WO2022041347A1 - 显示面板、显示面板的控制方法及显示装置 - Google Patents

显示面板、显示面板的控制方法及显示装置 Download PDF

Info

Publication number
WO2022041347A1
WO2022041347A1 PCT/CN2020/115838 CN2020115838W WO2022041347A1 WO 2022041347 A1 WO2022041347 A1 WO 2022041347A1 CN 2020115838 W CN2020115838 W CN 2020115838W WO 2022041347 A1 WO2022041347 A1 WO 2022041347A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical modulation
liquid crystal
modulation structure
display panel
Prior art date
Application number
PCT/CN2020/115838
Other languages
English (en)
French (fr)
Inventor
秦广奎
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN202080001980.0A priority Critical patent/CN114586164B/zh
Publication of WO2022041347A1 publication Critical patent/WO2022041347A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133526Lenses, e.g. microlenses or Fresnel lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13718Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on a change of the texture state of a cholesteric liquid crystal
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13793Blue phases
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/34Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 reflector
    • G02F2201/343Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 reflector cholesteric liquid crystal reflector

Definitions

  • the present application relates to the field of display technology, and in particular, to a display panel, a control method of the display panel, and a display device.
  • the display panel is a panel structure with display function.
  • a display panel includes a base substrate and a plurality of light-emitting units located on the base substrate, the light-emitting units can constitute one pixel of the display panel, and the more the number of light-emitting units per unit area on the base substrate, the more The higher the pixel density of the panel, the better the display.
  • Embodiments of the present application provide a display panel, a control method for the display panel, and a display device.
  • the technical solution is as follows:
  • a display panel includes a stacked light-emitting substrate and an optical modulation structure
  • the light-emitting substrate includes a plurality of light-emitting units
  • the optical modulation structure has a switchable first state and a second state.
  • the first light-emitting unit in the plurality of light-emitting units is close to the optical modulation structure.
  • the optical path difference of each region of the optical modulation structure is equal.
  • the plurality of light-emitting units are arranged in rows and columns;
  • a length direction of a line connecting the first position and the second position is parallel to one of a row direction and a column direction in which the plurality of light-emitting units are arranged .
  • the distance between the first position and the second position is about 1/2 of the distance between the first light-emitting unit and the second light-emitting unit, and the second light-emitting unit and the The first light-emitting units are adjacent light-emitting units in the arrangement direction of the plurality of light-emitting units.
  • the optical path difference of each region of the optical modulation structure changes periodically.
  • the optical modulation structure when it is in the second state, it has a plurality of periodic regions, and the optical path difference in the periodic regions is along a length direction of a line connecting the first position and the second position change gradually, and the difference between the maximum optical path difference and the minimum optical path difference in the periodic region is an integer multiple of the wavelength of the light emitted by the light-emitting unit in the optical modulation structure.
  • the optical modulation structure includes a liquid crystal lens substrate.
  • the liquid crystal lens substrate includes a liquid crystal layer and an electrode assembly, and the electrode assembly is used to apply a periodically changing electric field to the liquid crystal layer, so as to periodically change the optical path difference of each region of the liquid crystal layer.
  • the liquid crystal lens substrate includes a liquid crystal layer, a grid structure inside the liquid crystal layer, and an electrode assembly, and the grid structure is used to periodically change the sensitivity of each region of the liquid crystal layer to voltage. .
  • the grid density of the grid structure changes periodically.
  • the material of the grid structure includes a polymer.
  • the electrode assembly includes electrode layers on both sides of the liquid crystal layer.
  • the liquid crystal lens substrate includes a lens substrate, a liquid crystal layer and an electrode assembly;
  • the lens substrate has a plurality of lenses, the liquid crystal layer covers the plurality of lenses, and the refractive index of the liquid crystal layer in a first working state is the same as the refractive index of the lenses, and the first working state It is any one of an operating state when the electrode assembly applies a voltage to the liquid crystal layer and an operating state in which the electrode assembly does not apply a voltage to the liquid crystal layer.
  • the liquid crystal lens assembly includes one of cholesteric liquid crystal and blue phase liquid crystal.
  • the liquid crystal lens assembly includes a double-layer orthogonally-aligned liquid crystal structure, and the double-layer orthogonally-aligned liquid crystal structure includes two sub-layers of liquid crystals, and the orientations of liquid crystals in the two sub-layers of liquid crystals are perpendicular to each other.
  • the optical modulation structure includes a liquid lens.
  • the optical path difference of each region of the optical modulation structure is equal, and when the optical modulation structure is in the second state, each of the optical modulation structures has the same optical path difference.
  • the optical path difference of the area changes periodically;
  • the plurality of light-emitting units are arranged in rows and columns, and when the optical modulation structure is in the second state, the length direction of the line connecting the first position and the second position is arranged with the plurality of light-emitting units
  • the row direction and one of the column directions are parallel;
  • the distance between the first position and the second position is about 1/2 of the distance between the first light-emitting unit and the second light-emitting unit, and the second light-emitting unit and the first light-emitting unit are adjacent light-emitting units in the arrangement direction of the plurality of light-emitting units;
  • the optical modulation structure When the optical modulation structure is in the second state, it has a plurality of periodic regions, and the optical path difference in the periodic regions gradually changes along the length direction of the line connecting the first position and the second position, and The difference between the maximum optical path difference and the minimum optical path difference of the periodic region is an integer multiple of the wavelength of the light emitted by the light-emitting unit in the optical modulation structure;
  • the optical modulation structure includes a liquid crystal lens substrate, and the liquid crystal lens substrate includes a liquid crystal layer and an electrode assembly, and the electrode assembly is used to apply a periodically changing electric field to the liquid crystal layer, so that the light in each area of the liquid crystal layer is adjusted. The distance difference changes periodically.
  • a method for controlling a display panel is provided, the method is used in a display panel, the display panel includes a laminated light-emitting substrate and an optical modulation structure; the light-emitting substrate includes a plurality of light-emitting units; the optical modulation The structure has a switchable first state and a second state, the optical modulation structure is opposite to the light-emitting substrate, and when the optical modulation structure is in the first state, the first light-emitting unit in the plurality of light-emitting units When the optical modulation structure is imaged at a first position on one side of the optical modulation structure close to the light-emitting substrate, and the optical modulation structure is in the second state, the first light-emitting unit is close to the light-emitting substrate when the optical modulation structure is close to the light-emitting substrate.
  • the distance between the first position and the second position is smaller than the distance between the first light-emitting unit and the second light-emitting unit, so the second light-emitting unit is another light-emitting unit in the plurality of light-emitting units except the first light-emitting unit;
  • the method includes:
  • the optical modulation structure is controlled to periodically switch between the first state and the second state.
  • controlling the display panel to periodically switch between the first state and the second state according to the control signal includes:
  • the optical modulation structure is controlled to be in the first state when the display panel displays the mth frame of image, and the display panel is controlled to be in the first state when the display panel displays the m+1th frame of image
  • the m is a positive integer greater than zero.
  • the length of the period is one of a frame and a field.
  • a display device including a display panel, the display panel including a stacked light-emitting substrate and an optical modulation structure;
  • the light-emitting substrate includes a plurality of light-emitting units
  • the optical modulation structure has a switchable first state and a second state, the optical modulation structure is opposite to the light-emitting substrate, and when the optical modulation structure is in the first state, the plurality of light-emitting units
  • the first light-emitting unit is imaged at a first position on the side of the optical modulation structure close to the light-emitting substrate, and when the optical modulation structure is in the second state, the first light-emitting unit is close to the optical modulation structure
  • a second position on one side of the light-emitting substrate is imaged, and on a plane parallel to the optical modulation structure, the distance between the first position and the second position is smaller than the first light-emitting unit and the second light-emitting unit
  • the second light-emitting unit is another light-emitting unit other than the first light-emitting unit among the plurality of light-emitting units.
  • FIG. 1 is a top view of a display panel.
  • FIG. 2 is a schematic structural diagram of a display panel provided by an embodiment of the present application.
  • FIG. 3 is a schematic cross-sectional view of the display panel shown in FIG. 2 .
  • FIG. 4 is an imaging schematic diagram of a first light-emitting unit of a display panel provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of imaging of the first light-emitting unit in the display panel shown in FIG. 1 .
  • FIG. 6 is a top view of another display panel provided by an embodiment of the present application.
  • FIG. 7 is a schematic cross-sectional view of the display panel shown in FIG. 6 in a second state.
  • FIG. 8 is a change trend diagram of the optical path difference of the display panel shown in FIG. 7 .
  • FIG. 9 is a schematic cross-sectional view of the display panel shown in FIG. 6 in another second state.
  • FIG. 10 is a change trend diagram of the optical path difference of the display panel shown in FIG. 9 .
  • FIG. 11 is a schematic structural diagram of a liquid crystal lens substrate provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of another liquid crystal lens substrate provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of another liquid crystal lens substrate provided by an embodiment of the present application.
  • FIG. 14 is a schematic diagram of a double-layer orthogonally aligned liquid crystal structure in an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of a liquid lens provided by an embodiment of the present application.
  • FIG. 16 is a schematic view of the structure of the liquid lens shown in FIG. 15 in a power-on state.
  • FIG. 17 is a flowchart of a control method of a display panel provided by an embodiment of the present application.
  • FIG. 1 is a top view of a display panel.
  • the display panel includes a base substrate 11 and a plurality of light emitting diodes (Light Emitting Diodes, LEDs) 12 arranged on the base substrate 11 .
  • the plurality of LEDs may include blue emitting blue LEDs, green emitting green LEDs, red emitting red LEDs, and the like.
  • the plurality of light-emitting LEDs may constitute a plurality of pixels, and each pixel may include a plurality of LEDs.
  • each pixel may include a blue LED, a green LED, and a red LED.
  • each pixel can emit various colors of color light, and a plurality of pixels on the display panel can jointly form a color image.
  • the plurality of LEDs 12 are also covered with cover glass.
  • Pixels Per Inch refers to the number of pixels included in the unit area of the display panel.
  • the pixel density can be considered as the number of LEDs per unit area. The greater the number of LEDs per unit area, the better the display effect of the display panel will be.
  • the size of the LED chip is required to be reduced step by step, and with the reduction of the chip size, the quantum efficiency of the LED chip decreases rapidly, which affects the display effect.
  • FIG. 2 is a schematic structural diagram of a display panel provided by an embodiment of the present application.
  • the display panel includes laminated light-emitting substrates 21 and an optical modulation structure 2 .
  • the light-emitting substrate 21 includes a plurality of light-emitting units, and the optical modulation structure 22 has at least two switchable states.
  • the optical modulation structure 22 and the light-emitting substrate 21 are disposed opposite to each other, that is, the optical modulation structure 22 and the light-emitting substrate 21 are parallel to each other.
  • the optical modulation structure is in the first state of the at least two states, the first light emitting unit 211 of the plurality of light emitting units 211 is imaged at the first position d1 on the side of the optical modulation structure 22 close to the light emitting substrate 21 .
  • the first light emitting unit 211 forms an image at the second position d2 on the side of the optical modulation structure close to the light emitting substrate, and on a plane parallel to the optical modulation structure, the first The distance between the position d1 and the second position d2 is smaller than the distance between the first light-emitting unit 211 and the second light-emitting unit 212 , and the second light-emitting unit 212 is any one of the plurality of light-emitting units except the first light-emitting unit 211 .
  • the second light-emitting unit 212 may be a light-emitting unit adjacent to the first light-emitting unit 211 (this is the case shown in FIG. 2 ), or the second light-emitting unit 212 may be the farthest away from the first light-emitting unit 211 luminous unit.
  • the distance between the images formed by the first light-emitting unit 211 at the two positions will not be too far, so as to avoid the first light-emitting unit 211 in the two positions.
  • the display screen of the display panel may be split into multiple parts.
  • FIG. 3 which is a schematic cross-sectional view of the display panel shown in FIG. 2 at AA, it can be seen that the two images of the first light emitting unit 211 respectively have one image in different states of the optical modulation structure, and have a total of Two images (the two images are the image i1 at the first position d1 and the image i2 at the second position d2), the state of the optical modulation structure is continuously switched in this way, based on the persistence of vision of the human eye. , the human eye can always observe the two images of the first light-emitting unit, compared with only one image of each LED in the display panel shown in FIG.
  • the display panel shown in FIG. 1 (the image here refers to the image formed by each LED at its actual position In the case where the human eye sees through the cover glass on the LED, it is also the image formed by the LED at the actual position), the display panel shown in FIG. The observed pixel density of the display panel.
  • manufacturing the display panel provided by the embodiment of the present application can save the material cost of the light-emitting unit and the manufacturing process cost.
  • the first light-emitting unit may be any light-emitting unit in the display panel, that is, the optical modulation structure enables each light-emitting unit to have an image in two states.
  • the first light-emitting unit can be imaged at two positions when the optical modulation structure is in two states, and a principle similar to refraction can be applied.
  • FIG. 4 it is an imaging schematic diagram of the first light-emitting unit 211 .
  • the lens structure s can deflect the light emitted by the first light-emitting unit.
  • an image 211a can be formed at the first position d1 other than the actual position d of the first light-emitting unit 211, and the human eye can see through it.
  • the first light-emitting unit seen by the lens structure s is actually an image 211a located at the first position d1.
  • the optical modulation structure may have a structure similar to that shown in FIG. 4 in one state, and in another state, the optical modulation structure may exhibit another structure with different light-refracting capabilities.
  • the optical modulation structure may also include more states, such as a third state, a fourth state, a fifth state, a sixth state, a seventh state, an eighth state, etc., for example, the optical modulation structure includes n states, and the optical When the modulation structure is in the xth state (1 ⁇ x ⁇ n), the first light emitting unit in the plurality of light emitting units is imaged at the xth position dx on the side of the optical modulation structure close to the light emitting substrate.
  • FIG. 5 shows a schematic diagram of imaging of the first light-emitting unit in the display panel shown in FIG. 1, wherein the first light-emitting unit forms 9 images at 9 positions of d1-d9.
  • the image of the third position d3 can be the image formed by the first light-emitting unit at its actual position, which is located at the fourth position d4, the fifth position d5, the sixth position d6, the first position d1, the second position d2, the third position
  • the images of the eight positions of the seventh position d7, the eighth position d8, and the ninth position d9 are the images formed around the actual position of the first light-emitting unit.
  • the first light-emitting unit is close to the optical modulation substrate.
  • a total of 9 images are formed on one side of the light-emitting substrate, which greatly improves the pixel density of the display panel.
  • the embodiments of the present application take two states of the optical modulation structure as examples for description, but with reference to the principles of these two states, the optical modulation structure can obviously have more states.
  • the first state and the third state involved in the embodiments of the present application A two-state is two of a plurality of states.
  • each light-emitting unit can form two images with different positions in different states, and one of the images is located between the two light-emitting units, In this way, the pixel density observed by the human eye can be improved by continuously switching the state of the optical modulation structure without increasing the number of light-emitting units, thereby improving the display effect of the display panel.
  • the optical path difference of each position of the optical modulation structure 22 is equal.
  • Optical path difference is the difference between the optical paths of two beams.
  • the optical path difference of each region of the optical modulation structure 22 is equal, and it can be considered that the optical performance of the optical modulation structure 22 is equivalent to a transparent film. deflection.
  • the first position of the first light-emitting unit is the actual position of the first light-emitting unit. In this way, the requirement for the light deflection ability of the optical modulation structure can be reduced, and the manufacturing difficulty of the optical modulation structure can be reduced.
  • the light emitting unit may be a micro light emitting diode (Micro LED).
  • the plurality of light-emitting units are arranged in rows and columns; when the optical modulation structure is in the second state, the length direction of the connection line between the first position d1 and the second position d2 and the row direction and column direction of the plurality of light-emitting units are arranged. one of the directions is parallel.
  • the arrangement direction of the two images of the first light emitting unit is the same as the arrangement direction of the light emitting units on the display panel, which improves the orderliness of each pixel of the display panel, thereby improving the display effect of the display panel.
  • FIG. 2 shows a situation in which the length direction f of the connecting line between the first position d1 and the second position d2 is parallel to the row direction in which the plurality of light emitting units are arranged.
  • the length direction of the line connecting the first position d1 and the second position d2 may also be parallel to the column direction in which the plurality of light emitting units are arranged, which is not limited in this embodiment of the present application.
  • the length direction of the line connecting the first position d1 and the second position d2 can be parallel to any one of the column direction or the row direction.
  • FIG. 6 is a top view of another display panel according to an embodiment of the present application.
  • the distance between the first position d1 and the second position d2 is about 1/2 of the distance between the first light-emitting unit 211 and the second light-emitting unit 212, and the second light-emitting unit 212 and the first light-emitting unit 211 are more than The arrangement direction of each light-emitting unit (Fig.
  • the second light-emitting unit 212 and the first light-emitting unit 211 are two adjacent light-emitting units in the row direction of the arrangement of the plurality of light-emitting units, but the second light-emitting unit 212
  • the unit 212 and the first light-emitting unit 211 may also be two light-emitting units that are adjacent in the column direction of the arrangement of the plurality of light-emitting units, which are not limited in this embodiment of the present application).
  • the term "about” refers to that two quantities are approximately equal, and the meaning can be referred to the about equal sign in mathematics.
  • A is about 1/2 of B, which means that A and B are about equal to 1/2.
  • the image formed by the first light-emitting unit 211 at the first position d1 is the image formed by the first light-emitting unit 211 at the actual position
  • the second light-emitting unit 212 may also be at the second light-emitting unit 212 Actual position imaging
  • the image formed by the first light-emitting unit 211 at the second position d1 is located between the two images formed by the first light-emitting unit 211 and the second light-emitting unit 212 at the actual position, and the pixel density is relatively uniform, which improves the The display effect of the display panel.
  • the image formed by the first light-emitting unit 211 at the second position d1 may also be located at other positions between the first light-emitting unit 211 and the second light-emitting unit 212, such as a position closer to the first light-emitting unit 211, Or a position closer to the second light-emitting unit 211, which is not limited in this embodiment of the present application.
  • the optical modulation structure 22 may have various structures in the second state.
  • FIG. 7 it is a schematic cross-sectional view of the display panel shown in FIG. 6 at a position B-B in a second state.
  • the optical modulation structure 22 is a wedge-shaped lens.
  • the optical path difference thereof gradually increases along the arrangement direction f of the first light-emitting unit 211 and the second light-emitting unit 212 .
  • the variation trend of the optical path difference of the optical modulation structure 22 may be as shown in FIG. 8 .
  • the abscissa is the distance coordinate of the optical modulation structure 22 along the arrangement direction f of the first light-emitting unit 211 and the second light-emitting unit 212 in FIG. 7, the unit is micrometer ( ⁇ m), and the ordinate is the optical path difference, the unit is microns. It can be seen that the optical path difference c1 gradually increases along the direction f.
  • the inventor found through calculation that if the position of the image of the light-emitting unit on the entire display panel is to be shifted as a whole (that is, the shift direction and distance of the image of each light-emitting unit are the same), the optical modulation structure 22 needs to be in the position of the light-emitting unit.
  • the difference between the optical path difference at the 0th micron position and the optical path difference at the 600th micron position within every 600 ⁇ m is about 100 ⁇ m.
  • the thickness of the optical modulation structure 22 may be relatively thick.
  • the optical path difference of each region of the optical modulation structure changes periodically.
  • Periodically varying optical modulation structures can achieve optical functions similar to Fresnel lenses. That is, the optical modulation structure can realize the shift of the position of the image of the light-emitting unit when the overall thickness is relatively thin.
  • the optical modulation structure 22 may include a substrate 221 and a plurality of wedge-shaped lens structures 222a located on the substrate 221.
  • the plurality of wedge-shaped lens structures can realize an optical function similar to a Fresnel lens, and can affect the image of the light-emitting unit. position offset. It can be seen that the overall thickness of the optical modulation structure 22 shown in FIG. 9 is much smaller than the overall thickness of the optical modulation structure 22 shown in FIG. 7 .
  • the variation trend of the optical path difference of the optical modulation structure 22 shown in FIG. 9 may be shown in FIG. 10 .
  • the abscissa is the distance coordinate of the optical modulation structure 22 along the arrangement direction f of the first light-emitting unit 211 and the second light-emitting unit 212 in FIG. 9, the unit is micrometer ( ⁇ m), and the ordinate is the optical path difference, the unit is microns. It can be seen that the optical path difference c1 changes periodically along the direction f.
  • the image shift of the light-emitting unit can be realized by forming an optical path difference of 0.4 micrometer within a distance of 0.3 micrometer. If the optical modulation structure 22 is realized by a liquid crystal lens, the ⁇ n (birefringence) of the liquid crystal in the liquid crystal lens is 0.3, and the cell thickness of the liquid crystal is 0.3 ⁇ m.
  • the optical modulation structure 21 when it is in the second state, it has a plurality of periodic regions, and the optical path difference in the periodic regions is along the length of the line connecting the two images of the first light-emitting unit 211 at the first position and the second position.
  • the direction (this direction is parallel to the arrangement direction f of the first light-emitting unit 211 and the second light-emitting unit 212 in FIG. 9 ) gradually changes, and the difference between the maximum optical path difference and the minimum optical path difference in the periodic area is emitted by the light-emitting unit.
  • An integer multiple of the wavelength of light in the optical modulation structure 21 In this way, the aberration generated by the optical modulation structure 21 can be reduced, and the display effect can be improved. Referring to FIG.
  • the region where each wedge-shaped lens structure 222a is located may be a periodic region, and the leftmost optical path difference of each wedge-shaped lens structure 222a in the direction f is the minimum optical path difference, and the rightmost optical path difference
  • the optical path difference is the maximum optical path difference, and the difference between the two optical path differences is an integer multiple of the wavelength of the light emitted by the light-emitting unit.
  • the determination method may include:
  • the coordinates are (201, 0.1), (202, 0.2), (203, 0.3), (204, 0.4), (205, 0), (206, 0.1), (207, 0.2), (208, 0.3) , (209, 0.4), (210, 0), it can be seen that the ordinate changes in cycles of 0.1, 0.2, 0.3, 0.4, and 0, and the cycle interval is the interval with the abscissa 201-205.
  • the implementation manner of the above-mentioned optical modulation structure 22 may include various manners. Each of them will be described below.
  • the optical modulation structure includes a liquid crystal lens substrate.
  • a liquid crystal lens substrate includes a liquid crystal layer 2a and an electrode assembly 2b located outside the liquid crystal layer.
  • the liquid crystal layer can have two states when an electric field is applied and when no electric field is applied. When no electric field is applied to the liquid crystal, the state of the liquid crystal layer can correspond to the first state of the optical modulation structure. The state may correspond to a second state of the optical modulation structure.
  • the electrode assembly 2b is used to apply a periodically changing electric field to the liquid crystal layer 2a, so as to periodically change the optical path difference of each region of the liquid crystal layer.
  • the electrode assembly 2b may include electrode structures 2b1 and 2b2 located on both sides of the liquid crystal layer 2a, wherein one electrode structure 2b1 may be an electrode layer, and the other electrode structure 2b2 may include a plurality of sub-electrodes arranged in an array.
  • the arrangement density can be changed periodically (eg, several micrometers may be a period) along the arrangement direction of the first light-emitting unit and the second light-emitting unit, so as to form a periodically changing electric field.
  • the variation trend of the densities of the plurality of sub-electrodes may be similar to the variation trend of the optical path difference in FIG. 10 .
  • the electrode assembly 2b applies a periodically changing electric field to the liquid crystal layer 2a, and the liquid crystal layer 2a can realize the change trend of the optical path difference as shown in FIG. 10 . Further, the offset of the image of the light-emitting unit is realized.
  • Periodically varying electric fields can be achieved by applying periodically varying voltages to the electrodes in the electrode assembly.
  • the period has a plurality of electrodes arranged along one direction fx, and the voltage loaded on the first electrode in the direction fx can be set to be less than the maximum driving voltage that the electrodes can withstand.
  • An initial value (exemplarily, the initial value can be 0)
  • the voltage loaded on the last electrode in the direction fx can be set to the maximum driving voltage that the electrode can withstand (or a value slightly smaller than the maximum driving voltage) )
  • the voltage carried by the electrodes between the first electrode and the last electrode can gradually increase from the initial value to the maximum driving voltage along the direction fx.
  • another liquid crystal lens substrate includes a liquid crystal layer 2a, a grid structure 2c located inside the liquid crystal layer 2a, and an electrode assembly 2b located outside the liquid crystal layer 2a.
  • the sensitivity of the region to voltage varies periodically. In this way, the liquid crystal layer can also realize the change trend of the optical path difference as shown in FIG. 10 .
  • the mesh density of the mesh structure 2c changes periodically.
  • the variation trend of the grid density of the grid structure 2c may be similar to the variation trend of the optical path difference in FIG. 10 .
  • the grid structure 2c can be formed by a mask whose grayscale changes periodically.
  • the material of the mesh structure includes a polymer.
  • the process of forming the grid structure in the liquid crystal layer may include:
  • the liquid crystal layer is formed by adding the liquid crystal of the polymerizable monomer
  • the liquid crystal layer is irradiated by ultraviolet light through the mask plate with periodically changing grayscale, so that the monomers of the polymer in the liquid crystal layer are polymerized to form a grid structure with periodically changing density.
  • the optical path difference can form periodic changes.
  • the electrode assembly 2b includes electrode layers 2b3 on both sides of the liquid crystal layer. Since the liquid crystal layer can be driven to realize the optical function by an electric field with equal intensity everywhere, the electrodes on both sides of the liquid crystal layer can be both electrode layers, which can simplify the structure and manufacturing process of the liquid crystal lens substrate.
  • another liquid crystal lens substrate includes a lens substrate 2d, a liquid crystal layer 2a, and an electrode assembly 2b located outside the liquid crystal layer 2a; the lens substrate 2d has a plurality of lenses 2d1, through which the lens substrate 2d1
  • the change trend of the optical path difference of 2d can be similar to the change trend of the optical path difference shown in FIG. 10, that is, along the arrangement direction f2 of the plurality of lenses 2d1, the optical path difference of the lens substrate 2d is equal to that of each lens 2d1.
  • the lens substrate 2d can also realize the optical function of shifting the image of the light-emitting unit by periodically changing for the period.
  • the liquid crystal layer 2a covers the plurality of lenses 2d1 and fills the gaps between the lenses 2d1.
  • the refractive index of the liquid crystal layer 2a in the first working state is the same as the refractive index of the lens. In this state, the liquid crystal layer 2a and the lens substrate 2d are equivalent to a film structure with an equal refractive index, corresponding to the first state of the optical modulation structure. .
  • the first working state of the liquid crystal layer 2a is one of the working state when the electrode assembly applies voltage to the liquid crystal layer and the working state when the electrode assembly does not apply voltage to the liquid crystal layer.
  • the lens substrate 2d can restore the optical function of shifting the image of the light-emitting unit.
  • the structure of the electrode assembly 2 b may refer to the liquid crystal lens substrate shown in FIG. 12 , which is not repeated in the embodiment of the present application.
  • the liquid crystal layer may include a liquid crystal selected from a cholesteric liquid crystal and a blue phase liquid crystal. Both of these liquid crystals can control polarized light in various polarization directions.
  • the liquid crystal layer may include a double-layer orthogonally aligned liquid crystal structure, as shown in FIG.
  • the orientation of the liquid crystal in L2) is perpendicular to each other.
  • the double-layer orthogonally aligned liquid crystal structure can also regulate the polarized light in two polarization directions.
  • the liquid crystal lens substrate may include two sub-electrode structures, and the two sub-electrode structures may be used to apply an electric field to the two sub-liquid crystal layers respectively.
  • the sub-electrode structures corresponding to the two sub-liquid crystal layers can also be controlled differently accordingly.
  • the optical modulation structure includes a liquid lens.
  • a liquid lens is a lens that includes a liquid and a control assembly that controls the surface curvature of the liquid.
  • the liquid lens may comprise a capacitive liquid lens.
  • the liquid y in the liquid lens is in a deformed state, and the liquid has a plurality of wedge-shaped structures.
  • the lens 2d1 of the lens substrate 2d in 13 is similar, and it can also realize the periodic change of the optical path difference as shown in FIG. 10, which corresponds to the second state of the optical modulation structure.
  • liquid lens there are many ways to realize the liquid lens.
  • a liquid lens there are two kinds of liquids that are not mixed with each other, one of which is conductive and the other is not conductive.
  • the interface of the two liquids is controlled by the electronic control structure, so that the interface has the function of a lens (ie, the ability to deflect light), and the light will be deflected when passing through the interface.
  • the liquid lens in the embodiments of the present application may also have other structures, which are not limited in the embodiments of the present application.
  • the optical modulation structure may further include a plurality of electronically controlled lens structures corresponding to the light-emitting units one-to-one.
  • electronically controlled lens structures reference may be made to the above-mentioned liquid crystal lens substrate or liquid lens.
  • the multiple lens structures are used to shift the image of each light-emitting unit in a one-to-one correspondence.
  • each light-emitting unit can form two images with different positions in different states, and one of the images is located between the two light-emitting units, In this way, the pixel density observed by the human eye can be improved by continuously switching the state of the optical modulation structure without increasing the number of light-emitting units, thereby improving the display effect of the display panel.
  • FIG. 17 is a flowchart of a control method for a display panel provided by an embodiment of the present application.
  • the method is used in any display panel provided by the above-mentioned embodiment, and the method includes:
  • Step 601 Acquire a control signal.
  • the control signal can be obtained from a control component of the display panel, and the control component can be a control integrated circuit.
  • Step 602 Control the optical modulation structure to periodically switch between the first state and the second state according to the control signal.
  • the optical modulation structure is controlled to be in the first state in the mth period, and the display panel is controlled to be in the second state in the m+1th period, where m is a positive integer greater than zero.
  • the length of the time period may be one frame or half a frame, and the frame here refers to the length of time during which the display panel displays one frame of image.
  • the optical modulation structure when the length of the time segment is one frame, according to the control signal, can be controlled to be in the first state when the display panel displays the mth frame of image, and the display panel can be controlled to be in the first state when the display panel displays the m+1th frame of image.
  • the mth frame may be an odd-numbered frame
  • the m+1 frame may be an even-numbered frame. In this way, the pixel density observed by the human eye can be increased, thereby improving the display effect of the display panel.
  • control method of the display panel provided by the embodiment of the present application, by controlling the optical modulation structure to periodically switch between the first state and the second state according to the control signal, it can be achieved without increasing the number of light-emitting units In this way, the pixel density observed by the human eye is increased, thereby improving the display effect of the display panel.
  • the embodiments of the present application further provide a display device, including any display panel provided in the above-mentioned embodiments.
  • the display device can be various devices with display functions, such as mobile phones, tablet computers, notebook computers and desktop computers.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Liquid Crystal (AREA)

Abstract

一种显示面板、显示面板的控制方法及显示装置,其中显示面板包括层叠的发光基板(21)以及光学调制结构(22);光学调制结构(22)具有可切换的第一状态和第二状态,光学调制结构(22)处于第一状态时,第一发光单元(211)在第一位置(d1)成像,光学调制结构(22)处于第二状态时,第一发光单元(211)在第二位置(d2)成像,通过光学调制结构(22),使得每个发光单元(211,212)在不同的状态能够形成两个位置(d1,d2)不同的像,因此可以在不增加发光单元(211,212)数量的情况下,不断的切换光学调制结构(22)的状态,即可以提升显示面板的显示效果。

Description

显示面板、显示面板的控制方法及显示装置
本申请要求于2020年08月26日提交的申请号为17/002,819、发明名称为“显示面板、显示面板的控制方法及显示装置”的美国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示技术领域,特别涉及一种显示面板、显示面板的控制方法及显示装置。
背景技术
显示面板是一种具有显示功能的面板结构。
一种显示面板中,包括衬底基板以及位于该衬底基板上的多个发光单元,该发光单元可以构成显示面板的一个像素,衬底基板上单位面积的发光单元的数量越多,则显示面板的像素密度越高,进而显示效果也越好。
发明内容
本申请实施例提供了一种显示面板、显示面板的控制方法及显示装置。所述技术方案如下:
根据本申请的一方面,提供了一种显示面板,所述显示面板包括层叠的发光基板以及光学调制结构;
所述发光基板包括多个发光单元;
所述光学调制结构具有可切换的第一状态和第二状态,所述光学调制结构处于所述第一状态时,所述多个发光单元中的第一发光单元在所述光学调制结构靠近所述发光基板的一侧的第一位置成像,所述光学调制结构处于所述第二状态时,所述第一发光单元在所述光学调制结构靠近所述发光基板的一侧的第二位置成像,在平行于所述光学调制结构的平面上,所述第一位置和所述第二位置的距离小于所述第一发光单元与第二发光单元的距离,所述第二发光单元为所述多个发光单元中除所述第一发光单元外的另一个发光单元。
可选地,所述光学调制结构处于所述第一状态时,所述光学调制结构的各 个区域的光程差相等。
可选地,所述多个发光单元呈行列排布;
所述光学调制结构处于所述第二状态时,所述第一位置和所述第二位置的连线的长度方向与所述多个发光单元排布的行方向和列方向中的一个方向平行。
可选地,所述第一位置和所述第二位置之间的距离约为所述第一发光单元和所述第二发光单元之间距离的1/2,所述第二发光单元与所述第一发光单元为在所述多个发光单元的排布方向上相邻的发光单元。
可选地,所述光学调制结构处于所述第二状态时,所述光学调制结构各个区域的光程差周期性变化。
可选地,所述光学调制结构处于所述第二状态时,具有多个周期区域,所述周期区域中的光程差沿所述第一位置和所述第二位置的连线的长度方向逐渐变化,且所述周期区域的最大光程差和最小光程差的差值为所述发光单元发出光线在所述光学调制结构中的波长的整数倍。
可选地,所述光学调制结构包括液晶透镜基板。
可选地,所述液晶透镜基板包括液晶层以及电极组件,所述电极组件用于向所述液晶层施加周期性变化的电场,以使所述液晶层各个区域的光程差周期性变化。
可选地,所述液晶透镜基板包括液晶层、位于所述液晶层内部的网格结构以及电极组件,所述网格结构用于使所述液晶层的各个区域对电压的敏感程度周期性变化。
可选地,所述网格结构的网格密度周期性变化。
可选地,所述网格结构的材料包括聚合物。
可选地,所述电极组件包括位于所述液晶层两面的电极层。
可选地,所述液晶透镜基板包括透镜基板、液晶层以及电极组件;
所述透镜基板具有多个透镜,所述液晶层覆盖在所述多个透镜上,且所述液晶层在第一工作状态的折射率与所述透镜的折射率相同,所述第一工作状态为所述电极组件对所述液晶层施加电压时的工作状态和所述电极组件未对所述液晶层施加电压的工作状态中的任意一种工作状态。
可选地,所述液晶透镜组件包括胆甾型液晶和蓝相液晶中的一种液晶。
可选地,所述液晶透镜组件包括双层正交取向液晶结构,所述双层正交取 向液晶结构包括两个子液晶层,所述两个子液晶层中液晶的取向互相垂直。
可选地,所述光学调制结构包括液体透镜。
可选地,所述光学调制结构处于所述第一状态时,所述光学调制结构的各个区域的光程差相等,所述光学调制结构处于所述第二状态时,所述光学调制结构各个区域的光程差周期性变化;
所述多个发光单元呈行列排布,所述光学调制结构处于所述第二状态时,所述第一位置和所述第二位置的连线的长度方向与所述多个发光单元排布的行方向和列方向中的一个方向平行;
所述第一位置和所述第二位置之间的距离约为所述第一发光单元和第二发光单元之间距离的1/2,所述第二发光单元与所述第一发光单元为在所述多个发光单元的排布方向上相邻的发光单元;
所述光学调制结构处于所述第二状态时,具有多个周期区域,所述周期区域中的光程差沿所述第一位置和所述第二位置的连线的长度方向逐渐变化,且所述周期区域的最大光程差和最小光程差的差值为所述发光单元发出光线在所述光学调制结构中的波长的整数倍;
所述光学调制结构包括液晶透镜基板,所述液晶透镜基板包括液晶层以及电极组件,所述电极组件用于向所述液晶层施加周期性变化的电场,以使所述液晶层各个区域的光程差周期性变化。
另一方面,提供一种显示面板的控制方法,所述方法用于显示面板中,所述显示面板包括层叠的发光基板以及光学调制结构;所述发光基板包括多个发光单元;所述光学调制结构具有可切换的第一状态和第二状态,所述光学调制结构和所述发光基板相对,所述光学调制结构处于所述第一状态时,所述多个发光单元中的第一发光单元在所述光学调制结构靠近所述发光基板的一侧的第一位置成像,所述光学调制结构处于所述第二状态时,所述第一发光单元在所述光学调制结构靠近所述发光基板的一侧的第二位置成像,在平行于所述光学调制结构的平面上,所述第一位置和所述第二位置的距离小于所述第一发光单元与第二发光单元的距离,所述第二发光单元为所述多个发光单元中除所述第一发光单元外的另一个发光单元;
所述方法包括:
获取控制信号;
根据所述控制信号,控制所述光学调制结构在所述第一状态和所述第二状 态之间进行周期性切换。
可选地,所述根据所述控制信号,控制所述显示面板在所述第一状态和所述第二状态之间进行周期性切换,包括:
根据所述控制信号,在所述显示面板显示第m帧图像时控制所述光学调制结构处于所述第一状态,在所述显示面板显示第m+1帧图像时控制所述显示面板处于所述第二状态,所述m为大于零的正整数。
可选地,所述时段的长度为一帧和半帧中一种。
另一方面,提供一种显示装置,包括显示面板,所述显示面板包括层叠的发光基板以及光学调制结构;
所述发光基板包括多个发光单元;
所述光学调制结构具有可切换的第一状态和第二状态,所述光学调制结构和所述发光基板相对,所述光学调制结构处于所述第一状态时,所述多个发光单元中的第一发光单元在所述光学调制结构靠近所述发光基板的一侧的第一位置成像,所述光学调制结构处于所述第二状态时,所述第一发光单元在所述光学调制结构靠近所述发光基板的一侧的第二位置成像,在平行于所述光学调制结构的平面上,所述第一位置和所述第二位置的距离小于所述第一发光单元与第二发光单元的距离,所述第二发光单元为所述多个发光单元中除所述第一发光单元外的另一个发光单元。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是一种显示面板的俯视图。
图2是本申请实施例提供的一种显示面板的结构示意图。
图3是图2所示显示面板的截面示意图。
图4是本申请实施例提供的一种显示面板的第一发光单元的成像示意图。
图5是图1所示显示面板中第一发光单元的一种成像示意图。
图6是本申请实施例提供的另一种显示面板的俯视图。
图7是图6所示的显示面板的一种第二状态下的截面示意图。
图8是图7所示的显示面板的光程差的变化趋势图。
图9是图6所示的显示面板的另一种第二状态下的截面示意图。
图10是图9所示的显示面板的光程差的变化趋势图。
图11是本申请实施例提供的一种液晶透镜基板的结构示意图。
图12是本申请实施例提供的另一种液晶透镜基板的结构示意图。
图13是本申请实施例提供的另一种液晶透镜基板的结构示意图。
图14是本申请实施例中一种双层正交取向液晶结构的示意图。
图15是本申请实施例提供的一种液体透镜的结构示意图。
图16是图15所示液体透镜在加电状态下的结构示意图。
图17是本申请实施例提供的一种显示面板的控制方法的流程图。
通过上述附图,已示出本申请明确的实施例,后文中将有更详细的描述。这些附图和文字描述并不是为了通过任何方式限制本申请构思的范围,而是通过参考特定实施例为本领域技术人员说明本申请的概念。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
图1是一种显示面板的俯视图,该显示面板包括衬底基板11以及在衬底基板11上行列排布的多个发光二极管(Light Emitting Diode,LED)12。这多个LED可以包括发蓝光的蓝光LED,发绿光的绿光LED和发红光的红光LED等。这多个发光LED可以构成多个像素,每个像素可以包括多个LED,例如,每个像素可以包括一个蓝光LED,一个绿光LED以及一个红光LED。该结构下,通过调节每个像素中的不同LED的亮度,即可以使每个像素发出各种各样颜色的色光,显示面板上的多个像素又可以共同组成一幅彩色的图像。其中,多个LED12上还覆盖有盖板玻璃,用户观看显示面板时,看到的是LED在盖板玻璃靠近衬底基板一侧的像,每个LED有一个像。
像素密度(Pixels Per Inch,PPI)是指在显示面板的单位面积中,包括的像素的数量,对于图1所示的显示面板,像素密度可以认为是单位面积中LED的数量。单位面积中LED的数量越多,则显示面板的显示效果就会越好。
但是,通过增加LED密度的方式来提升像素密度,存在的问题至少包括下 面几个:
1、大大增加了显示面板所需的LED芯片的数量,提升了显示面板的成本;
2、受限于LED转印工艺、成本、芯片尺寸等因素,像素密度难以做高;
3、随着像素密度的提升,要求LED芯片的尺寸要一步步减小,而随着芯片尺寸的减小,其LED芯片的量子效率快速下降,影响显示效果。
综上所述,显示面板的像素密度难以无限制的提升像素密度的每一次提升,都需要技术人员付出巨大的创造性劳动。
图2是本申请实施例提供的一种显示面板的结构示意图。该显示面板包括层叠的发光基板21以及光学调制结构2。
发光基板21包括多个发光单元,光学调制结构22具有可切换的至少两种状态,光学调制结构22和发光基板21相对设置,即光学调制结构22和发光基板21互相平行。光学调制结构处于至少两种状态中的第一状态时,多个发光单元211中的第一发光单元211在光学调制结构22靠近发光基板21的一侧的第一位置d1成像。光学调制结构22处于至少两种状态中的第二状态时,第一发光单元211在光学调制结构靠近发光基板的一侧的第二位置d2成像,在平行于光学调制结构的平面上,第一位置d1和第二位置d2的距离小于第一发光单元211与第二发光单元212的距离,第二发光单元212为多个发光单元中除第一发光单元211外的任意一个发光单元。
其中,第二发光单元212可以与第一发光单元211相邻的发光单元(图2示出的是此种情况),或者,第二发光单元212也可以是与第一发光单元211距离最远的发光单元。如此结构下,第一发光单元211在两个位置(这两个位置为第一位置和第二位置)所形成的像之间的距离不会过远,以避免第一发光单元211在这两个位置所形成的像之间的距离过远时,显示面板的显示画面可能分裂成多个部分的问题。
如图3所示,其为图2所示显示面板在A-A处的截面示意图,可以看出第一发光单元211的两个像相较于光学调制结构的不同状态下分别具有一个像,共具有两个像(这两个像为位于第一位置d1的像i1和位于第二位置d2的像i2),如此连续的切换光学调制结构的状态,基于人眼的视觉滞留现象(Persistence of vision),人眼就能够始终观察到第一发光单元的两个像,相较于图1所示的显示面板中每个LED只有一个像(这里的像是指每个LED在其实际位置所成的像, 人眼透过LED上的盖板玻璃看到的也是LED在实际位置形成的像)的情况,图2所示显示面板提高了显示面板上发光单元的像的数量,进而提高了人眼所观察到的显示面板的像素密度。而在制造同样的像素密度的显示面板时,相较于图1所示的显示面板,制造本申请实施例提供的显示面板可以节省发光单元的物料成本以及制造工艺成本。
其中,第一发光单元可以是显示面板中的任意一个发光单元,也即是光学调制结构可以使每一个发光单元都能够在两个状态下各拥有一个像。
需要说明的是,第一发光单元能够在光学调制结构在两个状态下,在两个位置分别成像,可以应用了类似折射的原理。示例性的,如图4所示,其为第一发光单元211的一种成像示意图。可以看出,透镜结构s可以将第一发光单元发出的光线偏折,如此情况下,在第一发光单元211实际所在位置d以外的第一位置d1即可以形成一个像211a,人眼透过透镜结构s所看到的第一发光单元实际为位于该第一位置d1的像211a。
在图4所示的基础上,光学调制结构可以在一个状态下具有类似图4的结构,而在另一个状态下,光学调制结构可以表现为对光线的偏折能力不同的另一个结构。
此外,光学调制结构还可以包括更多的状态,例如第三状态、第四状态、第五状态、第六状态、第七状态和第八状态等,例如,光学调制结构包括n中状态,光学调制结构处于第x状态时(1≤x≤n),多个发光单元中的第一发光单元在光学调制结构靠近发光基板的一侧的第x位置dx成像。示例性的,如图5所示,其示出了图1所示显示面板中,第一发光单元的一种成像示意图,其中,第一发光单元在d1-d9这9个位置形成9个像,其中第三位置d3的像可以是第一发光单元在其实际位置所成的像,位于第四位置d4、第五位置d5、第六位置d6、第一位置d1、第二位置d2、第七位置d7、第八位置d8、第九位置d9的这八个位置的像则为外绕着第一发光单元的实际位置所成的像,如此情况下,第一发光单元在光学调制基板靠近发光基板的一侧共形成了9个像,大大提高了显示面板的像素密度。本申请实施例以光学调制结构的两个状态为例进行说明,但参考这两个状态的原理,该光学调制结构显然可以具有更多的状态,本申请实施例所涉及的第一状态和第二状态为多个状态中的两个状态。
综上所述,本申请实施例提供的显示面板,通过光学调制结构,使得每个发光单元在不同的状态能够形成两个位置不同的像,且其中的一个像位于两个 发光单元之间,如此便可以在不增加发光单元数量的情况下,通过不断的切换光学调制结构的状态,即可以提高人眼所观察到的像素密度,进而提升显示面板的显示效果。
可选地,光学调制结构22处于第一状态时,光学调制结构22的各个位置的光程差相等。
光程差(optical path difference)是两束光光程之差。在本申请实施例中,光学调制结构22的某一个位置的光程差可以由光线在进入光学调制结构22前的相位和从光学调制结构22射出后的相位差转换得到,例如,相位差=(2π/λ)*光程差。
而光学调制结构22的各个区域的光程差相等,可以认为该光学调制结构22的光学性能相当于一个透明薄膜,在此状态下,光学调制结构不会对穿过该光学调制结构的光线进行偏转。相应的,第一发光单元的第一位置即为第一发光单元的实际位置。如此可以减小对于光学调制结构对光线的偏折能力的要求,降低光学调制结构的制造难度。
本申请实施例中,发光单元可以为微型发光二极管(Micro LED)。
可选地,多个发光单元呈行列排布;光学调制结构处于第二状态时,第一位置d1和第二位置d2的连线的长度方向与多个发光单元排布的行方向和列方向中的一个方向平行。如此结构下,第一发光单元的两个像的排布方向与显示面板上的发光单元的排布方向相同,提高了显示面板的各个像素的整齐程度,进而提升了显示面板的显示效果。
参照图2,图2示出了第一位置d1和第二位置d2的连线的长度方向f与多个发光单元排布的行方向平行的情况。但是第一位置d1和第二位置d2的连线的长度方向还可以与多个发光单元排布的列方向平行,本申请实施例对此不进行限制。且对于本领域技术人员来说,该列向或行向并无实际的区别,第一位置d1和第二位置d2的连线的长度方向可以与列向或行向中的任意一个方向平行。
请参考图6,其为本申请实施例提供的另一种显示面板的俯视图。其中,第一位置d1和第二位置d2之间的距离约为第一发光单元211和第二发光单元212之间距离的1/2,第二发光单元212与第一发光单元211为在多个发光单元的排布方向(图6示出的是第二发光单元212与第一发光单元211为在多个发光单 元的排布的行方向上相邻的两个发光单元,但是,第二发光单元212与第一发光单元211也可以为在多个发光单元的排布的列方向上相邻的两个发光单元,本申请实施例对此不进行限制)上相邻的发光单元。
本申请实施例中,所涉及的术语“约为”,是指两个量大约相等,其含义可以参考数学中的约等号。例如A约为B的1/2,可以是指A与B的1/2大约相等。
图6所示的结构中,第一发光单元211在第一位置d1所成的像为第一发光单元211在实际位置所成的像,第二发光单元212同样也可以在第二发光单元212实际位置成像,第一发光单元211在第二位置d1所成的像正好位于第一发光单元211以及第二发光单元212在实际位置所成的两个像之间,像素密度较为均匀,提升了显示面板的显示效果。
需要说明的是,第一发光单元211在第二位置d1所成的像也可以位于第一发光单元211和第二发光单元212之间的其它位置,例如更靠近第一发光单元211的位置,或者更靠近第二发光单元211的位置,本申请实施例对此不进行限制。
图6所示的显示面板中,光学调制结构22在第二状态下可以具有多种结构。示例性的,如图7所示,其为图6所示的显示面板一种第二状态下在位置B-B处的截面示意图。该图中,光学调制结构22为楔形的透镜。其光程差沿第一发光单元211和第二发光单元212的排布方向f逐渐增大。例如,该光学调制结构22的光程差变化趋势可以如图8所示。其中,横坐标为图7中光学调制结构22沿第一发光单元211和第二发光单元212的排布方向f上的距离坐标,单位为微米(μm),纵坐标为光程差,单位为微米。可以看出光程差c1沿方向f逐渐增大。
发明人通过计算发现,若要实现对整个显示面板上的发光单元的像的位置整体进行偏移(即每个发光单元的像的偏移方向和距离均相同),则要光学调制结构22在排布方向f上,每600微米内的第0微米位置光程差和第600微米位置的光程差的差值为100微米左右。进而光学调制结构22的厚度可能较厚。
可选地,光学调制结构处于第二状态时,该光学调制结构各个区域的光程差周期性变化。周期性变化的光学调制结构可以实现类似于菲涅尔透镜的光学功能。即光学调制结构可以在整体厚度较薄的情况下,实现对发光单元的像的位置进行偏移。
示例性的,如图9所示,其为图6所示的显示面板另一种第二状态下在位置B-B处的截面示意图。该图中,光学调制结构22可以包括基板221以及位于基板221上的多个楔形透镜结构222a,这多个楔形透镜结构即可以实现类似于菲涅尔透镜的光学功能,对发光单元的像的位置进行偏移。可以看出,图9所示的光学调制结构22的整体厚度远远小于图7所示的光学调制结构22的整体厚度。
示例性的,图9所示的光学调制结构22光程差变化趋势可以如图10所示。其中,横坐标为图9中光学调制结构22沿第一发光单元211和第二发光单元212的排布方向f上的距离坐标,单位为微米(μm),纵坐标为光程差,单位为微米。可以看出光程差c1沿方向f周期性变化。经过发明人试验,在第一发光单元211和第二发光单元212的排布方向f上,0.3微米的距离内形成0.4微米的光程差即可以实现对发光单元的像的偏移。若光学调制结构22由液晶透镜来实现,液晶透镜中液晶的△n(双折射率)为0.3,液晶的盒厚为0.3微米即可以实现。
可选地,光学调制结构21处于第二状态时,具有多个周期区域,周期区域中的光程差沿第一发光单元211在第一位置和第二位置的两个像的连线的长度方向(该方向在图9中与第一发光单元211和第二发光单元212的排布方向f平行)逐渐变化,且周期区域的最大光程差和最小光程差的差值为发光单元发出光线在光学调制结构21中的波长的整数倍。如此可以降低光学调制结构21产生的像差,提高显示效果。请参考图9,其中每个楔形透镜结构222a所在的区域即可以为一个周期区域,而每个楔形透镜结构222a在方向f上的最左侧的光程差为最小光程差,最右侧的光程差为最大光程差,这两个光程差的差值为发光单元发出光线的波长的整数倍。
上述周期区域的确定方式可以参考菲涅尔透镜中菲涅尔带的确定方式,示例性的,该确定方式可以包括:
以图8所示的光程差为例,根据某一位置的光程差减去透过该位置的光的波长的整数倍,该位置的光学特性不变这一原理,对于图8所示的曲线中每个光程差大于λ的位置,将该位置的光程差大于光线的波长的整数倍的部分减去,如此便可以得到类似图10所示的光程差的变化曲线。示例性的,图8所示的曲线中,某一区间的坐标为(201,18.1),(202,18.2),(203,18.3),(204,18.4),(205,18.5),(206,18.6),(207,18.7),(208,18.8),(209,18.9),(210, 18.10),若λ=0.5,则对该区间的坐标中大于λ的部分全部减去后,得到的坐标为(201,0.1),(202,0.2),(203,0.3),(204,0.4),(205,0),(206,0.1),(207,0.2),(208,0.3),(209,0.4),(210,0),可以看出,纵坐标以0.1、0.2、0.3、0.4、0为周期发生变化,进而周期区间就为横坐标为201-205的这一区间。
本申请实施例中,上述光学调制结构22的实现方式可以包括多种。下面分别进行说明。
可选地,光学调制结构包括液晶透镜基板。
如图11所示,一种液晶透镜基板包括液晶层2a以及位于液晶层外部的电极组件2b。液晶层在施加电场时和不施加电场时,可以具有两种状态,当不对液晶施加电场时,液晶层的状态可以对应于光学调制结构的第一状态,当对液晶施加电场时,液晶层的状态可以对应于光学调制结构的第二状态。
其中,电极组件2b用于向液晶层2a施加周期性变化的电场,以使液晶层各个区域的光程差周期性变化。该电极组件2b可以包括位于液晶层2a两侧的电极结构2b1以及2b2,其中一个电极结构2b1可以为电极层,另一个电极结构2b2可以包括多个阵列排布的子电极,这多个子电极的排列密度可以沿第一发光单元和第二发光单元的排布方向周期性(例如可以以几个微米为周期)变化,以形成周期性变化的电场。示例性的,该多个子电极的密度的变化趋势可以与图10中光程差的变化趋势类似。
电极组件2b向液晶层2a施加周期性变化的电场,液晶层2a即可以实现如图10所示的光程差的变化趋势。进而实现对发光单元的像的偏移。
可以通过向电极组件中的电极加载周期性变化的电压来实现周期性变化的电场。确定电极上加载的电压的值的方法有多种。示例性的,在任意一个周期中,该周期内具有沿一个方向fx排布的多个电极,该方向fx上的第一个电极上加载的电压可以设置为小于电极可以承受的最大驱动电压的一个初始值(示例性的,该初始值可以为0),方向fx上的最后一个电极上加载的电压可以设置为电极可以承受的最大驱动电压(也可以为稍小于该最大驱动电压的一个值),该第一个电极和最后一个电极之间的电极所承载的电压可以沿该方向fx,从初始值逐渐增长到该最大驱动电压。
如图12所示,另一种液晶透镜基板包括液晶层2a、位于液晶层2a内部的网格结构2c以及位于液晶层2a外部的电极组件2b,网格结构2c用于使液晶层 2a的各个区域对电压的敏感程度周期性变化。如此同样可以使液晶层实现如图10所示的光程差的变化趋势。
示例性的,电压敏感程度和光程差可以满足:a=△n*d*sinQ,其中△n是液晶的双折射率,d是液晶层的厚度,Q是液晶偏转的角度,当给液晶层施加电压之后,液晶长轴会朝着电场方向偏转。
其中,网格结构2c的网格密度周期性变化。该网格结构2c的网格密度的变化趋势可以与图10中光程差的变化趋势类似。该网格结构2c可以通过灰度周期性变化的掩膜板来形成。
可选地,网格结构的材料包括聚合物。此时,在液晶层中形成网格结构的过程可以包括:
1、在液晶中加入可聚合的单体;
2、由加入了可聚合的单体的液晶形成液晶层;
3、通过紫外光透过灰度周期性变化的掩膜板照射液晶层,使液晶层中的聚合物的单体聚合,以形成密度周期性变化的网格结构。
其中,网格结构的密度越高,则对液晶的束缚力会越强,进而液晶旋转需要的电压就越高,从而在相同的电压驱动下,即可以实现液晶不同程度的偏转,进而液晶层的光程差可以形成周期性的变化。
可选地,电极组件2b包括位于液晶层两面的电极层2b3。由于通过强度处处相等的电场即可以驱动液晶层实现光学功能,因而液晶层两侧的电极可以均为电极层,如此可以简化液晶透镜基板的结构以及制造工艺。
如图13所示,另一种液晶透镜基板包括透镜基板2d、液晶层2a以及位于液晶层2a外部的电极组件2b;透镜基板2d具有多个透镜2d1,通过该多个透镜2d1,该透镜基板2d的光程差的变化趋势可以与图10所示的光程差的变化趋势类似,也即是沿多个透镜2d1的排布方向f2,该透镜基板2d的光程差以每个透镜2d1为周期而周期性变化,进而该透镜基板2d也能够实现对发光单元的像进行偏移的光学功能。
液晶层2a覆盖在多个透镜2d1上,并填充了透镜2d1之间的间隙。液晶层2a在第一工作状态的折射率与透镜的折射率相同,在此状态下液晶层2a与透镜基板2d相当于一个折射率处处相等的膜层结构,对应于光学调制结构的第一状态。其中,液晶层2a的第一工作状态为电极组件对液晶层施加电压时的工作状态和电极组件未对液晶层施加电压的工作状态中的一种工作状态。对应的,液 晶层2a在第二工作状态(第二工作状态即液晶的两种工作状态中,除第一工作状态外的另一种工作状态)时,其折射率与透镜2d1的折射率不同,透镜基板2d即可恢复对发光单元的像进行偏移的光学功能。
图13所示的液晶透镜基板中,电极组件2b的结构可以参考图12所示的液晶透镜基板,本申请实施例在此不再赘述。
可选地,上述液晶透镜基板中,液晶层可以包括胆甾型液晶和蓝相液晶中的一种液晶。这两种液晶均可以对各种偏振方向的偏振光进行调控。
可选地,上述液晶透镜基板中,液晶层可以包括双层正交取向液晶结构,如图14所示,双层正交取向液晶结构包括两个子液晶层L1和L2,两个子液晶层(L1和L2)中液晶的取向互相垂直。如此结构下,该双层正交取向液晶结构也可以对两种偏振方向的偏振光进行调控。
当液晶层包括双层正交取向液晶结构时,液晶透镜基板中可以包括两个子电极结构,这两个子电极结构可以用于分别向这两个子液晶层施加电场。
需要说明的是,由于双层正交取向液晶结构的两个液晶层与发光单元的距离不同,因而这两个子液晶层对应的子电极结构也可以对应的区别控制。
此外,如图15所示,光学调制结构包括液体透镜。液体透镜(liquid lens)是一种包括液体以及控制该液体的表面曲率的控制组件的透镜。示例性的,液体透镜可以包括电容液体透镜。
在未对液体透镜中的液体施加电压时,其结构可以如图15所示,液体透镜中的液体y处于平展的状态,此时液体透镜相当于透明薄膜,对应于光学调制结构的第一状态。
在对液体透镜中的液体施加电压时,其结构可以如图16所示,液体透镜中的液体y处于变形的状态,该液体具有多个楔形的结构,这位多个楔形的结构可以与图13中的透镜基板2d的透镜2d1类似,其同样能够实现如图10所示的光程差的周期性变化,对应于光学调制结构的第二状态。
液体透镜的实现方式较多,示例性的,一种液体透镜中,具有两种互不相混合的液体,其中一种液体具有导电能力,另一种液体不具有导电能力,如此可以通过外部的电控结构来控制这两种液体的交界面,使该交界面具备透镜的功能(即对光线进行偏折的能力),光线经过该交界面时,会发生偏折。此外,本申请实施例中的液体透镜还可以为其他结构,本申请实施例对此不进行限制。
此外,本申请实施例中,光学调制结构还可以包括与发光单元一一对应的 多个电控透镜结构,该电控透镜结构可以参考上述的液晶透镜基板或液体透镜。这多个透镜结构用于一一对应的对每个发光单元的像进行偏移。
综上所述,本申请实施例提供的显示面板,通过光学调制结构,使得每个发光单元在不同的状态能够形成两个位置不同的像,且其中的一个像位于两个发光单元之间,如此便可以在不增加发光单元数量的情况下,通过不断的切换光学调制结构的状态,即可以提高人眼所观察到的像素密度,进而提升显示面板的显示效果。
图17是本申请实施例提供的一种显示面板的控制方法的流程图,该方法用于上述实施例提供的任一显示面板中,该方法包括:
步骤601、获取控制信号。
该控制信号可以从显示面板的控制组件获取,该控制组件可以为控制集成电路。
步骤602、根据控制信号,控制光学调制结构在第一状态和第二状态之间进行周期性切换。
可选地,根据控制信号,在第m时段控制光学调制结构处于第一状态,在第m+1时段控制显示面板处于第二状态,m为大于零的正整数。其中时段的长度可以为一帧或半帧,这里的帧是指显示面板显示一帧图像的时长。
例如,当时段的长度为一帧时,可以根据控制信号,在显示面板显示第m帧图像时控制光学调制结构处于第一状态,在显示面板显示第m+1帧图像时控制显示面板处于第二状态。示例性的,第m帧可以为奇数帧,m+1帧可以为偶数帧。如此便可以提高人眼所观察到的像素密度,进而提升显示面板的显示效果。
综上所述,本申请实施例提供的显示面板的控制方法,通过根据控制信号控制光学调制结构在第一状态和第二状态之间进行周期性切换,便可以在不增加发光单元数量的情况下,提高人眼所观察到的像素密度,进而提升显示面板的显示效果。
此外,本申请实施例还提供一种显示装置,包括上述实施例提供的任一显示面板。该显示装置可以为手机、平板电脑,笔记本电脑和台式电脑的等各种具有显示功能的装置。
需要指出的是,在附图中,为了图示的清晰可能夸大了层和区域的尺寸。而且可以理解,当元件或层被称为在另一元件或层“上”时,它可以直接在其他元件上,或者可以存在中间的层。另外,可以理解,当元件或层被称为在另一元件或层“下”时,它可以直接在其他元件下,或者可以存在一个以上的中间的层或元件。另外,还可以理解,当层或元件被称为在两层或两个元件“之间”时,它可以为两层或两个元件之间唯一的层,或还可以存在一个以上的中间层或元件。通篇相似的参考标记指示相似的元件。
在本申请中,术语“第一”和“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。术语“多个”指两个或两个以上,除非另有明确的限定。
以上所述仅为本申请的可选实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (20)

  1. 一种显示面板,所述显示面板包括层叠的发光基板以及光学调制结构;
    所述发光基板包括多个发光单元;
    所述光学调制结构具有可切换的第一状态和第二状态,所述光学调制结构处于所述第一状态时,所述多个发光单元中的第一发光单元在所述光学调制结构靠近所述发光基板的一侧的第一位置成像,所述光学调制结构处于所述第二状态时,所述第一发光单元在所述光学调制结构靠近所述发光基板的一侧的第二位置成像,在平行于所述光学调制结构的平面上,所述第一位置和所述第二位置的距离小于所述第一发光单元与第二发光单元的距离,所述第二发光单元为所述多个发光单元中除所述第一发光单元外的另一个发光单元。
  2. 根据权利要求1所述的显示面板,所述光学调制结构处于所述第一状态时,所述光学调制结构的各个区域的光程差相等。
  3. 根据权利要求1所述的显示面板,所述多个发光单元呈行列排布;
    所述光学调制结构处于所述第二状态时,所述第一位置和所述第二位置的连线的长度方向与所述多个发光单元排布的行方向和列方向中的一个方向平行。
  4. 根据权利要求3所述的显示面板,所述第一位置和所述第二位置之间的距离为所述第一发光单元和所述第二发光单元之间距离的1/2,所述第二发光单元与所述第一发光单元为在所述多个发光单元的排布方向上相邻的发光单元。
  5. 根据权利要求3所述的显示面板,所述光学调制结构处于所述第二状态时,所述光学调制结构各个区域的光程差周期性变化。
  6. 根据权利要求5所述的显示面板,所述光学调制结构处于所述第二状态时,具有多个周期区域,所述周期区域中的光程差沿所述第一位置和所述第二位置的连线的长度方向逐渐变化,且所述周期区域的最大光程差和最小光程差的差值为所述发光单元发出光线在所述光学调制结构中的波长的整数倍。
  7. 根据权利要求1-6任一所述的显示面板,所述光学调制结构包括液晶透镜基板。
  8. 根据权利要求7所述的显示面板,所述液晶透镜基板包括液晶层以及电极组件,所述电极组件用于向所述液晶层施加周期性变化的电场,以使所述液晶层各个区域的光程差周期性变化。
  9. 根据权利要求7所述的显示面板,所述液晶透镜基板包括液晶层、位于所述液晶层内部的网格结构以及电极组件,所述网格结构用于使所述液晶层的各个区域对电压的敏感程度周期性变化。
  10. 根据权利要求9所述的显示面板,所述网格结构的网格密度周期性变化。
  11. 根据权利要求10所述的显示面板,所述网格结构的材料包括聚合物。
  12. 根据权利要求9-11任一所述的显示面板,所述电极组件包括位于所述液晶层两面的电极层。
  13. 根据权利要求7所述的显示面板,所述液晶透镜基板包括透镜基板、液晶层以及电极组件;
    所述透镜基板具有多个透镜,所述液晶层覆盖在所述多个透镜上,且所述液晶层在第一工作状态的折射率与所述透镜的折射率相同,所述第一工作状态为所述电极组件对所述液晶层施加电压时的工作状态和所述电极组件未对所述液晶层施加电压的工作状态中的一种工作状态。
  14. 根据权利要求7所述的显示面板,所述液晶透镜组件包括胆甾型液晶和蓝相液晶中的一种液晶。
  15. 根据权利要求7所述的显示面板,所述液晶透镜组件包括双层正交取向液晶结构。
  16. 根据权利要求1-6任一所述的显示面板,所述光学调制结构包括液体透镜。
  17. 根据权利要求1所述的显示面板,所述光学调制结构处于所述第一状态时,所述光学调制结构的各个区域的光程差相等,所述光学调制结构处于所述第二状态时,所述光学调制结构各个区域的光程差周期性变化;
    所述多个发光单元呈行列排布,所述光学调制结构处于所述第二状态时,所述第一位置和所述第二位置的连线的长度方向与所述多个发光单元排布的行方向和列方向中的一个方向平行;
    所述第一位置和所述第二位置之间的距离为所述第一发光单元和第二发光单元之间距离的1/2,所述第二发光单元与所述第一发光单元为在所述多个发光单元的排布方向上相邻的发光单元;
    所述光学调制结构处于所述第二状态时,具有多个周期区域,所述周期区域中的光程差沿所述第一位置和所述第二位置的连线的长度方向逐渐变化,且所述周期区域的最大光程差和最小光程差的差值为所述发光单元发出光线在所述光学调制结构中的波长的整数倍;
    所述光学调制结构包括液晶透镜基板,所述液晶透镜基板包括液晶层以及电极组件,所述电极组件用于向所述液晶层施加周期性变化的电场,以使所述液晶层各个区域的光程差周期性变化。
  18. 一种显示面板的控制方法,所述方法用于显示面板中,所述显示面板包括层叠的发光基板以及光学调制结构;所述发光基板包括多个发光单元;所述光学调制结构具有可切换的第一状态和第二状态,所述光学调制结构和所述发光基板相对,所述光学调制结构处于所述第一状态时,所述多个发光单元中的第一发光单元在所述光学调制结构靠近所述发光基板的一侧的第一位置成像,所述光学调制结构处于所述第二状态时,所述第一发光单元在所述光学调制结构靠近所述发光基板的一侧的第二位置成像,在平行于所述光学调制结构 的平面上,所述第一位置和所述第二位置的距离小于所述第一发光单元与第二发光单元的距离,所述第二发光单元为所述多个发光单元中除所述第一发光单元外的另一个发光单元;
    所述方法包括:
    获取控制信号;
    根据所述控制信号,控制所述光学调制结构在所述第一状态和所述第二状态之间进行周期性切换。
  19. 根据权利要求18所述的方法,所述根据所述控制信号,控制所述显示面板在所述第一状态和所述第二状态之间进行周期性切换,包括:
    根据所述控制信号,在第m时段控制所述光学调制结构处于所述第一状态,在第m+1时段控制所述显示面板处于所述第二状态,所述m为大于零的正整数。
  20. 根据权利要求19所述的方法,所述时段的长度为一帧和半帧中一种。
PCT/CN2020/115838 2020-08-26 2020-09-17 显示面板、显示面板的控制方法及显示装置 WO2022041347A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080001980.0A CN114586164B (zh) 2020-08-26 2020-09-17 显示面板、显示面板的控制方法及显示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17/002,819 US11307450B2 (en) 2020-08-26 2020-08-26 Display panel having micro LEDs, and method for controlling display panel having micros LEDs
US17/002,819 2020-08-26

Publications (1)

Publication Number Publication Date
WO2022041347A1 true WO2022041347A1 (zh) 2022-03-03

Family

ID=80352511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/115838 WO2022041347A1 (zh) 2020-08-26 2020-09-17 显示面板、显示面板的控制方法及显示装置

Country Status (3)

Country Link
US (1) US11307450B2 (zh)
CN (1) CN114586164B (zh)
WO (1) WO2022041347A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009110873A (ja) * 2007-10-31 2009-05-21 Toppan Printing Co Ltd 表示装置
CN108666441A (zh) * 2018-04-28 2018-10-16 上海天马微电子有限公司 显示装置
WO2019066285A2 (en) * 2017-09-29 2019-04-04 Lg Display Co., Ltd. LIGHT EMITTING DISPLAY DEVICE
CN110209000A (zh) * 2019-05-30 2019-09-06 上海天马微电子有限公司 一种显示面板、显示方法及显示装置
CN110459577A (zh) * 2019-08-21 2019-11-15 京东方科技集团股份有限公司 显示面板及其制作方法、显示装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5299037A (en) * 1985-08-07 1994-03-29 Canon Kabushiki Kaisha Diffraction grating type liquid crystal display device in viewfinder
JP3188411B2 (ja) * 1996-10-18 2001-07-16 キヤノン株式会社 反射型液晶装置用画素電極基板、該画素電極基板を用いた液晶装置及び該液晶装置を用いた表示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009110873A (ja) * 2007-10-31 2009-05-21 Toppan Printing Co Ltd 表示装置
WO2019066285A2 (en) * 2017-09-29 2019-04-04 Lg Display Co., Ltd. LIGHT EMITTING DISPLAY DEVICE
CN108666441A (zh) * 2018-04-28 2018-10-16 上海天马微电子有限公司 显示装置
CN110209000A (zh) * 2019-05-30 2019-09-06 上海天马微电子有限公司 一种显示面板、显示方法及显示装置
CN110459577A (zh) * 2019-08-21 2019-11-15 京东方科技集团股份有限公司 显示面板及其制作方法、显示装置

Also Published As

Publication number Publication date
US20220066260A1 (en) 2022-03-03
CN114586164B (zh) 2023-07-14
US11307450B2 (en) 2022-04-19
CN114586164A (zh) 2022-06-03

Similar Documents

Publication Publication Date Title
US11126022B2 (en) Display device and display method thereof
US7630131B2 (en) Image display apparatus and optical member therefor
WO2017173810A1 (zh) 显示装置、裸眼3d显示系统和虚拟现实眼镜
CN106597658B (zh) 显示面板和显示装置
US20100118413A1 (en) Micro-shutter device and method of manufacturing the same
WO2012081497A1 (ja) 照明装置、表示装置および3次元表示装置
EP2064590B1 (en) Curvature reduction for switchable liquid crystal lens array
CN110750009A (zh) 显示装置
WO2012053411A1 (ja) 照明装置および表示装置
KR20050073596A (ko) 표시 소자 및 그것을 이용한 표시 장치
CN107329309B (zh) 显示模式控制装置及其控制方法、显示装置
CN107450211B (zh) 灰阶控制结构及其方法、液晶显示面板、显示装置
WO2010095743A1 (ja) 表示素子、及び電気機器
WO2017148010A1 (zh) 液晶显示器以及电子设备
WO2018076669A1 (zh) 显示面板及其驱动和制作方法以及显示装置
CN111679464A (zh) 视角可切换的显示装置
US11536995B2 (en) Display panel and display device
CN108845457A (zh) 背光模组及其控制方法和显示设备
US20120133690A1 (en) Display element and electrical device
US10969634B2 (en) Liquid crystal display panel, liquid crystal display device and method of controlling gray scale of liquid crystal display device
JP2007538280A (ja) 有機発光ダイオードを有するカラーディスプレイ装置及びそれを実施する方法
WO2022041347A1 (zh) 显示面板、显示面板的控制方法及显示装置
KR20080061824A (ko) 플렉서블한 액정표시장치용 백라이트 어셈블리
CN113703155B (zh) 一种显示装置
US10796646B2 (en) Backlight module and control method, display screen and wearable device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20951016

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20951016

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 12/09/23)

122 Ep: pct application non-entry in european phase

Ref document number: 20951016

Country of ref document: EP

Kind code of ref document: A1