局的是融合有GPON(Gigabit-Capable Passive Optical Networks,千兆无源光网络或吉比特无源光网络)模式和XG-PON模式的两种信号模式,其无法满足低时延要求。现有的PON(Passive Optical Networks,无源光纤网络)光收发器装置已能够对GPON模式和XGPON模式的光信号进行融合。但在现有的PON光收发器装置基础上,若要融合低延时模式信号,需要在OLT单板上增设槽口以设置新的PON光收发器装置,同时还需要外挂WDM机(合波分波机)来对GPON模式、XGPON模式及低延时模式的信号进行合波处理。这将导致整个系统的空间资源占用较大,且维护成本提高,从而不利于机房进行扩容。
发明内容
本公开旨在解决上述技术问题之一,提出了一种光收发器装置和光网 络系统。
第一方面,本公开的实施例提供一种光收发器装置,包括:光学模组和至少三个收发模块,所述光学模组的光口与外接光纤连接;每个所述收发模块配置为处理对应模式的光信号,用于将对应模式的下行光信号发送至光学模组,以及接收光学模组提供的对应模式的上行光信号;所述光学模组配置为将接收到的下行光信号进行合波处理,生成下行合波光信号发送至外接光纤,以及对接收到的上行合波光信号进行分波处理,得到至少一个所述收发模块所对应模式的光信号。
在一些实施例中,至少三个收发模块包括:第一收发模块、第二收发模块和第三收发模块;所述第一收发模块配置为将第一模式的下行光信号发送至光学模组,以及接收光学模组提供的第一模式的上行光信号;所述第二收发模块配置为将第二模式的下行光信号发送至光学模组,以及接收光学模组提供的第二模式的上行光信号;所述第三收发模块配置为将第三模式的下行光信号发送至光学模组,以及接收光学模组提供的第三模式的上行光信号;所述第一模式为XG-PON或XGS-PON模式,所述第二模式为GPON模式,所述第三模式为低延时模式。
在一些实施例中,所述装置还包括:电路处理单元;所述电路处理单元配置为将所述第一模式的下行电信号处理为第一模式的下行光信号,以及将所述第一模式的上行光信号处理为第一模式的上行电信号;将所述第二模式的下行电信号处理为第二模式的下行光信号,以及将所述第二模式的上行光信号处理为第二模式的上行电信号;将所述第三模式的下行电信号处理为第三模式的下行光信号,以及将所述第三模式的上行光信号处理为第三模式的上行电信号。
在一些实施例中,所述第一收发模块包括:第一发射机和第一接收机,所述第一发射机配置为将第一模式的下行光信号发送至光学模组,所述第一接收机配置为接收光学模组提供的第一模式的上行光信号;所述第二收发模块包括:第二发射机和第二接收机,所述第二发射机配置为将第二模式的下行光信号发送至光学模组,所述第二接收机配置为接收光学模组提供的第二模式的上行光信号;所述第三收发模块包括:第三发射机和第三 接收机,所述第三发射机配置为将第三模式的下行光信号发送至光学模组,所述第三接收机配置为接收光学模组提供的第三模式的上行光信号。
早在一些实施例中,所述光学模组包括:第一合波滤光片、第二合波滤光片、第三分波反射滤波片、第二反射滤波片、第二分波反射滤波片、第一分波反射滤波片和第一反射滤波片,所有滤波片具有相对的第一侧和第二侧;所述第一合波滤光片配置为将来自于自身第一侧的第一模式的下行光信号透射至第二合波滤波片的第一侧,以及将来自于自身第二侧的第二模式的下行光信号反射至第二合波滤波片的第一侧;所述第二合波滤光片配置为将位于自身第一侧且来自于第一合波滤光片的光信号透射至光口,以及将位于自身第二侧的第三模式的下行光信号反射至光口;所述第三分波反射滤波片配置为接收位于自身第二侧且来自于光口的上行合波光信号,将所述上行合波光信号中的第一模式上行光信号反射至第二反射滤波片的第一侧,将所述上行合波光信号中的第二模式和第三模式的上行光信号透射至第二分波反射滤波片的第二侧;所述第二反射滤波片配置为将位于自身第一侧且来自于第三分波反射滤波片的光信号反射至第一接收机;所述第二分波反射滤波片配置为将位于自身第二侧且来自于第三分波反射滤波片的第二模式的上行光信号反射至第二接收机,以及将位于自身第二侧且来自于第三分波反射滤波片的第三模式的上行光信号透射至第一分波反射滤波片;所述第一分波反射滤波片配置为将位于自身第二侧且来自于第二分波反射滤波片的光信号反射至第一反射滤波片的第一侧;所述第一反射滤波片配置为将位于自身第一侧且来自于第一分波反射滤波片的光信号反射至第三接收机。
在一些实施例中,所述第一合波滤光片、第二合波滤光片、第一分波反射滤波片、第二分波反射滤波片、第三分波反射滤波片和所述光口位于预设的同一光轴上;所有滤波片的第一侧背向所述光口;所述第一合波滤光片所处平面与所述光轴成45°;所述第二合波滤波片所处平面与所述光轴成45°;所述第一分波反射滤波片所处平面与所述光轴之间的夹角为8°~30°;所述第一反射滤波片位于所述光轴的一侧,且与所述光轴之间的夹角满足使位于自身第一侧且来自于第一分波反射滤波片的光信号经 反射后光线方向与所述光轴垂直;所述第二分波反射滤波片所处平面与所述光轴成45°;所述第三分波反射滤波片所处平面与所述光轴之间的夹角为8°~30°;所述第二反射滤波片位于所述光轴的一侧,且与所述光轴之间的夹角满足使位于自身第一侧且来自于第三分波反射滤波片的光信号经反射后光线方向与所述光轴垂直。
在一些实施例中,所述第一发射机发出的光信号的方向与所述光轴平行;所述第二发射机和第三发射机发出的光信号的方向与所述光轴垂直;所述第一接收机接收到的来自于所述第二反射滤波片的第一侧的光信号的方向与所述光轴垂直;所述第二接收机接收到的来自于第二分波反射滤波片的第二侧的光信号的方向与所述光轴垂直;所述第三接收机接收到的来自于所述第一反射滤波片的第一侧的光信号的方向与所述光轴垂直。
在一些实施例中,所述第一模式的下行光信号的波长范围为1574.5nm~1579.5nm,所述第一模式的上行光信号的波长范围为1260nm~1280nm;所述第二模式的下行光信号的波长范围为1480nm~1500nm,所述第二模式的上行光信号的波长范围为1290nm~1330nm。
在一些实施例中,所述第一模式的上行信号的波长与所述第三模式的上行信号的波长的波长差小于等于45nm;所述第一模式的上行信号的波长与所述第二模式的上行信号的波长的波长差小于等于45nm;所述第三模式的上行信号的波长与所述第二模式的上行信号的波长的波长差大于等于45nm;所述第三模式的下行信号的波长与所述第三模式的上行信号的波长的波长差小于等于45nm。
在一些实施例中,所述第一模式的下行电信号的频率为10GHZ,上行电信号的频率为2.5GHZ或10GHZ;所述第二模式的下行电信号的频率为2.5GHZ,上行电信号的频率为1.25GHZ;所述第三模式的下行电信号的频率为10GHZ,上行电信号的频率为10GHZ。
第二方面,本公开还提供一种光网络系统,其中,包括:光收发器装置;所述光收发器装置采用本公开第一方面所提供的光收发器装置。
本公开提供的光收发器装置及光网络系统,能够对PON网络系统中的多种模式的光信号进行合波和分波处理,该多种模式的光信号中包括传统模式信号及在传统模式下加入的新模式的信号,从而使得PON网络架构在融合部署多种模式的信号时,无需在OLT单板上额外开设槽口,也无需外挂WDM机,从而避免了整个网络系统的复杂度和维护成本的提高,使应用更加便捷。
附图说明
图1为本公开的实施例提供的一种光网络系统的结构示意图;
图2为本公开的实施例提供的一种光收发器装置的结构示意图;
图3为本公开的实施例提供的另一种光收发器装置的结构示意图;
图4为本公开的实施例提供的一种光学模组的结构示意图;以及
图5为本公开的实施例提供的另一种光学模组的结构示意图。
具体实施方式
为使本领域的技术人员更好地理解本公开的技术方案,下面结合附图对本公开提供的光收发器装置和光网络系统进行详细描述。
在下文中将参考附图更充分地描述示例实施例,但是所述示例实施例可以以不同形式来体现且不应当被解释为限于本文阐述的实施例。反之,提供这些实施例的目的在于使本公开透彻和完整,并将使本领域技术人员充分理解本公开的范围。
本文所使用的术语仅用于描述特定实施例,且不意欲限制本公开。如本文所使用的,单数形式“一个”和“该”也意欲包括复数形式,除非上下文另外清楚指出。还将理解的是,当本说明书中使用术语“包括”和/或“由……制成”时,指定存在所述特征、整体、步骤、操作、元件和/或组件,但不排除存在或添加一个或多个其他特征、整体、步骤、操作、元件、组件和/或其群组。
将理解的是,虽然本文可以使用术语第一、第二等来描述各种元件/指令/请求,但这些元件/指令/请求不应当受限于这些术语。这些术语仅用于区分一个元件元件/指令/请求和另一元件元件/指令/请求。
除非另外限定,否则本文所用的所有术语(包括技术和科学术语)的含义与本领域普通技术人员通常理解的含义相同。还将理解,诸如那些在常用字典中限定的那些术语应当被解释为具有与其在相关技术以及本公开的背景下的含义一致的含义,且将不解释为具有理想化或过度形式上的含义,除非本文明确如此限定。
现有技术中,当PON网络系统需要在传统模式信号下融合新的模式的光信号时,通常需要外挂合波分波机并且在OLT单板上开设额外的槽口以增加PON光收发器装置的数量来实现,这无疑增加了整个PON网络系统的复杂度和维护成本,从而不利于机房扩容。
本公开的一个实施例提供一种光收发器装置能够兼容实现对传统模式光信号及新模式的光信号的融合,从而避免使整个PON网络系统复杂度的提高,使维护更加便捷。并且特别适用于在传统模式光信号下融合低延时模式信号的场景。
图1为本公开实施例提供的一种光网络系统的结构示意图。如图1所示,该光网络系统包括:光收发器装置1、分路器2及三种模式的ONU(Optical Network Unit,光网络单元),该三种模式的ONU可定义为第一模式ONU 31、第二模式ONU 32和第三模式ONU 33。需要说明的是,图1仅示出了三种模式的ONU。但在实际应用中,ONU的数量还可以为大于三个,图1仅起到实例性作用,其并不能对本公开其到限定性作用。其中,ONU的具体模式可根据需要进行选择,例如选择GPON ONU、XG-PON ONU等等。其中,光收发器装置1设置于OLT单板上,并通过外接光纤4与分路器连接。在图1所示光网络系统中,由光收发器装置1传输至分路器2方向的信号称为下行信号,由分路器2传输至光收发器装置方向的信号称为上行信号。
下面对图1中的光收发器装置1的具体结构进行描述。
本公开的实施例提供的光收发器装置,包括:光学模组和至少三个收发模块,该光学模组的光口与外接光纤4连接,其中,每个收发模块配置为处理对应模式的光信号,用于将对应模式的下行光信号发送至光学模组,以及接收光学模组提供的对应模式的上行光信号;光学模组配置为将接收到的下行光信号进行合波处理,生成下行合波光信号发送至外接光纤4,以及对接收到的上行合波光信号进行分波处理,得到至少一个收发模块所对应模式的光信号。
本公开的实施例提供的光收发器装置,能够对PON网络系统中的多种模式的光信号进行合波和分波处理,该多种模式的光信号中包括传统模式信号及在传统模式下加入的新模式的信号,从而使得PON网络架构在融合部署多种模式的信号时,无需在OLT单板上额外开设槽口,也无需外挂WDM机,从而避免了整个网络系统的复杂度和维护成本的提高,使应用更加便捷。
下面以具体包括三个收发模块的光收发器装置为具体实施例来对光收发器装置进行详细描述。参照图2,图2为本公开的实施例提供的一种光收发器装置的结构示意图。如图2所示,该装置包括:第一收发模块11、第二收发模块12、第三收发模块13以及光学模组14,光学模组14具有光口,该光口与外接光纤4连接。
在本实施例中,第一收发模块11配置为将第一模式的下行光信号发送至光学模组,以及接收光学模组14提供的第一模式的上行光信号;第二收发模块12配置为将第二模式的下行光信号发送至光学模组14,以及接收光学模组14提供的第二模式的上行光信号;第三收发模块13配置为将第三模式的下行光信号发送至光学模组14,以及接收光学模组14提供的第三模式的上行光信号。
光学模组14配置为将接收到的下行光信号进行合波处理,生成下行合波光信号发送至外接光纤,以及对接收到的上行合波光信号进行分波处理,得到第一模式的上行光信号、第二模式的上行光信号以及第三模式的上行光信号中的至少一者。即,光学模组14对系统中存在的多种模式的光信号进行合波和分波处理,从而使多种模式的光信号能够在PON网络 系统中完成部署。
在一些实施例中,第一模式是指XG-PON或XGS-PON模式,第二模式是指GPON模式,第三模式是指低延时ONU模式。不同模式的ONU产生对应波长的上行光信号和下行光信号。为便于后续描述,在本公开的实施例中,定义第一模式的下行光信号为λ1,第二模式的下行光信号为λ2,第三模式的下行光信号为λ3,第三模式的上行光信号为λ4,第二模式的上行光信号为λ5,第一模式的上行光信号为λ6。
需要说明的是,本公开的实施例中,低延时ONU是指ONU注册成功后,发包频率可变,即,不以固定的发包频率进行发包,而是依据需求随时进行发包的ONU。相较于其他类型的以固定发包频率进行发包的ONU,降低了发包的时间延迟。本公开的实施例不再对低延时ONU进行详细介绍。
继续参照图2,在一些实施例中,光收发器装置还包括:电路处理单元15,该电路处理单元15的一端与系统电路连接,另一端与光收发器装置的第一收发模块11、第二收发模块12及第三收发模块13连接。电路处理单元15配置为将系统中存在的各种模式的信号进行光电转换。具体的,电路处理单元15接收系统输入的某种模式的下行电信号,进而将该电信号转化为对应模式的下行光信号,并输入至对应模式的收发模块中,同时将接收的来自某种模式的收发模块的上行光信号转化为对应模式的上行电信号,并输入至系统中。
具体的,本实施例中,电路处理单元15将第一模式的下行电信号处理为第一模式的下行光信号,以及将第一模式的上行光信号处理为第一模式的上行电信号;将第二模式的下行电信号处理为第二模式的下行光信号,以及将第二模式的上行光信号处理为第二模式的上行电信号;将第三模式的下行电信号处理为第三模式的下行光信号,以及将第三模式的上行光信号处理为第三模式的上行电信号。
在一些实施例中,第一模式的下行电信号的频率为10GHZ,上行电信号的频率为2.5GHZ或10GHZ;第二模式的下行电信号的频率为2.5GHZ,上行电信号的频率为1.25GHZ;第三模式的下行电信号的频率为10GHZ, 上行电信号的频率为10GHZ。
图3为本公开的实施例提供的另一种光收发器装置的结构示意图。如图3所示,在一些实施例中,第一收发模块11包括:第一发射机111和第一接收机112,其中,第一发射机111配置为将第一模式的下行光信号发送至光学模组,第一接收机112配置为接收光学模组提供的第一模式的上行光信号;第二收发模块12包括:第二发射机121和第二接收机122,第二发射机121配置为将第二模式的下行光信号发送至光学模组,第二接收机122配置为接收光学模组提供的第二模式的上行光信号;第三收发模块13包括:第三发射机131和第三接收机132,第三发射机131配置为将第三模式的下行光信号发送至光学模组,第三接收机132配置为接收光学模组提供的第三模式的上行光信号。
通过将收发模块拆分为发射机和接收机来分别对同一模式的光信号进行发送和接收,便于对光学模组的结构进行合理设置。在本公开的实施例中,光学模组14内设置有7片滤波片,通过对该7片滤波片进行位置及角度的调整实现对多种模式信号的合波和分波处理。图4为本公开的实施例提供的一种光学模组的结构示意图。如图4所示,光学模组14包括:第一合波滤光片141、第二合波滤光片142、第三分波反射滤波片143、第二反射滤波片144、第二分波反射滤波片145、第一分波反射滤波片146和第一反射滤波片147,所有滤波片具有相对的第一侧和第二侧。优选的,第一侧指滤波片的背向光口的一侧,第二侧指滤波片的朝向光口的一侧。
其中,第一合波滤光片141和第二合波滤光片142起到对下行光信号(λ1、λ2和λ3)进行合波处理的作用,第三分波反射滤波片143、第二反射滤波片144、第二分波反射滤波片145、第一分波反射滤波片146和第一反射滤波片147起到对上行光信号(λ4、λ5和λ6)进行分波处理的作用。
具体的,本实施例中,第一合波滤光片141配置为将来自于自身第一侧的第一模式的下行光信号(λ1)透射至第二合波滤波片142的第一侧,以及将来自于自身第二侧的第二模式的下行光信号(λ2)反射至第二合波滤波片的第一侧。
第二合波滤光片142配置为将位于自身第一侧且来自于第一合波滤光片141的光信号(包括λ1和λ2)透射至光口,以及将位于自身第二侧的第三模式的下行光信号(λ3)反射至光口。
第三分波反射滤波片143配置为接收位于自身第二侧且来自于光口的上行合波光信号,将该上行合波光信号中的第一模式上行光信号(λ6)反射至第二反射滤波片144的第一侧,而将该上行合波光信号中的第二模式和第三模式的上行光信号(λ5和λ4)透射至第二分波反射滤波片145的第二侧。
第二反射滤波片144配置为将位于自身第一侧且来自于第三分波反射滤波片143的光信号(λ6)反射至第一接收机112。
第二分波反射滤波片145配置为将位于自身第二侧且来自于第三分波反射滤波片143的第二模式的上行光信号(λ5)反射至第二接收机122,以及将位于自身第二侧且来自于第三分波反射滤波片143的第三模式的上行光信号(λ4)透射至第一分波反射滤波片146。
第一分波反射滤波片146配置为将位于自身第二侧且来自于第二分波反射滤波片145的光信号(λ4)反射至第一反射滤波片147的第一侧。
第一反射滤波片147配置为将位于自身第一侧且来自于第一分波反射滤波片146的光信号(λ4)反射至第三接收机132。
也就是说,本实施例中,在对各下行光信号(λ1、λ2和λ3)进行合波处理时,下行光信号λ1经第一合波滤光片141的第一侧进入光学模组,经第一合波滤光片141和第二合波滤光片142的透射后沿水平光轴传输;下行光信号λ2经第一合波滤光片141的第二侧进入光学模组,经第一合波滤光片141的反射及第二合波滤光片142的透射后沿水平光轴传输;下行光信号λ3经第二合波滤光片142的第二侧进入光学模组,经第二合波滤光片142的反射后沿水平光轴传输,借由第一合波滤光片141和第二合波滤光片142的透射和反射作用实现对下行光信号λ1、λ2和λ3的合波处理,使其合成为具有三种波长的一束光信号,从而进入外接光纤中进行传播。
在对上行合波光信号(上行合波光信号中包含λ4、λ5和λ6三种光信号的波长)进行分波处理时,上行合波光信号首先经光口进入第三分波反射滤波片143的第二侧,经第三分波反射滤波片143滤波后,上行合波光信号中光信号λ6被反射,光信号λ4和λ5透射过去,光信号λ6进而经第二反射滤波片144反射后,进入第一接收机112,从而实现光信号λ6的分波处理;光信号λ4和λ5经第三分波反射滤波片143透射后,进入第二分波反射滤波片145,第二分波反射滤波片145对光信号λ5反射而对光信号λ4透射,光信号λ5经第二分波反射滤波片145反射后进入第二接收机122,从而完成对光信号λ5的分波处理;光信号λ4经第二分波反射滤波片145透射后,经第一分波反射滤波片146和第一反射滤波片147两次反射后,进入第三接收机132,从而完成对光信号λ4的分波处理。
继续参照图4,在一些实施例中,在对光学模组中各滤片进行具体位置设置时,第一合波滤光141、第二合波滤光片142、第一分波反射滤波片146、第二分波反射滤波片145、第三分波反射滤波片143和光口可位于预设的同一光轴上,其中,第一合波滤光片141、第二合波滤波片142及第二分波反射滤波片145所处平面与光轴成45°夹角;第一分波反射滤波片146及第三分波反射滤波片143所处平面与光轴之间的夹角为8°~30°。此时,对应的,当第一分波反射滤波片146及第三分波反射滤波片143所处平面与光轴之间的夹角为8°~30°时,第一反射滤波片147位于光轴的一侧,其与光轴之间的夹角应满足:使位于自身第一侧且来自于第一分波反射滤波片146的光信号经反射后光线方向与光轴垂直。同理,第二反射滤波片144也位于光轴的一侧,其与光轴之间的夹角应满足:使位于自身第一侧且来自于第三分波反射滤波片143的光信号经反射后光线方向述光轴垂直。
需要说明的是,在图4所示实施例中,在对各下行光信号进行合波处理时,在各下行光信号经过第一合波滤光141和第二合波滤光片142处理后已完成合波处理而形成下行合波光信号,后续虽然会经过光学模组中的其他滤片,但其他滤片均只对该下行合波光信号起到透射作用,即,在该下行合波光信号到达光学模组的光口的过程中,其他滤片不会对该下行合 波光信号产生滤波作用,因此,在实际应用中,在设置光学模组时,也可直接设置经过第一合波滤光141和第二合波滤光片142处理后的下行合波光信号直接抵达光口,而不经过其他滤片。
对于发射机和接收机的位置设置,在实际应用中,可不做具体限定,只要能够发射和接收到对应的光信号即可。但为了方便光信号的传输及耦合,继续参照图4,在一些实施例中,第一发射机111的位置设置为:第一发射机111发出的光信号的方向与光轴平行;第二发射121和第三发射机131的位置设置为:第二发射121和第三发射机131发出的光信号的方向与光轴垂直;第一接收机112的位置设置为:接收到的来自于第二反射滤波片144的第一侧的光信号的方向与光轴垂直;第二接收机122的位置设置为:接收到的来自于第二分波反射滤波片145的第二侧的光信号的方向与光轴垂直;第三接收机132的位置设置为:接收到的来自于所述第一反射滤波片147的第一侧的光信号的方向与光轴垂直。
本公开中,基于第一反射滤波片147和第二反射滤波片144的位置设置所满足的条件。本公开的实施例还提供另一种光学模组的结构示意图。图5为本公开提供的另一种光学模组的结构示意图。如图5所示,本实施例在图4所示实施例的基础上,将第一反射滤波片147和第二反射滤波片144进行旋转,以使从第一反射滤波片147和第二反射滤波片144反射出的光信号的方向在与光轴保持垂直关系的同时,朝向光轴的另一侧。对应的,本实施例中,第一接收机112和第三接收机132的位置相较于图4所示实施例调整至光轴的另一侧。
优选的,在一些实施例中,当第一模式为XG-PON或XGS-PON模式,第二模式为GPON模式,第三模式为低延时模式时,该第一模式的下行光信号的波长范围为1574.5nm~1579.5nm,其上行光信号的波长范围为1260nm~1280nm;该第二模式的下行光信号的波长范围为1480nm~1500nm,其上行光信号的波长范围为1290nm~1330nm;对于第三模式信号的波长限定,本公开的实施例不做具体限定,只要满足第三模式信号的信号模式符合低延时模式即可,但在一些实施例中,优选的,第三模式信号的波长可限定为:上下行信号波长在1350~1450nm范围内,并保 证下行信号波长大于上行信号波长,且下行信号波长与上行信号波长的波长差大于等于45nm。
在一些实施例中,第一模式的上行信号(λ6)的波长与第三模式的上行信号(λ4)的波长的波长差小于等于45nm;第一模式的上行信号(λ6)的波长与第二模式的上行信号(λ5)的波长的波长差小于等于45nm;第三模式的上行信号(λ4)的波长与第二模式的上行信号(λ5)的波长的波长差大于等于45nm;第三模式的下行信号(λ3)的波长与第三模式的上行信号(λ4)的波长的波长差小于等于45nm。通过对各种模式的波长差进行限定,使得信号能够更好地经过各滤波片进行滤波或反射,从而使分波和合波的处理效果更好。
本公开的实施例还提供一种光网络系统。如图1所示,该光网络系统包括:光收发器装置,该光收发器装置采用本公开所提供的光收发器装置。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机 制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
本文已经公开了示例实施例,并且虽然采用了具体术语,但它们仅用于并仅应当被解释为一般说明性含义,并且不用于限制的目的。在一些实例中,对本领域技术人员显而易见的是,除非另外明确指出,否则可单独使用与特定实施例相结合描述的特征、特性和/或元素,或可与其他实施例相结合描述的特征、特性和/或元件组合使用。因此,本领域技术人员将理解,在不脱离由所附的权利要求阐明的本公开的范围的情况下,可进行各种形式和细节上的改变。

Claims (11)

  1. 一种光收发器装置,包括:光学模组和至少三个收发模块,其中,
    所述光学模组的光口与外接光纤连接;
    每个所述收发模块配置为处理对应模式的光信号,用于将对应模式的下行光信号发送至光学模组,以及接收光学模组提供的对应模式的上行光信号;
    所述光学模组配置为将接收到的下行光信号进行合波处理,生成下行合波光信号发送至外接光纤,以及对接收到的上行合波光信号进行分波处理,得到至少一个所述收发模块所对应模式的光信号。
  2. 根据权利要求1所述的装置,其中,至少三个收发模块包括:第一收发模块、第二收发模块和第三收发模块;
    所述第一收发模块配置为将第一模式的下行光信号发送至光学模组,以及接收光学模组提供的第一模式的上行光信号;
    所述第二收发模块配置为将第二模式的下行光信号发送至光学模组,以及接收光学模组提供的第二模式的上行光信号;
    所述第三收发模块配置为将第三模式的下行光信号发送至光学模组,以及接收光学模组提供的第三模式的上行光信号;
    所述第一模式为XG-PON或XGS-PON模式,所述第二模式为GPON模式,所述第三模式为低延时模式。
  3. 根据权利要求2所述的装置,其中,所述装置还包括:电路处理单元;
    所述电路处理单元配置为将所述第一模式的下行电信号处理为第一模式的下行光信号,以及将所述第一模式的上行光信号处理为第一模式的上行电信号;将所述第二模式的下行电信号处理为第二模式的下行光信 号,以及将所述第二模式的上行光信号处理为第二模式的上行电信号;将所述第三模式的下行电信号处理为第三模式的下行光信号,以及将所述第三模式的上行光信号处理为第三模式的上行电信号。
  4. 根据权利要求2所述的装置,其中,
    所述第一收发模块包括:第一发射机和第一接收机,所述第一发射机配置为将第一模式的下行光信号发送至光学模组,所述第一接收机配置为接收光学模组提供的第一模式的上行光信号;
    所述第二收发模块包括:第二发射机和第二接收机,所述第二发射机配置为将第二模式的下行光信号发送至光学模组,所述第二接收机配置为接收光学模组提供的第二模式的上行光信号;
    所述第三收发模块包括:第三发射机和第三接收机,所述第三发射机配置为将第三模式的下行光信号发送至光学模组,所述第三接收机配置为接收光学模组提供的第三模式的上行光信号。
  5. 根据权利要求4所述的装置,其中,所述光学模组包括:第一合波滤光片、第二合波滤光片、第三分波反射滤波片、第二反射滤波片、第二分波反射滤波片、第一分波反射滤波片和第一反射滤波片,所有滤波片具有相对的第一侧和第二侧;
    所述第一合波滤光片配置为将来自于自身第一侧的第一模式的下行光信号透射至第二合波滤波片的第一侧,以及将来自于自身第二侧的第二模式的下行光信号反射至第二合波滤波片的第一侧;
    所述第二合波滤光片配置为将位于自身第一侧且来自于第一合波滤光片的光信号透射至光口,以及将位于自身第二侧的第三模式的下行光信号反射至光口;
    所述第三分波反射滤波片配置为接收位于自身第二侧且来自于光口的上行合波光信号,将所述上行合波光信号中的第一模式上行光信号反射 至第二反射滤波片的第一侧,将所述上行合波光信号中的第二模式和第三模式的上行光信号透射至第二分波反射滤波片的第二侧;
    所述第二反射滤波片配置为将位于自身第一侧且来自于第三分波反射滤波片的光信号反射至第一接收机;
    所述第二分波反射滤波片配置为将位于自身第二侧且来自于第三分波反射滤波片的第二模式的上行光信号反射至第二接收机,以及将位于自身第二侧且来自于第三分波反射滤波片的第三模式的上行光信号透射至第一分波反射滤波片;
    所述第一分波反射滤波片配置为将位于自身第二侧且来自于第二分波反射滤波片的光信号反射至第一反射滤波片的第一侧;
    所述第一反射滤波片配置为将位于自身第一侧且来自于第一分波反射滤波片的光信号反射至第三接收机。
  6. 根据权利要求5所述的装置,其中,
    所述第一合波滤光片、第二合波滤光片、第一分波反射滤波片、第二分波反射滤波片、第三分波反射滤波片和所述光口位于预设的同一光轴上;
    所有滤波片的第一侧背向所述光口;
    所述第一合波滤光片所处平面与所述光轴成45°;
    所述第二合波滤波片所处平面与所述光轴成45°;
    所述第一分波反射滤波片所处平面与所述光轴之间的夹角为8°~30°;
    所述第一反射滤波片位于所述光轴的一侧,且与所述光轴之间的夹角满足使位于自身第一侧且来自于第一分波反射滤波片的光信号经反射后光线方向与所述光轴垂直;
    所述第二分波反射滤波片所处平面与所述光轴成45°;
    所述第三分波反射滤波片所处平面与所述光轴之间的夹角为8° ~30°;
    所述第二反射滤波片位于所述光轴的一侧,且与所述光轴之间的夹角满足使位于自身第一侧且来自于第三分波反射滤波片的光信号经反射后光线方向与所述光轴垂直。
  7. 根据权利要求6所述的装置,其中,
    所述第一发射机发出的光信号的方向与所述光轴平行;
    所述第二发射机和第三发射机发出的光信号的方向与所述光轴垂直;
    所述第一接收机接收到的来自于所述第二反射滤波片的第一侧的光信号的方向与所述光轴垂直;
    所述第二接收机接收到的来自于第二分波反射滤波片的第二侧的光信号的方向与所述光轴垂直;
    所述第三接收机接收到的来自于所述第一反射滤波片的第一侧的光信号的方向与所述光轴垂直。
  8. 根据权利要求2所述的装置,其中,
    所述第一模式的下行光信号的波长范围为1574.5nm~1579.5nm,所述第一模式的上行光信号的波长范围为1260nm~1280nm;
    所述第二模式的下行光信号的波长范围为1480nm~1500nm,所述第二模式的上行光信号的波长范围为1290nm~1330nm。
  9. 根据权利要求8所述的装置,其中,所述第一模式的上行信号的波长与所述第三模式的上行信号的波长的波长差小于或等于45nm;所述第一模式的上行信号的波长与所述第二模式的上行信号的波长的波长差小于或等于45nm;所述第三模式的上行信号的波长与所述第二模式的上行信号的波长的波长差大于或等于45nm;所述第三模式的下行信号的波长与所述第三模式的上行信号的波长的波长差小于或等于45nm。
  10. 根据权利要求2所述的装置,其中,所述第一模式的下行电信号的频率为10GHZ,上行电信号的频率为2.5GHZ或10GHZ;所述第二模式的下行电信号的频率为2.5GHZ,上行电信号的频率为1.25GHZ;所述第三模式的下行电信号的频率为10GHZ,上行电信号的频率为10GHZ。
  11. 一种光网络系统,其中,包括:光收发器装置;所述光收发器装置采用权利要求1-10任一项所述的光收发器装置。
PCT/CN2021/115328 2020-08-28 2021-08-30 光收发器装置和光网络系统 WO2022042721A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/023,863 US20230327770A1 (en) 2020-08-28 2021-08-30 Optical transceiver device and optical network system
EP21860553.3A EP4207634A1 (en) 2020-08-28 2021-08-30 Optical transceiver device and optical network system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010888154.4 2020-08-28
CN202010888154.4A CN114124229A (zh) 2020-08-28 2020-08-28 光收发器装置和光网络系统

Publications (1)

Publication Number Publication Date
WO2022042721A1 true WO2022042721A1 (zh) 2022-03-03

Family

ID=80354678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/115328 WO2022042721A1 (zh) 2020-08-28 2021-08-30 光收发器装置和光网络系统

Country Status (4)

Country Link
US (1) US20230327770A1 (zh)
EP (1) EP4207634A1 (zh)
CN (1) CN114124229A (zh)
WO (1) WO2022042721A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115128746B (zh) * 2022-05-26 2024-01-16 武汉永鼎光通科技有限公司 一种小型化三发三收光组件及其封装模块

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107360481A (zh) * 2017-08-09 2017-11-17 苏州易锐光电科技有限公司 光组件和光线路终端
CN207636817U (zh) * 2017-12-21 2018-07-20 苏州旭创科技有限公司 Sfp+封装的光模块
US20180269992A1 (en) * 2017-03-15 2018-09-20 Methode Electronics, Inc. Distribution point unit for high speed communications node
CN110417476A (zh) * 2019-07-05 2019-11-05 华为技术有限公司 一种tosa、bosa、光模块以及光网络设备
CN110958500A (zh) * 2019-11-22 2020-04-03 烽火通信科技股份有限公司 一种信号接收方法及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180269992A1 (en) * 2017-03-15 2018-09-20 Methode Electronics, Inc. Distribution point unit for high speed communications node
CN107360481A (zh) * 2017-08-09 2017-11-17 苏州易锐光电科技有限公司 光组件和光线路终端
CN207636817U (zh) * 2017-12-21 2018-07-20 苏州旭创科技有限公司 Sfp+封装的光模块
CN110417476A (zh) * 2019-07-05 2019-11-05 华为技术有限公司 一种tosa、bosa、光模块以及光网络设备
CN110958500A (zh) * 2019-11-22 2020-04-03 烽火通信科技股份有限公司 一种信号接收方法及系统

Also Published As

Publication number Publication date
EP4207634A1 (en) 2023-07-05
US20230327770A1 (en) 2023-10-12
CN114124229A (zh) 2022-03-01

Similar Documents

Publication Publication Date Title
CN111355554B (zh) 路由合波器、路由合波方法、波分路由方法及网络系统
US9306700B2 (en) Method and device for transmitting optical signals
WO2010105506A1 (zh) 信号传输系统、方法以及相关装置
WO2012149810A1 (zh) 无源光网络系统及其下行传输方法
US20180123693A1 (en) Optical device and optical module
EP3121979B1 (en) Optical multiplexer
WO2013075662A1 (zh) 共存无源光网络系统及上、下行光信号发送方法
WO2008003246A1 (fr) Système de réseau optique passif et procédé de traitement de trajectoire optique correspondant
CN206270551U (zh) 一种高速光发射器件
WO2013087006A1 (zh) 无源光网络系统、光线路终端和光传输方法
WO2012149813A1 (zh) 光网络系统、光网络系统升级的方法以及光分配网
WO2022042721A1 (zh) 光收发器装置和光网络系统
WO2012103847A2 (zh) 波分复用器及无源光网络系统
WO2013189333A2 (zh) 一种光传输系统、模式耦合器和光传输方法
CN101873189B (zh) 一种兼容两种无源光网络的波分复用器
EP3079274B1 (en) Optical transmitter, transmission method, optical receiver and reception method
WO2015010273A1 (zh) 可调光接收机、可调光发射机和可调光收发机
WO2019140999A1 (zh) 波分复用光传输设备、系统及实现方法
US10128970B2 (en) Bandwidth adjustable optical module and system
CN103780310A (zh) 一种用于olt的 sfp光收发一体模块
WO2014134770A1 (zh) 光发射机、信号传输方法以及系统
WO2017147844A1 (zh) 一种复用/解复用器及无源光网络系统
CN206270601U (zh) 一种多波长合波器
WO2020253540A1 (zh) 无源光网络的波长切换、配置方法及装置
JP4626208B2 (ja) 光ネットワーク

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21860553

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021860553

Country of ref document: EP

Effective date: 20230328