WO2022042012A1 - 双能源热水器的控制方法、装置、电子设备、及存储介质 - Google Patents

双能源热水器的控制方法、装置、电子设备、及存储介质 Download PDF

Info

Publication number
WO2022042012A1
WO2022042012A1 PCT/CN2021/103436 CN2021103436W WO2022042012A1 WO 2022042012 A1 WO2022042012 A1 WO 2022042012A1 CN 2021103436 W CN2021103436 W CN 2021103436W WO 2022042012 A1 WO2022042012 A1 WO 2022042012A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating
water
current
heat pump
air source
Prior art date
Application number
PCT/CN2021/103436
Other languages
English (en)
French (fr)
Inventor
郭延隆
管江勇
Original Assignee
青岛经济技术开发区海尔热水器有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛经济技术开发区海尔热水器有限公司, 海尔智家股份有限公司 filed Critical 青岛经济技术开发区海尔热水器有限公司
Publication of WO2022042012A1 publication Critical patent/WO2022042012A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/20Arrangement or mounting of control or safety devices
    • F24H9/2007Arrangement or mounting of control or safety devices for water heaters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Definitions

  • the present disclosure relates to the technical field of smart home appliances, for example, to a control method, device, electronic device, and storage medium for a dual-energy water heater.
  • Water heaters are household appliances commonly used in people's daily life. According to the different energy used, they can be divided into single-energy water heaters such as gas water heaters, electric water heaters, air energy water heaters, and solar water heaters. With the development of the economy and the improvement of people's living standards, the use of dual-energy water heaters that support the use of two energy sources is becoming more and more widespread.
  • Dual-energy water heaters usually focus on improving user experience such as how to quickly heat and supply hot water for a long time, but less consideration in terms of saving energy costs, and there is currently no better way to save energy costs.
  • the present disclosure provides a control method, device, electronic device, and storage medium for a dual-energy water heater to maximize energy cost savings.
  • the present disclosure provides a control method for a dual-energy water heater, wherein the dual-energy water heater adopts air source heat pump heating and gas heating, and the method includes:
  • the dual-energy water heater is controlled according to the current water tank temperature, the energy-saving heating method, and the current water usage status.
  • the present disclosure also provides a control device for a dual-energy water heater, the dual-energy water heater adopts air source heat pump heating and gas heating, and the device includes:
  • the unit for determining the energy cost saving method is set to determine the energy cost saving heating method in the air source heat pump heating and the gas heating according to the current environmental information, electricity price and gas price;
  • the heating control unit is configured to control the dual-energy water heater according to the current water tank temperature, the energy-saving heating method, and the current water consumption state.
  • an electronic device in a third aspect of the present disclosure, includes: a processor; and a memory arranged to store executable instructions that, when executed by the processor, cause the electronic device to perform the method of the first aspect.
  • a computer-readable storage medium having a computer program stored thereon, the computer program implementing the method of the first aspect when executed by a processor.
  • FIG. 1 is a schematic flowchart of a control method for a dual-energy water heater provided according to the present disclosure
  • FIG. 2 is a schematic structural diagram of a dual-energy water heater provided according to the present disclosure
  • FIG. 3 is a schematic structural diagram of another dual-energy water heater provided according to the present disclosure.
  • FIG. 4 is a schematic flowchart of another control method for a dual-energy water heater provided according to the present disclosure
  • FIG. 5 is a schematic structural diagram of a control device for a dual-energy water heater provided according to the present disclosure
  • FIG. 6 shows a schematic structural diagram of an electronic device suitable for implementing the present disclosure.
  • FIG. 1 shows a schematic flowchart of a control method for a dual-energy water heater provided by the present disclosure.
  • This embodiment is applicable to the case where the heating mode is selected for a dual-energy water heater using air source heat pump heating and gas heating.
  • the method can be controlled by the water heater. It is implemented by the control device of the dual-energy water heater in the controller.
  • the control method of the dual-energy water heater described in this embodiment includes:
  • step S110 according to the current environmental information, the price of electricity, and the price of gas, it is determined to use air source heat pump heating and to use gas heating to save energy costs.
  • the environmental information includes information that can affect the heating efficiency of the air source heat pump, such as ambient temperature, ambient humidity, ambient air pressure, and the like.
  • the energy efficiency ratio of the air source heat pump is related to the current environmental information, such as the humidity, humidity, and air pressure of the current air.
  • the higher the air temperature the higher the energy efficiency ratio of the air source heat pump.
  • the influence of humidity on the air source heat pump is related to the current temperature.
  • the higher the humidity the higher the energy efficiency ratio of the air source heat pump.
  • the temperature is low (for example, 0 degrees)
  • the higher the humidity the easier the air source heat pump is to frost, and the lower the energy efficiency ratio of the air source heat pump.
  • the current dual-energy water heater adopts air source heat pump heating and the heating method that saves energy costs in gas heating.
  • Heating energy efficiency ratio Coefficient Of Performance, COP
  • COP Coefficient Of Performance
  • the above method is a relatively accurate method for determining the current heating method that saves energy costs.
  • the following methods can also be used:
  • the information other than the temperature in a region does not change much for a period of time, it can be determined based on the humidity of the current environmental information or other environmental information other than temperature such as humidity and air pressure, combined with the local electricity price and gas price, to determine the current conditions to achieve the same Ambient temperature for heating effect and cost.
  • the use of gas heating can be selected as the use of gas furnace heating. Because when gas heating is used, the energy efficiency ratio is hardly affected by temperature, while when air source heat pump heating is used, the energy efficiency ratio is greatly affected by the ambient temperature. Under the same conditions, the higher the temperature, the higher the energy efficiency ratio, and the lower the temperature, the higher the energy efficiency ratio. Low.
  • the ambient temperature when the same heating effect is achieved and the same cost is obtained based on the current conditions determined by the above calculation can be used as the energy cost-saving judgment temperature of the air source heat pump. It can be roughly determined that if the current ambient temperature is higher than the energy-saving judgment temperature of the air-source heat pump, the air-source heat pump heating is more energy-saving, and if the current ambient temperature is lower than the energy-saving judgment temperature of the air source heat pump When using gas heating, it saves energy costs.
  • step S120 the dual-energy water heater is controlled according to the current water tank temperature, the energy-saving heating method, and the current water consumption state.
  • the temperature of the water tank can be obtained by using a temperature sensor, and the current water consumption status can be obtained by various methods, for example, according to whether all currently connected water-consuming devices (such as faucets, showers, washing machines, dishwashers, etc.) are using hot water.
  • the current temperature drop rate of the water tank can be determined. If the temperature drop rate is greater than a predetermined rate threshold, it is determined that the current water use state is the water use state. If the temperature drop rate is equal to or less than the predetermined rate threshold, the current water use state is determined. For not in the state of water.
  • the principle of controlling the dual-energy water heater according to the current water tank temperature, the heating method that saves energy costs, and the current state of water use is to use a heating method that saves energy costs as much as possible for heating.
  • hot water can be supplied in time to avoid waiting for users.
  • air source heat pump heating and gas heating are used for heating, which saves energy costs. That is, if the current water use state is not in water use state, the current water tank temperature does not meet the set temperature range, and the current heating method to save energy costs is to use air source heat pump heating, control the air source heat pump heating. If the current water use state is not in water use state, the current water tank temperature does not meet the set temperature range, and the current heating method to save energy costs is to use gas heating, the gas heating is controlled.
  • the heating of the gas can be controlled in various ways.
  • the heating can be performed by controlling the ignition of the gas to heat the water tank.
  • the output of the water pump can be controlled, the circulating water pump can be started, and the ignition of the gas can be controlled to heat the water tank.
  • Figure 2 shows a schematic diagram of a dual-energy water heater with gas and air source heat pumps to heat the water tank.
  • the method of heating the water directly with gas can also be used.
  • the dual-energy water heater only relies on the air source heat pump to heat the water tank, while the gas directly heats the water in the water pipe.
  • Figure 3 shows the dual-energy water heater. Schematic.
  • the subsequent change information of the current environmental information can be obtained first, the heating time of the air source heat pump can be determined according to the subsequent change information, and the heating time of the air source heat pump can be controlled. Determine the heating time for heating.
  • the gas heating is controlled.
  • the current heating method to save energy costs is to use the air source heat pump for heating
  • the gas and the air source heat pump are controlled to be heated together, so that the current heating method that saves energy costs is the use of air source heat pump heating
  • the air source heat pump should be activated at the same time as possible to achieve maximum energy savings and reduce users. energy costs.
  • controlling the gas and the air source heat pump to heat together can control the gas heating to directly supply water, and control the air source heat pump to heat the water tank until the current temperature of the water tank meets the set temperature range.
  • heating of the air source heat pump is controlled by the following method: obtaining subsequent change information of the current environmental information, determining the heating time of the air source heat pump according to the subsequent change information, and controlling the air source heat pump to perform the heating operation at the determined heating time. heating.
  • the user's historical water consumption information can also be obtained, and the user's subsequent water consumption information can be determined according to the historical water consumption information, so as to determine the user's subsequent water consumption information according to the subsequent change information and the subsequent water consumption information. the heating time of the air source heat pump.
  • the controller of the dual-energy water heater using air source heat pump heating and gas heating determines the heating method that saves energy costs in air source heat pump heating and gas heating according to current environmental information, electricity price, and gas price.
  • the current water tank temperature, the energy-saving heating method, and the current water usage status control the dual-energy water heater. Under the condition of ensuring the temperature of the water tank, it can maximize the energy saving and reduce the energy cost of the user.
  • FIG. 4 shows a schematic flowchart of another dual-energy water heater control method provided by the present disclosure, and this embodiment is refined based on the foregoing embodiment.
  • the control method of the dual-energy water heater described in this embodiment includes:
  • step S410 according to the current environmental information, the price of electricity, and the price of gas, it is determined to use air source heat pump heating and to use gas heating to save energy costs.
  • the environmental information includes at least ambient temperature and ambient humidity.
  • step S420 the current temperature drop rate of the water tank is determined, if the temperature drop rate is greater than a predetermined rate threshold, it is determined that the current water use state is a water use state, and if the temperature drop rate is equal to or less than the predetermined rate threshold, it is determined that the current The state of water use is the state of not using water.
  • step S430 the dual-energy water heater is controlled according to the current water tank temperature, the heating method that saves energy costs, and the current water usage status.
  • the purpose of controlling the dual-energy water heater in this embodiment is to minimize the cost of gas and electricity as much as possible on the premise of satisfying the user's use, so as to save the cost for the user.
  • the heating method with a fixed temperature range and the current energy-saving heating method is to use the air source heat pump heating, then the air source heat pump heating is controlled, that is, when the water is not used, the heating efficiency does not need to be considered, and only the energy efficiency ratio of the two heating methods is considered. Heating with a higher energy efficiency ratio.
  • the gas heating is controlled. That is, the heating efficiency needs to be taken into account when the water is currently in use, and the heating efficiency of gas is much higher than that of the air source heat pump.
  • the current heating method to save energy costs is to use air source heat pump heating, control the gas and air source heat pump to heat together. That is, although the current use of air source heat pump heating saves energy costs, and the current water tank temperature does not meet the demand, the water tank needs to be heated, but the user is using a lot of water at the same time, so at this time, gas and air source heat pump are used for heating together, on the one hand, to meet the needs of users Water needs to avoid delays, and on the other hand heat the tank in a more economical way to save money.
  • controlling the gas and the air source heat pump to heat together includes: controlling the gas heating to directly supply hot water, and controlling the air source heat pump to heat the water tank until the current temperature of the water tank meets the set temperature range.
  • the heating energy efficiency ratio of the air source heat pump is greatly affected by the environment, especially by the temperature.
  • the energy efficiency ratio at noon is higher than at other times.
  • An exemplary method may include: acquiring subsequent change information of current environmental information, determining a heating time of the air source heat pump according to the subsequent change information, and controlling the air source heat pump to perform heating at the determined heating time.
  • the user's historical water consumption information may also be obtained, and the user's subsequent water consumption information may be determined according to the historical water consumption information; The heating time of the air source heat pump.
  • the method for controlling the dual-energy water heater according to the current water tank temperature, the energy-saving heating method, and the current water consumption state is also related to the structure of the dual-energy water heater.
  • the heating method of gas is very different.
  • a dual-energy water heater can be heated by controlling the gas ignition to heat the water tank.
  • the output of the water pump can be controlled, the circulating water pump can be started, and the gas ignition can be controlled to the water tank.
  • FIG 2 shows a schematic diagram of a dual-energy water heater with a gas and air source heat pump to heat a water tank.
  • the dual-energy water heater only relies on the air source heat pump to heat the water tank, while the gas directly heats the water in the water pipe.
  • Figure 3 shows this.
  • the control method is described below by taking the structures of the dual-energy water heater shown in FIG. 2 and FIG. 3 as an example.
  • the water tank is heated by a combination of gas and air source heat pumps.
  • the schematic diagram of the structure of this type of gas is shown in Figure 2.
  • the system control logic of the water heater is to control the start and stop of the water flow through the water pump to realize the linkage of the heat source. Switch, replace the heat coil in the water tank, and the gas heats the water tank through the heat exchange coil.
  • the customer's water demand temperature T1 this temperature is input by the owner: the primary products are not divided into subdivided needs such as bathing, hand washing, kitchen washing, etc.
  • the set temperature range is 35°C ⁇ 55°C. This temperature is finally reflected as the temperature in the heat pump water tank;
  • the operating temperature T2 is the heat pump energy cost savings based on the temperature, generally in the range of -2°C to 8°C.
  • T3 of the ambient air which is the temperature for determining the energy cost of the heat pump.
  • the temperature is delayed, that is, there is a 5°C temperature difference delay when the water is in use, and a 10°C temperature difference delay when the gas heating is not in the water state.
  • the 24-hour heat preservation performance of the heat pump heat preservation water tank drops by 8°C.
  • the heating time should be extended as much as possible from the night to the daytime when the ambient temperature is high, and the heat pump heating time should be fully increased; even suddenly at night A large amount of water is used.
  • the temperature reaches a difference of 10 °C in a short time, the gas fire exhaust power can quickly increase the water temperature without affecting the use.
  • the dual-energy water heater shown in Figure 2 uses gas ignition to heat the water tank, in the dual-energy water heater of this structure, the original terminal of the air source heat pump unit to control the electric auxiliary heat is now changed to the terminal to control the circulating water pump, the circulating water pump starts, and the gas water flows Pass, automatic ignition heating.
  • the dual-energy water heater is controlled according to the current temperature of the water tank, the heating mode that saves energy costs, and the current water consumption state, and the following methods may be used:
  • the current heating method to save energy costs is to use air source heat pump heating, control the circulating water pump to start, control the gas ignition to heat the water tank, and at the same time Control air source heat pump heating to reduce gas heating time;
  • the current state of water use is water use
  • the current water tank temperature does not meet the set temperature range
  • the current heating method to save energy costs is to use gas heating, control the circulating water pump to start, control the gas ignition to heat the water tank, and control the air source Heat pump does not start;
  • the control circulating water pump will not start, and the control gas and air source heat pumps will not start;
  • the current heating method to save energy costs is to use air source heat pump heating, control the circulating water pump not to start, control the gas not to start, and simultaneously control Air source heat pump heating;
  • the current heating method to save energy costs is to use gas heating, control the circulating water pump to start, control the gas ignition to heat the water tank, and at the same time control Air source heat pump does not start;
  • the control circulating water pump will not start, and the gas and air source heat pumps will not be started.
  • the air source heat pump and the gas boiler are used to supply warm water.
  • the schematic diagram of this type of gas is shown in Figure 3.
  • the system control logic of the water heater is to control the opening and closing of the water circuit through the electric valve to realize the linkage switching of the heat source. The way.
  • the heat pump heats at the same time, and when the water temperature reaches the water temperature, it switches to the water tank for water supply to minimize gas consumption;
  • the temperature is delayed, that is, there is a 5°C temperature difference delay when the water is being used;
  • the heat source when switching from gas startup to heat pump startup, the heat source will still give priority to gas startup if the heat pump startup conditions are met with a delay of one hour (adjustable). Rapid consumption and frequent switching back and forth);
  • the original terminal of the air source heat pump unit to control the electric auxiliary heat is now the terminal to control the electric valve; Source heat pump heating.)
  • the electric valve outputs, the waterway is tangential to the gas, the water flows and the gas is ignited and heated, and hot water is directly output; the electric valve does not output, the waterway is tangential to the water tank, and the water tank supplies hot water.
  • the dual-energy water heater shown in Figure 3 uses gas to directly heat and supply hot water
  • the original terminal of the air source heat pump unit to control the electric auxiliary heat is now the terminal to control the electric valve;
  • the cold water electric valve is normally open for cold water
  • the gas cold water electric valve is normally closed for cold water, that is: the initial system defaults to use the air source heat pump for heating.
  • the electric valve output the water path is tangential to the gas, the water flows and the gas is ignited and heated, and the hot water is directly output;
  • the electric valve does not output, the water channel is tangential to the water tank, and the water tank supplies hot water.
  • the dual-energy water heater is controlled according to the current temperature of the water tank, the heating mode that saves energy costs, and the current water consumption state, and the following methods may be used:
  • the current heating method to save energy costs is to use air source heat pump heating, control the output of the electric valve to make the water channel tangential to the gas, and control the gas ignition to directly Supply hot water and control air source heat pump heating at the same time;
  • the current heating method to save energy costs is to use gas heating, control the output of the electric valve to make the water channel tangential to the gas, and control the gas ignition to directly supply heating water, and at the same time control the air source heat pump not to work;
  • the electric valve is controlled to not output to make the water flow tangentially to the water tank until the water tank temperature does not meet the set temperature range;
  • the current heating method to save energy costs is to use air source heat pump heating, control the output of the electric valve to make the water flow tangential to the gas, and control the gas ignition Directly supply hot water and control air source heat pump heating at the same time;
  • the current heating method to save energy costs is to use gas heating, control the output of the electric valve to make the water channel tangential to the gas, and control the gas ignition to directly supply the gas. hot water, and at the same time control the air source heat pump not to work;
  • the electric valve is controlled to not output to make the water channel tangentially supply water to the water tank until the water tank temperature does not meet the set temperature range.
  • control methods of the dual-energy water heaters of the above two structures can maximize the energy cost saving and reduce the energy cost of the user under the condition that the user can use the hot water in time.
  • FIG. 5 shows a schematic structural diagram of a control device for a dual-energy water heater provided in this embodiment.
  • the device embodiment is the same as that shown in FIGS. 1 to 4 .
  • the apparatus can be applied to various electronic devices.
  • the dual-energy water heater described in this embodiment adopts air source heat pump heating and gas heating, and the device includes an energy cost saving mode determination unit 510 and a heating control unit 520 .
  • the energy cost saving method determination unit 510 is configured to determine, according to current environmental information, electricity price, and gas price, a heating method that uses air source heat pump heating and gas heating to save energy cost.
  • the heating control unit 520 is configured to control the dual-energy water heater according to the current water tank temperature, the heating method that saves energy costs, and the current water usage status.
  • the apparatus further includes a water usage status determination unit (not shown in FIG. 5 ), the water usage status determination unit being configured to, according to the current water tank temperature, the energy cost saving heating Before controlling the dual-energy water heater: determine the current temperature drop rate of the water tank, if the temperature drop rate is greater than a predetermined rate threshold, then determine that the current water use state is a water use state, if the temperature drops If the rate is equal to or less than the predetermined rate threshold, it is determined that the current water use state is a non-use water state.
  • the heating control unit 520 is configured to, if the current water use state is not in water use state, the current water tank temperature does not meet the set temperature range, and the current heating method to save energy costs is to use air source heat pump heating, control the air source heat pump heating.
  • the heating control unit 520 is configured to control the circulating water pump not to use air source heat pump if the current water use state is not in water use state, the current water tank temperature does not meet the set temperature range, and the current heating method to save energy costs is to use air source heat pump heating. Start, control the gas not to start, and control the air source heat pump heating at the same time.
  • the heating control unit 520 is configured to control the circulating water pump to start if the current water use state is the water use state, the current water tank temperature does not meet the set temperature range, and the current heating method to save energy costs is to use air source heat pump heating, Control the gas ignition to heat the water tank, and control the air source heat pump heating at the same time to reduce the gas heating time.
  • the heating control unit 520 is configured to, if the current water use state is not in water use state, the current water tank temperature does not meet the set temperature range, and the current heating method to save energy costs is to use air Source heat pump heating, control the output of the electric valve to make the water flow tangential to the gas, control the ignition of the gas to directly supply hot water, and control the air source heat pump heating at the same time.
  • the heating control unit 520 is configured to control the output of the electric valve to control the output of the electric valve if the current water use state is the water use state, the current water tank temperature does not meet the set temperature range, and the current heating method to save energy costs is to use air source heat pump heating. Make the water channel tangential to the gas, control the gas ignition to supply hot water directly, and control the air source heat pump heating at the same time.
  • the heating control unit 520 is configured to, if the current water use state is not in water use state, the current water tank temperature does not meet the set temperature range, and the current heating method to save energy costs is to use gas heating, the gas heating is controlled.
  • the heating control unit 520 is configured to control the circulating water pump to start, control the circulating water pump if the current water usage state is not in water usage state, the current water tank temperature does not meet the set temperature range, and the current heating method for saving energy costs is to use gas heating.
  • the gas ignition heats the water tank, and at the same time controls the air source heat pump not to start.
  • the heating control unit 520 is configured to control the circulating water pump to start and control the gas heating if the current water use state is the water use state, the current water tank temperature does not meet the set temperature range, and the current heating method that saves energy costs is to use gas heating. Ignition to heat the water tank, and control the air source heat pump not to start.
  • the heating control unit 520 is configured to control the output of the electric valve to make the electric valve output if the current water usage state is not in the water usage state, the current water tank temperature does not meet the set temperature range, and the current heating method to save energy costs is to use gas heating.
  • the water channel is tangential to the gas, and the gas ignition is controlled to supply hot water directly, and at the same time, the air source heat pump is controlled to not work.
  • the heating control unit 520 is configured to control the output of the electric valve to make the water circuit if the current water use state is the water use state, the current water tank temperature does not meet the set temperature range, and the current heating method to save energy costs is to use gas heating. Tangential gas, control gas ignition to supply hot water directly, and control the air source heat pump to not work at the same time.
  • the heating control unit 520 is configured to, if the current water tank temperature satisfies the set temperature range and the current heating method for saving energy costs is to use gas heating, control the circulating water pump not to start, and control Neither the gas nor the air source heat pump will start.
  • the heating control unit 520 is configured to, if the current water tank temperature satisfies the set temperature range, control the electric valve not to output so that the water channel supplies water tangentially to the water tank until the water tank temperature does not meet the set temperature range Set the temperature range.
  • the heating control unit 520 is configured to, if the current water use state is the water use state, the current water tank temperature does not meet the set temperature range, and the current heating method to save energy costs is to use an air source Heat pump heating, control the gas and air source heat pump to heat together.
  • the heating control unit 520 controls the gas and the air source heat pump to heat together by controlling the gas heating to directly supply hot water, and controlling the air source heat pump to heat the water tank until the current water tank temperature meets the set temperature range.
  • the heating control unit 520 controls the heating of the air source heat pump by: acquiring subsequent change information of current environmental information; determining the heating time of the air source heat pump according to the subsequent change information ; Control the air source heat pump to heat at the determined heating time.
  • the device further includes a water use state determination unit (not shown in FIG. 5 ), the water use state determination unit is configured to obtain the user's historical water use information before determining the heating time of the air source heat pump, according to the The historical water consumption information determines the user's subsequent water consumption information;
  • the heating control unit 520 determines the heating time of the air source heat pump according to the subsequent change information in the following manner: determining the heating time of the air source heat pump according to the subsequent change information and the subsequent water use information.
  • the environmental information includes at least ambient temperature and ambient humidity.
  • the control device for a dual-energy water heater provided in this embodiment can execute the method for a dual-energy water heater provided by the method embodiment of the present disclosure, and has functional modules corresponding to the execution of the method.
  • Terminal devices in the present disclosure may include, but are not limited to, such as mobile phones, notebook computers, digital broadcast receivers, Personal Digital Assistants (PDAs), PADs (Tablets), Portable Media Players (PMPs) ), mobile terminals such as in-vehicle terminals (eg, in-vehicle navigation terminals), etc., and stationary terminals such as digital televisions (TVs), desktop computers, and the like.
  • PDAs Personal Digital Assistants
  • PADs Tablets
  • PMPs Portable Media Players
  • mobile terminals such as in-vehicle terminals (eg, in-vehicle navigation terminals), etc.
  • stationary terminals such as digital televisions (TVs), desktop computers, and the like.
  • TVs digital televisions
  • the electronic device 600 may include a processing device (such as a central processing unit, a graphics processor, etc.) 601, which may be stored in a read only memory (Read Only Memory, ROM) 602 according to a program or from a storage device 608
  • ROM Read Only Memory
  • RAM random access memory
  • various programs and data required for the operation of the electronic device 600 are also stored.
  • the processing device 601, the ROM 602, and the RAM 603 are connected to each other through a bus 604.
  • An Input/Output (I/O) interface 605 is also connected to the bus 604 .
  • I/O interface 605 input devices 606 including, for example, a touch screen, touch pad, keyboard, mouse, camera, microphone, accelerometer, gyroscope, etc.; including, for example, a Liquid Crystal Display (LCD) Output device 607 , speaker, vibrator, etc.; storage device 608 including, for example, magnetic tape, hard disk, etc.; and communication device 609 .
  • Communication means 609 may allow electronic device 600 to communicate wirelessly or by wire with other devices to exchange data. While FIG. 6 shows electronic device 600 having various means, it should be understood that not all of the illustrated means are required to be implemented or provided. More or fewer devices may alternatively be implemented or provided.
  • embodiments of the present disclosure include a computer program product comprising a computer program carried on a computer-readable medium, the computer program containing program code for performing the method illustrated in the flowchart.
  • the computer program may be downloaded and installed from the network via the communication device 609, or from the storage device 608, or from the ROM 602.
  • the processing device 601 When the computer program is executed by the processing device 601, the above-described functions defined in the method of the present disclosure are performed.
  • the computer-readable medium mentioned above in the present disclosure may be a computer-readable signal medium or a computer-readable storage medium, or any combination of the above two.
  • the computer-readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus or device, or a combination of any of the above.
  • Computer readable storage media may include, but are not limited to, electrical connections having at least one wire, portable computer disks, hard disks, random access memory (RAM), read only memory (ROM), erasable programmable Read memory (Erasable Programmable Read-Only Memory, EPROM or flash memory), optical fiber, portable compact disk read only memory (Compact Disc-Read Only Memory, CD-ROM), optical storage device, magnetic storage device, or any of the above suitable combination.
  • a computer-readable storage medium may be any tangible medium that contains or stores a program that can be used by or in conjunction with an instruction execution system, apparatus, or device.
  • a computer-readable signal medium may include a data signal propagated in baseband or as part of a carrier wave with computer-readable program code embodied thereon. Such propagated data signals may take a variety of forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • a computer-readable signal medium can also be any computer-readable medium other than a computer-readable storage medium that can transmit, propagate, or transport the program for use by or in connection with the instruction execution system, apparatus, or device .
  • the program code embodied on the computer readable medium may be transmitted by any suitable medium, including but not limited to: electric wire, optical fiber cable, radio frequency (RF), etc., or any suitable combination of the above.
  • the above-mentioned computer-readable medium may be included in the above-mentioned electronic device; or may exist alone without being assembled into the electronic device.
  • the above-mentioned computer-readable medium carries at least one program, and when the above-mentioned at least one program is executed by the electronic device, the electronic device: according to current environmental information, electricity price, and gas price, determine to use air source heat pump heating and use gas A heating method that saves energy costs in heating; the dual-energy water heater is controlled according to the current water tank temperature, the heating method that saves energy costs, and the current state of water use.
  • Computer program code for carrying out operations of the present disclosure may be written in one or more programming languages, including object-oriented programming languages—such as Java, Smalltalk, C++, but also conventional Procedural programming language - such as the "C" language or similar programming language.
  • the program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer, or entirely on the remote computer or server.
  • the remote computer may be connected to the user's computer through any kind of network, including a Local Area Network (LAN) or Wide Area Network (WAN), or may be connected to an external computer (eg, using the Internet service provider to connect via the Internet).
  • LAN Local Area Network
  • WAN Wide Area Network
  • each block in the flowchart or block diagrams may represent a module, segment, or portion of code that contains at least one configurable function for implementing the specified logical function. Execute the instruction.
  • the functions noted in the blocks may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved.
  • each block of the block diagrams and/or flowchart illustrations, and combinations of blocks in the block diagrams and/or flowchart illustrations can be implemented in dedicated hardware-based systems that perform the specified functions or operations , or can be implemented in a combination of dedicated hardware and computer instructions.
  • the units described in the present disclosure can be implemented in software or hardware. Wherein, the name of the unit does not constitute a limitation of the unit itself under certain circumstances, for example, the first obtaining unit may also be described as "a unit that obtains at least two Internet Protocol addresses".

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

一种双能源热水器的控制方法、装置、电子设备、及存储介质,该双能源热水器采用空气源热泵加热和燃气加热,该方法包括:根据当前环境信息、电费价格、以及燃气费价格,确定采用空气源热泵加热和采用燃气加热中节省能源费用的加热方式;根据当前水箱温度、节省能源费用的加热方式、以及当前用水状态对双能源热水器进行控制。

Description

双能源热水器的控制方法、装置、电子设备、及存储介质
本公开要求在2020年8月26日提交中国专利局、申请号为202010870498.2的中国专利申请的优先权,该申请的全部内容通过引用结合在本公开中。
技术领域
本公开涉及智能家电技术领域,例如涉及一种双能源热水器的控制方法、装置、电子设备、及存储介质。
背景技术
热水器是人们日常生活中常用的家用电器,根据使用能源的不同,可分为燃气热水器、电热水器、空气能热水器、太阳能热水器等单一能源热水器。随着经济的发展和人们生活水平的提高,支持使用两种能源的双能源热水器的使用也越来越广泛。
双能源热水器,通常着眼于如何快速加热并长时间供应热水等提升用户体验方面的改进,而在节省能源费用方面考虑较少,目前还没有较好的节省能源费用的方法。
发明内容
本公开提供一种双能源热水器的控制方法、装置、电子设备、及存储介质,以实现最大化节省能源费用。
在本公开的第一方面,本公开提供了一种双能源热水器的控制方法,所述双能源热水器采用空气源热泵加热和燃气加热,所述方法包括:
根据当前环境信息、电费价格、以及燃气费价格确定采用空气源热泵加热和采用燃气加热中节省能源费用的加热方式;
根据当前水箱温度、所述节省能源费用的加热方式、以及当前用水状态对所述双能源热水器进行控制。
在本公开的第二方面,本公开还提供了一种双能源热水器的控制装置,所述双能源热水器采用空气源热泵加热和燃气加热,所述装置包括:
节省能源费用方式确定单元,设置为根据当前环境信息、电费价格、以及燃气费价格确定采用空气源热泵加热和采用燃气加热中节省能源费用的加热方式;
加热控制单元,设置为根据当前水箱温度、所述节省能源费用的加热方式、以及当前用水状态对所述双能源热水器进行控制。
在本公开的第三方面,提供了一种电子设备。该电子设备包括:处理器;以及存储器,设置为存储可执行指令,所述可执行指令在被所述处理器执行时使得所述电子设备执行第一方面中的方法。
在本公开的第四方面,提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现第一方面中的方法。
附图说明
图1是根据本公开提供的一种双能源热水器的控制方法的流程示意图;
图2是根据本公开提供的一种双能源热水器的结构示意图;
图3是根据本公开提供的另一种双能源热水器的结构示意图;
图4是根据本公开提供的另一种双能源热水器的控制方法的流程示意图;
图5是根据本公开提供的一种双能源热水器的控制装置的结构示意图;
图6示出了适于用来实现本公开的电子设备的结构示意图。
具体实施方式
下面将结合附图对本公开的技术方案作详细描述。
需要说明的是,本公开中术语“系统”和“网络”在本文中常被可互换使用。本公开中提到的“和/或”是指包括一个或更多个相关所列项目的任何和所有组合。本公开的说明书和权利要求书及附图中的术语“第一”、“第二”等是用于区别不同 对象,而不是用于限定特定顺序。
还需要说明是,本公开中下述各个实施例可以单独执行,各个实施例之间也可以相互结合执行,本公开对此不作限制。
本公开实施方式中的多个装置之间所交互的消息或者信息的名称仅用于说明性的目的,而并不是用于对这些消息或信息的范围进行限制。
下面结合附图并通过具体实施方式来说明本公开的技术方案。
图1示出了本公开提供的一种双能源热水器的控制方法的流程示意图,本实施例可适用于采用空气源热泵加热和燃气加热的双能源热水器选择加热方式的情况,该方法可以由热水器控制器中的双能源热水器的控制装置来执行,如图1所示,本实施例所述的双能源热水器的控制方法包括:
在步骤S110中,根据当前环境信息、电费价格、以及燃气费价格,确定采用空气源热泵加热和采用燃气加热中节省能源费用的加热方式。
所述环境信息包括能够影响空气源热泵加热效率的信息,例如包括环境温度、环境湿度、环境气压等。空气源热泵的能效比与当前环境信息相关,例如与当前空气的湿度、湿度、以及气压等相关,一般来说空气温度越大,空气源热泵的能效比越高。而湿度对空气源热泵的影响与当前温度有关,一般来说,温度较高的环境下,湿度越大空气源热泵的能效比越高。而在温度较低时(例如0度),湿度越大空气源热泵越容易结霜,空气源热泵的能效比也就越低。
根据当前环境信息、电费价格、以及燃气费价格,确定当前双能源热水器采用空气源热泵加热和采用燃气加热中节省能源费用的加热方式,可确定双能源热水器采用空气源热泵在当前环境下对水加热的能效比(Coefficient Of Performance,COP),以及确定双能源热水器采用燃气对水加热的能效比COP,再结合当地电费价格和燃气价格,确定当前节省能源费用的加热方式,即确定达到同样的加热效果花费的费用更低的加热方式。
上述方法是一个比较精确的确定当前节省能源费用的加热方式的方法。为了提高计算效率,作为简化,还可采用如下方式:
由于一个地区一段时间内温度以外的信息变化不大,可以基于当前环境信息的湿度或湿度和气压等除温度以外的其他环境信息,再结合当地电费价格和燃气价格,确定当前条件下达到同样的加热效果且花费同样费用时的环境温度。
其中,采用燃气加热可选为采用燃气炉加热。由于采用燃气加热时,其能效比几乎不受温度影响,而采用空气源热泵加热时,能效比受环境温度影响极大,同等条件下,温度越高能效比越高,温度越低能效比越低。
因此,基于上述计算所确定的当前条件下达到同样的加热效果且花费同样费用时的环境温度可作为空气源热泵的节省能源费用判定温度。可以粗略确定,若当前环境温度高于所述空气源热泵的节省能源费用判定温度时,采用空气源热泵加热更节省能源费用,若当前环境温度低于所述空气源热泵的节省能源费用判定温度时,采用燃气加热更节省能源费用。
在步骤S120中,根据当前水箱温度、所述节省能源费用的加热方式、以及当前用水状态对所述双能源热水器进行控制。
其中,水箱温度可采用温度传感器获取,当前用水状态可采用多种方法获取,例如可根据当前所有连接的用水器件(例如水龙头、花洒、洗衣机、洗碗机等)是否正在使用热水。又如可确定水箱当前的温度下降速率,若所述温度下降速率大于预定速率阈值,则确定当前用水状态为正在用水状态,若所述温度下降速率等于或小于预定速率阈值,则确定当前用水状态为未在用水状态。后一种方式对于用户少量使用热水和不使用热水时判定为未在用水状态,对于用户大量使用热水时判定为正在用水状态。这种方式能够避免判断当前用水状态过于敏感,避免频繁地对加热方式进行更改。例如生活中只是通过水龙头使用极少量的热水,此时水箱已存的水完全够用,不会出现热水供应不及时的情况,此时虽然是在热水使用状态,应当视为未在用水状态。
本实施例根据当前水箱温度、所述节省能源费用的加热方式、以及当前用水状态对所述双能源热水器进行控制的原则是,尽可能使用更节省能源费用的加热方式进行加热,同时若用户大量用水时,能够及时供应热水避免用户等待。
例如,在当前水箱温度不满足设定温度范围时,若当前为未在用水状态,则采用空气源热泵加热和采用燃气加热中节省能源费用的加热方式加热。即:若当前用水状态为未在用水状态、当前水箱温度不满足设定温度范围、且当前节省能源费用的加热方式为采用空气源热泵加热,则控制所述空气源热泵加热。若当前用水状态为未在用水状态、当前水箱温度不满足设定温度范围、且当前节省能源费用的加热方式为采用燃气加热,则控制所述燃气加热。
其中,控制所述燃气加热,可采用多种方式,例如,可采用控制所述燃气点火给水箱加热的方式进行加热,示例性的可通过控制水泵输出,循环水泵启动,控制燃气点火给水箱加热,图2示出了一种燃气和空气源热泵一起给水箱加热的双能源热水器的示意图。又如,还可采用燃气加热直接供水的方式,示例性地,该双能源热水器仅依靠空气源热泵对水箱加热,而燃气直接对水管的水加热,图3示出了这种双能源热水器的示意图。
控制所述空气源热泵加热也可采用多种方式,例如可先获取当前环境信息的后续变化信息,根据所述后续变化信息确定所述空气源热泵的加热时间,控制所述空气源热泵在所确定的加热时间进行加热。
示例性地,若当前用水状态为正在用水状态、且当前节省能源费用的加热方式为采用燃气加热,则控制所述燃气加热。
又如,若当前用水状态为正在用水状态、当前水箱温度不满足设定温度范围、且当前节省能源费用的加热方式为采用空气源热泵加热,则控制所述燃气和空气源热泵一起加热,能够在当前节省能源费用的加热方式为采用空气源热泵加热的情况下,在燃气加热快速响应用户当前需求的前提下,尽可能同时启用空气源热泵一起加热,以实现最大化节省能源费用,减少用户的能源费用支出。其中,控制所述燃气和空气源热泵一起加热,可控制燃气加热直接供水,并控制所述空气源热泵给水箱加热直至当前水箱温度满足设定温度范围。
若控制所述空气源热泵加热通过如下方法:获取当前环境信息的后续变化信息,根据所述后续变化信息确定所述空气源热泵的加热时间,控制所述空气 源热泵在所确定的加热时间进行加热。
则在确定所述空气源热泵的加热时间之前,还可获取用户的历史用水信息,根据所述历史用水信息确定用户的后续用水信息,以根据所述后续变化信息和所述后续用水信息确定所述空气源热泵的加热时间。
本实施例通过采用空气源热泵加热和燃气加热的双能源热水器的控制器根据当前环境信息、电费价格、以及燃气费价格确定采用空气源热泵加热和采用燃气加热中节省能源费用的加热方式,根据当前水箱温度、所述节省能源费用的加热方式、以及当前用水状态对所述双能源热水器进行控制。能够在保证水箱温度的情况下,实现最大化节省能源费用,减少用户的能源费用支出。
图4示出了本公开提供的另一种双能源热水器的控制方法的流程示意图,本实施例以前述实施例为基础,进行了细化。如图4所示,本实施例所述的双能源热水器的控制方法包括:
在步骤S410中,根据当前环境信息、电费价格、以及燃气费价格确定采用空气源热泵加热和采用燃气加热中节省能源费用的加热方式。
其中所述环境信息至少包括环境温度和环境湿度。
在步骤S420中,确定水箱当前的温度下降速率,若所述温度下降速率大于预定速率阈值,则确定当前用水状态为正在用水状态,若所述温度下降速率等于或小于预定速率阈值,则确定当前用水状态为未在用水状态。
在步骤S430中,根据当前水箱温度、所述节省能源费用的加热方式、以及当前用水状态对所述双能源热水器进行控制。
本实施例对所述双能源热水器进行控制的目的在于在满足用户使用的前提下,尽可能使燃气和电的花费最小,以为用户节省费用。根据当前水箱温度、所述节省能源费用的加热方式、以及当前用水状态对所述双能源热水器进行控制的方法包括多种,例如,若当前用水状态为未在用水状态、当前水箱温度不满足设定温度范围、且当前节省能源费用的加热方式为采用空气源热泵加热, 则控制所述空气源热泵加热,即未用水状态下,无需考虑加热效率,仅考虑两种加热方式的能效比,采用能效比更高的加热方式加热。
又如,若当前用水状态为正在用水状态、且当前节省能源费用的加热方式为采用燃气加热,则控制所述燃气加热。即当前正在用水状态,需要考虑到加热效率,而燃气加热效率比空气源热泵加热效率高得多,若当前节省能源费用的加热方式为采用燃气加热,则当前采用燃气加热方式加热。
再如,若当前用水状态为正在用水状态、当前水箱温度不满足设定温度范围、且当前节省能源费用的加热方式为采用空气源热泵加热,则控制所述燃气和空气源热泵一起加热。即虽然当前采用采用空气源热泵加热更节省能源费用,而且当前水箱温度不满足需求,需要对水箱加热,但是用户同时在大量用水,因此此时采用燃气和空气源热泵一起加热,一方面满足用户用水需要避免时延,另一方面采用更经济的方式给水箱加热以节省费用。
其中,控制所述燃气和空气源热泵一起加热包括:控制燃气加热直接供热水,并控制所述空气源热泵给水箱加热直至当前水箱温度满足设定温度范围。
需要说明的是,为了节省费用,由于空气源热泵加热能效比受环境影响极大,尤其受温度影响极大,例如,一般来说半夜时的温度和正午时候的温差极大,因此空气源热泵在正午时的能效比高于其他时间。
鉴于上述原因,即使确定当前采用空气源热泵加热更经济,若根据历史数据或者天气预报确定后续(例如1小时后)温度将会升高,而根据用户的使用习惯确定1小时后再加热不影响用户使用,则可将加热时间延迟到一小时之后。示例性的方法可包括:获取当前环境信息的后续变化信息,根据所述后续变化信息确定所述空气源热泵的加热时间,控制所述空气源热泵在所确定的加热时间进行加热。示例性地,在确定所述空气源热泵的加热时间之前还可获取用户的历史用水信息,根据所述历史用水信息确定用户的后续用水信息;根据所述后续变化信息和所述后续用水信息确定所述空气源热泵的加热时间。
需要说明的是,本步骤根据当前水箱温度、所述节省能源费用的加热方式、 以及当前用水状态对所述双能源热水器进行控制的方法还与双能源热水器的结构相关,例如,双能源热水器中燃气的加热方式就有很大区别,例如,一种双能源热水器可采用控制所述燃气点火给水箱加热的方式进行加热,示例性的可通过控制水泵输出,循环水泵启动,控制燃气点火给水箱加热,图2示出了一种燃气和空气源热泵一起给水箱加热的双能源热水器的示意图。又如,还有一种双能源热水器是采用燃气加热直接供水的方式,示例性地,该双能源热水器仅依靠空气源热泵对水箱加热,而燃气直接对水管的水加热,图3示出了这种双能源热水器的示意图。
下面分别以图2和图3所示的双能源热水器的结构为例说明控制方法。
如图2所示,采用燃气和空气源热泵二合一的方式对水箱加热,该类型的燃气的结构示意图如图2所示,热水器的系统控制逻辑是,通过水泵控制水流启停实现热源联动切换,在水箱内置换热盘管,燃气通过换热盘管加热水箱。
首先进行温度设置:客户用水需求温度T1,此温度业主输入设置:初级产品不分洗澡、洗手洗脸、厨房洗刷等细分需求,综合考虑设定温度范围为35℃~55℃。此温度最终体现为热泵水箱内温度;
计算热泵节省能源费用运行温度T2,一般的热泵机的能效比COP在2.5左右,不同地区该数做不同。计算热泵节省能源费用运行温度T2为热泵节省能源费用依据温度,一般范围在-2℃~8℃。
获取环境空气即时温度T3,此温度为热泵节省能源费用判定温度。
获取热泵水箱顶部即时温度T4:此温度为热源启动/切换判定温度;
获取热泵水箱顶部/底部综合即时温度T5:此温度为热源退出加热判定温度。
计算水箱温度下降速率ΔT6,一般超过2℃/分钟说明用户在大量用水,此种情况可认定为用户正在用水状态。计算可依据热泵水箱底部即时温度T6,此温度结合时间,计算出下降速率2℃/分钟,用户正在用水状态判定依据。
热源切换模式及优先逻辑如下:
若正在用水状态:优先满足热水供应;
若未在用水状态:尽最大可能的利用热泵加热节省能源费用(因为一天之中环境气温是变化的,能效比COP也是变化的,而燃气时定值,在对用水不造成大影响的情况下,尽可能的减少燃气加热时间、延长热泵加热时间);
为避免热源的频繁切换和频繁启动,对温度进行延时,即:正在用水状态下有5℃的温差延时;在未在用水状态下燃气加热有10℃的温差延时。例如,热泵保温水箱24小时保温性能温降8℃,在小部分混水的情况下,尽可能的将加热时间从夜间拖至白天环境温度高的时候,充分加大热泵加热时间;即便突然夜间大水量用水,当温度短时间达到10℃差额时燃气火排功率大能够快速提升水温不影响使用。
由于图2所示的双能源热水器采用燃气点火给水箱加热,该结构的双能源热水器中,原先空气源热泵机组控制电辅热的端子现改为控制循环水泵的端子,循环水泵启动,燃气水流通过,自动点火加热。示例性地,一种节省能源费用的运行逻辑下,根据当前水箱温度、所述节省能源费用的加热方式、以及当前用水状态对所述双能源热水器进行控制,可采用如下方式:
若当前用水状态为正在用水状态、当前水箱温度不满足设定温度范围、且当前节省能源费用的加热方式为采用空气源热泵加热,则控制循环水泵启动,控制燃气点火给水箱进行加热,并同时控制空气源热泵加热,以减少燃气加热时间;
若当前用水状态为正在用水状态、当前水箱温度不满足设定温度范围、且当前节省能源费用的加热方式为采用燃气加热,则控制循环水泵启动,控制燃气点火给水箱进行加热,并控制空气源热泵不启动;
若当前用水状态为正在用水状态、且当前水箱温度满足设定温度范围,则控制循环水泵不启动,控制燃气和空气源热泵均不启动;
若当前用水状态为未在用水状态、当前水箱温度不满足设定温度范围、且当前节省能源费用的加热方式为采用空气源热泵加热,则控制循环水泵不启动,控制燃气不启动,并同时控制空气源热泵加热;
若当前用水状态为未在用水状态、当前水箱温度不满足设定温度范围、且当前节省能源费用的加热方式为采用燃气加热,则控制循环水泵启动,控制燃气点火给水箱进行加热,并同时控制空气源热泵不启动;
若当前用水状态为未在用水状态、当前水箱温度满足设定温度范围、且当前节省能源费用的加热方式为采用燃气加热,则控制循环水泵不启动,控制燃气和空气源热泵均不启动。
如图3所示,采用空气源热泵和燃气锅炉联动的方式供应温水,该类型的燃气的结构示意图如图3所示,热水器的系统控制逻辑是,通过电动阀控制水路通闭实现热源联动切换的方式。
热源切换模式及优先逻辑如下:
若正在用水状态:优先满足热水供应,燃气加热直接供水;节省能源费用状态时热泵同时加热,到水温后切换至水箱供水尽量减少燃气消耗量;
为避免热源的频繁切换和频繁启动,对温度进行延时,即:正在用水状态下有5℃的温差延时;
若正在用水状态:由燃气启动切换为热泵启动时,在满足热泵启动条件下延时一小时(可调)内热源仍优先启动燃气(热泵加热功率小速度慢,避免用水量过大导致热泵热量迅速消耗来回频繁切换);
若在正在用水状态下:由热泵启动切换为燃气启动时,在满足燃气启动条件下立即切换,无延时;
若未在用水状态:只利用热泵加热(因为一天之中环境气温是变化的,COP也是变化的,T3≥节省能源费用温度时,热泵加热;T3<节省能源费用温度时,热泵不加热,等待环境温度升高)。
原先空气源热泵机组控制电辅热的端子现改为控制电动阀的端子;一线两控(热泵冷水电动阀为冷水常开、燃气冷水电动阀为冷水常闭,即:初始系统默认优先利用空气源热泵加热。)电动阀输出,水路切向燃气,水流动燃气点火 加热,直接输出热水;电动阀不输出,水路切向水箱,水箱供应热水。
由于图3所示的双能源热水器采用燃气直接加热供应热水,该结构的双能源热水器中,原先空气源热泵机组控制电辅热的端子现改为控制电动阀的端子;一线两控(热泵冷水电动阀为冷水常开、燃气冷水电动阀为冷水常闭,即:初始系统默认优先利用空气源热泵加热。)电动阀输出,水路切向燃气,水流动燃气点火加热,直接输出热水;电动阀不输出,水路切向水箱,水箱供应热水。
示例性地,一种节省能源费用的运行逻辑下,根据当前水箱温度、所述节省能源费用的加热方式、以及当前用水状态对所述双能源热水器进行控制,可采用如下方式:
若当前用水状态为正在用水状态、当前水箱温度不满足设定温度范围、且当前节省能源费用的加热方式为采用空气源热泵加热,则控制电动阀输出以使水路切向燃气,控制燃气点火直接供热水,并同时控制空气源热泵加热;
若当前用水状态为正在用水状态、当前水箱温度不满足设定温度范围、且当前节省能源费用的加热方式为采用燃气加热,则控制电动阀输出以使水路切向燃气,控制燃气点火直接供热水,并同时控制空气源热泵不工作;
若当前用水状态为正在用水状态、且当前水箱温度满足设定温度范围,则控制电动阀不输出以使水路切向水箱供水,直至水箱温度不满足所述设定温度范围;
若当前用水状态为未在用水状态、当前水箱温度不满足设定温度范围、且当前节省能源费用的加热方式为采用空气源热泵加热,则控制电动阀输出以使水路切向燃气,控制燃气点火直接供热水,并同时控制空气源热泵加热;
若当前用水状态为未在用水状态、当前水箱温度不满足设定温度范围、且当前节省能源费用的加热方式为采用燃气加热,则控制电动阀输出以使水路切向燃气,控制燃气点火直接供热水,并同时控制空气源热泵不工作;
若当前用水状态为未在用水状态、且当前水箱温度满足设定温度范围,则控制电动阀不输出以使水路切向水箱供水,直至水箱温度不满足所述设定温度 范围。
上述两种结构的双能源热水器的控制方法,能够在保证用户及时使用热水的情况下,实现最大化节省能源费用,能够减少用户的能源费用支出。
本公开提供了一种双能源热水器的控制装置的一个实施例,图5示出了本实施例提供的一种双能源热水器的控制装置的结构示意图,该装置实施例与图1至图4所示的方法实施例相对应,该装置可以应用于各种电子设备中。如图5所示,本实施例所述的双能源热水器采用空气源热泵加热和燃气加热,所述装置包括节省能源费用方式确定单元510和加热控制单元520。
所述节省能源费用方式确定单元510被配置为,根据当前环境信息、电费价格、以及燃气费价格,确定采用空气源热泵加热和采用燃气加热中节省能源费用的加热方式。
所述加热控制单元520被配置为,根据当前水箱温度、所述节省能源费用的加热方式、以及当前用水状态对所述双能源热水器进行控制。
根据本公开的至少一个实施例,所述装置还包括用水状态确定单元(图5中未示出),所述用水状态确定单元被配置为,在根据当前水箱温度、所述节省能源费用的加热方式、以及当前用水状态对所述双能源热水器进行控制之前:确定水箱当前的温度下降速率,若所述温度下降速率大于预定速率阈值,则确定当前用水状态为正在用水状态,若所述温度下降速率等于或小于预定速率阈值,则确定当前用水状态为未在用水状态。
根据本公开的至少一个实施例,所述加热控制单元520被配置为,若当前用水状态为未在用水状态、当前水箱温度不满足设定温度范围、且当前节省能源费用的加热方式为采用空气源热泵加热,则控制所述空气源热泵加热。
所述加热控制单元520被配置为,若当前用水状态为未在用水状态、当前水箱温度不满足设定温度范围、且当前节省能源费用的加热方式为采用空气源热泵加热,则控制循环水泵不启动,控制燃气不启动,并同时控制空气源热泵 加热。
所述加热控制单元520被配置为,若当前用水状态为正在用水状态、当前水箱温度不满足设定温度范围、且当前节省能源费用的加热方式为采用空气源热泵加热,则控制循环水泵启动,控制燃气点火给水箱进行加热,并同时控制空气源热泵加热,以减少燃气加热时间。
根据本公开的至少一个实施例,所述加热控制单元520被配置为,若当前用水状态为未在用水状态、当前水箱温度不满足设定温度范围、且当前节省能源费用的加热方式为采用空气源热泵加热,则控制电动阀输出以使水路切向燃气,控制燃气点火直接供热水,并同时控制空气源热泵加热。
所述加热控制单元520被配置为,若当前用水状态为正在用水状态、当前水箱温度不满足设定温度范围、且当前节省能源费用的加热方式为采用空气源热泵加热,则控制电动阀输出以使水路切向燃气,控制燃气点火直接供热水,并同时控制空气源热泵加热。
根据本公开的至少一个实施例,所述加热控制单元520被配置为,若当前用水状态为未在用水状态、当前水箱温度不满足设定温度范围、且当前节省能源费用的加热方式为采用燃气加热,则控制所述燃气加热。
所述加热控制单元520被配置为,若当前用水状态为未在用水状态、当前水箱温度不满足设定温度范围、且当前节省能源费用的加热方式为采用燃气加热,则控制循环水泵启动,控制燃气点火给水箱进行加热,并同时控制空气源热泵不启动。
所述加热控制单元520被配置为,若当前用水状态为正在用水状态、当前水箱温度不满足设定温度范围、且当前节省能源费用的加热方式为采用燃气加热,则控制循环水泵启动,控制燃气点火给水箱进行加热,并控制空气源热泵不启动。
所述加热控制单元520被配置为,若当前用水状态为未在用水状态、当前水箱温度不满足设定温度范围、且当前节省能源费用的加热方式为采用燃气加 热,则控制电动阀输出以使水路切向燃气,控制燃气点火直接供热水,并同时控制空气源热泵不工作。
所述加热控制单元520被配置为,若当前用水状态为正在用水状态、当前水箱温度不满足设定温度范围、且当前节省能源费用的加热方式为采用燃气加热,则控制电动阀输出以使水路切向燃气,控制燃气点火直接供热水,并同时控制空气源热泵不工作。
根据本公开的至少一个实施例,所述加热控制单元520被配置为,若当前水箱温度满足设定温度范围、且当前节省能源费用的加热方式为采用燃气加热,则控制循环水泵不启动,控制燃气和空气源热泵均不启动。
根据本公开的至少一个实施例,所述加热控制单元520被配置为,若当前水箱温度满足设定温度范围,则控制电动阀不输出以使水路切向水箱供水,直至水箱温度不满足所述设定温度范围。
根据本公开的至少一个实施例,所述加热控制单元520被配置为,若当前用水状态为正在用水状态、当前水箱温度不满足设定温度范围、且当前节省能源费用的加热方式为采用空气源热泵加热,则控制所述燃气和空气源热泵一起加热。
所述加热控制单元520通过以下方式控制所述燃气和空气源热泵一起加热:控制燃气加热直接供热水,并控制所述空气源热泵给水箱加热直至当前水箱温度满足设定温度范围。
根据本公开的至少一个实施例,所述加热控制单元520通过以下方式控制所述空气源热泵加热:获取当前环境信息的后续变化信息;根据所述后续变化信息确定所述空气源热泵的加热时间;控制所述空气源热泵在所确定的加热时间进行加热。
所述装置还包括用水状态确定单元(图5中未示出),所述用水状态确定单元被配置为,在确定所述空气源热泵的加热时间之前,获取用户的历史用水信息,根据所述历史用水信息确定用户的后续用水信息;
所述加热控制单元520通过以下方式根据所述后续变化信息确定所述空气源热泵的加热时间:根据所述后续变化信息和所述后续用水信息确定所述空气源热泵的加热时间。
根据本公开的至少一个实施例,所述环境信息至少包括环境温度和环境湿度。
本实施例提供的双能源热水器的控制装置可执行本公开方法实施例所提供的双能源热水器的方法,具备执行方法相应的功能模块。
下面参考图6,其示出了适于用来实现本公开的电子设备600的结构示意图。本公开中的终端设备可以包括但不限于诸如移动电话、笔记本电脑、数字广播接收器、个人数字助理(Personal Digital Assistant,PDA)、PAD(平板电脑)、便携式多媒体播放器(Portable Media Player,PMP)、车载终端(例如车载导航终端)等等的移动终端以及诸如数字电视(Television,TV)、台式计算机等等的固定终端。图6示出的电子设备仅仅是一个示例,不应对本公开的功能和使用范围带来任何限制。
如图6所示,电子设备600可以包括处理装置(例如中央处理器、图形处理器等)601,其可以根据存储在只读存储器(Read Only Memory,ROM)602中的程序或者从存储装置608加载到随机访问存储器(Random Access Memory,RAM)603中的程序而执行各种适当的动作和处理。在RAM 603中,还存储有电子设备600操作所需的各种程序和数据。处理装置601、ROM 602以及RAM603通过总线604彼此相连。输入/输出(Input/Output,I/O)接口605也连接至总线604。
通常,以下装置可以连接至I/O接口605:包括例如触摸屏、触摸板、键盘、鼠标、摄像头、麦克风、加速度计、陀螺仪等的输入装置606;包括例如液晶显示器(Liquid Crystal Display,LCD)、扬声器、振动器等的输出装置607;包括例如磁带、硬盘等的存储装置608;以及通信装置609。通信装置609可以允许 电子设备600与其他设备进行无线或有线通信以交换数据。虽然图6示出了具有各种装置的电子设备600,但是应理解的是,并不要求实施或具备所有示出的装置。可以替代地实施或具备更多或更少的装置。
根据本公开的实施例,上文参考流程图描述的过程可以被实现为计算机软件程序。例如,本公开的实施例包括一种计算机程序产品,其包括承载在计算机可读介质上的计算机程序,该计算机程序包含用于执行流程图所示的方法的程序代码。在这样的实施例中,该计算机程序可以通过通信装置609从网络上被下载和安装,或者从存储装置608被安装,或者从ROM 602被安装。在该计算机程序被处理装置601执行时,执行本公开的方法中限定的上述功能。
需要说明的是,本公开上述的计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质或者是上述两者的任意组合。计算机可读存储介质例如可以是但不限于电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子可以包括但不限于:具有至少一个导线的电连接、便携式计算机磁盘、硬盘、随机访问存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器((Erasable Programmable Read-Only Memory,EPROM)或闪存)、光纤、便携式紧凑磁盘只读存储器(Compact Disc-Read Only Memory,CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本公开中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。而在本公开中,计算机可读信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读信号介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于:电线、光缆、射频(Radio  Frequency,RF)等等,或者上述的任意合适的组合。
上述计算机可读介质可以是上述电子设备中所包含的;也可以是单独存在,而未装配入该电子设备中。
上述计算机可读介质承载有至少一个程序,当上述至少一个程序被该电子设备执行时,使得该电子设备:根据当前环境信息、电费价格、以及燃气费价格,确定采用空气源热泵加热和采用燃气加热中节省能源费用的加热方式;根据当前水箱温度、所述节省能源费用的加热方式、以及当前用水状态对所述双能源热水器进行控制。
可以以一种或多种程序设计语言或其组合来编写用于执行本公开的操作的计算机程序代码,上述程序设计语言包括面向对象的程序设计语言—诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络包括局域网(Local Area Network,LAN)或广域网(Wide Area Network,WAN)连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
附图中的流程图和框图,图示了按照本公开各种实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段、或代码的一部分,该模块、程序段、或代码的一部分包含至少一个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个接连地表示的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或操作的专用的基于硬件的系统来实现,或者可以用专用硬件 与计算机指令的组合来实现。
描述于本公开中所涉及到的单元可以通过软件的方式实现,也可以通过硬件的方式来实现。其中,单元的名称在某种情况下并不构成对该单元本身的限定,例如,第一获取单元还可以被描述为“获取至少两个网际协议地址的单元”。

Claims (20)

  1. 一种双能源热水器的控制方法,所述双能源热水器采用空气源热泵加热和燃气加热,所述方法包括:
    根据当前环境信息、电费价格、以及燃气费价格确定采用空气源热泵加热和采用燃气加热中节省能源费用的加热方式;
    根据当前水箱温度、所述节省能源费用的加热方式、以及当前用水状态对所述双能源热水器进行控制。
  2. 根据权利要求1所述的方法,所述根据当前水箱温度、所述节省能源费用的加热方式、以及当前用水状态对所述双能源热水器进行控制之前,还包括:
    确定水箱当前的温度下降速率,响应于所述温度下降速率大于预定速率阈值,确定当前用水状态为正在用水状态,响应于所述温度下降速率等于或小于预定速率阈值,确定当前用水状态为未在用水状态。
  3. 根据权利要求2所述的方法,其中,根据当前水箱温度、所述节省能源费用的加热方式、以及当前用水状态对所述双能源热水器进行控制,包括:
    响应于当前用水状态为未在用水状态、当前水箱温度不满足设定温度范围、且当前节省能源费用的加热方式为采用空气源热泵加热,控制所述空气源热泵加热。
  4. 根据权利要求3所述的方法,其中,
    根据当前水箱温度、所述节省能源费用的加热方式、以及当前用水状态对所述双能源热水器进行控制,包括:
    响应于当前用水状态为未在用水状态、当前水箱温度不满足设定温度范围、且当前节省能源费用的加热方式为采用空气源热泵加热,控制循环水泵不启动,控制燃气不启动,并同时控制空气源热泵加热。
  5. 根据权利要求4所述的方法,其中,
    根据当前水箱温度、所述节省能源费用的加热方式、以及当前用水状态对所述双能源热水器进行控制,包括:
    响应于当前用水状态为正在用水状态、当前水箱温度不满足设定温度范围、 且当前节省能源费用的加热方式为采用空气源热泵加热,控制循环水泵启动,控制燃气点火给水箱进行加热,并同时控制空气源热泵加热。
  6. 根据权利要求3所述的方法,其中,
    根据当前水箱温度、所述节省能源费用的加热方式、以及当前用水状态对所述双能源热水器进行控制,包括:
    响应于当前用水状态为未在用水状态、当前水箱温度不满足设定温度范围、且当前节省能源费用的加热方式为采用空气源热泵加热,控制电动阀输出以使水路切向燃气,控制燃气点火直接供热水,并同时控制空气源热泵加热。
  7. 根据权利要求6所述的方法,其中,
    根据当前水箱温度、所述节省能源费用的加热方式、以及当前用水状态对所述双能源热水器进行控制,包括:
    响应于当前用水状态为正在用水状态、当前水箱温度不满足设定温度范围、且当前节省能源费用的加热方式为采用空气源热泵加热,控制电动阀输出以使水路切向燃气,控制燃气点火直接供热水,并同时控制空气源热泵加热。
  8. 根据权利要求3所述的方法,其中,
    根据当前水箱温度、所述节省能源费用的加热方式、以及当前用水状态对所述双能源热水器进行控制,还包括:
    响应于当前水箱温度不满足设定温度范围、且当前节省能源费用的加热方式为采用燃气加热,控制所述燃气加热。
  9. 根据权利要求8所述的方法,其中,
    根据当前水箱温度、所述节省能源费用的加热方式、以及当前用水状态对所述双能源热水器进行控制,还包括:
    响应于当前水箱温度不满足设定温度范围、且当前节省能源费用的加热方式为采用燃气加热,控制循环水泵启动,控制燃气点火给水箱进行加热,并同时控制空气源热泵不启动。
  10. 根据权利要求8所述的方法,其中,
    根据当前水箱温度、所述节省能源费用的加热方式、以及当前用水状态对所述双能源热水器进行控制,还包括:
    响应于当前水箱温度不满足设定温度范围、且当前节省能源费用的加热方式为采用燃气加热,控制电动阀输出以使水路切向燃气,控制燃气点火直接供热水,并同时控制空气源热泵不工作。
  11. 根据权利要求5或9所述的方法,其中,
    根据当前水箱温度、所述节省能源费用的加热方式、以及当前用水状态对所述双能源热水器进行控制,还包括:
    响应于当前水箱温度满足设定温度范围、且当前节省能源费用的加热方式为采用燃气加热,控制循环水泵不启动,控制燃气和空气源热泵均不启动。
  12. 根据权利要求7或10所述的方法,其中,
    根据当前水箱温度、所述节省能源费用的加热方式、以及当前用水状态对所述双能源热水器进行控制,还包括:
    响应于当前水箱温度满足设定温度范围,控制电动阀不输出以使水路切向水箱供水,直至水箱温度不满足所述设定温度范围。
  13. 根据权利要求3所述的方法,其中,所述根据当前水箱温度、所述节省能源费用的加热方式、以及当前用水状态对所述双能源热水器进行控制,还包括:
    响应于当前用水状态为正在用水状态、当前水箱温度不满足设定温度范围、且当前节省能源费用的加热方式为采用空气源热泵加热,控制所述燃气和空气源热泵一起加热。
  14. 根据权利要求13所述的方法,其中,控制所述燃气和空气源热泵一起加热,包括:
    控制燃气加热直接供热水,并控制所述空气源热泵给水箱加热直至当前水箱温度满足设定温度范围。
  15. 根据权利要求3所述的方法,其中,控制所述空气源热泵加热,包括:
    获取当前环境信息的后续变化信息;
    根据所述后续变化信息确定所述空气源热泵的加热时间;
    控制所述空气源热泵在所确定的加热时间进行加热。
  16. 根据权利要求15所述的方法,在确定所述空气源热泵的加热时间之前,还包括:获取用户的历史用水信息,根据所述历史用水信息确定用户的后续用水信息;
    根据所述后续变化信息确定所述空气源热泵的加热时间,包括:根据所述后续变化信息和所述后续用水信息确定所述空气源热泵的加热时间。
  17. 根据权利要求1所述的方法,其中,所述环境信息至少包括环境温度和环境湿度。
  18. 一种双能源热水器的控制装置,所述双能源热水器采用空气源热泵加热和燃气加热,所述装置包括:
    节省能源费用方式确定单元,设置为根据当前环境信息、电费价格、以及燃气费价格,确定采用空气源热泵加热和采用燃气加热中节省能源费用的加热方式;
    加热控制单元,设置为根据当前水箱温度、所述节省能源费用的加热方式、以及当前用水状态对所述双能源热水器进行控制。
  19. 一种电子设备,包括:
    至少一个处理器;以及
    存储器,设置为存储可执行指令,所述可执行指令在被所述至少一个处理器执行时,使得所述电子设备执行如权利要求1-17中任一项所述的方法。
  20. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1-17任一项所述的方法。
PCT/CN2021/103436 2020-08-26 2021-06-30 双能源热水器的控制方法、装置、电子设备、及存储介质 WO2022042012A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010870498.2A CN112178940B (zh) 2020-08-26 2020-08-26 双能源热水器的控制方法、装置、电子设备、及存储介质
CN202010870498.2 2020-08-26

Publications (1)

Publication Number Publication Date
WO2022042012A1 true WO2022042012A1 (zh) 2022-03-03

Family

ID=73925704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/103436 WO2022042012A1 (zh) 2020-08-26 2021-06-30 双能源热水器的控制方法、装置、电子设备、及存储介质

Country Status (2)

Country Link
CN (1) CN112178940B (zh)
WO (1) WO2022042012A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112178940B (zh) * 2020-08-26 2022-08-16 青岛经济技术开发区海尔热水器有限公司 双能源热水器的控制方法、装置、电子设备、及存储介质
CN115325607A (zh) * 2022-09-06 2022-11-11 东莞市艾瑞科热能设备有限公司 空气源热泵与燃气采暖炉一体化采暖控制方法和采暖装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101881507A (zh) * 2010-07-14 2010-11-10 宁波方太厨具有限公司 一种自动调节加热模式的电热水器及其调节方法
CN102444986A (zh) * 2010-09-30 2012-05-09 艾欧史密斯(中国)热水器有限公司 一种实现经济运行的双能源热水供应系统及其运行方法
KR20140042582A (ko) * 2012-09-28 2014-04-07 이진교 온수공급장치
CN204555293U (zh) * 2015-04-03 2015-08-12 芜湖美的厨卫电器制造有限公司 电热水器
CN107101251A (zh) * 2017-06-01 2017-08-29 浙江蓝城建筑设计有限公司 一种节能暖通系统及其控制方法
CN112178940A (zh) * 2020-08-26 2021-01-05 青岛经济技术开发区海尔热水器有限公司 双能源热水器的控制方法、装置、电子设备、及存储介质

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102052766A (zh) * 2010-11-01 2011-05-11 江苏天舒电器有限公司 一种热泵热水机模块化控制方法
CN104236112B (zh) * 2014-09-29 2018-01-02 芜湖美的厨卫电器制造有限公司 供水系统的控制方法
JP6499503B2 (ja) * 2015-04-27 2019-04-10 株式会社ガスター 給湯装置及び給湯装置の制御方法
CN105352190B (zh) * 2015-10-16 2017-12-01 顺德职业技术学院 太阳能、热泵及燃气三种能源复合的热水系统的节能控制方法
CN106123350B (zh) * 2016-06-24 2019-04-30 珠海格力电器股份有限公司 一种热水器的控制方法、装置及热水器
CN206890817U (zh) * 2017-03-29 2018-01-16 广州鼎富电子科技有限公司 一种空气能热泵与燃气炉组合加热系统
CN109654743B (zh) * 2018-12-10 2020-03-27 珠海格力电器股份有限公司 一种确定加热温度的方法及装置
CN110779217A (zh) * 2019-10-14 2020-02-11 珠海格力电器股份有限公司 空气能热水器控制方法、装置、控制器及空气能热水器
CN111550932B (zh) * 2020-04-28 2021-11-05 浙江中广电器股份有限公司 一种制热水控制方法、处理器、储水型热水器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101881507A (zh) * 2010-07-14 2010-11-10 宁波方太厨具有限公司 一种自动调节加热模式的电热水器及其调节方法
CN102444986A (zh) * 2010-09-30 2012-05-09 艾欧史密斯(中国)热水器有限公司 一种实现经济运行的双能源热水供应系统及其运行方法
KR20140042582A (ko) * 2012-09-28 2014-04-07 이진교 온수공급장치
CN204555293U (zh) * 2015-04-03 2015-08-12 芜湖美的厨卫电器制造有限公司 电热水器
CN107101251A (zh) * 2017-06-01 2017-08-29 浙江蓝城建筑设计有限公司 一种节能暖通系统及其控制方法
CN112178940A (zh) * 2020-08-26 2021-01-05 青岛经济技术开发区海尔热水器有限公司 双能源热水器的控制方法、装置、电子设备、及存储介质

Also Published As

Publication number Publication date
CN112178940B (zh) 2022-08-16
CN112178940A (zh) 2021-01-05

Similar Documents

Publication Publication Date Title
WO2022042012A1 (zh) 双能源热水器的控制方法、装置、电子设备、及存储介质
US9910577B2 (en) Prospective determination of processor wake-up conditions in energy buffered HVAC control unit having a preconditioning feature
US20120053745A1 (en) System and method for establishing local control of a space conditioning load during a direct load control event
CN109855263B (zh) 一种空调节能温度确认方法、装置及智能空调控制系统
MX2015005394A (es) Dispositivo electronico y metodo de control del mismo.
CN101539796A (zh) 显示器自动启闭方法及可自动启闭的显示器
CN102446396B (zh) 一种移动终端控制电子设备的方法、系统及移动终端
CN102052736B (zh) 远程空调控制方法和装置
US9784472B2 (en) Managing hot water delivery
CN105387632A (zh) 热水器的多模式控制方法、遥控器及其热水器
CN102661630A (zh) 一种带有真空保温水箱的燃气热水器节能节水装置
JP6335158B2 (ja) 給湯機
US10496066B2 (en) System and apparatus for and methods of control of localized energy use in a building using price set points
JP2004069196A (ja) ヒートポンプ給湯機
CN108332427A (zh) 家用热水管网控制系统
CN204113606U (zh) 一种水泵定时定温控制器
CN208042535U (zh) 家用热水管网控制系统
CN104132468A (zh) 家用热水器加热控制装置
JP6045682B2 (ja) エネルギー管理システム、システムコントローラ、保温制御方法及びプログラム
CN206057958U (zh) 一种可反馈环境参数的智能家居控制系统
JP7415907B2 (ja) 貯湯式給湯装置
CN113819504A (zh) 热水控制方法、装置、全屋用热水系统、设备及介质
CN103968549A (zh) 基于自动控制器的热水器出水管路冷水回收利用系统
CN111174443B (zh) 一种燃气热水器的零冷水控制方法
CN115751727A (zh) 一种混动热水器的加热方法、装置、云服务器及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21859854

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21859854

Country of ref document: EP

Kind code of ref document: A1