WO2022042312A1 - 一种照明设备的控制方法及可穿戴设备 - Google Patents

一种照明设备的控制方法及可穿戴设备 Download PDF

Info

Publication number
WO2022042312A1
WO2022042312A1 PCT/CN2021/112137 CN2021112137W WO2022042312A1 WO 2022042312 A1 WO2022042312 A1 WO 2022042312A1 CN 2021112137 W CN2021112137 W CN 2021112137W WO 2022042312 A1 WO2022042312 A1 WO 2022042312A1
Authority
WO
WIPO (PCT)
Prior art keywords
lighting
lighting device
wearable device
function
parameter
Prior art date
Application number
PCT/CN2021/112137
Other languages
English (en)
French (fr)
Inventor
胡尔佳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022042312A1 publication Critical patent/WO2022042312A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/175Controlling the light source by remote control
    • H05B47/19Controlling the light source by remote control via wireless transmission
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/105Controlling the light source in response to determined parameters
    • H05B47/11Controlling the light source in response to determined parameters by determining the brightness or colour temperature of ambient light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/165Controlling the light source following a pre-assigned programmed sequence; Logic control [LC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Definitions

  • the present application relates to the field of smart homes, and in particular, to a control method of a lighting device and a wearable device.
  • Lighting equipment can automatically perform various functions such as turning on and off lights when the surrounding environment changes, providing convenience for users and being widely used.
  • the lighting device needs to integrate multiple sensors to detect changes in the surrounding environment, resulting in a significant increase in cost.
  • the way of integrating multiple sensors in lighting equipment cannot provide users with personalized lighting services.
  • the present application provides a lighting device control method and a wearable device, which can control the lighting device to provide personalized lighting services for different users while the hardware cost increases little or not.
  • a wearable device in a first aspect, includes: one or more processors; one or more memories; and one or more computer programs, wherein the one or more computer programs are stored on the one or more memories, when the computer program is stored by the one or more memories
  • the wearable device is caused to perform the following steps: after detecting that the user exits the sleep state and the current time is within a preset time period, the wearable device detects the distance between the wearable device and the lighting device; After the distance between the wearable device and the lighting device is less than or equal to the preset distance threshold, the wearable device sends a message to the lighting device; the message is used to instruct the lighting device to perform a specific function.
  • the present application provides a method to automatically perform a specific function (for example, turn on the lighting function of the lighting device) according to the distance between the wearable device and the lighting device, which can provide users with personalized lighting services to meet the needs of different users. Improve the experience of intelligent control for lighting needs in different scenarios. Furthermore, the embodiments of the present application can implement the intelligent control solution provided by the embodiments of the present application without the need to upgrade the firmware while the hardware cost of the lighting device increases little or not. The intelligent control experience is high and the cost is low.
  • the wearable device further performs the following steps: after the detected distance between the wearable device and the lighting device changes from a distance less than or equal to a preset distance threshold to a distance greater than the preset distance threshold, the wearable device may The wearable device sends another message to the lighting device; the other message is used to instruct the lighting device to perform another specific function. Therefore, a method for automatically executing another specific function (eg, turning off the lighting function) when the distance between the wearable device and the lighting device changes to a distance greater than a preset distance threshold is provided to improve the experience of intelligent control.
  • another specific function eg, turning off the lighting function
  • the wearable device after detecting that the user exits the sleep state and the current time is within a preset time period, the wearable device detects the distance between the wearable device and the lighting device, including: detecting the distance between the wearable device and the lighting device. After the user exits the sleep state and the current time is within the preset time period, the wearable device broadcasts a request at a preset period; after receiving a response from the lighting device to the request, the wearable device detects the wearable device and the lighting device. the distance between.
  • a method for triggering the wearable device to automatically detect the distance is provided to improve the experience of intelligent control.
  • the message is used to instruct the lighting device to perform a specific function, including: the message is used to instruct the lighting device to perform a specific function according to the first parameter; the other message is used to Instructing the lighting device to perform another specific function, including: the other message is used to instruct the lighting device to perform another specific function according to the second parameter; the first parameter and the second parameter are associated with the wearable device, the lighting device, and the wearable device At least one of a distance from the lighting device and a change thereof; the preset distance threshold is associated with at least one of the wearable device and the lighting device. It can be seen that the lighting device can provide users with personalized services according to different parameters carried in the message or another message, and improve the experience of intelligent control.
  • the message includes the first parameter
  • the other message includes the second parameter
  • the message includes the first parameter and the second parameter
  • the request includes the first parameter and the second parameter
  • the first parameter and the second parameter are preset by the user. That is to say, the lighting parameters corresponding to the wearable device may be sent to the lighting device at one time, or may be sent to the lighting device in batches. For example, when the lighting device is instructed to perform a specific function, a lighting parameter (eg, a first parameter) corresponding to the specific function is sent. When the lighting device is instructed to perform another specific function, a lighting parameter (eg, a second parameter) corresponding to the other specific function is sent.
  • the first parameter when the specific function is turning on the light, the first parameter includes, for example, turning on the light immediately, turning on the light slowly, and the like.
  • the second parameter when the lights are turned off, the second parameter includes, for example, immediate lights off and delayed lights off.
  • the time-delayed light-off includes time-delayed light-off of different durations.
  • the message includes the identity information of the wearable device and/or the identity information of the lighting device; the request is used to publish the ranging service, and the response is used to subscribe to the ranging service; specific functions and other
  • a specific function includes a single function and a combined function; the single function of the specific function includes the lighting function; the combined function of the specific function includes the lighting function and its related functions; the single function of another specific function includes the lighting function.
  • the combined function of the functions includes turning off the lighting function and its related functions; the first parameter and the second parameter include at least one of light intensity, color temperature, whether to turn off with a delay, and the duration of the delayed shutdown.
  • the related functions include, but are not limited to, the angle deflection function, the lifting function and other action functions.
  • the message contains the identity information of the wearable device and/or the identity information of the lighting device;
  • the request contains the identity information of the wearable device and/or the identity information of the lighting device, and the request is also used to publish the ranging service;
  • the response is used to subscribe to the measurement Distance service; request and response are also used for identity authorization matching verification;
  • a specific function and another specific function include a single function and a combined function; the single function of the specific function includes the lighting function; the combined function of the specific function includes the lighting function and the combination function.
  • the single function of another specific function includes turning off the lighting function;
  • the combined function of another specific function includes turning off the lighting function and its related functions;
  • the first parameter and the second parameter include light intensity, color temperature, whether to delay shutdown, At least one of the length of time for delayed shutdown;
  • the lighting device communicates with the electronic device by wire or wirelessly.
  • the related functions include, but are not limited to, the angle deflection function, the lifting function and other action functions.
  • the specific function is a single function, such as turning on a light.
  • a specific function is a combination function, for example, rotating the light to a certain angle and turning on the light, or lowering the position of the light and turning on the light.
  • the lighting device receives a message or another message sent by the wearable device of the child or the elderly, it can control the light to descend a certain distance, so that the child or the elderly can see more clearly.
  • the other specific function is a single function, for example, turning off the light.
  • a specific function is a combined function, for example, adjusting the angle of the light to the default angle and turning off the light, or adjusting the waiting position back to the default position and turning off the light.
  • a lighting device in a second aspect, includes: one or more processors; one or more memories; and one or more computer programs, wherein the one or more computer programs are stored on the one or more memories, when the computer program is stored by one or more
  • the lighting device is caused to perform the following steps: after receiving a request sent by the electronic device, or after detecting that the current time is within a preset time period, the lighting device detects the connection between the lighting device and the wearable device. Distance; wherein the request is used to indicate that the current time is within a preset time period; after the detected distance between the lighting device and the wearable device is less than or equal to the preset distance threshold, the lighting device performs a specific function.
  • the electronic device may be a wearable device, or may be other smart devices such as a router. That is, ranging is performed by the lighting device, and certain functions are automatically performed according to the distance between the wearable device and the lighting device. It can be seen that there are fewer interactive messages between the lighting device and the wearable device, which is beneficial to speed up the response speed of the lighting device to the wearable device. Moreover, since lighting devices are generally powered by a power supply, there is no need to consider the power supply issue; while wearable devices are generally powered by batteries, the standby time needs to be considered. The ranging service provided by the lighting device is beneficial to reduce the power consumption of the wearable device and prolong the standby time of the wearable device.
  • the lighting device further performs the following steps: after the detected distance between the lighting device and the wearable device changes from less than or equal to a preset distance threshold to greater than a preset distance threshold, the lighting device performs another specific function.
  • the lighting device after receiving a request sent by the electronic device, or after detecting that the current time is within a preset time period; the lighting device detects the connection between the lighting device and the wearable device. distance; wherein the request is used to indicate that the current time is within the preset time period; including: after receiving a request sent by the electronic device, wherein the request is used to indicate that the current time is within the preset time period; After the time is within a preset time period; the lighting device broadcasts a message at a preset period; after receiving a response from the wearable device to the message, the lighting device detects the distance between the lighting device and the wearable device.
  • the lighting device performing a specific function includes: the lighting device performs a specific function according to the first parameter; the lighting device performs another specific function, including: the lighting device performs another specific function according to the second parameter.
  • a specific function; the first parameter and the second parameter are associated with at least one of the lighting device, the wearable device, the distance between the lighting device and the wearable device and its change; the preset distance threshold is associated with the wearable device and the lighting device At least one of; the first parameter and the second parameter are preset by the user.
  • the message includes the identity information of the wearable device and/or the identity information of the lighting device, the message is used to publish the ranging service, and the response is used to subscribe to the ranging service;
  • the message and response are also used for the matching verification of identity authority;
  • a specific function and another specific function include a single function and a combined function; the single function of the specific function includes the lighting function; the combined function of the specific function includes the lighting function and its related functions.
  • the single function of another specific function includes turning off the lighting function; the combined function of another specific function includes turning off the lighting function and its related functions; the first parameter and the second parameter include light intensity, color temperature, whether to delay shutdown, delay shutdown At least one of the durations; the lighting device communicates with the electronic device by wire or wirelessly.
  • the related functions include, but are not limited to, the angle deflection function, the lifting function and other action functions.
  • a method for controlling a lighting device is provided, which is applied to a wearable device.
  • the method includes: after detecting that the user exits the sleep state and the current time is within a preset time period, the wearable device detects the distance between the wearable device and the lighting device; after the detected distance between the wearable device and the lighting device After the distance is less than or equal to the preset distance threshold, the wearable device sends a message to the lighting device; the message is used to instruct the lighting device to perform a specific function.
  • the method further includes: after the detected distance between the wearable device and the lighting device changes from a distance less than or equal to a preset distance threshold to a distance greater than a preset distance threshold The lighting device sends another message; the other message is used to instruct the lighting device to perform another specific function.
  • the wearable device after detecting that the user exits the sleep state and the current time is within a preset time period, the wearable device detects the distance between the wearable device and the lighting device, including: detecting the distance between the wearable device and the lighting device. After the user exits the sleep state and the current time is within the preset time period, the wearable device broadcasts a request; after receiving a response from the lighting device to the request, the wearable device detects the distance between the wearable device and the lighting device .
  • the message is used to instruct the lighting device to perform a specific function, including: a message is used to instruct the lighting device to perform a specific function according to the first parameter; another message is used to instruct the lighting device to perform another
  • the specific function includes: another message is used to instruct the lighting device to perform another specific function according to the second parameter; the first parameter and the second parameter are related to the wearable device, the lighting device, the distance between the wearable device and the lighting device, and At least one of changes; the preset distance threshold is associated with at least one of the wearable device and the lighting device.
  • the message includes the first parameter, and the other message includes the second parameter; or the message includes the first parameter and the second parameter; or the request includes the first parameter and the second parameter ; or, the first parameter and the second parameter are preset by the user.
  • the message includes the identity information of the wearable device and/or the identity information of the lighting device; the request is used to publish the ranging service, and the response is used to subscribe to the ranging service; specific functions and other
  • a specific function includes a single function and a combined function; the single function of the specific function includes the lighting function; the combined function of the specific function includes the lighting function and its related functions; the single function of another specific function includes the lighting function.
  • the combined function of the functions includes turning off the lighting function and its related functions; the first parameter and the second parameter include at least one of the light intensity, color temperature, whether to delay the shutdown, and the duration of the delay shutdown; or, the message includes the wearable device.
  • Identity information and/or identity information of lighting equipment requests include identity information of wearable devices and/or identity information of lighting equipment, requests are also used to publish ranging services; responses are used to subscribe to ranging services; requests and responses are also used Matching and verification of identity authority; both a specific function and another specific function include a single function and a combined function; the single function of a specific function includes the lighting function; the combined function of a specific function includes the lighting function and its related functions; another specific function The single function includes turning off the lighting function; the combined function of another specific function includes turning off the lighting function and its related functions; the first parameter and the second parameter include at least one of the light intensity, color temperature, whether to delay the shutdown, and the duration of the delay shutdown. one.
  • the related functions include, but are not limited to, the angle deflection function, the lifting function and other action functions.
  • a method for controlling a lighting device which is applied to the lighting device.
  • the method includes: after receiving a request sent by the electronic device, wherein the request is used to indicate that the current time is within a preset time period; or, after detecting that the current time is within the preset time period; the lighting device detects that the lighting device is within the preset time period; The distance between wearable devices; after the detected distance between the lighting device and the wearable device is less than or equal to a preset distance threshold, the lighting device performs a specific function.
  • the method further includes: after the detected distance between the lighting device and the wearable device changes from a distance less than or equal to a preset distance threshold to a distance greater than a preset distance threshold, the lighting device executes Another specific function.
  • the request is used to indicate that the current time is within the preset time period; or, after detecting that the current time is within the preset time period
  • the lighting device detects the distance between the lighting device and the wearable device; including: after receiving a request sent by the electronic device, wherein the request is used to indicate that the current time is within a preset time period; After the time is within a preset time period; the lighting device broadcasts a message at a preset period; after receiving a response from the wearable device to the message, the lighting device detects the distance between the lighting device and the wearable device.
  • the lighting device performing a specific function includes: the lighting device performs a specific function according to the first parameter; the lighting device performs another specific function, including: the lighting device performs another specific function according to the second parameter.
  • Specific function; the first parameter and the second parameter are associated with at least one of the lighting device, the wearable device, the distance between the lighting device and the wearable device and the change; the preset distance threshold is associated with the wearable device and the lighting device At least one item of ; the first parameter and the second parameter are preset by the user.
  • the message includes the identity information of the wearable device and/or the identity information of the lighting device, the message is used to publish the ranging service, and the response is used to subscribe to the ranging service; the message and the response also Matching verification for identity authority; both a specific function and another specific function include a single function and a combined function; the single function of a specific function includes the lighting function; the combined function of a specific function includes the lighting function and its related functions; another specific function The single function of the function includes turning off the lighting function; the combined function of another specific function includes turning off the lighting function and its related functions; the first parameter and the second parameter include the light intensity, color temperature, whether to delay the shutdown, and the duration of the delay shutdown. At least one item; the lighting device communicates with the electronic device by wire or wirelessly.
  • the related functions include, but are not limited to, the angle deflection function, the lifting function and other action functions.
  • a lighting device in a fifth aspect, includes: one or more processors; one or more memories; and one or more computer programs, wherein the one or more computer programs are stored on the one or more memories, when the computer program is stored by one or more
  • the processor When the processor is executed, it causes the lighting device to perform the following steps: receiving a message sent by the wearable device, the message is used to instruct the lighting device to perform a specific function; the lighting device performs the specific function; the message indicates that the wearable device is detecting Sent after the user exits the sleep state and the current time is within the preset time period, and the detected distance between the wearable device and the lighting device is less than or equal to the preset distance threshold.
  • the lighting device further performs the following steps: receiving another message from the wearable device, the other message being used to instruct the lighting device to perform another specific function; and the lighting device performing another specific function.
  • the other message is sent by the lighting device after the detected distance between the wearable device and the lighting device changes from a distance less than or equal to a preset distance threshold to a distance greater than the preset distance threshold.
  • an electronic device in a sixth aspect, includes: one or more processors; one or more memories; and one or more computer programs, wherein the one or more computer programs are stored on the one or more memories, when the computer program is stored by one or more
  • the electronic device is caused to perform the following steps: after detecting that the user exits the sleep state and the current time is within a preset time period, send a request to the lighting device, the request being used to instruct the lighting device to measure the wearable device and lighting distance between devices.
  • the electronic device may be a wearable device, or may be a smart device such as a router.
  • the wearable device can detect whether the user exits the sleep state and the current time is within a preset time period.
  • other devices such as wearable devices may notify the router after detecting that the user exits the sleep state and the current time is within a preset time period, and the router sends the request.
  • a computer-readable storage medium includes a computer program, which when executed on a lighting device, causes the lighting device to perform the method of the third aspect and any one of the implementations of the third aspect.
  • the seventh aspect and any one implementation manner of the seventh aspect correspond to any one implementation manner of the third aspect and the third aspect, respectively.
  • the technical effects corresponding to the seventh aspect and any implementation manner of the seventh aspect reference may be made to the technical effects corresponding to the third aspect and any implementation manner of the third aspect, which will not be repeated here.
  • a computer-readable storage medium includes a computer program, and when the computer program runs on a wearable device, causes the wearable device to perform the fourth aspect and the method of any one of the implementations of the fourth aspect.
  • the eighth aspect and any one implementation manner of the eighth aspect correspond to any one implementation manner of the fourth aspect and the fourth aspect, respectively.
  • the technical effects corresponding to the eighth aspect and any implementation manner of the eighth aspect reference may be made to the technical effects corresponding to the fourth aspect and any implementation manner of the fourth aspect, which will not be repeated here.
  • a ninth aspect provides a computer program product that, when running on a computer, causes the computer to execute the method of the third aspect and any one of the implementation manners of the third aspect, or any one of the fourth aspect and the fourth aspect method of implementation.
  • the ninth aspect and any one implementation manner of the ninth aspect correspond to the third aspect, the fourth aspect, and any one implementation manner of the third aspect and the fourth aspect, respectively.
  • the technical effects corresponding to the ninth aspect and any one of the implementations of the ninth aspect please refer to the technical effects corresponding to the third aspect, the fourth aspect, and any one of the third and fourth aspects. No longer.
  • a tenth aspect provides a chip system, including a processor.
  • the processor executes an instruction
  • the processor executes the method of the third aspect and any one of the implementation manners of the third aspect, or any of the fourth aspect and the fourth aspect. A way to do it.
  • the present application provides a method for controlling a lighting device and a wearable device, which can control the lighting device to provide personalized lighting services for different users while the hardware cost increases with little or no increase.
  • the user in addition to setting the lighting parameters of the lighting device for the first time, the user does not need to perform any control on the lighting device during use, the user does not feel the whole process, and the user experience is better.
  • FIG. 1 is a schematic diagram of an application scenario provided by an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of a wearable device provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a lighting device provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a graphical user interface of a wearable device provided by an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of a method for setting lighting parameters of a lighting device according to an embodiment of the present application
  • FIG. 6 is a schematic flowchart of a control method for a lighting device provided by an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a control method for a lighting device provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of an application site provided by an embodiment of the present application:
  • FIG. 9 is a schematic structural diagram of a chip system provided by an embodiment of the present application.
  • A/B can mean A or B; "and/or” in this application is only a way to describe the associated object
  • An association relationship means that there can be three kinds of relationships.
  • a and/or B can mean that A exists alone, A and B exist at the same time, and B exists alone.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implicitly indicating the number of indicated technical features.
  • a feature defined as “first” or “second” may expressly or implicitly include one or more of that feature.
  • plural means two or more.
  • words such as “exemplary” or “for example” are used to represent examples, illustrations or illustrations. Any embodiments or designs described in the embodiments of the present application as “exemplary” or “such as” should not be construed as preferred or advantageous over other embodiments or designs. Rather, the use of words such as “exemplary” or “such as” is intended to present the related concepts in a specific manner.
  • Embodiments of the present application provide a method for controlling a lighting device, where the lighting device can automatically provide different personalized lighting services for different users based on a wearable device (wearable device) worn by the user or a mobile device carried by the user.
  • a wearable device wearable device
  • the following takes wearable devices as an example for description.
  • FIG. 1 is a schematic diagram of an application scenario provided by an embodiment of the present application.
  • FIG. 1 shows a wearable device 100 , and a lighting device 200 .
  • the numbers of the wearable device 100 and the lighting device 200 in FIG. 1 are only illustrative examples. At least one of the wearable device 100 and the lighting device 200 may be plural.
  • the wearable device 100 refers to a portable device that is directly worn on the body or integrated into the user's clothes or accessories. Wearable devices are not just a hardware device, they can also achieve a variety of functions through software support and data interaction during use. Wearable devices mostly exist in the form of portable accessories that have some computing functions and can be connected to mobile phones and various terminals (such as lighting equipment). According to the mainstream of products, wearable devices include mainstream products and non-mainstream products.
  • Mainstream products include wrist-supported watches, such as watches, bracelets, wristbands, rings, etc.; foot-supported shoes, such as shoes, socks, knee pads or other products worn on the legs ; Glasses supported by the head, such as glasses, helmets, headbands, earrings, nose studs, ear studs, necklaces, etc.
  • Non-mainstream products include smart clothing, school bags, crutches, accessories, etc. The present application does not limit the specific form of the wearable device 100 .
  • the lighting device 200 is a device capable of providing intelligent lighting.
  • the lighting device 200 can control the lighting device through technologies such as Internet of Things technology, wired/wireless communication technology, power carrier communication technology, embedded computer intelligent information processing, and energy-saving control.
  • the lighting device 200 has intensity adjustment of the brightness of the light, adjustment of the color temperature of the light, adjustment of the illumination angle, soft turn on of the light, soft turn off of the light, soft switch of the light tube, timing control, and scene control, etc. Function.
  • the light soft-on function means that when the light is turned on, the light gradually becomes brighter from dark.
  • the light soft-off function means that when the light is turned off, the light gradually turns from bright to dark.
  • the light soft switch function means that when the light is turned on, the light gradually becomes brighter from dark; when the light is turned off, the light gradually becomes darker from brighter. In this way, it is possible to avoid sudden changes in brightness from irritating the eyes, and at the same time, avoid the impact of sudden changes in high current and high temperature on the lighting equipment, and prolong the life of the lighting equipment.
  • the scene control function refers to setting the scene of a specific mode. In the scene of a specific mode, there is no need to switch on and off each lighting device one by one, adjust the brightness of each lighting device, etc., and trigger a button to realize the control of a group of lighting devices, such as turning on and off a group of lighting devices, brightness adjustment, etc. Specific modes include going home mode, leaving home mode, meeting guest mode, dining mode, cinema mode, and the like.
  • both the wearable device and the lighting device are connected through wireless communication.
  • the wireless ranging service based on the wearable device or the lighting device automatically turns on the lighting device when it is detected that the distance between the wearable device and the lighting device is within a preset distance range.
  • wearable devices have privacy, that is, one wearable device is worn by one user, so different wearable devices can represent different users. Therefore, the user's identity can be identified by identifying the wearable device, and personalized lighting services can be provided for different users, which greatly improves the intelligent control experience of the lighting device.
  • turning on a lighting device refers to turning on the lighting function of the lighting device, excluding the situation where the lighting device is powered on but the lighting function is not turned on;
  • turning off the lighting device refers to turning off the lighting function of the lighting device, including the lighting device being powered on But the lighting function is not turned on.
  • some lighting fixtures include warning lights, such as LED warning lights. Generally speaking, the brightness of the warning light is small, which is used to warn when the lighting equipment has an abnormality such as failure or disconnection. The turning on of the above warning lights is not within the scope of "turning on lighting equipment” in this application; similarly, turning off the above warning lights is not within the scope of applying for "turning off lighting equipment”.
  • the above-mentioned wireless ranging service may include, but is not limited to, a ranging service based on Wi-Fi Aware (Wi-Fi Aware) technology, also known as Neighbor Awareness Networking (NAN); a Bluetooth-based received signal strength Ranging service of received signal strength indicator (RSSI); Ranging service of Wi-Fi-based RSSI, etc.
  • Wi-Fi Aware Wi-Fi Aware
  • NAN Neighbor Awareness Networking
  • RSSI received signal strength indicator
  • Ranging service of Wi-Fi-based RSSI etc.
  • the above Wi-Fi sensing ranging service is used to determine the distance between the two wireless devices according to the round-trip duration of the wireless signal between the two wireless devices and the transmission speed of the wireless signal.
  • the WLAN round-trip time and related fine timing measurement (FTM) functions are specified in the IEEE 802.11mc standard. Specifically, the FTM function can calculate the time required for the round trip of the measurement data packet between the two wireless devices, and multiply the time required for the round trip of the measurement data packet between the two wireless devices by the speed of light to obtain the distance between the two wireless devices. the distance.
  • a wearable device can send measurement packets and record when they are sent. After receiving the measurement data packet, the lighting device sends the measurement data packet (and may also carry other information) again.
  • the wearable device After the wearable device receives the measurement data packet sent by the lighting device, it records the receiving time, and calculates the time difference between the receiving time and the sending time. The product of this time difference and the speed of light is recorded as the distance between the wearable device and the lighting device. Alternatively, the sending and receiving relationship between the lighting device and the wearable device can also be exchanged, and the distance between the two can be determined accordingly, which is not limited in this application.
  • the above RSSI ranging service is used for the receiving wireless device to determine the receiving wireless device according to the strength of the received wireless signal (for example, a Bluetooth signal or a Wi-Fi signal) on the premise that the receiving wireless device knows the transmit power of the sending wireless device.
  • the distance from the transmitting wireless device For example, a wearable device broadcasts a bluetooth low energy (LTE) signal, and a lighting device determines the distance between the two based on the received BLE signal strength after receiving the BLE signal broadcast by the wearable device. The higher the BLE signal strength, the smaller the distance between the two.
  • LTE bluetooth low energy
  • the transmit-receive relationship between the lighting device and the wearable device is interchanged, and the lighting device determines the distance between the two based on the received BLE signal strength.
  • FIG. 2 shows a schematic structural diagram of a wearable device 100 .
  • the wearable device 100 may include a processor 110, an internal memory 120, a universal serial bus (USB) interface 130, a charging management module 140, a power management module 141, a battery 142, an antenna 150, a wireless communication module 160, audio Module 170, speaker 170A, receiver 170B, microphone 170C, headphone jack 170D, sensor module 180, buttons 190, motor 191, indicator 192, camera 193, display screen 194 and so on.
  • the sensor module 180 may include an acceleration sensor 180A, a gyro sensor 180B, a temperature sensor 180C, a touch sensor 180D, a distance sensor 180E, a proximity light sensor 180F, and the like.
  • the processor 110 may include one or more processing units, for example, the processor 110 may include an application processor (application processor, AP), a modem processor, a graphics processor (graphics processing unit, GPU), an image signal processor (image signal processor, ISP), controller, video codec, digital signal processor (digital signal processor, DSP), and/or neural-network processing unit (neural-network processing unit, NPU), etc. Wherein, different processing units may be independent devices, or may be integrated in one or more processors.
  • application processor application processor, AP
  • modem processor graphics processor
  • ISP image signal processor
  • controller video codec
  • digital signal processor digital signal processor
  • NPU neural-network processing unit
  • Internal memory 120 may be used to store computer executable program code, which includes instructions.
  • the internal memory 120 may include a stored program area and a stored data area.
  • the storage program area can store an operating system, an application program required for at least one function (such as a sound playback function, an image playback function, etc.), and the like.
  • the storage data area may store data (such as audio data, phone book, etc.) created during the use of the wearable device 100 and the like.
  • the internal memory 120 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, universal flash storage (UFS), and the like.
  • the processor 110 executes various functional applications and data processing of the wearable device 100 by executing the instructions stored in the internal memory 120 and/or the instructions stored in the memory provided in the processor.
  • the internal memory 120 stores the relevant program codes of the ranging service.
  • the wireless communication module 160 can be used to measure and communicate with other devices. (eg, lighting devices 200). Then, the processor 110 can realize intelligent control (turn on or turn off) the lighting device according to the distance between itself and the lighting device 200 .
  • the wireless communication module 160 can provide applications on the wearable device 100 including wireless local area networks (WLAN) (such as wireless fidelity (Wi-Fi) networks), bluetooth (BT), global navigation Satellite system (global navigation satellite system, GNSS), frequency modulation (frequency modulation, FM), near field communication technology (near field communication, NFC), infrared technology (infrared, IR) and other wireless communication solutions.
  • WLAN wireless local area networks
  • BT wireless fidelity
  • GNSS global navigation Satellite system
  • frequency modulation frequency modulation, FM
  • NFC near field communication technology
  • infrared technology infrared, IR
  • the wireless communication module 160 may be one or more devices integrating at least one communication processing module.
  • the wireless communication module 160 receives electromagnetic waves via the antenna 150 , modulates and filters the electromagnetic wave signals, and sends the processed signals to the processor 110 .
  • the wireless communication module 160 can also receive the signal to be sent from the processor 110 , perform frequency modulation on it, amplify it, and convert it into electromagnetic waves
  • the antenna 150 and the wireless communication module 160 are coupled so that the wearable device 100 can communicate with the network and other devices through wireless communication technology.
  • the wireless communication technology may include global system for mobile communications (GSM), general packet radio service (GPRS), code division multiple access (CDMA), broadband Code Division Multiple Access (WCDMA), Time Division Code Division Multiple Access (TD-SCDMA), Long Term Evolution (LTE), BT, GNSS, WLAN, NFC , FM, and/or IR technology, etc.
  • the GNSS may include global positioning system (global positioning system, GPS), global navigation satellite system (global navigation satellite system, GLONASS), Beidou navigation satellite system (beidou navigation satellite system, BDS), quasi-zenith satellite system (quasi satellite system) -zenith satellite system, QZSS) and/or satellite based augmentation systems (SBAS).
  • global positioning system global positioning system, GPS
  • global navigation satellite system global navigation satellite system, GLONASS
  • Beidou navigation satellite system beidou navigation satellite system, BDS
  • quasi-zenith satellite system quadsi satellite system
  • QZSS quasi-zenith satellite system
  • SBAS satellite based augmentation systems
  • the wearable device 100 may implement audio functions through an audio module 170, a speaker 170A, a receiver 170B, a microphone 170C, an earphone interface 170D, and an application processor. Such as music playback, recording, etc.
  • the acceleration sensor 180A can detect the acceleration of the wearable device 100 in various directions (generally three axes). The magnitude and direction of gravity can be detected when the wearable device 100 is stationary. It can also be used to recognize the posture of the wearable device 100, and be applied to applications such as a pedometer.
  • the gyro sensor 180B may be used to determine the motion posture of the wearable device 100 .
  • the angular velocity of wearable device 100 about three axes ie, x, y, and z axes
  • the distance sensor 180E is used to measure the distance.
  • the wearable device 100 can measure distance through infrared or laser.
  • the processor 110 may determine whether the wearable device 100 is in a sleep mode (a low power consumption working mode) according to data from the acceleration sensor 180A and/or the gyro sensor 180B and/or other sensors. If it is detected that the wearable device 100 exits the sleep mode in a preset time period (at night, for example, 23:00-06:00 on the second day), the ranging service can be published or the ranging service can be subscribed to the lighting device to measure the wearable device. The distance between 100 and the lighting device 200.
  • a sleep mode a low power consumption working mode
  • the wearable device 100 has a ranging function; when the distance between the two devices is less than or equal to a preset distance threshold, the lighting device is instructed to turn on the lighting function and provide personalized lighting corresponding to the wearable device 100 . When the distance between the two devices is greater than the preset distance threshold, the lighting device is instructed to turn off the lighting function.
  • the lighting device 200 has a distance measurement function; similarly, the lighting device 200 automatically turns on the lighting function and provides corresponding personalized lighting according to the relationship between the distance between the two devices and a preset distance threshold, or The lighting function is automatically turned off.
  • the wearable device 100 may include more or less components than shown, or combine some components, or separate some components, or arrange different components.
  • the illustrated components may be implemented in hardware, software, or a combination of software and hardware.
  • the interface connection relationship between the modules illustrated in the embodiments of the present application is only a schematic illustration, and does not constitute a structural limitation of the wearable device 100 .
  • the wearable device 100 may also adopt different interface connection manners in the foregoing embodiments, or a combination of multiple interface connection manners.
  • FIG. 3 shows a schematic structural diagram of the lighting device 200 .
  • the lighting device 200 includes one or more processors 210 , one or more memories 220 , one or more communication interfaces 230 , a wireless communication module 240 , and one or more lamps 250 , and the like.
  • the processor 210, the memory 220, the communication interface 230, the wireless communication module 240 and the lighting lamp 250 are connected through a bus.
  • the processor 210 may include a general-purpose central processing unit (Central Processing Unit, CPU), a microprocessor, an application-specific integrated circuit (Application-Specific Integrated Circuit, ASIC), or all of the integrated circuits used to control the execution of the program of the present application, etc. or part.
  • the processor 210 includes a logic circuit for lighting control, which can be used to turn on or off the lighting lamp 250 , and can control the lighting intensity, lighting color, color temperature, and the like of the lighting lamp 250 .
  • the processor 210 may also be provided with an internal memory, which may be used to store computer executable program code, where the executable program code includes instructions.
  • the internal memory may include a program storage area and a data storage area.
  • the storage program area may store the operating system and the programs or instructions required by the embodiments of the present application, and the like.
  • the processor 210 may also include multiple CPUs, and the processor 210 may be a single-CPU processor or a multi-CPU processor.
  • a processor herein may refer to one or more devices, circuits, or processing cores for processing data (eg, computer program instructions).
  • the storage data area may store the correspondence between the identifiers of different wearable devices and the lighting parameters.
  • the lighting parameters include lighting parameters of different lighting intensities, color temperatures, etc. that can be realized by the lighting lamp 250, as well as parameters of intelligent control.
  • the parameters of the intelligent control include, but are not limited to, the distance value for automatically turning on the lighting lamp 250, the time period for delaying the closing of the lighting lamp 250, and the like.
  • the stored program area may store a real-time operating system (RTOS).
  • RTOS real-time operating system
  • the processor 210 executes various functional applications and data processing of the lighting device 200 by executing instructions stored in the internal memory. For example, when the lighting device 200 receives the turn-on instruction sent by the wearable device 100, the lighting device 200 can quickly determine the corresponding lighting parameters according to the pre-stored identifier of the wearable device 100, and control the LED to perform corresponding lighting according to the determined lighting parameters. The response is to provide personalized lighting services for different users.
  • the communication interface 230 can be used to communicate with other devices or communication networks, such as Ethernet, wireless local area networks (WLAN) and the like.
  • devices or communication networks such as Ethernet, wireless local area networks (WLAN) and the like.
  • the wireless communication module 240 can provide a wireless communication solution including WLAN (eg Wi-Fi network), Bluetooth, NFC, infrared technology, etc. applied on the lighting device 200 .
  • the wireless communication module 240 may be one or more devices integrating at least one communication processing module.
  • the wireless communication module 240 receives electromagnetic waves via the antenna, frequency modulates and filters the electromagnetic wave signals, and sends the processed signals to the processor 210 .
  • the wireless communication module 240 can also receive the signal to be sent from the processor 210, frequency-modulate the signal, amplify it, and convert it into electromagnetic waves for radiation through the antenna.
  • the illuminating lamp 250 may include an illuminating light source, a lampshade and accessories.
  • the lighting lamp 250 can present lighting with different brightness, color temperature, etc. under the control of the lighting control logic circuit.
  • the user can add the lighting device that needs to be controlled through an application on the wearable device (for example, application 1), and perform related parameters of the lighting device (automatic turn-on distance, light intensity, color temperature, delayed turn-off time, etc.).
  • the application 1 may be a smart home application, which can implement settings for different types of smart devices of multiple different manufacturers in the smart home.
  • Application 1 may also be an application corresponding to the lighting device to be added, so as to realize the setting of the lighting device.
  • Application 1 may also be an application corresponding to the manufacturer of the lighting device to be added, which can implement equipment for different types of smart devices of the manufacturer.
  • Application 1 may be a system application preset on the wearable device, or may be a third-party application that can be downloaded through an application market or the like, which is not specifically limited in this application.
  • the user can open the application 1 through the icon corresponding to the application 1 on the wearable device, and display the main interface of the application 1 as shown in (2) in FIG. 4 . Further, the user can start adding a lighting device by clicking the "add device” function control, and the wearable device can display the device adding interface as shown in (3) in FIG. 4 . In response to detecting that the user operates the control of the "lighting device", the wearable device can prompt the user to "turn on the wireless function of the lighting device to be added", for example, display the prompt information as shown in (4) in Figure 4, or a voice prompt.
  • the wearable device may establish a point-to-point wireless connection with the lighting device, and send the personalized lighting parameters input by the user to the lighting device through the wireless connection.
  • a wireless connection that is, establishing a NAN
  • the NAN mechanism is a standard developed by the Wi-Fi Alliance. This standard is to synchronize all devices participating in the NAN mechanism (ie, NAN devices, such as wearable devices, lighting devices) without a central node.
  • the maintenance work of the NAN mechanism and the service discovery work are performed in the discovery window (discovery window, DW) agreed by the NAN mechanism.
  • the service discovery may be implemented by sending a service discovery frame (service discovery frame, SDF) message.
  • the server discovery frame message includes a query message or a broadcast message.
  • the NAN device can establish a corresponding connection based on the information obtained in the service discovery message, and then intelligently manage it based on the NAN.
  • FIG. 5 is a schematic flowchart of a method for setting lighting parameters of a lighting device according to an embodiment of the present application. As shown in Figure 5, the method includes:
  • the wearable device and the lighting device all enable the wireless function (specifically, the NAN function).
  • the lighting device can set itself as an anchor master (anchor master, AM), create a cluster (cluster), and set it based on its own media access control (media access control, MAC) address.
  • anchor master an anchor master
  • cluster cluster
  • media access control media access control
  • the lighting device sends a synchronization beacon frame (sync beacon) message.
  • the message carries the information of the AMs in the cluster.
  • the wearable device is added to the cluster where the lighting device is located.
  • the wearable device after the wearable device receives the synchronization beacon frame message sent by the lighting device, it can synchronize with the lighting device according to the AM information in the message; for example, its own original time synchronization function (time synchronization, TSF) Updated to TSF for lighting fixtures, etc.
  • TSF time synchronization
  • the wearable device publishes a lighting parameter setting service.
  • the wearable device can broadcast the SDF Publish message to publish the lighting parameter setting service.
  • the wearable device subscribes to the lighting parameter setting service.
  • the lighting device can automatically subscribe to the lighting parameter setting service, that is, reply the SDF Subscribe message to the wearable device.
  • the wearable device receives the lighting parameter input by the user.
  • the wearable device in response to the received SDF Subscribe message, displays a setting interface for lighting parameters and receives user input.
  • the user can set the lighting parameters of the lighting equipment on the lighting parameter setting interface shown in FIG. 4 (5); for example, set the equipment brand, equipment type, equipment location, whether to enable night mode, etc.
  • the device brand, device type and other information may be actively sent by the lighting device to the wearable device without user input.
  • the night mode (or night light mode, smart mode) refers to a working mode in which the lighting device controls (for example, turns on or off) the lighting function according to the distance between the lighting device and the wearable device. Further, the night mode can also be set.
  • (6) in FIG. 4 shows the night mode setting interface. In the night mode setting interface, you can set the distance, light intensity, color temperature, whether to turn off the lighting function automatically at night, and the time of delayed turning off. It should be noted that the setting interface in (5) in Fig. 4 and the setting interface in (6) in Fig. 4 are only examples, which are not limited in this application.
  • the wearable device sends lighting parameters.
  • the wearable device after receiving the lighting parameters input by the user, the wearable device sends the lighting parameters to the lighting device through an SDF Follow-up message.
  • the lighting device stores the identification and lighting parameters of the wearable device.
  • the lighting device establishes a corresponding relationship between the identifier of the wearable device and the lighting parameter input by the user, and stores it locally.
  • the identifier of the wearable device includes at least one of a MAC address, a device name, a user name, an account logged in by the wearable device, an account bound to the wearable device, and the like.
  • the lighting device stores the identification of the wearable device and the corresponding relationship between the lighting parameters input by the user and sent by the wearable device locally.
  • Table 1 exemplarily shows the correspondence between the wearable device and the lighting parameters in the embodiments of the present application.
  • the lighting device can determine to perform specific lighting functions according to the distance between different wearable devices and itself, such as turning on the lighting function, turning off the lighting function, and the like.
  • the lighting device provides personalized lighting services for different users according to the corresponding relationship between the identification of the wearable device and the lighting parameters.
  • the personalized settings include personalized settings of lighting parameters such as light intensity and color temperature of the lighting equipment, as well as personalized settings of intelligent control of the lighting equipment.
  • the user can personalize the distance of automatically turning on the lighting, whether to delay the turning off of the lighting, and prolong the turning off time.
  • different users can set different lighting parameters for the same lighting device.
  • the same user can set different lighting parameters for multiple lighting devices in the room. That is to say, the same lighting device can provide personalized lighting for different users, and different lighting devices can also provide different lighting for the same user, so as to meet the various needs of users in different scenarios and improve the intelligence of lighting devices. Control the experience.
  • the wearable device may also establish a connection with the lighting device through a network server (cloud server), and send the lighting parameters set by the user to the lighting device through the network server.
  • a network server cloud server
  • the user can also set the lighting device through other devices (non-wearable devices, such as mobile phones, tablet computers, smart screens, etc.), and set different lighting parameters for different wearable devices . That is, through other electronic devices, the corresponding relationship between the lighting parameters of the wearable device and the lighting device is set.
  • non-wearable devices such as mobile phones, tablet computers, smart screens, etc.
  • FIG. 6 is a schematic flowchart of a control method for a lighting device provided by an embodiment of the present application. As shown in Figure 6, the method includes:
  • the wearable device detects that the user exits the sleep state, and the current time is in a preset time period (night, for example, from 23:00 to 06:00 on the second day).
  • the above-mentioned preset time period may be set by the system, or may be set by the user.
  • the preset time period may be a fixed time period, or different time periods may be set according to the sunshine conditions of the four seasons, which are not specifically limited in the embodiments of the present application. For example, if the location is Beijing, set the night in summer (July-September) from 23:00 to 05:00 the next day, and set the night in winter (December-February) from 22:30 to the second day Day 07:00, set spring (March-June) and autumn (October-November) nights from 23:00 to 06:30 the next day, etc.
  • the location can also be other locations, and accordingly, the seasons and nights are adjusted accordingly.
  • Urumqi is two hours behind Beijing; for example, in summer in tropical regions, 04:00 may already be daylight.
  • Some wearable devices can record real-time data such as exercise and sleep in the user's daily life, and synchronize these data with mobile phones, tablets, smart screens and other devices to guide health through data. the role of life.
  • the wearable device can determine whether the user is in a sleep state based on sensor data configured by itself. For example, the wearable device can detect the user's motion state through sensors such as acceleration sensor, gyroscope, heart rate detector, etc., and combine the corresponding algorithm to determine whether the user is in a sleep state.
  • the algorithm can be trained according to the pre-statistical test data of different users' sleep characteristics, sleep habits, sleep postures, etc., and the algorithm can accurately determine whether the user is in a sleep state according to the sensors configured on the wearable device. In some examples, if it is detected that the user is in a sleep state, the wearable device may enter a sleep mode (a low-power operating mode) to reduce the power consumption of the wearable device. If it is detected that the user is not in the sleep state, the wearable device can exit the sleep mode and return to the normal working mode.
  • a sleep mode a low-power operating mode
  • the wearable device detects that the user exits the sleep state (that is, the user changes from a sleep state to a non-sleep state), or, the wearable device detects that the user exits the sleep state, and determines that the user is currently in a preset time period according to the system time. (For example, from 23:00 to 06:00 the next day), it can be considered that the user gets up at night and needs to turn on the lighting device. For example, the elderly get up at night to go to the bathroom, parents get up at night to take care of their children, etc.
  • the preset time period can be set by the user according to different factors such as season and location.
  • the wearable device sends a request (for example, to publish a ranging service).
  • Wearable devices can send requests by broadcasting wireless signals (eg, Bluetooth signals, Wi-Fi awareness signals, etc.).
  • the wearable device may send requests a preset number of times, or may send requests frequently at a preset period, which is not limited in this embodiment of the present application.
  • the wearable device may turn off the wireless function after entering the sleep mode, after the wearable device detects exiting the sleep mode, the wireless function may be turned on first, and then the request is broadcast.
  • the ranging service is broadcast in a Wi-Fi aware manner.
  • the wearable device can pass the SDF Publish message, and the message carries the identifier of the ranging service.
  • Wi-Fi Aware to set the lighting parameters of the lighting device, according to the description in Figure 5, it can be seen that the wearable device and the lighting device are already in the same cluster, and the lighting device can receive The SDF Publish message sent by the wearable device.
  • the wearable device adopts a network server (such as a cloud server) to set the lighting parameters of the lighting device. Then, before the wearable device publishes the ranging service, the wearable device needs to join the cluster where the lighting device is located.
  • the ranging service is broadcast by means of Bluetooth (eg, BLE).
  • the wearable device can broadcast the beacon frame and carry the identifier of the ranging service in the beacon frame.
  • the request sent by the wearable device may carry the identity information of the wearable device and/or the lighting device, and the subsequent lighting device may perform identity authorization according to the identity information of the wearable device and/or the lighting device in the request. Match verification.
  • the lighting device After receiving the request sent by the wearable device, the lighting device automatically replies a response to the wearable device (for example, subscribing to a ranging service).
  • the lighting device may subscribe to the ranging service by sending an SDF Subscribe message to the wearable device.
  • the lighting device sends a Bluetooth message to the wearable device, and the Bluetooth message may carry a measurement data packet.
  • the response sent by the lighting device may carry the identity information of the wearable device and/or the lighting device, and the subsequent wearable device may perform identity authorization according to the identity information of the wearable device and/or the lighting device in the response. Match verification.
  • the wearable device detects the distance between the wearable device and the lighting device.
  • the wearable device can start the Wi-Fi Aware ranging service, for example, send a measurement data packet to the lighting device, and receive a response returned by the lighting device, where the response includes the measurement data packet or other content corresponding to the measurement data packet (such as time stamp, etc.), etc., and determine the distance between the wearable device and the lighting device according to the round-trip time between the two devices in the returned response. Or, after the wearable device receives the Bluetooth message carrying the measurement data packet sent by the lighting device, it determines the distance between the two devices according to the strength of the Bluetooth signal.
  • the distance between the wearable device and the lighting device can be considered as the distance between the wearer of the wearable device and the lighting device.
  • the wearable device detects the distance between itself and the lighting device according to a preset period. The period can be set by the user.
  • the wearable device When it is detected that the distance between the wearable device and the lighting device is less than or equal to the distance threshold, the wearable device instructs the lighting device to perform a specific function.
  • the specific function may include at least one of a single function and a combined function.
  • a specific function is a single function, such as turning on a light.
  • a specific function is a combination function, for example, rotating the light to a certain angle and turning on the light, or lowering the position of the light and turning on the light.
  • the lighting device receives a message or another message sent by the wearable device of the child or the elderly, it can control the light to descend a certain distance, so that the child or the elderly can see more clearly.
  • the wearable device When it is detected that the distance between the wearable device and the lighting device is less than or equal to the distance threshold (for example, 2 meters, 1 meter, 0.5 meters, etc.), it is considered that the user is close to the lighting device, and the wearable device instructs the lighting device to turn on the lighting function.
  • the distance threshold for example, 2 meters, 1 meter, 0.5 meters, etc.
  • an SDF Follow-up message is sent, and the SDF Follow-up message carries the identifier of the wearable device.
  • a Bluetooth message is sent, and the Bluetooth message carries the identifier of the wearable device.
  • the distance threshold may be a default value, or may be set by the user when setting lighting parameters, for example, the distance for automatically turning on the lighting device as shown in (6) in FIG. 4 .
  • the lighting parameters corresponding to the wearable device set by the user may also be stored locally on the wearable device. Then, when it is detected that the distance between the wearable device and the lighting device is less than or equal to the distance threshold, the indication sent by the wearable device to the lighting device may include the lighting parameter corresponding to the wearable device. Then, the lighting device can directly turn on the lighting function according to the lighting parameters in the instruction.
  • the lighting parameters corresponding to the wearable device set by the user may also be stored locally on the wearable device. Then, when the wearable device detects that the user exits the sleep state and the current time is a preset time period, the request sent to the lighting device carries the lighting parameters corresponding to the wearable device.
  • the lighting parameters corresponding to the wearable device may be sent to the lighting device at one time, or may be sent to the lighting device in batches.
  • a lighting parameter eg, a first parameter
  • a lighting parameter eg, a second parameter
  • the first parameter includes, for example, turning on the light immediately, turning on the light slowly, and the like.
  • the second parameter includes, for example, immediate lights off and delayed lights off.
  • the time-delayed light-off includes time-delayed light-off of different durations.
  • the lighting device finds the corresponding lighting parameters in the corresponding relationship between the device identification and lighting parameters stored locally (for example, as shown in Table 1), and uses the found lighting parameters. Turn on the lighting function.
  • the lighting device may receive the turn-on instructions according to the time sequence, or the priority of the wearable devices carried in the turn-on instructions. level or other rules, determine the corresponding lighting parameters and turn on the lighting function. For example, the lighting device may turn on the lighting function according to the first received turn-on instruction.
  • the lighting function is turned on according to the lighting parameters corresponding to the identification of the wearable device carried in the first received turn-on instruction. Or, the lighting device turns on the lighting function according to the lighting parameter corresponding to the identifier of the wearable device with the highest priority.
  • the priority level can be set, for example, as follows: the priority of the wearable device of the elderly>the priority of the wearable device of the child>the priority of the wearable device of the mother>the priority of the wearable device of the father.
  • the lighting device may automatically turn off after a predefined period of time (eg, 1 minute, 2 minutes, 5 minutes).
  • a predefined period of time eg, 1 minute, 2 minutes, 5 minutes.
  • the lighting equipment in the room can be automatically turned off after a predefined period of time (eg 2 minutes) after being turned on.
  • a predefined period of time eg 2 minutes
  • the brightness of the lighting equipment in the room is low, which is convenient for the eyes to adapt to the change from darkness to light, and does not disturb the sleep of the child.
  • the time for the wearer of the wearable device to pass through the corridor or living room is generally relatively fixed. For example, it generally takes 20s to get up and walk through the corridor at night. Automatically shuts down after a predefined duration (eg 1 minute).
  • the wearable device can no longer detect the distance between the two devices after a predefined time period, which is beneficial to reduce the power consumption of the wearable device.
  • the lighting device continues to detect the distance between the wearable device and the lighting device. When the distance between the two is greater than the distance threshold, it can be considered that the user is far away from the lighting device, and the lighting device is instructed to be turned off, that is, the following steps S607 and S608 are performed.
  • the wearable device instructs the lighting device to perform another specific function (for example, turning off the lighting function).
  • the other specific function may include at least one of a single function and a combined function.
  • a specific function is a single function, such as turning off the light.
  • a specific function is a combined function, for example, adjusting the angle of the light to the default angle and turning off the light, or adjusting the waiting position back to the default position and turning off the light.
  • the lighting device After receiving the turn-off instruction from the wearable device, the lighting device can turn off the lighting function immediately or after a delay according to user settings.
  • the parent and child are in the same room, and the parent gets up at night to take care of the child, when it is detected that the distance between the parent's wearable device and the room's lighting device (such as an under-bed ambient light or desk lamp) is less than a distance threshold (such as 1 meter), the lighting in the room is automatically turned on.
  • a distance between the parent's wearable device and the room's lighting device is detected to be greater than a distance threshold, automatically turn off (including immediate or delayed shutdown) the room's lighting device.
  • the lighting in the bathroom is automatically turned on equipment.
  • the distance threshold for example, 0.5 meters
  • S602 and S603 are optional steps, not required steps. In some embodiments, S602 and S603 may not be included.
  • the present application provides a lighting function that automatically turns on the lighting device according to the distance between the wearable device and the lighting device, and determines the lighting parameters set by the user according to the identification of the wearable device, so as to provide personalized lighting for the user. Services, meet the lighting needs of different users in different scenarios, and improve the experience of intelligent control.
  • the wearable device controls the lighting device to turn on or off the lighting function
  • the local wireless communication method is used without forwarding by intermediate devices (such as routers and servers), which makes intelligent control faster and more secure.
  • the embodiment of the present application does not need to add a new sensor to the lighting device, and the lighting device only needs to perform firmware upgrade to implement the intelligent control solution provided by the embodiment of the present application, and the intelligent control experience is high and the cost is low.
  • the distance measurement service is provided by the wearable device. In other embodiments of the present application, the distance measurement service may also be provided by the lighting device. As shown in FIG. 7 , a schematic flowchart of another method for controlling a lighting device provided by an embodiment of the present application specifically includes:
  • the lighting device periodically sends a request (for example, publishing a ranging service).
  • the user may turn on the night mode of the lighting device.
  • the user can turn on the night mode by operating the buttons on the remote control of the lighting device, or operating the controls on the application of the control device (a smart device such as a mobile phone bound to the lighting device).
  • the lighting device When the lighting device turns on the night mode, the lighting device periodically releases the ranging service.
  • the lighting device after the user manually turns on the night mode of the lighting device, the lighting device periodically releases the ranging service within a preset time period of the day (23:00 to 06:00 the next day). Subsequently, the lighting device automatically turns off the night mode, that is, the ranging service is no longer released. That is, the validity of manually turning on the night mode of the lighting device by the user is one time. In other examples, after the user manually turns on the night mode of the lighting device, the lighting device periodically releases the ranging service within a preset time period of the day (23:00 on the current day to 06:00 on the next day). Subsequently, until the user manually turns off the night mode of the lighting device, the lighting device no longer publishes the ranging service.
  • the control device or the server bound to the lighting device can send instructions to the lighting device every day, instructing the lighting device to periodically issue ranging within a preset time period each day Serve.
  • the night mode can also be automatically turned on every day at a preset time period (at night, for example, from 23:00 to 06:00 the next day).
  • the embodiments of the present application do not limit the implementation manner.
  • the wearable device detects that the user exits the sleep state.
  • the method for the wearable device to detect that the user exits the sleep state may refer to step S603.
  • the wearable device sends a response to the lighting device (for example, subscribing to a ranging service), carrying an identifier of the wearable device.
  • the lighting device detects the distance between the wearable device and the lighting device.
  • the lighting device can start the Wi-Fi Aware ranging service, such as sending a measurement data packet to the wearable device, and receiving the measurement data packet returned by the wearable device, according to the round-trip time between the two devices according to the measurement data packet Determine the distance between the wearable device and the lighting device. Or, after receiving the wireless signal sent by the wearable device, the lighting device further determines the difference between the two devices according to the received signal strength of the wireless signal and the strength of the wireless signal sent by the wearable device carried in the measurement data packet. the distance.
  • the lighting device acquires the identifier of the wearable device according to the wireless signal, and performs a specific function.
  • the lighting device obtains the identification of the wearable device according to the wireless signal, and according to the identification of the wearable device Identifier, the corresponding lighting parameter is searched from the locally stored correspondence between the wearable device identifier and the lighting parameter (for example, as shown in Table 1), and the lighting device uses the lighting parameter to turn on the lighting function.
  • a distance threshold for example, 2 meters, 1 meter, 0.5 meters, etc.
  • the lighting device can be automatically turned off after a predefined period of time (eg, 1 minute, 5 minutes). In other embodiments, after the lighting function is turned on, the lighting device continues to detect the distance between the wearable device and the lighting device. When the distance between the two devices is greater than the distance threshold, it can be considered that the user is far away from the lighting device, and the lighting device is automatically turned off, that is, the following step S706 is performed.
  • a predefined period of time eg, 1 minute, 5 minutes.
  • the lighting device performs another specific function.
  • the lighting device when the distance between the two devices is greater than a distance threshold, the lighting device performs a lighting-off function.
  • Scenario 1 For the same lighting device, different users can set different lighting parameters.
  • Different lighting parameters can be set for the same lighting equipment (such as lighting equipment in a living room, corridor, etc.).
  • the bedroom 801 is a child's bedroom
  • the bedroom 802 is a parent's bedroom
  • the bedroom 803 is an elderly bedroom.
  • the distance threshold at which the lighting device 810 in the corridor 804 is activated varies depending on the identities of the child and the parent. For example, the distance threshold corresponding to the identification of the child's wearable device is greater than the distance threshold corresponding to the identification of the parent's wearable device.
  • the distance thresholds activated by the lighting devices 810 in the corridor 804 are uniformly set to the same distance thresholds.
  • the length of time that the lighting devices 810 in the corridor 804 are delayed to be turned off may be different depending on the identities of the children and parents. For example, the delay time corresponding to the identification of the child's wearable device is greater than the delay time corresponding to the identification of the parent's wearable device.
  • the duration of the delayed shutdown of the lighting devices 810 in the corridor 804 may be uniformly set to the same duration.
  • the elderly need to turn on the lighting equipment 820 of the restaurant 806 and the lighting equipment 830 of the bathroom 807 when they get up at night to go to the bathroom. Due to the different needs of the elderly and parents for lighting equipment, even the same lighting equipment needs to set different lighting parameters. Take the setup of the lighting device 820 of the restaurant 806 as an example. Since the parents have turned on the lighting equipment 810 of the corridor 804 before passing the lighting equipment 820, and the eyes have adapted to the change of light, the lighting intensity of the lighting equipment 820 of the restaurant 806 can be stronger.
  • the elderly's bedroom 803 is relatively close to the dining room 806, and the eyes have not adapted to the change of light (assuming that the lighting equipment in the bedroom 803 is not turned on), so the lighting intensity of the lighting equipment 820 in the dining room 806 may be weaker.
  • the method for the user to specifically set each lighting device and the method for controlling each lighting device through the wearable device may refer to the methods described in the foregoing embodiments, which will not be repeated here.
  • Scenario 2 The same user can set different lighting parameters for lighting devices at different locations.
  • the lighting parameters of multiple lighting devices in the bedroom 802 , corridor 804 , living room 805 (or dining room 806 ) and bathroom 807 can be set. It should be noted that the user can choose to set the lighting equipment along the route (all lighting equipment along the route or part of the lighting equipment along the route) and specific parameters of each lighting equipment according to specific needs, which is not limited in this application.
  • the distance threshold between the wearable device and the lighting device 840 in the bedroom 802 can be set to a threshold value A, such as "0.5 meters". That is, the distance at which the lighting device 840 is automatically turned on (ie, the distance threshold) is set as the threshold value A. Then, when the user gets up at night and approaches the lighting device 840, the wearable device detects that the distance from the lighting device 840 is less than the threshold value A, and instructs the lighting device 840 to automatically turn on.
  • the light intensity of the lighting device 840 of the bedroom 802 is set to the weakest light. strength.
  • the wearable device can also be set to automatically turn off when the wearable device detects that the distance between itself and the lighting device 840 is greater than a preset distance threshold.
  • the distance threshold between the wearable device and the lighting device 810 in the corridor 804 and the lighting device 820 in the restaurant 806 can be set to be threshold B, for example, "2.5 meters".
  • the threshold value B is greater than the threshold value A.
  • the user's eyes have adapted to the change of light, so the light intensity of the lighting device 810 in the corridor and the lighting device 820 in the restaurant 806 can be set to a medium light intensity.
  • the lighting devices 810 of the corridor 804 and the lighting devices 820 of the restaurant 806 can be set to automatically turn off after a predefined period of time (eg, 5 minutes) after being turned on.
  • the wearable device may be set to automatically turn off when the wearable device detects that the distance between itself and the lighting device 810 and the lighting device 820 is greater than the respective preset distance thresholds.
  • the preset distance thresholds corresponding to the above lighting devices may be preset by the user, and the magnitude relationship between the preset distance thresholds is not limited.
  • the distance threshold between the wearable device and the lighting device 830 of the bathroom 807 may be set as a threshold value C, for example, "1 meter".
  • the threshold value C is greater than the threshold value A, and less than the threshold value B.
  • the above-mentioned thresholds A, B, and C can be set according to user needs; in addition, the size relationship between the three defined above is only a schematic example; the size relationship between the three is not limited to the above limitations, such as The magnitude relationship between the three may also be B ⁇ A ⁇ C.
  • the method for the user to set the lighting parameters of any one of the above-mentioned multiple lighting devices and the method for the wearable device to control any one of the above-mentioned multiple lighting devices may refer to the methods described in the above-mentioned embodiments, and the method is not described here. Repeat.
  • the chip system includes at least one processor 910 and at least one interface circuit 920 .
  • the processor 910 and the interface circuit 920 may be interconnected by wires.
  • the interface circuit 920 may be used to receive signals from other devices (eg, the memory of the wearable device 100 or the memory of the lighting device 200).
  • the interface circuit 920 may be used to send signals to other devices (eg, the processor 910).
  • the interface circuit 920 may read the instructions stored in the memory and send the instructions to the processor 910 .
  • the electronic device can be made to execute the various steps executed by the wearable device 100 or the lighting device 200 in the above embodiments.
  • the chip system may also include other discrete devices, which are not specifically limited in this embodiment of the present application.
  • An embodiment of the present application further provides an electronic device, the device is included in a wearable device, and the device has a function of implementing the behavior of the wearable device in any of the methods in the foregoing embodiments.
  • This function can be implemented by hardware or by executing corresponding software by hardware.
  • the hardware or software includes at least one module or unit corresponding to the above-mentioned functions. For example, a detection module or unit, a display module or unit, a wireless communication module or unit, a ranging module or unit, and the like.
  • An embodiment of the present application further provides an electronic device, the device is included in a lighting device, and the device has a function of implementing the behavior of the lighting device in any of the methods in the foregoing embodiments.
  • This function can be implemented by hardware or by executing corresponding software by hardware.
  • the hardware or software includes at least one module or unit corresponding to the above-mentioned functions. For example, wireless communication modules or units, processing modules or units, and lighting modules or units.
  • the device further includes a ranging module or unit, and the like.
  • the embodiments of the present application further provide a computer-readable storage medium, including a computer program, when the computer program runs on the wearable device, the wearable device is made to execute any of the methods in the foregoing embodiments.
  • the embodiments of the present application further provide a computer-readable storage medium, including a computer program, when the computer program runs on the lighting device, the lighting device causes the lighting device to execute any of the methods in the foregoing embodiments.
  • Embodiments of the present application further provide a computer program product, which, when the computer program product runs on a computer, causes the computer to execute any of the methods in the foregoing embodiments.
  • Embodiments of the present application further provide a graphical user interface on a wearable device, where the wearable device has a display screen, a memory, and one or more processors, and the one or more processors are configured to execute data stored in the wearable device.
  • One or more computer programs in memory, the graphical user interface comprising a graphical user interface displayed when the electronic device performs any of the methods in the above-described embodiments.
  • the above-mentioned terminal and the like include corresponding hardware structures and/or software modules for executing each function.
  • the embodiments of the present application can be implemented in hardware or a combination of hardware and computer software. Whether a function is performed by hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Experts may use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of the embodiments of the present application.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules. It should be noted that, the division of modules in the embodiments of the present application is schematic, and is only a logical function division, and there may be other division manners in actual implementation.
  • Each functional unit in each of the embodiments of the embodiments of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as an independent product, may be stored in a computer-readable storage medium.
  • a computer-readable storage medium includes several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: flash memory, removable hard disk, read-only memory, random access memory, magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

本申请涉及一种照明设备的控制方法及可穿戴设备。该可穿戴设备包括: 一个或多个处理器; 一个或多个存储器; 以及一个或多个计算机程序,其中一个或多个计算机程序存储在一个或多个存储器上,当计算机程序被一个或多个处理器执行时,使得可穿戴设备执行以下步骤: 在检测到用户退出睡眠状态且当前时间位于预设时间段内后,可穿戴设备检测可穿戴设备与照明设备之间的距离; 在检测到的可穿戴设备与照明设备之间的距离小于或等于预设距离阈值后,可穿戴设备向照明设备发送一个消息; 该消息用于指示照明设备执行特定功能。该可穿戴设备在硬件成本增加较小甚至不增加的同时,控制照明设备为不同用户提供个性化的照明服务。

Description

一种照明设备的控制方法及可穿戴设备
本申请要求于2020年08月31日提交国家知识产权局、申请号为202010899660.3、申请名称为“一种照明设备的控制方法及可穿戴设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及智能家居领域,尤其涉及一种照明设备的控制方法及可穿戴设备。
背景技术
照明设备能够在周围环境变化时,自动执行亮灯和熄灯等各种功能,为用户提供方便,得到广泛应用。不过,通过硬件方式实现上述功能,照明设备需要集成多个传感器来检测周围环境的变化,导致成本显著增加。此外,照明设备集成多个传感器的方式,也不能为用户提供个性化的照明服务。
发明内容
为了解决上述技术问题,本申请提供一种照明设备的控制方法及可穿戴设备,能够在硬件成本增加较小甚至不增加的同时,控制照明设备为不同用户提供个性化的照明服务。
第一方面,提供一种可穿戴设备。该可穿戴设备包括:一个或多个处理器;一个或多个存储器;以及一个或多个计算机程序,其中一个或多个计算机程序存储在一个或多个存储器上,当计算机程序被一个或多个处理器执行时,使得可穿戴设备执行以下步骤:在检测到用户退出睡眠状态且当前时间位于预设时间段内后,可穿戴设备检测可穿戴设备与照明设备之间的距离;在检测到的可穿戴设备与照明设备之间的距离小于或等于预设距离阈值后,可穿戴设备向照明设备发送一个消息;消息用于指示照明设备执行特定功能。由上可见,本申请提供了一种根据可穿戴设备与照明设备之间的距离自动执行一特定功能(例如,开启照明设备的照明功能),能够为用户提供个性化的照明服务,满足不同用户在不同场景下的照明需求,提升智能控制的体验。再有,本申请实施例无需在照明设备的硬件成本增加较小甚至不增加的同时,进行固件升级即可实现本申请实施例提供的智能控制的方案,智能控制体验高,且成本低。
根据第一方面,可穿戴设备还执行以下步骤:在检测到的可穿戴设备与照明设备之间的距离从小于或等于预设距离阈值的距离,变化至大于预设距离阈值的距离后,可穿戴设备向照明设备发送另一消息;另一消息用于指示照明设备执行另一特定功能。由此,提供一种当可穿戴设备与照明设备之间的距离变化到大于预设距离阈值的距离后,自动执行另一特定功能(例如,关闭照明功能)的方法,提升智能控制的体验。
根据第一方面,或者以上任意一种实现方式,在检测到用户退出睡眠状态且当前时间位于预设时间段内后,可穿戴设备检测可穿戴设备与照明设备之间的距离,包括:在检测到用户退出睡眠状态且当前时间位于预设时间段内后,可穿戴设备以预设周期广播一个请求;在接收到照明设备的针对请求的一个响应后,可穿戴设备检测可穿戴设备与照明设备之间的距离。由此,提供一种触发可穿戴设备自动检测距离的方法,提升智能控制的体验。
根据第一方面,或者以上任意一种实现方式,所述消息用于指示照明设备执行特定功能,包括:所述消息用于指示照明设备按照第一参数执行特定功能;所述另一消息用于指示照明设备执行另一特定功能,包括:所述另一消息用于指示照明设备按照第二参数执行另一特定功能;第一参数、第二参数关联于可穿戴设备、照明设备、可穿戴设备与照明设备之间的距离及其变化中的至少一项;预设距离阈值关联于可穿戴设备和照明设备中的至少一项。由此可见,照明设备可根据所述消息或另一消息中携带的不同参数,为用户提供个性化的服务,提升智能控制的体验。
根据第一方面,或者以上任意一种实现方式,消息包含第一参数,另一消息包含第二参数;或者,消息包含第一参数和第二参数;或者,请求包含第一参数和第二参数;或者,第一参数和第二参数是由用户预先设置的。也就是说,可穿戴设备对应的照明参数可以一次性发送给照明设备,也可以分次发送给照明设备。例如,当指示照明设备执行特定功能时,发送该特定功能对应的照明参数(例如第一参数)。当指示照明设备执行另一特定功能时,发送该另一特定功能对应的照明参数(例如第二参数)。再例如,特定功能为开灯时,第一参数例如包括立即开灯和缓慢开灯等。另一特定功能为关灯时,第二参数例如包括立即关灯和延时关灯。其中,延时关灯包括不同时长的延时关灯。
根据第一方面,或者以上任意一种实现方式,消息包含可穿戴设备的身份信息和/或照明设备的身份信息;请求用于发布测距服务,响应用于订阅测距服务;特定功能和另一特定功能均包括单一功能和组合功能;特定功能的单一功能包括开启照明功能;特定功能的组合功能包括开启照明功能及其相关功能;另一特定功能的单一功能包括关闭照明功能;另一特定功能的组合功能包括关闭照明功能及其相关功能;第一参数、第二参数包括灯光强度、色温、是否延时关闭、延时关闭的时长中的至少一项。其中,相关功能包括但不限于角度偏转功能、升降功能等动作功能。或者,消息包含可穿戴设备的身份信息和/或照明设备的身份信息;请求包含可穿戴设备的身份信息和/或照明设备的身份信息,请求还用于发布测距服务;响应用于订阅测距服务;请求和响应还用于身份权限的匹配验证;特定功能和另一特定功能均包括单一功能和组合功能;特定功能的单一功能包括开启照明功能;特定功能的组合功能包括开启照明功能及其相关功能;另一特定功能的单一功能包括关闭照明功能;另一特定功能的组合功能包括关闭照明功能及其相关功能;第一参数、第二参数包括灯光强度、色温、是否延时关闭、延时关闭的时长中的至少一项;照明设备与电子设备有线通信或无线通信。其中,相关功能包括但不限于角度偏转功能、升降功能等动作功能。示例性的,特定功能为单一功能时,例如为开灯。特定功能为组合功能时,例如为旋转灯为某个角度并开灯,或者下降灯的位置并开灯。例如,若照明设备接收到儿童或老人的可穿戴设备发送的消息或另一消息时,可以控制灯下降一定距离,便于孩子或老人看得更清楚。该另一特定功能为单一功能时,例如为关灯。特定功能为组合功能时,例如为将灯的角度调整默认角度并关灯,或者将等待位置调回到默认位置并关灯。
第二方面,提供一种照明设备。该照明设备包括:一个或多个处理器;一个或多个存储器;以及一个或多个计算机程序,其中一个或多个计算机程序存储在一个或多个存储器上,当计算机程序被一个或多个处理器执行时,使得照明设备执行以下步骤: 在接收到电子设备发送的一个请求后,或者,在检测到当前时间位于预设时间段内后,照明设备检测照明设备与可穿戴设备之间的距离;其中请求用于指示当前时间位于预设时间段内;在检测到的照明设备与可穿戴设备之间的距离小于或等于预设距离阈值后,照明设备执行特定功能。其中,该电子设备可以是可穿戴设备,也可以是路由器等其他智能设备。也就是说,由照明设备进行测距,根据可穿戴设备与照明设备之间的距离自动执行特定功能。可见,照明设备与可穿戴设备之间的交互消息较少,有利于加快照明设备对可穿戴设备的响应速度。并且,由于照明设备一般都由电源供电,不用考虑供电问题;而可穿戴设备一般都由电池供电,需要考虑待机时长。由照明设备提供测距服务,有利于降低可穿戴设备的功耗,延长可穿戴设备的待机时长。
根据第二方面,该照明设备还执行以下步骤:在检测到的照明设备与可穿戴设备之间的距离从小于或等于预设距离阈值,变化至大于预设距离阈值后,照明设备执行另一特定功能。
根据第二方面,或者以上任意一种实现方式,在接收到电子设备发送的一个请求后,或者,在检测到当前时间位于预设时间段内后;照明设备检测照明设备与可穿戴设备之间的距离;其中请求用于指示当前时间位于预设时间段内;包括:在接收到电子设备发送的一个请求后,其中请求用于指示当前时间位于预设时间段内;或者,在检测到当前时间位于预设时间段内后;照明设备以预设周期广播一个消息;在接收到可穿戴设备的针对消息的一个响应后,照明设备检测照明设备与可穿戴设备之间的距离。
根据第二方面,或者以上任意一种实现方式,照明设备执行特定功能,包括:照明设备按照第一参数执行特定功能;照明设备执行另一特定功能,包括:照明设备按照第二参数执行另一特定功能;第一参数、第二参数关联于照明设备、可穿戴设备、照明设备与可穿戴设备之间的距离及其变化中的至少一项;预设距离阈值关联于可穿戴设备和照明设备中的至少一项;第一参数和第二参数是由用户预先设置的。
根据第二方面,或者以上任意一种实现方式,所述消息包含可穿戴设备的身份信息和/或照明设备的身份信息,所述消息用于发布测距服务,响应用于订阅测距服务;消息和响应还用于身份权限的匹配验证;特定功能和另一特定功能均包括单一功能和组合功能;特定功能的单一功能包括开启照明功能;特定功能的组合功能包括开启照明功能及其相关功能;另一特定功能的单一功能包括关闭照明功能;另一特定功能的组合功能包括关闭照明功能及其相关功能;第一参数、第二参数包括灯光强度、色温、是否延时关闭、延时关闭的时长中的至少一项;照明设备与电子设备有线通信或无线通信。其中,相关功能包括但不限于角度偏转功能、升降功能等动作功能。
第三方面,提供一种照明设备的控制方法,应用于可穿戴设备。该方法包括:在检测到用户退出睡眠状态且当前时间位于预设时间段内后,可穿戴设备检测可穿戴设备与照明设备之间的距离;在检测到的可穿戴设备与照明设备之间的距离小于或等于预设距离阈值后,可穿戴设备向照明设备发送一个消息;消息用于指示照明设备执行特定功能。
根据第三方面,该方法还包括:在检测到的可穿戴设备与照明设备之间的距离从小于或等于预设距离阈值的距离,变化至大于预设距离阈值的距离后,可穿戴设备向 照明设备发送另一消息;另一消息用于指示照明设备执行另一特定功能。
根据第三方面,或者以上任意一种实现方式,在检测到用户退出睡眠状态且当前时间位于预设时间段内后,可穿戴设备检测可穿戴设备与照明设备之间的距离,包括:在检测到用户退出睡眠状态且当前时间位于预设时间段内后,可穿戴设备广播一个请求;在接收到照明设备的针对请求的一个响应后,可穿戴设备检测可穿戴设备与照明设备之间的距离。
根据第三方面,或者以上任意一种实现方式,消息用于指示照明设备执行特定功能,包括:消息用于指示照明设备按照第一参数执行特定功能;另一消息用于指示照明设备执行另一特定功能,包括:另一消息用于指示照明设备按照第二参数执行另一特定功能;第一参数、第二参数关联于可穿戴设备、照明设备、可穿戴设备与照明设备之间的距离及变化中的至少一项;预设距离阈值关联于可穿戴设备和照明设备中的至少一项。
根据第三方面,或者以上任意一种实现方式,消息包含第一参数,另一消息包含第二参数;或者,消息包含第一参数和第二参数;或者,请求包含第一参数和第二参数;或者,第一参数和第二参数是由用户预先设置的。
根据第三方面,或者以上任意一种实现方式,消息包含可穿戴设备的身份信息和/或照明设备的身份信息;请求用于发布测距服务,响应用于订阅测距服务;特定功能和另一特定功能均包括单一功能和组合功能;特定功能的单一功能包括开启照明功能;特定功能的组合功能包括开启照明功能及其相关功能;另一特定功能的单一功能包括关闭照明功能;另一特定功能的组合功能包括关闭照明功能及其相关功能;第一参数、第二参数包括灯光强度、色温、是否延时关闭、延时关闭的时长中的至少一项;或者,消息包含可穿戴设备的身份信息和/或照明设备的身份信息;请求包含可穿戴设备的身份信息和/或照明设备的身份信息,请求还用于发布测距服务;响应用于订阅测距服务;请求和响应还用于身份权限的匹配验证;特定功能和另一特定功能均包括单一功能和组合功能;特定功能的单一功能包括开启照明功能;特定功能的组合功能包括开启照明功能及其相关功能;另一特定功能的单一功能包括关闭照明功能;另一特定功能的组合功能包括关闭照明功能及其相关功能;第一参数、第二参数包括灯光强度、色温、是否延时关闭、延时关闭的时长中的至少一项。其中,相关功能包括但不限于角度偏转功能、升降功能等动作功能。
第三方面及第三方面的任意一种实现方式所对应的技术效果可参见上述第一方面以及第一方面中任意一种实现方式所对应的技术效果,此处不再赘述。
第四方面,提供一种照明设备的控制方法,应用于照明设备。该方法包括:在接收到电子设备发送的一个请求后,其中请求用于指示当前时间位于预设时间段内;或者,在检测到当前时间位于预设时间段内后;照明设备检测照明设备与可穿戴设备之间的距离;在检测到的照明设备与可穿戴设备之间的距离小于或等于预设距离阈值后,照明设备执行特定功能。
根据第四方面,所述方法还包括:在检测到的照明设备与可穿戴设备之间的距离从小于或等于预设距离阈值的距离,变化至大于预设距离阈值的距离后,照明设备执行另一特定功能。
根据第四方面,或者以上任意一种实现方式,在接收到电子设备发送的一个请求后,其中请求用于指示当前时间位于预设时间段内;或者,在检测到当前时间位于预设时间段内后;照明设备检测照明设备与可穿戴设备之间的距离;包括:在接收到电子设备发送的一个请求后,其中请求用于指示当前时间位于预设时间段内;或者,在检测到当前时间位于预设时间段内后;照明设备以预设周期广播一个消息;在接收到可穿戴设备的针对消息的一个响应后,照明设备检测照明设备与可穿戴设备之间的距离。
根据第四方面,或者以上任意一种实现方式,照明设备执行特定功能,包括:照明设备按照第一参数执行特定功能;照明设备执行另一特定功能,包括:照明设备按照第二参数执行另一特定功能;第一参数、第二参数关联于照明设备、可穿戴设备、照明设备与可穿戴设备之间的距离及变化中的至少一项;预设距离阈值关联于可穿戴设备和照明设备中的至少一项;第一参数和第二参数是由用户预先设置的。
根据第四方面,或者以上任意一种实现方式,消息包含可穿戴设备的身份信息和/或照明设备的身份信息,消息用于发布测距服务,响应用于订阅测距服务;消息和响应还用于身份权限的匹配验证;特定功能和另一特定功能均包括单一功能和组合功能;特定功能的单一功能包括开启照明功能;特定功能的组合功能包括开启照明功能及其相关功能;另一特定功能的单一功能包括关闭照明功能;另一特定功能的组合功能包括关闭照明功能及其相关功能;第一参数、第二参数包括灯光强度、色温、是否延时关闭、延时关闭的时长中的至少一项;照明设备与电子设备有线通信或无线通信。其中,相关功能包括但不限于角度偏转功能、升降功能等动作功能。
第四方面及第四方面的任意一种实现方式所对应的技术效果可参见上述第二方面以及第二方面中任意一种实现方式所对应的技术效果,此处不再赘述。
第五方面,提供一种照明设备。该照明设备包括:一个或多个处理器;一个或多个存储器;以及一个或多个计算机程序,其中一个或多个计算机程序存储在一个或多个存储器上,当计算机程序被一个或多个处理器执行时,使得照明设备执行以下步骤:接收到可穿戴设备发送的一个消息,该消息用于指示照明设备执行特定功能;照明设备执行所述特定功能;所述消息为可穿戴设备在检测到用户退出睡眠状态且当前时间位于预设时间段内后,以及检测到的可穿戴设备与照明设备之间的距离小于或等于预设距离阈值后发送的。
根据第五方面,照明设备还执行以下步骤:接收到可穿戴设备的另一消息,另一消息用于指示照明设备执行另一特定功能;照明设备执行另一特定功能。其中,所述另一消息为照明设备在检测到的可穿戴设备与照明设备之间的距离从小于或等于预设距离阈值的距离,变化至大于预设距离阈值的距离后发送的。
第六方面,提供一种电子设备。该电子设备包括:一个或多个处理器;一个或多个存储器;以及一个或多个计算机程序,其中一个或多个计算机程序存储在一个或多个存储器上,当计算机程序被一个或多个处理器执行时,使得电子设备执行以下步骤:在检测到用户退出睡眠状态且当前时间位于预设时间段内后,向照明设备发送一个请求,该请求用于指示照明设备测量可穿戴设备与照明设备之间的距离。具体的,该电子设备可以为可穿戴设备,也可以为路由器等智能设备。若为可穿戴设备,则可穿戴 设备可以检测用户是否退出睡眠状态且当前时间位于预设时间段。若为路由器,则可以是其他设备(例如可穿戴设备)检测到用户退出睡眠状态且当前时间位于预设时间段后告知路由器,由路由器发送该请求。
第七方面,提供一种计算机可读存储介质。该计算机可读存储介质包括计算机程序,当计算机程序在照明设备上运行时,使得该照明设备执行如第三方面以及第三方面任意一种实现方式的方法。
第七方面及第七方面的任意一种实现方式分别与第三方面及第三方面的任意一种实现方式相对应。第七方面以及第七方面中任意一种实现方式所对应的技术效果可参见上述第三方面以及第三方面中任意一种实现方式所对应的技术效果,此处不再赘述。
第八方面,提供一种计算机可读存储介质。该计算机可读存储介质包括计算机程序,当计算机程序在可穿戴设备上运行时,使得该可穿戴设备执行如第四方面以及第四方面任意一种实现方式的方法。
第八方面及第八方面的任意一种实现方式分别与第四方面及第四方面的任意一种实现方式相对应。第八方面以及第八方面中任意一种实现方式所对应的技术效果可参见上述第四方面以及第四方面中任意一种实现方式所对应的技术效果,此处不再赘述。
第九方面,提供一种计算机程序产品,当其在计算机上运行时,使得计算机执行如第三方面以及第三方面任意一种实现方式的方法,或者如第四方面以及第四方面任意一种实现方式的方法。
第九方面及第九方面的任意一种实现方式分别与第三方面、第四方面及第三方面、第四方面的任意一种实现方式相对应。第九方面以及第九方面中任意一种实现方式所对应的技术效果可参见上述第三方面、第四方面以及第三方面、第四方面中任意一种实现方式所对应的技术效果,此处不再赘述。
第十方面、提供一种芯片系统,包括处理器,当处理器执行指令时,处理器执行如第三方面以及第三方面任意一种实现方式的方法,或者如第四方面以及第四方面任意一种实现方式的方法。
本申请提供一种照明设备的控制方法及可穿戴设备,能够在硬件成本增加较小甚至不增加的同时,控制照明设备为不同用户提供个性化的照明服务。此外,除了首次设置照明设备的照明参数以外,在用户使用中,无需对照明设备作任何控制,用户全程无感,用户体验较好。
附图说明
图1为本申请实施例提供的应用场景的示意图;
图2为本申请实施例提供的可穿戴设备的结构示意图;
图3为本申请实施例提供的照明设备的结构示意图;
图4为本申请实施例提供的可穿戴设备的图形用户界面的示意图;
图5为本申请实施例提供的照明设备的照明参数的设置方法的流程示意图;
图6为本申请实施例提供的照明设备的控制方法的流程示意图;
图7为本申请实施例提供的照明设备的控制方法的流程示意图;
图8为本申请实施例提供的应用场所的示意图:
图9为本申请实施例提供的芯片系统的结构示意图。
具体实施方式
在本申请实施例的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;本申请中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
本申请实施例提供了一种照明设备的控制方法,照明设备能够基于用户佩戴的可穿戴设备(wearable device)或携带的移动设备,自动为不同的用户提供不同的个性化照明服务。下面以可穿戴设备为例,进行说明。
图1为本申请实施例提供的应用场景的示意图。图1示出了一个可穿戴设备100,以及一个照明设备200。图1中可穿戴设备100和照明设备200的数量仅为示意性举例。可穿戴设备100和照明设备200中的至少一项可为多个。
可穿戴设备100是指直接穿戴在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,在使用过程还可以通过软件支持和数据交互实现多种功能。可穿戴设备多以具备部分计算功能、可连接手机及各类终端(例如照明设备)的便携式配件形式存在。按照产品的主流情况,可穿戴设备包括主流产品和非主流产品。主流产品包括以手腕为支撑的手表(watch)类,例如手表、手环、腕带、戒指等;以脚为支撑的鞋(shoes)类,例如包括鞋、袜子、护膝或者其他腿上佩戴产品;以头部为支撑的眼镜(glass)类,例如眼镜、头盔、头带、耳坠、鼻钉、耳钉、项链等。非主流产品包括智能服装、书包、拐杖、配饰等。本申请不限制可穿戴设备100的具体形式。
照明设备200为能够提供智能照明的设备。照明设备200可以通过物联网技术、有线/无线通讯技术、电力载波通讯技术、嵌入式计算机智能化信息处理,以及节能控制等技术,来实现对照明设备的控制。在本申请的一些实施例中,照明设备200具有灯光亮度的强弱调节、灯光色温的大小调节、照射角度调节、灯光软开启、灯光软关闭、灯管软开关、定时控制、以及场景控制等功能。其中,灯光软开启功能,是指在开灯时,灯光由暗渐渐变亮。灯光软关闭功能,是指在关灯时,灯光由亮渐渐变暗。灯光软开关功能,是指在开灯时,灯光由暗渐渐变亮;在关灯时,灯光由亮渐渐变暗。这样,能够避免亮度的突然变化刺激眼睛,同时避免大电流和高温的突变对照明设备的冲击,延长照明设备的寿命。场景控制功能,是指设置特定模式的场景。在特定模式的场景中,无需逐一开关各照明设备、调节各照明设备的亮度等,触发一个按钮即可实现对一组照明设备的控制,比如一组照明设备的开启关闭、亮度调节等。特定模 式包括回家模式、离家模式、会客模式、就餐模式、影院模式等。
在一些实施例中,可穿戴设备和照明设备都能通过无线通信建立连接。此外,基于可穿戴设备或照明设备的无线测距服务,在检测到可穿戴设备与照明设备之间的距离在预设距离范围内,自动开启照明设备。另外,通常来说,可穿戴设备具有私密性,即一个可穿戴设备被一个用户佩戴,故不同的可穿戴设备可表征不同的用户。因此,可通过识别可穿戴设备识别用户身份,为不同的用户提供个性化的照明服务,极大提升了对照明设备的智能控制体验。
需要说明的是,“开启照明设备”是指开启照明设备的照明功能,不包括照明设备通电但未开启照明功能的情形;“关闭照明设备”是指关闭照明设备的照明功能,包括照明设备通电但未开启照明功能的情形。另外,有些照明设备包含警示灯,比如LED警示灯。通常来说,警示灯的亮度较小,用于在照明设备发生诸如故障或者断网等的异常时进行警示。上述警示灯的开启,不在本申请“开启照明设备”的范围内;同理,上述警示灯的关闭,也不在申请“关闭照明设备”的范围内。
示例性的,上述无线测距服务可以包括但不限于基于Wi-Fi感知(Wi-Fi Aware)技术,也称邻居感知网络(Neighbor Awareness Networking,NAN)的测距服务;基于蓝牙的接收信号强度指示(received signal strength indicator,RSSI)的测距服务;基于Wi-Fi的RSSI的测距服务等。
其中,上述Wi-Fi感知测距服务,用于根据无线信号在两个无线设备之间往返时长和无线信号的传输速度确定两个无线设备之间的距离。示例性的,在IEEE 802.11mc标准中规定了WLAN往返时长(round-trip time)和相关精确时间测量(fine timing measurement,FTM)功能。具体的,FTM功能可以计算测量数据包在两个无线设备之间往返所需的时长,将测量数据包在两个无线设备之间往返所需的时长乘以光速即得到两个无线设备之间的距离。例如,可穿戴设备可以发送测量数据包,并记录发送时间。照明设备在接收到测量数据包后,再次发送测量数据包(还可以携带其他信息)。可穿戴设备在接收到照明设备发送的测量数据包后,记录接收时间,并计算出接收时间与发送时间之间的时间差。该时间差与光速的乘积记为可穿戴设备和照明设备之间的距离。或者,也可将照明设备与可穿戴设备的发送接收关系互换,据此确定两者之间的距离,本申请对此不做限定。
上述RSSI测距服务,用于在接收无线设备知晓发送无线设备的发射功率的前提下,接收无线设备根据接收到的无线信号(例如,蓝牙信号或Wi-Fi信号)的强度,确定接收无线设备与发送无线设备之间的距离。例如,可穿戴设备广播蓝牙低功耗(bluetooth low energy,LTE)信号,照明设备在接收到可穿戴设备广播的BLE信号后,基于接收到的BLE信号强度确定两者之间的距离。BLE信号强度越大,两者之间的距离越小。或者,照明设备与可穿戴设备之间的发送接收关系互换,由照明设备基于接收到的BLE信号强度确定两者之间的距离。
图2示出了一种可穿戴设备100的结构示意图。可穿戴设备100可以包括处理器110,内部存储器120,通用串行总线(universal serial bus,USB)接口130,充电管理模块140,电源管理模块141,电池142,天线150,无线通信模块160,音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,传感器模块180,按键 190,马达191,指示器192,摄像头193,以及显示屏194等。其中传感器模块180可以包括加速度传感器180A,陀螺仪传感器180B,温度传感器180C,触摸传感器180D,距离传感器180E,以及接近光传感器180F等。
处理器110可以包括一个或多个处理单元,例如:处理器110可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,视频编解码器,数字信号处理器(digital signal processor,DSP),和/或神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。
内部存储器120可以用于存储计算机可执行程序代码,所述可执行程序代码包括指令。内部存储器120可以包括存储程序区和存储数据区。其中,存储程序区可存储操作系统,至少一个功能所需的应用程序(比如声音播放功能,图像播放功能等)等。存储数据区可存储可穿戴设备100使用过程中所创建的数据(比如音频数据,电话本等)等。此外,内部存储器120可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件,闪存器件,通用闪存存储器(universal flash storage,UFS)等。处理器110通过运行存储在内部存储器120的指令,和/或存储在设置于处理器中的存储器的指令,执行可穿戴设备100的各种功能应用以及数据处理。
在本申请的一些实施例中,内部存储器120存储测距服务的相关程序代码,当处理器110从内部存储器120读取测距服务的程序代码后,可通过无线通信模块160实现测量与其他设备(例如照明设备200)之间的距离。然后,处理器110可以根据自身与照明设备200之间的距离实现对照明设备的智能控制(开启或关闭)。
无线通信模块160可以提供应用在可穿戴设备100上的包括无线局域网(wireless local area networks,WLAN)(如无线保真(wireless fidelity,Wi-Fi)网络),蓝牙(bluetooth,BT),全球导航卫星系统(global navigation satellite system,GNSS),调频(frequency modulation,FM),近距离无线通信技术(near field communication,NFC),红外技术(infrared,IR)等无线通信的解决方案。无线通信模块160可以是集成至少一个通信处理模块的一个或多个器件。无线通信模块160经由天线150接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器110。无线通信模块160还可以从处理器110接收待发送的信号,对其进行调频,放大,经天线150转为电磁波辐射出去。
在一些实施例中,天线150和无线通信模块160耦合,使得可穿戴设备100可以通过无线通信技术与网络以及其他设备通信。所述无线通信技术可以包括全球移动通讯系统(global system for mobile communications,GSM),通用分组无线服务(general packet radio service,GPRS),码分多址接入(code division multiple access,CDMA),宽带码分多址(wideband code division multiple access,WCDMA),时分码分多址(time-division code division multiple access,TD-SCDMA),长期演进(long term evolution,LTE),BT,GNSS,WLAN,NFC,FM,和/或IR技术等。所述GNSS可以包括全球卫星定位系统(global positioning system,GPS),全球导航卫星系统(global navigation satellite system,GLONASS),北斗卫星导航系统(beidou navigation satellite system,BDS), 准天顶卫星系统(quasi-zenith satellite system,QZSS)和/或星基增强系统(satellite based augmentation systems,SBAS)。
可穿戴设备100可以通过音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,以及应用处理器等实现音频功能。例如音乐播放,录音等。
加速度传感器180A可检测可穿戴设备100在各个方向上(一般为三轴)加速度的大小。当可穿戴设备100静止时可检测出重力的大小及方向。还可以用于识别可穿戴设备100的姿态,应用于计步器等应用。
陀螺仪传感器180B可以用于确定可穿戴设备100的运动姿态。在一些实施例中,可以通过陀螺仪传感器180B确定可穿戴设备100围绕三个轴(即,x,y和z轴)的角速度。
距离传感器180E,用于测量距离。可穿戴设备100可以通过红外或激光测量距离。
在本申请实施例中,处理器110可以根据加速度传感器180A和/或陀螺仪传感器180B和/或其他传感器的数据,确定可穿戴设备100是否处于睡眠模式(一种低功耗的工作模式)。若检测到可穿戴设备100在预设时间段(夜间,例如23:00-第二日06:00)退出睡眠模式,则可以发布测距服务或者向照明设备订阅测距服务,测量可穿戴设备100与照明设备200之间的距离。在一些实施例中,可穿戴设备100具有测距功能;当两个设备之间的距离小于等于预设距离阈值时,指示照明设备开启照明功能并提供与该可穿戴设备100对应的个性化照明。当两个设备之间的距离大于预设距离阈值时,指示照明设备关闭照明功能。在另一些实施例中,照明设备200具有测距功能;同理,照明设备200根据两个设备之间的距离与预设距离阈值的关系,自动开启照明功能并提供对应的个性化照明,或自动关闭照明功能。
可以理解的是,本申请实施例示意的结构并不构成对可穿戴设备100的具体限定。在本申请另一些实施例中,可穿戴设备100可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。本申请实施例示意的各模块间的接口连接关系,只是示意性说明,并不构成对可穿戴设备100的结构限定。在本申请另一些实施例中,可穿戴设备100也可以采用上述实施例中不同的接口连接方式,或多种接口连接方式的组合。
图3示出了照明设备200的结构示意图。照明设备200包括一个或多个处理器210、一个或多个存储器220、以及一个或多个通信接口230、无线通信模块240以及一个或多个照明灯250等。
处理器210、存储器220、通信接口230、无线通信模块240以及照明灯250通过总线连接。处理器210可以包括通用中央处理器(Central Processing Unit,CPU)、微处理器、特定应用集成电路(Application-Specific Integrated Circuit,ASIC),或者用于控制本申请方案程序执行的集成电路等的全部或部分。在本申请实施例中,处理器210包括灯光控制的逻辑电路,可用于开启或关闭照明灯250,并且能够控制照明灯250的灯光强度、灯光颜色、色温等。
处理器210中也可设置有内部存储器,可以用于存储计算机可执行程序代码,所述可执行程序代码包括指令。内部存储器可以包括存储程序区和存储数据区。其中, 存储程序区可存储操作系统以及本申请实施例需要使用的程序或指令等。在一个实施例中,处理器210也可以包括多个CPU,并且处理器210可以是一个单核(single-CPU)处理器或多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路或用于处理数据(例如计算机程序指令)的处理核。
例如,存储数据区可存储不同可穿戴设备的标识与照明参数的对应关系。其中照明参数包括照明灯250可实现的不同灯光强度、色温等的灯光参数,以及智能控制的参数。智能控制的参数包括但不限于自动开启照明灯250的距离值、延时关闭照明灯250的时长等。
又例如,存储程序区可存储实时操作系统(real time operating system,RTOS)。当外界事件或数据产生时,RTOS能够接受并以足够快的速度予以处理,其处理的结果又能在规定的时间之内来控制生产过程或对处理系统做出快速响应。处理器210通过运行存储在内部存储器的指令,执行照明设备200的各种功能应用以及数据处理。例如,当照明设备200接收到可穿戴设备100发送的开启指示时,照明设备200可以快速根据预先存储的可穿戴设备100的标识确定出相应的照明参数,并根据确定的照明参数控制LED进行相应的响应,即为不同用户提供个性化照明服务。
通信接口230,可用于与其他设备或通信网络通信,如以太网,无线局域网(wireless local area networks,WLAN)等。
无线通信模块240可以提供应用在照明设备200上的包括WLAN(如Wi-Fi网络),蓝牙,NFC,红外技术等无线通信的解决方案。无线通信模块240可以是集成至少一个通信处理模块的一个或多个器件。无线通信模块240经由天线接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器210。无线通信模块240还可以从处理器210接收待发送的信号,对其进行调频,放大,经天线转为电磁波辐射出去。
照明灯250,可以包括照明光源、灯罩以及附件。照明灯250可以在灯光控制的逻辑电路的控制下呈现不同亮度、色温等光照。
本申请实施例中的技术方案可应用于图1中的可穿戴设备100和/或照明设备200中,结合附图对本申请实施例的技术方案进行详细说明。
示例性的,用户可以通过可穿戴设备上的应用(例如应用1)添加需要控制的照明设备,以及对照明设备的相关参数(自动开启的距离、灯光强度、色温、延时关闭时长等)进行个性化设置。其中,应用1可以为智能家居应用,可实现对智能家居中多个不同厂商不同类型的智能设备进行设置。应用1也可以为待添加照明设备对应的应用,以实现对该照明设备的设置。应用1还可以为待添加照明设备的厂商对应的应用,可实现对该厂商不同类型的智能设备进行设备。应用1可以是可穿戴设备上预置的系统应用,也可以为可通过应用市场等下载的第三方应用,本申请对此不做具体限定。
如图4中(1)所示,用户可通过可穿戴设备上的应用1对应的图标,开启应用1,显示如图4中(2)所示的应用1的主界面。进一步的,用户可通过点击“添加设备”功能控件,开始添加照明设备,即可穿戴设备显示如图4中(3)所示的设备添加界面。响应于检测到用户操作“照明设备”的控件,可穿戴设备可以提示用户“开启待添加 照明设备的无线功能”,例如显示如图4中(4)所示的提示信息,或者语音提示。
在本申请的一些实施例中,可穿戴设备可与照明设备建立点对点的无线连接,并通过该无线连接将用户输入的个性化照明参数发送给照明设备。下面以可穿戴设备与照明设备通过Wi-Fi感知技术建立无线连接(即建立NAN)为例进行说明。
首先,对NAN机制进行简单说明。NAN机制是Wi-Fi联盟制定的一个标准。这个标准是在没有中心节点的情况下,所有参与NAN机制的设备(即NAN设备,例如可穿戴设备、照明设备)同步起来。在NAN机制约定的发现时间窗(discovery window,DW)中进行NAN机制的维持工作和服务发现工作。其中,服务发现可通过发送服务发现帧(service discovery frame,SDF)消息实现。该服务器发现帧消息包括查询消息或广播消息。NAN设备基于服务发现消息中获得的信息,可以建立相应的连接,然后基于NAN智能管理。
图5为本申请实施例提供的照明设备的照明参数的设置方法的流程示意图。如图5所示,该方法包括:
S501、可穿戴设备和照明设备均开启无线功能(具体为NAN功能)。
示例性的,在照明设备开启NAN功能后,可以将自身设置为锚主节点(anchor master,AM),创建一个簇(cluster),并基于自身介质访问控制(media access control,MAC)地址设定该cluster身份标识(identity,ID)值。
S502、照明设备发送同步信标帧(sync beacon)消息。该消息中携带该簇中AM的信息。
S503、可穿戴设备加入照明设备所在的簇。
示例性的,可穿戴设备接收到照明设备发送的同步信标帧消息后,可根据消息中的AM的信息,与照明设备实现同步;例如将自身原有的时间同步功能(time synchronization,TSF)更新为照明设备的TSF等。
S504、可穿戴设备发布照明参数设置服务。
示例性的,可穿戴设备可以广播SDF Publish消息,发布照明参数设置服务。
S505、可穿戴设备订阅照明参数设置服务。
示例性的,照明设备在接收到SDF Publish消息后,可以自动订阅照明参数设置服务,即向可穿戴设备回复SDF Subscribe消息。
S506、可穿戴设备接收用户输入的照明参数。
示例性的,响应于接收到的SDF Subscribe消息,可穿戴设备显示照明参数的设置界面,并接收用户输入。
用户可以在图4中(5)所示的照明参数的设置界面上,对照明设备的照明参数进行设置;例如设置设备品牌、设备类型、设备位置、是否开启夜间模式等。其中,设备品牌、设备类型等信息可以是照明设备主动发送给可穿戴设备的,无需用户输入。其中,夜间模式(或称夜灯模式、智能模式),是指照明设备根据其与可穿戴设备之间的距离控制(例如,开启或关闭)照明功能的工作模式。进一步的,还可以对夜间模式进行设置。图4中(6)示出了夜间模式设置界面。在该夜间模式设置界面,可以对夜间自动开启照明功能的距离、灯光强度、色温、是否延时关闭,以及延时关闭的时间等进行设置。需要说明的是,图4中(5)的设置界面,以及图4中(6)中的设 置界面仅为示例,本申请对此不做限定。
S507、可穿戴设备发送照明参数。
示例性的,可穿戴设备接收用户输入照明参数后,将照明参数通过SDF Follow-up消息发送给照明设备。
S508、照明设备存储可穿戴设备的标识和照明参数。
示例性的,照明设备将可穿戴设备的标识和用户输入的照明参数建立对应关系,并存储在本地。
其中,可穿戴设备的标识包括诸如MAC地址、设备名称、用户名称、可穿戴设备登录的账号、可穿戴设备绑定的账号等中的至少一种。照明设备将可穿戴设备的标识,以及通过该可穿戴设备发送的用户输入的照明参数的对应关系存储在本地。表1示例性地展示了本申请实施例中可穿戴设备与照明参数的对应关系。后续,照明设备可以根据不同的可穿戴设备与自身的距离确定执行具体的照明功能,比如开启照明功能,关闭照明功能等。并且,照明设备根据可穿戴设备的标识和照明参数的对应关系,为不同的用户提供个性化的照明服务。
表1
Figure PCTCN2021112137-appb-000001
用户可以根据自身的具体需求,对照明设备的照明参数进行个性化设置。该个性化设置包括照明设备的灯光强度、色温等灯光参数的个性化设置,以及对照明设备的智能控制的个性化设置。例如,用户对自动开启照明的距离,是否延迟关闭照明,延长关闭的时长等进行个性化设置。需要注意的是,不同的用户可以对同一个照明设备设置不同的照明参数。同一个用户可以对房间里的多个照明设备分别设置不同的照明参数。也就是说,同一个照明设备可以为不同的用户提供个性化照明,不同的照明设备也可以为同一个用户提供不同的照明,从而满足用户在不同场景下的各种需求,提升照明设备的智能控制体验。
在本申请的另一些实施例中,可穿戴设备也可以通过网络服务器(云服务器)与照明设备建立连接,通过网络服务器将用户设置的照明参数发送给照明设备。
在本申请的又一些实施例中,用户还可以通过其他设备(非可穿戴设备,例如手机、平板电脑、智慧屏等)对照明设备进行设置,并为不同的可穿戴设备设置不同的照明参数。即通过其他电子设备,设置可穿戴设备与照明设备的照明参数的对应关系。
图6为本申请实施例提供的照明设备的控制方法的流程示意图。如图6所示,该方法包括:
S601、可穿戴设备检测到用户退出睡眠状态,且当前时间处于预设时间段(夜间,例如23:00至第二日06:00)。
其中,上述预设时间段可由系统设置,也可以由用户自行设置。预设时间段可为固定的时间段,也可以根据四季的日照条件设置不同的时间段,本申请实施例均不做 具体限定。比如,地点为北京,设置夏季(7月-9月)的夜间为23:00至第二日05:00,设置冬季(12月-第二年2月)的夜间为22:30至第二日07:00,设置春季(3月-6月)和秋季(10月-11月)的夜间为23:00至第二日06:30等。当然,地点也可为其他地点,相应的,季节和夜间均对应调整。比如,乌鲁木齐比北京晚两个小时;比如在热带地区的夏季,04:00可能已经为白天。
一些可穿戴设备,例如智能手环、智能手表等,可以记录用户日常生活中的锻炼、睡眠等实时数据,并将这些数据与手机、平板电脑、智慧屏等设备同步,起到通过数据指导健康生活的作用。可穿戴设备可以根据自身配置的传感器数据确定用户是否处于睡眠状态。例如,可穿戴设备可以通过加速度传感器、陀螺仪、心率检测仪等传感器检测用户的运动状态,并结合相应的算法确定用户是否处于睡眠状态。其中,算法可以根据预先统计的不同用户的睡眠特点、睡眠习惯、睡眠姿势等测试数据训练得到,该算法可以准确的根据可穿戴设备配置的传感器确定出用户是否处于睡眠状态。一些示例中,若检测到用户处于睡眠状态,可穿戴设备可进入睡眠模式(一种低功耗的工作模式),以降低可穿戴设备的功耗。若检测到用户不处于睡眠状态,可穿戴设备可以退出睡眠模式,恢复到正常的工作模式。
进一步的,在可穿戴设备检测到用户退出睡眠状态(即用户从处于睡眠状态变化到处于非睡眠状态),或者,可穿戴设备检测到退出睡眠状态,且根据系统时间确定当前处于预设时间段(例如23:00至第二日06:00),则可认为用户在夜间起床,需要开启照明设备。例如,老年人夜晚起床去卫生间,父母夜间起来照顾孩子等。预设时间段可根据季节、地点等因素的不同,由用户自行设置。
需要说明的是,本申请实施例是以检测到用户退出睡眠状态,且当前时间为夜间,确定用户在夜间起身的场景,也可以根据不同类型的电子设备以及电子设备配置的不同传感器等具体情况,采用其他方法确定用户在夜间起身的场景,本申请实施例对此不做限定。
S602、可穿戴设备发送一个请求(例如为发布测距服务)。
可穿戴设备可以通过广播无线信号(例如,蓝牙信号、Wi-Fi感知信号等)的方式发送请求。示例性的,可穿戴设备可以发送预设次数的请求,也可以以预设周期频繁发送请求,本申请实施例对此不做限定。在一些实施例中,若可穿戴设备在进入睡眠模式后关闭了无线功能,则在可穿戴设备检测到退出睡眠模式后,可先开启无线功能,再广播请求。
示例性的,采用Wi-Fi感知的方式广播测距服务。具体的,可穿戴设备可以通过SDF Publish消息,该消息中携带测距服务的标识。需要说明的是,若可穿戴设备采用Wi-Fi Aware的方式设置照明设备的照明参数,则根据图5的描述可知,此时可穿戴设备与照明设备已处于同一个簇,照明设备可以接收到可穿戴设备发送的SDF Publish消息。若可穿戴设备采用通过网络服务器(例如云服务器)设置照明设备的照明参数。则在可穿戴设备发布测距服务之前,可穿戴设备需要先加入照明设备所在的簇。具体的加入方法可参考图5中步骤S501和步骤S502中的描述,这里不再赘述。作为另一个示例,采用蓝牙(例如BLE)的方式广播测距服务。可穿戴设备可以通过广播信标帧,并在信标帧中携带测距服务的标识。
在一些实施例中,可穿戴设备发送的请求中可以携带可穿戴设备和/或照明设备的身份信息,后续照明设备可根据该请求中可穿戴设备和/或照明设备的身份信息进行身份权限的匹配验证。
S603、照明设备接收到可穿戴设备发送的请求后,自动向可穿戴设备回复一个响应(例如订阅测距服务)。
示例性的,照明设备可通过向可穿戴设备发送SDF Subscribe消息,订阅测距服务。或者,照明设备向可穿戴设备发送蓝牙消息,该蓝牙消息中可以携带测量数据包。
在一些实施例中,照明设备发送的响应中可以携带可穿戴设备和/或照明设备的身份信息,后续可穿戴设备可根据该响应中可穿戴设备和/或照明设备的身份信息进行身份权限的匹配验证。
S604、可穿戴设备检测可穿戴设备与照明设备之间的距离。
示例性的,可穿戴设备可启动Wi-Fi Aware测距服务,例如向照明设备发送测量数据包,并接收照明设备返回的响应,该响应包括测量数据包或者测量数据包对应的其他内容(例如时间戳等)等,根据返回的响应在两个设备之间的往返时间确定可穿戴设备与照明设备之间的距离。或者,可穿戴设备接收到照明设备发送的携带测量数据包的蓝牙消息后,根据蓝牙信号的强度确定两个设备之间的距离。
可以理解的是,可穿戴设备与照明设备之间的距离,可认为是可穿戴设备的穿戴者与照明设备之间的距离。具体地,可穿戴设备按照预设周期来检测自身与照明设备之间的距离。所述周期可以由用户自行设置。
S605、当检测到可穿戴设备与照明设备之间的距离小于或等于距离阈值时,可穿戴设备指示照明设备执行特定功能。
其中该特定功能可以包括单一功能和组合功能中的至少一项。例如,特定功能为单一功能时,例如为开灯。特定功能为组合功能时,例如为旋转灯为某个角度并开灯,或者下降灯的位置并开灯。例如,若照明设备接收到儿童或老人的可穿戴设备发送的消息或另一消息时,可以控制灯下降一定距离,便于孩子或老人看得更清楚。
当检测到可穿戴设备与照明设备之间的距离小于或等于距离阈值(例如2米、1米、0.5米等),则认为用户靠近照明设备,可穿戴设备指示照明设备开启照明功能。例如发送SDF Follow-up消息,该SDF Follow-up消息中携带可穿戴设备的标识。或者,发送蓝牙消息,该蓝牙消息中携带可穿戴设备的标识。其中,该距离阈值可以为默认值,也可以为用户在设置照明参数时设置的,例如,如图4中(6)所示的自动开启照明设备的距离。
在又一些示例中,用户设置的可穿戴设备对应的照明参数也可以保存在可穿戴设备本地。那么,当检测到可穿戴设备与照明设备之间的距离小于或等于距离阈值时,可穿戴设备向照明设备发送的指示中可以包括该可穿戴设备对应的照明参数。那么,照明设备可以直接根据指示中的照明参数开启照明功能。
在又一些示例中,用户设置的可穿戴设备对应的照明参数也可以保存在可穿戴设备本地。那么,当可穿戴设备检测到用户退出睡眠状态,且当前时间为预设时间段后,在向照明设备发送的请求中携带该可穿戴设备对应的照明参数。
还需要说明的是,可穿戴设备对应的照明参数可以一次性发送给照明设备,也可 以分次发送给照明设备。例如,当指示照明设备执行特定功能时,发送该特定功能对应的照明参数(例如第一参数)。当指示照明设备执行另一特定功能时,发送该另一特定功能对应的照明参数(例如第二参数)。再例如,特定功能为开灯时,第一参数例如包括立即开灯和缓慢开灯等。另一特定功能为关灯时,第二参数例如包括立即关灯和延时关灯。其中,延时关灯包括不同时长的延时关灯。
S606、照明设备接收到可穿戴设备的开启指示后,按照可穿戴设备的标识对应的照明参数开启照明功能。
照明设备根据开启指示中携带的可穿戴设备的标识,在本地存储的设备标识与照明参数的对应关系中(例如,如表1所示)查找到对应的照明参数,并使用查找到的照明参数开启照明功能。在一些示例中,若在同一时间段内,照明设备接收到多个可穿戴设备的开启指示时,则照明设备可以根据接收到开启指示的时间先后,或者开启指示中携带的可穿戴设备的优先级高低或者其他规则,确定相应的照明参数并开启照明功能。例如,照明设备可以根据最先接收到开启指示开启照明功能。即,根据最先接收到的开启指示中携带的可穿戴设备的标识对应的照明参数开启照明功能。或者,照明设备根据优先级最高的可穿戴设备的标识对应的照明参数开启照明功能。其中,优先级的高低例如可以设置为:老年人的可穿戴设备的优先级>儿童的可穿戴设备的优先级>妈妈的可穿戴设备的优先级>爸爸的可穿戴设备的优先级。
在一些实施方式中,照明设备在开启照明功能后,可以自动在预定义的时长(例如1分钟、2分钟、5分钟)后自动关闭。
示例性地,在父母和孩子在一个房间,父母夜间起身照顾孩子的场景中,考虑到平均下来,父母哄孩子的时长一般在几分钟左右,则房间的照明设备(例如床底氛围灯或台灯)可在开启后的预定义的时长(例如2分钟)后自动关闭。其中,房间的照明设备的亮度较低,便于眼睛适应黑暗到光亮的变化,且不打扰到孩子睡觉。
示例性地,在夜间起床的场景中,可穿戴设备的穿戴者经过走廊或者客厅的时长一般来说相对固定,比如夜间起床走过走廊一般需要20s,因此在走廊或客厅的照明设备开启后的预定义的时长(例如1分钟)后自动关闭。
这样,在照明设备开启后,可穿戴设备可以在预定义时长后,不再检测两个设备之间的距离,有利于降低可穿戴设备的功耗。
在另一些实施方式中,照明设备在开启照明功能后,继续检测可穿戴设备与照明设备之间的距离。当两者之间的距离大于距离阈值时,可认为用户远离照明设备,指示关闭照明设备,即执行如下步骤S607和步骤S608。
S607、若检测到可穿戴设备与照明设备之间的距离大于距离阈值时,可穿戴设备指示照明设备执行另一特定功能(例如关闭照明功能)。
其中该另一特定功能可以包括单一功能和组合功能中的至少一项。例如,特定功能为单一功能时,例如为关灯。特定功能为组合功能时,例如为将灯的角度调整默认角度并关灯,或者将等待位置调回到默认位置并关灯。
S608、照明设备接收到可穿戴设备的关闭指示后,执行另一特定功能。
照明设备在接收到可穿戴设备的关闭指示后,可以根据用户设置立即或者延迟关闭照明功能。
例如,在父母和孩子位于同一房间,父母夜间起身照顾孩子的场景中,当检测到父母的可穿戴设备与房间的照明设备(例如床底氛围灯或台灯)之间的距离小于距离阈值(例如1米)时,自动开启房间的照明设备。当检测到父母的可穿戴设备与房间的照明设备之间的距离大于距离阈值时,自动关闭(包括立即关闭或延迟关闭)房间的照明设备。
又例如,在夜间起床的场景中,当检测到可穿戴设备与卫生间的照明设备(例如,吸顶灯或镜前灯)之间的距离小于距离阈值(例如0.5米)时,自动开启卫生间的照明设备。当检测到可穿戴设备与卫生间的照明设备之间的距离大于距离阈值时,自动关闭卫生间的照明设备。
需要说明的是,S602和S603为可选的步骤,并不是必需的步骤。在有些实施例中,可以不包含S602和S603。
由上可见,本申请提供了一种根据可穿戴设备与照明设备之间的距离自动开启照明设备的照明功能,并且根据可穿戴设备的标识确定用户设置的照明参数,为用户提供个性化的照明服务,满足不同用户在不同场景下的照明需求,提升智能控制的体验。
另外,可穿戴设备控制照明设备开启或关闭照明功能的过程中,均采用本地的无线通信方式,无需经过中间设备(例如路由器、服务器)的转发,使得智能控制更加快捷,安全性高。再有,本申请实施例无需在照明设备上新增传感器,照明设备只需进行固件升级即可实现本申请实施例提供的智能控制的方案,智能控制体验高,且成本低。
以上实施例是由可穿戴设备提供测距服务的,在本申请的另一些实施例中也可以由照明设备提供测距服务。如图7所示,为本申请实施例提供的又一种照明设备的控制方法的流程示意图,具体包括:
S701、照明设备周期性发送请求(例如发布测距服务)。
示例性的,用户可以开启照明设备的夜间模式。例如,用户可以通过操作照明设备的遥控器上按键,或者操作控制设备(绑定照明设备的手机等智能设备)的应用上控件等方式开启夜间模式等。当照明设备开启夜间模式后,照明设备周期性发布测距服务。
一些示例中,用户手动开启照明设备的夜间模式后,照明设备在当日的预设时间段内(23:00至第二日06:00)周期性发布测距服务。后续,照明设备自动关闭夜间模式,即不再发布测距服务。即,用户手动开启照明设备的夜间模式的有效性为一次。在另一些示例中,用户手动开启照明设备的夜间模式后,照明设备在每日的预设时间段内(当天23:00至第二日06:00)周期性发布测距服务。后续,直到用户手动关闭照明设备的夜间模式,照明设备不再发布测距服务。在具体实现时,在用户手动开启照明设备的夜间模式后,照明设备绑定的控制设备或者服务器可以每日向照明设备发送指令,指示照明设备在每日的预设时间段内周期性发布测距服务。或者,若照明设备具备时钟功能,也可以实现每日在预设时间段(夜间,例如23:00至第二日06:00)自动开启夜间模式。本申请实施例对实现方式不做限定。
S702、可穿戴设备检测到用户退出睡眠状态。
其中,可穿戴设备检测用户退出睡眠状态的方法可参考步骤S603。
S703、可穿戴设备向照明设备发送响应(例如订阅测距服务),携带可穿戴设备的标识。
S704、照明设备检测可穿戴设备与照明设备之间的距离。
示例性的,照明设备可启动Wi-Fi Aware测距服务,例如向可穿戴设备发送测量数据包,并接收可穿戴设备返回的测量数据包,根据测量数据包在两个设备之间的往返时间确定可穿戴设备与照明设备之间的距离。或者,照明设备接收到可穿戴设备发送的无线信号后,根据接收到的该无线信号的信号强度,与测量数据包中携带的可穿戴设备发送的无线信号的强度,进一步确定两个设备之间的距离。
S705、在两个设备之间的距离小于或等于距离阈值时,照明设备根据该无线信号,获取可穿戴设备的标识,并执行特定功能。
示例性地,在两个设备之间的距离小于或等于距离阈值(例如2米、1米、0.5米等),照明设备根据该无线信号,获取可穿戴设备的标识,并根据可穿戴设备的标识,从本地存储的可穿戴设备标识与照明参数的对应关系中(例如,如表1所示)查找对应的照明参数,照明设备使用该照明参数开启照明功能。
在一些实施方式中,照明设备在开启照明功能后,可以自动在预定义的时长(例如1分钟、5分钟)后自动关闭。在另一些实施方式中,照明设备在开启照明功能后,继续检测可穿戴设备与照明设备之间的距离。当两个设备之间的距离大于距离阈值时,可认为用户远离照明设备,自动关闭照明设备,即执行如下步骤S706。
S706、在两个设备之间的距离大于距离阈值时,照明设备执行另一特定功能。
示例性地,在两个设备之间的距离大于距离阈值时,照明设备执行关闭照明功能。
由上可见,照明设备与可穿戴设备之间的交互消息较少,有利于加快照明设备对可穿戴设备的响应速度。并且,由于照明设备一般都由电源供电,不用考虑供电问题;而可穿戴设备一般都由电池供电,需要考虑待机时长。由照明设备提供测距服务,有利于降低可穿戴设备的功耗,延长可穿戴设备的待机时长。
以下,结合具体的场景,对本申请实施例提供的技术方案进行说明。
场景一、对同一照明设备,不同用户可以设置不同的照明参数。
例如,在家庭多个成员夜间起床去卫生间的场景中。由于不同用户与照明设备的距离不同,不同用户对同一照明设备的光照强度、延迟关闭等需求也可能不同,可以针对同一个照明设备(例如客厅、走廊等的照明设备)设置不同的照明参数。
以图8所示的一套三居室户型为例说明。其中,卧室801为儿童卧室,卧室802为父母卧室,卧室803为老人卧室。
假设儿童和父母夜间起床去卫生间均需要分别开启走廊804的照明设备810、餐厅806的照明设备820和卫生间807的照明设备830。由于儿童和父母对照明设备的需求不同,即使是同一照明设备也需要设置不同的照明参数。以走廊804的照明设备810的设置为例。
考虑到儿童和父母的身高差或者不同卧室内床的位置不同等因素,走廊804的照明设备810启动的距离阈值因儿童和父母的身份不同而不同。比如,儿童的可穿戴设备的标识对应的距离阈值大于父母的可穿戴设备的标识对应的距离阈值。当然,也可不考虑儿童和父母的身份差异,走廊804的照明设备810启动的距离阈值统一设置相 同的距离阈值。
优选地,考虑到儿童和父母步行的速度不同,走廊804的照明设备810延时关闭的时长可因儿童和父母的身份不同而不同。比如,儿童的可穿戴设备的标识对应的延时时长大于父母的可穿戴设备的标识对应的延时时长。当然,也可不考虑儿童和父母的身份差异,走廊804的照明设备810延时关闭的时长统一设置相同的时长。
又假设老年人夜间起床去卫生间需开启餐厅806的照明设备820,卫生间807的照明设备830。由于老年人与父母对照明设备的需求不同,即使是同一照明设备也需要设置不同的照明参数。以餐厅806的照明设备820的设置为例。由于父母在经过照明设备820之前,已开启过走廊804的照明设备810,眼睛已适应光亮的变化,因此餐厅806的照明设备820的灯光强度可以强一些。而老年人的卧室803距离餐厅806较近,眼睛还未适应光亮的变化(假设未开启卧室803的照明设备),因此餐厅806的照明设备820的灯光强度可以弱一些。
其中,用户具体设置各个照明设备的方法,以及通过可穿戴设备控制各个照明设备的方法可参考上述实施例介绍的方法,这里不再赘述。
场景二、同一用户可以针对不同位置的照明设备设置不同的照明参数。
例如,请参考图8,在某个用户(例如父母)夜间起床去卫生间的场景中,可以设置卧室802、走廊804、客厅805(或餐厅806)以及卫生间807中多个照明设备的照明参数。需要说明的是,用户可以根据具体需求选择设置沿途的照明设备(沿途的全部照明设备或沿途的部分照明设备),以及各个照明设备的具体参数,本申请不做限定。
由于卧室802的照明设备840距离用户较近,可以设置可穿戴设备与卧室802的照明设备840(例如床底氛围灯或台灯)的距离阈值为阈值A,例如“0.5米”。即,照明设备840对应的自动开启的距离(即距离阈值)设置为阈值A。那么,当用户夜间起床时,靠近照明设备840时,可穿戴设备检测到与照明设备840的距离小于阈值A,则指示照明设备840自动开启。又由于卧室802的照明设备840是用户夜间起床后的最先开启的照明设备,故为了便于用户的眼睛适应从黑暗到光亮的变化,卧室802的照明设备840的灯光强度设置为最弱的光照强度。可选地,还可以设置可穿戴设备检测到自身与照明设备840的距离大于预设距离阈值时自动关闭。
而后,用户会经过走廊804和餐厅806到达卫生间807。可以设置可穿戴设备与走廊804的照明设备810,以及餐厅806的照明设备820(例如吸顶灯、氛围灯、廊灯)的距离阈值均为阈值B,例如“2.5米”。其中,阈值B大于阈值A。此时,用户的眼睛已适应光亮的变化,故走廊的照明设备810和餐厅806的照明设备820的灯光强度可设置为中等的光照强度。可以设置走廊804的照明设备810和餐厅806的照明设备820在开启后的预定义时长后(例如5分钟)后自动关闭。可替代地,可以设置可穿戴设备检测到自身与照明设备810和照明设备820的距离分别大于各自的预设距离阈值时自动关闭。上述各照明设备所对应的预设距离阈值可由用户预先设定,各预设距离阈值之间的大小关系不做限定。
然后,用户达到卫生间807。由于卫生间807的空间较小,可以设置可穿戴设备与卫生间807的照明设备830的距离阈值为阈值C,例如“1米”。其中,阈值C大 于阈值A,且小于阈值B。进一步地,若用户为女士,使用镜子的几率较大,故可以设置自动开启卫生间里的镜前灯或镜子面板灯等;若用户为男士,则可设置自动开启吸顶灯。可选地,上述的阈值A、B和C可根据用户需要自行设置;另外,上述限定的三者之间的大小关系仅为示意性举例;三者之间的大小关系不限于上述限定,比如三者之间的大小关系还可为B≥A≥C。
其中,用户通过设置上述多个照明设备中任一个照明设备的照明参数的方法,以及可穿戴设备控制上述多个照明设备中任一个照明设备的方法均可参考上述实施例介绍的方法,这里不再赘述。
本申请实施例还提供一种芯片系统,如图9所示,该芯片系统包括至少一个处理器910和至少一个接口电路920。处理器910和接口电路920可通过线路互联。例如,接口电路920可用于从其它装置(例如可穿戴设备100的存储器或者照明设备200的存储器)接收信号。又例如,接口电路920可用于向其它装置(例如处理器910)发送信号。示例性的,接口电路920可读取存储器中存储的指令,并将该指令发送给处理器910。当所述指令被处理器910执行时,可使得电子设备执行上述实施例中的可穿戴设备100或者照明设备200执行的各个步骤。当然,该芯片系统还可以包含其他分立器件,本申请实施例对此不作具体限定。
本申请实施例还提供一种电子装置,该装置包含在可穿戴设备中,该装置具有实现上述实施例中任一方法可穿戴设备行为的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括至少一个与上述功能相对应的模块或单元。例如,检测模块或单元、显示模块或单元、无线通信模块或单元、以及测距模块或单元等。
本申请实施例还提供一种电子装置,该装置包含在照明设备中,该装置具有实现上述实施例中任一方法照明设备行为的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括至少一个与上述功能相对应的模块或单元。例如,无线通信模块或单元、处理模块或单元、以及照明模块或单元。可选的,该装置还包括测距模块或单元等。
本申请实施例还提供一种计算机可读存储介质,包括计算机程序,当计算机程序在可穿戴设备上运行时,使得可穿戴设备执行如上述实施例中任一方法。
本申请实施例还提供一种计算机可读存储介质,包括计算机程序,当计算机程序在照明设备上运行时,使得照明设备执行如上述实施例中任一方法。
本申请实施例还提供一种计算机程序产品,当计算机程序产品在计算机上运行时,使得计算机执行如上述实施例中任一方法。
本申请实施例还提供一种可穿戴设备上的图形用户界面,所述可穿戴设备具有显示屏、存储器、以及一个或多个处理器,所述一个或多个处理器用于执行存储在所述存储器中的一个或多个计算机程序,所述图形用户界面包括所述电子设备执行如上述实施例中任一方法时显示的图形用户界面。
可以理解的是,上述终端等为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本申请中所公开的实施例描述的各示例的单元及算法步骤,本申请实施例能够以硬件或硬件和计算机软件 的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的范围。
本申请实施例可以根据上述方法示例对上述终端等进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请实施例各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:快闪存储器、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (24)

  1. 一种可穿戴设备,其特征在于,所述可穿戴设备包括:
    一个或多个处理器;
    一个或多个存储器;
    以及一个或多个计算机程序,其中所述一个或多个计算机程序存储在所述一个或多个存储器上,当所述计算机程序被所述一个或多个处理器执行时,使得所述可穿戴设备执行以下步骤:
    在检测到用户退出睡眠状态且当前时间位于预设时间段内后,所述可穿戴设备检测所述可穿戴设备与照明设备之间的距离;
    在检测到的所述可穿戴设备与所述照明设备之间的距离小于或等于预设距离阈值后,所述可穿戴设备向所述照明设备发送一个消息;所述消息用于指示所述照明设备执行特定功能。
  2. 根据权利要求1所述的可穿戴设备,其特征在于,所述可穿戴设备还执行以下步骤:
    在检测到的所述可穿戴设备与所述照明设备之间的距离从小于或等于预设距离阈值的距离,变化至大于预设距离阈值的距离后,所述可穿戴设备向所述照明设备发送另一消息;所述另一消息用于指示所述照明设备执行另一特定功能。
  3. 根据权利要求1或2所述的可穿戴设备,其特征在于,
    在检测到用户退出睡眠状态且当前时间位于预设时间段内后,所述可穿戴设备检测所述可穿戴设备与照明设备之间的距离,包括:
    在检测到用户退出睡眠状态且当前时间位于预设时间段内后,所述可穿戴设备以预设周期广播一个请求;
    在接收到所述照明设备的针对所述请求的一个响应后,所述可穿戴设备检测所述可穿戴设备与所述照明设备之间的距离。
  4. 根据权利要求1-3中任意一项所述的可穿戴设备,其特征在于,
    所述消息用于指示所述照明设备执行特定功能,包括:所述消息用于指示所述照明设备按照第一参数执行特定功能;
    所述另一消息用于指示所述照明设备执行另一特定功能,包括:所述另一消息用于指示所述照明设备按照第二参数执行另一特定功能;
    所述第一参数、所述第二参数关联于所述可穿戴设备、所述照明设备、所述可穿戴设备与所述照明设备之间的距离及其变化中的至少一项;
    所述预设距离阈值关联于所述可穿戴设备和所述照明设备中的至少一项。
  5. 根据权利要求4所述的可穿戴设备,其特征在于,
    所述消息包含所述第一参数,所述另一消息包含所述第二参数;或者,
    所述消息包含所述第一参数和所述第二参数;或者,
    所述请求包含所述第一参数和所述第二参数;或者,
    所述第一参数和所述第二参数是由用户预先设置的。
  6. 根据权利要求4或5所述的可穿戴设备,其特征在于,
    所述消息包含所述可穿戴设备的身份信息和/或所述照明设备的身份信息;
    所述请求用于发布测距服务,所述响应用于订阅测距服务;
    所述特定功能和所述另一特定功能均包括单一功能和组合功能;所述特定功能的单一功能包括开启照明功能;所述特定功能的组合功能包括开启照明功能及其相关功能;所述另一特定功能的单一功能包括关闭照明功能;所述另一特定功能的组合功能包括关闭照明功能及其相关功能;
    所述第一参数、所述第二参数包括灯光强度、色温、是否延时关闭、延时关闭的时长中的至少一项;
    或者,
    所述消息包含所述可穿戴设备的身份信息和/或所述照明设备的身份信息;
    所述请求包含所述可穿戴设备的身份信息和/或所述照明设备的身份信息,所述请求还用于发布测距服务;所述响应用于订阅测距服务;所述请求和所述响应还用于身份权限的匹配验证;
    所述特定功能和所述另一特定功能均包括单一功能和组合功能;所述特定功能的单一功能包括开启照明功能;所述特定功能的组合功能包括开启照明功能及其相关功能;所述另一特定功能的单一功能包括关闭照明功能;所述另一特定功能的组合功能包括关闭照明功能及其相关功能;
    所述第一参数、所述第二参数包括灯光强度、色温、是否延时关闭、延时关闭的时长中的至少一项。
  7. 一种照明设备,其特征在于,所述照明设备包括:
    一个或多个处理器;
    一个或多个存储器;
    以及一个或多个计算机程序,其中所述一个或多个计算机程序存储在所述一个或多个存储器上,当所述计算机程序被所述一个或多个处理器执行时,使得所述照明设备执行以下步骤:
    在接收到电子设备发送的一个请求后,或者,在检测到当前时间位于预设时间段内后,所述照明设备检测所述照明设备与可穿戴设备之间的距离;其中所述请求用于指示当前时间位于所述预设时间段内;
    在检测到的所述照明设备与所述可穿戴设备之间的距离小于或等于预设距离阈值后,所述照明设备执行特定功能。
  8. 根据权利要求7所述的照明设备,其特征在于,所述照明设备还执行以下步骤:
    在检测到的所述照明设备与所述可穿戴设备之间的距离从小于或等于预设距离阈值,变化至大于所述预设距离阈值后,所述照明设备执行另一特定功能。
  9. 根据权利要求7或8所述的照明设备,其特征在于,
    在接收到电子设备发送的一个请求后,或者,在检测到当前时间位于预设时间段内后,所述照明设备检测所述照明设备与可穿戴设备之间的距离;其中所述请求用于指示当前时间位于预设时间段内;包括:
    在接收到电子设备发送的一个请求后,或者,在检测到当前时间位于预设时间段内后,所述照明设备以预设周期广播一个消息;其中所述请求用于指示当前时间位于预设时间段内;
    在接收到所述可穿戴设备的针对所述消息的一个响应后,所述照明设备检测所述照明设备与可穿戴设备之间的距离。
  10. 根据权利要求9所述的照明设备,其特征在于,
    所述照明设备执行特定功能,包括:所述照明设备按照第一参数执行特定功能;
    所述照明设备执行另一特定功能,包括:所述照明设备按照第二参数执行另一特定功能;
    所述第一参数、所述第二参数关联于所述照明设备、所述可穿戴设备、所述照明设备与所述可穿戴设备之间的距离及其变化中的至少一项;
    所述预设距离阈值关联于所述可穿戴设备和所述照明设备中的至少一项;
    所述第一参数和所述第二参数是由用户预先设置的。
  11. 根据权利要求10所述的照明设备,其特征在于,
    所述消息包含所述可穿戴设备的身份信息和/或所述照明设备的身份信息,所述消息用于发布测距服务,所述响应用于订阅测距服务;所述消息和所述响应还用于身份权限的匹配验证;
    所述特定功能和所述另一特定功能均包括单一功能和组合功能;所述特定功能的单一功能包括开启照明功能;所述特定功能的组合功能包括开启照明功能及其相关功能;所述另一特定功能的单一功能包括关闭照明功能;所述另一特定功能的组合功能包括关闭照明功能及其相关功能;
    所述第一参数、所述第二参数包括灯光强度、色温、是否延时关闭、延时关闭的时长中的至少一项;
    所述照明设备与所述电子设备有线通信或无线通信。
  12. 一种照明设备的控制方法,应用于可穿戴设备,其特征在于,所述方法包括:
    在检测到用户退出睡眠状态且当前时间位于预设时间段内后,所述可穿戴设备检测所述可穿戴设备与照明设备之间的距离;
    在检测到的所述可穿戴设备与所述照明设备之间的距离小于或等于预设距离阈值后,所述可穿戴设备向所述照明设备发送一个消息;所述消息用于指示所述照明设备执行特定功能。
  13. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    在检测到的所述可穿戴设备与所述照明设备之间的距离从小于或等于预设距离阈值的距离,变化至大于预设距离阈值的距离后,所述可穿戴设备向所述照明设备发送另一消息;所述另一消息用于指示所述照明设备执行另一特定功能。
  14. 根据权利要求12或13所述的方法,其特征在于,
    在检测到用户退出睡眠状态且当前时间位于预设时间段内后,所述可穿戴设备检测所述可穿戴设备与照明设备之间的距离,包括:
    在检测到用户退出睡眠状态且当前时间位于预设时间段内后,所述可穿戴设备以预设周期广播一个请求;
    在接收到所述照明设备的针对所述请求的一个响应后,所述可穿戴设备检测所述可穿戴设备与所述照明设备之间的距离。
  15. 根据权利要求12-14中任意一项所述的方法,其特征在于,
    所述消息用于指示所述照明设备执行特定功能,包括:所述消息用于指示所述照明设备按照第一参数执行特定功能;
    所述另一消息用于指示所述照明设备执行另一特定功能,包括:所述另一消息用于指示所述照明设备按照第二参数执行另一特定功能;
    所述第一参数、所述第二参数关联于所述可穿戴设备、所述照明设备、所述可穿戴设备与所述照明设备之间的距离及变化中的至少一项;
    所述预设距离阈值关联于所述可穿戴设备和所述照明设备中的至少一项。
  16. 根据权利要求15所述的方法,其特征在于,
    所述消息包含所述第一参数,所述另一消息包含所述第二参数;或者,
    所述消息包含所述第一参数和所述第二参数;或者,
    所述请求包含所述第一参数和所述第二参数;或者,
    所述第一参数和所述第二参数是由用户预先设置的。
  17. 根据权利要求15或16所述的方法,其特征在于,
    所述消息包含所述可穿戴设备的身份信息和/或所述照明设备的身份信息;
    所述请求用于发布测距服务,所述响应用于订阅测距服务;
    所述特定功能和所述另一特定功能均包括单一功能和组合功能;所述特定功能的单一功能包括开启照明功能;所述特定功能的组合功能包括开启照明功能及其相关功能;所述另一特定功能的单一功能包括关闭照明功能;所述另一特定功能的组合功能包括关闭照明功能及其相关功能;
    所述第一参数、所述第二参数包括灯光强度、色温、是否延时关闭、延时关闭的时长中的至少一项;
    或者,
    所述消息包含所述可穿戴设备的身份信息和/或所述照明设备的身份信息;
    所述请求包含所述可穿戴设备的身份信息和/或所述照明设备的身份信息,所述请求还用于发布测距服务;所述响应用于订阅测距服务;所述请求和所述响应还用于身份权限的匹配验证;
    所述特定功能和所述另一特定功能均包括单一功能和组合功能;所述特定功能的单一功能包括开启照明功能;所述特定功能的组合功能包括开启照明功能及其相关功能;所述另一特定功能的单一功能包括关闭照明功能;所述另一特定功能的组合功能包括关闭照明功能及其相关功能;
    所述第一参数、所述第二参数包括灯光强度、色温、是否延时关闭、延时关闭的时长中的至少一项。
  18. 一种照明设备的控制方法,应用于照明设备,其特征在于,所述方法包括:
    在接收到电子设备发送的一个请求后,其中所述请求用于指示当前时间位于预设时间段内;或者,在检测到当前时间位于预设时间段内后,所述照明设备检测所述照明设备与可穿戴设备之间的距离;其中所述请求用于指示当前时间位于预设时间段内;
    在检测到的所述照明设备与所述可穿戴设备之间的距离小于或等于预设距离阈值后,所述照明设备执行特定功能。
  19. 根据权利要求18所述的方法,其特征在于,
    在检测到的所述照明设备与所述可穿戴设备之间的距离从小于或等于预设距离阈值的距离,变化至大于预设距离阈值的距离后,所述照明设备执行另一特定功能。
  20. 根据权利要求18或19所述的方法,其特征在于,
    在接收到电子设备发送的一个请求后,或者,在检测到当前时间位于预设时间段内后,所述照明设备检测所述照明设备与可穿戴设备之间的距离;其中所述请求用于指示当前时间位于预设时间段内;包括:
    在接收到电子设备发送的一个请求后,或者,在检测到当前时间位于预设时间段内后,所述照明设备以预设周期广播一个消息;其中所述请求用于指示当前时间位于预设时间段内;
    在接收到所述可穿戴设备的针对所述消息的一个响应后,所述照明设备检测所述照明设备与可穿戴设备之间的距离。
  21. 根据权利要求20所述的方法,其特征在于,
    所述照明设备执行特定功能,包括:所述照明设备按照第一参数执行特定功能;
    所述照明设备执行另一特定功能,包括:所述照明设备按照第二参数执行另一特定功能;
    所述第一参数、所述第二参数关联于所述照明设备、所述可穿戴设备、所述照明设备与所述可穿戴设备之间的距离及变化中的至少一项;
    所述预设距离阈值关联于所述可穿戴设备和所述照明设备中的至少一项;
    所述第一参数和所述第二参数是由用户预先设置的。
  22. 根据权利要求21所述的方法,其特征在于,
    所述消息包含所述可穿戴设备的身份信息和/或所述照明设备的身份信息,所述消息用于发布测距服务,所述响应用于订阅测距服务;所述消息和所述响应还用于身份权限的匹配验证;
    所述特定功能和所述另一特定功能均包括单一功能和组合功能;所述特定功能的单一功能包括开启照明功能;所述特定功能的组合功能包括开启照明功能及其相关功能;所述另一特定功能的单一功能包括关闭照明功能;所述另一特定功能的组合功能包括关闭照明功能及其相关功能;
    所述第一参数、所述第二参数包括灯光强度、色温、是否延时关闭、延时关闭的时长中的至少一项;
    所述照明设备与所述电子设备有线通信或无线通信。
  23. 一种计算机可读存储介质,包括计算机程序,其特征在于,当所述计算机程序在可穿戴设备上运行时,使得所述可穿戴设备执行如权利要求12-17中任意一项所述的方法。
  24. 一种计算机可读存储介质,其特征在于,包括计算机指令,当所述计算机指令在照明设备上运行时,使得所述照明设备执行如权利要求18-22中任意一项所述的方法。
PCT/CN2021/112137 2020-08-31 2021-08-11 一种照明设备的控制方法及可穿戴设备 WO2022042312A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010899660.3 2020-08-31
CN202010899660.3A CN114126172A (zh) 2020-08-31 2020-08-31 一种照明设备的控制方法及可穿戴设备

Publications (1)

Publication Number Publication Date
WO2022042312A1 true WO2022042312A1 (zh) 2022-03-03

Family

ID=80354534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/112137 WO2022042312A1 (zh) 2020-08-31 2021-08-11 一种照明设备的控制方法及可穿戴设备

Country Status (2)

Country Link
CN (1) CN114126172A (zh)
WO (1) WO2022042312A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024103866A1 (zh) * 2022-11-18 2024-05-23 荣耀终端有限公司 设备控制方法、设备和存储介质

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114785838B (zh) * 2022-03-30 2024-01-26 青岛海尔科技有限公司 设备的控制方法和装置、存储介质及电子装置
CN116033431B (zh) * 2022-08-18 2023-10-31 荣耀终端有限公司 穿戴设备的连接方法及装置
CN115902766B (zh) * 2022-11-22 2023-11-07 荣耀终端有限公司 一种测量方法及相关装置
CN116685033B (zh) * 2023-06-21 2024-01-12 惠州兴通成机电技术有限公司 灯具用智能控制系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104155897A (zh) * 2014-08-06 2014-11-19 广东欧珀移动通信有限公司 一种基于可穿戴智能设备的电器控制方法和电器控制装置
CN104635696A (zh) * 2015-01-12 2015-05-20 西安三星电子研究有限公司 控制智能家居设备的可穿戴设备及其控制的智能家居设备
CN105873319A (zh) * 2016-04-25 2016-08-17 乐视控股(北京)有限公司 灯光控制方法和终端设备
CN107637020A (zh) * 2015-03-26 2018-01-26 飞利浦照明控股有限公司 照明设备的上下文有关的调试
CN107708248A (zh) * 2017-08-22 2018-02-16 中山乐心电子有限公司 一种可由可穿戴设备控制的照明装置与控制方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5587995B2 (ja) * 2009-06-09 2014-09-10 コーニンクレッカ フィリップス エヌ ヴェ 複数の制御可能な照明ネットワークに適用できる個人の好みを自動的に取り出して修正するためのシステム及び装置
TWI508627B (zh) * 2013-03-22 2015-11-11 Internat Mobile Iot Corp 照明控制系統
CN104765269A (zh) * 2015-04-23 2015-07-08 深圳市欧珀通信软件有限公司 控制智能手表功耗的方法、装置及智能手表
CN105187282B (zh) * 2015-08-13 2018-10-26 小米科技有限责任公司 智能家居设备的控制方法、装置、系统及设备
CN106899749A (zh) * 2015-12-21 2017-06-27 小米科技有限责任公司 调整照明设备亮度的方法及装置
CN106922058B (zh) * 2015-12-25 2019-11-26 北京奇虎科技有限公司 灯具的控制方法、装置和系统
CN105657946A (zh) * 2016-03-30 2016-06-08 北京小米移动软件有限公司 灯具控制方法及装置
CN107087333A (zh) * 2017-04-25 2017-08-22 北京小米移动软件有限公司 照明设备控制方法及设备
CN107222960B (zh) * 2017-06-16 2019-04-02 深圳市盛路物联通讯技术有限公司 一种照明设备控制方法及系统
CN109714861B (zh) * 2019-01-28 2021-01-01 重庆蓝岸通讯技术有限公司 智能家居照明灯电路、照明灯及其控制方法
CN111025920B (zh) * 2019-11-18 2024-05-24 北京小米移动软件有限公司 个性化自动控制设备的方法、装置及计算机可读存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104155897A (zh) * 2014-08-06 2014-11-19 广东欧珀移动通信有限公司 一种基于可穿戴智能设备的电器控制方法和电器控制装置
CN104635696A (zh) * 2015-01-12 2015-05-20 西安三星电子研究有限公司 控制智能家居设备的可穿戴设备及其控制的智能家居设备
CN107637020A (zh) * 2015-03-26 2018-01-26 飞利浦照明控股有限公司 照明设备的上下文有关的调试
US20180069720A1 (en) * 2015-03-26 2018-03-08 Philips Lighting Holding B.V. Context-related commissioning of lighting devices
CN105873319A (zh) * 2016-04-25 2016-08-17 乐视控股(北京)有限公司 灯光控制方法和终端设备
CN107708248A (zh) * 2017-08-22 2018-02-16 中山乐心电子有限公司 一种可由可穿戴设备控制的照明装置与控制方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024103866A1 (zh) * 2022-11-18 2024-05-23 荣耀终端有限公司 设备控制方法、设备和存储介质

Also Published As

Publication number Publication date
CN114126172A (zh) 2022-03-01

Similar Documents

Publication Publication Date Title
WO2022042312A1 (zh) 一种照明设备的控制方法及可穿戴设备
WO2021008534A1 (zh) 一种语音唤醒的方法和电子设备
CN107079277B (zh) 用于在邻近网络中传送和接收信号的方法及其电子装置
KR102577358B1 (ko) 다중 주파수 대역을 이용한 통신 방법 및 장치
WO2020151387A1 (zh) 一种基于用户运动状态的推荐方法及电子设备
CN114125791B (zh) 一种音频推送方法及音频推送系统
TWI575995B (zh) 智慧聯網系統
WO2018145447A1 (zh) 一种终端工作控制方法、装置及终端
WO2021185141A1 (zh) Wi-Fi Aware的建链方法、系统、电子设备和存储介质
WO2021052245A1 (zh) 一种数据收发方法、电子设备与计算机可读存储介质
US20220116759A1 (en) Electronic device supporting proximity communication service and method for obtaining information of short-range communication device using the same
WO2023071454A1 (zh) 场景同步方法、装置、电子设备及可读存储介质
WO2021013196A1 (zh) 一种同时响应的方法及设备
WO2020155870A1 (zh) 设备控制方法和设备
US10095191B2 (en) Method of outputting alarm and electronic device supporting the same
KR20170062853A (ko) 전자 장치 및 그의 동작 방법
WO2022227767A1 (zh) 一种查找可穿戴设备的方法和装置
CN107409358B (zh) 点对点网络中的节电方法和执行该方法的电子设备
US10156888B2 (en) Method and apparatus for controlling multiple processors to reduce current consumption
CN110679183B (zh) 为提供相似照明服务的照明设备组确定值班时间表
WO2021043250A1 (zh) 一种蓝牙通信方法及相关装置
US20240008156A1 (en) Method and system for integrated controlling to a plurality of lighting devices and the lighting devices
WO2019010795A1 (zh) 一种基于物联网的控制方法及物联网服务器
WO2023179731A1 (zh) 休眠唤醒方法及电子设备
CN112367615B (zh) 一种路灯与便携设备间的通讯方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21860151

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21860151

Country of ref document: EP

Kind code of ref document: A1