WO2022041638A1 - 一种三尖瓣瓣膜假体 - Google Patents

一种三尖瓣瓣膜假体 Download PDF

Info

Publication number
WO2022041638A1
WO2022041638A1 PCT/CN2021/072486 CN2021072486W WO2022041638A1 WO 2022041638 A1 WO2022041638 A1 WO 2022041638A1 CN 2021072486 W CN2021072486 W CN 2021072486W WO 2022041638 A1 WO2022041638 A1 WO 2022041638A1
Authority
WO
WIPO (PCT)
Prior art keywords
anchoring
valve prosthesis
anchor
tricuspid valve
anchoring structure
Prior art date
Application number
PCT/CN2021/072486
Other languages
English (en)
French (fr)
Inventor
魏鹂萱
Original Assignee
江苏臻亿医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202021793124.7U external-priority patent/CN212592571U/zh
Priority claimed from CN202010862817.5A external-priority patent/CN111904664A/zh
Application filed by 江苏臻亿医疗科技有限公司 filed Critical 江苏臻亿医疗科技有限公司
Priority to EP21806112.5A priority Critical patent/EP3988055B1/en
Priority to US17/611,124 priority patent/US20220304806A1/en
Publication of WO2022041638A1 publication Critical patent/WO2022041638A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2442Annuloplasty rings or inserts for correcting the valve shape; Implants for improving the function of a native heart valve
    • A61F2/2454Means for preventing inversion of the valve leaflets, e.g. chordae tendineae prostheses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2412Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body with soft flexible valve members, e.g. tissue valves shaped like natural valves
    • A61F2/2418Scaffolds therefor, e.g. support stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2442Annuloplasty rings or inserts for correcting the valve shape; Implants for improving the function of a native heart valve
    • A61F2/2445Annuloplasty rings in direct contact with the valve annulus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M39/00Tubes, tube connectors, tube couplings, valves, access sites or the like, specially adapted for medical use
    • A61M39/22Valves or arrangement of valves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0008Fixation appliances for connecting prostheses to the body
    • A61F2220/0016Fixation appliances for connecting prostheses to the body with sharp anchoring protrusions, e.g. barbs, pins, spikes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0028Shapes in the form of latin or greek characters
    • A61F2230/0034D-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • A61F2230/0067Three-dimensional shapes conical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0037Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in height or in length
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0039Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in diameter

Definitions

  • the invention relates to the technical field of medical devices, in particular to a valve prosthesis implanted in the heart for replacing the native tricuspid valve valve.
  • Heart valves are membrane-like structures that open and close in the organs of humans and certain animals. There are four valves in everyone's heart. That is, the aortic valve connecting the left ventricle and the aorta, the pulmonary valve connecting the right ventricle and the pulmonary artery, the mitral valve connecting the left atrium and the left ventricle, and the tricuspid valve connecting the right atrium and the right ventricle. They all act as one-way valves, so that blood can only flow from one direction to the other and not back.
  • valvular heart disease With the development of social economy and the aging of the population, the incidence of valvular heart disease has increased significantly. Studies have shown that the incidence of valvular heart disease in the elderly over 75 years old is as high as 13.3%. At present, traditional surgery is still the first choice for patients with severe valvular disease, but for the elderly, patients with multiple organ diseases, a history of thoracotomy, and poor cardiac function, traditional surgery has high risks and death. The rate is high, and some patients do not even have the opportunity for surgery.
  • the tricuspid valve As the atrioventricular valve of the right heart, the tricuspid valve is similar in structure to the mitral valve, including leaflets, annulus, chordae tendineae, papillary muscles and myocardium. Transcatheter tricuspid valve replacement/repair has the advantages of no thoracotomy, less trauma, and quicker recovery for patients, and has received extensive attention from experts and scholars.
  • the present invention provides a tricuspid valve prosthesis, which can solve the above-mentioned defects in the prior art.
  • a tricuspid valve prosthesis comprising: a stent body implanted at the tricuspid valve annulus for supporting artificial valve leaflets; and an anchoring structure arranged above the stent body for anchoring the stent body At the native valve annulus, it is prevented from being displaced; wherein the anchoring structure is configured to be partially attached to the fossa ovale of the interatrial septum, and by attaching the fossa ovalis, a retention force is formed, thereby realizing the valve prosthesis. anchoring effect.
  • the present invention makes full use of the concave structure of the fossa ovale to clamp the anchoring structure part in the fossa ovalis, thereby providing a certain retention force and preventing the valve prosthesis from moving when the heart is compressed;
  • the anchoring structure of the present invention changes the traditional anchoring method of clipping or grasping the valve leaflet, and does not stretch the tendon chordae or damage the valve leaflet.
  • the anchoring structure includes a first anchor, and the first anchor is configured to have at least one protruding portion embedded in the fossa ovalis and abutting the inner wall of the fossa ovalis to lift. To the anchoring effect, it provides effective anchoring force for the valve prosthesis.
  • the protruding portion is preferably an arc-shaped structure constructed of a rod-shaped member.
  • one protruding portion may be provided.
  • at least two protruding portions are provided, and each protruding portion may be provided with at least two protruding portions.
  • the portion extends in the axial direction and a plurality of the protruding portions are arranged side by side, and the juxtaposed arrangement means that the plurality of protruding portions are distributed along the direction of the long axis of the fossa ovalis.
  • the rod-shaped member has a simple forming process, and a plurality of protruding parts are simultaneously embedded in the fossa ovalis and fit the short axis, which can provide a more stable retention effect.
  • the anchoring structure further includes a second anchor that is secured to the atrial wall by radial force to provide further anchoring force.
  • the second anchor is arranged in the right atrium in an oversize manner, so as to provide radial force for anchoring.
  • the second anchor is configured to be configured with a convex portion
  • the convex portion is embedded in the fossa ovalis to provide further anchoring force
  • the convex portion fits the inner wall of the fossa ovalis, which can prevent the second anchoring. displacement of the piece.
  • the second anchor is connected with the first anchor , the atrial wall at the upper edge of the fossa ovalis is thicker, which can withstand greater compression, and can also play a role in further stabilizing the anchoring structure.
  • the second anchor is configured as a circular or arc-shaped rod-like structure
  • the extension direction of the second anchor and the extension direction of the first anchor are set at a predetermined angle
  • the predetermined angle makes the second anchor stress Partially near the fossa ovalis, avoiding squeezing the triangle of Koch and conducting tissue.
  • the anchoring structure further comprises at least one connecting portion, the anchoring structure is fixed to the bracket body through the connecting portion, and at a position close to the bracket body, the connecting portion is configured to face the bracket
  • the direction of the main body of the stent extends so that the stressed part of the anchoring structure of the present invention is near the fossa ovalis, avoiding squeezing Koch's triangle and conduction tissue, and avoiding blocking the coronary sinus orifice and the inferior vena cava in the bottom area of the right atrium.
  • the number of the connecting parts is provided in multiples, and the upper edge of the connecting parts extends in a direction away from the axis of the bracket body. That is, the upper edge of the connecting portion is attached to the atrial wall, and multiple connecting portions can increase the contact area of the anchoring structure, thereby providing enhanced anchoring force.
  • a plurality of connecting parts can also be used to stabilize the above-mentioned anchoring structure.
  • the connecting parts are evenly distributed along the circumferential direction of the stent body, and the specific number should be set according to the anchoring requirements and the difficulty of crimping.
  • the anchoring structure further includes a protruding portion, and the protruding portion includes an anchoring needle pierced into the atrium wall or a barb for grasping tissue, so as to play a further anchoring role.
  • the protruding portion is disposed at the end away from the main body of the stent, avoiding the fossa ovalis and preventing the anchoring needle or the barb from piercing the fossa ovalis.
  • the anchoring structure is made of a material with good biocompatibility, and the material with good biocompatibility is conducive to endothelialization and can help repair fossa ovalis defects, such as congenital patent foramen ovale, subsequent A hole in the fossa ovalis left over from a fenestrated atrial septal defect or left heart intervention.
  • the material with good biocompatibility is conducive to endothelialization and can help repair fossa ovalis defects, such as congenital patent foramen ovale, subsequent A hole in the fossa ovalis left over from a fenestrated atrial septal defect or left heart intervention.
  • the surface of the anchoring structure is also provided with a coating layer or a skirt
  • the coating layer can be set by means of coating, woven cloth stitching, etc.
  • the material of the coating layer can be selected from PET, PTFE or ePTFE, PU, etc. Materials with good biocompatibility and easy endothelialization can not only protect the native tissue from being scratched by the scaffold frame, but also increase the area of endothelialization, providing assistance for anchoring.
  • the skirt can be set on the connecting part of the anchoring structure, and part of the mesh should be exposed to avoid extrusion and contact with the Koch triangle, and avoid blocking the inferior vena cava orifice and the coronary sinus orifice.
  • the anchoring structure of the present invention is partially attached to the fossa ovale of the interatrial septum, and the concave structure of the fossa ovale forms a retention force for the anchoring structure, thereby realizing the anchoring effect on the valve prosthesis, changing the
  • the traditional anchoring method of clipping or grasping the valve leaflet is adopted, and it will not stretch the chordae tendineae or damage the valve leaflet.
  • the first anchor is anchored by embedding the protruding portion into the fossa ovalis, and the shape of the protruding portion is simple and easy to implement.
  • the anchoring structure further includes a second anchor that is anchored to the atrium wall, and a second anchor
  • the component When the component is configured to be partially embedded in the fossa ovalis, it further provides enhanced anchoring force; the first anchor and the second anchor work together, and the anchoring is firm.
  • the anchoring structure of the present invention plays a fixing role through the connecting portion, and extends toward the stent body at a position close to the stent body to avoid conducting tissue, and the main force-bearing part of the anchoring structure is near the fossa ovalis to avoid crowding. Compression of Koch's triangle and conduction tissue to prevent conduction block.
  • FIG. 1 is a schematic front view of the valve prosthesis according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic side view of the valve prosthesis according to Embodiment 1 of the present invention.
  • FIG. 3 is a schematic side view of the valve prosthesis according to Embodiment 2 of the present invention.
  • FIG. 4 is a schematic top view of the valve prosthesis according to Embodiment 2 of the present invention.
  • FIG. 5 is a schematic front view of the valve prosthesis according to Embodiment 2 of the present invention.
  • FIG. 6 is a schematic structural diagram of the valve prosthesis implanted at the tricuspid valve annulus according to Embodiment 2 of the present invention.
  • Figure 7 is a schematic diagram of the anatomical structure of the right atrium.
  • stent body 110 inflow section 111; outflow section 113; transition section 112; anchoring structure 210; second anchor 212; extension 213; first anchor 211; 2112; the outer convex part 2121; the second connecting section 2122.
  • the invention provides an implantable tricuspid valve prosthesis, which fully utilizes the native structure of the fossa ovale, and provides a certain anchoring force by partially embedding the anchoring structure into the fossa ovale, thereby realizing the anchoring of the valve prosthesis.
  • the tricuspid valve usually refers to the tricuspid valve complex, which is located between the right atrium and the right ventricle. It consists of the tricuspid annulus, the tricuspid valve, the chordae tendineae and the papillary muscle. Ensure blood flow from the atria to the ventricles.
  • FIG. 7 it is a schematic diagram of the anatomical structure of the right atrium. The right atrium has three entrances, namely the superior and inferior vena cava orifices and the coronary sinus orifice; and one exit, namely the tricuspid valve orifice.
  • the orifice of the superior vena cava is located in the posterior and upper part of the atrium, and there is the orifice of the inferior vena cava below.
  • the left anterior of the inferior vena cava is the orifice of the tricuspid valve, and the orifice of the coronary sinus is between the orifice of the inferior vena cava and the tricuspid valve.
  • the medial wall of the right atrium is the atrial septum, and its lower part has an oval depression called the fossa ovalis.
  • the fossa ovalis is located in the lower 1/3 of the interatrial septum, at the upper left of the inferior vena cava orifice, and there is a small groove with a depth of 3 to 4 mm in the central depression.
  • atrioventricular node around the native valve annulus, located below the right endocardium of the atrial septum, at the anterior medial border of the coronary sinus ostium, the attachment border of the tricuspid valve septum, and the Todaro tendon, forming the triangle of Koch.
  • the anterior vertex of the triangle is the anterior valve and the The commissure of the septum is adjacent to the atrioventricular node.
  • the atrioventricular node is an important part of the cardiac conduction system.
  • the Todaro tendon In addition to supporting and pulling the inferior vena cava valve and coronary sinus valve, the Todaro tendon also supports and fixes the myocardium at the lower part of the atrial septum. Therefore, in the valve design of the tricuspid valve in situ replacement, the extrusion and coverage of the Koch triangle area should be avoided as much as possible.
  • the valve prosthesis generally consists of two parts: a valve stent and an artificial valve leaflet fixed thereon, wherein the valve stent mainly includes a stent body 110 and an anchoring structure 210, and the stent body 110 is a hollow cylindrical structure with openings at both ends, The artificial valve leaflets are fixed to the inner circumference of the stent body 110 .
  • the bracket main body 110 and the anchoring structure 210 are connected by means of riveting, welding, snapping, sewing and the like.
  • the anchoring structure 210 may be made of nickel-titanium alloy or other biocompatible materials with shape memory properties, and may also be elastically or plastically deformable materials, such as balloon-expandable materials.
  • the valve prosthesis has two states: a crimped state and an expanded state, that is, the stent body 110 and the anchoring structure 210 both have these two states. Unless otherwise emphasized in the present invention, both are described in the expanded state.
  • the stent body 110 includes an inflow section 111 , an outflow section 113 and a transition section 112 therebetween, and the outflow section 113 is located downstream of the inflow channel according to the direction of blood flow.
  • the stent body 110 further includes a hanging ear (not shown in the figure), the hanging ear is connected to the end of the outflow section 113 away from the passing section 112, and the hanging ear is used to connect with the delivery system to ensure valve loading.
  • the relative position of the valve prosthesis to the delivery system does not change during entry into the delivery system, release of the valve from the delivery system, and delivery of the valve within the delivery system in vivo.
  • the cross-sectional shape of the bracket body 110 may be circular, oval, D-shaped, flower-shaped or other irregular shapes.
  • the stent body 110 can be made of metals such as Nitinol, titanium alloys, cobalt chromium alloys, MP35n, 316 stainless steel, L605, Phynox/Elgiloy, platinum chromium, etc., or other biocompatible metals known to those skilled in the art .
  • stent body 110 may also be fabricated from an elastically or plastically deformable material, such as balloon-expandable, or may be a shape memory responsive to temperature changes to transition between a contracted delivery state and an expanded deployed state alloy.
  • the stent body 110 is manufactured by cutting a nickel-titanium alloy pipe, the outer diameter of the pipe is 5-15 mm, and the diameter size after shaping is selected according to actual needs.
  • the stent body 110 has significant radial and axial stiffness and can withstand the pulling of the valve leaflets.
  • the stent main body 110 is composed of structural units whose axial shape can be changed, such as mesh structural units or wavy structural units, these structural units are connected to each other in the circumferential direction, and the composition, and the multiple rows of units in the axial direction can be directly or indirectly connected to each other.
  • the stent body 110 is preferably a mesh structure, and the mesh units are triangular, rhombus, pentagon, water drop, etc. mesh units that can form a closed shape, preferably a rhombus structure.
  • the inner surface or outer surface or both sides of the stent main body 110 cover the skirt to achieve a sealing function and ensure that the single channel of blood flows from the inflow segment end of the prosthetic valve leaflet to the outflow segment end of the prosthetic valve leaflet.
  • the skirt is made of pericardium (porcine pericardium, bovine pericardium, sheep pericardium, etc.) or other biocompatible polymer materials (such as PET (polyethylene terephthalate), PTFE (polytetrafluoroethylene) etc.) are manufactured.
  • the valve prosthesis includes at least two artificial valve leaflets, the number of artificial valve leaflets is the same or different from that of the original valve leaflets, and is prepared from animal pericardium or other biocompatible polymer materials, and one end of the valve leaflets is directly or indirectly connected to the stent body 110. Indirect stable connection, the other end of the leaflet is the free end. In the working state, the artificial valve leaflet replaces the original valve leaflet to realize the function of opening and closing the blood channel.
  • valve prosthesis as described above is implanted in the heart through a delivery system, the valve prosthesis is crimped and loaded into a delivery device such as a sheath, implanted at the target site and released, and the released valve prosthesis is expanded and anchored at the target site.
  • a delivery device such as a sheath
  • valve prosthesis and “valve” have the same meaning.
  • axial refers to the axial direction of the stent body, and “above” includes not only directly above, but also laterally above.
  • the terms “installed”, “connected” and “connected” should be understood in a broad sense, unless otherwise expressly specified and limited, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.
  • installed should be understood in a broad sense, unless otherwise expressly specified and limited, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.
  • the valve prosthesis includes a stent body 110, which is implanted at the tricuspid valve annulus to support the artificial valve leaflets; and also includes an anchoring structure 210, which is provided with Above the stent body 110, it is used to anchor the stent body 110 at the native valve annulus to prevent its displacement; wherein, the anchoring structure 210 is configured to be partially attached to the fossa ovalis of the interatrial septum by attaching the fossa ovalis to form a retention force, thereby realizing the anchoring effect on the valve prosthesis.
  • the anchoring structure 210 is partially embedded in the fossa ovale and is arranged in a manner of fitting to the fossa ovalis. Retention force to prevent displacement of the valve prosthesis during compression of the heart.
  • FIG. 1 is a schematic front view of the valve prosthesis in this embodiment
  • FIG. 2 is a side view of the valve prosthesis in this embodiment.
  • the anchoring structure 210 includes a first anchor 211, and the first anchor 211 is configured to have at least one protruding part 2111, and the protruding part 2111 is embedded in the fossa ovalis to play an anchoring role.
  • the first anchor 211 is configured to have two protruding parts 2111, the protruding parts 2111 are arc rod-shaped structures extending along the short axis direction of the fossa ovalis, and the two protruding parts 2111 are Side by side structure.
  • the protruding parts 2111 are respectively embedded in the fossa ovalis, and the two protruding parts 2111 are arranged along the long axis direction of the fossa ovalis, which can provide a more stable anchoring force than a single protruding part 2111 .
  • more than two protruding parts 2111 can be selected for configuration, and can be set according to actual requirements.
  • the anchoring structure 210 further includes a connecting part, and the connecting part fixes the anchoring structure 210 above the bracket body 110 .
  • the connecting portion can be integrally formed with other parts of the anchoring structure 210 (such as the protruding portion 2111 in this embodiment), and then fixed to the stent body 110 by welding or suturing, or the connecting portion can also be a drawstring, which is sutured, The other parts of the anchoring structure 210 and the bracket main body 110 are connected in a knotted manner.
  • the first anchor member 211 is formed by bending a rod-shaped member, the first anchor member 211 is bent at the middle to form a symmetrical structure, and protrudes outward at a predetermined position away from the bracket body 110 .
  • Two above-mentioned protruding parts 2111 are formed on the left and right rod-shaped structures respectively; a first connecting segment 2112 is formed at one end close to the bracket main body 110, and the two first connecting segments 2112 are respectively located at the lower edge of the protruding part 2111,
  • the first connecting section 2112 is the connecting portion of the anchoring structure 210 in this embodiment. During implantation, the junction of the first connecting segment 2112 and the protruding portion 2111 fits the lower edge of the fossa ovalis.
  • the integral molding of the first anchor 211 has the advantages of simple structure and easy implementation, and the molded first anchor 211 has a smooth and rounded structure as a whole, which will not cause damage to the native tissue.
  • the protruding parts 2111 are respectively connected to the stent body 110 through the first connecting segment 2112, which can improve the structural stability of the first anchor 211 and prevent torsional deformation.
  • the first connecting segment 2112 and the protruding portion 2111 can be manufactured separately and then connected.
  • the first connecting segment 2112 gradually extends toward the direction of the bracket body 110 .
  • the first connecting segment 2112 is located at the lower edge of the first anchor 211. Since the distance between the orifice of the coronary sinus and the tricuspid valve is very short, and the orifice of the coronary sinus cannot be blocked, the lower end of the first anchor 211 is the coronary sinus.
  • the ostium should be set away from the atrial wall to allow sufficient space to prevent obstruction of the coronary sinus ostium.
  • the protruding portion 2111 is arranged in a manner that can be embedded in the fossa ovalis and fit the short axis of the fossa ovalis, so as to provide an effective anchoring force.
  • the maximum depth d1 of the protruding part 2111 is 2 to 4 mm, and the height h2 is 6 to 10 mm. Among them, if the maximum depth or height is too large, the interference force is too large, and there is a risk of damaging the original structure of the fossa ovalis, and the maximum depth or height is too small. , it cannot be well embedded in the fossa ovalis, and it is difficult to provide a stable anchoring force.
  • depth refers to the vertical distance from the tangent of the outer surface of the protruding part 2111 to the lower edge of the protruding part 2111
  • height refers to the dimension along the axial direction of the stent body 110 .
  • the distance w1 between the lower edges of the two protruding parts 2111 is 5-15 mm, and a suitable distance between the protruding parts 2111 is set to be embedded in the fossa ovalis, which can provide stable anchoring force.
  • the depth (that is, the vertical distance) d2 between the upper edge of the first connecting section 2112 and the lower edge of the first connecting section 2112 is 2-9 mm, the height h1 of the first connecting section 2112 is 11-13 mm, and the first connecting section 2112 will The protruding portion 2111 abuts in the fossa ovalis to generate the above-mentioned anchoring force.
  • the two first connecting segments 2112 are roughly distributed on both sides of the trapezoid, so that the structure of the first anchor 211 is more stable.
  • the first anchor 211 also includes an extension 213 that includes an anchoring needle that penetrates the atrial wall.
  • the first anchor 211 is formed with the protruding portion 213 when it is formed, and the protruding portion 213 is located at the free end of the first anchor 211.
  • the protruding portion 213 protrudes out of the egg
  • the anchoring needle is inserted into the atrial wall to strengthen the anchoring of the valve prosthesis.
  • the upper part and the lower part of the protruding part 2111 are subjected to force at the same time, which further stabilizes the protruding part 2111 in the fossa ovalis.
  • the protruding portion 213 can also be a barb for grasping tissue, which can also play a further anchoring role.
  • the surface of the anchoring structure 210 is further provided with a coating layer or a skirt.
  • a coating layer is provided on the surface of the protruding portion 2111, and the coating layer is made of a polymer material, which can be provided in the form of coating, woven cloth stitching, etc.
  • the specific polymer material can be PET, PTFE Or materials with good biocompatibility and easy endothelialization, such as ePTFE and PU, can not only protect the native tissue from being scratched by the stent frame, but also increase the area of endothelialization and provide assistance for anchoring.
  • the surface of the first connecting segment 2112 is partially covered with a skirt or not covered with a skirt, and at least part of the large mesh is exposed.
  • the large mesh design or notch design of the bracket body 110 can be used to avoid extrusion, Access to the triangle of Koch while avoiding occlusion of the inferior vena cava and coronary sinus ostia.
  • the extension 213 wraps the skirt, which is the anchoring needle, and can protect the native tissue from being scratched by the stent frame.
  • the anchoring structure 210 is further provided with a fixing ear, and the fixing ear is arranged on the protruding part 213 .
  • the fixed ear is used to connect with the delivery system to ensure that the relative position of the valve prosthesis and the delivery system remains unchanged when the valve is loaded into the delivery system, the valve is released from the delivery system, and the valve is transported in the delivery system in vivo.
  • the above-mentioned rod-shaped member may have a certain width, and the width of the rod-shaped member determines the contact area with the native tissue, that is, different anchoring strengths can be provided by adjusting the width of the rod-shaped member.
  • the inflow section of the stent body 110 is placed at the native valve annulus, and a small amount of Oversize in the outflow section can stretch the native valve leaflet to prevent its free movement from affecting the prosthetic valve.
  • the first connecting section 2112 is attached to the right atrium wall, or suspended on the In the right atrium, the protruding part 2111 is embedded in the fossa ovalis, the junction of the first connecting section 2112 and the protruding part 2111 fits the lower edge of the fossa ovalis, and the protruding part 213 is placed on the upper edge of the fossa ovalis, using the egg
  • the indentation of the circular socket prevents displacement of the prosthetic valve after implantation.
  • the triangle between the anterior and medial border of the coronary sinus ostium of the right atrium, the attachment border of the tricuspid valve and the tendon of Todaro is called the triangle of Koch. Excessive stimulation in this triangle can lead to arrhythmia.
  • the anchoring structure 210 in this embodiment mainly bears the force near the fossa ovale, which avoids squeezing the Koch's triangle and conduction tissue.
  • This embodiment provides a tricuspid valve prosthesis, which is an improvement on the basis of Embodiment 1, wherein the anchoring structure 210 further includes a second anchor 212, see FIGS. 3-6 , the second anchor 212 Secures to the atrial wall by radial force, thereby providing enhanced anchoring for the valve prosthesis.
  • the first anchor 211 is a rod-shaped structure, and a protruding portion 2111 is disposed along the axial direction.
  • the second anchor 212 is disposed at the upper edge of the protruding portion 2111, and the second anchor 212 is configured to have an outer protruding portion 2121.
  • the outer protruding portion 2121 is embedded into the egg from the upper edge of the protruding portion 2111.
  • the circular fossa provides enhanced anchoring, while the point of force at the upper edge of the fossa ovale prevents damage to the native structure of the fossa ovale.
  • the second anchor 212 is a circular or partially arc-shaped rod-shaped structure, and the second anchor 212 is arranged at a substantially right angle to the extending direction of the first anchor 211 , that is, the second anchor 212 is substantially at a right angle to the extension direction of the first anchor 211 .
  • the upper end surface of the stent main body 110 is parallel, so that the stressed part of the second anchor 212 is near the fossa ovalis, so as to avoid squeezing the triangle of Koch and conduction tissue.
  • the second anchor 212 has a chord length w2 of 48-55 mm, and is fitted to the atrial wall by means of overall Oversize to increase the anchoring strength.
  • the convex portion 2121 is arc-shaped, and the chord length w3 is 9-12 mm. Section 2121 fits the upper edge of the fossa ovalis.
  • chord length refers to the distance between the two furthest end points of the arc.
  • the second anchor 212 is configured as a partial arc, and the connecting portion of the anchoring structure 210 further includes second connecting segments 2122 disposed at both ends of the second anchor 212.
  • the second connecting segments 2122 connect the first Two anchors 212 are fixed on the bracket body 110 .
  • the height h7 of the second connection section 2122 is 20-24 mm, and the width of the connection point with the bracket body 110 is related to the node of the bracket body 110 .
  • the second connecting section 2122 is connected with the second anchor 212 by suture, welding, etc.
  • the second connecting section 2122 is divided into upper, middle and lower parts, the upper part is fitted to the atrial wall, and the height h6 is in the range of 3-6 mm;
  • the middle part is the transition part, which ensures that the upper part of the second connecting section 2122 can fit the atrial wall, and the height h5 is 9-13 mm;
  • the lower part is adducted near the stent body 110 to avoid blocking the ostium of the coronary sinus and the ostium of the inferior vena cava in the bottom region of the right atrium.
  • the number of the second connecting segments 2122 may be one, two or more, and the design is based on the anchoring requirements and the difficulty of crimping.
  • the anchoring structure 210 is a symmetrical structure
  • the second connecting sections 2122 are symmetrically distributed on both sides of the first anchor 211, or the second connecting sections 2122 are evenly distributed along the circumference of the stent body 110, the number of the second connecting sections 2122 and the connection
  • the position should be set according to the anchoring needs and the difficulty of the crimping.
  • the second anchors 212 are formed into a partially arc-shaped rod-shaped structure.
  • a plurality of second anchors 212 may be provided, and the plurality of second anchors 212 are connected to each other. It is a three-dimensional structure, and can provide a more stable anchoring force through the radial force of the three-dimensional structure.
  • the second anchor 212 is disposed on the upper edge of the protruding part 2111 .
  • the second anchor 212 is further connected with the first anchor 211, such as by welding, suturing, and film coating.
  • the atrial wall at the upper edge of the fossa ovalis is thicker and can withstand greater compression, and at the same time can further stabilize the anchoring structure 210 .
  • the upper part of the second connecting section 2122 is a protruding part 213, which can be provided with an anchoring needle, and the anchoring of the valve prosthesis can be strengthened by piercing the atrial wall with the anchoring needle.
  • the second anchor 212 of this embodiment is positioned at the fossa ovalis position by using the Oversize and the native anatomical structure.
  • the upper part of the second connecting segment 2122 is fitted with the atrium wall, and the outer convex part 2121 is embedded in the fossa ovalis Inside, it provides reinforced anchoring effect, and the anchoring is firm.

Landscapes

  • Health & Medical Sciences (AREA)
  • Cardiology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Transplantation (AREA)
  • Vascular Medicine (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Pulmonology (AREA)
  • Anesthesiology (AREA)
  • Hematology (AREA)
  • Prostheses (AREA)

Abstract

一种三尖瓣瓣膜假体,包括:支架主体(110),植入在三尖瓣瓣环处,用于支撑人工瓣叶;锚固结构(210),设于支架主体(110)上方,用于将支架主体(110)锚固在原生瓣环处,防止其发生移位;其中,锚固结构(210)构造成部分附接至房间隔的卵圆窝,通过附接卵圆窝形成固位力,从而实现对瓣膜假体的锚固作用。在卵圆窝原生结构的启示下,充分利用卵圆窝的凹陷结构将锚固结构(210)部分卡固在卵圆窝内,从而提供一定的固位力,防止心脏压缩时瓣膜假体发生移位;锚固结构(210)改变了传统夹瓣叶或者抓取瓣叶的锚固方式,不会牵拉腱索,或者损伤瓣叶。

Description

一种三尖瓣瓣膜假体 技术领域
本发明涉及医疗器械技术领域,特别涉及一种植入心脏内用于替换原生三尖瓣瓣膜的瓣膜假体。
背景技术
心脏瓣膜是人或某些动物的器官里面可以开闭的膜状结构。每个人的心脏内都有四个瓣膜。即连结左心室和主动脉的主动脉瓣、连结右心室和肺动脉的肺动脉瓣、连结左心房和左心室的二尖瓣和连结右心房和右心室的三尖瓣。它们均起单向阀门作用,使血液只能从一个方向流向另一个方向而不能倒流。
随着社会经济的发展和人口的老龄化,瓣膜性心脏病的发病率明显增加,研究表明75岁以上的老年人群瓣膜性心脏病发病率高达13.3%。目前,采用传统外科手术治疗仍是重度瓣膜病变患者的首选治疗手段,但是对于高龄、合并多器官疾病、有开胸手术史以及心功能较差的患者来说,传统外科手术的风险大、死亡率高,部分患者甚至没有手术的机会。
三尖瓣作为右心脏的房室瓣,其结构与二尖瓣类似,包含瓣叶、瓣环、腱索、乳头肌及心肌。经导管三尖瓣的置换/修复术具有无需开胸、创伤小、患者恢复快等优点,受到了专家学者的广泛关注。
虽然三尖瓣瓣膜置换技术飞速发展,但是在瓣膜的设计上仍存在一些公认的难题,比如,1、瓣膜的锚固。现有的三尖瓣设计基本采用夹瓣叶,或者抓取瓣叶进行锚固,这两种锚固方式都会牵拉腱索,对原生瓣叶造成损伤。也有人提出利用房室隔进行锚固,但是这种锚固方式不牢靠,也需要额外借助夹瓣叶的形式,否则易脱落,存在安全隐患。2、存在传导阻滞的风险。通过支架主体进行锚固,支架对传导组织有压迫,会存在传导阻滞的风险。
发明内容
本发明提供了一种三尖瓣瓣膜假体,可以解决现有技术中的上述缺陷。
本发明的技术方案如下:
一种三尖瓣瓣膜假体,包括:支架主体,植入在三尖瓣瓣环处,用于支撑人工瓣叶;锚固结构,设于所述支架主体上方,用于将所述支架主体锚固在原生瓣环处,防止其发生移位;其中,所述锚固结构构造成部分附接至房间隔的卵圆窝,通过附接卵圆窝形成固位力,从而实现对所述瓣膜假体的锚固作用。本发明在卵圆窝原生结构的启示下,充分利用卵圆窝的凹陷结构将锚固结构部分卡固在卵圆窝内,从而提供一定的固位力,防止心脏压缩时瓣膜假体发生移动;本发明的锚固结构改变了传统夹瓣叶或者抓取瓣叶的锚固方式,不会牵拉腱索,或者损伤瓣叶。
较佳地,所述锚固结构包括第一锚固件,所述第一锚固件构造为具有至少一个凸出部,所述凸出部嵌入至卵圆窝内并贴合卵圆窝的内壁以起到锚固作用,为瓣膜假体提供有效的锚固力。
其中,凸出部优选为由杆状件构造成的圆弧形结构,此时,凸出部可以设置有一个,优选的,所述凸出部设置有至少两个,每一所述凸出部沿轴向延伸且多个所述凸出部之间并列排布,并列排布指的是多个凸出部沿卵圆窝长轴的方向分布。杆状件成型的工艺简单,且多个凸出部同时嵌入卵圆窝并贴合短轴,能够提供更加稳定的固位作用。
较佳地,所述锚固结构还包括第二锚固件,所述第二锚固件通过径向作用力固定至心房壁以提供进一步的锚固力。其中,第二锚固件采用Oversize的方式布设在右心房内,从而提供径向作用力以实现锚固。
较佳地,所述第二锚固件构造成配置有一外凸部,所述外凸部嵌入卵圆窝内以提供进一步的锚固力,外凸部贴合卵圆窝内壁,可以防止第二锚固件的移位。
为了防止第一锚固件与第二锚固件的连接处对较为薄软的卵圆窝造成损伤,在所述凸出部的上边缘处,所述第二锚固件与所述第一锚固件连接,卵 圆窝上缘心房壁较厚,可以承受更大的挤压,同时还可以起到进一步稳定锚固结构的作用。
具体的,第二锚固件构造成圆形或弧形的杆状结构,第二锚固件的延伸方向与第一锚固件延伸方向呈预定的角度设置,预定的角度使得第二锚固件的受力部分在卵圆窝附近,避免挤压Koch三角和传导组织。较佳地,所述锚固结构还包括至少一个连接部,所述锚固结构通过所述连接部固定至所述支架主体,在近所述支架主体的位置处,所述连接部构造成朝向所述支架主体的方向延伸,使得本发明的锚固结构的受力部分在卵圆窝附近,避免挤压Koch三角和传导组织,避免遮挡右心房底部区域的冠状窦口和下腔静脉口。
较佳地,所述连接部的数量设置有多个,且所述连接部的上边缘向远离所述支架主体的轴线的方向延伸。即连接部的上边缘附接至心房壁,多个连接部可以增大锚固结构的接触面积,从而提供增强的锚固力。同时,多个连接部还可以用于稳定上述的锚固结构,优选的,连接部沿支架主体的周向均匀分布,具体的数量应根据锚固需求以及压握难度进行设置。
较佳地,所述锚固结构还包括伸出部,所述伸出部包括刺入心房壁的锚定针或抓取组织的倒钩,以起到进一步的锚固作用。
较佳地,所述伸出部配置在远离所述支架主体的端部,避开卵圆窝,防止锚定针或倒钩刺破卵圆窝。
较佳地,所述锚固结构由生物相容性较好的材料制成,生物相容性较好的材料有利于内皮化可以帮助修复卵圆窝缺损,如先天性卵圆孔未闭、继发孔型房间隔缺损或左心介入手术后在卵圆窝上遗留的通道孔。
较佳地,所述锚固结构的表面还设有覆膜层或裙边,覆膜层可通过覆膜、编织布缝合等形式设置,覆膜层的材料可选PET、PTFE或ePTFE、PU等生物相容性好且容易内皮化的材料,既可以保护原生组织不被支架框架刮伤又可以增大内皮化的面积,为锚固提供辅助。当锚固结构表面覆设裙边时,裙边可以设置在锚固结构的连接部上,且应裸露部分网格,避免挤压、接触Koch三角,同时避免遮挡下腔静脉口和冠状窦口。
与现有技术相比,本发明的有益效果如下:
第一,本发明的锚固结构部分附接至房间隔的卵圆窝,通过卵圆窝的凹陷结构形成对所述锚固结构的固位力,从而实现对所述瓣膜假体的锚固作用,改变了传统夹瓣叶或者抓取瓣叶的锚固方式,不会牵拉腱索,或者损伤瓣叶。
第二,第一锚固件通过凸出部以嵌入卵圆窝的方式实现锚固,凸出部的成型方式简单容易实现,当锚固结构还包括锚固至心房壁的第二锚固件,以及第二锚固件构造成部分嵌入卵圆窝时,进一步提供增强的锚固力;第一锚固件、第二锚固件共同作用,锚固牢靠。
第三,本发明的锚固结构通过连接部起到固定作用,在近支架主体的位置处朝向支架主体方向延伸以避开传导组织,且锚固结构的主要受力部分在卵圆窝附近,避免挤压Koch三角与传导组织,防止传导阻滞。
当然,实施本发明的任一产品并不一定需要同时达到以上所述的所有优点。
附图说明
图1是本发明实施例1的瓣膜假体的正视结构示意图;
图2是本发明实施例1的瓣膜假体的侧视结构示意图;
图3是本发明实施例2的瓣膜假体的侧视结构示意图;
图4是本发明实施例2的瓣膜假体的俯视结构示意图;
图5是本发明实施例2的瓣膜假体的正视结构示意图;
图6是本发明实施例2的瓣膜假体植入三尖瓣环处的结构示意图;
图7是右心房的解剖学结构示意图。
附图标记:支架主体110;流入段111;流出段113;过渡段112;锚固结构210;第二锚固件212;伸出部213;第一锚固件211;凸出部2111;第一连接段2112;外凸部2121;第二连接段2122。
具体实施方式
本发明提供一种植入式三尖瓣瓣膜假体,充分利用卵圆窝的原生结构,通过锚固结构部分嵌入卵圆窝的方式,提供一定的锚固力,从而实现瓣膜假体的锚固。
通常所说的三尖瓣是指三尖瓣复合体,位于右心房与右心室之间,由三尖瓣环、三尖瓣、腱索和乳头肌组成,在功能和结构上形成一个整体,确保血流从心房流向心室。参见图7,为右心房的解剖学结构示意图,右心房有三个入口,即上、下腔静脉口以及冠状窦口;以及一个出口即三尖瓣口。上腔静脉口位于心房后上部,下方有下腔静脉口,下腔静脉的左前方为三尖瓣口,冠状窦口在下腔静脉瓣与三尖瓣口之间。右心房的内侧壁为房间隔,其下部有一卵圆形的凹陷,称为卵圆窝。卵圆窝在房间隔的下1/3,下腔静脉口的左上方,中央凹陷处有一深达3~4mm的小沟。
原生瓣环周围有房室结位于房间隔右侧心内膜下方,在冠状窦口前内缘、三尖瓣隔瓣附着缘和Todaro腱,构成Koch三角,三角前部的顶点即前瓣与隔瓣联合处为附近为房室结。房室结是心脏传导系统的重要组成部分,Todaro腱的作用除了支持和牵拉下腔静脉瓣与冠状窦瓣,对房间隔下部的心肌也有一定的支持和固定作用。因此在三尖瓣原位置换的瓣膜设计中应尽量避免挤压及覆盖Koch三角区域。
通常所说的瓣膜假体由两部分组成:瓣膜支架及固定在其上的人工瓣叶,其中,瓣膜支架主要包括支架主体110和锚固结构210,支架主体110为两端开口的中空柱状结构,人工瓣叶固定在支架主体110的内周。支架主体110和锚固结构210之间采用铆接、焊接、卡扣、缝合等方式连接。锚固结构210可以采用镍钛合金或其他具有形状记忆特性的生物相容材料制成,也可以选择可弹性或可塑性变形的材料,如球囊可扩张的材料。
所述瓣膜假体具有压握状态和膨胀状态两种形态,即支架主体110和锚固结构210均具有这两种状态,本发明中如无特殊强调,均为膨胀状态下的特征描述。
其中,参见图1,所述支架主体110包括流入段111、流出段113及位于两者之间的过渡段112,所述流出段113根据血流的方向位于流入道的下游。 可选地,所述支架主体110还包括挂耳(图中未示出),所述挂耳与流出段113远离过段112的端部相连,挂耳用于与输送系统相连,保证瓣膜装载进入输送系统、瓣膜释放脱离输送系统及瓣膜在输送系统中在体内运输时瓣膜假体与输送系统的相对位置不变。
支架主体110的截面形状可以为圆形、椭圆形、D形、花形或其他不规则形状。支架主体110可以采用如镍钛诺、钛合金、钴铬合金、MP35n、316不锈钢、L605、Phynox/Elgiloy、铂铬等金属制成,或如本领域技术人员已知的其它生物相容性金属。可选地,支架主体110还可以由可弹性或可塑性变形的材料制成,如球囊可扩张的,或者可以是响应温度变化以在收缩的递送状态和扩张的展开状态之间转变的形状记忆合金。优选地,支架主体110采用镍钛合金管材切割制造,管材外径为5~15mm,根据实际需要选取定型后的直径尺寸。
所述支架主体110具有显著的径向与轴向刚度,可承受瓣叶的牵拉。所述支架主体110由网状结构单元或波浪形结构单元等轴向形态可进行变化的结构单元组成,这些结构单元在周向上彼此相互连接,其轴向上由至少一排所述的结构单元组成,且轴向上多排单元间可彼此直接连接或间接连接。支架主体110优选网状结构,网格单元为三角形、菱形、五边形、水滴形等可形成封闭形状的网格单元,优选菱形结构。
支架主体110的内表面或外表面或双面覆盖裙边,实现密封功能,保证血液的单一通道为自假体瓣叶的流入段端流向假体瓣叶的流出段端。所述的裙边,采用心包(猪心包、牛心包、羊心包等)或其他生物相容的高分子材料(例如PET(聚对苯二甲酸乙二醇酯)、PTFE(聚四氟乙烯)等)制造而成。
瓣膜假体包括至少两片人工瓣叶,人工瓣叶的数量与原生瓣叶相同或不同,采用动物心包或其他生物相容的高分子材料制备而成,瓣叶的一端与支架主体110直接或间接稳定连接,瓣叶的另一端为自由端。在工作状态下,由人工瓣叶替代原生瓣叶实现开启和关闭血液通道的功能。
如上所述的瓣膜假体通过输送系统植入心脏内,瓣膜假体压握后装载进入输送装置如鞘管内,植入目标位置后释放,释放后的瓣膜假体膨胀并且锚 固在目标位置处。
下面结合具体实施例,进一步阐述本发明。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,需要说明的是,“瓣膜假体”、“瓣膜”具有相同的含义。在本发明的描述中,需要说明的是,“轴向”指的是支架主体的轴向,“上方”不仅仅包括正上方,还包括侧上方。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
如在本说明书中所使用的,单数形式“一”、“一个”以及“该”包括复数对象,除非内容另外明确指出外。术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。术语“或”通常是以包括“和/或”的含义而进行使用的,除非内容另外明确指出外。
实施例1
本实施例提供一种三尖瓣瓣膜假体,所述瓣膜假体包括支架主体110,支架主体110植入在三尖瓣瓣环处,用于支撑人工瓣叶;还包括锚固结构210,设于支架主体110的上方,用于将支架主体110锚固在原生瓣环处,防止其发生移位;其中,锚固结构210构造成部分附接至房间隔的卵圆窝,通过附接卵圆窝以形成固位力,从而实现对所述瓣膜假体的锚固作用。
本实施例在卵圆窝原生结构的启示下,提出一种新的锚固结构,锚固结 构210以部分嵌入卵圆窝内并贴合卵圆窝的方式设置,利用卵圆窝的凹陷结构产生的固位力,防止瓣膜假体在心脏压缩过程中发生移位。
参见图1-图2,图1为本实施例中瓣膜假体的正视结构示意图,图2为本实施例中瓣膜假体的侧视结构示意图。
其中,锚固结构210包括第一锚固件211,第一锚固件211构造为具有至少一个凸出部2111,凸出部2111嵌入至卵圆窝内以起到锚固作用。本实施例中,第一锚固件211构造为具有两个凸出部2111,凸出部2111为弧形的杆状结构,沿卵圆窝的短轴方向延伸,且两个凸出部2111为左右并列结构。植入时,凸出部2111分别嵌入卵圆窝内,两个凸出部2111沿卵圆窝的长轴方向排布,相较于单个凸出部2111,可以提供更加稳定的锚固力。当然,在其他替换实施例中,凸出部2111还可以选择两个以上进行配置,可以根据实际需求进行设置。
锚固结构210还包括连接部,连接部将锚固结构210固定在支架主体110上方。连接部可以与锚固结构210的其他部分(如本实施例的凸出部2111)一体成型,再通过焊接或缝合的方式固定至支架主体110上,或连接部也可以采用拉绳,通过缝合、打结的方式连接锚固结构210的其他部分及支架主体110。
本实施例中,第一锚固件211由一杆状件弯折而成,第一锚固件211在中间处弯折形成一对称的结构,在远离支架主体110的预定位置处向外凸出,分别在左右两个杆状结构上形成两个上述的凸出部2111;在靠近支架主体110的一端形成第一连接段2112,两个第一连接段2112分别位于凸出部2111的下边缘,第一连接段2112即为本实施例中锚固结构210的连接部。植入时,第一连接段2112与凸出部2111的交界处贴合卵圆窝的下边缘。本实施例中第一锚固件211一体成型的方式,具有结构简单、容易实现的优点,并且成型后的第一锚固件211整体为光滑圆润的结构,不会对原生组织造成损伤。同时,相较于单个的第一连接段2112,凸出部2111分别通过第一连接段2112连接至支架主体110,可以提高第一锚固件211结构的稳定性,防止扭转变形。当然,在其他实施方式中,第一连接段2112、凸出部2111可以分别制造,再 连接而成。
其中,自凸出部2111至支架主体110的方向,第一连接段2112逐渐朝向支架主体110的方向延伸。第一连接段2112位于第一锚固件211的下边缘,由于冠状窦口与三尖瓣口之间的距离很短,且冠状窦口不能被遮挡,因此第一锚固件211的下端即冠状窦口处应设置为远离心房壁,以留出足够的空间,防止遮挡冠状窦口。
本实施例中,凸出部2111以能够嵌入卵圆窝内并贴合卵圆窝短轴的方式进行设置,以提供有效的锚固力。凸出部2111的最大深度d1为2~4mm,高度h2为6~10mm,其中,最大深度或高度太大则抵触力太大,有破坏卵圆窝原生结构的风险,最大深度或高度太小,则不能够很好的嵌入卵圆窝,难以提供稳定的锚固力。此处,“深度”指的是凸出部2111的外表面的切线至凸出部2111下边缘的垂直距离,“高度”指的是沿支架主体110轴向方向的尺寸。
两个凸出部2111的下边缘之间的距离w1为5~15mm,凸出部2111之间设置合适的距离嵌入在卵圆窝内,可以提供稳定的锚固力。第一连接段2112上边缘与第一连接段2112的下边缘之间的深度(即垂直距离)d2为2~9mm,第一连接段2112的高度h1为11-13mm,第一连接段2112将凸出部2111抵顶在卵圆窝内,以产生上述的锚固力。两个第一连接段2112大致按梯形的两侧边分布,使第一锚固件211的结构更加稳固,两个第一连接段2112的下边缘的宽度与支架主体110的节点有关。
在一些实施例中,第一锚固件211还包括伸出部213,伸出部213包括刺入心房壁的锚定针。本实施例中,第一锚固件211在成型时即构造出所述的伸出部213,伸出部213位于第一锚固件211的自由端,在植入时,伸出部213伸出卵圆窝上边缘,通过锚定针刺入心房壁来加强瓣膜假体的锚固。另一方面,凸出部2111的上方以及下方同时受力,进一步将凸出部2111稳定在卵圆窝内。在其他实施例中,伸出部213还可以为用于抓取组织的倒钩,同样可以起到进一步的锚固作用。
进一步的,锚固结构210的表面还设有覆膜层或裙边。在一些实施例中,凸出部2111表面设有覆膜层,覆膜层由高分子材料制成,可选择以覆膜、编 织布缝合等形式设置,具体的高分子材料可选PET、PTFE或ePTFE、PU等生物相容性好且容易内皮化的材料,既可以保护原生组织不被支架框架刮伤,又可以增大内皮化的面积,为锚固提供辅助。在一些实施例中,第一连接段2112表面局部包覆裙边或不包覆裙边,裸露至少部分大网格,同时配合支架主体110的大网格设计或缺口设计,可以避免挤压、接触Koch三角,同时避免遮挡下腔静脉口和冠状窦口。在一些实施例中,伸出部213包覆裙边,裙边为锚定针,同时可以保护原生组织不被支架框架刮伤。
在一可选实施例中,锚固结构210上还设置有固定耳,固定耳设置在伸出部213上。固定耳用于与输送系统相连,保证瓣膜装载进入输送系统、瓣膜释放脱离输送系统及瓣膜在输送系统中在体内运输时瓣膜假体与输送系统的相对位置不变。
本实施例中,上述的杆状件可以具有一定的宽度,杆状件的宽度决定与原生组织的接触面积,即,可以通过调整杆状件的宽度以提供不同的锚固力度。
本实施例中瓣膜假体整体放置的位置和作用:
本实施例支架主体110流入段放置在原生瓣环处,流出段少量的Oversize可以撑开原生瓣叶防止其自由运动影响假体瓣膜,第一连接段2112贴于右心房壁,或悬吊在右心房内,凸出部2111嵌入卵圆窝内,第一连接段2112与凸出部2111的交界处贴合卵圆窝的下边缘,伸出部213放置在卵圆窝上缘,利用卵圆窝的凹陷防止假体瓣膜植入后发生移位。
在右心房的冠状窦口前内缘、三尖瓣隔瓣附着缘和Todaro腱之间的三角区,称Koch三角,在此三角区过分刺激,会导致心率失常。本实施例的锚固结构210主要受力部分在卵圆窝附近,规避挤压Koch三角与传导组织。
实施例2
本实施例提供一种三尖瓣瓣膜假体,是在实施例1的基础上进行的改进,其中,锚固结构210还包括第二锚固件212,参见图3-图6,第二锚固件212通过径向作用力固定至心房壁,从而为瓣膜假体提供增强的锚固作用。
参见图3、图4,本实施例中,第一锚固件211为杆状结构,沿轴向方向配置有一个凸出部2111。第二锚固件212配置在凸出部2111的上边缘处,并且第二锚固件212构造为具有一外凸部2121,植入时,外凸部2121从凸出部2111的上边缘嵌入至卵圆窝,提供增强的锚固作用,同时受力点在卵圆窝的上边缘处可以防止损伤卵圆窝的原生结构。
具体的,第二锚固件212为圆形或部分圆弧形的杆状结构,第二锚固件212以与第一锚固件211延伸方向大致呈直角的方式设置,即第二锚固件212大致与支架主体110的上端面平行,使第二锚固件212受力部分在卵圆窝附近,避免挤压Koch三角及传导组织。其中,第二锚固件212弦长w2为48~55mm,通过整体Oversize的方式贴合心房壁增加锚固强度,外凸部2121为弧形,弦长w3为9~12mm,植入时,外凸部2121贴合卵圆窝的上边缘。此处“弦长”指的是弧形最远的两个端点之间的距离。
参见图5,第二锚固件212构造为部分圆弧形,锚固结构210的连接部还包括设置在第二锚固件212的两个端部的第二连接段2122,第二连接段2122将第二锚固件212固定在支架主体110上。第二连接段2122的高度h7为20~24mm,与支架主体110连接处宽度与支架主体110节点有关。第二连接段2122通过缝合、焊接等形式与第二锚固件212相连,第二连接段2122分为上、中、下三个部分,上部贴合心房壁,高度h6的范围在3~6mm;中部是过渡部分,为第二连接段2122上部能贴合心房壁提供保证,高度h5在9~13mm;下部与支架主体110相连,第二连接段2122的下部朝向支架主体110的方向延伸,即下部在近支架主体110处内收,避免遮挡右心房底部区域的冠状窦口和下腔静脉口。当然,在其他实施例中,第二连接段2122的数量可以为一个、两个或多个,综合锚固需求和压握难度进行设计。优选的,锚固结构210为对称结构,第二连接段2122对称分布在第一锚固件211两侧,或第二连接段2122沿支架主体110周向均匀分布,第二连接段2122的数量以及连接的位置应根据锚固需求和压握难度进行设置。
本实施例中,第二锚固件212成型为部分圆弧形杆状结构,在其他替换实施例中,第二锚固件212可以设置有多个,多个第二锚固件212之间相互 连接成型为一立体结构,通过立体结构的径向作用力,能够提供更稳定的锚固力。
本实施例中,第二锚固件212配置在凸出部2111上边缘,为了防止第一锚固件211与第二锚固件212的连接处对较为薄软的卵圆窝造成损伤,在凸出部2111上边缘的预定位置处,第二锚固件212与第一锚固件211进一步连接,如焊接、缝合、覆膜等方式。卵圆窝上缘心房壁较厚,可以承受更大的挤压,同时还可以起到进一步稳定锚固结构210的作用。
本实施例中,第二连接段2122的上部即为一伸出部213,可以设置有锚定针,通过锚定针刺入心房壁来加强瓣膜假体的锚固。
参见图6,本实施例的第二锚固件212利用Oversize及原生解剖结构定位在卵圆窝位置,植入时,第二连接段2122上部与心房壁贴合,外凸部2121嵌入卵圆窝内,提供加强的锚固作用,锚固牢靠。
以上公开的仅为本发明优选实施例。优选实施例并没有详尽叙述所有的细节,也不限制该发明仅为所述的具体实施方式。应该理解,这些实施例仅用于说明本发明,而不用于限定本发明的保护范围。在实际应用中本领域技术人员根据本发明做出的改进和调整,仍属于本发明的保护范围。
显然,根据本说明书的内容,可作很多的修改和变化。本说明书选取并具体描述这些实施例,是为了更好地解释本发明的原理和实际应用,从而使所属领域技术人员能很好地利用本发明。本发明仅受权利要求书及其全部范围和等效物的限制。

Claims (12)

  1. 一种三尖瓣瓣膜假体,其特征在于,包括:
    支架主体,植入在三尖瓣瓣环处,用于支撑人工瓣叶;
    锚固结构,设于所述支架主体上方,用于将所述支架主体锚固在原生瓣环处,防止其发生移位;
    其中,所述锚固结构构造成部分附接至房间隔的卵圆窝,通过附接卵圆窝形成固位力,从而实现对所述瓣膜假体的锚固作用。
  2. 根据权利要求1所述的三尖瓣瓣膜假体,其特征在于,所述锚固结构包括第一锚固件,所述第一锚固件构造为具有至少一个凸出部,所述凸出部嵌入至卵圆窝内以起到锚固作用。
  3. 根据权利要求2所述的三尖瓣瓣膜假体,其特征在于,所述凸出部设置有至少两个,每一所述凸出部沿轴向延伸且多个所述凸出部之间并列排布。
  4. 根据权利要求1或2所述的三尖瓣瓣膜假体,其特征在于,所述锚固结构还包括第二锚固件,所述第二锚固件通过径向作用力固定至心房壁以提供增强的锚固力。
  5. 根据权利要求4所述的三尖瓣瓣膜假体,其特征在于,所述第二锚固件构造成配置有一外凸部,所述外凸部嵌入卵圆窝内以提供进一步的锚固力。
  6. 根据权利要求4所述的三尖瓣瓣膜假体,其特征在于,在所述凸出部的上边缘处,所述第二锚固件与所述第一锚固件连接。
  7. 根据权利要求4所述的三尖瓣瓣膜假体,其特征在于,所述第二锚固件的延伸方向与所述第一锚固件的延伸方向呈预定的角度设置。
  8. 根据权利要求1所述的三尖瓣瓣膜假体,其特征在于,所述锚固结构还包括至少一个连接部,所述锚固结构通过所述连接部固定至所述支架主体,在近所述支架主体的位置处,所述连接部构造成朝向所述支架主体的方向延伸。
  9. 根据权利要求8所述的三尖瓣瓣膜假体,其特征在于,所述连接部的数量设置有多个,且所述连接部的上边缘向远离所述支架主体的轴线的方向 延伸。
  10. 根据权利要求1所述的三尖瓣瓣膜假体,其特征在于,所述锚固结构还包括伸出部,所述伸出部包括刺入心房壁的锚定针或抓取组织的倒钩。
  11. 根据权利要求10所述的三尖瓣瓣膜假体,其特征在于,所述伸出部配置在远离所述支架主体的端部。
  12. 根据权利要求1、2、3或5-11任一所述的三尖瓣瓣膜假体,其特征在于,所述锚固结构的表面还设有覆膜层或裙边。
PCT/CN2021/072486 2020-08-25 2021-01-18 一种三尖瓣瓣膜假体 WO2022041638A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21806112.5A EP3988055B1 (en) 2020-08-25 2021-01-18 Tricuspid valve prosthesis
US17/611,124 US20220304806A1 (en) 2020-08-25 2021-01-18 Tricuspid valve prosthesis

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202021793124.7U CN212592571U (zh) 2020-08-25 2020-08-25 一种三尖瓣瓣膜假体
CN202010862817.5 2020-08-25
CN202010862817.5A CN111904664A (zh) 2020-08-25 2020-08-25 一种三尖瓣瓣膜假体
CN202021793124.7 2020-08-25

Publications (1)

Publication Number Publication Date
WO2022041638A1 true WO2022041638A1 (zh) 2022-03-03

Family

ID=80123093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/072486 WO2022041638A1 (zh) 2020-08-25 2021-01-18 一种三尖瓣瓣膜假体

Country Status (3)

Country Link
US (1) US20220304806A1 (zh)
EP (1) EP3988055B1 (zh)
WO (1) WO2022041638A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090264997A1 (en) * 2004-06-16 2009-10-22 Amr Salahieh Everting Heart Valve
US20110245911A1 (en) * 2010-04-01 2011-10-06 Medtronic, Inc. Transcatheter Valve with Torsion Spring Fixation and Related Systems and Methods
CN102256568A (zh) * 2008-12-19 2011-11-23 爱德华兹生命科学公司 快速连接的人工心脏瓣膜和方法
CN102438546A (zh) * 2008-11-21 2012-05-02 经皮心血管解决方案公司 人工心脏瓣膜和方法
US20130030521A1 (en) * 2011-07-28 2013-01-31 Yaacov Nitzan Devices for reducing left atrial pressure having biodegradable constriction, and methods of making and using same
WO2016186909A1 (en) * 2015-05-18 2016-11-24 Mayo Foundation For Medical Education And Research Percutaneously-deployable prosthetic tricuspid valve
CN111904664A (zh) * 2020-08-25 2020-11-10 江苏臻亿医疗科技有限公司 一种三尖瓣瓣膜假体

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050222489A1 (en) * 2003-10-01 2005-10-06 Ample Medical, Inc. Devices, systems, and methods for reshaping a heart valve annulus, including the use of a bridge implant
AU2012325809B2 (en) * 2011-10-19 2016-01-21 Twelve, Inc. Devices, systems and methods for heart valve replacement
ES2676060T3 (es) * 2014-09-26 2018-07-16 Nvt Ag Dispositivo implantable para el tratamiento de la regurgitación de la válvula mitral
CN106264793B (zh) * 2016-10-24 2021-04-27 宁波健世生物科技有限公司 一种自适应的心脏瓣膜假体

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090264997A1 (en) * 2004-06-16 2009-10-22 Amr Salahieh Everting Heart Valve
CN102438546A (zh) * 2008-11-21 2012-05-02 经皮心血管解决方案公司 人工心脏瓣膜和方法
CN102256568A (zh) * 2008-12-19 2011-11-23 爱德华兹生命科学公司 快速连接的人工心脏瓣膜和方法
US20110245911A1 (en) * 2010-04-01 2011-10-06 Medtronic, Inc. Transcatheter Valve with Torsion Spring Fixation and Related Systems and Methods
US20130030521A1 (en) * 2011-07-28 2013-01-31 Yaacov Nitzan Devices for reducing left atrial pressure having biodegradable constriction, and methods of making and using same
WO2016186909A1 (en) * 2015-05-18 2016-11-24 Mayo Foundation For Medical Education And Research Percutaneously-deployable prosthetic tricuspid valve
CN111904664A (zh) * 2020-08-25 2020-11-10 江苏臻亿医疗科技有限公司 一种三尖瓣瓣膜假体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3988055A4 *

Also Published As

Publication number Publication date
EP3988055B1 (en) 2024-06-05
EP3988055A1 (en) 2022-04-27
EP3988055A4 (en) 2022-09-14
US20220304806A1 (en) 2022-09-29

Similar Documents

Publication Publication Date Title
CN108156805B (zh) 二尖瓣瓣膜组件
US20220280288A1 (en) Heart valve prosthesis anchored to interventricular septum and conveying and releasing method thereof
US11382750B2 (en) Prosthetic mitral valve
US10179042B2 (en) Heart valve repair and replacement
CN108403260B (zh) 瓣膜假体和递送方法
US20200069419A1 (en) Device for treatment of valve regurgitation
CN110603007A (zh) 用于经导管二尖瓣和三尖瓣修复的装置和方法
US20100217382A1 (en) Mitral valve replacement with atrial anchoring
US20190117386A1 (en) Transapically-implanted mitral valve flexible coaptation plate blocking body and implantation method
US11395735B2 (en) Valve stent and valve prosthesis
WO2020192599A1 (zh) 一种心脏瓣膜支架及其假体
CN111110403A (zh) 一种带锚定环的心脏瓣膜装置及其使用方法
WO2023246278A1 (zh) 一种人工心脏瓣膜
CN114028030B (zh) 一种人工心脏瓣膜
CN213963772U (zh) 心脏瓣膜
CN111772879A (zh) 一种人工心脏瓣膜
CN117100459B (zh) 瓣膜支架及瓣膜假体
CN111904664A (zh) 一种三尖瓣瓣膜假体
EP3960128A1 (en) Heart valve prosthesis
CN212382790U (zh) 一种带锚定环的心脏瓣膜装置
CN212395135U (zh) 一种瓣膜支架及包含该瓣膜支架的人工心脏瓣膜
CN212592571U (zh) 一种三尖瓣瓣膜假体
WO2022041638A1 (zh) 一种三尖瓣瓣膜假体
CN212395131U (zh) 一种人工心脏瓣膜
CN210301307U (zh) 一种心脏瓣膜支架及其假体

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021806112

Country of ref document: EP

Effective date: 20211124

NENP Non-entry into the national phase

Ref country code: DE