WO2022042651A1 - 叶片夹持控制方法和控制系统及叶片吊具的控制系统 - Google Patents

叶片夹持控制方法和控制系统及叶片吊具的控制系统 Download PDF

Info

Publication number
WO2022042651A1
WO2022042651A1 PCT/CN2021/114804 CN2021114804W WO2022042651A1 WO 2022042651 A1 WO2022042651 A1 WO 2022042651A1 CN 2021114804 W CN2021114804 W CN 2021114804W WO 2022042651 A1 WO2022042651 A1 WO 2022042651A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
clamping
arm
action
clamped
Prior art date
Application number
PCT/CN2021/114804
Other languages
English (en)
French (fr)
Inventor
史正勇
郑俊杰
张竹
黄可唯
黄建伟
朱钰
Original Assignee
江苏金风科技有限公司
成都世唯科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010871156.2A external-priority patent/CN112010165B/zh
Priority claimed from CN202010870077.XA external-priority patent/CN111994774A/zh
Application filed by 江苏金风科技有限公司, 成都世唯科技有限公司 filed Critical 江苏金风科技有限公司
Priority to KR1020237010444A priority Critical patent/KR20230054888A/ko
Publication of WO2022042651A1 publication Critical patent/WO2022042651A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/10Assembly of wind motors; Arrangements for erecting wind motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C1/00Load-engaging elements or devices attached to lifting or lowering gear of cranes or adapted for connection therewith for transmitting lifting forces to articles or groups of articles
    • B66C1/10Load-engaging elements or devices attached to lifting or lowering gear of cranes or adapted for connection therewith for transmitting lifting forces to articles or groups of articles by mechanical means
    • B66C1/42Gripping members engaging only the external or internal surfaces of the articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C1/00Load-engaging elements or devices attached to lifting or lowering gear of cranes or adapted for connection therewith for transmitting lifting forces to articles or groups of articles
    • B66C1/10Load-engaging elements or devices attached to lifting or lowering gear of cranes or adapted for connection therewith for transmitting lifting forces to articles or groups of articles by mechanical means
    • B66C1/42Gripping members engaging only the external or internal surfaces of the articles
    • B66C1/44Gripping members engaging only the external or internal surfaces of the articles and applying frictional forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/04Auxiliary devices for controlling movements of suspended loads, or preventing cable slack
    • B66C13/08Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for depositing loads in desired attitudes or positions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2230/00Manufacture
    • F05B2230/60Assembly methods
    • F05B2230/61Assembly methods using auxiliary equipment for lifting or holding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention generally relates to the technical field of wind power generation, and more particularly, to a blade clamping control method and control system and a control system for a blade spreader.
  • An object of the exemplary embodiments of the present invention is to provide a blade clamping control method and control system and a control system for a blade spreader to overcome at least one of the above disadvantages.
  • a blade clamping control method of a blade hanger includes a main beam, a pitching and rotating mechanism connected to the main beam, and blade clamps disposed at both ends of the main beam for clamping the blades A holding mechanism and an angle adjustment mechanism arranged on the blade clamping mechanism, wherein the blade clamping control method includes: generating a pitch rotation command based on the initial position and target position of the clamped blade, and controlling the pitch rotation command based on the generated pitch rotation command
  • the pitch rotation mechanism acts to drive the main beam to rotate, so as to drive the clamped blade to rotate in the pitch direction. Adjust the size of the clamping opening of the blade clamping mechanism to change the pressure exerted by the blade clamping mechanism on the blade.
  • a blade clamping control system of a blade hanger includes a main beam, a pitching and rotating mechanism connected to the main beam, and blades disposed at both ends of the main beam for clamping the blades A clamping mechanism and an angle adjustment mechanism provided on the blade clamping mechanism
  • the blade clamping control system includes: a controller configured to generate a pitch rotation command based on an initial position and a target position of the clamped blade, Based on the generated pitch rotation command, the action of the pitch rotation mechanism is controlled to drive the main beam to rotate, so as to drive the clamped blade to rotate in the pitch direction.
  • the action of the angle adjustment mechanism to adjust the size of the clamping opening of the blade clamping mechanism, so as to change the size of the pressure acting on the blade by the blade clamping mechanism.
  • a control system for a blade spreader includes a main beam, a blade clamping mechanism disposed at both ends of the main beam for clamping blades, and a blade clamp connected to the main beam for driving A pitch rotation mechanism for the clamped blade to rotate in the pitch direction, a pitch rotation mechanism for driving the clamped blade to rotate in the pitch direction, and an angle adjustment mechanism provided on the blade clamping mechanism, wherein the
  • the control system includes: a hydraulic system, a controller, a ground remote control system and a power supply system, the hydraulic system is respectively connected to the blade clamping mechanism, the pitch rotation mechanism, and the pitch rotation mechanism, and the ground remote control system is connected to the controller to Display and store the hoisting data of the blade clamping mechanism, the pitch rotating mechanism, and the pitch rotating mechanism during the blade hoisting process, and the power supply system provides power for the hydraulic system and the controller, and the controller is configured to: The system drives the blade clamping mechanism, the pitch rotation mechanism, and the pitch rotation mechanism to operate, and the
  • the blade can be clamped to adjust various angles and attitudes for blade installation, which effectively reduces the hoisting cost of the unit and improves the installation efficiency of the unit.
  • Fig. 1 shows a schematic diagram of an existing 30-degree single-blade clamp angle rotation installation
  • Figure 2 shows a schematic diagram of a blade spreader according to an exemplary embodiment of the present invention
  • FIG. 3 shows an exploded view of the pitch rotation mechanism of FIG. 2 according to an exemplary embodiment of the present invention
  • FIGS. 4 and 5 show exploded views of a blade clamping unit according to an exemplary embodiment of the present invention
  • FIGS. 6 and 7 show exploded views of a pitch rotating mechanism according to an exemplary embodiment of the present invention.
  • FIG. 8 shows a schematic diagram of the state before the blade spreader in FIG. 1 is used for blade pitching
  • Fig. 9 shows the schematic diagram of the state after the blade spreader in Fig. 1 is used for blade pitching
  • Figures 10 and 11 illustrate exploded views of a wind winch system according to an exemplary embodiment of the present invention
  • FIG. 12 shows a flowchart of a blade clamping control method of a blade spreader according to an exemplary embodiment of the present invention
  • Fig. 13 shows a schematic diagram of sensor arrangement of a blade spreader according to an exemplary embodiment of the present invention
  • FIG. 14 shows a flowchart of steps of adjusting the size of the clamping opening of the blade clamping mechanism by controlling the action of the angle adjustment mechanism according to an exemplary embodiment of the present invention
  • 15A to 15D illustrate schematic diagrams of angular rotation installation of a blade spreader according to an exemplary embodiment of the present invention
  • FIG. 16 shows a block diagram of a blade gripping control system of a blade spreader according to an exemplary embodiment of the present invention
  • FIG. 17 shows a block diagram of a controller according to an exemplary embodiment of the present invention.
  • FIG. 18 shows a block diagram of a control system of a blade spreader according to an exemplary embodiment of the present invention.
  • An exemplary embodiment of the present invention proposes a blade clamping control method for a blade hanger.
  • the blade hanger can clamp a single blade and drive the clamped blade in at least one direction during the assembly process of the wind turbine. Rotate on the top to facilitate the installation of the blade.
  • FIG. 2 to 5 to introduce the schematic structural diagrams of the blade spreader, it should be understood that the specific structure of the blade spreader shown in FIG. 2 to FIG. Other structural forms are sufficient as long as the blades can be driven to rotate.
  • Figure 2 shows a schematic diagram of a blade spreader according to an exemplary embodiment of the present invention.
  • a blade hanger includes a blade clamp 100 and a hanger (also referred to as a center of gravity adjustment mechanism) 200 .
  • the blade clamp 100 includes a main beam 120 , The blade clamping mechanism for clamping the blade, and the angle adjustment mechanism arranged on the blade clamping mechanism.
  • the blade spreader also includes a pitch rotation mechanism 400 connected to the main beam.
  • the blade spreader further includes a pitch rotation mechanism for driving the clamped blade to rotate in the pitch direction, a wind winch system for maintaining the balance and stability of the blade spreader, and a winch system for maintaining the balance and stability of the blade spreader during the hoisting process.
  • At least one of the center of gravity adjustment mechanisms for adjusting the center of gravity of the blade spreader.
  • the pitch rotation mechanism 400 is connected to the lower end of the hanger 200, the main beam 120 is connected to the pitch rotation mechanism 400, and the main beam 120 and the blade clamping mechanism can be driven by the pitch rotation mechanism 400 to realize a large angle (such as 360 degrees) rotation, The angle requirement during blade installation can be met, and the blade spreader does not need to rotate the hub or perform a yaw action during the blade installation process, which simplifies the blade installation process.
  • FIG. 3 shows an exploded view of the pitch rotation mechanism of FIG. 2 according to an exemplary embodiment of the present invention.
  • the pitch rotation mechanism 400 may include a support frame 410 , a rotation shaft 420 , a crank 430 and a driving unit, the rotation shaft 420 is rotatably disposed on the support frame 410 , and the first end of the rotation shaft 420 is used for connection on the main beam 120 to drive the main beam 120 and the blade clamping mechanism to rotate with the rotating shaft 420 .
  • the first end of the crank 430 is fixedly connected to the second end of the rotating shaft 420 .
  • the driving unit is connected with the second end of the crank 430 to drive the crank 430 to rotate around and drive the rotating shaft 420 .
  • the pitch rotation mechanism 400 drives the main beam 120 and the blade clamping mechanism to rotate through the rotation shaft 420, so that the clamped blade can be rotated at a large angle to adjust the pitch angle of the clamped blade.
  • the pitch rotation mechanism 400 drives the clamped blade to rotate to a desired angle, which can be connected to the pitch bearing at the corresponding position of the hub, thereby simplifying the blade installation process.
  • the support frame 410 of the pitching and rotating mechanism 400 may be fixedly connected with the hanger 200 .
  • the hanger 200 may include a hanger rod 210 , a hanger point connecting beam 220 (rail), and a hanger lug 230 provided on the hanger rod 210 .
  • the support frame 410 may be connected to the suspension point connecting beam 220 to which the lower end of the suspension rod 210 is coupled.
  • the blade spreader may further include a telescopic member 300 capable of driving the boom 210 to move in a horizontal direction along the lifting point connecting beam 220, thereby adjusting the position of the connecting point.
  • the blade spreader according to the exemplary embodiment of the present invention can be hooked to an external large lifting tool through the lifting lugs 230 and can be moved with the external large lifting tool.
  • the rotating shaft 420 is rotatably disposed on the support frame 410, the left end of the rotating shaft 420 can be connected to the main beam 120, the right end of the rotating shaft 420 can be fixedly connected to the first end of the crank 430, the rotating shaft 420 The left end of the 420 may be its first end, and the right end of the rotating shaft 420 may be its second end.
  • the crank 430 can drive the rotating shaft 420 to rotate, thereby driving the main beam 120 and the blade clamping mechanism to rotate around the rotating shaft 420 .
  • the driving unit may include at least two telescopic driving mechanisms 440 to drive the crank 430 to rotate around the rotating shaft 420 .
  • the second end of the crank 430 can be fixedly provided with a connecting shaft 450, the connecting shaft 450 is arranged in parallel with the rotating shaft 420, the telescopic driving mechanism is connected on the connecting shaft 450, and the telescopic driving mechanism The direction is perpendicular to the connecting axis 450 .
  • the first end of the crank 430 is connected with the rotating shaft 420 , and the second end of the crank 430 is fixedly provided with a connecting shaft 450 , the connecting shaft 450 may be arranged parallel to the rotating shaft 420 and extend in a direction away from the rotating shaft 420 .
  • At least two telescopic drive mechanisms 440 are arranged at intervals around the connecting shaft 450, and the included angle between adjacent telescopic drive mechanisms 440 is greater than 0 degrees and less than 180 degrees. Provide stable power output for the rotating shaft 420. When one telescopic drive mechanism 440 runs to a dead center, the other telescopic drive mechanism 440 can continue to provide power, thereby bypassing the aforementioned dead center position.
  • the multiple telescopic drive mechanisms 440 It is designed for redundancy, thereby improving the safety and reliability of the operation of the pitching and rotating mechanism.
  • the telescopic rod of each telescopic drive mechanism 440 has a dead center position.
  • the dead center position is detrimental to the movement of the transmission mechanism.
  • the telescopic driving mechanism can smoothly pass through the dead center and run continuously.
  • the number of telescopic drive mechanisms 440 may be two, preferably, the number of telescopic drive mechanisms 440 may be four, for example, four telescopic drive mechanisms 440 are connected to the connecting shaft 450 along the connecting shaft 450 are arranged in sequence in the circumferential direction, and the included angle between two adjacent telescopic drive mechanisms 440 may be any angle greater than 0 degrees and less than 180 degrees.
  • the four telescopic driving mechanisms 440 are sequentially connected to the connecting shaft 450 along the length direction of the connecting shaft 450 , and the telescopic driving mechanism 440 can extend and contract in a direction perpendicular to the connecting shaft 450 .
  • the telescopic drive mechanism 440 may include a first hydraulic cylinder, the cylinder body of which is mounted on the support frame 410 , and the free end of the piston rod of the first hydraulic cylinder is connected to the second end of the crank 430 .
  • the free end of the piston rod is connected to the connecting shaft 450 .
  • the telescopic drive mechanism 440 expands and contracts, the free end of the piston rod can rotate around the first end of the crank 430. Since the free end of the piston rod rotates around the first end of the crank 430, the entire telescopic drive mechanism 440 will The position at the position swings in a plane perpendicular to the connecting shaft 450 , thereby driving the rotating shaft 420 to rotate through the crank 430 .
  • the telescopic drive mechanism 440 listed above is only an example of a hydraulic cylinder, and the present invention is not limited thereto, and the telescopic drive mechanism 440 may also be an air cylinder.
  • FIGS. 4 and 5 illustrate exploded views of a blade clamping unit according to an exemplary embodiment of the present invention.
  • the blade clamping mechanism may include a first blade clamping unit 110 and a second blade clamping unit 130, and the first blade clamping unit 110 and the second blade clamping unit, respectively disposed at both ends of the main beam.
  • One of the 130 is used to clamp the tip portion of the blade, and the other of the first blade clamping unit 110 and the second blade clamping unit 130 is used to clamp the root portion of the blade.
  • the first blade clamping unit 110 may include a first upper clamping assembly and a first lower clamping assembly
  • the second blade clamping unit 130 may include a second upper clamping assembly and a second lower clamping assembly
  • the angle adjustment mechanism may include a first angle adjustment unit disposed on the first upper clamping assembly and a second angle adjustment unit disposed on the second upper clamping assembly.
  • the structures of the first blade clamping unit 110 and the second blade clamping unit 130 are substantially the same, therefore, in the following description, only the structure of the first blade clamping unit 110 and the clamping provided on the first blade will be The first angle adjustment unit on the assembly is described.
  • the first blade clamping unit 110 may include a first upper clamping assembly 140 and a first lower clamping assembly 150 , which are formed by the first upper clamping assembly 140 and the first lower clamping assembly 150 for The space for clamping the blade (ie, the clamping opening), the first angle adjusting unit 117 is provided on the first upper clamping assembly 140 .
  • the first upper clamping assembly 140 may include a first pressing arm 111 and a first upper standing arm 112 extending downward from one end of the first pressing arm 111 , and the first pressing arm 111 can be relatively The first upper arm 112 pivots.
  • the first lower clamping assembly 150 may include a first supporting arm 113 and a first lower upright arm 114 extending upward from one end of the first supporting arm 113 , and the first lower upright arm 114 is connected with the first upper upright arm 112 .
  • the first angle adjusting unit 117 is connected between the first upper vertical arm 112 and the first pressing arm 111 , and the first pressing arm 111 can be driven to rotate relative to the first upper vertical arm 112 through the first angle adjusting unit 117 , In order to adjust the inclination angle of the first pressing arm 111 relative to the first upper vertical arm 112 , the opening and closing state of the clamping opening of the first blade clamping unit 110 is adjusted.
  • the free end of the first pressing arm 111 is driven to lift up by controlling the first angle adjusting unit 117.
  • the first pressing unit 117 is controlled to drive the first pressing The free end of the arm 111 then rotates downward to clamp the blade.
  • the upper part of the first upper vertical arm 112 is provided with a pivot shaft, and the first pressing arm 111 is connected to the first upper vertical arm 112 through the pivot shaft.
  • the first angle adjustment unit 117 may include a telescopic oil cylinder, and the telescopic oil cylinder may be named as a jaw telescopic oil cylinder.
  • the telescopic oil cylinder may be an automatically controlled second hydraulic cylinder. Installed on the first upper vertical arm 112, the free end of the piston rod of the second hydraulic cylinder is connected to the first pressing arm 111, so that the first pressing arm 111 is driven by the first angle adjustment unit 117 relative to the first pressing arm 111 around the pivot axis.
  • An upper vertical arm 112 pivots to adjust the inclination angle of the first pressing arm 111 relative to the first upper vertical arm 112 to adjust the magnitude of the clamping force of the clamping blade.
  • first angle adjusting unit 117 is a hydraulic cylinder only as an example, and the first angle adjusting unit 117 may also be other types capable of driving the first pressing arm 111 to rotate around the pivot axis relative to the first upper vertical arm 112
  • the drive element can also be, for example, an air cylinder, an electric screw or a bolt with a nut or the like.
  • the blade hanger may further include a jaw adjustment mechanism
  • the jaw adjustment mechanism may include a clamping assembly connected to the first upper clamping assembly 140 and The first jaw adjusting unit 115 between the first lower clamping assemblies 150 and the second jaw adjusting unit connected between the second upper clamping assembly and the second lower clamping assembly.
  • the first jaw adjusting unit 115 can adjust the size of the jaw formed by the first upper clamping assembly 140 and the first lower clamping assembly 150 , so as to be suitable for clamping blades of different sizes.
  • the first blade clamping unit 110 may further include a jaw locking assembly for locking the first jaw adjusting unit 115 after the first jaw adjusting unit 115 adjusts the size of the jaw to an appropriate size, thereby preventing the An upper clamping assembly 140 and a first lower clamping assembly 150 move with each other to keep the size of the jaws fixed.
  • the first jaw adjusting unit 115 is connected between the first upper vertical arm 112 and the first lower vertical arm 114 for driving the first upper clamping assembly 140 to move relative to the first lower clamping assembly 150 , so as to adjust the distance between the first pressing arm 111 and the first supporting arm 113, so as to adjust the size of the clamping opening.
  • the first jaw locking assembly is used to lock the first upper upright arm 112 relative to the first lower upright arm 114 .
  • a clamping space (ie, a clamping opening) having a “C” shape or a “C” shape is formed by the first upper clamping assembly 140 and the first lower clamping assembly 150 , the first pressing arm 111 and the first supporting arm 113 form two clamp feet for clamping the opposite surfaces of the blade, and the first upper vertical arm 112 and the first lower vertical arm 114 form a telescopic vertical arm, which is connected to between the first pressing arm 111 and the first supporting arm 113 .
  • the first upper vertical arm 112 and the first lower vertical arm 114 are driven to move relative to each other by the first jaw adjusting unit 115, so as to adjust the clamping range of the blade in a wide range.
  • the first upper upright arm 112 and the first lower upright arm 114 may be a columnar hollow structure, that is, a hollow cylindrical shape, and formed into a structure nested with each other, as shown in the figure, may be formed as Rectangular hollow structure.
  • the lower part of the first upper upright arm 112 can be nested inside the upper part of the first lower upright arm 114, and can be relatively slid along the height direction under the push of the first jaw adjusting unit 115, so as to adjust the first upper upright arm The height/length of the telescopic vertical arm formed by the arm 112 and the first lower vertical arm 114 .
  • the first jaw adjusting unit 115 controls the first jaw adjusting unit 115, that is, the height/length of the telescopic vertical arm becomes smaller, the first pressing The distance between the arm 111 and the first support arm 113 becomes smaller, so that the opening degree of the clamping port becomes smaller.
  • the part where the first upper vertical arm 112 and the first lower vertical arm 114 are nested with each other is reduced by controlling the first jaw adjusting unit 115, the overall height/length of the telescopic vertical arm becomes larger, and the first pressing The distance between the arm 111 and the first support arm 113 becomes larger, so that the opening degree of the clamping port becomes larger.
  • the first upper upright arm 112 and the first lower upright arm 114 may be formed of stainless steel plates to improve strength and prevent corrosion, but the present invention is not limited thereto.
  • the present application does not limit the connection method and specific shape of the first upper upright arm 112 and the first lower upright arm 114, as long as the first upper upright arm 112 and the first lower upright arm 114 can move up and down along the vertical direction to adjust The distance between the first pressing arm 111 and the first supporting arm 113 is sufficient.
  • the first jaw adjusting unit 115 may include a distance telescopic drive mechanism disposed inside the first upper upright arm 112 and the first lower upright arm 114 .
  • the distance telescopic drive mechanism can adopt a drive mechanism with large thrust and large stroke, so as to adjust the clamping range of the blade in a wide range, that is, to adjust the size of the clamping opening.
  • the pitch telescopic drive mechanism may be a telescopic cylinder, eg an automatically controlled hydraulic cylinder.
  • the cylinder body of the fourth hydraulic cylinder can be installed to one of the first upper vertical arm 112 and the first lower vertical arm 114, and the piston rod of the fourth hydraulic cylinder The free end of is connected to the other of the first upper upright arm 112 and the first lower upright arm 114 .
  • the telescopic stroke of the telescopic oil cylinder can be relatively large.
  • the linear telescopic motion of the telescopic oil cylinder drives the first upper vertical arm 112 to move relative to the first lower vertical arm 114, thereby adjusting the first pressing arm 111 and the first supporting arm 113
  • the first jaw adjusting unit 115 may also be capable of driving the first upper vertical arm 112 and the first lower vertical arm 114 to move relatively, thereby adjusting the first pressing arm 111 and the
  • Other driving elements for the distance between the first support arms 113 to realize linear telescopic drive for example, may also be an air cylinder, an electric lead screw, a bolt with a nut, and the like.
  • the opening and closing degree of the clamping opening can be adjusted first through the clamping opening adjustment unit 115 in coordination with the lifting and lowering of the first upper vertical arm 112 relative to the first lower vertical arm 114 .
  • a backup clamping opening locking component may also be provided on the basis of the lifting function.
  • the first pressing arm 111 , the second pressing arm, the first supporting arm 113 , and the second supporting arm may all include a conformable pressing member 119 and be connected to the conformable pressing member 119 .
  • the pressing member driving unit 1131 is used to push the conforming pressing member 119 to move along the extending direction of the first pressing arm 111 or the first supporting arm 113 , and the pressing member driving unit 1131 may include a cylinder and a piston rod.
  • the free end of the piston rod can be hinged on the conforming pressing member 119, and the cylinder can be mounted on the first pressing arm 111 or the first supporting arm 113, so as to drive the follow-up through the telescoping of the piston rod relative to the cylinder.
  • the shape pressing member 119 moves so that the conforming pressing member 119 is located in a position in close contact with the blade.
  • the telescopic direction of the pressing member driving unit 1131 is parallel to the extending direction of the first pressing arm 111 or the first supporting arm 113 . Further, the pressing member driving unit 1131 can be sleeved in the inner cavity of the first pressing arm 111 or the first supporting arm 113, so that the overall structure of the first blade clamping unit is more beautiful.
  • the box body 500 of the above-mentioned blade spreader can be provided with a controller and a hydraulic station.
  • the hydraulic station includes an oil tank, a hydraulic pump connected to the oil tank, and an oil pump motor for driving the action of the hydraulic pump.
  • the blade clamping control for the above-mentioned blade spreader The whole method can be as follows: a controller (such as a programmable logic controller PLC) controls the action of the oil pump motor of the hydraulic station to drive the hydraulic pump, so as to transport the hydraulic oil provided by the oil tank to each hydraulic cylinder through the suction of the hydraulic pump.
  • the action of the first hydraulic cylinder is controlled, and the crank 430 is driven to rotate, so as to drive the main beam 120 and the blade clamping mechanism to rotate from 0 degrees to 360 degrees in the pitch direction.
  • FIGS. 6 and 7 show exploded views of a pitch rotating mechanism according to an exemplary embodiment of the present invention.
  • FIG. 6 is an exploded schematic view showing the connection of the blade clamping mechanism and the main beam in FIG. 2
  • FIG. 7 is an enlarged schematic view of part A in FIG. 6 .
  • the first blade clamping unit 110 is rotatably connected with the main beam 120 through a pitch rotation mechanism to adjust the rotation angle of the clamped blade in the pitch direction based on the pitch rotation mechanism.
  • the pitch of the clamped blade can be adjusted during the assembly process of the wind turbine and the blade hoisting process, so as to align and accurately connect the clamped blade to the hub.
  • the cooperation of the guide rail 142 and the track groove 143 helps the first blade clamping unit 110 and the second blade clamping unit 130 to rotate stably relative to the main beam 120, thereby ensuring blade clamping
  • the mechanism drives the safety and stability of the clamped blade during pitching.
  • the main beam 120 may include a beam body 121 and legs 122 extending upward or downward from both ends of the beam body 121. As shown in FIG. 6 , the legs 122 may be substantially perpendicular to the main beam 120 .
  • the first blade clamping unit 110 is disposed on the outer side of the leg 122 , that is, facing the end surface of the main beam 120 .
  • the first supporting arm 113 of the first blade clamping unit 110 may be connected to the legs 122 of the main beam 120 through the pin shaft 144 , so that the first blade clamping unit 110 can rotate relative to the main beam 120 around the pin shaft 144 .
  • the pitch rotating mechanism 300 may include a guide rail 142 formed on the first blade clamping unit 110 and a rail groove 143 formed on the main beam 120 to move relative to the guide rail 142 .
  • the guide rail 142 is formed on the side surface of the first upper arm 112 facing the beam main body 121
  • the rail groove 143 is formed on the end surface of the beam main body 121 .
  • the present invention is not limited thereto, and the positions of the guide rails 142 and the track grooves 143 can be interchanged as required.
  • the track groove 143 may be an engaging groove, and the opening of the engaging groove faces the guide rail 142 .
  • the guide rail 142 may be a ridge guide rail formed with a protruding structure that can be inserted into the engaging groove.
  • the cross section of the groove wall of the track groove 143 may be a rectangle with rounded corners, and correspondingly, the cross section of the guide rail 142 may be formed as a rectangle with rounded corners.
  • the track grooves 143 and the guide rails 142 may extend along the trajectory of the rotation of the first blade clamping unit 110 relative to the main beam 120 , that is, the track grooves 143 and the guide rails 142 are arc-shaped as a whole along the length direction thereof.
  • the rail groove 143 and the guide rail 142 are nested and matched through the convex and concave structures, and the cross section of the rail groove 143 and the guide rail 142 is formed into a rectangle with rounded corners, but the present invention is not limited to this, the guide rail 142
  • the cross section of the track groove 143 can also be formed into other shapes such as triangle, trapezoid, rectangle, etc., and the track groove 143 and the guide rail 142 can also adopt known structures in the prior art, as long as the track groove 143 can be engaged with the guide rail 142 and It only needs to be slidable relative to the guide rail 142 .
  • the first blade clamping unit 110 can play an auxiliary guiding role during the rotation of the first blade clamping unit 110 relative to the main beam 120 , thereby constraining the degree of freedom of the pitching process.
  • the guide rails 142 may be nested in the track grooves 143, so that in the length direction of the main beam 120 (span direction of the blade), both the guide rails 142 and the track grooves 143 cannot be disengaged from each other, so that it is also possible to solve the problem of achieving
  • the problem that the second hydraulic cylinder 141 of the pitch can not find the fulcrum when the second hydraulic cylinder 141 rotates at a single point, and the problem that the pin shaft 144 is stuck when the blade clamp 100 drives the clamped blade to rotate in the pitch direction, further ensuring the operation of the blade clamp 100
  • the track groove 143 and the guide rail 142 are designed to have an arc-shaped structure along the length direction, which can further solve the problem of the movable point support of the second hydraulic cylinder 141 and avoid the rotation process of the second hydraulic cylinder 141 at the same time. risk of interference with the main beam 120.
  • the pin shaft 144 and the connecting column are both provided on the first support arm 113, when the blade clamp 100 is in a horizontal position with the clamped blade, the first support arm 113 will not bear too much torque , the second hydraulic cylinder 141 also only bears the vertical tension (the direction of expansion and contraction). However, when the clamped blade is in an inclined state (for example, 30° from the horizontal direction, or even in the vertical direction), the first support arm 113 will be subjected to a relatively large torque, and on the one hand, the rotation of the pin shaft 144 will be stuck.
  • the second hydraulic cylinder 141 will perform a single point rotation around the pin shaft 144, and the second hydraulic cylinder 141 may be damaged due to vertical force (perpendicular to the telescopic direction).
  • the guide rails 142 and the rail grooves 143 are engaged with each other, and the torque borne by the first support arm 113 will be greatly reduced, ensuring that the The rigidity between the pliers feet and the main beam 120 is avoided, and the problem of the pin shaft 144 being stuck by rotation is avoided.
  • the second hydraulic cylinder 141 will be supported at two points of the pin shaft 144 and the guide rail 142, so as to prevent the second hydraulic cylinder 141 from interfering with the main beam 120 due to the bending moment during the rotation of the first blade clamping unit 110 risks of.
  • auxiliary grooves 142 a extending along the length direction of the guide rail 142 are respectively formed on two side surfaces of the guide rail 142 . Accordingly, auxiliary rails 143 a may be formed on the side surfaces of the rail grooves 143 along the length direction of the rail grooves 143 , and the auxiliary rails 143 a may be protrusions protruding outward from the inner side surfaces of the rail grooves 143 .
  • the auxiliary groove 142a may receive the auxiliary rail 143a and slide relative to the auxiliary rail 143a.
  • the auxiliary groove 142a may be formed as a rounded groove (for example, the cross section of the groove wall is a semicircle), and the auxiliary rail 143a may be formed as a rounded convex matched with the auxiliary groove 142a
  • the present invention is not limited to this, the auxiliary rail 143a and the auxiliary groove 142a can also be formed into other shapes such as triangular, trapezoidal, rectangular, etc. Just slide on the auxiliary rail 143a.
  • auxiliary rails 143a and the auxiliary grooves 142a By arranging the auxiliary rails 143a and the auxiliary grooves 142a, not only the engaging grooves of the rail grooves 143 are facilitated to slide along the guide rails 142, but also since the auxiliary rails 143a are accommodated in the auxiliary grooves 142a, they can also be guided to a certain extent.
  • the movement of the track groove 143 and the guide rail 142 can further prevent the track groove 143 and the guide rail 142 from shifting in the lateral direction (ie, the width direction of the snap groove), or even one side of the snap groove from the guide rail 142
  • the first blade clamping unit 110 rotates relative to the main beam 120, the two are not separated, which further ensures the stability of the blade clamp 100 during operation.
  • auxiliary grooves 142a are formed on the side surfaces of the guide rails 142 and the auxiliary rails 143a are formed on the inner side surfaces of the rail grooves 143, but the positions of the auxiliary grooves 142a and the auxiliary rails 143a may be changed as required. interchangeable.
  • the track groove 143 can slide relative to the guide rail 142, and will not slide from the blade along the direction perpendicular to the length of the blade.
  • the guide rail 142 is disengaged.
  • the present invention is not limited thereto, and the auxiliary rails 143a and the auxiliary grooves 142a may not be provided, but the rail grooves 143 and the guide rails 142 may be formed into a structure nested with each other, so that the guide rails 142 are embedded in the rail grooves 143 and restricted in the rail grooves 143. Slide inside.
  • the guide rail 142 is formed as a ridged guide rail with a cross section of "T" and "L” shape. Accordingly, the track groove 143 needs to have a "T” and “L” shaped chute that can slide and fit with the ridged guide rail. Specifically, Ground, the opening side of the rail groove 143 is formed with a laterally protruding flange, and the laterally protruding portion of the "T"-shaped, "L”-shaped guide rail 142 is inserted into the rail groove 143 and supported by the flange, thereby preventing the rail 142 and the rail groove. 143 Both are separated in the longitudinal direction of the main beam 120 .
  • a guide rail 142 may also be formed on the other side surface of the first upper vertical arm 112 opposite to the above-mentioned side surface. That is, the guide rails 142 are formed on both side surfaces of the first upper vertical arm 112, so that the connection positions of the first blade clamping unit 110 and the second blade clamping unit 130 at both ends of the main beam 120 can be interchanged . For example, when the orientation of the blade needs to be adjusted but the position of the blade clamp cannot be adjusted, it is only necessary to adjust the position where the main beam 120 is connected to the two side surfaces of the first upper vertical arm 112 , which increases the versatility of the blade clamp 100 .
  • the cylinder block of the second hydraulic cylinder 141 may be mounted on the main beam, and the free end of the piston rod of the second hydraulic cylinder 141 may be connected to the first blade clamping unit 110 .
  • the cylinder of the second hydraulic cylinder 141 may be disposed on the beam main body 121 , and the free end of the piston rod of the second hydraulic cylinder 141 may be connected to the first upper vertical arm 112 .
  • the above structure using the hydraulic cylinder as the pitch drive component is only an example, but the present invention is not limited to this, as long as it is a telescopic drive mechanism capable of linear reciprocating motion.
  • it may be a linear telescopic drive mechanism with a force transmission structure such as an air cylinder, an electric screw, or a bolt with a nut.
  • the cylinder of the second hydraulic cylinder 141 may be hinged to the upper part of the end of the beam main body 121, and the free end of the piston rod of the second hydraulic cylinder 141 may be hinged to the lower part of the first upper vertical arm 112 through the second hydraulic cylinder
  • the linear expansion and contraction of 141 drives the first blade clamping unit 110 to rotate relative to the main beam 120, so as to realize the change of the inclination angle of the blade clamped by the first blade clamping unit 110 in the air -7° to +7° (that is, in the changing direction). small angle rotation in the direction of the paddle).
  • FIG. 8 is a schematic diagram showing the state before the blade spreader in FIG. 2 is used for blade pitching.
  • FIG. 9 is a schematic diagram showing the state after the blade spreader in FIG. 2 is used for blade pitching.
  • FIG. 8 shows schematic views of the blade clamp before and after pitching, respectively.
  • the blade clamp 100 is in a state before the blade is pitched, and the piston rod of the second hydraulic cylinder 141 is in a state of being extended to the maximum extension stroke.
  • FIG. 9 when the blade clamp 100 is in the state after the blade is pitched, the piston rod of the second hydraulic cylinder 141 is retracted and drives the first blade clamp unit 110 to rotate relative to the main beam 120 around the pin shaft 144 , thereby It is realized that the first blade clamping unit 110 drives the clamped blade to rotate in the pitch direction.
  • the overall control process for the above-mentioned blade spreader can be as follows: a controller (for example, a programmable logic controller PLC) controls the action of the oil pump motor of the hydraulic system to drive the hydraulic pump, so as to deliver the hydraulic oil provided by the oil tank to the hydraulic pump through the suction of the hydraulic pump. Each hydraulic cylinder drives the corresponding actuator to operate by controlling the action of each hydraulic cylinder.
  • a controller for example, a programmable logic controller PLC
  • PLC programmable logic controller
  • Figures 10 and 11 illustrate exploded views of a wind winch system according to an exemplary embodiment of the present invention.
  • the above-mentioned blade spreader may further include a wind sweeping winch system 700 for maintaining the balance and stability of the blade spreader, and the hydraulic system is further connected to the wind sweeping winch system 700 .
  • the wind sweeping winch system 700 includes a counterweight unit, a first boom, a first winch 720, a second winch 730, a first wind sweeping pole 740, and a second wind sweeping pole 750.
  • the wind sweeping winch system 700 includes:
  • the counterweight unit may be the same as the counterweight unit in the center of gravity adjustment mechanism 200, and the first boom may be the second boom 210 in the center of gravity adjustment mechanism 200 (ie, the boom 210 described with reference to FIG. 3), or may be independent Set of a boom.
  • Both the counterweight unit and the blade clamp are connected with the first boom, the first winch 720 and the second winch 730 are arranged on the configuration unit, the first end of the first wind-seeking rod 740 and the first end of the second wind-seeking rod 750 Both are connected with the counterweight unit, the second end of the first wind-seeking rod 740 and the second end of the second wind-seeking rod 750 point to different sides away from the counterweight unit in opposite directions, respectively, the first winch 720 and the second winch 730 Cable wind ropes 760 are respectively provided, and guide wheels 770 are respectively provided on the second end of the first wind-seeking rod 740 and the second end of the second wind-seeking rod 750 , and the wind wind rope of the first winch 720 is led out from the first winch 720 After that, it is connected to the boom of the external hoist through the guide wheel 770 of the first wind-seeking rod 740.
  • the cable wind rope 760 may also pass through the wind-seeking rope guide soft plate 790 and be connected to the hanging arm of the external hoist. , after the wind rope of the second winch 730 is drawn out from the second winch 730 , it is connected to the boom of the external crane through the guide wheel of the second wind wind rod 750 .
  • Each winch (eg, the first winch 720 or the second winch 730 ) may include a motor, a reducer, and a winch on which the cable wind rope is coiled.
  • the motor When the motor is controlled to run, the motor drives the winch to rotate forward or reverse through the reducer, thereby releasing or retracting the cable wind rope to realize the adjustment of the lead-out length of the cable wind rope.
  • the specific flow of the blade clamping control method of the blade spreader will be described below with reference to FIG. 12 .
  • the present invention is directed to a blade clamping control method for a universal blade clamping hanger that is suitable for various blade profiles.
  • the blade clamping control method shown in FIG. 12 can be implemented in the above-mentioned controller.
  • the clamped blade when the blade spreader is controlled to rotate between 0 degrees and 360 degrees, the clamped blade can be prevented from relative displacement or even slipping, and the clamped blade can be protected.
  • the blade held by the blade is not subject to the hardware and software control requirements of the limit load, and the slant blade spreader can automatically adjust the clamping requirements according to the rotation angle (ie, attitude) of the blade.
  • FIG. 12 shows a flowchart of a blade clamping control method of a blade spreader according to an exemplary embodiment of the present invention.
  • step S10 a pitch rotation command is generated based on the initial position and the target position of the clamped blade.
  • the initial position of the clamped blade is a horizontal position, but the present invention is not limited to this, and the initial position of the clamped blade can be any angle.
  • the inclination angle sensor at the blade root of the blade is used to monitor the attitude of the blade.
  • the pitch rotation command indicates an angle value by which the clamped blade needs to be rotated in the pitch direction.
  • step S20 the operation of the pitch rotation mechanism 400 is controlled based on the generated pitch rotation command to drive the main beam 120 to rotate, so as to drive the clamped blade to rotate in the pitch direction.
  • the step of controlling the action of the pitch rotation mechanism 400 based on the generated pitch rotation command may include: controlling the action of the solenoid valve of the first hydraulic cylinder based on the generated pitch rotation command to drive the operation of the first hydraulic cylinder.
  • the piston rod of the first hydraulic cylinder moves to drive the main beam 120 to rotate around the rotating shaft 420 .
  • step S30 during the rotation of the clamped blade in the pitch direction, the size of the clamping opening of the blade clamping mechanism is adjusted by controlling the action of the angle adjustment mechanism, so as to change the amount of the blade clamping mechanism acting on the blade. pressure level.
  • the blade hanger may further include a pressure sensor disposed on the blade clamping mechanism for detecting the pressure value of the blade clamping mechanism acting on the blade.
  • FIG. 13 shows a schematic diagram of sensor arrangement of a blade spreader according to an exemplary embodiment of the present invention.
  • pressure sensors may be provided on the first pressing arm, the first supporting arm, the second pressing arm, and the second supporting arm (positions that are in contact with the surface of the blade), respectively, as shown in Figure 13
  • four pressure sensors P1, P2, P3, and P4 can be set respectively to detect the clamping pressure value on the blade root 3, the clamping pressure value below the blade root 4, the clamping pressure value on the blade tip 1, and the clamping pressure value below the blade tip.
  • the blade hanger may further include an inclination sensor 7 installed at the blade root of the clamped blade, for monitoring the attitude of the blade, and the monitoring range is 0 degrees to 360 degrees.
  • the blade spreader may further include a traction rope 6 and a traction rope tension sensor 5 for detecting the pulling force value of the traction rope.
  • a traction rope 6 To the upper clamping assembly of the blade clamping unit for clamping the blade root part of the blade, the other end of the traction rope 6 is connected to the lower clamping assembly of the blade clamping unit for clamping the blade root part of the blade, to Support the blade root of the blade to ensure the absolute safety of blade installation.
  • the traction rope tension sensor 5 monitors in real time the traction rope tension value of the clamped blade in the 0° ⁇ 360° rotation state.
  • the blade clamping control method of the blade spreader may further include: during the rotation of the clamped blade in the pitching direction, determining the traction in real time based on the traction rope tension sensor 5
  • the traction rope tension value of the rope if the real-time detected traction rope tension value is not greater than the set tension value, then continue to drive the main beam 120 to rotate, if the real-time detected traction rope tension value is greater than the set tension value, then stop driving the main beam 120.
  • the beam 120 rotates.
  • the set tension value may refer to the maximum tension limit to ensure that the traction rope is in a safe tension range.
  • the action of the angle adjustment mechanism is controlled based on the pressure value of the blade clamping mechanism acting on the blade detected in real time by the pressure sensor to adjust the size of the clamping opening of the blade clamping mechanism , to change the pressure of the blade clamping mechanism on the blade.
  • the real-time detection of the pressure value of the blade clamping mechanism acting on the blade can be compared with the blade limit load value, here, the blade limit The load value may refer to the maximum load value that the blade can bear.
  • the pressure value detected by each pressure sensor can be compared with the limit load value of the blade.
  • the main beam 120 will continue to be driven to rotate, if the pressure value detected in real time (the pressure value detected by any pressure sensor) pressure value) is greater than the limit load value of the blade, then stop driving the main beam 120 to rotate.
  • FIG. 14 is a flow chart showing the steps of adjusting the size of the clamping opening of the blade clamping mechanism by controlling the action of the angle adjustment mechanism according to an exemplary embodiment of the present invention.
  • step S301 the posture of the clamped blade is determined in real time.
  • the attitude of the clamped blade may be determined based on the inclination sensor 7 installed at the blade root of the clamped blade for monitoring the attitude of the blade.
  • step S302 based on the attitude of the blade determined in real time, the frictional resistance value of the blade being clamped at the current attitude is determined.
  • the frictional resistance value may refer to the frictional force required to overcome the clamping displacement of the blade due to the self-weight of the blade. In one example, the frictional resistance value may be determined based on the self-weight of the blade and the attitude of the blade.
  • the friction resistance value can be calculated using the following formula:
  • f represents the friction resistance value
  • G represents the self-weight of the blade
  • S X represents the horizontal inclination angle of the clamped blade.
  • step S303 the action of the angle adjustment mechanism is controlled based on the comparison result of the real-time detection of the pressure value acting on the blade by the blade clamping mechanism and the determined frictional resistance value.
  • the real-time detection of the pressure value of the blade clamping mechanism acting on the blade under the current attitude can be compared with the corresponding friction resistance value.
  • the pressure values detected by all the pressure sensors can be compared. The sum is compared with the frictional resistance value.
  • the opening degree of the clamping port of the blade clamping mechanism is controlled to be smaller by controlling the action of the angle adjustment mechanism.
  • the pressure of the blade clamping mechanism acting on the blade can also be changed by controlling the jaw adjusting mechanism and/or the pressing member driving unit.
  • the detected pressure value is greater than the corresponding friction resistance value (for example, the difference between the detected pressure value and the corresponding friction resistance value is greater than the set value, that is, the detected pressure value is guaranteed to be much larger than the corresponding friction resistance value), then keep The degree of opening of the clamping opening of the blade clamping mechanism remains unchanged.
  • the opening degree of the clamping port of the blade clamping mechanism is controlled to be smaller by controlling the action of the angle adjustment mechanism.
  • the first angle adjustment unit can be controlled based on the pressure value of the blade clamping mechanism acting on the blade detected in real time by the pressure sensor, that is, based on the real-time detected pressure value, the action of the first angle adjustment unit is controlled to drive the first upper clamping unit.
  • the assembly moves to adjust the size of the clamping opening formed by the first upper clamping assembly and the first lower clamping assembly.
  • the action of the first angle adjustment unit can be controlled to drive the first pressing arm to rotate relative to the first upper vertical arm to adjust the size of the clamping opening formed by the first pressing arm and the first supporting arm.
  • the first angle adjustment unit as the second hydraulic cylinder as an example
  • the cylinder body of the second hydraulic cylinder is mounted on the first upper vertical arm, and the free end of the piston rod of the second hydraulic cylinder is connected to the first hydraulic cylinder.
  • the tightening arm can control the action of the solenoid valve of the second hydraulic cylinder based on the real-time detected pressure value to drive the piston rod of the second hydraulic cylinder to move, so as to drive the first tightening arm to rotate relative to the first upper vertical arm.
  • the second angle adjustment unit can be controlled based on the pressure value of the blade clamping mechanism acting on the blade detected in real time by the pressure sensor, that is, based on the real-time detected pressure value, the action of the second angle adjustment unit is controlled to drive the second upper clamp
  • the assembly moves to adjust the size of the clamping opening formed by the second upper clamping assembly and the second lower clamping assembly.
  • the action of the second angle adjustment unit can be controlled to drive the second pressing arm to rotate relative to the second upper vertical arm to adjust the size of the clamping opening formed by the second pressing arm and the second supporting arm.
  • the second angle adjustment unit as the third hydraulic cylinder as an example
  • the cylinder body of the third hydraulic cylinder is mounted on the second upper vertical arm, and the free end of the piston rod of the third hydraulic cylinder is connected to the second hydraulic cylinder.
  • the tightening arm can control the action of the solenoid valve of the third hydraulic cylinder based on the real-time detected pressure value to drive the piston rod of the third hydraulic cylinder to move, so as to drive the second tightening arm to rotate relative to the second upper vertical arm.
  • the opening degree of the clamping opening of the blade clamping mechanism is controlled to be smaller by controlling the operation of the clamping opening adjustment mechanism.
  • the action of the first jaw adjusting unit is controlled to drive the relative movement of the first upper clamping assembly and the first lower clamping assembly to adjust The distance between the first upper clamping assembly and the first lower clamping assembly.
  • the cylinder body of the fourth hydraulic cylinder is installed to one of the first upper vertical arm and the first lower vertical arm, and the free end of the piston rod of the fourth hydraulic cylinder is connected to the other of the first upper arm and the first lower arm.
  • the solenoid valve of the fourth hydraulic cylinder is controlled to move, and the piston rod of the fourth hydraulic cylinder is driven to move, so as to drive the first upper vertical arm and the first lower vertical arm to move relatively. to adjust the distance between the first pressing arm and the first supporting arm.
  • the action of the second jaw adjustment unit is controlled to drive the second upper clamping assembly and the second lower clamping assembly to move relative to each other, so as to adjust the second jaw adjustment unit.
  • the distance between the upper clamping assembly and the second lower clamping assembly is used to adjust the size of the clamping opening of the blade clamping mechanism.
  • the cylinder body of the fifth hydraulic cylinder is mounted to one of the second upper vertical arm and the second lower vertical arm, and the free end of the piston rod of the fifth hydraulic cylinder is connected to to the other of the second upper arm and the second lower arm.
  • the solenoid valve action of the fifth hydraulic cylinder is controlled to drive the piston rod of the fifth hydraulic cylinder to move, so as to drive the relative movement of the second upper vertical arm and the second lower vertical arm, to adjust the distance between the second pressing arm and the second supporting arm.
  • the magnitude of the pressure exerted by the blade clamping mechanism on the blade is changed by controlling the action of the pressing member driving unit.
  • the action of the pressing member driving unit can be controlled to push the conformable pressing member to move along the extension direction of the pressing arm or the supporting arm.
  • 15A to 15D illustrate schematic diagrams of angular rotation installation of a blade spreader according to an exemplary embodiment of the present invention.
  • the self-weight of the blade is G
  • is the friction coefficient between the blade and the fixture
  • F is the pulling force value of the traction rope
  • the inclination angles are Sx and Sy, respectively, which can be obtained by the inclination sensor.
  • the rotating working condition of the blade spreader mainly has the following three working conditions:
  • the first blade rotates at 0 to +30 degrees, see Figure 15A.
  • the sum of the pressure values detected by the pressure sensors P1, P2, P3, and P4 needs to be much greater than the frictional resistance f overcome by the blade's own weight.
  • the blade root down pressure P2 and the blade tip down pressure P4 are respectively greater than the blade root pressure P1 and the blade tip pressure P3, but the blade root down pressure P2 and the blade tip down pressure must be ensured during the rotation of the clamped blade in the pitch direction.
  • the pressure P4 is lower than the blade limit load requirement.
  • the blade limit load value can be preset. During the rotation of the clamped blade in the pitch direction, the pressure value detected by each pressure sensor is compared with the set blade limit load. value to compare.
  • the blade limit load values set for different blades may be different.
  • the traction rope tension value F must be lower than the preset tension value (considering the influence of the possible sliding displacement during the blade rotation process, causing the blade center of gravity to shift,
  • the set tension value can be calibrated according to the percentage of blade weight).
  • the second blade rotates at 0 to -210 degrees, as shown in steps 1234 in Figure 15B, the second blade is rotated from the horizontal position in the pitch direction through the pitch rotation mechanism to rotate Install the second blade to the angle shown in Figure 15C.
  • the sum of the pressure values detected by the pressure sensors P1, P2, P3, and P4 needs to be far greater than the frictional resistance f overcome by the blade's own weight.
  • the pressure control of each hydraulic cylinder can be controlled by PLC to adjust The size of the clamping opening of the blade clamping mechanism.
  • the lower pressure P2 of the blade root and the lower pressure P4 of the blade tip are respectively greater than the upper pressure P1 of the blade root and the upper pressure P3 of the blade tip.
  • the pressure P2 and the tip down pressure P4 are below the blade limit load requirements.
  • the pulling force value F of the traction rope must be lower than the pulling force value set by the PLC.
  • the sum of the pressure values detected by P1, P2, P3, and P4 also needs to be much larger than the frictional resistance f overcome by the dead weight of the blade.
  • the third blade rotates at 0 to -90 degrees, see Figure 15D.
  • the sum of the pressure values detected by the pressure sensors P1, P2, P3, and P4 needs to be far greater than the frictional resistance f overcome by the blade's own weight.
  • the pressure control of each hydraulic cylinder can be controlled by PLC to adjust the clamping mechanism of the blade.
  • the size of the mouth can be controlled by PLC to adjust the clamping mechanism of the blade.
  • the root down pressure P2 and the tip down pressure P4 are larger than the blade root pressure P1 and the blade tip pressure P3 respectively. At this time, it is necessary to ensure that the blade root down pressure P2 and the tip down pressure P4 are lower than the limit load requirements of the blade.
  • the hydraulic cylinder is used to control and adjust the pressure of the blade clamping mechanism on the blade, that is, measure P1, P2, P3, P4 and According to the comparison result of the friction resistance value, the size of the clamping port of the blade clamping mechanism is adjusted by controlling the action of each hydraulic cylinder, so as to change the pressure of the blade clamping mechanism acting on the blade.
  • FIG. 16 shows a block diagram of a blade gripping control system of a blade spreader according to an exemplary embodiment of the present invention.
  • the blade hanger includes a main beam, a pitching and rotating mechanism connected to the main beam, a blade clamping mechanism disposed at both ends of the main beam for clamping the blades, and an angle provided on the blade clamping mechanism adjustment mechanism.
  • a blade clamping control system 600 of a blade spreader includes: a controller 601 .
  • the controller 601 generates a pitch rotation command based on the initial position and the target position of the clamped blade.
  • the pitch rotation command indicates an angle value by which the clamped blade needs to be rotated in the pitch direction.
  • the controller 601 controls the action of the pitch rotation mechanism based on the generated pitch rotation command to drive the main beam to rotate, so as to drive the clamped blade to rotate in the pitch direction.
  • the controller 601 can control the action of the solenoid valve of the first hydraulic cylinder based on the generated pitch rotation command to drive the piston rod of the first hydraulic cylinder to move, so as to drive the main beam to rotate around the rotation axis.
  • the blade clamping control system 600 of the blade spreader may further include: a traction rope tension sensor 602 for detecting the traction rope tension value, and the controller 601
  • the traction rope tension value of the traction rope is determined in real time based on the traction rope tension sensor 602. If the traction rope tension value detected in real time is not greater than the set tension value, the main beam will continue to be driven to rotate. If the tension value of the traction rope is greater than the set tension value, the main beam will be stopped to rotate.
  • the set tension value may refer to the maximum tension limit to ensure that the traction rope is in a safe tension range.
  • the blade clamping control system 600 of a blade spreader may further include: a pressure sensor 603 disposed on the blade clamping mechanism for detecting that the blade clamping mechanism acts on the blade pressure value.
  • the controller 601 may compare the real-time detected pressure value of the blade clamping mechanism acting on the blade with the blade limit load value.
  • the The limit load value of the blade can refer to the maximum load value that the blade can bear.
  • the controller 601 continues to drive the main beam to rotate, and if the pressure value detected in real time is greater than the limit load value of the blade, it stops driving the main beam to rotate.
  • the controller 601 adjusts the size of the clamping opening of the blade clamping mechanism by controlling the action of the angle adjustment mechanism, so as to change the pressure of the blade clamping mechanism on the blade. .
  • the controller 601 can control the action of the angle adjustment mechanism based on the pressure value of the blade clamping mechanism acting on the blade detected by the pressure sensor 603 in real time, so as to adjust the blade clamping
  • the size of the clamping opening of the mechanism can change the pressure exerted by the blade clamping mechanism on the blade.
  • the blade clamping control system 600 of a blade spreader may further include: an inclination sensor 604 installed at the blade root of the blade to be clamped for monitoring the attitude of the blade .
  • the controller 601 can determine the attitude of the blade to be clamped in real time, determine the friction resistance value of the blade to be clamped at the current attitude based on the attitude of the blade determined in real time, and the blade clamping mechanism based on the real-time detection acts on the The comparison result between the pressure value on the blade and the determined friction resistance value controls the action of the angle adjustment mechanism.
  • the controller 601 can control the opening degree of the clamping port of the blade clamping mechanism to become smaller by controlling the action of the angle adjustment mechanism. If the detected pressure value is greater than the corresponding friction resistance value, the opening degree of the clamping port of the blade clamping mechanism is kept unchanged.
  • the magnitude of the pressure exerted by the blade clamping mechanism on the blade can be changed by controlling at least one action of the angle adjustment mechanism, the jaw adjustment mechanism, and the pressing member driving unit.
  • FIG. 17 shows a block diagram of a controller according to an exemplary embodiment of the present invention.
  • the controller 700 includes: a processor 701 and a memory 702 .
  • the memory 702 is used for storing a computer program, and when the computer program is executed by the processor 701, the above-mentioned blade clamping control method of the blade spreader is implemented.
  • the blade clamping control method of the blade spreader shown in FIG. 12 may be executed in the processor 701 shown in FIG. 17 . That is, each process executed in the controller shown in FIG. 16 can be executed in the processor 701 shown in FIG. 17 .
  • FIG. 18 shows a block diagram of a control system of a blade spreader according to an exemplary embodiment of the present invention.
  • a control system of a blade spreader includes a hydraulic system 101 , a controller 102 , a power supply system 103 and a ground remote control system 104 .
  • the hydraulic system 101 is respectively connected to the blade clamping mechanism, the center of gravity adjustment mechanism 200 , the pitch rotation mechanism 800 , the pitch rotation mechanism 400 , and the wind winch system 700 .
  • the controller 102 drives the blade clamping mechanism, the center of gravity adjustment mechanism 200 , the pitch rotation mechanism 800 , the pitch rotation mechanism 400 , and the wind winch system 700 to operate through the hydraulic system 101 .
  • the controller 102 can control the action of the oil pump motor of the hydraulic system to drive the hydraulic pump, so as to deliver the hydraulic oil provided by the oil tank to the first hydraulic cylinder through the suction of the hydraulic pump, for example, it can control the first hydraulic cylinder.
  • the hydraulic cylinder acts to drive the crank 430 to rotate, so as to drive the main beam 120 and the blade clamping mechanism to rotate from 0° to 360° in the pitch direction.
  • Power supply system 103 provides power to hydraulic system 101 and controller 102 .
  • the ground remote control system 104 is connected to the controller 102 to display and store the hoisting data of the blade clamping mechanism, the center of gravity adjustment mechanism 200, the pitch rotation mechanism 800, the pitch rotation mechanism 400, and the wind winch system 700 during the blade hoisting process.
  • the following describes the control processes of the controller 102 for the blade clamping mechanism, the center of gravity adjustment mechanism 200, the pitch rotation mechanism 800, the pitch rotation mechanism 400, and the wind winch system 700, respectively.
  • control process of the controller 102 for the angle adjustment mechanism of the blade clamping mechanism is as follows.
  • the hydraulic system controls the action of the angle adjustment mechanism to adjust the size of the clamping port of the blade clamping mechanism, so as to change the pressure of the blade clamping mechanism on the blade.
  • control system may further include a pressure sensor disposed on the blade clamping mechanism for detecting the pressure value of the blade clamping mechanism acting on the blade.
  • the controller 102 can be configured to control the action of the angle adjustment mechanism based on the pressure value of the blade clamping mechanism acting on the blade detected by the pressure sensor in real time during the rotation of the clamped blade in the pitch direction. , to adjust the size of the clamping port of the blade clamping mechanism to change the pressure of the blade clamping mechanism on the blade.
  • pressure sensors can be respectively provided on the first pressing arm, the first supporting arm, the second pressing arm, and the second supporting arm (at the position that is in contact with the surface of the blade) to detect the pressure on the blade tip. Clamping pressure value, clamping pressure value under the blade tip, clamping pressure value on the blade root, clamping pressure value under the blade root. The operation of the angle adjustment mechanism is controlled based on each detected pressure value.
  • the real-time detection of the pressure value of the blade clamping mechanism acting on the blade can be compared with the blade limit load value, here, the blade limit The load value may refer to the maximum load value that the blade can bear.
  • the pressure value detected by each pressure sensor can be compared with the limit load value of the blade.
  • the main beam 120 will continue to be driven to rotate, if the pressure value detected in real time (the pressure value detected by any pressure sensor) pressure value) is greater than the limit load value of the blade, then stop driving the main beam 120 to rotate.
  • the blade spreader may further include an inclination sensor installed at the blade root of the clamped blade, for monitoring the attitude of the blade, and the monitoring range is 0 degrees to 360 degrees.
  • the controller 102 may be further configured to: determine the attitude of the blade to be clamped in real time, determine the friction resistance value of the blade to be clamped at the current attitude based on the attitude of the blade determined in real time, based on the real-time detection The pressure value of the blade clamping mechanism acting on the blade is compared with the determined friction resistance value, and the action of the angle adjustment mechanism is controlled.
  • the frictional resistance value may refer to the frictional force required to overcome the clamping displacement of the blade due to the self-weight of the blade.
  • the frictional resistance value may be determined based on the self-weight of the blade and the attitude of the blade.
  • the frictional resistance value may be the product of the self-weight of the blade and the cosine of the horizontal inclination angle of the blade being clamped.
  • the real-time detection of the pressure value of the blade clamping mechanism acting on the blade under the current attitude can be compared with the corresponding friction resistance value.
  • the pressure values detected by all the pressure sensors can be compared. The sum is compared with the frictional resistance value.
  • the opening degree of the clamping port of the blade clamping mechanism is controlled to be smaller by controlling the action of the angle adjustment mechanism.
  • the pressure of the blade clamping mechanism acting on the blade can also be changed by controlling the jaw adjusting mechanism and/or the pressing member driving unit.
  • the detected pressure value is greater than the corresponding friction resistance value (for example, the difference between the detected pressure value and the corresponding friction resistance value is greater than the set value, that is, the detected pressure value is guaranteed to be much larger than the corresponding friction resistance value), then keep The degree of opening of the clamping opening of the blade clamping mechanism remains unchanged.
  • control process of the controller 102 for the center of gravity adjustment mechanism 200 is as follows.
  • the controller 102 drives the center of gravity adjustment mechanism through the hydraulic system to act, so as to push the blade spreader to move in the horizontal direction.
  • the controller 102 may be configured to: control the hydraulic system to deliver hydraulic oil to the third hydraulic cylinder based on the attitude of the blade spreader, and control the action of the solenoid valve of the third hydraulic cylinder to drive the piston of the third hydraulic cylinder The rod moves to push the second boom to move along the guide rail.
  • the blade spreader may further include an inclination sensor installed on the blade spreader, for example, may be installed on the configuration unit, for monitoring the attitude of the blade spreader, and the monitoring range is 0 degrees to 360 degrees.
  • the first inclination angle of the blade spreader may be obtained based on an inclination sensor mounted on the blade spreader.
  • the blade spreader has a first reference line parallel to the extending direction of the guide rail, and the first inclination angle is the angle formed by the first reference line of the blade spreader in the current position and the first reference line in the horizontal position.
  • control process of the controller 102 for the pitch rotating mechanism 800 is as follows.
  • the controller 102 generates a pitch rotation instruction based on the current posture of the clamped blade and the current rotation angle of the hub used to insert the clamped blade, and controls the pitch rotation instruction through the hydraulic system 101 based on the generated pitch rotation instruction.
  • the paddle rotation mechanism 800 operates to drive the blade clamping mechanism to rotate relative to the main beam 102 to drive the clamped blade to rotate in the pitch direction.
  • the controller 102 may be configured to: based on the generated pitch rotation command, control the hydraulic system 101 to deliver hydraulic oil to the second hydraulic cylinder 141 , and controls the action of the solenoid valve of the second hydraulic cylinder 141 to drive the piston rod of the second hydraulic cylinder 141 to move, so as to drive the blade clamping mechanism to rotate relative to the main beam 102 .
  • control process of the controller 102 for the pitch rotation mechanism 400 is as follows.
  • the controller 102 generates a pitch rotation instruction based on the initial position and the target position of the clamped blade, and based on the generated pitch rotation instruction, controls the pitch rotation mechanism through the hydraulic system to operate to drive the main beam 102 to rotate to drive the clamped blade.
  • the blades rotate in the pitch direction.
  • the pitch rotation command indicates an angle value by which the clamped blade needs to be rotated in the pitch direction.
  • the initial position of the clamped blade is a horizontal position, but the present invention is not limited to this, and the initial position of the clamped blade can be any angle.
  • the inclination angle sensor at the blade root of the blade is used to monitor the attitude of the blade.
  • the target position of the clamped blade may refer to the position used to align the clamped blade with the hub for accurate connection of the clamped blade to the hub.
  • the controller 102 can control the hydraulic system to deliver hydraulic oil to the first hydraulic cylinder based on the generated pitch rotation command, and control the operation of the solenoid valve of the first hydraulic cylinder, to drive the piston rod of the first hydraulic cylinder to move, so as to drive the main beam 102 to rotate around the rotation axis 420 .
  • control process of the controller 102 for the wind winch system 700 is as follows.
  • the controller 102 may, based on the attitude of the blade spreader, drive the wind winch system to perform an action through the hydraulic system, so as to drive the blade spreader to swing in a preset direction.
  • the preset swing direction may refer to a clockwise direction or a counterclockwise direction in a horizontal plane.
  • the attitude of the blade spreader can be obtained by using the above-mentioned inclination sensor installed on the blade spreader.
  • the second pitch angle of the blade spreader may be obtained based on a pitch angle sensor mounted on the blade spreader.
  • the blade spreader has a second reference line parallel to the extension directions of the first and second wind-seeking rods, and the second inclination angle may refer to the second reference line of the blade spreader in the current position and the horizontal position The included angle formed by the second reference line.
  • the controller 102 is configured to: based on the attitude of the blade spreader, control the first winch and/or the second winch to adjust the corresponding The lead-out length of the cable wind rope to drive the blade spreader to swing along the preset direction.
  • control system may further include a first tension sensor 810 for detecting the wind rope tension value of the wind rope of the first winch and a sensor 810 for detecting the wind rope tension value of the wind rope of the second winch.
  • the second tension sensor may further include a first tension sensor 810 for detecting the wind rope tension value of the wind rope of the first winch and a sensor 810 for detecting the wind rope tension value of the wind rope of the second winch.
  • the controller 102 may be further configured to: acquire the cable wind rope tension value of the wind rope of the first winch from the first tension sensor, and acquire the cable wind of the wind rope of the second winch from the second tension sensor Rope tension value, when the difference between the tension value of the cable wind rope of the first winch and the wind rope of the second winch exceeds the preset difference range, an alarm message is generated.
  • the controller 102 may send the generated alarm information to the ground remote control system 104 for display.
  • control system may further include a video surveillance system including at least one camera.
  • At least one camera may be arranged on the blade clamping mechanism and/or the main spar for capturing images of the root portion of the blade being clamped and/or for splicing the clamped blade during the splicing process. Image of the wheel hub.
  • the controller 102 can acquire the image of the blade root portion and/or the image of the hub from at least one camera, and control the pitch rotation mechanism 800 to act based on the acquired image, so as to align the clamped blade hub for blade mating.
  • controller 102 may also send the acquired image of the blade root portion and/or the image of the hub to the ground remote control system for display.
  • Exemplary embodiments according to the present invention also provide a computer-readable storage medium storing a computer program.
  • the computer-readable storage medium stores a computer program that, when executed by the processor, causes the processor to execute the above-described blade-holding control method of the blade-spreader.
  • the computer-readable recording medium is any data storage device that can store data read by a computer system. Examples of the computer-readable recording medium include read-only memory, random-access memory, optical disks, magnetic tapes, floppy disks, optical data storage devices, and carrier waves (such as data transmission over the Internet via wired or wireless transmission paths).
  • a blade clamping control method for an oblique blade blade clamping hanger of a large wind turbine is provided, which is used to ensure reliable and stable blade clamping when the blade rotates 360 degrees during the installation process.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Thus, a feature defined as “first” or “second” may expressly or implicitly include one or more of that feature. In the description of the present invention, unless otherwise specified, "plurality" means two or more.
  • the terms “installed”, “connected” and “connected” should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; it can be directly connected, or indirectly connected through an intermediate medium, and it can be the internal communication of two elements.
  • installed should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; it can be directly connected, or indirectly connected through an intermediate medium, and it can be the internal communication of two elements.

Abstract

一种叶片吊具的叶片夹持控制方法和系统,该叶片夹持控制方法包括:基于被夹持叶片的初始位置和目标位置产生俯仰旋转指令,基于所产生的俯仰旋转指令控制俯仰旋转机构(400)动作,来驱动主梁(120)转动,以带动被夹持的叶片在俯仰方向上旋转,其中,在被夹持的叶片在俯仰方向上旋转的过程中,通过控制夹口调节机构动作来调节叶片夹持机构(110、130)的夹持口的大小,以改变叶片夹持机构(110、130)作用在叶片上的压力大小。该叶片吊具的叶片夹持控制方法和系统,能够夹持叶片调整多种角度姿态进行叶片安装,有效降低机组吊装成本,提高机组的安装效率。

Description

叶片夹持控制方法和控制系统及叶片吊具的控制系统 技术领域
本发明总体说来涉及风力发电技术领域,更具体地讲,涉及一种叶片夹持控制方法和控制系统及叶片吊具的控制系统。
背景技术
伴随着风力发电技术的迅速发展和日趋成熟,不同型号的大功率(如8兆瓦、10兆瓦)新机型在不断推出,风力发电机组的吊装工艺在不断完善,因此对风电机组安装过程中所需的吊装设备以及吊装时间的要求也越来越高。目前大功率机型的单只叶片吊装的方式往往都是水平安装,需要配合风电机组的叶轮旋转。然而,直驱永磁风电机组的叶轮旋转复杂、耗费时间多,导致风电机组吊装成本大。特别是对于海上风电机组的吊装,提高海上风电机组的安装效率,节约船只的使用时间,能显著的降低海上风电的投资成本。
目前现有技术多为叶片水平吊装,只能通过旋转叶轮或者偏航来安装叶片,无法夹持叶片进行大角度360度旋转。以图1所示为例,目前的水平单叶片夹具只能实现30度的叶片水平安装,因此如果需要安装第二只叶片、第三只叶片,则需要吊机带着单叶片夹具盘车。然而,这种安装方式存在极大的安全隐患,例如,吊机带着单叶片夹具盘车过程中,吊钩在下放过程中加速度的影响,可能导致吊钩磕碰叶片,或者由于吊机误操作产生额外的拉力,使夹具对叶片产生额外的拉力,导致叶片从夹持口滑出来,同时由于目前30度旋转水平单叶片夹具要么通过偏航完成第二只叶片安装,要么需要更改夹持口的叶根和叶尖夹持块互换位置(大小夹持口互换位置),从而导致安装过程极不方便,通用性较差。
发明内容
本发明的示例性实施例的目的在于提供一种叶片夹持控制方法和控制系统及叶片吊具的控制系统,以克服上述至少一种缺陷。
在一个总体方面,提供一种叶片吊具的叶片夹持控制方法,所述叶片吊具 包括主梁、连接于主梁的俯仰旋转机构、设置在主梁两端的用于夹持叶片的叶片夹持机构、设置在叶片夹持机构上的角度调节机构,其中,所述叶片夹持控制方法包括:基于被夹持叶片的初始位置和目标位置产生俯仰旋转指令,基于所产生的俯仰旋转指令控制俯仰旋转机构动作,来驱动所述主梁转动,以带动被夹持的叶片在俯仰方向上旋转,其中,在被夹持的叶片在俯仰方向上旋转的过程中,通过控制角度调节机构动作来调节叶片夹持机构的夹持口的大小,以改变叶片夹持机构作用在叶片上的压力大小。
在另一总体方面,提供一种叶片吊具的叶片夹持控制系统,所述叶片吊具包括主梁、连接于主梁的俯仰旋转机构、设置在主梁两端的用于夹持叶片的叶片夹持机构、设置在叶片夹持机构上的角度调节机构,其中,所述叶片夹持控制系统包括:控制器,被配置为:基于被夹持叶片的初始位置和目标位置产生俯仰旋转指令,基于所产生的俯仰旋转指令控制俯仰旋转机构动作,来驱动所述主梁转动,以带动被夹持的叶片在俯仰方向上旋转,在被夹持的叶片在俯仰方向上旋转的过程中,通过控制角度调节机构动作来调节叶片夹持机构的夹持口的大小,以改变叶片夹持机构作用在叶片上的压力大小。
在另一总体方面,提供一种叶片吊具的控制系统,所述叶片吊具包括主梁、设置在主梁两端的用于夹持叶片的叶片夹持机构、连接于主梁的用于带动被夹持的叶片在俯仰方向上旋转的俯仰旋转机构、用于带动被夹持的叶片在变桨方向上旋转的变桨旋转机构、设置在叶片夹持机构上的角度调节机构,其中,所述控制系统包括:液压系统、控制器、地面遥控系统和供电系统,所述液压系统分别连接于叶片夹持机构、俯仰旋转机构、变桨旋转机构,所述地面遥控系统连接到控制器,以显示并存储叶片夹持机构、俯仰旋转机构、变桨旋转机构在叶片吊装过程中的吊装数据,所述供电系统为液压系统和控制器提供电力,所述控制器被配置为:通过所述液压系统来驱动叶片夹持机构、俯仰旋转机构、变桨旋转机构进行动作,并且所述控制器还被配置为:基于被夹持叶片的初始位置和目标位置产生俯仰旋转指令,基于所产生的俯仰旋转指令控制俯仰旋转机构动作,来驱动所述主梁转动,以带动被夹持的叶片在俯仰方向上旋转,在被夹持的叶片在俯仰方向上旋转的过程中,通过控制角度调节机构动作来调节叶片夹持机构的夹持口的大小,以改变叶片夹持机构作用在叶片上的压力大小。
采用本发明示例性实施例的叶片夹持控制方法和控制系统及叶片吊具的控制系统,能够夹持叶片调整多种角度姿态进行叶片安装,有效降低机组吊装成 本,提高机组的安装效率。
附图说明
通过下面结合示例性地示出实施例的附图进行的详细描述,本发明示例性实施例的上述和其它目的、特点和优点将会变得更加清楚。
图1示出现有的30度单叶片夹具角度旋转安装示意图;
图2示出根据本发明示例性实施例的叶片吊具的示意图;
图3示出根据本发明示例性实施例的图2中的俯仰旋转机构的分解图;
图4和图5示出根据本发明示例性实施例的叶片夹持单元的分解图;
图6和图7示出根据本发明示例性实施例的变桨旋转机构的分解图。
图8示出了图1中的叶片吊具用于叶片变桨之前的状态示意图;
图9示出了图1中的叶片吊具用于叶片变桨之后的状态示意图;
图10和图11示出根据本发明示例性实施例的揽风绞车系统的分解图;
图12示出根据本发明示例性实施例的叶片吊具的叶片夹持控制方法的流程图;
图13示出根据本发明示例性实施例的叶片吊具的传感器布置示意图;
图14示出根据本发明示例性实施例的通过控制角度调节机构动作调节叶片夹持机构的夹持口的大小的步骤的流程图;
图15A至图15D示出根据本发明示例性实施例的叶片吊具角度旋转安装示意图;
图16示出根据本发明示例性实施例的叶片吊具的叶片夹持控制系统的框图;
图17示出根据本发明示例性实施例的控制器的框图;
图18示出根据本发明示例性实施例的叶片吊具的控制系统的框图。
具体实施方式
现在,将参照附图更充分地描述不同的示例实施例,一些示例性实施例在附图中示出。
本发明示例性实施例提出的是一种针对叶片吊具的叶片夹持控制方法,该叶片吊具可在风电机组组装过程中,夹持单只叶片并带动被夹持的叶片在至少一个方向上进行旋转,以方便叶片的安装。
下面参照图2至图5来介绍叶片吊具的结构示意图,应理解,图2至图5 所示的叶片吊具的具体结构仅为一示例,本发明不限于此,叶片吊具还可以是其他结构形式,只要能够带动叶片进行旋转即可。
图2示出根据本发明示例性实施例的叶片吊具的示意图。
如图2所示,根据本发明示例性实施例的叶片吊具包括叶片夹具100和吊架(又称为重心调节机构)200,叶片夹具100包括主梁120、设置在主梁120两端的用于夹持叶片的叶片夹持机构、设置在叶片夹持机构上的角度调节机构。该叶片吊具还包括连接于主梁的俯仰旋转机构400。可选择地,该叶片吊具还包括用于带动被夹持的叶片在变桨方向上旋转的变桨旋转机构、用于保持该叶片吊具平衡稳定的揽风绞车系统以及用于在吊装过程中调整该叶片吊具重心的重心调节机构中的至少一个。
俯仰旋转机构400连接在吊架200的下端,主梁120连接到俯仰旋转机构400上,主梁120以及叶片夹持机构能够在俯仰旋转机构400的驱动下实现大角度(如360度)旋转,能够满足叶片安装时的角度需求,基于上述叶片吊具在叶片安装过程中无需旋转轮毂或者执行偏航动作,简化了叶片安装过程。
图3示出根据本发明示例性实施例的图2中的俯仰旋转机构的分解图。
如图3所示,俯仰旋转机构400可包括支撑框架410、旋转轴420、曲柄430以及驱动单元,旋转轴420可转动地设置于支撑框架410上,且旋转轴420的第一端用于连接于主梁120上,以带动主梁120以及叶片夹持机构随旋转轴420旋转。曲柄430的第一端固定连接于旋转轴420的第二端上。驱动单元与曲柄430的第二端连接,以驱动曲柄430围绕并带动旋转轴420旋转。
俯仰旋转机构400通过旋转轴420带动主梁120以及叶片夹持机构旋转,从而可以实现被夹持的叶片的大角度旋转,以调整被夹持的叶片的俯仰角度。在叶片安装过程中,无需旋转轮毂,仅通过该俯仰旋转机构400带动被夹持的叶片旋转至所需角度,便可以与轮毂相应位置上的变桨轴承连接,从而简化了叶片的安装过程。
俯仰旋转机构400的支撑框架410可以与吊架200固定连接。例如,吊架200可以包括吊杆210、吊点连接横梁220(导轨)以及设置于吊杆210上的吊耳230。支撑框架410可以连接到吊点连接横梁220上,吊杆210的下端结合到吊点连接横梁220上。叶片吊具可还包括伸缩构件300,该伸缩构件300能够驱动吊杆210沿着吊点连接横梁220在水平方向上移动,从而调节连接点位置。根据本发明示例性实施例的叶片吊具可以通过吊耳230而钩挂于外部大型起吊 工具上并可随该外部大型起吊工具一同移动。
参照图3,旋转轴420可转动地设置于支撑框架410上,该旋转轴420的左端可以连接于主梁120,该旋转轴420的右端可以固定连接于曲柄430的第一端上,旋转轴420的左端可以为其第一端,旋转轴420的右端可以为其第二端。曲柄430可以驱动旋转轴420旋转,进而带动主梁120以及叶片夹持机构绕该旋转轴420旋转。
驱动单元可包括至少两个伸缩驱动机构440,以带动曲柄430围绕旋转轴420旋转。为了使曲柄430与伸缩驱动机构连接,曲柄430的第二端可固定设置有连接轴450,连接轴450与旋转轴420平行设置,伸缩驱动机构连接在连接轴450上,并且伸缩驱动机构的伸缩方向垂直于连接轴450。
也就是说,曲柄430的第一端与旋转轴420连接,曲柄430的第二端固定设置有连接轴450,该连接轴450可以与旋转轴420平行设置,并且朝向远离旋转轴420的方向延伸。
至少两个伸缩驱动机构440围绕连接轴450间隔布置,并且相邻的伸缩驱动机构440之间的夹角大于0度并小于180度,至少两个伸缩驱动机构440按照上述夹角布置后,可以为旋转轴420提供稳定的动力输出,在一个伸缩驱动机构440运行到达死点的情况下,另一个伸缩驱动机构440可继续提供动力,从而绕开前述的死点位置,多个伸缩驱动机构440为冗余设计,从而提高俯仰旋转机构运行的安全可靠性。
这里,每个伸缩驱动机构440的伸缩杆均具有死点位置。当伸缩杆对从动件的作用力或者力矩为零(即,从动件上的传动角等于零)时,伸缩杆不能驱动从动件工作,这个位置称为伸缩驱动机构的死点位置。死点位置对于传动机构的运动是有害的,在本发明示例性实施例中,通过围绕连接轴450间隔布置至少两个伸缩驱动机构440来使伸缩驱动机构能顺利地通过死点而连续运转。
在一示例中,伸缩驱动机构440的数量可以为2个,优选地,伸缩驱动机构440的数量可以为4个,例如,4个伸缩驱动机构440连接在连接轴450上,沿该连接轴450的周向依次布置开,相邻的两个伸缩驱动机构440之间的夹角可以为大于0度并小于180度之间的任意角。4个伸缩驱动机构440沿连接轴450的长度方向依次连接到连接轴450上,且伸缩驱动机构440的伸缩方向可以垂直于连接轴450。
在一可选示例中,伸缩驱动机构440可包括第一液压缸,第一液压缸的缸 体安装到支撑框架410上,第一液压缸的活塞杆的自由端连接到曲柄430的第二端,例如,活塞杆的自由端连接到连接轴450上。随着伸缩驱动机构440的伸缩,活塞杆的自由端可绕曲柄430的第一端转动,由于该活塞杆的自由端绕曲柄430的第一端转动,因此整个伸缩驱动机构440将在其所在位置处的垂直于连接轴450的平面内做摆动,从而通过曲柄430带动旋转轴420旋转。应理解,上述所列举的伸缩驱动机构440为液压缸仅为示例,本发明不限于此,伸缩驱动机构440还可以为气缸。
图4和图5示出根据本发明示例性实施例的叶片夹持单元的分解图。
参照上述图2所示,叶片夹持机构可包括分别设置在主梁两端的第一叶片夹持单元110和第二叶片夹持单元130,第一叶片夹持单元110和第二叶片夹持单元130中的一个用于夹持叶片的叶尖部分,第一叶片夹持单元110和第二叶片夹持单元130中的另一个用于夹持叶片的叶根部分。
在一示例中,第一叶片夹持单元110可包括第一上夹持组件和第一下夹持组件,第二叶片夹持单元130可包括第二上夹持组件和第二下夹持组件,角度调节机构可包括设置在第一上夹持组件上的第一角度调节单元以及设置在第二上夹持组件上的第二角度调节单元。这里,第一叶片夹持单元110和第二叶片夹持单元130的结构大致相同,因此,在下面的描述中,将仅针对第一叶片夹持单元110的结构以及设置在第一上夹持组件上的第一角度调节单元进行描述。
如图4所示,第一叶片夹持单元110可包括第一上夹持组件140和第一下夹持组件150,通过第一上夹持组件140与第一下夹持组件150形成用于夹持叶片的空间(即,夹持口),第一角度调节单元117设置在第一上夹持组件140上。
在本示例中,第一上夹持组件140可包括第一压紧臂111和从第一压紧臂111的一端向下延伸的第一上立臂112,第一压紧臂111能够相对于第一上立臂112枢转。第一下夹持组件150可包括第一承托臂113以及从第一承托臂113的一端向上延伸的第一下立臂114,第一下立臂114与第一上立臂112连接。
第一角度调节单元117连接在第一上立臂112和第一压紧臂111之间,可以通过第一角度调节单元117来驱动第一压紧臂111相对于第一上立臂112旋转,以调节第一压紧臂111相对于第一上立臂112的倾斜角度,从而调节第一叶片夹持单元110的夹持口的开合状态。
例如,当需要装载叶片时,通过控制第一角度调节单元117来驱动第一压紧臂111的自由端上抬,在叶片装载到位后,通过控制第一角度调节单元117 来驱动第一压紧臂111的自由端再向下旋转,将叶片夹紧。
具体地,第一上立臂112的上部设置有枢转轴,第一压紧臂111通过枢转轴连接到第一上立臂112上。作为示例,第一角度调节单元117可包括伸缩油缸,该伸缩油缸可以命名为夹口伸缩油缸,在一示例中,该伸缩油缸可以为自动控制的第二液压缸,第二液压缸的缸体安装到第一上立臂112上,第二液压缸的活塞杆的自由端连接到第一压紧臂111,从而通过第一角度调节单元117驱动第一压紧臂111围绕枢转轴相对于第一上立臂112枢转,调节第一压紧臂111相对于第一上立臂112的倾斜角度,以调整夹持叶片的夹紧力的大小。
这里,上述所列举的第一角度调节单元117为液压缸仅为示例,第一角度调节单元117还可以为能够驱动第一压紧臂111围绕枢转轴相对于第一上立臂112旋转的其它驱动元件,例如,也可以是气缸、电动丝杠或者螺栓带螺母等。
在本发明示例性实施例中,为了进一步调节叶片夹持机构夹持叶片的松紧度,叶片吊具可还包括夹口调节机构,夹口调节机构可包括连接在第一上夹持组件140和第一下夹持组件150之间的第一夹口调节单元115以及连接在第二上夹持组件和第二下夹持组件之间的第二夹口调节单元。
如图5所示,第一夹口调节单元115能够调节第一上夹持组件140和第一下夹持组件150形成的夹持口的大小,从而适用于夹持不同尺寸的叶片。第一叶片夹持单元110还可以包括夹口锁定组件,用于在第一夹口调节单元115将夹持口的大小调节到合适尺寸后,将第一夹口调节单元115锁定,从而防止第一上夹持组件140和第一下夹持组件150相互移动,保持夹口大小固定。
在本示例中,第一夹口调节单元115连接在第一上立臂112与第一下立臂114之间,用于驱动第一上夹持组件140相对于第一下夹持组件150移动,以调节第一压紧臂111和第一承托臂113之间的距离,从而调节夹持口大小。第一夹口锁定组件用于将第一上立臂112相对于第一下立臂114锁定。
根据本发明示例性实施例的叶片夹具100,通过第一上夹持组件140和第一下夹持组件150形成具有“C”形状或“匚”形状的夹持空间(即,夹持口),第一压紧臂111和第一承托臂113形成用于夹持叶片的相对表面的两个钳脚,第一上立臂112和第一下立臂114组成可伸缩的立臂,连接在第一压紧臂111与第一承托臂113之间。并且,通过第一夹口调节单元115带动第一上立臂112和第一下立臂114相对运动,从而较大范围地调节叶片的夹持范围。
在一实施例中,第一上立臂112和第一下立臂114可以是一柱状的中空结 构,即,空心筒形,并且形成为彼此嵌套的结构,如图所示,可以形成为矩形的中空结构。例如,第一上立臂112的下部可嵌套在第一下立臂114的上部内部,并能够在第一夹口调节单元115的推动下沿着高度方向相对滑动,从而调节第一上立臂112和第一下立臂114所组成的伸缩立臂的高度/长度。
例如,当通过控制第一夹口调节单元115驱动第一上立臂112和第一下立臂114彼此嵌套的部分增多时,即,伸缩立臂的高度/长度变小,第一压紧臂111和第一承托臂113之间的距离变小,从而夹持口的开口程度变小。相反地,当通过控制第一夹口调节单元115驱动第一上立臂112和第一下立臂114彼此嵌套的部分减少时,伸缩立臂的整体高度/长度变大,第一压紧臂111和第一承托臂113之间的距离变大,从而夹持口的开口程度变大。
可选地,第一上立臂112和第一下立臂114可由不锈钢板形成,以提高强度和防止腐蚀,但本发明不限于此。本申请并不限定第一上立臂112和第一下立臂114的连接方式和具体形状,只要第一上立臂112和第一下立臂114能够沿着竖直方向上下移动,以调节第一压紧臂111和第一承托臂113之间的距离即可。
第一夹口调节单元115可以包括设置在第一上立臂112和第一下立臂114内部的间距伸缩驱动机构。间距伸缩驱动机构可以采用大推力大行程的驱动机构,以较大范围地调节叶片的夹持范围,即,调节夹持口的大小。间距伸缩驱动机构可以为伸缩油缸,例如,自动控制的液压油缸。
以第一夹口调节单元115为第四液压缸为例,第四液压缸的缸体可安装到第一上立臂112和第一下立臂114中的一个,第四液压缸的活塞杆的自由端连接到第一上立臂112和第一下立臂114中的另一个。
伸缩油缸的伸缩行程可相对大,例如,通过伸缩油缸的线性伸缩运动,带动第一上立臂112相对于第一下立臂114移动,从而调整第一压紧臂111与第一承托臂113之间的距离,但本发明不限于此,第一夹口调节单元115还可以为能够驱动第一上立臂112和第一下立臂114相对移动,从而调节第一压紧臂111和第一承托臂113之间的距离的其他实现线性伸缩驱动的驱动元件,例如,也可以是气缸、电动丝杠或者螺栓带螺母等。
第一通过夹口调节单元115配合第一上立臂112相对于第一下立臂114的升降,可以调节夹持口的开合程度。在夹持口的开合程度调整合适之后,为了保持调节的夹持口,以更稳固地夹持叶片,在升降功能基础上还可以设置有备份的夹口锁定组件。
如图4和图5所示,第一压紧臂111、第二压紧臂、第一承托臂113、第二承托臂可均包括随形压紧件119和连接于随形压紧件的压紧件驱动单元1131。压紧件驱动单元1131用于推动该随形压紧件119沿第一压紧臂111或者第一承托臂113的延伸方向移动,该压紧件驱动单元1131可以包括缸体和活塞杆。
具体地,活塞杆的自由端可以铰接在随形压紧件119上,缸体可以安装在第一压紧臂111或者第一承托臂113上,以通过活塞杆相对缸体的伸缩驱动随形压紧件119移动,使得随形压紧件119位于与叶片紧密贴合的位置。
也就是说,通过调整叶片与随形压紧件119之间的贴合度,使叶片夹持更加稳固,从而提高了叶片安装过程中的安全性。压紧件驱动单元1131的伸缩方向与第一压紧臂111或者第一承托臂113的延伸方向平行。进一步地,压紧件驱动单元1131可以套设于第一压紧臂111或者第一承托臂113的内腔中,以使第一叶片夹持单元整体结构更为美观。
上述叶片吊具的箱体500中可设置有控制器和液压站,液压站包括油箱、连接到油箱的液压泵、用于驱动液压泵动作的油泵电机,针对上述叶片吊具的叶片夹持控制方法整体可为:控制器(如,可编程控制器PLC)控制液压站的油泵电机动作来驱动液压泵,以通过液压泵的抽吸将油箱提供的液压油输送到各液压缸,例如,可控制第一液压缸动作,驱动曲柄430进行旋转运动,以带动主梁120和叶片夹持机构进行俯仰方向上的0度~360度旋转。
图6和图7示出根据本发明示例性实施例的变桨旋转机构的分解图。
图6是示出图2中的叶片夹持机构与主梁连接的分解示意图,图7是图6中的部分A的放大示意图。
以下,参照图6和图7来针对连接于主梁120和第一叶片夹持单元110的变桨旋转机构的具体机构及其与其它部件的连接关系进行详细描述。
第一叶片夹持单元110与主梁120通过变桨旋转机构可旋转地连接,以基于变桨旋转机构来调节被夹持的叶片在变桨方向上的旋转角度。
根据本发明示例性实施例的叶片吊具,可以实现在风电机组的装配过程以及叶片吊装过程中对被夹持的叶片进行变桨,从而将被夹持的叶片与轮毂对准并准确地连接到轮毂上,变桨过程中,通过导轨142和轨道槽143的配合,有助于第一叶片夹持单元110和第二叶片夹持单元130相对于主梁120稳定旋转,从而保证叶片夹持机构带动被夹持的叶片变桨过程中的安全稳定性。
主梁120可以包括梁主体121以及从梁主体121的两端向上或向下延伸的 支腿122。如图6中所示,支腿122可以与主梁120大致垂直。第一叶片夹持单元110设置在支腿122的外侧,即,面向主梁120的端表面设置。第一叶片夹持单元110的第一承托臂113可通过销轴144连接到主梁120的支腿122上,使得第一叶片夹持单元110能够围绕销轴144相对于主梁120旋转。
在实施例中,变桨旋转机构300可包括导轨142和轨道槽143,导轨142形成在第一叶片夹持单元110上,轨道槽143形成在主梁120上,以相对于导轨142移动。具体地,如图6和图7中所示,导轨142形成在第一上立臂112的面向梁主体121的侧表面上,轨道槽143形成在梁主体121的端面上。但本发明不限于此,根据需要,导轨142和轨道槽143的位置可互换。
轨道槽143可以为卡合凹槽,卡合凹槽的开口面向导轨142。导轨142可以为脊状导轨,形成有能够嵌入卡合凹槽内的凸出结构。例如,轨道槽143的槽壁的横截面可以为倒圆角的矩形,相应地,导轨142的横截面可以形成为倒圆角的矩形。轨道槽143和导轨142可以沿着第一叶片夹持单元110相对于主梁120旋转的轨迹延伸,即,轨道槽143和导轨142整体沿其长度方向呈弧形。在本实施例中,轨道槽143和导轨142通过外凸和内凹结构嵌套配合,并且轨道槽143和导轨142的横截面形成为倒圆角的矩形,但本发明不限于此,导轨142和轨道槽143的横截面还可以形成为三角形、梯形、矩形等其它形状,并且轨道槽143和导轨142还可以采用现有技术中的已知结构,只要能够实现轨道槽143与导轨142接合并且能够相对于导轨142滑动即可。
通过轨道槽143和导轨142的配合,可以在第一叶片夹持单元110相对于主梁120旋转的过程中起到辅助导向的作用,对变桨过程的自由度进行约束。此外,导轨142可以嵌套在轨道槽143中,使得在主梁120的长度方向(叶片的展向方向)上,导轨142和轨道槽143两者不能相互脱开,从而还可以解决用于实现变桨的第二液压缸141单点旋转无法找到支点的问题,以及叶片夹具100带动被夹持的叶片在变桨方向上旋转时,销轴144旋转卡死的问题,进一步保证叶片夹具100工作中的稳定性,而将轨道槽143和导轨142设计为沿长度方向呈弧形的结构,可以进一步解决第二液压缸141的活动点支撑的问题,同时避开了第二液压缸141旋转过程中与主梁120干涉的风险。
更具体地,销轴144和连接柱均设置在第一承托臂113上,在叶片夹具100携带着被夹持的叶片处于水平位置时,第一承托臂113不会承受太多的扭矩,第二液压缸141也只承受竖向(其伸缩方向)的张拉力。然而,当被夹持的叶 片处于倾斜状态(例如,与水平方向呈30°,甚至竖直方向)时,第一承托臂113会受到较大的扭矩,一方面销轴144的旋转会卡死,另一方面,第二液压缸141将围绕销轴144进行单点旋转,并且第二液压缸141承受垂向(垂直于伸缩方向)的力而可能损坏。在设置了嵌套的导轨142和轨道槽143之后,即使在被夹持的叶片处于倾斜状态时,导轨142和轨道槽143相互卡合,第一承托臂113承受的扭矩将大大降低,保证了钳脚与主梁120之间的刚性,避免了销轴144旋转卡死的问题。此外,第二液压缸141将在销轴144和导轨142两点处得到支撑,避免了第二液压缸141在第一叶片夹持单元110旋转过程中,由于受到弯矩而与主梁120干涉的风险。
进一步地,如图7中所示,导轨142的两个侧表面上分别形成有沿着导轨142的长度方向延伸的辅助凹槽142a。相应地,轨道槽143的侧表面上沿着轨道槽143的长度方向可以形成有辅助轨道143a,辅助轨道143a可为从轨道槽143的内侧表面上向外突出的凸起。辅助凹槽142a可容纳辅助轨道143a,并且相对于辅助轨道143a滑动。可选地,辅助凹槽142a可形成为倒圆角的凹槽(例如,槽壁的横截面为半圆形),辅助轨道143a可形成为与辅助凹槽142a相配合的倒圆角的凸起,但本发明不限于此,辅助轨道143a和辅助凹槽142a还可以形成为横截面为三角形、梯形、矩形等其它形状的结构,只要能够实现辅助凹槽142a和辅助轨道143a接合并且能够相对于辅助轨道143a滑动即可。
通过设置辅助轨道143a和辅助凹槽142a,不仅有助于轨道槽143的卡合凹槽沿着导轨142滑动,而且由于辅助轨道143a容纳在辅助凹槽142a内,因此还可在一定程度上引导轨道槽143和导轨142的运动,从而可进一步避免轨道槽143和导轨142在横向方向(即,卡合凹槽的宽度方向)上偏移,或甚至卡合凹槽的一侧从导轨142上脱离,使得第一叶片夹持单元110相对于主梁120旋转过程,两者不脱离,进一步保证叶片夹具100工作中的稳定性。
图6和图7中虽然示出了辅助凹槽142a形成在导轨142的侧表面上,辅助轨道143a形成在轨道槽143的内侧表面上,但根据需要,辅助凹槽142a和辅助轨道143a的位置可互换。
另外,本发明的实施例通过轨道槽143和导轨142以及辅助轨道143a和辅助凹槽142a的配合,使得轨道槽143能够相对于导轨142滑动,并且不会沿着垂直于叶片长度方向的方向从导轨142上脱离。但本发明不限于此,还可以不设置辅助轨道143a和辅助凹槽142a,而将轨道槽143和导轨142形成为彼此嵌 套的结构,使得导轨142嵌入轨道槽143并且被限制在轨道槽143内滑动。例如,导轨142形成为横截面为“T”、“L”型的脊状导轨,相应地,轨道槽143需要开设能够与脊状导轨滑动配合的“T”、“L”型滑槽,具体地,轨道槽143的开口侧形成有横向突出的凸缘,“T”型、“L”型导轨142的横向凸出部分插入轨道槽143中并被凸缘支撑,从而防止导轨142和轨道槽143两者在主梁120的长度方向上脱离。
可选地,第一上立臂112的与上述侧表面相对的另一侧表面上也可以形成有导轨142。也就是说,在第一上立臂112的两个侧表面上均形成导轨142,从而第一叶片夹持单元110和第二叶片夹持单元130在主梁120的两端的连接位置可以互换。例如,在需要调整叶片的朝向而无法调整叶片夹具的位置时,只需要调整主梁120连接在第一上立臂112的两个侧表面中的位置即可,增加了叶片夹具100的通用性。
第二液压缸141的缸体可安装到主梁上,第二液压缸141的活塞杆的自由端可连接到第一叶片夹持单元110上。例如,第二液压缸141的缸体可设置在梁主体121上,第二液压缸141的活塞杆的自由端可连接到第一上立臂112上。应理解,上述以液压缸作为变桨驱动部件的结构仅为示例,但本发明不限于此,只要是能够满足直线往复运动的可伸缩驱动机构即可。例如,也可以是气缸、电动丝杠或者螺栓带螺母等传递力结构的线性伸缩驱动机构。
例如,第二液压缸141的缸体可铰接到梁主体121的端部的上部,第二液压缸141的活塞杆的自由端可铰接到第一上立臂112的下部,通过第二液压缸141的线性伸缩带动第一叶片夹持单元110相对于主梁120旋转,从而实现第一叶片夹持单元110被夹持的叶片在空中-7°~+7°的倾角变化(即,在变桨方向上小角度旋转)。
图8示出了图2中的叶片吊具用于叶片变桨之前的状态示意图。图9示出了图2中的叶片吊具用于叶片变桨之后的状态示意图。
图8和图9分别示出了叶片夹具变桨前和变桨后的示意图。如图8中所示,叶片夹具100处于叶片变桨之前的状态,第二液压缸141的活塞杆处于伸出至最大伸出行程的状态。如图9中所示,叶片夹具100处于叶片变桨之后的状态,第二液压缸141的活塞杆缩回,并带动第一叶片夹持单元110绕销轴144相对于主梁120旋转,从而实现第一叶片夹持单元110带动被夹持的叶片在变桨方向上旋转。
针对上述叶片吊具的整体控制过程可为:控制器(例如,可编程控制器PLC)控制液压系统的油泵电机动作来驱动液压泵,以通过液压泵的抽吸将油箱提供的液压油输送到各液压缸,通过控制各液压缸动作,来驱动对应的执行机构进行动作。
图10和图11示出根据本发明示例性实施例的揽风绞车系统的分解图。
上述叶片吊具可还包括用于保持叶片吊具平衡稳定的揽风绞车系统700,液压系统还连接于揽风绞车系统700。
例如,揽风绞车系统700包括配重单元、第一吊杆、第一绞车720、第二绞车730、第一揽风杆740、第二揽风杆750,这里,揽风绞车系统700中的配重单元可与重心调节机构200中的配重单元相同,第一吊杆可以是重心调节机构200中的第二吊杆210(即,参照图3描述的吊杆210),也可以是独立设置的一个吊杆。
配重单元和叶片夹具均与第一吊杆连接,第一绞车720和第二绞车730设置在配置单元上,第一揽风杆740的第一端和第二揽风杆750的第一端均与配重单元连接,第一揽风杆740的第二端和第二揽风杆750的第二端沿相反方向分别指向远离配重单元的不同侧,第一绞车720和第二绞车730分别设置有缆风绳760,第一揽风杆740的第二端和第二揽风杆750的第二端分别设置有导向轮770,第一绞车720的揽风绳从第一绞车720引出后,通过第一揽风杆740的导向轮770连接到外部吊机的吊臂上,作为示例,缆风绳760可还穿过揽风绳导向软板790连接到外部吊机的吊臂上,第二绞车730的揽风绳从第二绞车730引出后,通过第二揽风杆750的导向轮连接到外部吊机的吊臂上。
每个绞车(如第一绞车720或者第二绞车730)可以包括电机、减速器和绞盘,缆风绳盘绕在绞盘上。控制电机运行时,电机通过减速器驱动绞盘正转或反转,从而释放或收回缆风绳,实现对缆风绳的引出长度的调整。
下面参照图12来介绍叶片吊具的叶片夹持控制方法的具体流程。本发明针对的是适应多种叶片叶型的通用叶片夹持吊具的叶片夹持控制方法,这里,图12所示的叶片夹持控制方法可在上述的控制器中执行。
基于本发明示例性实施例的叶片吊具的叶片夹持控制方法,在控制叶片吊具在0度~360度旋转时,能够避免被夹持的叶片出现相对位移、甚至滑落,并保护被夹持的叶片不受极限载荷的硬软件控制要求,实现了斜插叶片吊具根据叶片旋转角度(即,姿态)自动调整夹持要求。
图12示出根据本发明示例性实施例的叶片吊具的叶片夹持控制方法的流程图。
参照图12,在步骤S10中,基于被夹持的叶片的初始位置和目标位置产生俯仰旋转指令。
在一示例中,被夹持叶片的初始位置为水平位置,但本发明不限于此,被夹持叶片的初始位置可以为任意角度,在此情况下,该初始位置可利用安装在被夹持的叶片的叶根处的用于监测叶片的姿态的倾角传感器来确定。
这里,该俯仰旋转指令指示了被夹持的叶片需在俯仰方向上旋转的角度值。
在步骤S20中,基于所产生的俯仰旋转指令控制俯仰旋转机构400动作,来驱动主梁120转动,以带动被夹持的叶片在俯仰方向上旋转。
以图3所示的俯仰旋转机构400为例,基于所产生的俯仰旋转指令控制俯仰旋转机构400动作的步骤可包括:基于所产生的俯仰旋转指令控制第一液压缸的电磁阀动作,来驱动第一液压缸的活塞杆移动,以带动主梁120绕旋转轴420转动。
在步骤S30中,在被夹持的叶片在俯仰方向上旋转的过程中,通过控制角度调节机构动作来调节叶片夹持机构的夹持口的大小,以改变叶片夹持机构作用在叶片上的压力大小。
在一示例中,叶片吊具可还包括设置在叶片夹持机构上的压力传感器,用于检测叶片夹持机构作用在叶片上的压力值。
图13示出根据本发明示例性实施例的叶片吊具的传感器布置示意图。
在本示例中,可在第一压紧臂、第一承托臂、第二压紧臂、第二承托臂上(与叶片的表面贴合的位置处)分别设置压力传感器,如图13所示可以分别设置四个压力传感器P1、P2、P3、P4,以检测叶根上夹持压力值3、叶根下夹持压力值4、叶尖上夹持压力值1、叶尖下夹持压力值2。
在一示例中,叶片吊具可还包括安装在被夹持的叶片的叶根处的倾角传感器7,用于监测叶片的姿态,监测范围为0度~360度。
在一可选示例中,叶片吊具可还包括牵引绳6和用于检测牵引绳拉力值的牵引绳拉力传感器5,该牵引绳6为叶片斜插安装保护用绳,牵引绳6的一端连接到用于夹持叶片的叶根部分的叶片夹持单元的上夹持组件,牵引绳6的另一端连接到用于夹持叶片的叶根部分的叶片夹持单元的下夹持组件,以承托住叶片的叶根确保叶片安装的绝对安全。牵引绳拉力传感器5实时监测被夹持的叶 片在0度~360度旋转状态下的牵引绳拉力值。
在此情况下,根据本发明示例性实施例的叶片吊具的叶片夹持控制方法可还包括:在被夹持的叶片在俯仰方向上旋转的过程中,基于牵引绳拉力传感器5实时确定牵引绳的牵引绳拉力值,如果实时检测到的牵引绳拉力值不大于设定拉力值,则继续驱动主梁120转动,如果实时检测到的牵引绳拉力值大于设定拉力值,则停止驱动主梁120转动。这里,该设定拉力值可指确保牵引绳处于安全拉伸范围的最大拉力限值。
这里,根据斜插叶片吊具夹持的实际控制效果,在夹持力满足叶片极限载荷设计要求时,也可以考虑省去牵引绳以及牵引绳拉力传感器,以降低吊具设计成本。
在被夹持的叶片在俯仰方向上旋转的过程中,基于压力传感器实时检测的叶片夹持机构作用在叶片上的压力值控制角度调节机构动作,来调节叶片夹持机构的夹持口的大小,以改变叶片夹持机构作用在叶片上的压力大小。
在一优选示例中,在被夹持的叶片在俯仰方向上旋转的过程中,可将实时检测的叶片夹持机构作用在叶片上的压力值与叶片极限载荷值进行比较,这里,该叶片极限载荷值可指叶片所能够承受的最大载荷值,针对上述设置四个压力传感器的情况,可将每个压力传感器检测的压力值分别与叶片极限载荷值进行比较。
如果实时检测到的压力值(每个压力传感器检测的压力值)不大于(小于或者等于)叶片极限载荷值,则继续驱动主梁120转动,如果实时检测到的压力值(任一压力传感器检测的压力值)大于叶片极限载荷值,则停止驱动主梁120转动。
图14示出根据本发明示例性实施例的通过控制角度调节机构动作调节叶片夹持机构的夹持口的大小的步骤的流程图。
如图14所示,在步骤S301中,实时确定被夹持的叶片的姿态。
例如,被夹持的叶片的姿态可基于安装在被夹持的叶片的叶根处的用于监测叶片的姿态的倾角传感器7来确定。
在步骤S302中,基于实时确定的叶片的姿态,确定被夹持的叶片在当前姿态下的摩擦阻力值。
作为示例,摩擦阻力值可指为克服由于叶片自重作用导致叶片夹持移位所需的摩擦力,在一示例中,摩擦阻力值可基于叶片的自重以及叶片的姿态来确 定。
例如,可利用如下公式来计算摩擦阻力值:
f=G×cos(S X)         (1)
公式(1)中,f表示摩擦阻力值,G表示叶片的自重,S X表示被夹持的叶片的水平倾角。
在步骤S303中,基于实时检测的叶片夹持机构作用在叶片上的压力值与所确定的摩擦阻力值的比较结果,控制角度调节机构动作。
例如,可将在当前姿态下实时检测的叶片夹持机构作用在叶片上的压力值与对应的摩擦阻力值进行比较,针对上述设置四个压力传感器的情况,可将所有压力传感器检测的压力值之和与摩擦阻力值进行比较。
如果检测的压力值不大于对应的摩擦阻力值,则通过控制角度调节机构动作来控制叶片夹持机构的夹持口的开口程度变小。除此之外,还可以通过控制夹口调节机构和/或压紧件驱动单元来改变叶片夹持机构作用在叶片上的压力大小。
如果检测的压力值大于对应的摩擦阻力值(例如,检测的压力值与对应的摩擦阻力值的差值大于设定值,即,保证检测的压力值远大于对应的摩擦阻力值),则保持叶片夹持机构的夹持口的开口程度不变。
一种情况,通过控制角度调节机构动作来控制叶片夹持机构的夹持口的开口程度变小。
例如,可基于压力传感器实时检测的叶片夹持机构作用在叶片上的压力值控制第一角度调节单元,即:基于实时检测的压力值,控制第一角度调节单元动作,驱动第一上夹持组件运动,以调节第一上夹持组件与第一下夹持组件形成的夹持口的大小。
具体地,可控制第一角度调节单元动作,驱动第一压紧臂相对于第一上立臂旋转,来调节第一压紧臂与第一承托臂形成的夹持口的大小。在一示例中,以第一角度调节单元为第二液压缸为例,第二液压缸的缸体安装到第一上立臂上,第二液压缸的活塞杆的自由端连接到第一压紧臂,可基于实时检测的压力值,控制第二液压缸的电磁阀动作,来驱动第二液压缸的活塞杆移动,以带动第一压紧臂相对于第一上立臂旋转。
例如,可基于压力传感器实时检测的叶片夹持机构作用在叶片上的压力值控制第二角度调节单元,即:基于实时检测的压力值,控制第二角度调节单元 动作,驱动第二上夹持组件运动,以调节第二上夹持组件与第二下夹持组件形成的夹持口的大小。
具体地,可控制第二角度调节单元动作,驱动第二压紧臂相对于第二上立臂旋转,来调节第二压紧臂与第二承托臂形成的夹持口的大小。在一示例中,以第二角度调节单元为第三液压缸为例,第三液压缸的缸体安装到第二上立臂上,第三液压缸的活塞杆的自由端连接到第二压紧臂,可基于实时检测的压力值,控制第三液压缸的电磁阀动作,来驱动第三液压缸的活塞杆移动,以带动第二压紧臂相对于第二上立臂旋转。
另一种情况,通过控制夹口调节机构动作来控制叶片夹持机构的夹持口的开口程度变小。
例如,针对第一夹口调节单元的控制方式,基于压力传感器实时检测的压力值,控制第一夹口调节单元动作,驱动第一上夹持组件和第一下夹持组件相对运动,以调节第一上夹持组件和第一下夹持组件之间的距离。
以第一夹口调节单元为第四液压缸为例,第四液压缸的缸体安装到第一上立臂和第一下立臂中的一个,第四液压缸的活塞杆的自由端连接到第一上立臂和第一下立臂中的另一个。
在此情况下,基于压力传感器实时检测的压力值,控制第四液压缸的电磁阀动作,驱动第四液压缸的活塞杆移动,来带动第一上立臂和第一下立臂相对运动,以调节第一压紧臂与第一承托臂之间的距离。
针对第二夹口调节单元的控制方式,基于压力传感器实时检测的压力值,控制第二夹口调节单元动作,驱动第二上夹持组件和第二下夹持组件相对运动,以调节第二上夹持组件和第二下夹持组件之间的距离,来调节叶片夹持机构的夹持口的大小。
以第二夹口调节单元为第五液压缸为例,第五液压缸的缸体安装到第二上立臂和第二下立臂中的一个,第五液压缸的活塞杆的自由端连接到第二上立臂和第二下立臂中的另一个。
在此情况下,基于压力传感器实时检测的压力值,控制第五液压缸的电磁阀动作,驱动第五液压缸的活塞杆移动,来带动第二上立臂和第二下立臂相对运动,以调节第二压紧臂与第二承托臂之间的距离。
另一种情况,通过控制压紧件驱动单元动作来改变叶片夹持机构作用在叶片上的压力大小。
针对随形压紧件的控制方式,可控制压紧件驱动单元动作,来推动随形压紧件沿压紧臂或者承托臂的延伸方向移动。
图15A至图15D示出根据本发明示例性实施例的叶片吊具角度旋转安装示意图。
在本示例中,假设叶片的自重为G,μ为叶片和夹具之间的摩擦系数,F为牵引绳拉力值,倾角传感器在叶片水平姿态时,X轴方向为0度,Y轴方向为0度,在叶片吊具旋转过程中,倾角分别为Sx和Sy,可由倾角传感器获得。
以图15A所示为例,水平向右的方向为X轴正方向,Sx表示被夹持的叶片在俯仰方向上的旋转角度,Y轴方向为叶片的变桨方向,Sy表示被夹持的叶片在变桨方向上的旋转角度。在本发明中,叶片吊具旋转工况主要具有以下3种工况:
第一种情况,第一只叶片0~+30度旋转工况,参见图15A。
压力传感器P1、P2、P3、P4所检测的压力值之和,需远大于叶片自重所克服的摩擦阻力f,例如,可通过PLC控制各液压缸进行加压控制,来调节在被夹持的叶片在俯仰方向上旋转的过程中叶片夹持机构的夹持口的大小。
叶根下压力P2和叶尖下压力P4分别大于叶根上压力P1和叶尖上压力P3,但在被夹持的叶片在俯仰方向上旋转的过程中必须确保叶根下压力P2和叶尖下压力P4低于叶片极限载荷要求,例如,可预先设置叶片极限载荷值,在被夹持的叶片在俯仰方向上旋转的过程中,将各压力传感器检测的压力值分别与所设置的叶片极限载荷值进行比较。这里,针对不同叶片所设置的叶片极限载荷值可不同。
在被夹持的叶片在俯仰方向上旋转的过程中,牵引绳拉力值F必须低于预先设置的设定拉力值(考虑叶片旋转过程中,可能存在的下滑位移影响,引起叶片重心偏移,可按照叶片重量的百分比来对设定拉力值进行校对)。
第二种情况,第二只叶片0~-210度旋转工况,可参照图15B的①②③④步骤所示,通过俯仰旋转机构将第二只叶片从水平位置开始在俯仰方向上进行旋转,以旋转至图15C所示的角度来安装第二只叶片。
在上述旋转过程中,压力传感器P1、P2、P3、P4所检测的压力值之和,需远大于叶片自重所克服的摩擦阻力f,例如,可通过PLC控制各液压缸加压控制,来调节叶片夹持机构的夹持口的大小。
在被夹持的叶片倾角Sx在+30~-90度工况下,叶根下压力P2和叶尖下压 力P4分别大于叶根上压力P1和叶尖上压力P3,此时需确保叶根下压力P2和叶尖下压力P4低于叶片极限载荷要求。
在被夹持的叶片倾角Sx在-90~-210度工况下,叶根上压力P1和叶尖上压力P3分别大于叶根下压力P2和叶尖下压力P4,此时需确保叶根上压力P1和叶尖上压力P3低于叶片极限载荷要求。
在被夹持的叶片在俯仰方向上旋转的过程中,牵引绳拉力值F需低于PLC设定拉力值。其中,在叶片垂直工况条件下,P1、P2、P3、P4所检测的压力值之和,也需远大于叶片自重所克服的摩擦阻力f。
第三种情况,第三只叶片在0~-90度旋转工况,参见图15D。
压力传感器P1、P2、P3、P4所检测的压力值之和,需远大于叶片自重所克服的摩擦阻力f,例如,可通过PLC控制各液压缸加压控制,来调节叶片夹持机构的夹持口的大小。
叶根下压力P2和叶尖下压力P4分别大于叶根上压力P1和叶尖上压力P3,此时需确保叶根下压力P2和叶尖下压力P4低于叶片极限载荷要求。
在叶片垂直工况条件下,P1、P2、P3、P4所检测的压力值之和,也需远大于叶片自重所克服的摩擦阻力f,牵引绳拉力值F需低于设定拉力值。
叶片旋转至不同的角度,按照叶片吊具对叶片的受力大小的判断,通过液压缸来控制并调整叶片夹持机构作用在叶片上的压力大小,即随时测量P1、P2、P3、P4与摩擦阻力值的比较结果,通过控制各液压缸的动作来调节叶片夹持机构的夹持口的大小,以改变叶片夹持机构作用在叶片上的压力大小。
图16示出根据本发明示例性实施例的叶片吊具的叶片夹持控制系统的框图。
在本发明示例性实施例中叶片吊具包括主梁、连接于主梁的俯仰旋转机构、设置在主梁两端的用于夹持叶片的叶片夹持机构、设置在叶片夹持机构上的角度调节机构。
由于已经在图2至图11中对叶片吊具的机构进行了详细说明,本发明对此部分内容不再赘述。
如图16所示,根据本发明示例性实施例的叶片吊具的叶片夹持控制系统600包括:控制器601。
具体说来,控制器601基于被夹持叶片的初始位置和目标位置产生俯仰旋转指令。这里,该俯仰旋转指令指示了被夹持的叶片需在俯仰方向上旋转的角度值。
控制器601基于所产生的俯仰旋转指令控制俯仰旋转机构动作,来驱动主梁转动,以带动被夹持的叶片在俯仰方向上旋转。
例如,控制器601可基于所产生的俯仰旋转指令控制第一液压缸的电磁阀动作,来驱动第一液压缸的活塞杆移动,以带动主梁绕旋转轴转动。
此外,根据本发明示例性实施例的叶片吊具的叶片夹持控制系统600可还包括:用于检测牵引绳拉力值的牵引绳拉力传感器602,控制器601可在被夹持的叶片在俯仰方向上旋转的过程中,基于牵引绳拉力传感器602实时确定牵引绳的牵引绳拉力值,如果实时检测到的牵引绳拉力值不大于设定拉力值,则继续驱动主梁转动,如果实时检测到的牵引绳拉力值大于设定拉力值,则停止驱动主梁转动。这里,该设定拉力值可指确保牵引绳处于安全拉伸范围的最大拉力限值。
在一示例中,根据本发明示例性实施例的叶片吊具的叶片夹持控制系统600可还包括:设置在叶片夹持机构上的压力传感器603,用于检测叶片夹持机构作用在叶片上的压力值。
在此情况下,在被夹持的叶片在俯仰方向上旋转的过程中,控制器601可将实时检测的叶片夹持机构作用在叶片上的压力值与叶片极限载荷值进行比较,这里,该叶片极限载荷值可指叶片所能够承受的最大载荷值。
如果实时检测到的压力值不大于叶片极限载荷值,则控制器601继续驱动主梁转动,如果实时检测到的压力值大于叶片极限载荷值,则停止驱动主梁转动。
控制器601在被夹持的叶片在俯仰方向上旋转的过程中,通过控制角度调节机构动作来调节叶片夹持机构的夹持口的大小,以改变叶片夹持机构作用在叶片上的压力大小。
例如,在被夹持的叶片在俯仰方向上旋转的过程中,控制器601可基于压力传感器603实时检测的叶片夹持机构作用在叶片上的压力值控制角度调节机构动作,来调节叶片夹持机构的夹持口的大小,以改变叶片夹持机构作用在叶片上的压力大小。
在一优选示例中,根据本发明示例性实施例的叶片吊具的叶片夹持控制系统600可还包括:安装在被夹持的叶片的叶根处的用于监测叶片的姿态的倾角传感器604。
此时,控制器601可实时确定被夹持的叶片的姿态,基于实时确定的叶片 的姿态,确定被夹持的叶片在当前姿态下的摩擦阻力值,基于实时检测的叶片夹持机构作用在叶片上的压力值与所确定的摩擦阻力值的比较结果,控制角度调节机构动作。
如果检测的压力值不大于对应的摩擦阻力值,则控制器601可通过控制角度调节机构动作来控制叶片夹持机构的夹持口的开口程度变小。如果检测的压力值大于对应的摩擦阻力值,则保持叶片夹持机构的夹持口的开口程度不变。
在本发明示例性实施例中,可以通过控制角度调节机构、夹口调节机构、压紧件驱动单元中的至少一个动作,来改变叶片夹持机构作用在叶片上的压力大小。
图17示出根据本发明示例性实施例的控制器的框图。
如图17所示,根据本发明示例性实施例的控制器700包括:处理器701和存储器702。
具体说来,存储器702用于存储计算机程序,计算机程序在被处理器701执行时实现上述的叶片吊具的叶片夹持控制方法。
这里,图12所示的叶片吊具的叶片夹持控制方法可在图17所示的处理器701中执行。也就是说,图16所示的控制器中执行的各处理可在图17中所示的处理器701中执行。
图18示出根据本发明示例性实施例的叶片吊具的控制系统的框图。
如图18所示,根据本发明示例性实施例的叶片吊具的控制系统包括:液压系统101、控制器102、供电系统103和地面遥控系统104。
具体说来,液压系统101分别连接于叶片夹持机构、重心调节机构200、变桨旋转机构800、俯仰旋转机构400、揽风绞车系统700。
具体说来,控制器102通过液压系统101来驱动叶片夹持机构、重心调节机构200、变桨旋转机构800、俯仰旋转机构400、揽风绞车系统700进行动作。
例如,针对第一液压缸,控制器102可控制液压系统的油泵电机动作来驱动液压泵,以通过液压泵的抽吸将油箱提供的液压油输送到第一液压缸,例如,可控制第一液压缸动作,驱动曲柄430进行旋转运动,以带动主梁120和叶片夹持机构进行俯仰方向上的0度~360度旋转。
供电系统103为液压系统101和控制器102提供电力。
地面遥控系统104连接到控制器102,以显示并存储叶片夹持机构、重心调节机构200、变桨旋转机构800、俯仰旋转机构400、揽风绞车系统700在叶片 吊装过程中的吊装数据。
下面分别来介绍控制器102针对叶片夹持机构、重心调节机构200、变桨旋转机构800、俯仰旋转机构400、揽风绞车系统700的控制过程。
在一实施例中,控制器102针对叶片夹持机构的角度调节机构的控制过程如下。
在被夹持的叶片在俯仰方向上旋转的过程中,通过液压系统控制角度调节机构动作来调节叶片夹持机构的夹持口的大小,以改变叶片夹持机构作用在叶片上的压力大小。
在一示例中,控制系统可还包括设置在叶片夹持机构上的压力传感器,用于检测叶片夹持机构作用在叶片上的压力值。
在此情况下,控制器102可被配置为:在被夹持的叶片在俯仰方向上旋转的过程中,基于压力传感器实时检测的叶片夹持机构作用在叶片上的压力值控制角度调节机构动作,来调节叶片夹持机构的夹持口的大小,以改变叶片夹持机构作用在叶片上的压力大小。
例如,可在第一压紧臂、第一承托臂、第二压紧臂、第二承托臂上(与叶片的表面贴合的位置处)分别设置压力传感器,以分别检测叶尖上夹持压力值、叶尖下夹持压力值、叶根上夹持压力值、叶根下夹持压力值。基于所检测的各压力值来控制角度调节机构动作。
在一优选示例中,在被夹持的叶片在俯仰方向上旋转的过程中,可将实时检测的叶片夹持机构作用在叶片上的压力值与叶片极限载荷值进行比较,这里,该叶片极限载荷值可指叶片所能够承受的最大载荷值,针对上述设置四个压力传感器的情况,可将每个压力传感器检测的压力值分别与叶片极限载荷值进行比较。
如果实时检测到的压力值(每个压力传感器检测的压力值)不大于(小于或者等于)叶片极限载荷值,则继续驱动主梁120转动,如果实时检测到的压力值(任一压力传感器检测的压力值)大于叶片极限载荷值,则停止驱动主梁120转动。
在一示例中,叶片吊具可还包括安装在被夹持的叶片的叶根处的倾角传感器,用于监测叶片的姿态,监测范围为0度~360度。
在此情况下,控制器102可还被配置为:实时确定被夹持的叶片的姿态,基于实时确定的叶片的姿态,确定被夹持的叶片在当前姿态下的摩擦阻力值, 基于实时检测的叶片夹持机构作用在叶片上的压力值与所确定的摩擦阻力值的比较结果,控制角度调节机构动作。
作为示例,摩擦阻力值可指为克服由于叶片自重作用导致叶片夹持移位所需的摩擦力,在一示例中,摩擦阻力值可基于叶片的自重以及叶片的姿态来确定。例如,摩擦阻力值可为叶片的自重与被夹持的叶片的水平倾角的余弦值的乘积。
例如,可将在当前姿态下实时检测的叶片夹持机构作用在叶片上的压力值与对应的摩擦阻力值进行比较,针对上述设置四个压力传感器的情况,可将所有压力传感器检测的压力值之和与摩擦阻力值进行比较。
如果检测的压力值不大于对应的摩擦阻力值,则通过控制角度调节机构动作来控制叶片夹持机构的夹持口的开口程度变小。除此之外,还可以通过控制夹口调节机构和/或压紧件驱动单元来改变叶片夹持机构作用在叶片上的压力大小。
如果检测的压力值大于对应的摩擦阻力值(例如,检测的压力值与对应的摩擦阻力值的差值大于设定值,即,保证检测的压力值远大于对应的摩擦阻力值),则保持叶片夹持机构的夹持口的开口程度不变。
在一实施例中,控制器102针对重心调节机构200的控制过程如下。
控制器102基于叶片吊具的姿态,通过液压系统来驱动重心调节机构进行动作,以推动叶片吊具沿着水平方向移动。
具体地,控制器102可被配置为:基于叶片吊具的姿态,控制液压系统将液压油输送到第三液压缸,并控制第三液压缸的电磁阀动作,来驱动第三液压缸的活塞杆移动,以推动第二吊杆沿着导轨移动。
在一示例中,叶片吊具可还包括安装在叶片吊具上的倾角传感器,例如,可安装在配置单元上,用于监测叶片吊具的姿态,监测范围为0度~360度。
这里,可基于安装在叶片吊具上的倾角传感器来获得叶片吊具的第一倾角。例如,叶片吊具具有平行于导轨的延伸方向的第一基准线,第一倾角为叶片吊具的处于当前位置的第一基准线与处于水平位置时的第一基准线所形成的夹角。
在一实施例中,控制器102针对变桨旋转机构800的控制过程如下。
控制器102基于被夹持的叶片当前的姿态以及用于插接被夹持的叶片的轮毂当前的旋转角度,产生变桨旋转指令,基于所产生的变桨旋转指令,通过液压系统101控制变桨旋转机构800进行动作,来驱动叶片夹持机构相对于主梁 102转动,以带动被夹持的叶片在变桨方向上旋转。
以图6至图9所示的变桨旋转机构800的结构为例,控制器102可被配置为:基于所产生的变桨旋转指令,控制液压系统101将液压油输送到第二液压缸141,并控制第二液压缸141的电磁阀动作,来驱动第二液压缸141的活塞杆移动,以带动叶片夹持机构相对于主梁102转动。
在一实施例中,控制器102针对俯仰旋转机构400的控制过程如下。
控制器102基于被夹持叶片的初始位置和目标位置产生俯仰旋转指令,基于所产生的俯仰旋转指令,通过液压系统控制俯仰旋转机构进行动作,来驱动主梁102转动,以带动被夹持的叶片在俯仰方向上旋转。这里,该俯仰旋转指令指示了被夹持的叶片需在俯仰方向上旋转的角度值。
在一示例中,被夹持叶片的初始位置为水平位置,但本发明不限于此,被夹持叶片的初始位置可以为任意角度,在此情况下,该初始位置可利用安装在被夹持的叶片的叶根处的用于监测叶片的姿态的倾角传感器来确定。被夹持叶片的目标位置可指用于将被夹持叶片与轮毂进行对准的位置,以将被夹持叶片准确地连接到轮毂上。
以图3所示的俯仰旋转机构的结构为例,控制器102可基于所产生的俯仰旋转指令,控制液压系统将液压油输送到第一液压缸,并控制第一液压缸的电磁阀动作,来驱动第一液压缸的活塞杆移动,以带动主梁102绕旋转轴420转动。
在一实施例中,控制器102针对揽风绞车系统700的控制过程如下。
控制器102可基于叶片吊具的姿态,通过液压系统来驱动揽风绞车系统进行动作,以带动叶片吊具沿着预设方向摆动。作为示例,预设摆动方向可指水平平面内的顺时针方向或者逆时针方向。
在一示例中,可利用上述安装在叶片吊具上的倾角传感器来获得叶片吊具的姿态。在本示例中,可基于安装在叶片吊具上的倾角传感器来获得叶片吊具的第二倾角。例如,叶片吊具具有平行于第一揽风杆和第二揽风杆的延伸方向的第二基准线,第二倾角可指叶片吊具的处于当前位置的第二基准线与处于水平位置时的第二基准线所形成的夹角。
以图10和图11所示的揽风绞车系统700的结构为例,控制器102被配置为:基于叶片吊具的姿态,通过液压系统来控制第一绞车和/或第二绞车调整对应的缆风绳的引出长度,以驱动叶片吊具沿着预设方向摆动。
在一示例中,控制系统可还包括用于检测第一绞车的揽风绳的揽风绳拉力值的第一拉力传感器810和用于检测第二绞车的揽风绳的揽风绳拉力值的第二拉力传感器。
在此情况下,控制器102可还被配置为:从第一拉力传感器获取第一绞车的揽风绳的缆风绳拉力值,从第二拉力传感器获取第二绞车的揽风绳的缆风绳拉力值,当第一绞车的揽风绳的缆风绳拉力值与第二绞车的揽风绳的缆风绳拉力值的差值超过预设差值范围时,产生报警信息。
例如,控制器102可将产生的报警信息发送至地面遥控系统104以进行显示。
在一可选示例中,控制系统可还包括视频监控系统,该视频监控系统包括至少一台摄像头。
至少一台摄像头可布置在叶片夹持机构和/或主梁上,用于捕获被夹持的叶片的叶根部分的图像和/或在插接过程中用于插接被夹持的叶片的轮毂的图像。
在此情况下,控制器102可从至少一台摄像头获取叶根部分的图像和/或轮毂的图像,并基于所获取的图像控制变桨旋转机构800进行动作,使被夹持的叶片对准轮毂以进行叶片插接。
除此之外,控制器102可还将所获取的叶根部分的图像和/或轮毂的图像发送至地面遥控系统进行显示。
根据本发明的示例性实施例还提供一种存储有计算机程序的计算机可读存储介质。该计算机可读存储介质存储有当被处理器执行时使得处理器执行上述叶片吊具的叶片夹持控制方法的计算机程序。该计算机可读记录介质是可存储由计算机系统读出的数据的任意数据存储装置。计算机可读记录介质的示例包括:只读存储器、随机存取存储器、只读光盘、磁带、软盘、光数据存储装置和载波(诸如经有线或无线传输路径通过互联网的数据传输)。
在本发明示例性实施例中,提供了一种大型风电机组斜插叶片夹持吊具的叶片夹持控制方法,用于满足叶片在安装过程360度旋转时,叶片夹持可靠稳定。
在本申请的描述中,需要理解的是,术语“中心”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造 和操作,因此不能理解为对本申请的限制。
术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
本发明所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施方式中。在上面的描述中,提供许多具体细节从而给出对本发明的实施方式的充分理解。然而,本领域技术人员将意识到,可以实践本发明的技术方案而没有所述特定细节中的一个或更多,或者可以采用其它的方法、组件、材料等。在其它情况下,不详细示出或描述公知结构、材料或者操作以避免模糊本发明的各方面。

Claims (20)

  1. 一种叶片吊具的叶片夹持控制方法,其特征在于,所述叶片吊具包括主梁、连接于主梁的俯仰旋转机构、设置在主梁两端的用于夹持叶片的叶片夹持机构、设置在叶片夹持机构上的角度调节机构,
    其中,所述叶片夹持控制方法包括:
    基于被夹持叶片的初始位置和目标位置产生俯仰旋转指令,
    基于所产生的俯仰旋转指令控制俯仰旋转机构动作,来驱动所述主梁转动,以带动被夹持的叶片在俯仰方向上旋转,
    在被夹持的叶片在俯仰方向上旋转的过程中,通过控制角度调节机构动作来调节叶片夹持机构的夹持口的大小,以改变叶片夹持机构作用在叶片上的压力大小。
  2. 根据权利要求1所述的叶片夹持控制方法,其特征在于,所述俯仰旋转机构包括支撑框架、可转动地设置于所述支撑框架上的旋转轴、曲柄、第一液压缸,
    其中,所述旋转轴的第一端连接于主梁上,所述曲柄的第一端固定连接于所述旋转轴的第二端上,所述第一液压缸的缸体安装到所述支撑框架上,所述第一液压缸的活塞杆的自由端连接到所述曲柄的第二端,
    其中,基于所产生的俯仰旋转指令控制俯仰旋转机构动作的步骤包括:
    基于所产生的俯仰旋转指令控制所述第一液压缸的电磁阀动作,来驱动所述第一液压缸的活塞杆移动,以带动所述主梁绕所述旋转轴转动。
  3. 根据权利要求1所述的叶片夹持控制方法,其特征在于,所述叶片吊具还包括设置在叶片夹持机构上的压力传感器,用于检测叶片夹持机构作用在叶片上的压力值,
    其中,在被夹持的叶片在俯仰方向上旋转的过程中,基于压力传感器实时检测的叶片夹持机构作用在叶片上的压力值控制角度调节机构动作,来调节叶片夹持机构的夹持口的大小,以改变叶片夹持机构作用在叶片上的压力大小。
  4. 根据权利要求3所述的叶片夹持控制方法,其特征在于,基于实时检测的叶片夹持机构作用在叶片上的压力值控制角度调节机构动作的步骤包括:
    实时确定被夹持的叶片的姿态;
    基于实时确定的叶片的姿态,确定被夹持的叶片在当前姿态下的摩擦阻力值;
    基于实时检测的叶片夹持机构作用在叶片上的压力值与所确定的摩擦阻力值的比较结果,控制角度调节机构动作。
  5. 根据权利要求4所述的叶片夹持控制方法,其特征在于,被夹持的叶片的姿态基于安装在被夹持的叶片的叶根处的用于监测叶片的姿态的倾角传感器来确定,
    和/或,所述摩擦阻力值是指为克服由于叶片自重作用导致叶片夹持移位所需的摩擦力,其中,所述摩擦阻力值基于叶片的自重以及叶片的姿态来确定。
  6. 根据权利要求4所述的叶片夹持控制方法,其特征在于,基于实时检测的叶片夹持机构作用在叶片上的压力值与所确定的摩擦阻力值的比较结果,控制角度调节机构动作的步骤包括:
    将在当前姿态下实时检测的叶片夹持机构作用在叶片上的压力值与对应的摩擦阻力值进行比较;
    如果检测的压力值不大于对应的摩擦阻力值,则通过控制角度调节机构动作来控制叶片夹持机构的夹持口的开口程度变小。
  7. 根据权利要求3所述的叶片夹持控制方法,其特征在于,所述叶片夹持控制方法还包括:
    在被夹持的叶片在俯仰方向上旋转的过程中,将实时检测的叶片夹持机构作用在叶片上的压力值与叶片极限载荷值进行比较;
    如果实时检测到的压力值不大于叶片极限载荷值,则继续驱动所述主梁转动,
    如果实时检测到的压力值大于叶片极限载荷值,则停止驱动所述主梁转动。
  8. 根据权利要求3所述的叶片夹持控制方法,其特征在于,所述叶片夹持机构包括分别设置在主梁两端的第一叶片夹持单元和第二叶片夹持单元,第一叶片夹持单元和第二叶片夹持单元中的一个用于夹持叶片的叶尖部分,第一叶片夹持单元和第二叶片夹持单元中的另一个用于夹持叶片的叶根部分,
    其中,第一叶片夹持单元包括第一上夹持组件和第一下夹持组件,第二叶片夹持单元包括第二上夹持组件和第二下夹持组件,角度调节机构包括设 置在第一上夹持组件上的第一角度调节单元以及设置在第二上夹持组件上的第二角度调节单元,
    其中,基于压力传感器实时检测的叶片夹持机构作用在叶片上的压力值控制角度调节机构动作的步骤包括:
    基于实时检测的压力值,控制第一角度调节单元动作,驱动第一上夹持组件运动,以调节第一上夹持组件与第一下夹持组件形成的夹持口的大小,和/或,基于实时检测的压力值,控制第二角度调节单元动作,驱动第二上夹持组件运动,以调节第二上夹持组件与第二下夹持组件形成的夹持口的大小。
  9. 根据权利要求8所述的叶片夹持控制方法,其特征在于,第一上夹持组件包括第一压紧臂和从第一压紧臂的一端向下延伸的第一上立臂,第一下夹持组件包括第一承托臂以及从第一承托臂的一端向上延伸的第一下立臂,第一下立臂与第一上立臂连接,
    第二上夹持组件包括第二压紧臂和从第二压紧臂的一端向下延伸的第二上立臂,第二下夹持组件包括第二承托臂以及从第二承托臂的一端向上延伸的第二下立臂,第二下立臂与第二上立臂连接,
    第一角度调节单元连接在第一上立臂和第一压紧臂之间,第二角度调节单元连接在第二上立臂和第二压紧臂之间,
    其中,控制角度调节机构动作的步骤包括:控制第一角度调节单元动作,驱动第一压紧臂相对于第一上立臂旋转,来调节第一压紧臂与第一承托臂形成的夹持口的大小,
    和/或,控制角度调节机构动作的步骤包括:控制第二角度调节单元动作,驱动第二压紧臂相对于第二上立臂旋转,来调节第二压紧臂与第二承托臂形成的夹持口的大小。
  10. 根据权利要求9所述的叶片夹持控制方法,其特征在于,第一角度调节单元包括第二液压缸,第二液压缸的缸体安装到第一上立臂上,第二液压缸的活塞杆的自由端连接到第一压紧臂,
    其中,控制第一角度调节单元动作的步骤包括:基于实时检测的压力值,控制第二液压缸的电磁阀动作,来驱动第二液压缸的活塞杆移动,以带动第一压紧臂相对于第一上立臂旋转,
    和/或,第二角度调节单元包括第三液压缸,第三液压缸的缸体安装到第二上立臂上,第三液压缸的活塞杆的自由端连接到第二压紧臂,
    其中,控制第二角度调节单元动作的步骤包括:基于实时检测的压力值,通过控制第三液压缸的电磁阀动作,来驱动第三液压缸的活塞杆移动,以带动第二压紧臂相对于第二上立臂旋转。
  11. 根据权利要求8所述的叶片夹持控制方法,其特征在于,所述叶片吊具还包括夹口调节机构,夹口调节机构包括连接在第一上夹持组件和第一下夹持组件之间的第一夹口调节单元以及连接在第二上夹持组件和第二下夹持组件之间的第二夹口调节单元,
    其中,所述叶片夹持控制方法还包括:
    基于压力传感器实时检测的压力值,控制第一夹口调节单元动作,驱动第一上夹持组件和第一下夹持组件相对运动,以调节第一上夹持组件和第一下夹持组件之间的距离,和/或,基于压力传感器实时检测的压力值,控制第二夹口调节单元动作,驱动第二上夹持组件和第二下夹持组件相对运动,以调节第二上夹持组件和第二下夹持组件之间的距离。
  12. 根据权利要求11所述的叶片夹持控制方法,其特征在于,第一上夹持组件包括第一压紧臂和从第一压紧臂的一端向下延伸的第一上立臂,第一下夹持组件包括第一承托臂以及从第一承托臂的一端向上延伸的第一下立臂,第一下立臂与第一上立臂连接,
    第一夹口调节单元包括第四液压缸,第四液压缸的缸体安装到第一上立臂和第一下立臂中的一个,第四液压缸的活塞杆的自由端连接到第一上立臂和第一下立臂中的另一个,
    其中,控制第一夹口调节单元动作的步骤包括:基于压力传感器实时检测的压力值,控制第四液压缸的电磁阀动作,驱动第四液压缸的活塞杆移动,来带动第一上立臂和第一下立臂相对运动,以调节第一压紧臂与第一承托臂之间的距离,
    和/或,第二上夹持组件包括第二压紧臂和从第二压紧臂的一端向下延伸的第二上立臂,第二下夹持组件包括第二承托臂以及从第二承托臂的一端向上延伸的第二下立臂,第二下立臂与第二上立臂连接,
    第二夹口调节单元包括第五液压缸,第五液压缸的缸体安装到第二上立臂和第二下立臂中的一个,第五液压缸的活塞杆的自由端连接到第二上立臂和第二下立臂中的另一个,
    其中,控制第二夹口调节单元动作的步骤包括:基于压力传感器实时检 测的压力值,控制第五液压缸的电磁阀动作,驱动第五液压缸的活塞杆移动,来带动第二上立臂和第二下立臂相对运动,以调节第二压紧臂与第二承托臂之间的距离。
  13. 根据权利要求9或12所述的叶片夹持控制方法,其特征在于,第一压紧臂、第二压紧臂、第一承托臂、第二承托臂均包括随形压紧件和连接于随形压紧件的压紧件驱动单元,
    其中,所述叶片夹持控制方法还包括:控制压紧件驱动单元动作,来推动随形压紧件沿压紧臂或者承托臂的延伸方向移动。
  14. 根据权利要求8所述的叶片夹持控制方法,其特征在于,所述叶片吊具还包括牵引绳以及用于检测牵引绳拉力值的牵引绳拉力传感器,牵引绳的一端连接到用于夹持叶片的叶根部分的叶片夹持单元的上夹持组件,牵引绳的另一端连接到用于夹持叶片的叶根部分的叶片夹持单元的下夹持组件,以承托住叶片的叶根,
    其中,所述叶片夹持控制方法还包括:
    在被夹持的叶片在俯仰方向上旋转的过程中,基于牵引绳拉力传感器实时确定牵引绳的牵引绳拉力值,
    如果实时检测到的牵引绳拉力值不大于设定拉力值,则继续驱动所述主梁转动,
    如果实时检测到的牵引绳拉力值大于设定拉力值,则停止驱动所述主梁转动。
  15. 一种叶片吊具的叶片夹持控制系统,其特征在于,所述叶片吊具包括主梁、连接于主梁的俯仰旋转机构、设置在主梁两端的用于夹持叶片的叶片夹持机构、设置在叶片夹持机构上的角度调节机构,
    其中,所述叶片夹持控制系统包括:
    控制器,被配置为:基于被夹持叶片的初始位置和目标位置产生俯仰旋转指令,基于所产生的俯仰旋转指令控制俯仰旋转机构动作,来驱动所述主梁转动,以带动被夹持的叶片在俯仰方向上旋转,在被夹持的叶片在俯仰方向上旋转的过程中,通过控制角度调节机构动作来调节叶片夹持机构的夹持口的大小,以改变叶片夹持机构作用在叶片上的压力大小。
  16. 一种叶片吊具的控制系统,其特征在于,所述叶片吊具包括主梁、设置在主梁两端的用于夹持叶片的叶片夹持机构、连接于主梁的用于带动被 夹持的叶片在俯仰方向上旋转的俯仰旋转机构、用于带动被夹持的叶片在变桨方向上旋转的变桨旋转机构、设置在叶片夹持机构上的角度调节机构,
    其中,所述控制系统包括:液压系统、控制器、地面遥控系统和供电系统,所述液压系统分别连接于叶片夹持机构、俯仰旋转机构、变桨旋转机构,
    所述地面遥控系统连接到控制器,以显示并存储叶片夹持机构、俯仰旋转机构、变桨旋转机构在叶片吊装过程中的吊装数据,
    所述供电系统为液压系统和控制器提供电力,
    所述控制器被配置为:通过所述液压系统来驱动叶片夹持机构、俯仰旋转机构、变桨旋转机构进行动作,并且
    所述控制器还被配置为:基于被夹持叶片的初始位置和目标位置产生俯仰旋转指令,基于所产生的俯仰旋转指令控制俯仰旋转机构动作,来驱动所述主梁转动,以带动被夹持的叶片在俯仰方向上旋转,在被夹持的叶片在俯仰方向上旋转的过程中,通过控制角度调节机构动作来调节叶片夹持机构的夹持口的大小,以改变叶片夹持机构作用在叶片上的压力大小。
  17. 根据权利要求16所述的控制系统,其特征在于,所述变桨旋转机构连接于主梁和叶片夹持机构,
    其中,所述控制器还被配置为:
    基于被夹持的叶片当前的姿态以及用于插接被夹持的叶片的轮毂当前的旋转角度,产生变桨旋转指令,
    基于所产生的变桨旋转指令,通过所述液压系统控制所述变桨旋转机构进行动作,来驱动叶片夹持机构相对于主梁转动,以带动被夹持的叶片在变桨方向上旋转。
  18. 根据权利要求16所述的控制系统,其特征在于,所述叶片吊具还包括用于保持所述叶片吊具平衡稳定的揽风绞车系统,所述液压系统还连接于揽风绞车系统,
    其中,所述控制器还被配置为:
    基于所述叶片吊具的姿态,通过所述液压系统来驱动揽风绞车系统进行动作,以带动所述叶片吊具沿着预设方向摆动。
  19. 根据权利要求16所述的控制系统,其特征在于,所述叶片吊具还包括用于在吊装过程中调整所述叶片吊具重心的重心调节机构,所述液压系统还连接于重心调节机构,
    其中,所述控制器还被配置为:
    基于所述叶片吊具的姿态,通过所述液压系统来驱动重心调节机构进行动作,以推动所述叶片吊具沿着水平方向移动。
  20. 根据权利要求16所述的控制系统,其特征在于,所述控制系统还包括视频监控系统,所述视频监控系统包括至少一台摄像头,
    其中,所述至少一台摄像头设置在叶片夹持机构和/或主梁上,用于捕获被夹持的叶片的叶根部分的图像和/或在插接过程中用于插接被夹持的叶片的轮毂的图像,
    其中,所述控制器还被配置为:
    从所述至少一台摄像头获取叶根部分的图像和/或轮毂的图像,并基于所获取的图像控制所述变桨旋转机构进行动作,使被夹持的叶片与轮毂对准,
    和/或,所述控制器还将所获取的叶根部分的图像和/或轮毂的图像发送至所述地面遥控系统进行显示。
PCT/CN2021/114804 2020-08-26 2021-08-26 叶片夹持控制方法和控制系统及叶片吊具的控制系统 WO2022042651A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020237010444A KR20230054888A (ko) 2020-08-26 2021-08-26 블레이드 보유 제어 방법 및 시스템, 및 블레이드 인양 장치를 위한 제어 시스템

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010870077.X 2020-08-26
CN202010871156.2A CN112010165B (zh) 2020-08-26 2020-08-26 叶片吊具的叶片夹持控制方法和系统
CN202010870077.XA CN111994774A (zh) 2020-08-26 2020-08-26 叶片吊具的控制系统
CN202010871156.2 2020-08-26

Publications (1)

Publication Number Publication Date
WO2022042651A1 true WO2022042651A1 (zh) 2022-03-03

Family

ID=80352681

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/114804 WO2022042651A1 (zh) 2020-08-26 2021-08-26 叶片夹持控制方法和控制系统及叶片吊具的控制系统

Country Status (2)

Country Link
KR (1) KR20230054888A (zh)
WO (1) WO2022042651A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115676578A (zh) * 2022-10-18 2023-02-03 上海锡华机械工程有限公司 一种风机叶片夹持吊装设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103723614A (zh) * 2014-01-24 2014-04-16 江苏金风科技有限公司 一种风力发电机组叶片30度角安装吊具及其吊装方法
CN207699037U (zh) * 2017-09-12 2018-08-07 远景能源(江苏)有限公司 风力发电机组单叶片安装吊具
US20180257914A1 (en) * 2017-03-08 2018-09-13 Gks Stahl- Und Maschinenbau Gmbh Gripper and cross-member having at least one gripper
CN209778050U (zh) * 2019-01-18 2019-12-13 成都世唯科技有限公司 一种可水平移动调节叶片空中姿态的装置
CN210286476U (zh) * 2019-05-30 2020-04-10 巨力索具股份有限公司 海上大型风电叶片吊具
CN111994774A (zh) * 2020-08-26 2020-11-27 江苏金风科技有限公司 叶片吊具的控制系统
CN112010165A (zh) * 2020-08-26 2020-12-01 江苏金风科技有限公司 叶片吊具的叶片夹持控制方法和系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103723614A (zh) * 2014-01-24 2014-04-16 江苏金风科技有限公司 一种风力发电机组叶片30度角安装吊具及其吊装方法
US20180257914A1 (en) * 2017-03-08 2018-09-13 Gks Stahl- Und Maschinenbau Gmbh Gripper and cross-member having at least one gripper
CN207699037U (zh) * 2017-09-12 2018-08-07 远景能源(江苏)有限公司 风力发电机组单叶片安装吊具
CN209778050U (zh) * 2019-01-18 2019-12-13 成都世唯科技有限公司 一种可水平移动调节叶片空中姿态的装置
CN210286476U (zh) * 2019-05-30 2020-04-10 巨力索具股份有限公司 海上大型风电叶片吊具
CN111994774A (zh) * 2020-08-26 2020-11-27 江苏金风科技有限公司 叶片吊具的控制系统
CN112010165A (zh) * 2020-08-26 2020-12-01 江苏金风科技有限公司 叶片吊具的叶片夹持控制方法和系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115676578A (zh) * 2022-10-18 2023-02-03 上海锡华机械工程有限公司 一种风机叶片夹持吊装设备

Also Published As

Publication number Publication date
KR20230054888A (ko) 2023-04-25

Similar Documents

Publication Publication Date Title
JP4295722B2 (ja) 風力タービン・ブレードを取り扱う方法と前記ブレードを風力タービンに取り付ける方法、および風力タービン・ブレードを取り扱うためのシステムと掴み装置
DK2956400T3 (en) Apparatus and method for installing a wind turbine rotor blade
WO2022042651A1 (zh) 叶片夹持控制方法和控制系统及叶片吊具的控制系统
EP2520484A2 (en) Apparatus and methods of positioning a subsea object
WO2022041843A1 (zh) 俯仰旋转机构和叶片吊装工装
CN112010165B (zh) 叶片吊具的叶片夹持控制方法和系统
US7845882B2 (en) Subsea suction pile crane system
WO2022041844A1 (zh) 叶片夹具和叶片吊装设备
CN111994776B (zh) 俯仰旋转机构和叶片吊装工装
CN111994774A (zh) 叶片吊具的控制系统
CN106853580B (zh) 一种机械手及利用机械手进行风机叶片安装的方法
CN109667721B (zh) 一种塔筒单元竖立工装
CN111994787A (zh) 叶片吊装工装
CN110182683A (zh) 一种装配式构件吊装设备
CN111994786B (zh) 叶片吊具
CN113023553A (zh) 叶片吊装设备
CN111874798B (zh) 叶片吊具的控制方法和系统
CN112010161B (zh) 叶片吊具的稳定控制方法和系统
CN111994775A (zh) 叶片夹具的变桨控制方法及系统
CN111994773A (zh) 叶片吊装工装
CN214243553U (zh) 一种新型可伸缩桅杆式起重机
CN213112179U (zh) 一种吊具
CN216072737U (zh) 一种砌体吊装装置
US11891984B2 (en) Wind turbine apparatus
CN115611139B (zh) 一种公路铺设施工用起重设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21860485

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237010444

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21860485

Country of ref document: EP

Kind code of ref document: A1