WO2022041998A1 - 频率补偿方法及电路、存储介质、电子装置 - Google Patents

频率补偿方法及电路、存储介质、电子装置 Download PDF

Info

Publication number
WO2022041998A1
WO2022041998A1 PCT/CN2021/102499 CN2021102499W WO2022041998A1 WO 2022041998 A1 WO2022041998 A1 WO 2022041998A1 CN 2021102499 W CN2021102499 W CN 2021102499W WO 2022041998 A1 WO2022041998 A1 WO 2022041998A1
Authority
WO
WIPO (PCT)
Prior art keywords
acceleration value
acceleration
frequency
terminal device
crystal oscillator
Prior art date
Application number
PCT/CN2021/102499
Other languages
English (en)
French (fr)
Inventor
罗迤宝
魏静波
贾蓉
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US18/022,348 priority Critical patent/US20240036215A1/en
Priority to JP2023501615A priority patent/JP2023538486A/ja
Priority to EP21859840.7A priority patent/EP4206742A4/en
Priority to KR1020237000950A priority patent/KR20230078989A/ko
Publication of WO2022041998A1 publication Critical patent/WO2022041998A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/23Testing, monitoring, correcting or calibrating of receiver elements
    • G01S19/235Calibration of receiver components
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/02Details
    • H03B5/04Modifications of generator to compensate for variations in physical values, e.g. power supply, load, temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/40Correcting position, velocity or attitude
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/45Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement
    • G01S19/47Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement the supplementary measurement being an inertial measurement, e.g. tightly coupled inertial
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/48Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/30Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator
    • H03B5/32Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator being a piezoelectric resonator
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L1/00Stabilisation of generator output against variations of physical values, e.g. power supply
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management

Definitions

  • the embodiments of the present application relate to the field of communications, and in particular, to a frequency compensation method and circuit, a storage medium, and an electronic device.
  • the Global Positioning System uses navigation satellites to measure time and distance to form a global positioning system. It can provide personal positioning, timing and speed measurement functions.
  • GPS has been widely used in aerospace, aviation, navigation, transportation, surveying, exploration and many other fields. With the development of digital large-scale integrated circuits and the demand for positioning functions, GPS has begun to be more embedded in mobile handheld devices and consumer electronic products.
  • the current smart phone terminal, GPS is an essential function module. And with the intergenerational change of mobile phones, its role has become more and more important, and the new generation of terminals has higher and higher requirements for GPS accuracy in order to achieve more complex functions.
  • the stability of the oscillator has a great influence on the accuracy of the test. Since the crystal oscillator is a thermally sensitive device, the thermal protection of the crystal has become an important task in hardware design.
  • the hardware circuits of the next-generation terminal equipment such as 5G are more complex, and the multi-frequency and multi-mode wireless modules lead to more heating devices on the motherboard than the previous smart terminals. This contradiction shows that the GPS is guaranteed in the new generation of mobile phones. Accuracy becomes increasingly difficult.
  • the crystal oscillator In the mobile phone system, the crystal oscillator is the most sensitive to heat conduction. At the same time, the crystal oscillator is the heart of a mobile phone, and its accuracy greatly affects the GPS system in the mobile phone system, which is most dependent on the accuracy of the crystal oscillator. Therefore, in the early stage of mobile phone planning, it is very important to choose a suitable position for the crystal oscillator on the motherboard, which greatly affects the GPS performance of a mobile phone.
  • the failure of the acceleration is actually the performance of the signal in the frequency domain. If it exceeds the standard, it will lead to the deterioration of its frequency characteristics, that is, the deterioration of the sensitivity, thereby causing the deterioration of GPS performance.
  • Embodiments of the present application provide a frequency compensation method and circuit, a storage medium, and an electronic device, so as to at least solve the problem of GPS performance in a terminal device in the related art.
  • a frequency compensation method which includes: determining speed information of a terminal device relative to a predetermined device, wherein the speed information includes acceleration information and vector information; converting the speed information into a correlation with global positioning the first acceleration value corresponding to the system GPS device; the frequency of the crystal oscillator in the terminal device is compensated based on the first acceleration value and the second acceleration value, wherein the second acceleration value is the GPS device determined by the terminal device the actual acceleration value.
  • a frequency compensation circuit comprising: a speed sensor configured to acquire speed information of the terminal device relative to a preset device, wherein the speed information includes acceleration information and vector information, and the speed The speed sensor is arranged in the above-mentioned terminal equipment; the main control chip control unit is arranged to convert the above-mentioned speed information into a first acceleration value corresponding to the GPS device of the global positioning system; the variable capacitance control unit is arranged to be based on the above-mentioned first acceleration value and the second acceleration value to compensate the frequency of the crystal oscillator in the terminal device, wherein the second acceleration value is the actual acceleration value of the GPS device determined by the terminal device.
  • a computer-readable storage medium is also provided, and a computer program is stored in the computer-readable storage medium, wherein the computer program is configured to execute any one of the above methods when running steps in the examples.
  • an electronic device comprising a memory and a processor, wherein the memory stores a computer program, and the processor is configured to run the computer program to execute any one of the above Steps in Method Examples.
  • FIG. 1 is a block diagram of a hardware structure of a mobile terminal of a frequency compensation method according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of a relationship between an error frequency of a crystal oscillator and an acceleration error value according to an embodiment of the present application
  • FIG. 5 is a schematic diagram of the influence on the crystal oscillator when the standby state of the wifi chip and the intermittent standby communication of the router according to an embodiment of the present application;
  • FIG. 6 is a structural block diagram of a frequency compensation circuit according to an embodiment of the present application.
  • FIG. 1 is a block diagram of a hardware structure of a mobile terminal according to a frequency compensation method according to an embodiment of the present application.
  • the mobile terminal may include one or more (only one is shown in FIG.
  • processor 102 may include, but is not limited to, a processing device such as a microprocessor MCU or a programmable logic device FPGA) and a memory 104 configured to store data, wherein the above-mentioned mobile terminal may further include a transmission device 106 and an input/output device 108 configured as a communication function.
  • a processing device such as a microprocessor MCU or a programmable logic device FPGA
  • a memory 104 configured to store data
  • the above-mentioned mobile terminal may further include a transmission device 106 and an input/output device 108 configured as a communication function.
  • FIG. 1 is only a schematic diagram, which does not limit the structure of the above-mentioned mobile terminal.
  • the mobile terminal may also include more or fewer components than those shown in FIG. 1 , or have a different configuration than that shown in FIG. 1 .
  • the memory 104 may be configured to store computer programs, for example, software programs and modules of application software, such as computer programs corresponding to the frequency compensation method in the embodiments of the present application.
  • the processor 102 executes the computer programs stored in the memory 104 by running the computer programs.
  • Various functional applications and data processing implement the above method.
  • Memory 104 may include high-speed random access memory, and may also include non-volatile memory, such as one or more magnetic storage devices, flash memory, or other non-volatile solid-state memory.
  • the memory 104 may further include memory located remotely from the processor 102, and these remote memories may be connected to the mobile terminal through a network. Examples of such networks include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • Transmission means 106 are arranged to receive or transmit data via a network.
  • the specific example of the above-mentioned network may include a wireless network provided by a communication provider of the mobile terminal.
  • the transmission device 106 includes a network adapter (Network Interface Controller, NIC for short), which can be connected to other network devices through a base station so as to communicate with the Internet.
  • the transmission device 106 may be a radio frequency (Radio Frequency, RF for short) module, which is configured to communicate with the Internet in a wireless manner.
  • RF Radio Frequency
  • FIG. 2 is a flowchart of a frequency compensation method according to an embodiment of the present application. As shown in FIG. 2 , the process includes the following steps:
  • Step S202 determining the speed information of the terminal device relative to the predetermined device, wherein the speed information includes acceleration information and vector information;
  • Step S204 converting the speed information into a first acceleration value corresponding to the GPS device of the global positioning system
  • Step S206 compensating the frequency of the crystal oscillator in the terminal device based on the first acceleration value and the second acceleration value, wherein the second acceleration value is the actual acceleration value of the GPS device determined by the terminal device.
  • the execution subject of the above steps may be a terminal or the like, but is not limited thereto.
  • the crystal oscillator is the most sensitive to heat conduction, and the crystal oscillator is the heart of a terminal device (such as a mobile phone), and its accuracy greatly affects the accuracy of the most dependent crystal oscillator in the mobile phone system. degree GPS system. Therefore, in the early stage of mobile phone planning, it is very important to choose a suitable position for the crystal oscillator on the motherboard, which greatly affects the GPS performance of a mobile phone.
  • the failure of the acceleration is actually the performance of the signal in the frequency domain. If it exceeds the standard, it will lead to the deterioration of its frequency characteristics, that is, the deterioration of the sensitivity, thereby causing the deterioration of GPS performance.
  • the speed information of the terminal device relative to the predetermined device is determined, wherein the speed information includes acceleration information and vector information; the speed information is converted into the first acceleration value corresponding to the GPS device of the global positioning system; An acceleration value and the second acceleration value compensate the frequency of the crystal oscillator in the terminal device, wherein the second acceleration value is the actual acceleration value of the GPS device determined by the terminal device.
  • the purpose of correcting the GPS acceleration error value caused by the instantaneous jitter of the heating device around the crystal is realized. Therefore, the problem of GPS performance in the terminal device in the related art can be solved, and the effect of improving the GPS performance in the terminal device can be achieved.
  • determining the speed information of the terminal device relative to the predetermined device includes:
  • S1 Acquire acceleration information and vector information of the terminal device relative to a predetermined device through a speed sensor, where the speed sensor is set in the terminal device.
  • the acceleration information and vector direction of the terminal device relative to the earth are calculated.
  • the acceleration information and vector direction are converted into the tangential acceleration value relative to the GPS satellite, so that this value is compared with the GPS acceleration value actually calculated by the terminal device, and the error value is the difference between the GPS distortion caused by thermal jitter.
  • the difference is converted into frequency and compensated to the frequency synthesizer system of the reference crystal oscillator through the adjustment on the circuit, so that the GPS accuracy error caused by the frequency synthesizer system error can be compensated.
  • converting the speed information into a first acceleration value corresponding to a GPS device of the global positioning system includes:
  • compensating the frequency of the crystal oscillator in the terminal device based on the first acceleration value and the second acceleration value comprising:
  • the frequency of the crystal oscillator is compensated based on the comparison result.
  • the comparison result includes X ⁇ A ⁇ C.
  • the C value can be defined as a constant. According to the movement characteristics of the terminal equipment, the moving speed may be large, but the acceleration is very large and there are not many long-lasting cases.
  • the value of C is ⁇ C, which represents a range of the measured value of X. value.
  • compensating the frequency of the crystal oscillator based on the comparison results including:
  • compensating the frequency of the crystal oscillator based on the comparison results including:
  • the steps of frequency compensation in this embodiment include:
  • the acceleration sensor outputs the current coordinate system acceleration, that is, the speed information
  • the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course can also be implemented by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of a software product in essence or in a part that contributes to the prior art, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, CD-ROM), including several instructions to make a terminal device (which may be a mobile phone, a computer, a server, or a network device, etc.) execute the methods described in the various embodiments of this application.
  • a storage medium such as ROM/RAM, magnetic disk, CD-ROM
  • a frequency compensation circuit is also provided, and the circuit is used to realize the above-mentioned embodiments and preferred implementation manners, and what has been described will not be repeated.
  • the term "unit" may be a combination of software and/or hardware that implements a predetermined function.
  • FIG. 5 it is an example of the influence on the crystal oscillator when the wifi chip is in the standby state and the router is in intermittent standby communication.
  • the wifi chip is arranged on the back of the crystal oscillator, and the distance between the device and the horizontal plane is about 2mm.
  • the acceleration index of the GPS caused by the working of the Wifi chip exceeds the standard.
  • FIG. 6 is a structural block diagram of the frequency compensation circuit according to an embodiment of the present application, and the device includes:
  • a speed sensor used to obtain the speed information of the terminal device relative to the preset device, wherein the speed information includes acceleration information and vector information, and the speed sensor is set in the terminal device;
  • the main control chip control unit is used to convert the speed information into the first acceleration value corresponding to the GPS device of the global positioning system
  • variable capacitance control unit is configured to compensate the frequency of the crystal oscillator in the terminal device based on the first acceleration value and the second acceleration value, wherein the second acceleration value is the actual acceleration value of the GPS device determined by the terminal device.
  • the above circuit further includes:
  • the main control chip control unit is further configured to convert the acceleration information and the vector information into a tangential acceleration value relative to the GPS device according to a preset rule to obtain the first acceleration.
  • the above circuit further includes:
  • variable capacitance control unit is also used to determine the difference between the first acceleration value and the second acceleration value; it is also used to compare the difference with a preset threshold to obtain a comparison result; it is also used to compensate based on the comparison result The frequency of the crystal oscillator.
  • an additional variable capacitance control unit ie a variable capacitance module
  • This unit can be attached to the peripheral circuit or integrated in the frequency synthesizer. The purpose is to control the final output frequency of the frequency synthesizer to satisfy the error compensation of the GPS acceleration measured value.
  • the main control chip control unit can be integrated in the processor of the mobile phone itself, or a separate control chip can be used. It mainly completes the processing and conversion of the output value of the acceleration sensor, that is, the whole process of Figure 4, and then includes voltage control (but not limited to voltage control, but also digital control such as i2C, SDI, mipi, etc.) through the output control signal.
  • the control can be
  • the variable capacitance module works to compensate the error of the measured value of GPS acceleration.
  • the compensation principle is the compensation for the crystal oscillator hardware, which is different from the software compensation correction. It solves the influence of thermal transients on the crystal oscillator more fundamentally. The compensation is effective and single, and will not bring other errors like software compensation. weight.
  • the above modules can be implemented by software or hardware, and the latter can be implemented in the following ways, but not limited to this: the above modules are all located in the same processor; or, the above modules can be combined in any combination The forms are located in different processors.
  • Embodiments of the present application further provide a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, wherein the computer program is configured to execute the steps in any one of the above method embodiments when running.
  • the above-mentioned computer-readable storage medium may include, but is not limited to, a USB flash drive, a read-only memory (Read-Only Memory, referred to as ROM for short), and a random access memory (Random Access Memory, referred to as RAM for short) , mobile hard disk, magnetic disk or CD-ROM and other media that can store computer programs.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • Embodiments of the present application further provide an electronic device, including a memory and a processor, where a computer program is stored in the memory, and the processor is configured to run the computer program to execute the steps in any one of the above method embodiments.
  • the above-mentioned electronic device may further include a transmission device and an input-output device, wherein the transmission device is connected to the above-mentioned processor, and the input-output device is connected to the above-mentioned processor.
  • modules or steps of the present application can be implemented by a general-purpose computing device, and they can be centralized on a single computing device, or distributed in a network composed of multiple computing devices
  • they can be implemented in program code executable by a computing device, so that they can be stored in a storage device and executed by the computing device, and in some cases, can be performed in a different order than shown here.
  • the described steps, or they are respectively made into individual integrated circuit modules, or a plurality of modules or steps in them are made into a single integrated circuit module to realize.
  • the present application is not limited to any particular combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Oscillators With Electromechanical Resonators (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Abstract

一种频率补偿方法及电路、存储介质、电子装置,该方法包括:确定终端设备相对于预定设备的速度信息,其中,速度信息包括加速度信息和矢量信息(S202);将速度信息转化为与全球定位系统GPS设备对应的第一加速度值(S204);基于第一加速度值和第二加速度值补偿终端设备中的晶体振荡器的频率,其中,第二加速度值是终端设备确定的GPS设备的实际加速度值(S206)。

Description

频率补偿方法及电路、存储介质、电子装置 技术领域
本申请实施例涉及通信领域,具体而言,涉及一种频率补偿方法及电路、存储介质、电子装置。
背景技术
全球卫星定位系统(Global Positioning System,简称为GPS)利用导航卫星进行测时和测距,以构成全球定位系统。能提供个人候的定位、授时、测速功能。
GPS已被广泛/业用于航天、航空、航海、运输、测量、勘探等诸多领域。随着数字大规模集成电路的发展和定位功能需求,GPS已经开始更多地嵌入到移动手持设备、消费电子产品中。
目前的智能手机终端,GPS是必不可少的功能模块。并随着手机代际的更迭,其作用变得越来越重要,而且新一代的终端为了实现更为复杂的功能,对GPS的精度要求也越来越高,从硬件电路上来说,晶体振荡器的稳定性对测试的精度影响很大,由于晶体振荡器是热敏感器件,因此晶体的热保护成为硬件设计的一个重要工作。但5G等下一代的终端设备硬件电路更加的复杂,多频多模的无线模块导致主板上的发热器件比之前的智能终端要更多,这个矛盾的显现是的在新一代手机中保证GPS的精度难度越来越大。
在手机系统中晶体振荡器是对于热传导最为敏感的,同时晶体振荡器作为一个手机的心脏,他的准确程度又大大影响了手机系统中最依赖晶体振荡器准确度的GPS系统。所以在手机规划初期,给晶体振荡器选择一个在主板上合适的位置至关重要,这大大影响着一台手机的GPS性能。对于加速度的失败,实际上是信号在频域上的表现,如果出现超标的情况,会导致其频率特性的恶化,也就是灵敏度的恶化,从而造成GPS性能的恶化。
针对现有技术中存在的终端设备中的GPS性能的问题,相关技术中尚未提出有效的解决方案。
发明内容
本申请实施例提供了一种频率补偿方法及电路、存储介质、电子装置,以至少解决相关技术中终端设备中的GPS性能的问题。
根据本申请的一个实施例,提供了一种频率补偿方法,包括:确定终端设备相对于预定设备的速度信息,其中,上述速度信息包括加速度信息和矢量信息;将上述速度信息转化为与全球定位系统GPS设备对应的第一加速度值;基于上述第一加速度值和上述第二加速度值补偿上述终端设备中的晶体振荡器的频率,其中,上述第二加速度值是上述终端设备确定的上述GPS设备的实际加速度值。
根据本申请的另一个实施例,提供了一种频率补偿电路,包括:速度传感器,设置为获取上述终端设备相对于预设设备的速度信息,其中,上述速度信息包括加速度信息和矢量信息,上述速度传感器设置在上述终端设备中;主控芯片控制单元,设置为将上述速度信息转化为与全球定位系统GPS设备对应的第一加速度值;可变电容控制单元,设置为基于上述第 一加速度值和上述第二加速度值补偿上述终端设备中的晶体振荡器的频率,其中,上述第二加速度值是上述终端设备确定的上述GPS设备的实际加速度值。
根据本申请的又一个实施例,还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
根据本申请的又一个实施例,还提供了一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行上述任一项方法实施例中的步骤。
附图说明
图1是本申请实施例的一种频率补偿方法的移动终端的硬件结构框图;
图2是根据本申请实施例的频率补偿方法的流程图;
图3是根据本申请实施例的晶体振荡器误差频率和加速度误差值的关系的示意图;
图4是根据本申请实施例的频率补偿的流程图;
图5是根据本申请实施例的wifi芯片待机状态和路由器断续待机通讯时的对晶体振荡器的影响示意图;
图6是根据本申请实施例的频率补偿电路的结构框图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本申请的实施例。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
本申请实施例中所提供的方法实施例可以在移动终端、计算机终端或者类似的运算装置中执行。以运行在移动终端上为例,图1是本申请实施例的一种频率补偿方法的移动终端的硬件结构框图。如图1所示,移动终端可以包括一个或多个(图1中仅示出一个)处理器102(处理器102可以包括但不限于微处理器MCU或可编程逻辑器件FPGA等的处理装置)和设置为存储数据的存储器104,其中,上述移动终端还可以包括设置为通信功能的传输设备106以及输入输出设备108。本领域普通技术人员可以理解,图1所示的结构仅为示意,其并不对上述移动终端的结构造成限定。例如,移动终端还可包括比图1中所示更多或者更少的组件,或者具有与图1所示不同的配置。
存储器104可设置为存储计算机程序,例如,应用软件的软件程序以及模块,如本申请实施例中的频率补偿方法对应的计算机程序,处理器102通过运行存储在存储器104内的计算机程序,从而执行各种功能应用以及数据处理,即实现上述的方法。存储器104可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器104可进一步包括相对于处理器102远程设置的存储器,这些远程存储器可以通过网络连接至移动终端。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
传输装置106设置为经由一个网络接收或者发送数据。上述的网络具体实例可包括移动终端的通信供应商提供的无线网络。在一个实例中,传输装置106包括一个网络适配器(Network Interface Controller,简称为NIC),其可通过基站与其他网络设备相连从而可 与互联网进行通讯。在一个实例中,传输装置106可以为射频(Radio Frequency,简称为RF)模块,其设置为通过无线方式与互联网进行通讯。
在本实施例中提供了一种频率补偿方法,图2是根据本申请实施例的频率补偿方法的流程图,如图2所示,该流程包括如下步骤:
步骤S202,确定终端设备相对于预定设备的速度信息,其中,速度信息包括加速度信息和矢量信息;
步骤S204,将速度信息转化为与全球定位系统GPS设备对应的第一加速度值;
步骤S206,基于第一加速度值和第二加速度值补偿终端设备中的晶体振荡器的频率,其中,第二加速度值是终端设备确定的GPS设备的实际加速度值。
其中,上述步骤的执行主体可以为终端等,但不限于此。
在一个示例性实施例中,晶体振荡器是对于热传导最为敏感的,同时晶体振荡器作为一个终端设备(例如手机)的心脏,它的准确程度又大大影响了手机系统中最依赖晶体振荡器准确度的GPS系统。所以在手机规划初期,给晶体振荡器选择一个在主板上合适的位置至关重要,这大大影响着一台手机的GPS性能。对于加速度的失败,实际上是信号在频域上的表现,如果出现超标的情况,会导致其频率特性的恶化,也就是灵敏度的恶化,从而造成GPS性能的恶化。
从图3可以看出晶体振荡器误差频率和加速度误差值的关系。对于加速度这个指标,通过多普勒频移公式,fm=移动台的移动速度υ/光速*(载波频率f0=1575.42MHz),所以对于1s加速度相当于1575.42*10^6/3*10^8=5.25hz/s。当加速度值和频率的对应关系发生畸变,则晶体振荡器组成的频率合成系统是存在误差的,但这些对应系统存在线性关系,因此也让补偿也变得可能。
通过上述步骤,由于确定终端设备相对于预定设备的速度信息,其中,上述速度信息包括加速度信息和矢量信息;将上述速度信息转化为与全球定位系统GPS设备对应的第一加速度值;基于上述第一加速度值和上述第二加速度值补偿上述终端设备中的晶体振荡器的频率,其中,上述第二加速度值是上述终端设备确定的上述GPS设备的实际加速度值。实现了利用修正由晶体周围发热器件瞬发抖动造成的GPS加速度误差值的目的。因此,可以解决相关技术中终端设备中的GPS性能的问题,达到提高终端设备中的GPS性能的效果。
在一个示例性实施例中,确定终端设备相对于预定设备的速度信息,包括:
S1,通过速度传感器获取终端设备相对于预定设备的加速度信息和矢量信息,其中,速度传感器设置在终端设备中。
在本实施例中,通过计算出终端设备相对于地球的加速度信息和矢量方向。将加速度信息和矢量方向转化为相对于GPS卫星的切向加速度值,从而通过这个值跟终端设备实际计算的GPS加速度值做对比,其误差值为热抖动造成的GPS失真的差值,将此差值换算成频率通过电路上的调节,补偿到参考晶振的频率合成器系统中,使得GPS由频率合成器系统误差导致的精度误差可以得到补偿。
在一个示例性实施例中,将速度信息转化为与全球定位系统GPS设备对应的第一加速度值,包括:
S1,将加速度信息和矢量信息按照预设规则转化为相对于GPS设备的切向加速度值,得到第一加速度。
在一个示例性实施例中,基于第一加速度值和第二加速度值补偿终端设备中的晶体振荡器的频率,包括:
S1,确定第一加速度值与第二加速度值的差值;
S2,将差值与预设阈值进行比对,得到比对结果;
S3,基于比对结果补偿晶体振荡器的频率。
在本实施例中,在第一加速度对应的频率值为A、第二加速度对应的频率为X、预设阈值是C的情况下,比对结果包括X-A<C。
C值可定义为一个常量,按终端设备的移动特点,可能出现移动速度较大的情况,但加速度很大并且持久的情况并不多,C在数值为±C,代表X实测值的一个范围值。
在一个示例性实施例中,基于比对结果补偿晶体振荡器的频率,包括:
S1,在差值大于或等于预设阈值的情况下,确定第二加速度值与预设阈值的和值;
S2,利用和值补偿晶体振荡器的频率。
在一个示例性实施例中,基于比对结果补偿晶体振荡器的频率,包括:
在差值小于预设阈值的情况下,终止对晶体振荡器的频率补偿。
在本实施例中,如图4所示,本实施例中的频率补偿的步骤包括:
S401:加速度传感器输出当前坐标系加速度,即速度信息;
S402:将速度信息换算成切向加速度,即第一加速度;
S403:换算成当前理论晶振加速度和频偏频率对应值;
S404:实测GPS设备晶振频偏频率,即第二加速度;
S405:在第一加速度对应的频率值为A、第二加速度对应的频率为X、预设阈值是C的情况下,在满足X-A<C的情况下,终止补偿流程(S406);
S407:在不满足X-A<C的情况下,补偿频率值为X+A(S408)。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
在本实施例中还提供了一种频率补偿电路,该电路用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“单元”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
如图5所示,是一个wifi芯片待机状态和路由器断续待机通讯时的对晶体振荡器的影响实施例。由主板布局图所示wifi芯片布局在晶体振荡器的背面,器件在水平面的距离2mm左右。Wifi芯片工作时导致的GPS的加速度指标超标。这个实施例说明了现在主板在晶体振荡器上布局的困局,而且在下一代5G主板上这个矛盾会更加的突出。为解决上述技术问题,提出了一种频率补偿电路,如图6所示,是根据本申请实施例的频率补偿电路的结构框图,该装置包括:
速度传感器,用于获取终端设备相对于预设设备的速度信息,其中,速度信息包括加速 度信息和矢量信息,速度传感器设置在终端设备中;
主控芯片控制单元,用于将速度信息转化为与全球定位系统GPS设备对应的第一加速度值;
可变电容控制单元,用于基于第一加速度值和第二加速度值补偿终端设备中的晶体振荡器的频率,其中,第二加速度值是终端设备确定的GPS设备的实际加速度值。
在一个示例性实施例中,上述电路还包括:
主控芯片控制单元,还用于将加速度信息和矢量信息按照预设规则转化为相对于GPS设备的切向加速度值,得到第一加速度。
在一个示例性实施例中,上述电路还包括:
可变电容控制单元,还用于确定第一加速度值与第二加速度值的差值;还用于将差值与预设阈值进行比对,得到比对结果;还用于基于比对结果补偿晶体振荡器的频率。
在上述实施例中,在参考晶振和频率合成器整个模块中加入和额外可变电容控制单元(即可变电容模块),这个单元可以在外围电路附加,也可以是频率合成器中集成,主要目的是控制频率合成器最终输出的频率满足对GPS加速度实测值的误差补偿。
主控芯片控制单元可以在手机本身处理器中集成,也可以采用一颗单独的控制芯片。主要完成对加速度传感器输出值的处理,换算,也就是图四的全部过程,再通过输出控制信号包含电压控制(但不仅限于电压控制,也可以是i2C,SDI,mipi等数字控制),控制可变电容模块工作,补偿GPS加速度实测值的误差。其补偿原理是针对晶体振荡器硬件的补偿,有别于软件上补偿修正,其更加根源的解决热瞬变对晶体振荡器的影响,补偿有效且单一,不会像软件补偿那样带来其他误差分量。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
本申请的实施例还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,其中,该计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
在一个示例性实施例中,上述计算机可读存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,简称为ROM)、随机存取存储器(Random Access Memory,简称为RAM)、移动硬盘、磁碟或者光盘等各种可以存储计算机程序的介质。
本申请的实施例还提供了一种电子装置,包括存储器和处理器,该存储器中存储有计算机程序,该处理器被设置为运行计算机程序以执行上述任一项方法实施例中的步骤。
在一个示例性实施例中,上述电子装置还可以包括传输设备以及输入输出设备,其中,该传输设备和上述处理器连接,该输入输出设备和上述处理器连接。
本实施例中的具体示例可以参考上述实施例及示例性实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本申请的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路 模块来实现。这样,本申请不限制于任何特定的硬件和软件结合。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (11)

  1. 一种频率补偿方法,包括:
    确定终端设备相对于预定设备的速度信息,其中,所述速度信息包括加速度信息和矢量信息;
    将所述速度信息转化为与全球定位系统GPS设备对应的第一加速度值;
    基于所述第一加速度值和第二加速度值补偿所述终端设备中的晶体振荡器的频率,其中,所述第二加速度值是所述终端设备确定的所述GPS设备的实际加速度值。
  2. 根据权利要求1所述的方法,其中,确定终端设备相对于预定设备的速度信息,包括:
    通过速度传感器获取所述终端设备相对于所述预定设备的加速度信息和所述矢量信息,其中,所述速度传感器设置在所述终端设备中。
  3. 根据权利要求1所述的方法,其中,将所述速度信息转化为与全球定位系统GPS设备对应的第一加速度值,包括:
    将所述加速度信息和所述矢量信息按照预设规则转化为相对于所述GPS设备的切向加速度值,得到所述第一加速度。
  4. 根据权利要求1所述的方法,其中,基于所述第一加速度值和所述第二加速度值补偿所述终端设备中的晶体振荡器的频率,包括:
    确定所述第一加速度值与所述第二加速度值的差值;
    将所述差值与预设阈值进行比对,得到比对结果;
    基于所述比对结果补偿所述晶体振荡器的频率。
  5. 根据权利要求4所述的方法,其中,基于所述比对结果补偿所述晶体振荡器的频率,包括:
    在所述差值大于或等于所述预设阈值的情况下,确定所述第二加速度值与所述预设阈值的和值;
    利用所述和值补偿所述晶体振荡器的频率。
  6. 根据权利要求4所述的方法,其中,基于所述比对结果补偿所述晶体振荡器的频率,包括:
    在所述差值小于所述预设阈值的情况下,终止对所述晶体振荡器的频率补偿。
  7. 一种频率补偿电路,包括:
    速度传感器,设置为获取终端设备相对于预设设备的速度信息,其中,所述速度信息包括加速度信息和矢量信息,所述速度传感器设置在所述终端设备中;
    主控芯片控制单元,设置为将所述速度信息转化为与全球定位系统GPS设备对应的第一加速度值;
    可变电容控制单元,设置为基于所述第一加速度值和第二加速度值补偿所述终端设备中的晶体振荡器的频率,其中,所述第二加速度值是所述终端设备确定的所述GPS设备的实际加速度值。
  8. 根据权利要求7所述的电路,其中,还包括:
    所述主控芯片控制单元,还设置为将所述加速度信息和所述矢量信息按照预设规则转化为相对于所述GPS设备的切向加速度值,得到所述第一加速度。
  9. 根据权利要求7所述的电路,其中,包括:
    可变电容控制单元,还设置为确定所述第一加速度值与所述第二加速度值的差值;还设置为将所述差值与预设阈值进行比对,得到比对结果;还设置为基于所述比对结果补偿所述晶体振荡器的频率。
  10. 一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序,其中,所述计算机程序被处理器执行时实现所述权利要求1至6任一项中所述的方法的步骤。
  11. 一种电子装置,包括存储器、处理器以及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现所述权利要求1至6任一项中所述的方法的步骤。
PCT/CN2021/102499 2020-08-31 2021-06-25 频率补偿方法及电路、存储介质、电子装置 WO2022041998A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/022,348 US20240036215A1 (en) 2020-08-31 2021-06-25 Method and circuit for frequency compensation, storage medium, and electronic device
JP2023501615A JP2023538486A (ja) 2020-08-31 2021-06-25 周波数補償方法及び回路、記憶媒体、電子装置
EP21859840.7A EP4206742A4 (en) 2020-08-31 2021-06-25 METHOD AND CIRCUIT FOR FREQUENCY COMPENSATION, STORAGE MEDIUM AND ELECTRONIC DEVICE
KR1020237000950A KR20230078989A (ko) 2020-08-31 2021-06-25 주파수 보상 방법 및 회로, 저장 매체, 전자 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010899383.6A CN114114352A (zh) 2020-08-31 2020-08-31 频率补偿方法及电路、存储介质、电子装置
CN202010899383.6 2020-08-31

Publications (1)

Publication Number Publication Date
WO2022041998A1 true WO2022041998A1 (zh) 2022-03-03

Family

ID=80354564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/102499 WO2022041998A1 (zh) 2020-08-31 2021-06-25 频率补偿方法及电路、存储介质、电子装置

Country Status (6)

Country Link
US (1) US20240036215A1 (zh)
EP (1) EP4206742A4 (zh)
JP (1) JP2023538486A (zh)
KR (1) KR20230078989A (zh)
CN (1) CN114114352A (zh)
WO (1) WO2022041998A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030112086A1 (en) * 2001-12-19 2003-06-19 Tillotson Brian J. Apparatus and method for improved crystal time reference
CN102073055A (zh) * 2010-11-03 2011-05-25 东南大学 Gps接收机中温度补偿晶体振荡器固定偏差的测试方法
CN102135623A (zh) * 2011-03-23 2011-07-27 中兴通讯股份有限公司 移动终端和全球定位系统参数校准方法
US20120065913A1 (en) * 2010-09-10 2012-03-15 Teruo Sasaki Management device, management method, and program recording medium
CN109983703A (zh) * 2016-10-18 2019-07-05 维特艾迪瑞科特公司 用于振荡器中的振动效应校正的装置和方法
CN110166044A (zh) * 2019-05-13 2019-08-23 南京信息职业技术学院 一种晶体振荡器频率补偿方法及装置
CN110504957A (zh) * 2019-07-25 2019-11-26 中国电子科技集团公司第二十九研究所 一种小型化锁相频率源电路的动态相位噪声补偿方法和电路
CN111065937A (zh) * 2017-07-06 2020-04-24 焦点定位有限公司 用于校正使用本地振荡器生成的本地信号的频率或相位的方法和系统
CN111090109A (zh) * 2019-12-27 2020-05-01 中国航天科工集团八五一一研究所 星载频差提取对频差快速变化的补偿方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4318063A (en) * 1979-05-03 1982-03-02 The United States Of America As Represented By The Secretary Of The Air Force Crystal oscillator compensated for g-sensitivity
US6397146B1 (en) * 1999-11-29 2002-05-28 Litton Systems, Inc. Acceleration compensation in a GPS-inertial navigation system
US20090302962A1 (en) * 2008-06-10 2009-12-10 Cheng-Yi Ou-Yang Electronic apparatus compensated through monitoring non-temperature factor indicative of frequency drift occurrence of reference clock and related method thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030112086A1 (en) * 2001-12-19 2003-06-19 Tillotson Brian J. Apparatus and method for improved crystal time reference
US20120065913A1 (en) * 2010-09-10 2012-03-15 Teruo Sasaki Management device, management method, and program recording medium
CN102073055A (zh) * 2010-11-03 2011-05-25 东南大学 Gps接收机中温度补偿晶体振荡器固定偏差的测试方法
CN102135623A (zh) * 2011-03-23 2011-07-27 中兴通讯股份有限公司 移动终端和全球定位系统参数校准方法
CN109983703A (zh) * 2016-10-18 2019-07-05 维特艾迪瑞科特公司 用于振荡器中的振动效应校正的装置和方法
CN111065937A (zh) * 2017-07-06 2020-04-24 焦点定位有限公司 用于校正使用本地振荡器生成的本地信号的频率或相位的方法和系统
CN110166044A (zh) * 2019-05-13 2019-08-23 南京信息职业技术学院 一种晶体振荡器频率补偿方法及装置
CN110504957A (zh) * 2019-07-25 2019-11-26 中国电子科技集团公司第二十九研究所 一种小型化锁相频率源电路的动态相位噪声补偿方法和电路
CN111090109A (zh) * 2019-12-27 2020-05-01 中国航天科工集团八五一一研究所 星载频差提取对频差快速变化的补偿方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4206742A4 *

Also Published As

Publication number Publication date
KR20230078989A (ko) 2023-06-05
JP2023538486A (ja) 2023-09-08
US20240036215A1 (en) 2024-02-01
EP4206742A1 (en) 2023-07-05
CN114114352A (zh) 2022-03-01
EP4206742A4 (en) 2024-03-06

Similar Documents

Publication Publication Date Title
WO2016147569A1 (ja) 衛星測位システム、電子機器及び測位方法
US11940549B2 (en) Positioning method and device
US7986263B2 (en) Method and apparatus for a global navigation satellite system receiver coupled to a host computer system
US20140057656A1 (en) Method of positioning mobile terminal and mobile terminal
CN113091742B (zh) 一种融合定位方法、装置、电子设备及存储介质
CN109412588A (zh) 晶振频率驯服方法、装置、电子设备及存储介质
AU2015289657A1 (en) Lightning detection system, method and device
CN111142130A (zh) 一种5g基站gps天线监测系统
US20150195674A1 (en) Method for estimating delay difference between receive processing chains of a device using crowd sourcing
CN114080023B (zh) 定位方法、定位系统、终端及可读存储介质
WO2016041281A1 (zh) 一种基于无线网络的定位方法及装置
WO2019001175A1 (zh) 一种定位纠偏方法及装置
CN104730542B (zh) 用于补偿诸如振荡器的频率发生器的频率不精确度的方法和装置
Zohari et al. GPS based vehicle tracking system
CN111198891A (zh) 数据源融合方法、电子设备及非暂态计算机可读存储介质
WO2022041998A1 (zh) 频率补偿方法及电路、存储介质、电子装置
CN103697857B (zh) 高度测量方法及装置
CN114488766A (zh) 一种时钟授时的方法、装置以及介质
US11962320B2 (en) Semiconductor chip providing on-chip self-testing of an ana-log-to-digital converter implemented in the semiconductor chip
CN109343332A (zh) 基于北斗卫星信号的授时系统
WO2024148778A1 (zh) 融合室内外卫星的定位方法、装置、终端设备及存储介质
CN103900575A (zh) 一种双dsp分步式pos实时导航解算系统
KR102624834B1 (ko) 파워 소모를 절약할 수 있는 글로벌 항법 위성 시스템 수신기를 포함하는 휴대 장치 및 그 동작 방법
US9008243B2 (en) Method and apparatus for correcting a reference clock of a GPS receiver
CN109061691A (zh) 基于北斗卫星信号的晶振模块控制系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21859840

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023501615

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18022348

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202317012070

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021859840

Country of ref document: EP

Effective date: 20230331