WO2022042524A1 - 微机电系统力学传感器、传感器单体及电子设备 - Google Patents

微机电系统力学传感器、传感器单体及电子设备 Download PDF

Info

Publication number
WO2022042524A1
WO2022042524A1 PCT/CN2021/114249 CN2021114249W WO2022042524A1 WO 2022042524 A1 WO2022042524 A1 WO 2022042524A1 CN 2021114249 W CN2021114249 W CN 2021114249W WO 2022042524 A1 WO2022042524 A1 WO 2022042524A1
Authority
WO
WIPO (PCT)
Prior art keywords
mems
sensor
current line
magnetoresistance
mechanical
Prior art date
Application number
PCT/CN2021/114249
Other languages
English (en)
French (fr)
Inventor
邹泉波
冷群文
丁凯文
赵海轮
安琪
周汪洋
王喆
宋青林
Original Assignee
歌尔微电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔微电子有限公司 filed Critical 歌尔微电子有限公司
Publication of WO2022042524A1 publication Critical patent/WO2022042524A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/12Measuring force or stress, in general by measuring variations in the magnetic properties of materials resulting from the application of stress
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/14Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means involving the displacement of magnets, e.g. electromagnets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/091Constructional adaptation of the sensor to specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/093Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/098Magnetoresistive devices comprising tunnel junctions, e.g. tunnel magnetoresistance sensors

Definitions

  • the present specification relates to the technical field of MEMS, and more particularly, to a MEMS mechanical sensor, a sensor unit and an electronic device.
  • the resistance value of magnetoresistance can vary with the applied magnetic field.
  • magnetoresistance can be placed in a magnetic field. When the position of the magnetoresistance changes, the magnetic field applied to the magnetoresistance changes, resulting in a change in the resistance value of the magnetoresistance.
  • the current lines can be provided on the substrate and the magnetoresistance can be provided on the movable part.
  • the direction of the magnetic field produced by the current lines can be determined by the right-hand spiral rule.
  • the above-mentioned mechanical effects can be determined by detecting the change in the resistance value of the magnetoresistance.
  • the mechanical effects here can be sound pressure, pressure, acceleration, deformation due to temperature changes, deformation due to humidity changes, etc.
  • Chinese patent application CN110345972A discloses a sensor and electronic equipment.
  • the magnetoresistive and current conductors are located in the same plane.
  • Embodiments of this specification provide new technical solutions for MEMS mechanical sensors.
  • a microelectromechanical system mechanical sensor comprising: a first support; a first element located on the first support; a movable part capable of receiving a mechanical action to relative A first displacement is generated on the first support; and a second element is located on the movable part; wherein, in the working condition that the mechanical action is not applied, the second element is located outside the element plane of the first element; wherein, the first element One of an element and a second element is a magnetoresistive and the other is a first current line; and wherein the magnetic field applied to the magnetoresistive by the first current line varies with the first displacement such that the The resistance value of the magnetoresistor changes, thereby generating the sensor signal.
  • a MEMS mechanical sensor unit including a single housing, the MEMS mechanical sensor according to the embodiment, and an integrated circuit chip, wherein the MEMS mechanical sensor And an integrated circuit chip is provided in the monolithic housing.
  • an electronic device comprising the MEMS mechanics sensor unit according to the embodiment.
  • the manufacturing process of the MEMS mechanical sensor since it is not necessary to arrange the magnetoresistance and the current lines in the same plane, the manufacturing process of the MEMS mechanical sensor can be simplified.
  • any one of the embodiments of the present specification does not need to achieve all the above effects.
  • FIG. 1 shows a partial view of a MEMS mechanics sensor according to one embodiment disclosed herein.
  • Figure 2 illustrates a MEMS mechanics sensor according to one embodiment disclosed herein.
  • Figure 3 shows a partial view of a MEMS mechanics sensor according to another embodiment disclosed herein.
  • Figure 4 illustrates a MEMS mechanics sensor according to another embodiment disclosed herein.
  • Figure 5 illustrates a MEMS mechanics sensor according to yet another embodiment disclosed herein.
  • Figure 6 illustrates a MEMS mechanics sensor according to yet another embodiment disclosed herein.
  • Figure 7 illustrates a MEMS mechanics sensor according to yet another embodiment disclosed herein.
  • Figure 8 shows a schematic diagram of a MEMS mechanics sensor cell according to one embodiment disclosed herein.
  • Figure 9 shows a schematic diagram of an electronic device according to one embodiment disclosed herein.
  • FIG. 1 shows a partial view of a MEMS mechanics sensor according to one embodiment disclosed herein.
  • MEMS technology is an industrial technology that integrates microelectronics technology and micromechanical engineering.
  • the size of MEMS devices is usually less than a few millimeters, and its internal structure is generally in the order of micrometers or even nanometers.
  • the mechanical sensor is a sensor capable of detecting changes caused by mechanical action.
  • the mechanical effects here include sound pressure, air pressure, acceleration, deformation due to stress due to temperature change, deformation due to stress due to humidity change, and the like.
  • the MEMS mechanical sensor includes: a first support 110 , a first element 120 located on the first support 110 , a movable part 130 and a second element located on the movable part 130 140.
  • the movable member 130 can be mechanically acted to generate a first displacement relative to the first support member 110 .
  • the second element 140 is located outside the element plane of the first element 120 when no mechanical action is applied.
  • the movable member 130 and the second member 140 can move up and down in the direction of the arrow.
  • the direction indicated by the arrow is the Z direction.
  • the second element 140 is located in a plane perpendicular to the Z direction, ie, the element plane.
  • a working condition in which no mechanical action is applied means that the sensor is in a working state, but no mechanical action to be detected is applied to the sensor.
  • One of the first element 120 and the second element 140 is a magnetoresistive, and the other is a first current line.
  • the first element 120 is a first current line
  • the second element 140 is a magnetoresistive.
  • the pinning direction of the magnetoresistance 140 is the X direction, which is in the element plane of the magnetoresistance 140 and is perpendicular to the Z direction.
  • the magnetic field applied by the first current line 120 to the magnetoresistor 140 changes with the first displacement, so that the resistance value of the magnetoresistor 140 changes, thereby generating a sensor signal.
  • Figure 2 shows the overall structure of the MEMS mechanical sensor.
  • the first supporter 110 and the movable part 130 may be cantilevers disposed on the substrate 150 .
  • the first supporter 110 is shorter relative to the movable part 130 . Therefore, when the external air pressure is applied to the first supporting member 110 and the movable member 130, the displacement of the first supporting member 110 relative to the movable member 130 is small, thereby generating relative displacement.
  • the first supporter 110 may be a sidewall of the substrate 150 . In this way, when subjected to mechanical action, the first support member 110 remains stationary.
  • the movable member 130 may be a diaphragm, a composite film, or the like.
  • FIG. 1( b ) shows a schematic diagram of the magnetic field applied on the magnetoresistor 140 .
  • the direction of the magnetic field generated by the current line is around the current line (in accordance with the right-hand spiral rule). Therefore, in this respect, the magnetic field produced by the current lines acts differently than permanent magnets.
  • the magnetic field applied to the magnetoresistor 140 is analyzed. When a mechanical action is applied, the magnetoresistive 140 is displaced Z along the Z axis. Therefore, the magnitude of the magnetic field applied by the first current line 120 to the magnetoresistor 140 is:
  • ⁇ 0 represents the vacuum permeability
  • I 1 represents the current intensity in the first current line 120
  • B X (Z) represents the X direction applied to the magnetoresistance 140 along with the movement of the magnetoresistance 140 along the Z axis. magnitude of the magnetic field.
  • N X (Z) When
  • the magnetoresistance 140 moves in the positive direction of the Z axis
  • the magnetic field in the pinning direction (X) of the magnetoresistance increases.
  • the resistance value of the magnetoresistor 140 decreases.
  • the magnetoresistive 140 moves in the negative Z-axis direction
  • the magnetic field in the pinning direction (X) of the magnetoresistive decreases.
  • the resistance value of the magnetoresistor 140 increases.
  • the directions of the magnetic fields applied to the magnetoresistors 140 are all in the positive direction along the X-axis.
  • the first current line 120 is located outside the element plane of the magnetoresistive element 140 , it is not necessary to adopt a more complicated process to manufacture the in-plane current line. This can simplify the fabrication process of MEMS sensors.
  • the first element 120 is located inside the MEMS mechanics sensor relative to the second element 140 , eg, in an interior chamber 160 .
  • the first support member 110 can limit the movement range of the movable member 130, so as to prevent the movable member 130 from being damaged due to the excessive movement range. For example, in the manufacture of MEMS mechanical sensors, damage to moving parts can be prevented, resulting in improved yields.
  • Figure 3 shows a partial view of a MEMS mechanics sensor according to another embodiment disclosed herein.
  • Figure 4 shows the overall structure of the MEMS mechanical sensor.
  • the MEMS mechanical sensor shown in FIG. 3 further includes a second support member 210 and a second current line 220 .
  • the movable member 130 can be mechanically acted to generate a second displacement relative to the second support member 210 .
  • the second support member 210 supports the second current line 220 such that the second current line 220 is located outside the element plane of the magnetoresistive 140 under the working condition of no mechanical action.
  • the magnetic field applied to the magnetoresistor 140 by the second current line 220 changes with the second displacement, so that the resistance value of the magnetoresistor 140 changes.
  • the current direction in the first current line 120 and the second current line 220 is outward from the paper; in the Z-axis direction, in the work without applying mechanical action
  • the first displacement between the movable part 130 and the first support 110 is reduced, and the first displacement between the movable part 130 and the second support 210 is reduced.
  • the second displacement increases.
  • the first current line 120 and the second current line 220 are symmetrical with respect to the element plane of the magnetoresistance 140 and the magnetoresistance 140 is located between the first current line 120 and Between the second current lines 220 , that is, the magnetoresistance 140 is located in the middle of the line segment between the first current line 120 and the second current line 220 .
  • the magnetic field generated by the first current line 120 and the second current line 220 is along the X direction within the range where the magnetoresistance 140 moves up and down.
  • the magnetic field applied to the magnetoresistance 140 only changes along the X axis. In this way, the influence of other interference factors on the magnetoresistance is reduced, which is beneficial to improve the detection performance of the MEMS mechanical sensor.
  • the magnetic field generated by the first current line 120 and the second current line 220 at the magnetoresistor 140 is as follows:
  • ⁇ 0 represents the vacuum permeability
  • I 1 represents the current intensity in the first current line 120
  • I 2 represents the current intensity in the second current line 220
  • N X (Z) represents the magnetic resistance 140 along the Z axis The movement of , the magnitude of the magnetic field in the X direction applied to the magnetoresistor 140 .
  • the current directions in the first current line 120 and the second current line 22- are the same, and both are perpendicular to the paper surface.
  • the direction of the magnetic field applied to the magnetoresistance 140 by the current lines 120 and 220 is parallel to the pinning direction of the magnetoresistance 140 , that is, the X direction.
  • Equation 3 can be rewritten as:
  • N X (Z) can be considered to be linear.
  • N X (Z) can be expressed as:
  • the total magnetic field applied to the magnetoresistor 140 is 0 in the operating case where no mechanical action is applied.
  • the change in the magnetic field is produced by the superposition of the magnetic field changes of the two current lines. Therefore, this can increase sensitivity.
  • the change of the magnetic field applied to the magnetoresistor 140 is linear.
  • N X (Z) can be expressed as:
  • magnetoresistive sensitivity to magnetic fields tends to saturate at both ends of the linear region, this can be used to extend the linear range of MEMS mechanics sensors, such as the acoustic overload point AOP.
  • the MEMS mechanics sensors disclosed herein can be used as MEMS microphones, MEMS pressure sensors, or MEMS acceleration sensors.
  • a mass may be provided on the movable part 130 so that the magnetoresistance 140 generates an acceleration sensor signal under the action of mechanics.
  • the MEMS mechanical sensor may include a sealed cavity, and the movable part 130 is a pressure sensing membrane of the sealed cavity, so that the magnetoresistive 140 generates a pressure sensor signal under the action of mechanics.
  • the first supporter 110 and the second supporter 210 may sandwich the movable part 130 so as to protect the movable part 130 .
  • the first support 110 is located inside the MEMS mechanics sensor relative to the movable part 130 , ie, inside the chamber 160 .
  • Figure 5 illustrates a MEMS mechanics sensor according to yet another embodiment disclosed herein.
  • the pinning direction of the MEMS mechanical sensor is the positive direction of the X axis.
  • the first support member 320 and the movable member 340 are located on the substrate 310 .
  • the first support 320 and the movable part 340 are, for example, cantilever beams.
  • the current line 330 is provided on the first supporter 320 .
  • a magnetoresistor 350 is provided on the movable member 340 .
  • Magnetoresistive 350 is connected to external electronics through leads 360 .
  • the direction of current flow in current line 330 is as indicated by arrow 370 .
  • a second support and current lines may also be provided on the other side of the movable part 340 .
  • Figure 6 illustrates a MEMS mechanics sensor according to yet another embodiment disclosed herein.
  • the pinning direction of the MEMS mechanical sensor is the positive direction of the X axis.
  • two groups of MEMS mechanical detection components 420 , 430 such as the components shown in FIG. 5 , may be included on the substrate 410 .
  • the current directions in the current lines of the MEMS mechanics detection components 420, 430 are opposite. In this way, the differential output of the signal can be generated by using the two sets of MEMS mechanical detection components 420, 430.
  • Figure 7 illustrates a MEMS mechanics sensor according to yet another embodiment disclosed herein.
  • the pinning direction of the MEMS mechanical sensor is the positive direction of the X axis.
  • four groups of MEMS mechanical detection components 520 , 530 , 540 , 550 such as the components shown in FIG. 5 , may be included on the substrate 510 .
  • the current directions in the current lines of the MEMS mechanics detection components 520 and 530 are opposite; the current directions in the current lines of the MEMS mechanics detection components 530 and 540 are opposite; The current directions in the current lines of the MEMS mechanics detection components 540, 540 are opposite.
  • four groups of MEMS mechanical detection components 520 , 530 , 540 , and 550 can be used to form a Wheatstone bridge, so as to improve the detection performance of the MEMS mechanical sensor.
  • the size of magnetoresistance is small, for example, the size of tunnel magnetoresistance is 0.1-5um, and the size of giant magnetoresistance is 0.5-20um. Therefore, as shown in Figs. 6 and 7 above, a plurality of groups of MEMS mechanical detection components including magnetoresistance and current lines can be arranged on the substrate.
  • Figure 8 shows a schematic diagram of a MEMS mechanics sensor cell according to one embodiment disclosed herein.
  • the MEMS mechanical sensor unit 600 includes a unit housing 610 , the MEMS mechanical sensor 602 described above, and an integrated circuit chip 630 .
  • the MEMS mechanical sensor 620 and the integrated circuit chip 630 are provided in the single housing 610 .
  • the MEMS mechanical sensor 620 corresponds to the air inlet of the unit housing 610 .
  • the MEMS mechanics sensor 620 , the integrated circuit chip 630 and the circuits in the monolithic housing 610 are connected by leads 640 .
  • Figure 9 shows a schematic diagram of an electronic device according to one embodiment disclosed herein.
  • the electronic device 700 may include the MEMS mechanics sensor unit 710 shown in FIG. 8 .
  • the electronic device 700 may be a mobile phone, a tablet computer, a wearable device, or the like.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Micromachines (AREA)
  • Pressure Sensors (AREA)

Abstract

一种微机电系统力学传感器,包括:第一支撑件(110);位于第一支撑件(110)上的第一元件(120);可移动部件(130),可移动部件(130)能接受力学作用以相对于第一支撑件(110)产生第一位移;以及位于可移动部件(130)上的第二元件(140);其中,在未施加所述力学作用的工作情况下,第二元件(140)位于第一元件(120)的元件平面外侧;其中,第一元件(120)和第二元件(140)中的一个是磁阻(140),另一个是第一电流线(120);以及其中,由第一电流线(120)对磁阻(140)所施加的磁场随所述第一位移变化,以使得磁阻(140)的阻值变化,从而产生传感器信号。一种微机电系统力学传感器单体(600),包括单体外壳(610)、微机电系统力学传感器(620)以及集成电路芯片(630),微机电系统力学传感器(620)以及集成电路芯片(630)被设置在单体外壳(610)中,微机电系统力学传感器(620)与单体外壳(610)的进气口对应,微机电系统力学传感器(620)、集成电路芯片(630)和单体外壳(610)中的电路通过引线(640)连接。一种电子设备(700),包括微机电系统力学传感器单体(710)。

Description

微机电系统力学传感器、传感器单体及电子设备
本公开要求于2020年08月24日提交中国专利局,申请号为202010858551.7,申请名称为“微机电系统力学传感器、传感器单体及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本说明书涉及微机电系统技术领域,更具体地,涉及一种微机电系统力学传感器、传感器单体及电子设备。
背景技术
磁阻的阻值可以随着所施加的磁场的变化而变化。例如,可以将磁阻设置在磁场中。当磁阻的位置发生变化时,施加到磁阻磁场发生变化,从而导致磁阻的阻值变化。
可以把电流线设置在衬底上,把磁阻设置在可移动部件上。电流线所产生的磁场的方向可以通过右手螺旋法则来确定。
当可移动部件受到力学作用时,磁阻的位置相对于电流线变化,施加在磁阻的磁场也发生变化。由此,磁阻的阻值发生变化。通过检测磁阻的阻值变化,可以确定上述力学作用。这里的力学作用可以声压、压力、加速度、由于温度变化引起的形变、由于湿度变化引起的形变等。
中国专利申请CN110345972A公开了一种传感器及电子设备。在该专利申请中,磁阻和电流导线位于同一平面内。
因此,需要提供一种用于微机电系统力学传感器的新技术方案。
发明内容
本说明书的实施例提供用于微机电系统力学传感器的新技术方案。
根据本说明书的第一方面,提供了一种微机电系统力学传感器,包括:第一支撑件;位于第一支撑件上的第一元件;可移动部件,该可移动部件能接受力学作用以相对于第一 支撑件产生第一位移;以及位于可移动部件上的第二元件;其中,在未施加所述力学作用的工作情况下,第二元件位于第一元件的元件平面外侧;其中,第一元件和第二元件中的一个是磁阻,另一个是第一电流线;以及其中,由第一电流线对所述磁阻所施加的磁场随所述第一位移变化,以使得所述磁阻的阻值变化,从而产生传感器信号。
根据本说明书的第二方面,提供了一种微机电系统力学传感器单体,包括单体外壳、根据实施例所述的微机电系统力学传感器以及集成电路芯片,其中,所述微机电系统力学传感器以及集成电路芯片被设置在所述单体外壳中。
根据本说明书的第三方面,提供了一种电子设备,包括根据实施例所述的微机电系统力学传感器单体。
在不同实施例中,由于不需要将磁阻和电流线设置在同一个平面内,因此,可以简化微机电系统力学传感器的制造工艺。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本说明书实施例。
此外,本说明书实施例中的任一实施例并不需要达到上述的全部效果。
通过以下参照附图对本说明书的示例性实施例的详细描述,本说明书的实施例的其它特征及其优点将会变得清楚。
附图说明
为了更清楚地说明本说明书实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本说明书实施例中记载的一些实施例,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。
图1示出了根据这里公开的一个实施例的微机电系统力学传感器的局部图。
图2示出了根据这里公开的一个实施例的微机电系统力学传感器。
图3示出了根据这里公开的另一个实施例的微机电系统力学传感器的局部图。
图4示出了根据这里公开的另一个实施例的微机电系统力学传感器。
图5示出了根据这里公开的又一个实施例的微机电系统力学传感器。
图6示出了根据这里公开的又一个实施例的微机电系统力学传感器。
图7示出了根据这里公开的又一个实施例的微机电系统力学传感器。
图8示出了根据这里公开的一个实施例的微机电系统力学传感器单体的示意图。
图9示出了根据这里公开的一个实施例的电子设备的示意图。
具体实施方式
现在将参照附图来详细描述各种示例性实施例。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本公开及其应用或使用的任何限制。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
下面,参照附图描述本说明书的不同实施例和例子。
图1示出了根据这里公开的一个实施例的微机电系统力学传感器的局部图。
微机电系统MEMS技术是将微电子技术与微机械工程融合到一起的工业技术。微机电系统器件的尺寸通常小于几毫米,它的内部结构一般在微米甚至纳米量级。这里,力学传感器是能够检测力学作用导致的变化的传感器。例如,这里的力学作用包括声压、气压、加速度、由于温度变化产生的应力所产导致的形变、由于湿度变化产生的应力所导致的形变等。
如图1(c)所示,微机电系统力学传感器包括:第一支撑件110、位于第一支撑件110上的第一元件120、可移动部件130和位于可移动部件130上的第二元件140。可移动部件130能接受力学作用以相对于第一支撑件110产生第一位移。
如图1(c)所示,在未施加力学作用的工作情况下,第二元件140位于第一元件120的元件平面外侧。如图1(c)所示,可移动部件130和第二元件140可以沿箭头方向上下移动。这里,箭头指示的方向为Z方向。第二元件140位于与Z方向垂直的平面,即元件平面。这里,“未施加力学作用的工作情况”指的是:传感器处于工作状态下,但是,没有向传感器施加待检测的力学作用。
第一元件120和第二元件140中的一个是磁阻,另一个是第一电流线。作为示例,如图1(c)中,第一元件120是第一电流线,第二元件140是磁阻。如图1(a)所示,磁阻140的钉扎方向是X方向,X方向位于磁阻140的元件平面内并且垂直于Z方向。由第一电流线120对磁阻140所施加的磁场随第一位移变化,以使得磁阻140的阻值变化,从而产生传感器信号。
图2示出了微机电系统力学传感器的整体结构。如图2所示,第一支撑件110和可移动部件130可以是设置在衬底150上的悬臂。第一支撑件110相对于可移动部件130较短。因此,当外界气压施加到第一支撑件110和可移动部件130上时,第一支撑件110相对于可移动部件130的位移较小,从而产生相对位移。此外,第一支撑件110可以是衬底150的侧壁。这样,当受到力学作用时,第一支撑件110保持静止。此外,可移动部件130可以是振膜、复合膜等。
图1(b)示出了施加在磁阻140上的磁场的示意图。如图1(c)所示,在图1的例子中,第一电流线120中的电流方向是从纸面向外;在Z轴方向上,在未施加力学作用的工作情况下,磁阻140位于Z=0的平面,第一电流线120距离磁阻140的距离是a 1
与永磁体不同,电流线所产生的磁场的方向是围绕电流线的(符合右手螺旋法则)。因此,就这个方面来说,电流线所产生的磁场的作用方式与永磁体是不同的。下面,针对第一电流线120,分析施加到磁阻140的磁场。当施加力学作用时,磁阻140沿Z轴发生位移Z。因此,第一电流线120施加到磁阻140的磁场大小为:
Figure PCTCN2021114249-appb-000001
其中,μ 0表示真空磁导率,I 1表示第一电流线120中的电流强度,B X(Z)表示随着磁阻140沿Z轴的移动,施加在磁阻140上的X方向的磁场大小。
当|Z/a 1|<10%时,总谐波失真THD小于10%,并可以认为N X(Z)是线性的并忽略公式1中的|Z/a 1|项。此时,N X(Z)可以表示为:
Figure PCTCN2021114249-appb-000002
在Z=0的位置,斜率d B X/dZ是
Figure PCTCN2021114249-appb-000003
如图1(b)所示,当磁阻140沿Z轴正向移动时,沿磁阻的钉扎方向(X)的磁场增加。此时,磁阻140的阻值减小。当磁阻140沿Z轴负向移动时,沿磁阻的钉扎方向(X)的磁场减小。此时,磁阻140的阻值增加。在图1所示的例子中,施加到磁阻140的磁场的方向均是沿X轴的正向的。
由于第一电流线120位于磁阻140的元件平面外,因此,不需要采用较复杂的工艺来制造面内电流线。这可以简化微机电系统传感器的制造工艺。
此外,通过将电流线设置在磁场之外,可以很容易将磁阻和电流线设置得较近。这可以提高施加到磁阻的磁场强度,由此提高微机电系统力学传感器的灵敏度。
此外,如图2所示,第一元件120相对于第二元件140位于微机电系统力学传感器内侧,例如,位于内部的腔室160中。这样,当可移动部件130受到外力作用发生移动时,第一支撑件110可以对可移动部件130的移动幅度进行限制,以防止可移动部件130的移动幅度过大而造成损坏。例如,在微机电系统力学传感器的制造过程中,可以防止损坏可移动部件,从而提高良率。
图3示出了根据这里公开的另一个实施例的微机电系统力学传感器的局部图。图4示出了该微机电系统力学传感器的整体结构。
与图1、2的实施例相比,图3所示的微机电系统力学传感器还包括第二支撑件210和第二电流线220。可移动部件130能接受力学作用以相对于第二支撑件210产生第二位移。第二支撑件210支撑第二电流线220,以使得在未施加力学作用的工作情况下第二电流线220位于磁阻140的元件平面外侧。由第二电流线220对磁阻140所施加的磁场随第二位移变化,以使得磁阻140的阻值变化。
如图3(c)所示,在图3的例子中,第一电流线120和第二电流线220中的电流方向是从纸面向外;在Z轴方向上,在未施加力学作用的工作情况下,磁阻140位于Z=0的平面,第一电流线120距离磁阻140的距离是a 1,第二电流线220距离磁阻140的距离是a 2
例如,当可移动部件130受到沿Z轴正向的压力时,可移动部件130与第一支撑件110之间的第一位移减小,可移动部件130与第二支撑件210之间的第二位移增加。
在图3所示的例子中,在未施加力学作用的工作情况下,第一电流线120和第二电流线220相对于磁阻140的元件平面对称并且磁阻140位于第一电流线120和第二电流线220之间,即,磁阻140位于第一电流线120和第二电流线220之间的线段中间。这样,第一电流线120和第二电流线220所产生的磁场在磁阻140上下移动的范围内是沿X方向的。换句话说,在磁阻140进行检测的期间,尽管磁阻140沿Z轴移动,但是,施加到磁阻140的磁场仅沿X轴变化。这种方式减小了其他干扰因素对于磁阻的影响,有利于提高微机电系统力学传感器的检测性能。
当施加力学作用时,磁阻140沿Z轴发生位移Z。第一电流线120和第二电流线220在磁阻140产生的磁场如下:
Figure PCTCN2021114249-appb-000004
其中,μ 0表示真空磁导率,I 1表示第一电流线120中的电流强度,I 2表示第二电流线220中的电流强度,N X(Z)表示随着磁阻140沿Z轴的移动,施加在磁阻140上的X方向的磁场大小。
如图3所示,第一电流线120和第二电流线22-中的电流方向相同,均是垂直于纸面向外。电流线120、220对磁阻140所施加的磁场的方向与磁阻140的钉扎方向平行,即,X方向。
当第一电流线120和第二电流线220相对于磁阻140的元件平面对称时,它们距离磁阻140的元件平面的距离相同,即,a 1=a 2=a。假设第一电流线120和第二电流线220中的电流大小相同,即,I 1=I 2=I。通过这种方式,可以构造一个对称的磁阻工作区域。此时,公式3可以改写为:
Figure PCTCN2021114249-appb-000005
在|Z/a|<30%的情况下,总谐波失真THD小于10%,并可以认为N X(Z)是线性的。此时,N X(Z)可以表示为:
Figure PCTCN2021114249-appb-000006
在上面这种对称的情况下,在未施加力学作用的工作情况下,施加到磁阻140的总磁场为0。当磁阻140沿Z轴移动时,磁场的变化是由两个电流线的磁场变化叠加产生的。因此,这可以增加灵敏度。
此外,如图3(b)所示,施加到磁阻140的磁场的变化是线性的。
此外,在|Z/a|~(30-70)%的情况下,可以认为微机电系统力学传感器的响应时非线性的。此时,N X(Z)可以表示为:
Figure PCTCN2021114249-appb-000007
由于在线性区域的两端,磁阻对于磁场的灵敏度趋向于饱和,因此,这可以用于扩展微机电系统力学传感器的线性范围,例如声学过载点AOP。
这里公开的微机电系统力学传感器可以被用作微机电系统麦克风、微机电系统压力传感器或微机电系统加速度传感器。
例如,可以在可移动部件130上设置有质量块,以使得磁阻140在力学作用下产生加速度传感器信号。可选地,微机电系统力学传感器可以包括密封腔,可移动部件130是密封腔的压力感测膜,以使得磁阻140在力学作用下产生压力传感器信号。
如图4所示,第一支撑件110和第二支撑件210可以将可移动部件130夹在中间,从而对可移动部件130起到保护作用。第一支撑件110相对于可移动部件130位于微机电系统力学传感器的内部,即,位于内部的腔室160内。
图5示出了根据这里公开的又一个实施例的微机电系统力学传感器。如图5(a)所示,微机电系统力学传感器的钉扎方向是X轴的正向。如图5(b)所示,第一支撑件320和可移动部件340位于衬底310上。第一支撑件320和可移动部件340例如是悬臂梁。在第一支撑件320上设置电流线330。在可移动部件340上设置磁阻350。磁阻350通过引线360连接到外部电子器件。电流线330中的电流方向如箭头370所指示的那样。还可以在可移动部件340的另一侧设置第二支撑件和电流线。当受到力学作用时,通过检测磁阻的阻值变化,可以确定力学作用的幅度。
图6示出了根据这里公开的又一个实施例的微机电系统力学传感器。如图6(a)所示,微机电系统力学传感器的钉扎方向是X轴的正向。如图6(b)所示,在衬底410上可以包括两组微机电系统力学检测部件420、430,例如图5中所示的部件。
如图6中电流线附近的箭头所指示的那样,微机电系统力学检测部件420、430的电流线中的电流方向相反。这样,可以利用两组微机电系统力学检测部件420、430产生信号的差分输出。
图7示出了根据这里公开的又一个实施例的微机电系统力学传感器。
如图7(a)所示,微机电系统力学传感器的钉扎方向是X轴的正向。如图7(b)所示,在衬底510上可以包括四组微机电系统力学检测部件520、530、540、550,例如图5中所示的部件。
如图7中电流线附近的箭头所指示的那样,微机电系统力学检测部件520、530的电流线中的电流方向相反;微机电系统力学检测部件530、540的电流线中的电流方向相反;微机电系统力学检测部件540、540的电流线中的电流方向相反。这样,可以利用四组微机电系统力学检测部件520、530、540、550形成惠斯通电桥,以提高微机电系统力学传感器的检测性能。
磁阻的尺寸很小,例如,隧穿磁阻的尺寸是0.1-5um,巨磁阻的尺寸是0.5-20um。因此,如上面附图6、7所示,可以在衬底上设置多组包括磁阻和电流线的微机电系统力学检测部件。
图8示出了根据这里公开的一个实施例的微机电系统力学传感器单体的示意图。
如图8所示,微机电系统力学传感器单体600包括单体外壳610、上面描述的微机电系统力学传感器602以及集成电路芯片630。微机电系统力学传感器620以及集成电路芯片630被设置在所述单体外壳610中。微机电系统力学传感器620与单体外壳610的进气口对应。微机电系统力学传感器620、集成电路芯片630和单体外壳610中的电路通过引线640连接。
图9示出了根据这里公开的一个实施例的电子设备的示意图。
如图9所示,电子设备700可以包括图8所示的微机电系统力学传感器单体710。电子设备700可以是手机、平板电脑、可穿戴设备等。
以上所述仅是本说明书实施例的具体实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本说明书实施例原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本说明书实施例的保护范围。

Claims (11)

  1. 一种微机电系统力学传感器,包括:
    第一支撑件;
    位于第一支撑件上的第一元件;
    可移动部件,该可移动部件能接受力学作用以相对于第一支撑件产生第一位移;以及
    位于可移动部件上的第二元件;
    其中,在未施加所述力学作用的工作情况下,第一元件位于第二元件的元件平面外侧;
    其中,第一元件和第二元件中的一个是磁阻,另一个是第一电流线;以及
    其中,由第一电流线对所述磁阻所施加的磁场随所述第一位移变化,以使得所述磁阻的阻值变化,从而产生传感器信号。
  2. 根据权利要求1所述的微机电系统力学传感器,其中,第一元件是第一电流线,以及第二元件是磁阻。
  3. 根据权利要求1或2所述的微机电系统力学传感器,还包括:
    第二支撑件,所述可移动部件能接受所述力学作用以相对于第二支撑件产生第二位移;以及
    第二电流线;
    其中,第二支撑件支撑第二电流线,以使得在未施加所述力学作用的工作情况下第二电流线位于所述磁阻的元件平面外侧,以及
    其中,由第二电流线对所述磁阻所施加的磁场随所述第二位移变化,以使得所述磁阻的阻值变化。
  4. 根据权利要求1-3中任一项所述的微机电系统力学传感器,其中,在未施加所述力学作用的工作情况下,所述第一电流线和第二电流线相对于所述磁阻的元件平面对称,以及所述磁阻位于所述第一电流线和第二电流线之间。
  5. 根据权利要求1-4中任一项所述的微机电系统力学传感器,其中,所述第一电流线和第二电流线中的电流方向相同。
  6. 根据权利要求1-5中任一项所述的微机电系统力学传感器,其中,所述电流线对所述磁阻所施加的磁场的方向与所述磁阻的钉扎方向平行。
  7. 根据权利要求1-6中任一项所述的微机电系统力学传感器,其中,所述第一元件相对于所述第二元件位于所述微机电系统力学传感器内侧。
  8. 根据权利要求1-7中任一项所述的微机电系统力学传感器,其中,在所述可移动部件上设置有质量块,以使得所述磁阻在所述力学作用下产生加速度传感器信号;或者
    其中,所述微机电系统力学传感器包括密封腔,所述可移动部件是密封腔的压力感测膜,以使得所述磁阻在所述力学作用下产生压力传感器信号。
  9. 根据权利要求1-8中任一项所述的微机电系统力学传感器,其中,所述微机电系统力学传感器是微机电系统麦克风、微机电系统压力传感器和微机电系统加速度传感器中的一个。
  10. 一种微机电系统力学传感器单体,包括单体外壳、根据权利要求1-9中任一项所述的微机电系统力学传感器以及集成电路芯片,其中,所述微机电系统力学传感器以及集成电路芯片被设置在所述单体外壳中。
  11. 一种电子设备,包括根据权利要求10所述的微机电系统力学传感器单体。
PCT/CN2021/114249 2020-08-24 2021-08-24 微机电系统力学传感器、传感器单体及电子设备 WO2022042524A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010858551.7 2020-08-24
CN202010858551.7A CN112014001B (zh) 2020-08-24 2020-08-24 微机电系统力学传感器、传感器单体及电子设备

Publications (1)

Publication Number Publication Date
WO2022042524A1 true WO2022042524A1 (zh) 2022-03-03

Family

ID=73504224

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/114249 WO2022042524A1 (zh) 2020-08-24 2021-08-24 微机电系统力学传感器、传感器单体及电子设备

Country Status (2)

Country Link
CN (1) CN112014001B (zh)
WO (1) WO2022042524A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115079061A (zh) * 2022-05-05 2022-09-20 歌尔微电子股份有限公司 微机电系统差分磁传感器、传感器单体及电子设备

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112014001B (zh) * 2020-08-24 2022-06-10 歌尔微电子有限公司 微机电系统力学传感器、传感器单体及电子设备
CN113630704B (zh) * 2021-07-30 2023-03-28 歌尔微电子股份有限公司 微机电系统麦克风、麦克风单体及电子设备
CN113630705B (zh) * 2021-07-30 2023-03-28 歌尔微电子股份有限公司 微机电系统麦克风、麦克风单体及电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060071655A1 (en) * 2004-10-01 2006-04-06 Tdk Corporation Current sensor
CN101065721A (zh) * 2004-09-27 2007-10-31 皇家飞利浦电子股份有限公司 用于输入设备的磁传感器
CN105143902A (zh) * 2013-03-18 2015-12-09 日立金属株式会社 磁传感器
CN107003188A (zh) * 2014-12-10 2017-08-01 Hci维奥卡尔技术公司 力感测装置
CN109941956A (zh) * 2019-02-25 2019-06-28 歌尔股份有限公司 Mems传感器及电子设备
US20200057121A1 (en) * 2018-08-17 2020-02-20 Isentek Inc. Magnetic field sensing device
CN112014001A (zh) * 2020-08-24 2020-12-01 歌尔微电子有限公司 微机电系统力学传感器、传感器单体及电子设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7355882B2 (en) * 2003-11-24 2008-04-08 Nxp B.V. Method and device for performing active field compensation during programming of a magnetoresistive memory device
WO2013099504A1 (ja) * 2011-12-28 2013-07-04 アルプス・グリーンデバイス株式会社 電流センサ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101065721A (zh) * 2004-09-27 2007-10-31 皇家飞利浦电子股份有限公司 用于输入设备的磁传感器
US20060071655A1 (en) * 2004-10-01 2006-04-06 Tdk Corporation Current sensor
CN105143902A (zh) * 2013-03-18 2015-12-09 日立金属株式会社 磁传感器
CN107003188A (zh) * 2014-12-10 2017-08-01 Hci维奥卡尔技术公司 力感测装置
US20200057121A1 (en) * 2018-08-17 2020-02-20 Isentek Inc. Magnetic field sensing device
CN109941956A (zh) * 2019-02-25 2019-06-28 歌尔股份有限公司 Mems传感器及电子设备
CN112014001A (zh) * 2020-08-24 2020-12-01 歌尔微电子有限公司 微机电系统力学传感器、传感器单体及电子设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115079061A (zh) * 2022-05-05 2022-09-20 歌尔微电子股份有限公司 微机电系统差分磁传感器、传感器单体及电子设备

Also Published As

Publication number Publication date
CN112014001B (zh) 2022-06-10
CN112014001A (zh) 2020-12-01

Similar Documents

Publication Publication Date Title
WO2022042524A1 (zh) 微机电系统力学传感器、传感器单体及电子设备
Wang et al. A MEMS piezoelectric in-plane resonant accelerometer based on aluminum nitride with two-stage microleverage mechanism
CN109941956B (zh) Mems传感器及电子设备
CN109275080B (zh) 一种传感器
CN109246566B (zh) Mems传感器
CN107796955B (zh) 多梁式单质量块面内双轴加速度传感器芯片及其制备方法
CN111885472B (zh) 微机电系统麦克风、麦克风单体及电子设备
CN110780088B (zh) 多桥路隧道磁阻双轴加速度计
Yang et al. A T-shape aluminum nitride thin-film piezoelectric MEMS resonant accelerometer
CN109218870B (zh) 一种麦克风
WO2022042525A1 (zh) 微机电系统磁阻传感器、传感器单体及电子设备
CN113613152B (zh) 微机电系统麦克风、麦克风单体及电子设备
Chen et al. A novel CMOS-MEMS tri-axial tactile force sensor using capacitive and piezoresistive sensing mechanisms
US8950258B2 (en) Micromechanical angular acceleration sensor and method for measuring an angular acceleration
Tu et al. Vertical integration of capacitive and piezo-resistive sensing units to enlarge the sensing range of CMOS-MEMS tactile sensor
US6895818B2 (en) Differential in-plane tunneling current sensor
CN111854925B (zh) 微机电系统绝对压力传感器、传感器单体及电子设备
CN109788403B (zh) 检测膜体、传感器及电子设备
WO2022183828A1 (zh) Mems传感器及电子设备
CN113630705B (zh) 微机电系统麦克风、麦克风单体及电子设备
JP2004354074A (ja) 半導体加速度センサ
JP2007101413A (ja) 加速度検出装置
TWI555697B (zh) 微機電裝置
Wang et al. High performance piezoresistive accelerometer based on the slot etching in the EB (eight-beam) structure
CN115079061A (zh) 微机电系统差分磁传感器、传感器单体及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21860359

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26/06/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21860359

Country of ref document: EP

Kind code of ref document: A1