WO2022042219A1 - 天线系统及电子设备 - Google Patents

天线系统及电子设备 Download PDF

Info

Publication number
WO2022042219A1
WO2022042219A1 PCT/CN2021/110098 CN2021110098W WO2022042219A1 WO 2022042219 A1 WO2022042219 A1 WO 2022042219A1 CN 2021110098 W CN2021110098 W CN 2021110098W WO 2022042219 A1 WO2022042219 A1 WO 2022042219A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
frequency
radiator
frequency antenna
point
Prior art date
Application number
PCT/CN2021/110098
Other languages
English (en)
French (fr)
Inventor
马宁
赖奔
余冬
吴鹏飞
周圆
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21860059.1A priority Critical patent/EP4199254A4/en
Priority to US18/043,278 priority patent/US20230335908A1/en
Publication of WO2022042219A1 publication Critical patent/WO2022042219A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0442Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular tuning means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2291Supports; Mounting means by structural association with other equipment or articles used in bluetooth or WI-FI devices of Wireless Local Area Networks [WLAN]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/245Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with means for shaping the antenna pattern, e.g. in order to protect user against rf exposure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/44Details of, or arrangements associated with, antennas using equipment having another main function to serve additionally as an antenna, e.g. means for giving an antenna an aesthetic aspect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/30Combinations of separate antenna units operating in different wavebands and connected to a common feeder system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/328Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors between a radiating element and ground
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/335Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors at the feed, e.g. for impedance matching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/35Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using two or more simultaneously fed points
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength

Definitions

  • the present application relates to the field of antennas, and in particular, to an antenna system and electronic equipment.
  • the communication specifications are getting higher and higher, such as 5G communication, WiFi (wireless local area network, English full name “Wireless Fidelity”) antenna 4*4MiMo (Multiple Input Multiple Output, English full name “Multiple Input Multiple” Output”), etc.
  • the number of antennas is also increasing.
  • the antenna layout is difficult.
  • WiFi antennas are prone to result in high directivity coefficients and high 0mm Body SAR values, which limit the transmit power of WiFi antennas and affect user experience.
  • SAR Specific Absorption Rate, English full name “Specific Absorption Rate” refers to the electromagnetic radiation energy absorbed by a unit mass of matter per unit time. Internationally, the SAR value is usually used to measure the thermal effect of terminal equipment radiation. This SAR value represents the impact of radiation on the human body and is the most direct test value. The SAR value has data for the whole body, parts, and limbs. The lower the SAR value, the less radiation is absorbed. The 0mm Body SAR value represents the average specific absorption rate of the user's whole body when the WiFi antenna is in direct contact with the user's body.
  • the power spectral density value of terminal equipment needs to meet the requirements of the technical standard value, that is, the rate spectral density value radiated by the WiFi antenna of the terminal device must meet the requirements of the technical standard value.
  • the power spectral density of the wave is multiplied by an appropriate coefficient, the power carried by the wave per unit frequency is obtained, which is called the power spectral density of the signal.
  • the unit of power spectral density is usually expressed in watts per Hertz (W/Hz).
  • the magnitude of the power spectral density is related to the power emitted by the WiFi antenna itself and the power radiated by the WiFi antenna in a certain direction.
  • the directivity coefficient of the WiFi antenna needs to be reduced.
  • the first WiFi antenna, the low frequency antenna and the second WiFi antenna are arranged at intervals along the circumferential direction of the terminal device, that is, the low frequency antenna, the first WiFi antenna and the second WiFi antenna are arranged independently of each other.
  • Both the first WiFi antenna and the second WiFi antenna include a WiFi antenna radiator, and the WiFi antenna radiator has a WiFi antenna feeding point and a WiFi antenna grounding point.
  • the WiFi antenna feeding point of the first WiFi antenna is connected to the radio frequency source of the first WiFi antenna, and the WiFi antenna grounding point of the first WiFi antenna is connected to the floor.
  • the WiFi antenna feeding point of the second WiFi antenna is connected to the radio frequency source of the second WiFi antenna, and the WiFi antenna grounding point of the second WiFi antenna is connected to the floor.
  • the working frequency band of the low frequency antenna is 0.7GHz-0.96GHz
  • the working frequency band of the first WiFi antenna and the second WiFi antenna is 2.4GHz-2.5GHz.
  • the working frequencies of the first WiFi antenna and the second WiFi antenna are the same. It can be seen that, in this structure, the low-frequency antenna, the first WiFi antenna and the second WiFi antenna are arranged independently of each other, which occupies a large space and is not conducive to the miniaturization design of the terminal device.
  • the following takes the first WiFi antenna as an example to verify the directivity performance and SAR value performance of the first WiFi antenna, and uses the full-wave electromagnetic simulation software HFSS to conduct simulation analysis, and obtain the radiation of the first WiFi antenna shown in FIG. 1 .
  • only the first WiFi antenna is set, that is, only the radiation pattern and SAR value effect map when the first WiFi antenna is set alone are tested, and the working frequency of the first WiFi antenna is 2.5GHz.
  • the length of the WiFi antenna radiator of the first WiFi antenna is 1/4 ⁇ , where ⁇ is the working wavelength of the first WiFi antenna, and the distance between the WiFi antenna feeding point of the first WiFi antenna and the WiFi antenna grounding point is 5 mm.
  • the SAR value of the first WiFi antenna can reach 3.44W/kg (in order to not lose generality, when simulating the SAR value, the input power of the first WiFi antenna is set to 17dBmW, that is, the conduction 17dBm ). It can be seen that the SAR value of the first WiFi antenna is very high, reaching about 3.44W/kg.
  • the low-frequency antenna and the WiFi antenna are set independently of each other, occupying a large space, which is not conducive to the miniaturization design of the terminal equipment, and the directivity coefficient and SAR value of the WiFi antenna are very high.
  • the transmit power of the WiFi antenna will be limited, which will affect the user experience.
  • the purpose of this application is to solve the problems in the prior art that the low-frequency antenna and the WiFi antenna of the terminal device are set independently of each other, occupying a large space, and the directivity coefficient and SAR value of the WiFi antenna are very high. Therefore, the embodiments of the present application provide an antenna system and an electronic device.
  • the first antenna and the second antenna share a radiator, which reduces the occupied space, facilitates the miniaturization of the electronic device, and reduces the directivity coefficient and the second antenna. SAR value, thereby reducing the transmit power limit of the second antenna and improving user experience.
  • An embodiment of the present application provides an antenna system, including a first antenna, where the first antenna includes a strip-shaped antenna radiator, and the antenna radiator has an antenna feed point and an antenna connection spaced apart in the length direction of the antenna radiator.
  • the antenna feed point can be connected to the first antenna radio frequency source to receive the radio frequency signal output by the first antenna radio frequency source, and the antenna grounding point can be connected to the floor;
  • the antenna radiator has a first end and a second end, and the first radiator segment where the first end is located and/or the second radiator segment where the second end is located serves as a radiator for the second antenna, passing through the first radiator segment And/or the second radiator segment can receive the radio frequency signal output by the second antenna radio frequency source with a higher frequency than the first antenna radio frequency source, so that the second antenna radiates outward, and the first radiator segment and/or the second radiator
  • the body segment can be connected to the floor;
  • a first filter is respectively connected between the first antenna radio frequency source and the antenna feeding point, and between the floor and the antenna grounding point.
  • the first filter allows the signal of the first antenna to pass through and prevents the signal of the second antenna from passing through;
  • a second filter is connected between the radio frequency source of the two antennas and the first radiator segment and/or the second radiator segment, and between the floor and the first radiator segment and/or the second radiator segment, and the second filter is used for the second filter.
  • the signals of the two antennas pass through, and the signals of the first antenna are blocked from passing through.
  • the first antenna and the second antenna share a radiator, which reduces the occupied space, saves the antenna layout space, and facilitates the miniaturization of the electronic device.
  • the first antenna radio frequency source and the antenna feeding point of the first antenna and between the floor and the antenna grounding point of the first antenna are respectively connected with the signal of the first antenna to pass through and prevent the signal of the second antenna from passing through.
  • the first filter, the second antenna radio frequency source and the first radiator segment and/or the second radiator segment, and between the floor and the first radiator segment and/or the second radiator segment are respectively connected for the second radiator.
  • the second filter that passes the signal of the antenna and prevents the signal of the first antenna from passing through can ensure the isolation between the first antenna and the second antenna, thereby realizing the high isolation of the first antenna and the second antenna in a compact space. second antenna.
  • the first radiator segment where the first end of the antenna radiator is located and/or the second radiator segment where the second end is located is used as the radiator of the second antenna, and the first radiator segment and/or the second radiator is radiated through the first radiator segment and/or the second radiator segment.
  • the body segment can receive the radio frequency signal output by the radio frequency source of the second antenna, so that the second antenna can transmit outward, which can reduce the directivity coefficient of the second antenna, thereby reducing the transmit power limit of the second antenna and improving the user experience.
  • the first antenna is a low frequency antenna
  • the first antenna radio frequency source is a low frequency antenna radio frequency source
  • the first filter is a low-pass filter
  • the second antenna is a high frequency antenna
  • the second antenna radio frequency source is a high frequency antenna radio frequency source
  • the second filter is a high-pass filter
  • the frequency of the radio frequency signal output by the second antenna radio frequency source is higher than the frequency of the radio frequency signal output by the first antenna radio frequency source.
  • the high frequency antenna is a WiFi antenna
  • the first radiator segment has a high-frequency antenna feed point, and the high-frequency antenna feed point can be connected to the high-frequency antenna RF source through a high-pass filter;
  • the second radiator segment has a high-frequency antenna grounding point, and the high-frequency antenna grounding point can be Connect to the floor through a high pass filter.
  • the radio frequency signal output from the radio frequency source of the high frequency antenna can directly feed the first radiator segment through the high frequency antenna feed point, and the high frequency antenna feed point can be passed through the high frequency antenna feed point.
  • the antenna radiator between the feed point of the high-frequency antenna and the ground point of the high-frequency antenna feeds the second radiator segment, that is, the first radiator segment and the first radiator segment are distributedly fed, so that the WiFi antenna outwards This further reduces the directivity coefficient of the WiFi antenna.
  • the directivity coefficient of the WiFi antenna can be reduced to 4.749dBi, thereby further reducing the transmit power limit of the WiFi antenna and improving the user experience.
  • the high frequency antenna feed point is located at an end of the first radiator segment away from the first end, and the high frequency antenna ground point is located at an end of the second radiator segment away from the second end.
  • the ground point of the high-frequency antenna can be freely gated through a branch of a high-pass filter connected to the floor by a switching device and a branch of a high-pass filter connected to the output of another high-frequency antenna RF source.
  • the second radiator segment can be used as different antennas at different times.
  • the switching device is switched to the branch of the high-pass filter of the ground plate, the second radiator section acts as a part of the radiator of a WiFi antenna, which can reduce the directivity coefficient of the WiFi antenna.
  • the switching device is switched to another branch with a high-pass filter connected to the output of the RF source of another high-frequency antenna, the second radiator section acts as the radiator of the other WiFi antenna.
  • Two WiFi antennas can work at the same time.
  • the switching device employs a single pole double throw switch.
  • the high frequency antenna is a WiFi antenna
  • the first radiator segment has a first high-frequency antenna feeding point and a first high-frequency antenna grounding point, the first high-frequency antenna feeding point is located between the first high-frequency antenna grounding point and the first end, and the first high-frequency antenna
  • the antenna feeding point can be connected to the output of the radio frequency source of the high-frequency antenna through a corresponding high-pass filter, and the first high-frequency antenna grounding point can be connected to the floor through a corresponding high-pass filter;
  • the second radiator segment has a second high-frequency antenna feeding point and a second high-frequency antenna grounding point, the second high-frequency antenna feeding point is located between the second high-frequency antenna grounding point and the second end, and the second high-frequency antenna
  • the antenna feed point can be connected to a phase shifter through a corresponding high-pass filter and then connected to the output of the RF source of the high-frequency antenna, and the second high-frequency antenna grounding point can be connected to the floor through a corresponding high-pass filter.
  • the RF signal output from the RF source of the high-frequency antenna can directly feed the first radiator segment through the feeding point of the first high-frequency antenna, and feed the power through the second high-frequency antenna
  • the point directly feeds the second radiator segment, that is, the first radiator segment and the first radiator segment are distributed and fed to the first high-frequency antenna feed point and the first radiator segment through the phase shifter.
  • the phase difference of the signals at the feed points of the two high-frequency antennas is adjusted to the required phase difference, so that the directivity coefficient of the WiFi antenna can be reduced to a greater extent, and the directivity coefficient of the WiFi antenna can be reduced to 4.359dBi, thereby further reducing It reduces the transmit power limit of the WiFi antenna and improves the user experience.
  • the average SAR value of the user's whole body when the WiFi antenna is in direct contact with the user's body can be reduced, and the SAR value can be reduced to 1W/kg.
  • the first high frequency antenna ground point is located at an end of the first radiator segment away from the first end, and the second high frequency antenna ground point is located at an end of the second radiator segment away from the second end.
  • the antenna system further includes a differential circuit and another high-frequency antenna radio frequency source. Two input ends of the differential circuit are respectively connected to the output of the high-frequency antenna radio frequency source and the output of the other high-frequency antenna radio frequency source.
  • the differential circuit The output end of the circuit is connected to the high-pass filter of the feeding point of the first high frequency antenna, and the output of the radio frequency source of the high frequency antenna and the output of the radio frequency source of another high frequency antenna are both connected to the phase shifter.
  • the first radiator section and the second radiator section not only serve as the radiator of a WiFi antenna, but also serve as the radiator of another WiFi antenna at the same time.
  • Two WiFi antennas can work at the same time.
  • the directivity coefficient of another newly added WiFi antenna is also low, the directivity coefficient is reduced to 3.998dBi, and the SAR value of the other WiFi antenna is also low.
  • the SAR value can be reduced to 2W/kg. In this way, the transmit power limit of another WiFi antenna can also be reduced, and the user experience can be improved.
  • the first high-frequency antenna feeding point and the high-frequency antenna radio frequency source, and the second high-frequency antenna feeding point and the high-frequency antenna radio frequency source are respectively connected by transmission lines.
  • the antenna radiator has a straight bar shape.
  • the length of both the first radiator segment and the second radiator segment is one quarter of the operating wavelength of the second antenna.
  • the operating frequency range of the first antenna and the operating frequency range of the second antenna do not overlap.
  • the operating frequency band of the low-frequency antenna is 0.7 GHz to 0.96 GHz;
  • the working frequency band of the high-frequency antenna is 2.4GHz-2.5GHz.
  • the antenna feed point is located between the antenna ground point and the end of the first radiator segment remote from the first end along the length of the antenna radiator.
  • the antenna feed point and the antenna ground point are located in a middle portion of the antenna radiator, and both the first radiator segment and the second radiator segment are located outside the middle portion.
  • the antenna feed point and the antenna ground point are located on two sides of the center line of the antenna radiator, respectively.
  • An embodiment of the present application further provides an electronic device, including a floor, and the electronic device further includes the antenna system provided by any of the above embodiments or possible embodiments.
  • the antenna radiator is formed by the outer frame of the electronic device
  • the antenna radiator adopts a strip-shaped patch structure, and the strip-shaped patch structure is attached to the surface of the outer frame of the electronic device and is made of conductive material.
  • FIG. 1 is a radiation pattern of a first WiFi antenna of an existing electronic device, wherein the working frequency of the WiFi antenna is 2.5 GHz;
  • Fig. 2 is the simulation effect diagram of the SAR value of the first WiFi antenna of the existing electronic equipment, wherein, the working frequency of the WiFi antenna is 2.5GHz;
  • FIG. 3 is a schematic partial structure diagram of the electronic device according to Embodiment 1 of the application.
  • FIG. 4 is an S-parameter and efficiency simulation effect diagram of the WiFi antenna of the electronic device according to Embodiment 1 of the application;
  • 5 is a radiation pattern of the WiFi antenna of the electronic device according to Embodiment 1 of the application, wherein the working frequency of the WiFi antenna is 2.45 GHz;
  • FIG. 6 is a schematic partial structure diagram of the electronic device according to Embodiment 2 of the present application.
  • FIG. 7 is a schematic partial structure diagram of the electronic device according to Embodiment 3 of the present application.
  • FIG. 9 is a simulation effect diagram of the SAR value of the WiFi antenna of the electronic device according to Embodiment 3 of the application, wherein the working frequency of the WiFi antenna is 2.45 GHz;
  • FIG. 10 is a schematic partial structure diagram of the electronic device according to Embodiment 4 of the application.
  • FIG. 11 is an S-parameter simulation effect diagram of a low-frequency antenna, a WiFi antenna, and another WiFi antenna of the electronic device according to Embodiment 4 of the application;
  • FIG. 13 is a simulation effect diagram of the SAR value of another WiFi antenna of the electronic device according to Embodiment 4 of the application, wherein the working frequency of the other WiFi antenna is 2.45 GHz.
  • 300 low frequency antenna; 310: low frequency antenna radiator; 320: middle part; 330: first end; 332: second end; 340: low frequency antenna feeding point; 342: low frequency antenna grounding point; 350: first radiator segment; 352: second radiator segment;
  • WiFi antenna 400: WiFi antenna; 410: high frequency antenna feed point; 420: high frequency antenna grounding point;
  • 500 low frequency antenna RF source
  • 510 high frequency antenna RF source
  • 600 low pass filter
  • 610 high pass filter
  • 350A first radiator segment
  • 352A second radiator segment
  • 510A high-frequency antenna RF source
  • 520A another high-frequency antenna RF source
  • 610A high-pass filter
  • 620A another high-pass filter
  • 700A switching device
  • 330B first end; 332B: second end; 350B: first radiator segment; 352B: second radiator segment;
  • 400B WiFi antenna; 410B: first high-frequency antenna feeding point; 420B: first high-frequency antenna grounding point; 430B: second high-frequency antenna feeding point; 440B: second high-frequency antenna grounding point;
  • 350C the first radiator segment
  • 352C the second radiator segment
  • 400C WiFi antenna
  • 410C first high frequency antenna feed point
  • 430C second high frequency antenna feed point
  • 450C another WiFi antenna
  • 510C High-frequency antenna RF source
  • 520C Another high-frequency antenna RF source
  • L the length direction of the low frequency antenna radiator
  • L1 the length of the low frequency antenna radiator
  • L2 the length of the first radiator segment
  • L3 the length of the second radiator segment
  • d1 the distance between the feed point of the low-frequency antenna and the centerline of the low-frequency antenna radiator
  • d2 the distance between the ground point of the low-frequency antenna and the centerline of the low-frequency antenna radiator
  • d3 the distance between the feeding point of the first high-frequency antenna and the grounding point of the first high-frequency antenna
  • d4 the distance between the feeding point of the second high-frequency antenna and the grounding point of the second high-frequency antenna
  • the terms “installed”, “connected” and “connected” should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.
  • installed should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.
  • FIG. 3 is a schematic partial structural diagram of the electronic device 100 according to Embodiment 1 of the present application.
  • an embodiment of the present application provides an electronic device 100 , including an antenna system, a floor 200 , a low frequency antenna radio frequency source 500 and a high frequency antenna radio frequency source 510 .
  • the electronic device 100 is exemplified by a smartphone.
  • the electronic device 100 may also be other electronic devices such as a tablet computer or a smart watch, which does not limit the protection scope of the present application.
  • the antenna system includes a low frequency antenna 300 (corresponding to the first antenna) and a high frequency antenna (corresponding to the second antenna).
  • the first antenna is the low frequency antenna 300
  • the second antenna is the high frequency antenna.
  • the first antenna may also use other types of antennas, which are not limited to low-frequency antennas
  • the second antenna may also use other types of antennas, and Not limited to high-frequency antennas, the operating frequency range of the first antenna may be different from the operating frequency range of the second antenna, that is, they do not overlap.
  • the working frequency of the low frequency antenna 300 is lower than the working frequency of the high frequency antenna, and the working frequency range of the low frequency antenna 300 is lower than the working frequency range of the high frequency antenna.
  • the high-frequency antenna is the WiFi antenna 400 .
  • the high-frequency antenna may also adopt other types of high-frequency antennas.
  • the low frequency antenna 300 is used for communication between the electronic device and the base station.
  • the operating frequency band of the low frequency antenna 300 is 0.7 GHz to 0.96 GHz
  • the operating frequency band of the WiFi antenna 400 is 2.4 GHz to 2.5 GHz.
  • the working frequency band of the low-frequency antenna 300 and the working frequency band of the WiFi antenna 400 may also adopt other suitable working frequency bands.
  • the low frequency antenna 300 includes a bar-shaped low frequency antenna radiator 310 .
  • the low-frequency antenna radiator 310 is in the shape of a straight bar.
  • the low-frequency antenna radiator 310 may also adopt a bent or curved bar-shaped structure.
  • the length of the low-frequency antenna radiator 310 is a quarter of the operating wavelength of the low-frequency antenna 300 .
  • the operating wavelength of the low frequency antenna 300 is represented by ⁇ 1.
  • the low frequency antenna radiator 310 is formed by the outer frame of the electronic device 100 .
  • the low-frequency antenna radiator 310 may also be a metal sheet (such as a steel sheet), or a flexible printed circuit board (Flexible Printed Circuit for short FPC), It can also be formed in the form of LDS (Laser Direct Structuring, Laser Direct Structuring), or a strip-shaped patch structure.
  • LDS Laser Direct Structuring, Laser Direct Structuring
  • the strip-shaped patch structure is attached to the surface of the outer frame of the electronic device and is made of conductive materials.
  • the middle portion 320 of the low-frequency antenna radiator 310 (in this embodiment, the middle portion 320 is the portion shown by the dotted box in FIG. 3 ) has low-frequency antenna feeds spaced in the length direction L of the low-frequency antenna radiator.
  • the low frequency antenna feed point 340 is connected to the low frequency antenna radio frequency source 500 to receive the radio frequency signal output by the low frequency antenna radio frequency source 500 .
  • the low frequency antenna ground 342 is connected to the floor 200 .
  • the low frequency antenna radiator 310 is relatively spaced from the outer edge of the floor 200 , so that a gap is formed between the low frequency antenna radiator 310 and the floor 200 .
  • the low-frequency antenna feeding point 340 and the low-frequency antenna grounding point 342 are respectively located on both sides of the center line O of the low-frequency antenna radiator 310 .
  • the low-frequency antenna feeding point 340 and the low-frequency antenna grounding point 342 may also be located on the same side of the center line O of the low-frequency antenna radiator 310 at the same time (for example, 3 to the left or right of the centerline O) and close to the position of the centerline O.
  • the floor 200 may be formed by the rear case of the electronic device 100 .
  • the floor 200 may also be formed of other metal parts, such as a printed circuit board, a bottom plate of a middle frame.
  • the low frequency antenna radiator 310 has a first end 330 and a second end 332 , and the first radiator segment 350 and the second end 332 are located outside the middle part 320
  • the second radiator segment 352 serves as a radiator for the WiFi antenna 400 . That is to say, the first radiator segment 350 and the second radiator segment 352 are located outside the middle portion 320 , and the free end of the first radiator segment 350 and the free end of the second radiator segment 352 are the radiators of the low-frequency antenna 310 , respectively.
  • First end 330 and second end 332 In this embodiment, in the length direction L of the low frequency antenna radiator, the low frequency antenna feed point 340 is located between the low frequency antenna grounding point 342 and the end of the first radiator segment 350 away from the first end 330.
  • the first radiator segment 350 and/or the second radiator segment 352 can receive the radio frequency signal output by the high frequency antenna radio frequency source 510 with a higher frequency than the low frequency antenna radio frequency source 500, so that the WiFi antenna 400 can be radiated outward, and the first The radiator segment 350 and/or the second radiator segment 352 are respectively connected to the floor 200 . That is to say, the frequency of the radio frequency signal output by the high frequency antenna radio frequency source 510 is higher than the frequency of the radio frequency signal output by the low frequency antenna radio frequency source 500 .
  • the lengths of the first radiator segment 350 and the second radiator segment 352 are both a quarter of the working wavelength of the WiFi antenna 400 .
  • the working wavelength of the WiFi antenna 400 is ⁇ 2.
  • low-pass filters 600 are respectively connected between the low-frequency antenna radio frequency source 500 and the low-frequency antenna feeding point 340 , and between the floor 200 and the low-frequency antenna grounding point 342 .
  • the low-pass filter 600 allows the signal of the low-frequency antenna 300 to pass, and prevents the signal of the WiFi antenna 400 from passing.
  • a high-pass filter 610 is connected between the high-frequency antenna RF source 510 and the first radiator segment 350 and/or the second radiator segment 352, and between the floor 200 and the first radiator segment 350 and/or the second radiator segment 352 , the high-pass filter 610 allows the signal of the WiFi antenna 400 to pass through, and prevents the signal of the low-frequency antenna 300 from passing through.
  • the low-pass filter may be an existing low-pass filter in the prior art
  • the high-pass filter may be an existing high-pass filter in the prior art, which will not be repeated here.
  • a low pass filter is an electronic filtering device that allows signals below the cutoff frequency to pass, but does not pass signals above the cutoff frequency.
  • a high-pass filter also known as a low-cut filter or a low-cut filter, allows frequencies above a certain cut-off frequency to pass, while greatly attenuating lower frequencies.
  • the low frequency antenna 300 and the WiFi antenna 400 share a radiator, which reduces the occupied space, saves the antenna layout space, and facilitates the miniaturization of the electronic device 100 .
  • the low frequency antenna radio frequency source 500 and the low frequency antenna feed point 340 and between the floor 200 and the low frequency antenna grounding point 342 are respectively connected with low-pass filters for the signals of the low-frequency antenna 300 to pass through and preventing the signals from the WiFi antenna 400 from passing through.
  • the radiator 600 is connected between the high-frequency antenna RF source 510 and the first radiator segment 350 and/or the second radiator segment 352, and between the floor 200 and the first radiator segment 350 and/or the second radiator segment 352, respectively.
  • a high-pass filter 610 for the signal of the WiFi antenna 400 to pass through and to prevent the signal of the low-frequency antenna 300 from passing through, so that the isolation between the low-frequency antenna 300 and the WiFi antenna 400 can be guaranteed, thereby realizing high isolation in a compact space.
  • Low frequency antenna 300 and WiFi antenna 400 Low frequency antenna 300 and WiFi antenna 400 .
  • the first radiator segment 350 outside the middle portion 320 where the first end 330 of the low frequency antenna radiator 310 is located and/or the second radiator segment 352 outside the middle portion 320 where the second end 332 is located are used as the WiFi antenna 400
  • the radiator, the first radiator segment 350 and/or the second radiator segment 352 can receive the radio frequency signal output by the high frequency antenna radio frequency source 510 with a higher frequency than the low frequency antenna radio frequency source 500, so that the WiFi antenna 400 can transmit outward , so that the directivity coefficient of the WiFi antenna 400 can be reduced, thereby reducing the transmit power limit of the WiFi antenna 400 and improving the user experience.
  • the first radiator segment 350 has a high-frequency antenna feeding point 410 , and the high-frequency antenna feeding point 410 can be connected to the high-frequency antenna radio frequency source 510 through a high-pass filter 610 .
  • the second radiator segment 352 has a high-frequency antenna grounding point 420 , and the high-frequency antenna grounding point 420 can be connected to the floor 200 through the high-pass filter 610 .
  • the radio frequency signal output from the high frequency antenna radio frequency source 510 can directly feed the first radiator segment 350 through the high frequency antenna feeding point 410, and feed the first radiator segment 350 through the high frequency antenna feeding point 410 through the high frequency antenna feeding point 410.
  • the low frequency antenna radiator 310 between the point 410 and the high frequency antenna ground point 420 feeds the second radiator segment 352, that is, the first radiator segment 350 and the second radiator segment 352 are distributedly fed, so that the WiFi The antenna 400 transmits outward, which further reduces the directivity coefficient of the WiFi antenna 400, which can be reduced to 4.749dBi, thereby further reducing the transmit power limit of the WiFi antenna 400 and improving user experience.
  • the high frequency antenna feeding point 410 is located at one end of the first radiator segment 350 away from the first end 330
  • the high frequency antenna grounding point 420 is located at one end of the second radiator segment 352 away from the second end 332 .
  • the low-frequency antenna feeding point 340 and the low-frequency antenna grounding point 342 are located between the high-frequency antenna feeding point 410 and the high-frequency antenna grounding point 420 .
  • the performance of the WiFi antenna in the electronic device will be specifically described below with reference to FIG. 4 to FIG. 5 .
  • the full-wave electromagnetic simulation software HFSS is used for simulation analysis, and the simulation effect diagrams as shown in FIG. 4 to FIG. 5 are obtained. And the simulation effect is measured under the normal operation of the low-frequency antenna.
  • FIG. 4 is a simulation effect diagram of S parameters and efficiency of the WiFi antenna of the electronic device according to Embodiment 1 of the present application.
  • FIG. 5 is a radiation pattern of the WiFi antenna of the electronic device according to Embodiment 1 of the present application.
  • the abscissa represents the frequency, and the unit is GHz, and the ordinate represents the amplitude value of S11 of the WiFi antenna and the system efficiency of the WiFi antenna, and the unit is dB.
  • S11 is one of the S-parameters.
  • S11 represents the reflection coefficient. This parameter indicates whether the transmission efficiency of the WiFi antenna is good or not. The larger the value, the greater the energy reflected back by the WiFi antenna itself, and the worse the system efficiency of the WiFi antenna.
  • the system efficiency of the WiFi antenna is the actual efficiency after considering the matching of the WiFi antenna ports, that is, the system efficiency of the WiFi antenna is the actual efficiency of the WiFi antenna. Those skilled in the art can understand that efficiency is generally expressed as a percentage, and there is a corresponding conversion relationship between it and dB.
  • dB value For example, if 50% of the energy is radiated out, the conversion to dB value is -3dB; 90% of the energy is radiated out. , converted into dB value is -0.046dB; so the closer the efficiency is to 0dB, the better.
  • the WiFi antenna has good impedance matching, that is, S11 is less than -10dB, that is to say, the working frequency band of the WiFi antenna covers 2.25GHz to 2.57GHz, that is, the coverage Frequency band 2.4GHz ⁇ 2.5GHz. That is to say, the absolute bandwidth of -10dB S11 of the WiFi antenna is 0.32GHz, and the relative bandwidth of -10dB S11 of the WiFi antenna is 13.3%, so it has the characteristics of moderate bandwidth.
  • Figure 5 shows the radiation pattern of the WiFi antenna when the operating frequency is 2.45GHz.
  • the darker the gray scale, the greater the field strength, and the part with the deepest gray scale indicates the maximum field strength.
  • the radiated energy of the WiFi antenna towards the electronic device is relatively uniform in all directions, and the directivity coefficient of the WiFi antenna is reduced to 4.749dBi. That is to say, the energy radiated in the omnidirectional direction of the WiFi antenna is relatively uniform, not concentrated in a certain angular direction.
  • FIG. 6 is a schematic partial structural diagram of the electronic device 100A according to Embodiment 2 of the present application.
  • the structure of the electronic device 100A of this embodiment is basically the same as that of the electronic device 100 provided in the first embodiment, and the difference lies in that the high-frequency antenna grounding point 420A passes through a switch
  • the device 700A is connected to the branch of the high-pass filter 610A of the floor 200A and the branch of the other high-pass filter 620A connected to the output of another high-frequency antenna radio frequency source 520A to perform free gating.
  • the switch device 700A adopts a single-pole double-throw switch.
  • the second radiator segment 352A can be used as different antennas at different times based on the usage scenario of the antenna system.
  • the switching device 700A when the switching device 700A is switched to the branch of the high-pass filter 610A of the ground plate 200A, the second radiator segment 352A acts as a part of the radiator of the WiFi antenna, and the first radiator segment 350A acts as a part of the radiator of the WiFi antenna.
  • this can reduce the directivity coefficient of the WiFi antenna.
  • the switching device 700A switches to another high-frequency antenna RF source 520A to output a branch connected with another high-pass filter 620A
  • the second radiator segment 352A acts as the radiator of another WiFi antenna
  • the first radiator segment 350A acts as the radiator of the other WiFi antenna.
  • the radiator of the WiFi antenna at this time, the two WiFi antennas, the WiFi antenna and the other WiFi antenna, can work at the same time.
  • the frequency of the radio frequency signal output by another high frequency antenna radio frequency source 520A is the same as the frequency of the radio frequency signal output by the high frequency antenna radio frequency source 510A.
  • the working frequency band of another newly added WiFi antenna is the same as the working frequency band of the WiFi antenna.
  • FIG. 7 is a schematic partial structural diagram of the electronic device 100B according to Embodiment 3 of the present application.
  • the structure of the electronic device 100B of this embodiment is basically the same as that of the electronic device provided in Embodiment 1, and the difference is that the first radiator segment 350B has a first height
  • the first high-frequency antenna feeding point 410B and the first high-frequency antenna grounding point 420B are located between the first high-frequency antenna grounding point 420B and the first end 330B.
  • the first high-frequency antenna feed point 410B is connected to the output of the high-frequency antenna RF source 510B through the corresponding high-pass filter 610B.
  • the first high frequency antenna ground point 420B is connected to the floor 200B through the corresponding high pass filter 610B.
  • the second radiator segment 352B has a second high frequency antenna feed point 430B and a second high frequency antenna ground point 440B, and the second high frequency antenna feed point 430B is located between the second high frequency antenna ground point 440B and the second end 332B between.
  • the second high-frequency antenna feed point 430B is connected to a phase shifter 700B through the corresponding high-pass filter 610B and then connected to the output of the high-frequency antenna RF source 510B, and the second high-frequency antenna ground point 440B is connected through the corresponding high-pass filter 610B on floor 200B.
  • a phase shifter is a device capable of adjusting the phase of a wave. In this implementation manner, the phase shifter may use a known phase shifter, which will not be described in detail here.
  • the radio frequency signal output from the high frequency antenna radio frequency source 510B can directly feed the first radiator segment 350B through the first high frequency antenna feeding point 410B, and pass through the second high frequency antenna feeding point 430B directly feeds the second radiator segment 352B, that is, the first radiator segment 350B and the second radiator segment 352B are distributed and fed to the first high-frequency antenna feeder through the phase shifter 700B.
  • the phase difference of the signals of the electric point 410B and the second high-frequency antenna feeding point 430B is adjusted to the required phase difference, so that the directivity coefficient of the WiFi antenna 400B can be reduced to a greater extent, and the directivity coefficient of the WiFi antenna 400B can be It is reduced to 4.359dBi, which further reduces the transmit power limit of the WiFi antenna 400B and improves the user experience.
  • the average SAR value of the user's whole body when the WiFi antenna 400B is in direct contact with the user's body can be reduced, and the SAR value can be reduced to 1 W/kg.
  • the first high-frequency antenna grounding point 420B is located at one end of the first radiator segment 350B away from the first end 330B
  • the second high-frequency antenna grounding point 440B is located at the end of the second radiator segment 352B away from the second end one end of the 332B.
  • the first high frequency antenna feed point 410B and the high frequency antenna radio frequency source 510B and the second high frequency antenna feed point 430B and the high frequency antenna radio frequency source 510B are respectively connected by transmission lines 800B.
  • the transmission line may be a microstrip line.
  • the transmission line may also adopt other types of transmission lines.
  • the performance of the WiFi antenna in the electronic device will be specifically described below with reference to FIGS. 8 to 9 .
  • the full-wave electromagnetic simulation software HFSS is used for simulation analysis, and the simulation effect diagrams in FIGS. 8-9 are obtained. And the simulation effect is measured under the normal operation of the low-frequency antenna.
  • FIG. 8 is a radiation pattern of the WiFi antenna of the electronic device according to Embodiment 3 of the present application, wherein the working frequency of the WiFi antenna is 2.4 GHz.
  • FIG. 9 is a simulation effect diagram of the SAR value of the WiFi antenna of the electronic device according to Embodiment 3 of the present application, wherein the working frequency of the WiFi antenna is 2.45 GHz.
  • FIG. 8 shows the radiation pattern of the WiFi antenna when the operating frequency is 2.4GHz.
  • the darker the grayscale, the greater the field strength, and the part with the deepest grayscale indicates the largest field strength.
  • the radiated energy of the WiFi antenna in all directions towards the electronic device is relatively uniform, and the directivity coefficient of the WiFi antenna is reduced to 4.359dBi. That is to say, the energy radiated in the omnidirectional direction of the WiFi antenna is relatively uniform, not concentrated in a certain angular direction.
  • the part shown by the dotted box in FIG. 9 represents the distribution of the simulation effect of the SAR value at the first radiator segment and the second radiator segment of the WiFi antenna. As can be seen from Figure 9, the SAR value of the WiFi antenna can be reduced to 1W/kg.
  • FIG. 10 is a schematic partial structure diagram of an electronic device 100C according to Embodiment 4 of the present application. As shown in FIG. 10 , the structure of the electronic device 100C of this embodiment is basically the same as the structure of the electronic device 100B provided in the third embodiment.
  • the electronic device 100C further includes a differential circuit 900C and another high frequency antenna radio frequency source 520C, the two input ends of the differential circuit 900C are respectively connected to the output of the high frequency antenna radio frequency source 510C and the output of another high frequency antenna radio frequency source 520C, and the output end of the differential circuit 900C is connected to the first The high-pass filter 610C of the high-frequency antenna feed point 410C, and the output of the high-frequency antenna RF source 510C and the output of another high-frequency antenna RF source 520C are connected to the phase shifter 700C.
  • the differential circuit 900C adopts a structure known in the prior art, and details are not described here.
  • the signal fed to the second radiator segment 352C via the phase shifter 700C, the high-pass filter 610C, and the second high-frequency antenna feed point 430C is the RF signal output by the high-frequency antenna RF source 510C and another high-frequency antenna.
  • the output signal of the differential circuit 900C is the signal difference between the RF signal output by the high-frequency antenna RF source 510C and the RF signal output by another high-frequency antenna RF source 520C, that is, the RF signal output by the high-frequency antenna RF source 510C and another high-frequency signal.
  • a part of the energy of the output of the high-frequency antenna RF source 510C is fed to the second radiator section 352C through the phase shifter 700C, the high-pass filter 610C, and the second high-frequency antenna feed point 430C, and the other part of the energy is fed from the differential circuit 900C.
  • One input terminal is fed to the first radiator segment 350C through the differential circuit 900C through the high-pass filter 610C and the first high-frequency antenna feed point 410C.
  • a part of the energy output by the other high-frequency antenna RF source 520C is fed to the second radiator section 352C through the phase shifter 700C, the high-pass filter 610C, and the second high-frequency antenna feed point 430C, and the other part of the energy is fed from the differential circuit 900C.
  • the other input end is fed to the first radiator segment 350C through the differential circuit 900C through the high-pass filter 610C and the first high-frequency antenna feed point 410C.
  • the first radiator segment 350C and the second radiator segment 352C not only serve as radiators for a WiFi antenna 400C, but also serve as radiators for another WiFi antenna 450C. At this time, a WiFi antenna 400C and another WiFi antenna 450C
  • the two WiFi antennas can work at the same time.
  • the directivity coefficient of another newly added WiFi antenna 450C is also low, the directivity coefficient is reduced to 3.998dBi, and the SAR value of the other WiFi antenna 450C is also low. Also lower, the SAR value can be reduced to 2W/kg. In this way, the transmit power limit of the other WiFi antenna 450C can also be reduced, and the user experience can be improved.
  • the SAR value is the SAR value averaged over the whole body.
  • the high-frequency antenna RF source 510C can excite the first radiator segment 350C and the second radiator segment 352C in a common mode signal mode
  • another high-frequency antenna radio frequency source 520C can excite the first radiator in a differential mode signal mode
  • the isolation between the common mode signal and the differential mode signal is very high, so that the isolation between the two WiFi antennas is also very high.
  • the frequency of the radio frequency signal output by another high frequency antenna radio frequency source 520C is the same as the frequency of the radio frequency signal output by the high frequency antenna radio frequency source 510C.
  • the working frequency band of another newly added WiFi antenna 450C is the same as that of the WiFi antenna 400C.
  • the performance of the low-frequency antenna, the WiFi antenna, and another WiFi antenna in the electronic device will be specifically described below with reference to FIGS. 11 to 13 .
  • the full-wave electromagnetic simulation software HFSS is used for simulation analysis, and the simulation effect diagrams in FIGS. 11 to 13 are obtained. And the simulation effect is measured under the normal operation of the low-frequency antenna.
  • FIG. 11 is an S-parameter simulation effect diagram of the low-frequency antenna, the WiFi antenna, and another WiFi antenna of the electronic device according to Embodiment 4 of the present application.
  • the curve "S11-LB” represents the curve of the return loss of the low-frequency antenna as a function of frequency
  • the curve "S12” represents the curve of the isolation between the low-frequency antenna and the WiFi antenna as a function of frequency
  • the curve "S22" -WiFi1(CM)” represents the graph of the return loss of the WiFi antenna as a function of frequency
  • CM represents the common mode
  • the full English name is Common Mode.
  • the curve “S23” represents the curve of the isolation between two WiFi antennas as a function of frequency
  • the curve “S33-WiFi2(DM)" represents the curve of the return loss of the other WiFi antenna as a function of frequency
  • DM represents the differential mode
  • the full English name is Differential Mode.
  • the low frequency antenna, the WiFi antenna and the other WiFi antenna all have good impedance matching. And within the frequency range of 0.5GHz to 2.5GHz, the isolation between the low-frequency antenna and the WiFi antenna is basically greater than 10dB, which can meet the normal working requirements of the antenna. The isolation between the WiFi antenna and another WiFi antenna is better, only part of the curve is shown in Figure 11 . At the same time, the isolation between the low frequency antenna and another WiFi antenna is also very high, which is not shown in FIG. 11 . From the above, it can be seen that the low frequency antenna, the WiFi antenna and another WiFi antenna can work simultaneously.
  • FIG. 12 is a radiation pattern of another WiFi antenna of the electronic device according to Embodiment 4 of the present application, wherein the working frequency of the other WiFi antenna is 2.45 GHz.
  • the darker the grayscale, the greater the field strength, and the part with the deepest grayscale indicates the largest field strength. It can be seen from Figure 12 that the radiation energy of the other WiFi antenna in all directions towards the electronic device is relatively uniform, and the directivity coefficient of the WiFi antenna is reduced to 3.998dBi. That is to say, the energy radiated in the omnidirectional direction of the WiFi antenna is relatively uniform, not concentrated in a certain angular direction.
  • FIG. 13 is a simulation effect diagram of the SAR value of another WiFi antenna of the electronic device according to Embodiment 4 of the present application, wherein the working frequency of the other WiFi antenna is 2.45 GHz. See Figure 13. The darker the grayscale, the higher the SAR value. The part shown by the dotted box in FIG. 13 represents the distribution of the simulation effect of SAR values at the first radiator segment and the second radiator segment of another WiFi antenna. As can be seen from Figure 13, the SAR value of another WiFi antenna can be reduced to 2W/kg.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Support Of Aerials (AREA)

Abstract

本申请公开了一种天线系统及电子设备。天线系统包括第一天线(即低频天线),第一天线包括呈条形的天线辐射体。天线辐射体具有第一端和第二端,第一端所在的第一辐射体段和/或第二端所在的第二辐射体段用作第二天线(即WiFi天线)的辐射体,通过第一辐射体段和/或第二辐射体段可接收第二天线射频源输出的射频信号。第一天线射频源和天线馈电点之间、地板和天线接地点之间分别接有第一滤波器(即低通滤波器),第二天线射频源与第一辐射体段和/或第二辐射体段之间、地板与第一辐射体段和/或第二辐射体段之间接有第二滤波器(即高通滤波器)。本申请能够节省天线占用空间,便于电子设备的小型化,降低了WiFi天线方向性系数和SAR值。

Description

天线系统及电子设备
本申请要求于2020年08月28日提交中国专利局、申请号为CN202010884837.2、申请名称为“天线系统及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及天线领域,尤其是涉及一种天线系统及电子设备。
背景技术
随着终端设备通信需求的不断增加,通信规格越来越高,如5G通信,WiFi(无线局域网,英文全称“Wireless Fidelity”)天线的4*4MiMo(多输入多输出,英文全称“Multiple Input Multiple Output”)等,天线数量也不断增加。但是由于终端设备的尺寸限制,天线布局困难。同时,WiFi天线易出现方向性系数高及0mm Body SAR值高的结果,导致WiFi天线的发射功率受限,影响用户体验。
其中,SAR(比吸收率,英文全称“Specific Absorption Rate”)指的是单位时间内单位质量的物质吸收的电磁辐射能量。国际上通常使用SAR值来衡量终端设备辐射的热效应。这个SAR值代表辐射对人体的影响,是最直接的测试值,SAR值有针对全身的、局部的、四肢的数据。SAR值越低,辐射被吸收的量越少。0mm Body SAR值表示WiFi天线直接与用户身体接触时用户全身平均的比吸收率。目前,国际上制定了终端设备电磁辐射的衡量技术标准,即为了保证终端设备的安全性,终端设备的SAR值需满足技术标准值的要求。对此,在终端设备的SAR值较高时,为使其满足技术标准值的要求,需大幅度降低终端设备的WiFi天线的发射功率。为保证终端设备的WiFi天线的发射功率,需降低终端设备的WiFi天线的SAR值。
另外,国际上还制定了终端设备的功率谱密度(英文简称“PSD”,英文全称“Power Spectral Density”)的衡量技术标准,即为了保证终端设备的安全性,终端设备的功率谱密度值需满足技术标准值的要求,即终端设备的WiFi天线辐射的率谱密度值需满足技术标准值的要求。其中,当波的功率频谱密度乘以一个适当的系数后将得到每单位频率波携带的功率,这被称为信号的功率谱密度。功率谱密度的单位通常用每赫兹的瓦特数(W/Hz)表示。功率谱密度的大小与WiFi天线自身发射的功率以及WiFi天线在某一方向上辐射的功率的大小相关。对此,为了确保终端设备的WiFi天线辐射的功率谱密度满足技术标准值要求的同时,保证WiFi天线的发射功率,需降低WiFi天线的方向性系数。
现有的终端设备中第一WiFi天线、低频天线和第二WiFi天线沿终端设备的周向依次间隔设置,即低频天线、第一WiFi天线和第二WiFi天线之间相互独立设置。第一WiFi天线和第二WiFi天线均包括WiFi天线辐射体,WiFi天线辐射体具有WiFi天线馈电点和WiFi天线接地点。第一WiFi天线的WiFi天线馈电点连接于第一WiFi天线射频源, 第一WiFi天线的WiFi天线接地点连接于地板。第二WiFi天线的WiFi天线馈电点连接于第二WiFi天线射频源,第二WiFi天线的WiFi天线接地点连接于地板。其中,低频天线的工作频段为0.7GHz~0.96GHz,第一WiFi天线和第二WiFi天线的工作频段为2.4GHz~2.5GHz。且第一WiFi天线和第二WiFi天线的工作频率相同。由此可知,在该结构中,低频天线、第一WiFi天线和第二WiFi天线之间相互独立设置,占用空间较大,不利于终端设备的小型化设计。
进一步地,以下以第一WiFi天线为例来验证第一WiFi天线的方向性性能以及SAR值性能,采用全波电磁仿真软件HFSS进行仿真分析,获得了图1所示的第一WiFi天线的辐射方向图和图2所示的SAR值效果图。在该仿真结构中,仅设置有第一WiFi天线,即仅测试了单独设置第一WiFi天线时的辐射方向图和SAR值效果图,第一WiFi天线的工作频率为2.5GHz。且第一WiFi天线的WiFi天线辐射体的长度为1/4λ,λ为第一WiFi天线的工作波长,第一WiFi天线的WiFi天线馈电点与WiFi天线接地点之间的距离为5mm。
请参见图1,灰度越深,表示场强越大,其中,灰度最深的部分表示场强最大。从图1可以看到,第一WiFi天线产生的电场大部分朝向终端设备左侧的方向辐射。并且,在该仿真结果中,测得该第一WiFi天线的方向性系数为6.021dBi。由此可知,该第一WiFi天线的方向性系数非常高,达到6.021dBi左右。
请参见图2,灰度越深,表示SAR值越大。图2中虚线框所示部分表示第一WiFi天线的SAR值仿真效果分布情况。从图3中可以看到,第一WiFi天线的SAR值能够达到3.44W/kg(为了不失一般性,在仿真测试SAR值时,第一WiFi天线的输入功率设定为17dBmW,即传导17dBm)。由此可知,该第一WiFi天线的SAR值非常高,达到3.44W/kg左右。
综上所述,现有的终端设备中低频天线与WiFi天线之间相互独立设置,占用空间较大,不利于终端设备的小型化设计,且WiFi天线的方向性系数和SAR值均非常高,在满足国际上制定的技术标准要求下,将限制WiFi天线的发射功率,影响用户体验。
发明内容
本申请的目的在于解决现有技术中终端设备的低频天线与WiFi天线之间相互独立设置,占用空间较大,且WiFi天线的方向性系数和SAR值均非常高的问题。因此,本申请实施例提供了一种天线系统及电子设备,第一天线和第二天线共用辐射体,占用空间减小,便于电子设备的小型化,且降低了第二天线的方向性系数和SAR值,从而降低了第二天线的发射功率限制,提升用户体验。
本申请实施例提供了一种天线系统,包括第一天线,第一天线包括呈条形的天线辐射体,天线辐射体具有在天线辐射体的长度方向上间隔设置的天线馈电点和天线接地点,天线馈电点可与第一天线射频源连接,以接收第一天线射频源输出的射频信号,天线接地点可与地板连接;
天线辐射体具有第一端和第二端,第一端所在的第一辐射体段和/或第二端所在的第 二辐射体段用作第二天线的辐射体,通过第一辐射体段和/或第二辐射体段可接收比第一天线射频源频率高的第二天线射频源输出的射频信号,以使第二天线向外发射,且第一辐射体段和/或第二辐射体段可与地板连接;
第一天线射频源和天线馈电点之间、地板和天线接地点之间分别接有第一滤波器,第一滤波器供第一天线的信号通过,且阻止第二天线的信号通过;第二天线射频源与第一辐射体段和/或第二辐射体段之间、地板与第一辐射体段和/或第二辐射体段之间接有第二滤波器,第二滤波器供第二天线的信号通过,且阻止第一天线的信号通过。
在本方案中,第一天线和第二天线共用辐射体,占用空间减小,节省天线布局空间,便于电子设备的小型化。并且,第一天线射频源和第一天线的天线馈电点之间、地板和第一天线的天线接地点之间分别接有供第一天线的信号通过、且阻止第二天线的信号通过的第一滤波器,第二天线射频源与第一辐射体段和/或第二辐射体段之间、地板与第一辐射体段和/或第二辐射体段之间分别接有供第二天线的信号通过、且阻止第一天线的信号通过的第二滤波器,从而能够保障第一天线和第二天线之间的隔离度,进而在紧凑空间内实现了高隔离度的第一天线和第二天线。
另外,天线辐射体的第一端所在的第一辐射体段和/或第二端所在的第二辐射体段用作第二天线的辐射体,通过第一辐射体段和/或第二辐射体段可接收第二天线射频源输出的射频信号,以使第二天线向外发射,这样能够降低第二天线的方向性系数,从而降低第二天线的发射功率限制,提升用户体验。
在一些实施例中,第一天线为低频天线,第一天线射频源为低频天线射频源,第一滤波器为低通滤波器;
和/或,第二天线为高频天线,第二天线射频源为高频天线射频源,第二滤波器为高通滤波器。
在一些可能的实施例中,第二天线射频源输出的射频信号的频率比第一天线射频源输出的射频信号的频率高。
在一些实施例中,高频天线是WiFi天线;
第一辐射体段具有高频天线馈电点,高频天线馈电点可通过高通滤波器连接于高频天线射频源;第二辐射体段具有高频天线接地点,高频天线接地点可通过高通滤波器连接于地板。
在本方案中,采用上述结构,能够使得从高频天线射频源输出的射频信号能够通过高频天线馈电点直接对第一辐射体段馈电,并通过高频天线馈电点经位于高频天线馈电点与高频天线接地点之间的天线辐射体对第二辐射体段馈电,即对第一辐射体段和第一辐射体段进行分布式馈电,使得WiFi天线向外发射,这样进一步降低了WiFi天线的方向性系数,该WiFi天线的方向性系数能够降低至4.749dBi,从而进一步降低了WiFi天线的发射功率限制,提升用户体验。
在一些实施例中,高频天线馈电点位于第一辐射体段的远离第一端的一端,高频天线接地点位于第二辐射体段的远离第二端的一端。
在一些实施例中,高频天线接地点可通过一开关器件对接地板的高通滤波器的支路和另一高频天线射频源输出接有一高通滤波器的支路进行自由选通。这样能基于天线系统的使用场景,第二辐射体段在不同时间作为不同天线使用。具体为,当开关器件切换 至接地板的高通滤波器的支路,第二辐射体段作为一WiFi天线的辐射体的一部分,这样能够降低该WiFi天线的方向性系数。当开关器件切换至另一高频天线射频源输出接有一高通滤波器的支路时,第二辐射体段作为另一WiFi天线的辐射体,此时,一WiFi天线和另一WiFi天线这两个WiFi天线可同时工作。
在一些实施例中,开关器件采用单刀双掷开关。
在一些实施例中,高频天线是WiFi天线;
第一辐射体段具有第一高频天线馈电点和第一高频天线接地点,第一高频天线馈电点位于第一高频天线接地点与第一端之间,第一高频天线馈电点可通过对应的高通滤波器连接于高频天线射频源的输出,第一高频天线接地点可通过对应的高通滤波器连接于地板;
第二辐射体段具有第二高频天线馈电点和第二高频天线接地点,第二高频天线馈电点位于第二高频天线接地点与第二端之间,第二高频天线馈电点可通过对应的高通滤波器连接一移相器后连接于高频天线射频源的输出,第二高频天线接地点可通过对应的高通滤波器连接于地板。
在本方案中,采用上述结构,能够使得从高频天线射频源输出的射频信号能够通过第一高频天线馈电点直接对第一辐射体段馈电,并通过第二高频天线馈电点直接对第二辐射体段馈电,即对第一辐射体段和第一辐射体段进行分布式馈电,且通过移相器能够将馈电至第一高频天线馈电点和第二高频天线馈电点的信号的相位差调整至所需的相位差,从而能够更大程度地降低WiFi天线的方向性系数,该WiFi天线的方向性系数能够降低至4.359dBi,从而进一步降低了WiFi天线的发射功率限制,提升用户体验。并且,能够降低WiFi天线直接与用户身体接触时用户全身平均的SAR值,该SAR值能够降低至1W/kg。
在一些实施例中,第一高频天线接地点位于第一辐射体段的远离第一端的一端,第二高频天线接地点位于第二辐射体段的远离第二端的一端。
在一些实施例中,天线系统还包括一差分电路和另一高频天线射频源,差分电路的两个输入端分别连接高频天线射频源的输出和另一高频天线射频源的输出,差分电路的输出端连接于第一高频天线馈电点的高通滤波器,且高频天线射频源的输出和另一高频天线射频源的输出均连接于移相器。
在本方案中,该第一辐射体段和第二辐射体段除了同时作为一WiFi天线的辐射体,还同时作为另一WiFi天线的辐射体,此时,一WiFi天线和另一WiFi天线这两个WiFi天线可同时工作。并且,在不影响一WiFi天线的性能的同时,且新增的另一WiFi天线的方向性系数也较低,该方向性系数降低至3.998dBi,且该另一WiFi天线的SAR值也较低,该SAR值能够降低至2W/kg。这样也能够降低另一WiFi天线的发射功率限制,提升用户体验。
在一些实施例中,第一高频天线馈电点与高频天线射频源之间、第二高频天线馈电点与高频天线射频源之间分别通过传输线连接。
在一些实施例中,天线辐射体呈直条形。
在一些实施例中,第一辐射体段和第二辐射体段的长度均为第二天线的工作波长的四分之一。
在一些实施例中,第一天线的工作频率范围和第二天线的工作频率范围不重叠。
在一些实施例中,第一天线为低频天线时,低频天线的工作频段为0.7GHz~0.96GHz;
第二天线为高频天线时,高频天线的工作频段为2.4GHz~2.5GHz。
在一些实施例中,在天线辐射体的长度方向上,天线馈电点位于天线接地点和第一辐射体段的远离第一端的一端之间。
在一些实施例中,天线馈电点和天线接地点位于天线辐射体的中间部分,且第一辐射体段和第二辐射体段均位于中间部分外。
在一些实施例中,在天线辐射体的长度方向上,天线馈电点和天线接地点分别位于天线辐射体的中心线的两侧。
本申请实施例还提供了一种电子设备,包括地板,电子设备还包括以上任一实施例或可能的实施例所提供的天线系统。
在一些实施例中,天线辐射体由电子设备的外边框形成;
或者,天线辐射体采用条形贴片结构,条形贴片结构贴设于电子设备的外边框的表面,并由导电材料制得。
附图说明
图1为现有的电子设备的第一WiFi天线的辐射方向图,其中,WiFi天线的工作频率为2.5GHz;
图2为现有的电子设备的第一WiFi天线的SAR值仿真效果图,其中,WiFi天线的工作频率为2.5GHz;
图3为本申请实施例1的电子设备的局部结构示意图;
图4为本申请实施例1的电子设备的WiFi天线的S参数和效率仿真效果图;
图5为本申请实施例1的电子设备的WiFi天线的辐射方向图,其中,该WiFi天线的工作频率为2.45GHz;
图6为本申请实施例2的电子设备的局部结构示意图;
图7为本申请实施例3的电子设备的局部结构示意图;
图8为本申请实施例3的电子设备的WiFi天线的辐射方向图,其中,WiFi天线的工作频率为2.4GHz;
图9为本申请实施例3的电子设备的WiFi天线的SAR值仿真效果图,其中,WiFi天线的工作频率为2.45GHz;
图10为本申请实施例4的电子设备的局部结构示意图;
图11为本申请实施例4的电子设备的低频天线、WiFi天线和另一WiFi天线的S参数仿真效果图;
图12为本申请实施例4的电子设备的另一WiFi天线的辐射方向图,其中,该另一WiFi天线的工作频率为2.45GHz;
图13为本申请实施例4的电子设备的另一WiFi天线的SAR值仿真效果图,其中,该另一WiFi天线的工作频率为2.45GHz。
附图标记说明:
100:电子设备;
200:地板;
300:低频天线;310:低频天线辐射体;320:中间部分;330:第一端;332:第二端;340:低频天线馈电点;342:低频天线接地点;350:第一辐射体段;352:第二辐射体段;
400:WiFi天线;410:高频天线馈电点;420:高频天线接地点;
500:低频天线射频源;510:高频天线射频源;
600:低通滤波器;610:高通滤波器;
100A:电子设备;
200A:地板;
350A:第一辐射体段;352A:第二辐射体段;
420A:高频天线接地点;
510A:高频天线射频源;520A:另一高频天线射频源;
610A:高通滤波器;620A:另一高通滤波器;
700A:开关器件;
100B:电子设备;
200B:地板;
330B:第一端;332B:第二端;350B:第一辐射体段;352B:第二辐射体段;
400B:WiFi天线;410B:第一高频天线馈电点;420B:第一高频天线接地点;430B:第二高频天线馈电点;440B:第二高频天线接地点;
510B:高频天线射频源;
610B:高通滤波器;
700B:移相器;
800B:传输线;
100C:电子设备;
350C:第一辐射体段;352C:第二辐射体段;
400C:WiFi天线;410C:第一高频天线馈电点;430C:第二高频天线馈电点;450C:另一WiFi天线;
510C:高频天线射频源;520C:另一高频天线射频源;
610C:高通滤波器;
700C:移相器;
900C:差分电路;
O:中心线;
L:低频天线辐射体的长度方向;
L1:低频天线辐射体的长度;
L2:第一辐射体段的长度;
L3:第二辐射体段的长度;
d1:低频天线馈电点与低频天线辐射体的中心线之间的距离;
d2:低频天线接地点与低频天线辐射体的中心线之间的距离;
d3:第一高频天线馈电点与第一高频天线接地点之间的距离;
d4:第二高频天线馈电点与第二高频天线接地点之间的距离;
s:间隙。
具体实施方式
以下由特定的具体实施例说明本申请的实施方式,本领域技术人员可由本说明书所揭示的内容轻易地了解本申请的其他优点及功效。虽然本申请的描述将结合一些实施例一起介绍,但这并不代表此申请的特征仅限于该实施方式。恰恰相反,结合实施方式作申请介绍的目的是为了覆盖基于本申请的权利要求而有可能延伸出的其它选择或改造。为了提供对本申请的深度了解,以下描述中将包含许多具体的细节。本申请也可以不使用这些细节实施。此外,为了避免混乱或模糊本申请的重点,有些具体细节将在描述中被省略。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
应注意的是,在本说明书中,相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
在本申请的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请的实施方式作进一步地详细描述。
实施例1
请参见图3,图3为本申请实施例1的电子设备100的局部结构示意图。如图3所示,本申请实施例提供了一种电子设备100,包括天线系统、地板200、低频天线射频源500和高频天线射频源510。在本实施方式中,该电子设备100以智能手机进行举例说明。当然,本领域技术人员可以理解的是,在可替代的其它实施方式中,该电子设备100也可以为平板电脑或智能手表等其它电子设备,在此并不对本申请的保护范围产生限定作用。
请参见图3,天线系统包括低频天线300(对应第一天线)和高频天线(对应第二天线)。在本实施方式中,第一天线为低频天线300,第二天线为高频天线。当然,本领域技术人员可以理解的是,在可替代的其它实施方式中,第一天线也可以采用其它类型的 天线,并不局限于低频天线,第二天线也可以采用其它类型的天线,并不局限于高频天线,第一天线的工作频段范围与第二天线的工作频率范围不同即可,即不重叠。
低频天线300的工作频率低于高频天线的工作频率,且低频天线300的工作频段范围低于高频天线的工作频段范围。在本实施方式中,高频天线是WiFi天线400。当然,本领域技术人员可以理解的是,在可替代的其它实施方式中,高频天线也可以采用其它类型的高频天线。低频天线300用于供电子设备与基站间通信使用。
在本实施方式中,低频天线300的工作频段为0.7GHz~0.96GHz,WiFi天线400的工作频段为2.4GHz~2.5GHz。当然,本领域技术人员可以理解的是,在可替代的其它实施方式中,低频天线300的工作频段和WiFi天线400的工作频段也可以采用其它合适的工作频段。
如图3所示,低频天线300包括呈条形的低频天线辐射体310。在本实施方式中,低频天线辐射体310呈直条形。当然,本领域技术人员可以理解的是,在可替代的其它实施方式中,低频天线辐射体310也可以采用呈弯折状或弯曲状的条形结构。在本实施方式中,低频天线辐射体310的长度均为低频天线300的工作波长的四分之一。低频天线300的工作波长用λ1表示。
其中,低频天线辐射体310由电子设备100的外边框形成。当然,本领域技术人员可以理解的是,在可替代的其它实施方式中,低频天线辐射体310也可以是金属片(比如钢片),也可以是柔性电路板(Flexible Printed Circuit简称FPC),也可以采用LDS(Laser Direct Structuring,激光直接成型)的形式形成,也可以采用条形贴片结构,条形贴片结构贴设于电子设备的外边框的表面,并由导电材料制得。
另外,低频天线辐射体310的中间部分320(在本实施方式中,该中间部分320为图3中虚线框所示的部分)具有在低频天线辐射体的长度方向L上间隔设置的低频天线馈电点340和低频天线接地点342。低频天线馈电点340与低频天线射频源500连接,以接收低频天线射频源500输出的射频信号。低频天线接地点342与地板200连接。且低频天线辐射体310与地板200的外边缘相对间隔设置,使得低频天线辐射体310与地板200之间形成有间隙。
在本实施方式中,在低频天线辐射体的长度方向L上,低频天线馈电点340和低频天线接地点342分别位于低频天线辐射体310的中心线O的两侧。当然,本领域技术人员可以理解的是,在可替代的其它实施方式中,低频天线馈电点340和低频天线接地点342也可以同时位于低频天线辐射体310的中心线O的同一侧(比如图3的中心线O的左侧或右侧)并靠近该中心线O的位置处。
在本实施方式中,地板200可以由电子设备100的后壳形成。本领域技术人员可以理解的是,在可替代的其它实施方式中,地板200也可以其它金属部分构成,比如,印制电路板、中框的底板。
请参见图3,低频天线辐射体310具有第一端330和第二端332,第一端330所在的中间部分320外的第一辐射体段350和第二端332所在的中间部分320外的第二辐射体段352用作WiFi天线400的辐射体。也就是说,第一辐射体段350和第二辐射体段352位于中间部分320外,第一辐射体段350的自由端和第二辐射体段352的自由端分别为低频天线辐射体310的第一端330和第二端332。在本实施方式中,在低频天线辐射体的 长度方向L上,低频天线馈电点340位于低频天线接地点342和第一辐射体段350的远离第一端330的一端之间。
通过第一辐射体段350和/或第二辐射体段352可接收比低频天线射频源500频率高的高频天线射频源510输出的射频信号,以使WiFi天线400向外发射,且第一辐射体段350和/或第二辐射体段352分别与地板200连接。也就是说,高频天线射频源510输出的射频信号的频率比低频天线射频源500输出的射频信号的频率高。在本实施方式中,第一辐射体段350和第二辐射体段352的长度均为WiFi天线400的工作波长的四分之一。WiFi天线400的工作波长为λ2。
另外,低频天线射频源500和低频天线馈电点340之间、地板200和低频天线接地点342之间分别接有低通滤波器600。低通滤波器600供低频天线300的信号通过,且阻止WiFi天线400的信号通过。高频天线射频源510与第一辐射体段350和/或第二辐射体段352之间、地板200与第一辐射体段350和/或第二辐射体段352之间接有高通滤波器610,高通滤波器610供WiFi天线400的信号通过,且阻止低频天线300的信号通过。
在本实施方式中,低通滤波器可以采用现有技术中已有的低通滤波器,高通滤波器可以采用现有技术中已有的高通滤波器,在此并不做过多赘述。
当然,本领域可以理解的是,低通滤波器是容许低于截止频率的信号通过,但高于截止频率的信号不能通过的电子滤波装置。高通滤波器,又称低截止滤波器、低阻滤波器,允许高于某一截频的频率通过,而大大衰减较低频率的一种滤波器。
在本实施例中,低频天线300和WiFi天线400共用辐射体,占用空间减小,节省天线布局空间,便于电子设备100的小型化。并且,低频天线射频源500和低频天线馈电点340之间、地板200和低频天线接地点342之间分别接有供低频天线300的信号通过、且阻止WiFi天线400的信号通过的低通滤波器600,高频天线射频源510与第一辐射体段350和/或第二辐射体段352之间、地板200与第一辐射体段350和/或第二辐射体段352之间分别接有供WiFi天线400的信号通过、且阻止低频天线300的信号通过的高通滤波器610,从而能够保障低频天线300和WiFi天线400之间的隔离度,进而在紧凑空间内实现了高隔离度的低频天线300和WiFi天线400。
另外,低频天线辐射体310的第一端330所在的中间部分320外的第一辐射体段350和/或第二端332所在的中间部分320外的第二辐射体段352用作WiFi天线400的辐射体,通过第一辐射体段350和/或第二辐射体段352可接收比低频天线射频源500频率高的高频天线射频源510输出的射频信号,以使WiFi天线400向外发射,这样能够降低WiFi天线400的方向性系数,从而降低WiFi天线400的发射功率限制,提升用户体验。
具体地,第一辐射体段350具有高频天线馈电点410,高频天线馈电点410可通过高通滤波器610连接于高频天线射频源510。第二辐射体段352具有高频天线接地点420,高频天线接地点420可通过高通滤波器610连接于地板200。这样能够使得从高频天线射频源510输出的射频信号能够通过高频天线馈电点410直接对第一辐射体段350馈电,并通过高频天线馈电点410经位于高频天线馈电点410与高频天线接地点420之间的低频天线辐射体310对第二辐射体段352馈电,即对第一辐射体段350和第二辐射体段352进行分布式馈电,使得WiFi天线400向外发射,这样进一步降低了WiFi天线400的方向性系数,该WiFi天线400的方向性系数能够降低至4.749dBi,从而进一步降低了WiFi 天线400的发射功率限制,提升用户体验。
进一步地,高频天线馈电点410位于第一辐射体段350的远离第一端330的一端,高频天线接地点420位于第二辐射体段352的远离第二端332的一端。在低频天线辐射体的长度方向L上,低频天线馈电点340和所述低频天线接地点342位于高频天线馈电点410和高频天线接地点420之间。
以下结合图4~图5对电子设备中WiFi天线的性能做具体地说明。
为了验证本申请实施例的WiFi天线的方向性性能,采用全波电磁仿真软件HFSS进行仿真分析,获得了图4-图5的仿真效果图。且该仿真效果是在低频天线正常工作下测得。
获取图4~图5所示的仿真效果图的仿真条件如下表1所示(请结合图3予以理解):
表1
Figure PCTCN2021110098-appb-000001
请参见图4~图5,图4为本申请实施例1的电子设备的WiFi天线的S参数和效率仿真效果图。图5为本申请实施例1的电子设备的WiFi天线的辐射方向图。
其中,在图4中,横坐标表示频率,单位为GHz,纵坐标分别表示WiFi天线的S11的幅度值和WiFi天线的系统效率,单位为dB。S11属于S参数中的一种。S11表示反射系数,此参数表示WiFi天线的发射效率好不好,值越大,表示WiFi天线本身反射回来的能量越大,这样WiFi天线的系统效率就越差。WiFi天线的系统效率是考虑WiFi天线端口匹配后的实际效率,即WiFi天线的系统效率为WiFi天线的实际效率。本领域技术人员可以理解,效率一般是用百分比来表示,其与dB之间存在相应的换算关系,例如有50%的能量辐射出去,换算成dB值就是-3dB;有90%的能量辐射出去,换算成dB值就是-0.046dB;所以效率越接近0dB越好。
从图4可以看到,在2.25GHz~2.57GHz的频段内,WiFi天线具有较好的阻抗匹配,即S11小于-10dB,也就是说,WiFi天线的工作频段覆盖2.25GHz~2.57GHz,即覆盖频 段2.4GHz~2.5GHz。也就是说,WiFi天线的-10dB S11的绝对带宽为0.32GHz,WiFi天线的-10dB S11的相对带宽为13.3%,从而具有带宽适中的特性。
从图4中还可以看到,WiFi天线在工作频段2.25GHz~2.57GHz内的系统效率为-0.8dB~-0.2dB,具有较好的端口阻抗匹配。
请参见图5,图5给出了在工作频率为2.45GHz时WiFi天线的辐射方向图。在图5中,灰度越深,表示场强越大,其中,灰度最深的部分表示场强最大。从图5中可以看出,WiFi天线朝向电子设备各方向的辐射能量比较均匀,该WiFi天线的方向性系数降低到了4.749dBi。也就是说,在WiFi天线的全向内辐射的能量都是相对均匀的,不是集中在某一个角度方向的。
实施例2
请参见图6,图6为本申请实施例2的电子设备100A的局部结构示意图。如图6所示,本实施例的电子设备100A的结构与实施例1所提供的电子设备100的结构相比,其结构基本相同,其不同之处在于,高频天线接地点420A通过一开关器件700A对接地板200A的高通滤波器610A的支路和另一高频天线射频源520A输出接有另一高通滤波器620A的支路进行自由选通。在本实施方式中,开关器件700A采用单刀双掷开关。
通过设置开关器件700A,这样能基于天线系统的使用场景,第二辐射体段352A在不同时间作为不同天线使用。
具体为,当开关器件700A切换至接地板200A的高通滤波器610A的支路,第二辐射体段352A作为WiFi天线的辐射体的一部分,第一辐射体段350A作为该WiFi天线的辐射体的另一部分,这样能够降低该WiFi天线的方向性系数。
当开关器件700A切换至另一高频天线射频源520A输出接有另一高通滤波器620A的支路时,第二辐射体段352A作为另一WiFi天线的辐射体,第一辐射体段350A作为WiFi天线的辐射体,此时,WiFi天线和另一WiFi天线这两个WiFi天线可同时工作。
在本实施方式中,另一高频天线射频源520A输出的射频信号的频率与高频天线射频源510A输出的射频信号的频率相同。且新增的另一WiFi天线的工作频段与WiFi天线的工作频段相同。
实施例3
请参见图7,图7为本申请实施例3的电子设备100B的局部结构示意图。如图7所示,本实施例的电子设备100B的结构与实施例1所提供的电子设备的结构相比,其结构基本相同,其不同之处在于,第一辐射体段350B具有第一高频天线馈电点410B和第一高频天线接地点420B,第一高频天线馈电点410B位于第一高频天线接地点420B与第一端330B之间。第一高频天线馈电点410B通过对应的高通滤波器610B连接于高频天线射频源510B的输出。第一高频天线接地点420B通过对应的高通滤波器610B连接于地板200B。
第二辐射体段352B具有第二高频天线馈电点430B和第二高频天线接地点440B,第二高频天线馈电点430B位于第二高频天线接地点440B与第二端332B之间。第二高频天线馈电点430B通过对应的高通滤波器610B连接一移相器700B后连接于高频天线射频源510B的输出,第二高频天线接地点440B通过对应的高通滤波器610B连接于地板200B。本领域技术人员可以理解的是,移相器是能够对波的相位进行调整的一种装置。 在本实施方式中,移相器可以采用现有已知的移相器,在此并不做过多赘述。
在本申请中,能够使得从高频天线射频源510B输出的射频信号能够通过第一高频天线馈电点410B直接对第一辐射体段350B馈电,并通过第二高频天线馈电点430B直接对第二辐射体段352B馈电,即对第一辐射体段350B和第二辐射体段352B进行分布式馈电,且通过移相器700B能够将馈电至第一高频天线馈电点410B和第二高频天线馈电点430B的信号的相位差调整至所需的相位差,从而能够更大程度地降低WiFi天线400B的方向性系数,该WiFi天线400B的方向性系数能够降低至4.359dBi,从而进一步降低了WiFi天线400B的发射功率限制,提升用户体验。并且,能够降低WiFi天线400B直接与用户身体接触时用户全身平均的SAR值,该SAR值能够降低至1W/kg。
在本实施方式中,第一高频天线接地点420B位于第一辐射体段350B的远离第一端330B的一端,第二高频天线接地点440B位于第二辐射体段352B的远离第二端332B的一端。
进一步地,第一高频天线馈电点410B与高频天线射频源510B之间、第二高频天线馈电点430B与高频天线射频源510B之间分别通过传输线800B连接。在本实施方式中,传输线可以采用微带线。当然,本领域技术人员可以理解的是,在可替代的其它实施方式中,传输线也可以采用其它类型的传输线。
以下结合图8~图9对电子设备中WiFi天线的性能做具体地说明。
为了验证本申请实施例的WiFi天线的方向性性能以及SAR值特性,采用全波电磁仿真软件HFSS进行仿真分析,获得了图8-图9的仿真效果图。且该仿真效果是在低频天线正常工作下测得。
获取图8~图9所示的仿真效果图的仿真条件如下表2所示(请结合图7予以理解):
表2
Figure PCTCN2021110098-appb-000002
Figure PCTCN2021110098-appb-000003
请参见图8~图9,图8为本申请实施例3的电子设备的WiFi天线的辐射方向图,其中,WiFi天线的工作频率为2.4GHz。图9为本申请实施例3的电子设备的WiFi天线的SAR值仿真效果图,其中,WiFi天线的工作频率为2.45GHz。
请参见图8,图8给出了在工作频率为2.4GHz时WiFi天线的辐射方向图。在图8中,灰度越深,表示场强越大,其中,灰度最深的部分表示场强最大。从图8中可以看出,WiFi天线朝向电子设备各方向的辐射能量比较均匀,该WiFi天线的方向性系数降低到了4.359dBi。也就是说,在WiFi天线的全向内辐射的能量都是相对均匀的,不是集中在某一个角度方向的。
请参见图9,灰度越深,表示SAR值越大。图9中虚线框所示部分表示WiFi天线的第一辐射体段和第二辐射体段处的SAR值仿真效果分布情况。从图9中可以看到,WiFi天线的SAR值能够降低至1W/kg。
实施例4
请参见图10,图10为本申请实施例4的电子设备100C的局部结构示意图。如图10所示,本实施例的电子设备100C的结构与实施例3所提供的电子设备100B的结构相比,其结构基本相同,其不同之处在于,电子设备100C还包括一差分电路900C和另一高频天线射频源520C,差分电路900C的两个输入端分别连接高频天线射频源510C的输出和另一高频天线射频源520C的输出,差分电路900C的输出端连接于第一高频天线馈电点410C的高通滤波器610C,且高频天线射频源510C的输出和另一高频天线射频源520C的输出均连接于移相器700C。在本实施方式中,差分电路900C采用现有技术中已知的结构,在此不做过多赘述。其中,经移相器700C、高通滤波器610C、第二高频天线馈电点430C馈电至第二辐射体段352C的信号为高频天线射频源510C输出的射频信号和另一高频天线射频源520C输出的射频信号的叠加信号。差分电路900C的输出端信号为高频天线射频源510C输出的射频信号和另一高频天线射频源520C输出的射频信号的信号差,即高频天线射频源510C输出的射频信号和另一高频天线射频源520C输出的射频信号的反相位叠加信号。
高频天线射频源510C的输出的一部分能量通过移相器700C、高通滤波器610C、第二高频天线馈电点430C馈电至第二辐射体段352C,另一部分能量从差分电路900C的其中一个输入端通过差分电路900C经高通滤波器610C、第一高频天线馈电点410C馈电至第一辐射体段350C。另一高频天线射频源520C输出的一部分能量通过移相器700C、高通滤波器610C、第二高频天线馈电点430C馈电至第二辐射体段352C,另一部分能量从差分电路900C的另一个输入端通过差分电路900C经高通滤波器610C、第一高频天线馈电点410C馈电至第一辐射体段350C。该第一辐射体段350C和第二辐射体段352C除了同时作为一WiFi天线400C的辐射体,还同时作为另一WiFi天线450C的辐射体,此时,一WiFi天线400C和另一WiFi天线450C这两个WiFi天线可同时工作。并且,在不影响一WiFi天线400C的性能的同时,且新增的另一WiFi天线450C的方向性系数也较低, 该方向性系数降低至3.998dBi,且该另一WiFi天线450C的SAR值也较低,该SAR值能够降低至2W/kg。这样也能够降低另一WiFi天线450C的发射功率限制,提升用户体验。SAR值为全身平均的SAR值。在高频天线射频源510C处于不工作的状态,另一高频天线射频源520C处于工作的状态时,可单独测试另一WiFi天线450C的方向性系数和SAR值。并且,高频天线射频源510C可以以共模信号的模式激励第一辐射体段350C和第二辐射体段352C,另一高频天线射频源520C可以以差模信号的模式激励第一辐射体段350C和第二辐射体段352C,因共模信号和差模信号之间的隔离度非常高,这样使得两个WiFi天线之间的隔离度也非常高。
在本实施方式中,另一高频天线射频源520C输出的射频信号的频率与高频天线射频源510C输出的射频信号的频率相同。且新增的另一WiFi天线450C的工作频段与WiFi天线400C的工作频段相同。
以下结合图11~图13对电子设备中低频天线、WiFi天线以及另一WiFi天线的性能做具体地说明。
为了验证本申请实施例的低频天线、WiFi天线以及另一WiFi天线的方向性性能以及SAR值特性,采用全波电磁仿真软件HFSS进行仿真分析,获得了图11~图13的仿真效果图。且该仿真效果是在低频天线正常工作下测得。
获取图11~图13所示的仿真效果图的仿真条件如下表3所示(请结合图10予以理解):
表3
Figure PCTCN2021110098-appb-000004
请参见图11,图11为本申请实施例4的电子设备的低频天线、WiFi天线和另一WiFi天线的S参数仿真效果图。其中,在图11中,曲线“S11-LB”表示低频天线回波损耗随频率变化的曲线图,曲线“S12”表示低频天线和WiFi天线之间隔离度随频率变化的曲线图,曲线“S22-WiFi1(CM)”表示WiFi天线的回波损耗随频率变化的曲线图,CM表示共模,英文全称为Common Mode。曲线“S23”表示两个WiFi天线之间隔离度随频率变化的曲线图,曲线“S33-WiFi2(DM)”表示另一WiFi天线的回波损耗随频率变化的曲线图,DM表示差模,英文全称为Differential Mode。
从图11可知,低频天线、WiFi天线和另一WiFi天线均具有较好的阻抗匹配。且在频率范围0.5GHz~2.5GHz内,低频天线和WiFi天线之间隔离度基本大于10dB,能够满足天线的正常工作需求。WiFi天线和另一WiFi天线之间的隔离度更好,在图11中仅示出了部分曲线。同时,低频天线和另一WiFi天线之间隔离度也非常高,在图11中未示出。从上可知,低频天线、WiFi天线和另一WiFi天线可以同时工作。
请参见图12,图12为本申请实施例4的电子设备的另一WiFi天线的辐射方向图,其中,该另一WiFi天线的工作频率为2.45GHz。在图12中,灰度越深,表示场强越大,其中,灰度最深的部分表示场强最大。从图12中可以看出,另一WiFi天线朝向电子设备各方向的辐射能量比较均匀,该WiFi天线的方向性系数降低到了3.998dBi。也就是说,在WiFi天线的全向内辐射的能量都是相对均匀的,不是集中在某一个角度方向的。
请参见图13,图13为本申请实施例4的电子设备的另一WiFi天线的SAR值仿真效果图,其中,该另一WiFi天线的工作频率为2.45GHz。请参见图13,灰度越深,表示SAR值越大。图13中虚线框所示部分表示另一WiFi天线的第一辐射体段和第二辐射体段处的SAR值仿真效果分布情况。从图13中可以看到,另一WiFi天线的SAR值能够降低至2W/kg。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (19)

  1. 一种天线系统,包括第一天线,所述第一天线包括呈条形的天线辐射体,所述天线辐射体具有在所述天线辐射体的长度方向上间隔设置的天线馈电点和天线接地点,所述天线馈电点可与第一天线射频源连接,以接收所述第一天线射频源输出的射频信号,所述天线接地点可与地板连接,其特征在于:
    所述天线辐射体具有第一端和第二端,所述第一端所在的第一辐射体段和/或所述第二端所在的第二辐射体段用作第二天线的辐射体,通过所述第一辐射体段和/或所述第二辐射体段可接收第二天线射频源输出的射频信号,以使所述第二天线向外发射,且所述第一辐射体段和/或所述第二辐射体段可与所述地板连接;
    所述第一天线射频源和所述天线馈电点之间、所述地板和所述天线接地点之间分别接有第一滤波器,所述第一滤波器供所述第一天线的信号通过,且阻止所述第二天线的信号通过;所述第二天线射频源与所述第一辐射体段和/或所述第二辐射体段之间、所述地板与所述第一辐射体段和/或所述第二辐射体段之间接有第二滤波器,所述第二滤波器供所述第二天线的信号通过,且阻止所述第一天线的信号通过。
  2. 如权利要求1所述的天线系统,其特征在于,所述第一天线为低频天线,所述第一天线射频源为低频天线射频源,所述第一滤波器为低通滤波器;
    和/或,所述第二天线为高频天线,所述第二天线射频源为高频天线射频源,所述第二滤波器为高通滤波器。
  3. 如权利要求2所述的天线系统,其特征在于,所述高频天线是WiFi天线;
    所述第一辐射体段具有高频天线馈电点,所述高频天线馈电点可通过所述高通滤波器连接于所述高频天线射频源;所述第二辐射体段具有高频天线接地点,所述高频天线接地点可通过所述高通滤波器连接于所述地板。
  4. 如权利要求3所述的天线系统,其特征在于,所述高频天线馈电点位于所述第一辐射体段的远离所述第一端的一端,所述高频天线接地点位于所述第二辐射体段的远离所述第二端的一端。
  5. 如权利要求3或4所述的天线系统,其特征在于,所述高频天线接地点可通过一开关器件对接所述地板的所述高通滤波器的支路和另一高频天线射频源输出接有一高通滤波器的支路进行自由选通。
  6. 如权利要求5所述的天线系统,其特征在于,所述开关器件采用单刀双掷开关。
  7. 如权利要求2所述的天线系统,其特征在于,所述高频天线是WiFi天线;
    所述第一辐射体段具有第一高频天线馈电点和第一高频天线接地点,所述第一高频天线馈电点位于所述第一高频天线接地点与所述第一端之间,所述第一高频天线馈电点可通过对应的所述高通滤波器连接于所述高频天线射频源的输出,所述第一高频天线接地点可通过对应的所述高通滤波器连接于所述地板;
    所述第二辐射体段具有第二高频天线馈电点和第二高频天线接地点,所述第二高频天线馈电点位于所述第二高频天线接地点与所述第二端之间,所述第二高频天线馈电点可通过对应的所述高通滤波器连接一移相器后连接于所述高频天线射频源的输出,所述第二高频天线接地点可通过对应的所述高通滤波器连接于所述地板。
  8. 如权利要求7所述的天线系统,其特征在于,所述第一高频天线接地点位于所述第一辐射体段的远离所述第一端的一端,所述第二高频天线接地点位于所述第二辐射体 段的远离所述第二端的一端。
  9. 如权利要求7或8所述的天线系统,其特征在于,所述天线系统还包括一差分电路和另一高频天线射频源,所述差分电路的两个输入端分别连接所述高频天线射频源的输出和所述另一高频天线射频源的输出,所述差分电路的输出端连接于所述第一高频天线馈电点的所述高通滤波器,且所述高频天线射频源的输出和所述另一高频天线射频源的输出均连接于所述移相器。
  10. 如权利要求7~9中任一项所述的天线系统,其特征在于,所述第一高频天线馈电点与所述高频天线射频源之间、所述第二高频天线馈电点与所述高频天线射频源之间分别通过传输线连接。
  11. 如权利要求1~10中任一项所述的天线系统,其特征在于,所述天线辐射体呈直条形。
  12. 如权利要求1~11中任一项所述的天线系统,其特征在于,所述第一辐射体段和所述第二辐射体段的长度均为所述第二天线的工作波长的四分之一。
  13. 如权利要求1~12中任一项所述的天线系统,其特征在于,所述第一天线的工作频率范围和所述第二天线的工作频率范围不重叠。
  14. 如权利要求13所述的天线系统,其特征在于,所述第一天线为低频天线时,所述低频天线的工作频段为0.7GHz~0.96GHz;
    所述第二天线为高频天线时,所述高频天线的工作频段为2.4GHz~2.5GHz。
  15. 如权利要求1~14中任一项所述的天线系统,其特征在于,在所述天线辐射体的长度方向上,所述天线馈电点位于所述天线接地点和所述第一辐射体段的远离所述第一端的一端之间。
  16. 如权利要求1~15中任一项所述的天线系统,其特征在于,所述天线馈电点和所述天线接地点位于所述天线辐射体的中间部分,且所述第一辐射体段和所述第二辐射体段均位于所述中间部分外。
  17. 如权利要求16所述的天线系统,其特征在于,在所述天线辐射体的长度方向上,所述天线馈电点和所述天线接地点分别位于所述天线辐射体的中心线的两侧。
  18. 一种电子设备,包括地板,其特征在于,所述电子设备还包括如权利要求1~17中任一项所述的天线系统。
  19. 如权利要求18所述的电子设备,其特征在于,所述天线辐射体由所述电子设备的外边框形成;
    或者,所述天线辐射体采用条形贴片结构,所述条形贴片结构贴设于所述电子设备的外边框的表面,并由导电材料制得。
PCT/CN2021/110098 2020-08-28 2021-08-02 天线系统及电子设备 WO2022042219A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21860059.1A EP4199254A4 (en) 2020-08-28 2021-08-02 ANTENNA SYSTEM AND ELECTRONIC DEVICE
US18/043,278 US20230335908A1 (en) 2020-08-28 2021-08-02 Antenna system and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010884837.2 2020-08-28
CN202010884837.2A CN114122683B (zh) 2020-08-28 2020-08-28 天线系统及电子设备

Publications (1)

Publication Number Publication Date
WO2022042219A1 true WO2022042219A1 (zh) 2022-03-03

Family

ID=80352582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/110098 WO2022042219A1 (zh) 2020-08-28 2021-08-02 天线系统及电子设备

Country Status (4)

Country Link
US (1) US20230335908A1 (zh)
EP (1) EP4199254A4 (zh)
CN (1) CN114122683B (zh)
WO (1) WO2022042219A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7436365B1 (en) * 2007-05-02 2008-10-14 Motorola, Inc. Communications assembly and antenna radiator assembly
CN104752833A (zh) * 2013-12-31 2015-07-01 深圳富泰宏精密工业有限公司 天线组件及具有该天线组件的无线通信装置
CN207069066U (zh) * 2016-12-14 2018-03-02 深圳众思科技有限公司 宽带天线及移动终端
CN208623677U (zh) * 2018-01-10 2019-03-19 毕弟强 天线系统
CN111193101A (zh) * 2020-02-20 2020-05-22 Oppo广东移动通信有限公司 电子设备
CN111276797A (zh) * 2018-12-05 2020-06-12 青岛海信移动通信技术股份有限公司 一种天线装置及终端
CN111416210A (zh) * 2020-03-31 2020-07-14 维沃移动通信有限公司 一种天线调频结构及电子设备

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106299598B (zh) * 2015-05-27 2020-08-21 富泰华工业(深圳)有限公司 电子装置及其多馈入天线
KR101756150B1 (ko) * 2016-03-18 2017-07-11 주식회사 에이스테크놀로지 루프타입의 방사소자를 갖는 메탈바디 안테나
CN106299604A (zh) * 2016-09-14 2017-01-04 宇龙计算机通信科技(深圳)有限公司 天线装置及移动终端
CN108110423B (zh) * 2017-12-14 2020-03-10 Oppo广东移动通信有限公司 天线调谐电路、天线装置及移动终端
CN108321494B (zh) * 2018-01-19 2021-05-11 Oppo广东移动通信有限公司 天线装置及电子设备
CN108321495B (zh) * 2018-01-22 2020-05-19 Oppo广东移动通信有限公司 天线组件、天线装置及电子设备
CN108718007B (zh) * 2018-05-24 2021-07-20 广州三星通信技术研究有限公司 天线装置及包括该天线装置的通信终端
CN110718761B (zh) * 2018-07-11 2021-11-09 华为技术有限公司 天线装置及移动终端
CN208539096U (zh) * 2018-07-24 2019-02-22 Oppo广东移动通信有限公司 天线组件及电子设备
CN109037918B (zh) * 2018-07-24 2021-01-08 Oppo广东移动通信有限公司 天线组件以及电子设备
CN210805993U (zh) * 2019-11-05 2020-06-19 RealMe重庆移动通信有限公司 天线辐射体及电子设备
CN111029749B (zh) * 2019-12-27 2021-09-24 维沃移动通信有限公司 一种天线组件及电子设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7436365B1 (en) * 2007-05-02 2008-10-14 Motorola, Inc. Communications assembly and antenna radiator assembly
CN104752833A (zh) * 2013-12-31 2015-07-01 深圳富泰宏精密工业有限公司 天线组件及具有该天线组件的无线通信装置
CN207069066U (zh) * 2016-12-14 2018-03-02 深圳众思科技有限公司 宽带天线及移动终端
CN208623677U (zh) * 2018-01-10 2019-03-19 毕弟强 天线系统
CN111276797A (zh) * 2018-12-05 2020-06-12 青岛海信移动通信技术股份有限公司 一种天线装置及终端
CN111193101A (zh) * 2020-02-20 2020-05-22 Oppo广东移动通信有限公司 电子设备
CN111416210A (zh) * 2020-03-31 2020-07-14 维沃移动通信有限公司 一种天线调频结构及电子设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4199254A4

Also Published As

Publication number Publication date
CN114122683A (zh) 2022-03-01
EP4199254A4 (en) 2024-02-28
EP4199254A1 (en) 2023-06-21
US20230335908A1 (en) 2023-10-19
CN114122683B (zh) 2022-12-30

Similar Documents

Publication Publication Date Title
TWI451629B (zh) 天線結構
WO2020011219A1 (zh) 天线装置及移动终端
KR100665007B1 (ko) 초광대역 내장형 안테나
US7443350B2 (en) Embedded multi-mode antenna architectures for wireless devices
US11355853B2 (en) Antenna structure and wireless communication device using the same
Jabeen et al. An integrated MIMO antenna design for Sub-6áGHz & millimeter-wave applications with high isolation
TW201843877A (zh) 行動裝置和天線結構
TWI450442B (zh) A small multi-frequency antenna and a communication device using the antenna
Elabd et al. Low mutual coupling miniaturized dual-band quad-port MIMO antenna array using decoupling structure for 5G smartphones
WO2016101136A1 (zh) 一种多频段介质谐振手机终端天线
WO2022042219A1 (zh) 天线系统及电子设备
CN218351719U (zh) 天线模块及笔记本电脑
CN111525269B (zh) 一种天线系统和终端
CN212968043U (zh) 同心半圆环wlan微带天线、无线传感器天线及无线通信设备
CN107994332A (zh) 一种三频微带缝隙天线
CN211578966U (zh) 渐变缝隙天线及通讯装置
CN101359763A (zh) 双频天线
KR20150009298A (ko) 초광대역 안테나
CN103840255A (zh) 印刷式宽带单极天线模块
TWM444619U (zh) 多頻寄生耦合天線及具有多頻寄生耦合天線的無線通訊裝置
GB2404791A (en) Compact antenna arrangement for simultaneous operation under two different protocols
TWI467853B (zh) 雙頻天線及應用該雙頻天線之無線通訊裝置
CN217641783U (zh) 一种辐射元件及多频基站天线
CN217444620U (zh) 移动终端及天线
CN218300241U (zh) 多频段外置天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21860059

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021860059

Country of ref document: EP

Effective date: 20230313

NENP Non-entry into the national phase

Ref country code: DE