WO2022041248A1 - 一种控制系统、控制方法、智能汽车以及装置 - Google Patents

一种控制系统、控制方法、智能汽车以及装置 Download PDF

Info

Publication number
WO2022041248A1
WO2022041248A1 PCT/CN2020/112680 CN2020112680W WO2022041248A1 WO 2022041248 A1 WO2022041248 A1 WO 2022041248A1 CN 2020112680 W CN2020112680 W CN 2020112680W WO 2022041248 A1 WO2022041248 A1 WO 2022041248A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
assembly
control system
hydraulic
ball screw
Prior art date
Application number
PCT/CN2020/112680
Other languages
English (en)
French (fr)
Inventor
王兴
李晶晶
张宇
任鑫
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202080004907.9A priority Critical patent/CN112654931B/zh
Priority to PCT/CN2020/112680 priority patent/WO2022041248A1/zh
Publication of WO2022041248A1 publication Critical patent/WO2022041248A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B9/00Safety arrangements
    • G05B9/02Safety arrangements electric
    • G05B9/03Safety arrangements electric with multiple-channel loop, i.e. redundant control systems

Definitions

  • the present application relates to the technical field of vehicle steering systems, and in particular, to a control system, a control method, a smart car, and a device.
  • the steering system of the car is an important part of the chassis of the car.
  • the steering system of the car is very important to the driving safety of the car.
  • the current steering systems mainly include traditional steering systems, steering-by-wire systems and independent steering systems.
  • Existing steering systems generally do not have redundant designs, or have low redundant design capabilities. Without redundancy design or with low redundancy design capability, the reliability of the vehicle during steering will be insufficient, thereby affecting the safe driving of the vehicle, and there is a greater safety hazard.
  • the present application provides a control system, which can be applied to the control systems of smart cars, connected cars, new energy vehicles, and self-driving cars, so that control systems that do not have redundant designs have redundant designs.
  • the control system provided by the present application may have dual systems of an electric control system and a hydraulic control system. Two sets of control systems in the control system provided by this application can work independently, and when one system fails, it can be quickly switched to another system to ensure safety. For example, compared with the existing electric control system, the solution provided by the present application adds a hydraulic control system, so that the existing electric control system has a redundant design. In addition, the two systems in the control system provided by the present application can also work at the same time to improve the steering capability. In addition, the control system provided by the present application can realize four-wheel independent steering, and the control system of any one or more of the four wheels can be redundantly designed, and the control system provided by the present application can satisfy the steering under various driving modes. Requirements, such as turning in place, lateral movement, small turning radius steering, etc.
  • a first aspect of the present application provides a control system, and the control system provided by the present application can be installed on a vehicle, or can be installed in any equipment including a rotating structure.
  • the control system provided by the present application may include: a motor assembly 10 , a ball screw 20 , a nut assembly 30 , a hydraulic assembly 40 , an electronic control unit ECU 50 , and a wheel assembly 60 .
  • One end of the ball screw 20 is connected to the motor assembly 10
  • the other end of the ball screw 20 is connected to the wheel assembly 60 .
  • the electric steering function can be realized through this part of the structure.
  • a cavity may be included between the nut assembly 30 and the ball screw 20, and the nut assembly 30 and the nut 201 of the ball screw 20 are connected by the connecting piece 13, and the connecting piece 13 divides the cavity into the first cavity 11 and the second cavity 12.
  • the liquid port of the first chamber 11 is connected to the hydraulic assembly 40, and the liquid port of the second chamber 12 is connected to the hydraulic assembly 40, through which the hydraulic steering function can be realized. It can be seen from the first aspect that the control system provided by the present application includes two power sources.
  • the motor assembly 10 drives the ball screw 20 to output rotational torque, and the rotational torque is used to drive the wheel assembly 60 to turn; the other way is that the ECU 50
  • the liquid in the hydraulic assembly 40 is controlled to flow into the first chamber 11 or the second chamber 12, so that a pressure difference is generated between the first chamber 11 and the second chamber 12, and the pressure difference causes the nut 201 to move linearly, so as to be driven by the nut 201
  • the ball screw 20 outputs rotational torque, which is used to drive the wheel assembly 60 to steer.
  • the control system provided by the present application not only provides a control system with a redundant design, but also can ensure that the two control systems can work independently. In addition, when one system fails, it can quickly switch to another system to ensure safety.
  • the ball screw 20 is a device that can convert rotary motion into linear motion, and linear motion into rotary motion. Therefore, in the electric control system, the motor assembly 10 drives the ball screw 20, and the ball screw 20 outputs rotational torque , and the nut of the ball screw 20 can perform linear motion. Since the nut 201 is connected with the connector 13, and the connector 13 divides the cavity into the first chamber 11 and the second chamber 12, the volumes of the first chamber 11 and the second chamber 12 will vary with the size of the nut 201. Movement, and constant transformation. For example, as the nut 201 moves linearly, the volume of the first chamber 11 increases, while the volume of the second chamber 12 decreases, or as the nut 201 moves linearly, the volume of the first chamber 11 decreases.
  • the volume increases accordingly, and the volume of the second chamber 12 decreases accordingly. Because the liquid port of the first chamber 11 is connected to the hydraulic assembly 40, and the liquid port of the second chamber 12 is connected to the hydraulic assembly 40, when the volume of the first chamber 11 is compressed, the liquid in the first chamber 11 is compressed. The liquid can freely flow into the hydraulic assembly 40 through the pipeline, and when the volume of the second chamber 12 is compressed, the liquid in the second chamber 12 can freely flow into the hydraulic assembly 40 through the pipeline.
  • This design can realize the automatic synchronous coupling of the hydraulic actuator unit and the electric actuator unit.
  • the two systems in the control system provided by the present application can also work at the same time to improve the steering capability.
  • the control system provided by the present application is of modular design, redundant design can be carried out for the control system of any one or more wheels among the four wheels. Steering requirements, such as turning in place, lateral movement, small turning radius steering, etc.
  • control system may further include a reversing component 70, and the ECU 50 is electrically connected to the reversing component 70 for controlling the reversing component 70 to switch to the first In the working position, when the reversing assembly 70 is in the first working position, the liquid port of the first chamber 11 is connected to the oil pot 401 of the hydraulic assembly 40 through the reversing assembly 70, and the liquid outlet of the second chamber 12 passes through the reversing assembly.
  • the motor assembly 10 drives the ball screw 20 to output rotational torque, and the rotational torque is also used to make the connecting piece 13 move linearly through the nut, and the volumes of the first chamber 11 and the second cavity 12 follow the connecting piece
  • the linear motion of 13 increases or decreases. From the first possible implementation of the first aspect, it can be known that when an electric control system drives the wheel assembly 60 to turn, the liquid passage of the first chamber 11 and the liquid passage of the second chamber 12 and the hydraulic assembly 40 connection method. This design can realize the automatic synchronous coupling of the hydraulic actuator unit and the electric actuator unit.
  • the ECU 50 is further configured to control the reversing assembly 70 to switch to the second working position, and the reversing assembly 70 is in the second working position.
  • the liquid port of the first chamber 11 is connected to the hydraulic source 402 of the hydraulic assembly 40 through the reversing assembly 70
  • the liquid port of the second chamber 12 is connected to the oil pot 401 through the reversing assembly 70; in the hydraulic source 402
  • the hydraulic fluid flows into the first chamber 11 through the reversing assembly 70, and the pressure of the first chamber 11 is greater than the pressure of the second chamber 12, so that the nut produces a linear motion in the direction of the second chamber 12, so as to drive the ball through the nut
  • the lead screw 20 outputs the first rotational torque. From the second possible implementation of the first aspect, it can be known that when a hydraulic control system drives the wheel assembly 60 to turn, the liquid passage of the first chamber 11 and the liquid passage of the second chamber 12 and the hydraulic
  • the ECU 50 is further configured to control the reversing assembly 70 to switch to the third working position, When the reversing assembly 70 is in the third working position, the liquid port of the first chamber 11 is connected to the oil pot 401 through the reversing assembly 70 , and the liquid port of the second chamber 12 is connected to the hydraulic pressure of the hydraulic assembly 40 through the reversing assembly 70 .
  • the difference between the third possible implementation of the first aspect and the second possible implementation of the first aspect is that the two ways can control the wheels to rotate in two opposite directions, for example, the second possible implementation of the first aspect controls The wheel assembly 60 turns left, the third possible implementation of the first aspect controls the wheel assembly 60 to turn right, or the second possible implementation of the first aspect controls the wheel assembly 60 to turn right, and the third possible implementation of the first aspect way to control the wheel assembly 60 to turn left.
  • the reversing component 70 is a three-position five-way solenoid valve 700, a three-position five-way solenoid valve 700
  • the solenoid valve 700 can include three working positions.
  • the hydraulic port of the first chamber 11 is connected to the hydraulic pressure through the three-position, five-way solenoid valve 700 .
  • the liquid outlet of the second chamber 12 is connected to the oil pot 401 through the three-position, five-way solenoid valve 700 .
  • the liquid port of the first chamber 11 is connected to the hydraulic source 402 of the hydraulic assembly 40 through the 5/3-way solenoid valve 700 , so The liquid port of the second chamber 12 is connected to the oil pot 401 through the three-position, five-way solenoid valve 700 .
  • the liquid port of the first chamber 11 is connected to the oiler 401 through the three-position, five-way solenoid valve 700, and the second chamber
  • the liquid port of the chamber 12 is connected to the hydraulic source 402 of the hydraulic assembly 40 through the three-position five-way solenoid valve 700 .
  • the reversing assembly 70 may include at least one two-position normally open solenoid valve, At least two 2/2 normally closed solenoid valves and at least one 3/3/3 normally closed solenoid valve, the first of the at least two 2/2 2 normally closed solenoid valves has one end of the normally closed solenoid valve 701 connected to the first chamber 11, the other end of the first two-position normally closed solenoid valve 701 is connected to the oil pot 401, and the second one of the at least two two-position normally closed solenoid valves 703 is connected to one end of the second two-position normally closed solenoid valve 703.
  • the liquid port of the two chambers 12, the other end of the second two-position normally closed solenoid valve 703 is connected to the oil pot 401, and one end of the two-position normally open solenoid valve 702 is connected to the liquid port of the first chamber 11, the two position The other ends of the two normally open solenoid valves 702 are connected to the liquid port of the second chamber 12.
  • the three-position three-way normally closed solenoid valve 704 may include three working positions, and each of the three working positions may include three ports , the communication relationship between the three interfaces in each position is different, and the communication relationship between the three interfaces may include that the first interface is connected to the third interface, or the second interface is connected to the third interface, or the first interface is connected, Neither the second interface nor the third interface is connected.
  • the first of the three ports is used to connect the liquid port of the first chamber 11, the second of the three ports is used to connect to the second chamber 12, and the third port of the three ports is used to connect the hydraulic Source 402. It can be seen from the fifth possible implementation manner of the first aspect that another specific structure of the commutation assembly 70 is given, which increases the diversity of solutions.
  • the nut 201 and the connector 13 are integrally formed.
  • the nut assembly 30 may include a guide rail 302 and a sliding member 301, and the sliding The sliding member 301 is slidably connected to the guide rail 302, the sliding member and the connecting member 13 are integrally formed, and the pressure difference between the first chamber 11 and the second chamber 12 causes the sliding member to move linearly along the guide rail.
  • the oil pot 401 of the hydraulic assembly 40 and the hydraulic pressure source of the hydraulic assembly 40 A one-way valve is arranged on the passage between 402 , and the conduction direction of the one-way valve is the direction from the oil pot 401 to the hydraulic source 402 .
  • the first chamber 11 is composed of a connecting piece 13 , a ball screw 20 , and a nut assembly 30 and a first baffle
  • both ends of the first baffle 303 are installed with sealing rings 304
  • the first baffle 303 is located between the ball screw 20 and the nut assembly 30
  • the second chamber 12 is composed of the connecting piece 13
  • the lead screw 20, the nut assembly 30 and the second baffle plate 305 are composed of two ends of the second baffle plate 305 with sealing rings 304 installed.
  • the second baffle plate is located between the ball screw 20 and the nut assembly 30.
  • the first baffle plate 303 The first mounting plate 80 is rotatably connected to the ball screw 20
  • the second baffle 305 is rotatably connected to the ball screw 20 through the second mounting plate 90 .
  • the motor assembly 10 may include a motor 101 and a transmission 102 , and the motor 101 is driven by the transmission 102
  • the ball screw 20 outputs rotational torque.
  • an angular torque sensor 103 may be further included, and the angular torque sensor 103 is arranged on the ball screw On the screw 20 , an angle torque sensor is used to obtain the rotational torque output by the ball screw 20 .
  • the twelfth possible implementation manner may further include a displacement sensor 306 , and the displacement sensor 306 is disposed on the nut assembly 30 Above, the displacement sensor is used to obtain the linear displacement of the nut assembly 30 .
  • a second aspect of the present application provides a control method, which may include: acquiring a turn signal.
  • the way to drive the wheel assembly to turn is determined according to the steering signal, the way may include that the motor assembly drives the ball screw to output rotational torque, the rotational torque is used to drive the wheel assembly to turn, and the electronic control unit ECU controls the fluid in the hydraulic assembly to flow into the first chamber Or the second chamber, to generate a pressure difference between the first chamber and the second chamber, and the pressure difference causes the nut of the ball screw to produce linear motion to drive the ball screw through the nut to output rotational torque, which is used to drive the wheel assembly
  • one end of the ball screw is connected to the motor assembly, and the other end of the ball screw is connected to the wheel assembly.
  • a cavity may be included between the nut assembly and the ball screw.
  • the nut assembly and the nut are connected by a connector, and the connector divides the cavity into two parts.
  • the first chamber and the second chamber, the liquid port of the first chamber is connected to the hydraulic assembly, and the liquid port of the second chamber is connected to the hydraulic assembly.
  • the general controller can select the electric control system or the hydraulic control system in the control system provided in the first aspect according to the rotation signal.
  • the method may further include: if the driving force output by the rotational torque does not meet the preset condition, and the hydraulic assembly works normally, determining that the motor assembly is passed through the motor assembly.
  • the ball screw is driven to output the first rotational torque, and the liquid in the hydraulic assembly is controlled to flow into the first chamber or the second chamber through the hydraulic assembly, so that a pressure difference is generated between the first chamber and the second chamber, and the pressure difference makes the ball screw
  • the nut of the rod produces linear motion to drive the ball screw to output a second rotational torque through the nut, and the first rotational torque and the second rotational torque jointly drive the wheel assembly to turn. It can be known from the second possible implementation of the first aspect that if the electric control system cannot output enough driving force, the electric control system and the hydraulic control system work together to jointly drive the wheels to turn and improve the steering performance.
  • the method may further include: detecting whether the motor assembly and the hydraulic assembly work normally according to the steering signal. If the motor assembly or the hydraulic assembly fails to work normally, a prompt message is sent, and the prompt message is used to indicate the failure of the motor assembly or the failure of the hydraulic assembly.
  • the method may further include: controlling the commutation component to switch to In the first working position, the reversing assembly is electrically connected to the ECU.
  • the liquid port of the first chamber is connected to the oil bottle of the hydraulic assembly through the reversing assembly, and the liquid outlet of the second chamber Connect the oiler through the reversing assembly.
  • the motor assembly drives the ball screw to output rotational torque, and the rotational torque is also used to generate linear motion of the connecting piece through the nut, and the volumes of the first chamber and the second cavity increase or decrease with the linear motion of the connecting piece.
  • the method may further include: controlling the reversing assembly to switch to the second working position, and the reversing assembly is in the second working position.
  • the liquid port of the first chamber is connected to the hydraulic source of the hydraulic assembly through the reversing assembly, and the liquid port of the second chamber is connected to the oil pot through the reversing assembly; the hydraulic fluid in the hydraulic source flows into the hydraulic source through the reversing assembly.
  • the pressure of the first chamber is higher than the pressure of the second chamber, so that the nut produces a linear motion in the direction of the second chamber, so as to drive the ball screw through the nut to output the first rotational torque.
  • the method may further include: controlling the reversing component to switch to a third working position, and reversing
  • the liquid port of the first chamber is connected to the oil bottle through the reversing assembly
  • the liquid port of the second chamber is connected to the hydraulic source of the hydraulic assembly through the reversing assembly.
  • the hydraulic fluid in the hydraulic source flows into the second chamber through the reversing assembly, and the pressure of the second chamber is higher than the pressure of the first chamber, so that the nut produces a linear motion in the direction of the first chamber, so as to drive the ball screw through the nut
  • the lever outputs the second rotational torque.
  • the reversing component is a 5/3-way solenoid valve
  • the 5/3-way solenoid valve may include: Three working positions, each of which can include two passages, one of the two passages for liquid transfer between the first chamber and the oiler of the hydraulic assembly, two passages The other of the passages is used for liquid transfer between the second chamber and the oil can of the hydraulic assembly; or one of the two passages is used for the liquid transfer between the first chamber and the hydraulic source of the hydraulic assembly, the two The other of the passages is used for liquid transfer between the second chamber and the oiler of the hydraulic assembly; or one of the two passages is used for the liquid transfer between the first chamber and the oiler of the hydraulic assembly , the other of the two passages is used for fluid transfer between the second chamber and the hydraulic source of the hydraulic assembly.
  • the reversing assembly may include at least one two-position normally open solenoid valve, at least two two-position solenoid valves.
  • Two-position normally closed solenoid valve and at least one three-position three-position normally-closed solenoid valve one end of at least two two-position two-position normally-closed solenoid valves of the first two-position two-position normally-closed solenoid valve is connected to the liquid port of the first chamber, The other end of the first two-position normally closed solenoid valve is connected to the oil pot, and one end of the second two-position normally closed solenoid valve of at least two two-position normally closed solenoid valves is connected to the liquid port of the second chamber.
  • the other end of the 2/2 normally closed solenoid valve is connected to the oil pot, one end of the 2/2 normally open solenoid valve is connected to the liquid port of the first chamber, and the other end of the 2/2 normally open solenoid valve is connected to the second chamber.
  • the three-position three-position normally closed solenoid valve can include three working positions, and each of the three working positions can include three ports. The communication relationship between the three ports in each position is different.
  • the communication relationship between the interfaces may include that the first interface is connected to the third interface, the second interface is connected to the third interface, and the first interface is not connected to the second interface and the third interface.
  • the interface is used to connect the liquid passage port of the first chamber, the second interface of the three interfaces is used to connect to the second chamber, and the third interface of the three interfaces is used to connect to the hydraulic source.
  • the nut and the connecting piece are integrally formed.
  • the nut assembly may include a guide rail and a sliding member, and the sliding member In sliding connection with the guide rail, the sliding piece and the dividing piece are integrally formed, and the pressure difference between the first cavity and the second cavity makes the sliding piece move linearly along the guide rail.
  • the first chamber is composed of a connecting piece, a ball wire It consists of a rod, a nut assembly and a first baffle. Sealing rings are installed at both ends of the first baffle.
  • the first baffle is located between the ball screw and the nut assembly.
  • the second chamber is composed of connecting pieces, ball screws and nuts. assembly and a second baffle. Sealing rings are installed at both ends of the second baffle.
  • the second baffle is located between the ball screw and the nut assembly.
  • the first baffle is rotatably connected to the ball screw through the first plate.
  • the second baffle is rotatably connected to the ball screw through the second mounting plate.
  • the motor assembly may include a motor and a transmission, and the motor passes through the The transmission drives the ball screw to output rotational torque.
  • an angular torque sensor in combination with the above-mentioned second aspect or the thirteenth possible implementation manner of the first to the second aspect, in the fourteenth possible implementation manner, an angular torque sensor may also be included.
  • the angle torque sensor is used to obtain the rotational torque output by the ball screw.
  • a displacement sensor may also be included, and the displacement sensor is arranged in the On the nut assembly, the displacement sensor is used to obtain the linear displacement of the nut assembly.
  • a third aspect of the present application provides a smart car, which may include a control system, where the control system is the control system described in the first aspect or any possible implementation manner of the first aspect.
  • a fourth aspect of the present application provides a steering device.
  • the steering device may include a control system, and the control system is the control system described in the first aspect or any possible implementation manner of the first aspect.
  • a fifth aspect of the present application provides a steering device, which may include: a memory for storing computer-readable instructions; and may also include a processor coupled with the memory for executing the computer-readable instructions in the memory to execute the second A method as described in any possible embodiment of the aspect or the second aspect.
  • a sixth aspect of the present application provides a computer-readable storage medium, when instructions are executed on a computer device, the computer device causes the computer device to perform the method described in the second aspect or any possible implementation manner of the second aspect.
  • a seventh aspect of the present application provides a computer program product, which, when run on a computer, enables the computer to execute the method described in the second aspect or any possible implementation manner of the second aspect.
  • An eighth aspect of the present application provides a chip system, where the chip system may include a processor for supporting a vehicle or an ECU to implement the methods involved in the second aspect or any possible implementation manner of the second aspect. Function.
  • This system improves the performance and functions of the existing systems, which can include the following points:
  • This system has Extremely high applicability, it is possible to replace the control system provided by this application in various types of power assist control systems currently commonly used, or add the control system provided by this application to upgrade the current conventional system to a redundant system, thereby satisfying the requirements of automatic driving.
  • the control system provided by the present application has a high degree of integration, and the actuators of the two systems of electric control and hydraulic are integrated into one structure, thereby realizing a very small space occupancy rate.
  • the hydraulic system is introduced into the control system provided by the present application, which realizes a great increase of the thrust in the hydraulic steering mode.
  • the system can be installed on tires without steering capability as an independent steering module, and cooperate with the original control system to form independent steering, realize small radius steering, high-speed steering and other modes.
  • 1-b is a schematic structural diagram of a control system provided by an embodiment of the application.
  • FIG. 2 is a schematic structural diagram of another control system provided by an embodiment of the present application.
  • FIG. 2-a is a schematic structural diagram of another control system provided by an embodiment of the present application.
  • FIG. 2-b is a schematic structural diagram of another control system provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of another control system provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of another control system provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of another control system provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of another control system provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of another control system provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of another control system provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of another control system provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of another control system provided by an embodiment of the present application.
  • FIG. 11-a is a working mode that can be implemented by the control system provided by the embodiment of the application.
  • FIG. 11-b is another working mode that can be implemented by the control system provided by the embodiment of the application.
  • FIG. 11-c is another working mode that can be implemented by the control system provided by the embodiment of the present application.
  • FIG. 11-d is another working mode that can be implemented by the control system provided by the embodiment of the application.
  • FIG. 11-e is another working mode that can be implemented by the control system provided by the embodiment of the application.
  • FIG. 12 is a schematic structural diagram of another control system provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of another control system provided by an embodiment of the present application.
  • 14-a is a schematic structural diagram of another control system provided by an embodiment of the application.
  • FIG. 14-b is a schematic structural diagram of another control system provided by an embodiment of the present application.
  • FIG. 14-c is a schematic structural diagram of another control system provided by an embodiment of the present application.
  • 15 is a schematic structural diagram of another control system provided by an embodiment of the application.
  • 16 is a schematic flowchart of a control method provided by an embodiment of the present application.
  • 17 is a schematic flowchart of another control method provided by an embodiment of the present application.
  • 18-a is a schematic diagram of an application scenario of a control method provided by an embodiment of the present application.
  • 18-b is a schematic diagram of an application scenario of another control method provided by an embodiment of the present application.
  • 18-c is a schematic diagram of an application scenario of another control method provided by an embodiment of the present application.
  • FIG. 20 is a schematic structural diagram of a steering device provided by an embodiment of the application.
  • the naming or numbering of the steps in this application does not mean that the steps in the method flow must be executed in the time/logical sequence indicated by the naming or numbering, and the named or numbered process steps can be implemented according to the The technical purpose is to change the execution order, as long as the same or similar technical effects can be achieved.
  • the division of modules in this application is a logical division. In practical applications, there may be other divisions. For example, multiple modules may be combined or integrated into another system, or some features may be ignored. , or not implemented, in addition, the shown or discussed mutual coupling or direct coupling or communication connection may be through some ports, and the indirect coupling or communication connection between modules may be electrical or other similar forms. There are no restrictions in the application.
  • modules or sub-modules described as separate components may or may not be physically separated, may or may not be physical modules, or may be distributed into multiple circuit modules, and some or all of them may be selected according to actual needs. module to achieve the purpose of the solution of this application.
  • the terms “installed”, “connected”, “connected”, “fixed”, “arranged” and other terms should be understood in a broad sense, for example, it may be a fixed connection, or It is a detachable connection, or an integral body; it can be a mechanical connection, a direct connection, an indirect connection through an intermediate medium, or an internal communication between two elements or an interaction relationship between the two elements.
  • installed e.g., it may be a fixed connection, or It is a detachable connection, or an integral body; it can be a mechanical connection, a direct connection, an indirect connection through an intermediate medium, or an internal communication between two elements or an interaction relationship between the two elements.
  • the current steering control systems mainly include traditional steering control systems, steering-by-wire control systems and independent control systems. It should be noted that, in this application, the steering control system is sometimes referred to as a control system or a steering system for short.
  • the traditional control system realizes steering through mechanical connection, and generally does not have redundant design or has low redundant design capability. And the traditional control system can't realize four-wheel independent steering.
  • the control-by-wire system loses the steering function when the electronically controlled steering fails.
  • the driver can only perform mechanical steering control even if the clutch is mechanically connected.
  • the mechanical control system directly transmits the reaction force of the tires and the ground to the steering wheel, so it is very laborious to turn the steering wheel, especially when turning the steering wheel in place. If it is on a truck with heavy load and self-weight, the unstable steering wheel may cause arm fractures, which is very dangerous to operate.
  • the current control-by-wire system generally cannot realize the independent control of steering for the left and right wheels, and can realize the control-by-wire control system in which the left and right wheels control the steering independently.
  • the control system of the right wheel fails) the steering synchronization problem of the two tires.
  • the independent control system can realize the independent steering control of four vehicles, but at present, the independent control system has no redundant design. After the control system fails, the tires cannot be returned to the alignment, and the system loses the steering function.
  • the existing control systems are not ideal. Due to the complex design of redundant control systems, most control systems do not have redundant designs. The control system without redundant design will make the vehicle less reliable when turning, thus affecting the safe driving of the vehicle, and there is a greater safety hazard.
  • the existing control system with redundant design has low redundant design capability. Among them, the low redundancy design capability can be manifested in many ways. For example, when one set of control systems fails, it cannot be quickly switched to another set of control systems. For another example, it can be shown that the two control systems cannot work at the same time, and the steering capability cannot be further improved. For another example, there is no way to expand to the four-wheel control system, for the system of four-wheel independent steering, it is impossible to implement the redundant design of the control system for each wheel, and so on.
  • a control system which may include: a ball screw, a motor assembly, a wheel assembly, a nut assembly, an electronic control unit ECU, and a hydraulic assembly.
  • the motor assembly drives the ball screw to output rotational torque, and the rotational torque is used to drive the wheel assembly to turn.
  • the electric steering function can be realized through this part of the structure.
  • a cavity is included between the nut assembly and the ball screw, the nut assembly and the nut of the ball screw are connected by a connecting piece, and the connecting piece divides the cavity into a first cavity and a second cavity.
  • the liquid port of the first chamber is connected to the hydraulic assembly, and the liquid port of the second chamber is connected to the hydraulic assembly.
  • the volumes of the first cavity and the second cavity will change continuously with the movement of the nut. For example, as the nut moves linearly, the volume of the first chamber increases, while the volume of the second chamber decreases, or as the nut moves linearly, the volume of the first chamber increases accordingly , and the volume of the second chamber decreases accordingly.
  • the liquid port of the first chamber is connected to the hydraulic assembly, and the liquid port of the second chamber is connected to the hydraulic assembly, when the volume of the first chamber is compressed, the liquid in the first chamber can freely pass through the pipeline When flowing into the hydraulic assembly, when the volume of the second chamber is compressed, the liquid in the second chamber can freely flow into the hydraulic assembly through the pipeline.
  • This design is to ensure that when the electric control system fails, there is a seamless switch to the hydraulic control system. For example, when the volume in the first chamber is the first volume and the volume in the second chamber is the second volume, the steering of the corresponding wheel assembly at this time is the A position.
  • the electric control system fails in this state, it switches to the hydraulic control system, and the liquid in the hydraulic assembly flows into the first chamber, so that the volume of the first chamber starts to increase from the first volume, or the hydraulic assembly
  • the liquid flows into the second chamber, so that the volume of the second chamber starts to increase from the second volume, which will ensure the seamless transition of the wheel assembly from the A position to the B position.
  • the B position can be determined according to the steering signal, such as according to The wheel angle determined by the steering wheel angle information.
  • the ECU can control the liquid in the hydraulic components to flow into the first chamber or the second chamber, so that the pressure difference between the first chamber and the second chamber is generated, and the pressure difference makes the nut Linear motion is generated to drive the ball screw to output rotational torque through the nut, and the rotational torque is used to drive the wheel assembly to steer.
  • the hydraulic steering function can be realized through the structure of this part.
  • the ball screw in the electric control system, can be driven by the motor assembly, and the wheel assembly can be driven by the rotational torque output by the ball screw.
  • the pressure difference between the two chambers causes the nut of the ball screw to move linearly, which in turn causes the ball screw to output a rotational torque, which drives the wheel assembly to turn.
  • the control system provided by the present application not only provides a control system with redundant design, but also can ensure that two sets of control systems can work independently, and when one system fails, it can quickly switch to another system to ensure safety.
  • the two systems in the control system provided by the present application can also work at the same time to improve the steering capability.
  • the control system provided by the present application can also realize the independent steering of four wheels, and the redundant design is carried out for the control system of any one or more wheels of the four wheels, and the control system provided by the present application can meet the steering requirements in various driving modes , for example, it can turn in place, move laterally, turn with a small turning radius, etc.
  • FIG. 1-a it is a schematic structural diagram of a control system according to an embodiment of the present application.
  • Motor assembly 10 ball screw 20 , nut assembly 30 , hydraulic assembly 40 , electronic control unit ECU50 , and wheel assembly 60 .
  • FIG. 1-a shows a schematic cross-sectional view of the structure of a control system provided by the present application.
  • One end of the ball screw 20 is connected to the motor assembly 10, the other end of the ball screw 20 is connected to the wheel assembly 60, a cavity is included between the nut assembly 30 and the ball screw 20, and the nut assembly 30 and the nut 201 of the ball screw 20 are connected by The connector 13 is connected, the connector 13 divides the cavity into the first chamber 11 and the second chamber 12, the liquid port of the first chamber 11 is connected to the hydraulic assembly 40, and the liquid port of the second chamber 12 is connected to the hydraulic assembly 40.
  • the motor assembly 10 drives the ball screw 20 to output rotational torque, and the rotational torque is used to drive the wheel assembly 60 to turn; or the ECU 50 controls the liquid in the hydraulic assembly 40 to flow into the first chamber 11 or the second chamber 12, so that the first chamber 11 and the second chamber 12 generate a pressure difference, and the pressure difference causes the nut 201 to generate linear motion, so as to drive the ball screw 20 through the nut to output rotational torque, and the rotational torque is used to drive the wheel assembly 60 to turn.
  • a control system provided by the present application includes two power sources, one of which is a motor, and the other is a hydraulic assembly.
  • the two power sources share a set of actuators, which includes a ball screw 30 .
  • the liquid in the hydraulic assembly can be controlled to flow into the first chamber 11 or the second chamber 12 through the ECU 50, so as to switch between the two control systems.
  • the power source at this time is the motor assembly 10 instead of the hydraulic assembly 40, and there is no need for the ECU to control the liquid in the hydraulic assembly 40 to flow into the first chamber 11 or the second chamber 12 , i.e. there is no need to drive the ball screw with a pressure difference.
  • the motor assembly 10 is the power source, which drives the ball screw 20 of the actuator to output rotational torque, thereby driving the wheel assembly 60 to rotate.
  • the nut 201 of the ball screw will move linearly, thereby driving the connecting piece 13 to move linearly, and the volumes of the first chamber 11 and the second chamber 12 will also change at any time.
  • the liquid in the first chamber 11 and the second chamber 12 can freely flow into the hydraulic components. This design can ensure that when the electric control system fails, it can be switched to hydraulic control quickly and almost seamlessly.
  • the system realizes the automatic synchronous coupling of the hydraulic execution unit and the electric execution unit.
  • this application divides the overall structure into one component for better explanation of the solution, and should not be construed as a limitation on the solution.
  • this application refers to the device connected to the nut 201 of the ball screw as a nut
  • the nut assembly may be considered to include the connector 13, or the nut assembly may not include the connector 13, or the nut 201 of the ball screw and the components connected to the nut 201 of the ball screw may be regarded as the nut assembly.
  • the hydraulic assembly may include an oiler 401 and a hydraulic source 402 .
  • the liquid in the first chamber 11 and the liquid in the second chamber 12 can freely flow into the oiler 401, or the liquid in the oiler 401 can freely flow into the first chamber 11 or the second chamber Room 12.
  • the ECU 50 can control the liquid of the hydraulic pressure source 402 of the hydraulic assembly to flow into the first chamber 11 or the second chamber 12 in various ways.
  • the control system provided by the present application can realize the above process through various structural designs.
  • the control system may further include a reversing component 70, and the ECU is electrically connected to the reversing component 70 for controlling the switching of the reversing component.
  • the working position is realized in the electric control system through the reversing assembly, the liquid in the first chamber 11 and the liquid in the second chamber 12 can freely flow into the oil pot 401, or the liquid in the oil pot 401 can freely flow into the first chamber.
  • the ECU can control the fluid of the hydraulic pressure source 402 of the hydraulic assembly to flow into the first chamber 11 or the second chamber 12 .
  • the reversing assembly includes at least one 5/3-way solenoid valve 700 .
  • the solenoid valve 700 is sometimes referred to as the reversing valve 700 , for example, the 5/3-way solenoid valve 700 is referred to as the 5/3-way reversing valve 700 , both of which express the same meaning.
  • the three-position, five-way solenoid valve 700 includes three working positions, each of the three working positions includes two passages, and one of the two passages is used for the first chamber 11 and the oil pot of the hydraulic assembly Liquid transfer between 401, the other of the two paths is used for liquid transfer between the second chamber 12 and the oiler 401 of the hydraulic assembly; or one of the two paths is used for the first chamber 11.
  • the other of the two passages is used for liquid transmission between the second chamber 12 and the oiler 401 of the hydraulic assembly; or one of the two passages is used for For liquid transfer between the first chamber 11 and the oil can 401 of the hydraulic assembly, the other of the two passages is used for liquid transfer between the second chamber 12 and the hydraulic source 402 of the hydraulic assembly. 2 to 4 are respectively described below.
  • the liquid port of the first chamber 11 communicates with the oil pot 401 through the 5/3-way reversing valve 700 , and the second chamber 12
  • the liquid port of the oil pot is communicated with the oil pot 401 through the three-position five-way reversing valve 700 .
  • the three-position, five-way solenoid valve 700 includes three working positions, and each working position includes five ports.
  • the port connecting the hydraulic source 402 does not communicate with the other four ports, in other words , the liquid of the hydraulic source 402 neither flows into the first chamber 11 nor into the second chamber 12 , that is, it is not necessary to use hydraulic pressure to drive the wheels to rotate.
  • the system is motor-driven steering, that is, when the 5/3-way solenoid valve 700 is switched to the first working position, the corresponding system is an electric control system.
  • the motor assembly drives the ball screw to output the first rotational torque, and at the same time, the nut 201 of the ball screw moves linearly in the direction of the first chamber 11, and the movement of the nut will drive the movement of the divided parts, for example, Fig. 2
  • the middle connecting piece 13 is in the A position, and in Fig. 2-a is the B position.
  • the volume of the first chamber 11 is compressed, and the liquid in the first chamber 11 can freely flow into the oil pot 401 through the three-position five-way solenoid valve 700 .
  • the motor assembly drives the ball screw to output the second rotational torque, and at the same time, the nut 201 of the ball screw moves linearly in the direction of the second chamber 12, and the movement of the nut will drive the movement of the divided parts, for example, Figure 2
  • the middle connecting piece 13 is in the A position, and in Fig. 2-b is the C position.
  • the volume of the second chamber 12 is compressed, and the liquid in the second chamber 12 can freely flow into the oiler 401 through the three-position, five-way solenoid valve 700 .
  • the ECU controls the 5/3-way solenoid valve 700 to switch to the second working position.
  • the liquid port of the first chamber 11 is connected to the hydraulic source of the hydraulic assembly through the 5/3-way solenoid valve 700 402
  • the liquid port of the second chamber 12 is connected to the oil pot 401 of the hydraulic assembly through the three-position five-way solenoid valve 700 .
  • the liquid in the hydraulic source 402 can enter the first chamber 11 through the three-position five-way solenoid valve 700, so that the pressure of the first chamber 11 is higher than the pressure of the second chamber 12, and the liquid in the second chamber 12 can be freely into the oil pot 401 through the three-position, five-way solenoid valve 700 , and the connecting piece 13 will move linearly in the direction of the second chamber 12 . Since the connecting piece 13 is connected with the nut 201 of the ball screw, the nut will also move linearly accordingly, so that the ball screw outputs a rotational torque and drives the wheel to rotate.
  • the hydraulic source 402 can drive the nut 201 of the ball screw to perform linear motion, thereby driving the ball screw to output rotational torque.
  • the motor drives the wheel to turn.
  • the ECU can switch the three-position, five-way solenoid valve 700 from the first working position to the second working position, such as As shown in Figure 3, switch to the hydraulic control system and continue to work.
  • the ECU controls the 5/3-way solenoid valve 700 to switch to the third working position.
  • the liquid port of the first chamber 11 is connected to the oil pot of the hydraulic assembly through the 5/3-way solenoid valve 700 401
  • the liquid port of the second chamber 12 is electromagnetically connected to the hydraulic source 402 of the hydraulic assembly through a three-position five-way.
  • the liquid in the hydraulic source 402 can enter the second chamber 12 through the three-position five-way solenoid valve 700, so that the pressure of the second chamber 12 is higher than the pressure of the first chamber 11, and the liquid in the first chamber 11 can be freely into the oil pot 401 through the three-position, five-way solenoid valve 700 , and the connecting piece 13 will move linearly in the direction of the first chamber 11 . Since the connecting piece 13 is connected with the nut 201 of the ball screw, the nut will also move linearly accordingly, so that the ball screw outputs a rotational torque and drives the wheel to rotate.
  • the hydraulic source 402 can drive the nut 201 of the ball screw to perform linear motion, thereby driving the ball screw to output rotational torque.
  • the motor drives the wheel to turn.
  • the ECU can switch the three-position, five-way solenoid valve 700 from the first working position to the third working position, such as As shown in Figure 4, switch to the hydraulic control system and continue to work.
  • FIGS. 2 to 4 are schematic structural diagrams of a control system when the reversing assembly is a three-position, five-way reversing valve 700 .
  • the present application can also be implemented in the electric control system through other structures, the liquid in the first chamber 11 and the liquid in the second chamber 12 can freely flow into the oil pot 401, or the liquid in the oil pot 401 can freely flow into the first chamber 401.
  • a chamber 11 or a second chamber 12 In the hydraulic rotation system, the ECU can control the liquid of the hydraulic pressure source 402 of the hydraulic assembly to flow into the first chamber 11 or the second chamber 12 in various ways. A preferred embodiment is given below.
  • 5 to 7 are schematic structural diagrams of another control system according to an embodiment of the present application.
  • the reversing assembly includes at least one 2/2 normally open solenoid valve 702 , at least two 2/2 normally closed solenoid valves 701 and 703 and at least one 3/3 normally closed solenoid valve 704 .
  • One end of the first two-position normally closed solenoid valve 701 is connected to the liquid port of the first chamber 11, and the other end of the first two-position normally closed solenoid valve 701 is connected to the oil
  • the pot 401, the second one of the at least two two-position normally closed solenoid valves 703 is connected to the liquid port of the second chamber 12, and the other side of the second two-position normally closed solenoid valve 703 is connected.
  • the three-position three-position normally closed solenoid valve 704 includes three working positions, each of the three working positions includes three ports, and the communication relationship between the three ports in each position is different, and the The communication relationship includes that the first interface is connected to the third interface, the second interface is connected to the third interface, and the first interface is not connected to the second interface and the third interface, and the first interface of the three interfaces is used to connect the first interface.
  • the liquid port of the chamber 11 , the second port of the three ports is used to connect to the second chamber 12 , and the third port of the three ports is used to connect to the hydraulic source 402 .
  • the two-position normally open solenoid valve 702 is abbreviated as solenoid valve 702
  • the two-position normally-closed solenoid valve 701 is abbreviated as solenoid valve 701
  • the two-position normally closed solenoid valve 703 is abbreviated as solenoid valve 703.
  • the three-position three-position normally closed solenoid valve 704 is simply referred to as the solenoid valve 704 .
  • FIG. 5 it shows the open and closed states of each solenoid valve when the motor drives the wheel assembly to turn.
  • the first chamber 11 and the second chamber 12 are in a state of communication by normally opening the solenoid valve 702 with two two positions.
  • the solenoid valve 701 and the solenoid valve 703 are in a closed state, the pipeline between the first chamber 11 and the oiler 401 is not connected, and the pipeline between the second chamber 12 and the oiler 401 is also not connected.
  • the solenoid valve 704 is in the first working position, and the three ports are not connected.
  • the liquid in the first chamber 11 can pass through the two two Normally open the solenoid valve 702 to flow into the second chamber 12, if the nut moves linearly in the direction of the second chamber 12, the liquid in the second chamber 12 can flow into the second chamber through the two-position normally open solenoid valve 701 12.
  • each solenoid valve controls the solenoid valve 702 to close, the liquid in the first chamber 11 cannot freely flow into the second chamber 12 , and the liquid in the second chamber 12 cannot freely flow into the first chamber 11 .
  • the ECU controls the solenoid valve 703 to close, and the liquid in the second chamber 12 cannot freely flow into the oiler 401 .
  • the ECU controls the solenoid valve 701 to open, and the liquid in the first chamber 11 can freely flow into the oiler 401 through the solenoid valve 701 .
  • the ECU controls the solenoid valve 704 to be in the third working position, and the liquid port of the second chamber 12 communicates with the hydraulic pressure source 402 through the solenoid valve 704 .
  • the liquid in the hydraulic source 402 can enter the second chamber 12 through the solenoid valve 704 , so that the pressure of the second chamber 12 is higher than that of the first chamber 11 , and the liquid in the first chamber 11 can freely pass through the solenoid valve 703
  • the connecting piece 13 When flowing into the oil pot 401 , the connecting piece 13 will move linearly in the direction of the first chamber 11 . Since the connecting piece 13 is connected with the nut 201 of the ball screw, the nut will also move linearly accordingly, so that the ball screw outputs a rotational torque and drives the wheel to rotate.
  • the two systems in the control system provided by the present application can also work at the same time to improve the steering capability.
  • the motor control system and the hydraulic control system can work synchronously.
  • the motor assembly drives the ball screw to output the first rotational torque, and the connecting piece 13 moves in the direction of the second chamber 12.
  • the liquid in the hydraulic source 402 enters the first chamber 11 , and accelerates the moving speed of the connecting piece 13 in the direction of the second chamber 12 , thereby improving the steering capability.
  • the structure shown in FIG. 3 the structure shown in FIG.
  • the motor assembly drives the ball screw to output the second rotational torque, the connecting piece 13 moves in the direction of the first chamber 11 , and at the same time, the liquid in the hydraulic source 402 enters the second chamber
  • the chamber 12 accelerates the speed of the connecting piece 13 moving in the direction of the first chamber 11, thereby improving the steering capability.
  • the motor assembly drives the ball screw to output the first rotational torque, the connecting piece 13 moves in the direction of the second chamber 12 , and at the same time, the liquid in the hydraulic source 402 enters the first chamber
  • the chamber 11 accelerates the speed of the connecting piece 13 moving in the direction of the second chamber 12, thereby improving the steering capability.
  • FIG. 6 the motor assembly drives the ball screw to output the first rotational torque, the connecting piece 13 moves in the direction of the second chamber 12 , and at the same time, the liquid in the hydraulic source 402 enters the first chamber
  • the chamber 11 accelerates the speed of the connecting piece 13 moving in the direction of the second chamber 12, thereby improving the steering capability.
  • the motor assembly drives the ball screw to output the second rotational torque
  • the connecting piece 13 moves in the direction of the first chamber 11
  • the liquid in the hydraulic source 402 enters the second chamber
  • the chamber 12 accelerates the speed of the connecting piece 13 moving in the direction of the first chamber 11, thereby improving the steering capability.
  • control system includes the motor assembly 10 , the ball screw 20 , the nut assembly 30 , the hydraulic assembly 40 , the electronic control unit ECU50 , and the wheel assembly 60 in addition to the above-mentioned motor assembly 10 .
  • Other components may also be included, for example, in a possible embodiment, a mounting plate may also be included.
  • the mounting plate is used to fix the control system provided by the present application on the frame, or on the suspension or related housings according to the application environment. , to ensure the reliability and firmness of the system installation, and to bear the relevant axial load.
  • each component of the solution provided by this application may have more detailed designs.
  • the nut component includes a guide rail and a sliding piece, the sliding piece is slidably connected to the guide rail, and the sliding piece and the dividing piece are integrally formed.
  • the pressure difference between the first chamber 11 and the second chamber 12 causes the slider to move linearly along the guide rail.
  • a one-way valve is arranged on the passage between the oil pot 401 of the hydraulic assembly and the hydraulic source 402 of the hydraulic assembly, and the conduction direction of the one-way valve is from the oil pot 401 to the hydraulic source 402 direction.
  • the first chamber 11 is composed of a connecting piece 13, a ball screw, a nut assembly and a first baffle plate, two ends of the first baffle plate are installed with sealing rings, and the first baffle plate Located between the ball screw and the nut assembly, the second chamber 12 is composed of the connecting piece 13, the ball screw, the nut assembly and the second baffle, the two ends of the second baffle are installed with sealing rings, and the second baffle is located in the Between the ball screw and the nut assembly, the first baffle is fixed on the motor assembly through the first mounting plate, and the second baffle is fixed on the ball screw through the second mounting plate.
  • the motor assembly includes a motor and a transmission, and the motor drives the ball screw to output rotational torque through the transmission.
  • an angular torque sensor is further included, the angular torque sensor is arranged on the ball screw, and the angular torque sensor is used to obtain the rotational torque output by the ball screw.
  • a displacement sensor is further included, the displacement sensor is disposed on the nut assembly, and the displacement sensor is used to acquire the linear displacement of the nut assembly.
  • the motor assembly 10 may include a motor 101 , a speed reducer 102 and an angular torque sensor 103 .
  • the nut assembly 30 includes a guide rail 302 and a sliding member 301.
  • the sliding member 301 is slidably connected to the guide rail 302, so that the sliding member 301 can move linearly along the guide rail.
  • a displacement sensor 306 may also be included, the displacement sensor being provided on the nut assembly.
  • the nut 201 of the ball screw, the connecting piece 13 and the sliding piece are integrally formed. That is, the "H" type structure as shown in FIG.
  • the first chamber 11 is composed of a connecting piece 13 , a ball screw, a nut assembly and a first baffle 303 .
  • the first chamber 11 is composed of a nut assembly (or a nut) and a first baffle 303 .
  • sealing rings 304 may be installed on both ends of the first baffle.
  • the second chamber 12 is composed of the connecting piece 13, the ball screw, the nut assembly and the second baffle 305, or it can be considered that the second chamber 12 is composed of the nut assembly (or nut) and the second baffle.
  • sealing rings can be installed on both ends of the second baffle.
  • the first baffle is fixed on the motor assembly through the first mounting plate 80
  • the second baffle is fixed on the ball screw through the second mounting plate 90 .
  • the sliding member and the connecting member 13 are integrally formed, or the nut 201 of the ball screw and the connecting member 13 are integrally formed.
  • the control system provided in the present application focuses on forming two cavities around the ball screw, so that when the nut 201 of the ball screw moves linearly, the volumes of the two cavities can change accordingly.
  • a cavity there can be many ways. Referring to FIG. 9 , which is a schematic structural diagram of another control system provided by the present application, the commutation components in the structure of the control system shown in FIG. 8 are replaced with another form.
  • control system provided by this application has been introduced above. It should be noted that the control system provided by this application is a modular design, and the control system provided by this application can be arranged for each wheel to realize the control for each wheel. In addition to the redundant design of the system, four-wheel independent steering can also be guaranteed. In addition, the control system provided by the present application can be combined with the existing conventional control system, wire-controlled control system, and four-wheel independent control system, and can be applied to the redundant design of various control systems. The following takes the structure in which the reversing component is a three-position five-way reversing valve as an example, and will be described respectively.
  • FIG. 10 it is a schematic structural diagram of another control system according to an embodiment of the present application.
  • the control system provided by this application is highly modular and can directly replace the control system in the current four-wheel independent control system. It can ensure all the advantageous functions of the current four-wheel independent steering, as shown in Figure 11-a to Figure 11-e, the solution provided in this application can realize various working modes in the four-wheel independent control system, as shown in Figure 11-a to Figure 11 Module 1 (M1), module 2 (M2), module 3 (M3) and module 4 (M4) in -e respectively represent a modular design, and a control system provided by this application is a modular design, wherein Modules 1 to 4 can be understood with reference to a control system in FIGS. 1 to 10 .
  • the mounting plate can be fixed on the suspension of the vehicle body.
  • the output end of the ball screw can be directly connected with the output components in the existing system through intermediate components such as gears and racks, and completely borrow the wheel-related mechanisms and components under the suspension of the existing system, as shown in Figure 10.
  • Redundant independent control system four sets of redundant systems are installed on each tire respectively, and drive their respective tire steering, in which the control unit, hydraulic source, and oil pot are combined to control and deliver related liquids to 4 independent systems respectively. middle.
  • the general controller sends an instruction to the ECU according to the rotation signal, so that the ECU can control the opening and closing of the solenoid valves in each system, which will be described below, and will not be described here for the time being.
  • each wheel may be installed with the control system provided by the embodiment of the present application, each wheel may adopt a different control system.
  • the front wheel adopts an electric control system and the rear wheel adopts a hydraulic control system
  • the left wheel adopts an electric control system and the right wheel adopts a hydraulic control system
  • three of the wheels adopts an electric control system and the other wheel adopts a hydraulic control system. ,etc.
  • This application will be described below in conjunction with a preferred solution, which will not be described here for the time being.
  • two different wheel assemblies can be switched to different control systems for working as an example below. Referring to Figure 12, the control system corresponding to each of the four wheels can be switched to the hydraulic control system to work. Referring to Figure 13, two of the four wheels are switched to the electric control system for work, and the remaining two wheels are switched to the hydraulic control system for work.
  • control system provided by this application is a modular design, for example, it can be regarded as the first module
  • the control system provided by this application can be combined with the existing control system, and the redundant design applied to various control systems can be realized.
  • Fig. 14-a it is a schematic diagram of combining the control system provided by the present application with the conventional control system. By directly replacing the power system of the conventional control system with the control system provided by the cost application, the function of the power system can be realized, and the redundant backup can be realized. Referring to Fig.
  • FIG. 14-b another schematic diagram of combining the control system provided by the present application with the conventional control system, exemplarily, the output end of the ball screw of the control system provided by the present application can be connected to the original system through a rack .
  • triple redundant backup is realized.
  • the motor of the conventional control system fails, it can be switched to the electric control system or the hydraulic control system of the control system provided by this application.
  • the electric control system provided by this application fails, you can switch to the conventional control system, or the hydraulic control system provided by this application, when the hydraulic control system provided by this application fails, you can switch to the conventional control system, or this application Apply for the supplied electric control system.
  • FIG. 14-b another schematic diagram of combining the control system provided by the present application with the conventional control system, exemplarily, the output end of the ball screw of the control system provided by the present application can be connected to the original system through a rack .
  • FIG. 14-c which is a schematic diagram of the combination of another control system and the control system provided by the embodiment of the present application
  • the output end of the ball screw of the control system provided by the present application can be connected to the original system through the lead screw.
  • FIG. 15 it is a schematic diagram of combining the control system and the wire-controlled control system provided in the present application.
  • the steering wheel assembly can be electrically connected to the ECU of the control system provided by the present application.
  • the wire-controlled control system also has a redundant design. When the electric control system fails, it can be switched to the hydraulic control system. When the hydraulic control system fails, it can be Switch to electric control system.
  • the steering wheel rotation signal is transmitted to the ECU, and the ECU realizes the steering control according to the received steering wheel signal.
  • the ECU can realize the steering control according to the commands directly sent by ADAS.
  • the existing traditional or wire-controlled control systems can no longer meet the needs of automatic driving.
  • This system improves the performance of the existing system while keeping the basic structure and principle of the current system unchanged.
  • the improvement of power and function can include the following points: the system has extremely high applicability, and can replace the control system provided by this application or add the control system provided by this application in various types of power-assisted control systems currently commonly used.
  • the current conventional system is upgraded to a redundant system, which can meet the basic requirements of autonomous driving.
  • the control system provided by the present application has a high degree of integration, and the actuators of the two systems of electric control and hydraulic are integrated into one structure, thereby realizing a very small space occupancy rate.
  • the hydraulic system is introduced into the control system provided by the present application, which realizes a great increase of the thrust in the hydraulic steering mode.
  • the system can be installed on tires without steering capability as an independent steering module, and cooperate with the original control system to form independent steering, realize small radius steering, high-speed steering and other modes.
  • FIG. 16 it is a flowchart of a control method provided by an embodiment of the present application.
  • a control method provided by an embodiment of the present application may include the following steps:
  • the steering signal is sometimes referred to as a rotation signal, and the application does not limit the name of the signal.
  • the steering is started to a control system provided by the embodiment of the application.
  • the master controller may acquire the turn signal according to the sensor mounted on the steering wheel. That is, the steering angle signal of the driver's steering wheel is obtained.
  • the overall controller can determine the steering demand of the vehicle according to the signal sent by the sensor, and control the control system to provide steering force for the vehicle. For example, through the control system, how many degrees to turn each wheel to the left, or how many degrees to the right.
  • the rotation signal may also be obtained through an upper-level advanced driver assistance system (advanced driver assistance system, ADAS) instruction.
  • ADAS advanced driver assistance system
  • driver assistance features such as pre-collision safety, adaptive cruise control and lane keep assist. These driver assistance functions are built into the same vehicle to help the driver avoid collisions, follow the vehicle in front or keep the own vehicle in its lane.
  • the rotation signal may also be other information related to the state of the vehicle, for example, the rotation signal may also be a wheel speed signal, longitudinal acceleration (the traveling direction of the vehicle at the current moment is longitudinal), lateral acceleration, etc. .
  • the master controller in this application can also be regarded as a kind of ECU.
  • the ECU involved in this application can be understood as various types of processors, personal computers (personal computer, PC), vehicle control unit (vehicle control unit, VCU) Wait.
  • the ECU in this application refers to the ECU that controls the switching of the reversing component to switch the working position, but it should be understood that the general controller can also be regarded as a kind of ECU.
  • the method includes that the motor assembly drives the ball screw to output rotational torque, the rotational torque is used to drive the wheel assembly to turn, and the electronic control unit ECU controls the liquid in the hydraulic assembly to flow into the first chamber or the second chamber, so that the first chamber A pressure difference is generated between the second chamber and the second chamber, and the pressure difference causes the nut of the ball screw to produce linear motion, so as to drive the ball screw through the nut to output rotational torque, and the rotational torque is used to drive the wheel assembly to turn.
  • the structure of the control system can be understood with reference to the structures described in FIG. 1-a to FIG. 15 , and will not be described here.
  • one end of the ball screw is connected to the motor assembly
  • the other end of the ball screw is connected to the wheel assembly
  • a cavity is included between the nut assembly and the ball screw
  • the nut assembly and the nut pass through the connecting piece
  • the connecting piece divides the cavity into a first chamber and a second chamber
  • the liquid port of the first chamber is connected to the hydraulic assembly
  • the liquid port of the second chamber is connected to the hydraulic assembly.
  • the general controller can select an electric control system or a hydraulic control system according to the rotation signal
  • the structure of the control system can be understood with reference to the structures described in FIGS. 1-a to 15 .
  • how the overall control determines whether to select the electric control system or the hydraulic control system according to the rotation signal will be described.
  • FIG. 17 it is a schematic flowchart of another control method provided by an embodiment of the present application.
  • control method provided by this embodiment of the present application may include the following steps:
  • the four wheels of the vehicle are wheel A, wheel B, wheel C and wheel D respectively.
  • the wheel A is equipped with the A control system
  • the wheel B is equipped with the B control system
  • the wheel C is equipped with the C control system
  • the wheel D is equipped with the D control system
  • the control systems A to D are all control systems provided by the embodiments of the present application .
  • the master controller can simultaneously test whether the motor components in the control system A to the control system D work normally, and can also test whether each control system works normally one by one.
  • the general controller may send commands to the motor components of control system A to control system D (commands may be sent simultaneously, or commands may be sent separately) to instruct to rotate a certain angle in a certain direction. If a control system fails to turn, the motor assembly is considered to be inoperable or faulty.
  • the general controller can send commands to the ECUs of control system A to control system D (can send commands at the same time, or send commands separately), instructing to rotate a certain angle in a certain direction. If a control system fails to turn, the hydraulic assembly is considered to be inoperable or malfunctioning.
  • the control system A to the control system D may share a set of hydraulic components, that is, a common ECU, and the general control may instruct the ECU. This article will not repeat this.
  • the working state of the hydraulic assembly can be determined. That is, if the working state of the motor assembly is normal, the working state of the hydraulic assembly is temporarily uncertain.
  • the working state of the hydraulic assembly is confirmed, that is, regardless of whether the working state of the motor assembly is normal or faulty, after the work of the motor assembly is confirmed, the working state of the hydraulic assembly must be confirmed. condition.
  • the working state of the hydraulic assembly may be determined after it is determined in step 1704 that the motor assembly cannot output sufficient driving force.
  • the general controller can instruct The hydraulic control system is added together to determine whether the driving force output by the motor assembly is insufficient. For example, the motor assembly in the A control system can drive the wheel A to turn, but it cannot reach the angle indicated by the command, then the general control sends out a command to make the hydraulic control system of the A control system work, that is, the electric control system and the hydraulic control system in the A control system. The control systems work together to drive wheel A to steer. If it is determined that the rotation angle indicated by the command can be achieved after the hydraulic control system is added, it is determined that the driving force output by the motor assembly is insufficient.
  • the general controller determines that the steering wheel is driven by the electric control system
  • the general controller sends an instruction to the ECU, so that the ECU controls the reversing component to switch to the first working position.
  • the general controller determines that the wheel A is driven to rotate by the electric control system of the A control system
  • the general controller sends an instruction to the ECU, so that the ECU controls the reversing component in the A control system to switch to the first working position.
  • the understanding of the first working position can be understood with reference to the above description of the structure of a control system provided by the present application, which will not be repeated here. It should be noted that the following connection relationships and positional relationships between components of the control system are understood with reference to the description of the structure of the control system in FIGS. 1-a to 15 above, and will not be repeated below.
  • the priority electric control system drives the steering of the wheels, so as to ensure the agility of the steering of the wheels during driving.
  • the electric control system fails and cannot drive the wheel control system, consider driving the wheel steering through the hydraulic control system.
  • a hybrid control system can be used to make the electric control system and the hydraulic control system work at the same time.
  • the B control system and the C control system can output enough driving force.
  • Driving force the working state of the motor assembly of the D control system is faulty but the working state of the hydraulic assembly of the D control system is normal.
  • the hybrid control system is used to drive the steering of wheel A, that is, the electric control system in the A control system and the hydraulic control system jointly drive the steering of the wheel A
  • the electric control system of the B control system drives the wheel B to turn
  • the electric control system of the C control system is used.
  • the system drives the wheel C to turn, and drives the wheel D to turn through the hydraulic control system of the D control system.
  • each wheel of the vehicle is equipped with the control system provided by this application, wherein each wheel has an independent electric control system, that is, the motor components 1 to motor shown in Table 1 Component 4, each wheel shares a set of hydraulic control system, namely the hydraulic components shown in Table 1, the specific structure can be understood with reference to FIG. 10 to FIG. 13 .
  • the electric control system is preferentially used.
  • the motor component is faulty and the hydraulic component is normal, it can be switched to the hydraulic rotation system for fault. If the motor components are normal, the hydraulic components are normal, and the motor components cannot provide enough driving force, the steering force can be provided to the wheels through the hybrid control system, or there are one to three sets of motor components failure, and the remaining three sets to one set The motor is normal and the hydraulic components are normal.
  • the hybrid control system can also provide steering force to the wheels. In these two cases, the electric control system and the hydraulic control system work together. If both the motor assembly and the hydraulic assembly are in a fault state, it is determined that the control system has failed.
  • the general controller determines to drive the steering wheel through the hydraulic control system, it sends an instruction to the ECU to make the ECU control the reversing assembly to switch to the second working position, or to make the ECU control the reversing assembly to switch to the third working position. It should be noted that determining that the hydraulic control system drives the wheel steering includes driving the wheel steering only through the hydraulic control system, and jointly driving the wheel steering through the electric control system and the hydraulic control system.
  • FIG. 18-a it is a schematic diagram of an application scenario of a control method provided by an embodiment of the present application.
  • the driver can choose to initiate the detection of the control system, or the system automatically performs the detection of the control system.
  • each independent control system will be tested to detect whether each current control system can work normally. If the electric control system or hydraulic control system of any system fails, an alarm or reminder can be issued to remind the user of the danger. If both systems fail, the systems are locked and the vehicle cannot be started, ensuring safety.
  • electronically controlled steering can be preferably implemented to ensure the agility of vehicle steering during driving. In the case of insufficient steering force, hybrid steering can be implemented, and in the state of electronically controlled steering failure, hydraulic steering can be implemented.
  • FIG. 18-b is a schematic diagram of an application scenario of another control method provided by an embodiment of the present application.
  • a prompt message can be sent to prompt the user to switch to another control system for work.
  • the electric control system in the control system of a wheel assembly fails, the user can be prompted to switch to hydraulic Turn the system to work.
  • FIG. 18-c is a schematic diagram of an application scenario of another control method provided by an embodiment of the present application.
  • a prompt message can be sent to remind the user that the hybrid driving mode is about to be entered. That is, the electric control system and the hydraulic control system jointly drive the wheel steering.
  • a closed-loop control can be formed during the steering process of the vehicle, and the steering angle of the vehicle can be continuously adjusted to achieve a better steering effect, which will be described below. illustrate.
  • FIG. 19 it is a schematic flowchart of another control method provided by an embodiment of the present application.
  • control method provided by this embodiment of the present application may include the following steps:
  • the four wheels of the vehicle are wheel A, wheel B, wheel C and wheel D respectively.
  • the rotation direction and rotation angle of each wheel from wheel A to wheel D are determined according to the steering signal. For example, it is determined according to the steering signal that the wheel A turns to the left by a first angle.
  • the control system provided by the present application includes a sensor, such as a torque sensor, for obtaining the rotational torque output by the ball screw, such as a displacement sensor, for obtaining the nut assembly linear displacement.
  • a sensor such as a torque sensor
  • the state of each sensor in the control system provided by the present application is determined, for example, the data currently acquired by the sensor is determined.
  • Step 1903 can be understood with reference to steps 1701 to 1708 in the embodiment corresponding to FIG. 17 , and details are not repeated here.
  • the steering method of driving the wheel assembly is determined according to step 1903, for example, it is determined that the wheel assembly is driven by the electric control system, the wheel assembly is driven by the hydraulic control system, or the wheel assembly is driven by the electric control system and the hydraulic control system at the same time, the wheel is detected.
  • the steering angle of the component is compared, and the current steering angle of the wheel component is compared with the target steering angle, and the steering angle of the vehicle component is continuously adjusted until the target steering angle is resolved. That is, the closed-loop control of the rotation angle of each motor or the direction and stroke of the nut in each hydraulic actuator module needs to be moved, output steering torque, and perform steering, and at the same time, compare and correct the current transfer data with the target, and complete the steering.
  • the target turning angle of wheel A is the first angle
  • An angle is compared until the turning angle of the wheel A is the first angle, or when the difference from the first angle satisfies a preset condition, the steering of the wheel A is completed.
  • control system when introducing the control system and control method in this application, vehicles are used as examples for illustration, but the control system provided in this application can not only be installed on vehicles, because the control system provided in this application has a high degree of modularity.
  • a control system provided by the present application can be used as a modular unit in other rotating working conditions and structures to realize a redundant backup function, for example, it can be applied to fields such as robots, construction machinery, and wind power.
  • Embodiments of the present application further provide a computer-readable storage medium, where the computer-readable storage medium stores a manner in which the overall controller determines the steering of the wheel assembly according to the steering signal. As it travels on the computer, the computer is caused to perform the steps performed by the master controller in the method described in the embodiments shown in the aforementioned FIGS. 16 , 17 and 19 .
  • An embodiment of the present application further provides a computer-readable storage medium, where the computer-readable storage medium stores a manner in which the ECU switches the working position of the commutation component according to an instruction sent by the general controller. When it travels on the computer, the computer is caused to perform the steps performed by the ECU in the method described in the embodiments shown in the aforementioned FIGS. 16 , 17 and 19 .
  • the embodiments of the present application also provide a computer program product that, when driving on the computer, causes the computer to execute the steps performed by the general controller in the methods described in the aforementioned embodiments shown in FIG. 16 , FIG. 17 and FIG. 19 . .
  • the embodiments of the present application also provide a computer program product, which causes the computer to execute the steps performed by the ECU in the methods described in the embodiments shown in the foregoing FIG. 16 , FIG. 17 and FIG.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server, or data center Transmission to another website site, computer, server, or data center is by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.).
  • wire eg, coaxial cable, fiber optic, digital subscriber line (DSL)
  • wireless eg, infrared, wireless, microwave, etc.
  • the computer-readable storage medium may be any available medium that can be stored by a computer, or a data storage device such as a server, data center, etc., which includes one or more available media integrated.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVDs), or semiconductor media (eg, solid state disks (SSDs)), and the like.
  • the device embodiments described above are only schematic, wherein the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be A physical unit, which can be located in one place or distributed over multiple network units. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • the connection relationship between the modules indicates that there is a communication connection between them, which may be specifically implemented as one or more communication buses or signal lines.
  • the present application also provides a schematic structural diagram of a vehicle, which can be a sedan, a passenger car, a semi-trailer, an off-road vehicle, a special purpose vehicle, a truck, a tractor, a dump truck, etc.
  • the vehicle in FIG. 20 It is only a schematic diagram, and the specific vehicle may be an electric vehicle, a new energy vehicle, and the like.
  • the vehicle is equipped with the rotation system described above in Figures 1-a to 15 .
  • the car may include sensors 2001 , ECU 2002 and peripheral devices 2003 .
  • other devices may also be included, for example, a body control module (BCM) may also be included to provide the ECU 2002 with information such as vehicle engine status, speed, and gear position.
  • BCM body control module
  • the ECU 2002 can control the opening of the flow regulating assembly according to the information provided by the sensor 2001, such as the information provided by the torque sensor and the displacement sensor, according to the actions performed by the ECU 2002 described in Figs.
  • the vehicle may interact with sensors 2001 , other vehicles, other computer systems, or users through peripherals 2003 .
  • Peripherals 2003 may include wireless communication systems, navigation systems, microphones, and/or speakers. The user can obtain the working status of the control system through the touch screen of the peripheral device 2003, for example, it can be understood with reference to Fig. 18-a to Fig. 18-c.
  • peripherals 2003 may provide a means for the vehicle to communicate with other devices located within the vehicle.
  • the microphone may receive audio (eg, voice commands or other audio input) from a user of the vehicle.
  • speakers may output audio to a user of the vehicle.
  • a wireless communication system may communicate wirelessly with one or more devices, either directly or via a communication network.
  • the wireless communication system may use 3G cellular communication such as code division multiple access (CDMA), EVDO, global system for mobile communications (GSM)/general packet radio service technology (general packet radio service) packet radio service, GPRS), or 4G cellular communications, such as long term evolution (LTE), or 5G cellular communications.
  • CDMA code division multiple access
  • GSM global system for mobile communications
  • GPRS general packet radio service technology
  • 4G cellular communications such as long term evolution (LTE), or 5G cellular communications.
  • a wireless communication system can communicate with a wireless local area network (WLAN) using WiFi.
  • the wireless communication system may communicate directly with the device using an infrared link, Bluetooth, or ZigBee.
  • Other wireless protocols, such as various vehicle communication systems, for example, may include one or more dedicated short range communications (DSRC) devices, which may include communication between vehicles and/or roadside stations. Public and/or private data communications.
  • DSRC dedicated short range communications

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transmission Devices (AREA)
  • Power Steering Mechanism (AREA)

Abstract

一种控制系统、控制方法、智能汽车以及装置,控制系统包括:滚珠丝杠(20),螺母组件(30),电子控制单元ECU(50),以及液压组件(40),螺母组件(30)和滚珠丝杠(20)之间包括腔体,螺母组件(30)和滚珠丝杠(20)的螺母(201)通过连接件(13)连接,连接件(13)将腔体分割为第一腔室(11)和第二腔室(12),第一腔室(11)的通液口连接液压组件(40),第二腔室(12)的通液口连接液压组件(40)。方案可以应用在智能汽车、网联汽车、新能源汽车、自动驾驶汽车等的控制系统上实现控制系统的冗余设计。

Description

一种控制系统、控制方法、智能汽车以及装置 技术领域
本申请涉及车辆转向系统技术领域,尤其涉及一种控制系统、控制方法、智能汽车以及装置。
背景技术
汽车的转向系统(steering system)是汽车底盘的重要组成部分。汽车转向系统对汽车的行驶安全至关重要。
目前的转向系统主要包括传统转向系统,线控转向系统以及独立转向系统。现有的转向系统一般都不具备冗余设计,或者冗余设计能力较低。不具备冗余设计或者冗余设计能力较低都会使汽车在转向时可靠性不足,从而影响汽车的安全行驶,存在较大的安全隐患。
发明内容
本申请提供一种控制系统,可以应用在智能汽车、网联汽车、新能源汽车、自动驾驶汽车等的控制系统上,使不具备冗余设计的控制系统具备冗余设计。
本申请提供的控制系统可以具备电动控制系统和液压控制系统双套系统。本申请提供的控制系统中的两套控制系统可以独立工作,当一个系统发生故障时,可以快速切换到另一个系统,保证安全性。比如,相对于已有的电动控制系统,本申请提供的方案增加液压控制系统,使现有的电动控制系统具备冗余设计。此外,本申请提供的控制系统中的两套系统也可以同时工作,提升转向能力。此外,本申请提供的控制系统可以实现四轮独立转向,针对四轮中的任意一个或者多个车轮的控制系统进行冗余设计,并且本申请提供的控制系统可以满足多种驾驶模式下的转向需求,比如可以原地转向,横向移动,小转弯半径转向等等。
为解决上述技术问题,本申请实施例提供以下技术方案:
本申请第一方面提供一种控制系统,本申请提供的控制系统可以安装在车辆上,或者可以安装在任何包括旋转性结构的设备中。本申请提供的控制系统可以包括:电机组件10,滚珠丝杠20,螺母组件30,液压组件40,电子控制单元ECU50,以及车轮组件60。滚珠丝杠20的一端连接电机组件10,滚珠丝杠20的另一端连接车轮组件60。通过这部分结构可以实现电动转向功能。螺母组件30和滚珠丝杠20之间可以包括腔体,螺母组件30和滚珠丝杠20的螺母201通过连接件13连接,连接件13将腔体分割为第一腔室11和第二腔室12,第一腔室11的通液口连接液压组件40,第二腔室12的通液口连接液压组件40,通过这部分结构可以实现液压转向功能。由第一方面可知,本申请提供的控制系统包括两种动力源,一种方式为电机组件10驱动滚珠丝杠20输出旋转扭矩,旋转扭矩用于驱动车轮组件60转向;另一种方式为ECU50控制液压组件40中的液体流入第一腔室11或者第二腔室12,以使第一腔室11和第二腔室12产生压强差,压强差使螺母201产生直线运动,以通过螺母201驱动滚珠丝杠20输出旋转扭矩,旋转扭矩用于驱动车轮组件60转向。可见,本申请提供的控制系统不仅提供了一种具备冗余设计的控制系统,还可以保证两套控制系统可以独立工作。此外,当一个系统发生故障时,可以快速切换到另一个系统,保证安全性。滚珠丝杠20是一种可以将旋转运动转换为直线运动,将直线运动转换为旋转运动 的器件,所以,在电动控制系统中,电机组件10驱动滚珠丝杠20,滚珠丝杠20输出旋转扭矩,同时滚珠丝杠20的螺母可以做直线运动。由于螺母201和连接件13连接,而连接件13将腔体分割为第一腔室11和第二腔室12,所以第一腔室11和第二腔室12的体积会随着螺母201的运动,而不断的变换。比如,随着螺母201做直线运动,第一腔室11的体积随之增大,而第二腔室12的体积随之减小,或者随着螺母201做直线运动,第一腔室11的体积随之增大,而第二腔室12的体积随之减少。因为第一腔室11的通液口和液压组件40连接,第二腔室12的通液口和液压组件40连接,所以第一腔室11的体积被压缩时,第一腔室11中的液体可以自由的通过管道流入液压组件40之中,第二腔室12的体积被压缩时,第二腔室12中的液体可以自由的通过管道流入液压组件40之中。这种设计可以实现液压执行单元与电动执行单元的自动同步耦合。本申请提供的控制系统中的两套系统还可以同时工作,提升转向能力。此外,本申请提供的控制系统因为是模块化的设计,可以针对四轮中的任意一个或者多个车轮的控制系统进行冗余设计,具备冗余设计的同时,可以满足多种驾驶模式下的转向需求,比如可以原地转向,横向移动,小转弯半径转向等等。
可选地,结合上述第一方面,在第一种可能的实施方式中,控制系统还可以包括换向组件70,ECU50与换向组件70电连接,用于控制换向组件70切换到第一工作位置,换向组件70在第一工作位置时,第一腔室11的通液口通过换向组件70连接液压组件40的油壶401,第二腔室12的出液口通过换向组件70连接油壶401;电机组件10驱动滚珠丝杠20输出旋转扭矩,旋转扭矩还用于通过螺母使连接件13产生直线运动,第一腔室11和第二腔室12的体积随着连接件13的直线运动而增大或者缩小。由第一方面第一种可能的实施方式可知,给出一种电动控制系统驱动车轮组件60转向时,第一腔室11的通液口和第二腔室12的通液口和液压组件40的连接方式。这种设计可以实现液压执行单元与电动执行单元的自动同步耦合。
可选地,结合上述第一方面第一种可能的实施方式,在第二种可能的实施方式中,ECU50还用于控制换向组件70切换到第二工作位置,换向组件70在第二工作位置时,第一腔室11的通液口通过换向组件70连接液压组件40的液压源402,第二腔室12的通液口通过换向组件70连接油壶401;液压源402中的液压液通过换向组件70流入第一腔室11,第一腔室11的压强大于第二腔室12的压强,使螺母向着第二腔室12的方向产生直线运动,以通过螺母驱动滚珠丝杠20输出第一旋转扭矩。由第一方面第二种可能的实施方式可知,给出一种液压控制系统驱动车轮组件60转向时,第一腔室11的通液口和第二腔室12的通液口和液压组件40的连接方式。
可选地,结合上述第一方面第一种或第一方面第二种可能的实施方式,在第三种可能的实施方式中,ECU50还用于控制换向组件70切换到第三工作位置,换向组件70在第三工作位置时,第一腔室11的通液口通过换向组件70连接油壶401,第二腔室12的通液口通过换向组件70连接液压组件40的液压源402;液压源402中的液压液通过换向组件70流入第二腔室12,第二腔室12的压强大于第一腔室11的压强,以使螺母向着第一腔室11的方向产生直线运动,以通过螺母驱动滚珠丝杠20输出第二旋转扭矩。由第一方面第三种可能的实施方式可知,给出一种液压控制系统驱动车轮组件60转向时,第一腔室11的通液口和第二腔室12的通液口和液压组件40的连接方式。第一方面第三种可能的实施方式 和第一方面第二种可能的实施方式的差别在于两种方式可以控制车轮向两个相反的方向转动,比如第一方面第二种可能的实施方式控制车轮组件60左转,第一方面第三种可能的实施方式控制车轮组件60右转,或者第一方面第二种可能的实施方式控制车轮组件60右转,第一方面第三种可能的实施方式控制车轮组件60左转。
可选地,结合上述第一方面第一种至第一方面第三种可能的实施方式,在第四种可能的实施方式中,换向组件70是三位五通电磁阀700,三位五通电磁阀700可以包括三种工作位置,当所述换向组件切换到第一工作位置时,所述第一腔室11的通液口通过所述三位五通电磁阀700连接所述液压组件40的油壶401,所述第二腔室12的出液口通过所述三位五通电磁阀700连接所述油壶401。当所述三位五通电磁阀切换到第二工作位置时,所述第一腔室11的通液口通过所述三位五通电磁阀700连接所述液压组件40的液压源402,所述第二腔室12的通液口通过所述三位五通电磁阀700连接所述油壶401。当所述三位五通电磁阀切换到第三工作位置时,所述第一腔室11的通液口通过所述三位五通电磁阀700连接所述油壶401,所述第二腔室12的通液口通过所述三位五通电磁阀700连接所述液压组件40的液压源402。由第一方面第四种可能的实施方式可知,给出了一种换向组件70的具体结构,增加了方案的多样性。
可选地,结合上述第一方面第一种至第一方面第三种可能的实施方式,在第五种可能的实施方式中,换向组件70可以包括至少一个两位两通常开电磁阀,至少两个两位两通常闭电磁阀以及至少一个三位三通常闭电磁阀,至少两个两位两通常闭电磁阀中的第一两位两通常闭电磁阀701的一端连接第一腔室11的通液口,第一两位两通常闭电磁阀701的另一端连接油壶401,至少两个两位两通常闭电磁阀中的第二两位两通常闭电磁阀703的一端连接第二腔室12的通液口,第二两位两通常闭电磁阀703的另一端连接油壶401,两位两通常开电磁阀702的一端连接第一腔室11的通液口,两位两通常开电磁阀702的另一端连接第二腔室12的通液口,三位三通常闭电磁阀704可以包括三种工作位置,三种工作位置中的每一种位置可以包括三个接口,每一种位置的三个接口之间的连通关系不同,三个接口之间的连通关系可以包括第一接口和第三接口连通,或者第二接口和第三接口连通,或者第一接口,第二接口和第三接口均不连通。三个接口中的第一接口用于连接第一腔室11的通液口,三个接口中的第二接口用于连接第二腔室12,三个接口中的第三接口用于连接液压源402。由第一方面第五种可能的实施方式可知,给出了另一种换向组件70的具体结构,增加了方案的多样性。
可选地,结合上述第一方面或第一方面第一种至第一方面第五种可能的实施方式,在第六种可能的实施方式,螺母201和连接件13是一体成型的。
可选地,结合上述第一方面或第一方面第一种至第一方面第六种可能的实施方式,在第七种可能的实施方式,螺母组件30可以包括导轨302和滑动件301,滑动件301与导轨302滑动连接,滑动件和连接件13是一体成型的,第一腔室11和第二腔室12的压强差使滑动件沿着导轨产生直线运动。
可选地,结合上述第一方面或第一方面第一种至第一方面第七种可能的实施方式,在八种可能的实施方式,液压组件40的油壶401和液压组件40的液压源402之间的通路上布置有单向阀,单向阀的导通方向是从油壶401到液压源402的方向。
结合上述第一方面或第一方面第一种至第一方面第八种可能的实施方式,在第九种可能的实施方式,第一腔室11由连接件13,滚珠丝杠20,螺母组件30以及第一挡板组成,第一挡板303的两端安装有密封圈304,第一挡板303位于滚珠丝杠20和螺母组件30之间,第二腔室12由连接件13,滚珠丝杠20,螺母组件30以及第二挡板305组成,第二挡板305的两端安装有密封圈304,第二挡板位于滚珠丝杠20和螺母组件30之间,第一挡板303通过第一安装板80转动连接在滚珠丝杠20上,第二挡板305通过第二安装板90转动连接在在滚珠丝杠20上。
结合上述第一方面或第一方面第一种至第一方面第九种可能的实施方式,在第十种可能的实施方式,电机组件10可以包括电机101和变速器102,电机101通过变速器102驱动滚珠丝杠20输出旋转扭矩。
结合上述第一方面或第一方面第一种至第一方面第十种可能的实施方式,在第十一种可能的实施方式,还可以包括角度扭矩传感器103,角度扭矩传感器103设置在滚珠丝杠20上,角度扭矩传感器用于获取滚珠丝杠20输出的旋转扭矩。
结合上述第一方面或第一方面第一种至第一方面第十一种可能的实施方式,在第十二种可能的实施方式,还可以包括位移传感器306,位移传感器306设置在螺母组件30上,位移传感器用于获取螺母组件30的直线位移。
本申请第二方面提供一种控制方法,可以包括:获取转向信号。根据转向信号确定驱动车轮组件转向的方式,该方式可以包括电机组件驱动滚珠丝杠输出旋转扭矩,旋转扭矩用于驱动车轮组件转向,以及电子控制单元ECU控制液压组件中的液体流入第一腔室或者第二腔室,以使第一腔室和第二腔室产生压强差,压强差使滚珠丝杠的螺母产生直线运动,以通过螺母驱动滚珠丝杠输出旋转扭矩,旋转扭矩用于驱动车轮组件转向,滚珠丝杠的一端连接电机组件,滚珠丝杠的另一端连接车轮组件,螺母组件和滚珠丝杠之间可以包括腔体,螺母组件和螺母通过连接件连接,连接件将腔体分割为第一腔室和第二腔室,第一腔室的通液口连接液压组件,第二腔室的通液口连接液压组件。由第二方面可知,总控制器可以根据转动信号选择第一方面提供的控制系统中的电动控制系统或者液压控制系统。
可选地,结合上述第二方面,在第一种可能的实施方式中,该方法还可以包括:根据转向信号检测电机组件和液压组件是否正常工作。根据转向信号确定驱动车辆组件转向的方式,可以包括:若电机组件正常工作,则确定通过电机组件驱动滚珠丝杠输出旋转扭矩。由第二方面第一种可能的实施方式可知,优先电动控制系统驱动车轮转向,以保证车轮在行驶过程中转向的敏捷性。
可选地,结合上述第二方面,在第二种可能的实施方式中,该方法还可以包括:若旋转扭矩输出的驱动力不满足预设条件,且液压组件正常工作,则确定通过电机组件驱动滚珠丝杠输出第一旋转扭矩,且通过液压组件控制液压组件中的液体流入第一腔室或者第二腔室,以使第一腔室和第二腔室产生压强差,压强差使滚珠丝杠的螺母产生直线运动,以通过螺母驱动滚珠丝杠输出第二旋转扭矩,第一旋转扭矩和第二旋转扭矩共同驱动车轮组件转向。由第一方面第二种可能的实施方式可知,如果电动控制系统不能输出足够的驱动力,则电动控制系统和液压控制系统一起工作,共同驱动车轮转向,提升转向性能。
可选地,结合上述第二方面,在第三种可能的实施方式中,该方法还可以包括:根据 转向信号检测电机组件和液压组件是否正常工作。根据转向信号确定驱动车辆组件转向的方式,可以包括:若电机组件故障,且液压组件正常工作,则确定通过液压组件控制液压组件中的液体流入第一腔室或者第二腔室,以使第一腔室和第二腔室产生压强差,压强差使滚珠丝杠的螺母产生直线运动,以通过螺母驱动滚珠丝杠输出旋转扭矩。由第二方面第三种可能的实施方式可知,当电动控制系统出现故障时,可以切换到液压控制系统进行工作。
可选地,结合上述第二方面,在第四种可能的实施方式中,该方法还可以包括:根据转向信号检测电机组件和液压组件是否正常工作。若电机组件或者液压组件无法正常工作,则发送提示消息,提示消息用于指示电机组件故障,或者液压组件故障。
可选地,结合上述第二方面或第二方面第一种至第二方面第四种可能的实施方式,在第五种可能的实施方式中,该方法还可以包括:控制换向组件切换到第一工作位置,换向组件和ECU电连接,换向组件在第一工作位置时,第一腔室的通液口通过换向组件连接液压组件的油壶,第二腔室的出液口通过换向组件连接油壶。电机组件驱动滚珠丝杠输出旋转扭矩,旋转扭矩还用于通过螺母使连接件产生直线运动,第一腔室和第二腔室的体积随着连接件的直线运动而增大或者缩小。
可选地,结合上述第二方面第五种可能的实施方式,在第六种可能的实施方式中,该方法还可以包括:控制换向组件切换到第二工作位置,换向组件在第二工作位置时,第一腔室的通液口通过换向组件连接液压组件的液压源,第二腔室的通液口通过换向组件连接油壶;液压源中的液压液通过换向组件流入第一腔室,第一腔室的压强大于第二腔室的压强,使螺母向着第二腔室的方向产生直线运动,以通过螺母驱动滚珠丝杠输出第一旋转扭矩。
可选地,结合上述第二方面第五种或第六种可能的实施方式,在第七种可能的实施方式中,该方法还可以包括:控制换向组件切换到第三工作位置,换向组件在第三工作位置时,第一腔室的通液口通过换向组件连接油壶,第二腔室的通液口通过换向组件连接液压组件的液压源。液压源中的液压液通过换向组件流入第二腔室,第二腔室的压强大于第一腔室的压强,以使螺母向着第一腔室的方向产生直线运动,以通过螺母驱动滚珠丝杠输出第二旋转扭矩。
可选地,结合上述第二方面第五种至第七种可能的实施方式,在第八种可能的实施方式中,换向组件是三位五通电磁阀,三位五通电磁阀可以包括三种工作位置,三种工作位置中的每一种工作位置可以包括两条通路,两条通路中的一条通路用于第一腔室和液压组件的油壶之间的液体传输,两路通路中的另一条通路用于第二腔室和液压组件的油壶之间的液体传输;或者两条通路中的一条通路用于第一腔室和液压组件的液压源之间的液体传输,两条通路中的另一条通路用于第二腔室和液压组件的油壶之间的液体传输;或者两条通路中的一条通路用于第一腔室和液压组件的油壶之间的液体传输,两条通路中的另一条通路用于第二腔室和液压组件的液压源之间的液体传输。
可选地,结合上述第二方面第五种至第七种可能的实施方式,在第九种可能的实施方式中,换向组件可以包括至少一个两位两通常开电磁阀,至少两个两位两通常闭电磁阀以及至少一个三位三通常闭电磁阀,至少两个两位两通常闭电磁阀中的第一两位两通常闭电 磁阀的一端连接第一腔室的通液口,第一两位两通常闭电磁阀的另一端连接油壶,至少两个两位两通常闭电磁阀中的第二两位两通常闭电磁阀的一端连接第二腔室的通液口,第二两位两通常闭电磁阀的另一端连接油壶,两位两通常开电磁阀的一端连接第一腔室的通液口,两位两通常开电磁阀的另一端连接第二腔室的通液口,三位三通常闭电磁阀可以包括三种工作位置,三种工作位置中的每一种位置可以包括三个接口,每一种位置的三个接口之间的连通关系不同,三个接口之间的连通关系可以包括第一接口和第三接口连通,第二接口和第三接口连通,以及第一接口,第二接口和第三接口均不连通,三个接口中的第一接口用于连接第一腔室的通液口,三个接口中的第二接口用于连接第二腔室,三个接口中的第三接口用于连接液压源。
可选地,结合上述第二方面或第二方面第一种至第二方面第九种可能的实施方式,在第十种可能的实施方式中,螺母和连接件是一体成型的。
可选地,结合上述第二方面或第二方面第一种至第二方面第十种可能的实施方式,在第十一种可能的实施方式中,螺母组件可以包括导轨和滑动件,滑动件与导轨滑动连接,滑动件和分割件是一体成型的,第一腔室和第二腔室的压强差使滑动件沿着导轨产生直线运动。
可选地,结合上述第二方面或第二方面第一种至第二方面第十一种可能的实施方式,在第十二种可能的实施方式中,第一腔室由连接件,滚珠丝杠,螺母组件以及第一挡板组成,第一挡板的两端安装有密封圈,第一挡板位于滚珠丝杠和螺母组件之间,第二腔室由连接件,滚珠丝杠,螺母组件以及第二挡板组成,第二挡板的两端安装有密封圈,第二挡板位于滚珠丝杠和螺母组件之间,第一挡板通过第一板转动连接在滚珠丝杠上,第二挡板通过第二安装板转动连接在滚珠丝杠上。
可选地,结合上述第二方面或第二方面第一种至第二方面第十一种可能的实施方式,在第十三种可能的实施方式中,电机组件可以包括电机和变速器,电机通过变速器驱动滚珠丝杠输出旋转扭矩。
可选地,结合上述第二方面或第二方面第一种至第二方面第十三种可能的实施方式,在第十四种可能的实施方式中,还可以包括角度扭矩传感器,角度扭矩传感器设置在滚珠丝杠上,角度扭矩传感器用于获取滚珠丝杠输出的旋转扭矩。
可选地,结合上述第二方面或第二方面第一种至第二方面第十四种可能的实施方式,在第十五种可能的实施方式中,还可以包括位移传感器,位移传感器设置在螺母组件上,位移传感器用于获取螺母组件的直线位移。
本申请第三方面提供一种智能汽车,该智能汽车可以包括控制系统,该控制系统是第一方面或第一方面任意一种可能的实施方式中描述的控制系统。
本申请第四方面提供一种转向设备,该转向设备可以包括控制系统,该控制系统是第一方面或第一方面任意一种可能的实施方式中描述的控制系统。
本申请第五方面提供一种转向设备,可以包括:存储器,用于存储计算机可读指令;还可以包括,与存储器耦合的处理器,用于执行存储器中的计算机可读指令从而执行如第二方面或第二方面任意一种可能的实施方式中所描述的方法。
本申请第六方面提供一种计算机可读存储介质,当指令在计算机装置上运行时,使得 计算机装置执行如第二方面或第二方面任意一种可能的实施方式中所描述的方法。
本申请第七方面提供一种计算机程序产品,当在计算机上运行时,使得计算机可以执行如第二方面或第二方面任意一种可能的实施方式中所描述的方法。
本申请第八方面提供一种芯片系统,该芯片系统可以包括处理器,用于支持车辆或者ECU实现上述第二方面或第二方面任意一种可能的实施方式中所描述的方法中所涉及的功能。
随着自动驾驶技术的快速发展,现有的传统或线控控制系统已经不能够满足自动驾驶的需求,本系统将现有系统进行了性能和功能的提升,可以包含以下几点:本系统具有极高的适用性,可以将当前常用的各类助力控制系统中替换为本申请提供的控制系统,或者增加本申请提供的控制系统,将当前常规系统提升为冗余系统,进而满足自动驾驶的基本要求。本申请提供的控制系统具有高度的集成度,将电控与液压两套系统的执行机构集成在一套结构中,实现了极小的空间占用率。本申请提供的控制系统中引入了液压系统,实现了液压转向模式下推力的极大提升。在整车中,本系统可以作为独立转向模块安装在无转向能力的轮胎上,与原始控制系统配合,形成独立转向,实现小半径转向,高速转向等模式。
附图说明
图1-a为本申请实施例提供的一种控制系统的结构示意图;
图1-b为本申请实施例提供的一种控制系统的结构示意图;
图2为本申请实施例提供的另一种控制系统的结构示意图;
图2-a为本申请实施例提供的另一种控制系统的结构示意图;
图2-b为本申请实施例提供的另一种控制系统的结构示意图;
图3为本申请实施例提供的另一种控制系统的结构示意图;
图4为本申请实施例提供的另一种控制系统的结构示意图;
图5为本申请实施例提供的另一种控制系统的结构示意图;
图6为本申请实施例提供的另一种控制系统的结构示意图;
图7为本申请实施例提供的另一种控制系统的结构示意图;
图8为本申请实施例提供的另一种控制系统的结构示意图;
图9为本申请实施例提供的另一种控制系统的结构示意图;
图10为本申请实施例提供的另一种控制系统的结构示意图;
图11-a为本申请实施例提供的控制系统可以实现的一种工作模式;
图11-b为本申请实施例提供的控制系统可以实现的另一种工作模式;
图11-c为本申请实施例提供的控制系统可以实现的另一种工作模式;
图11-d为本申请实施例提供的控制系统可以实现的另一种工作模式;
图11-e为本申请实施例提供的控制系统可以实现的另一种工作模式;
图12为本申请实施例提供的另一种控制系统的结构示意图;
图13为本申请实施例提供的另一种控制系统的结构示意图;
图14-a为本申请实施例提供的另一种控制系统的结构示意图;
图14-b为本申请实施例提供的另一种控制系统的结构示意图;
图14-c为本申请实施例提供的另一种控制系统的结构示意图;
图15为本申请实施例提供的另一种控制系统的结构示意图;
图16为本申请实施例提供的一种控制方法的流程示意图;
图17为本申请实施例提供的另一种控制方法的流程示意图;
图18-a为本申请实施例提供的一种控制方法的应用场景示意图;
图18-b为本申请实施例提供的另一种控制方法的应用场景示意图;
图18-c为本申请实施例提供的另一种控制方法的应用场景示意图;
图19为本申请实施例提供的另一种控制方法的流程示意图;
图20为本申请实施例提供的一种转向设备的结构示意图。
具体实施方式
下面结合附图,对本申请的实施例进行描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。本领域普通技术人员可知,随着技术的发展和新场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或模块的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或模块,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或模块。在本申请中出现的对步骤进行的命名或者编号,并不意味着必须按照命名或者编号所指示的时间/逻辑先后顺序执行方法流程中的步骤,已经命名或者编号的流程步骤可以根据要实现的技术目的变更执行次序,只要能达到相同或者相类似的技术效果即可。本申请中所出现的模块的划分,是一种逻辑上的划分,实际应用中实现时可以有另外的划分方式,例如多个模块可以结合成或集成在另一个系统中,或一些特征可以忽略,或不执行,另外,所显示的或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些端口,模块之间的间接耦合或通信连接可以是电性或其他类似的形式,本申请中均不作限定。并且,作为分离部件说明的模块或子模块可以是也可以不是物理上的分离,可以是也可以不是物理模块,或者可以分布到多个电路模块中,可以根据实际的需要选择其中的部分或全部模块来实现本申请方案的目的。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”、“设置”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,可以是直接相连,也可以通过中间媒介间接相连,还可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
为了便于更好的理解本申请,下面具体阐述本申请所描述的技术方案的研究思路:
目前的转向控制系统主要包括传统转向控制系统,线控转向控制系统以及独立控制系统。需要说明的是,本申请有时将转向控制系统简称为控制系统或者简称为转向系统。
其中,传统的控制系统通过机械连接实现转向,一般不具有冗余设计或者冗余设计能 力较低。并且传统的控制系统无法实现四轮独立转向。
线控控制系统由于方向盘和转向机之间一般无机械连接,电控转向失效状况下则失去转向功能。在线控转向失效情况下,即使有离合器实现机械连接,驾驶员也只能进行机械转向控制。机械控制系统由于轮胎和地面的反作用力直接传递到方向盘上,所以在扳动方向盘的时候很费劲,特别是原地打方向的时候。如果是在载重和自重很大的货车上,方向盘把握不稳有可能会造成手臂骨折,操作起来非常危险。并且目前的线控控制系统一般无法实现左右轮单独控制转向,能够实现左右轮单独控制转向的线控控制系统,也无法实现单侧失效情况下(比如左侧车辆轮的控制系统失效,或者比如右侧车轮的控制系统失效)两侧轮胎的转向同步问题。
独立控制系统可以实现四个车辆的独立转向控制,但是目前独立控制系统没有冗余设计,在控制系统失效后,轮胎无法回正,系统失去转向功能。
通过以上对于现有的几种控制系统的梳理可知,现有的控制系统都不理想。由于冗余控制系统设计复杂,大多数控制系统不具备冗余设计。而不具备冗余设计的控制系统会使汽车在转向时可靠性不足,从而影响汽车的安全行驶,存在较大的安全隐患。现有的具备冗余设计的控制系统,冗余设计能力又较低。其中冗余设计能力较低可以有多种体现,比如可以表现为当一套控制系统发生故障时,无法快速切换到另一套控制系统。再比如,可以表现为两套控制系统无法同时工作,无法进一步的提升转向能力。再比如,没办法扩展到四轮控制系统,针对四轮独立转向的系统,无法实现针对每一个车轮的控制系统分别进行冗余设计,等等。
为了解决上述问题,本申请提供一种控制系统,该控制系统可以包括:滚珠丝杠,电机组件,车轮组件,螺母组件,电子控制单元ECU,以及液压组件。
滚珠丝杠的一端连接电机组件,滚珠丝杠的另一端连接车轮组件。电机组件驱动滚珠丝杠输出旋转扭矩,旋转扭矩用于驱动车轮组件转向。通过这部分结构可以实现电动转向功能。
此外,螺母组件和滚珠丝杠之间包括腔体,螺母组件和滚珠丝杠的螺母通过连接件连接,连接件将腔体分割为第一腔室和第二腔室。第一腔室的通液口连接液压组件,第二腔室的通液口连接液压组件。因为滚珠丝杠是一种可以将旋转运动转换为直线运动,将直线运动转换为旋转运动的器件,所以,在电动控制系统中,电机组件驱动滚珠丝杠,滚珠丝杠输出旋转扭矩,同时滚珠丝杠的螺母可以做直线运动。由于螺母和连接件连接,而连接件将腔体分割为第一腔室和第二腔室,所以第一腔室和第二腔室的体积会随着螺母的运动,而不断的变换。比如,随着螺母做直线运动,第一腔室的体积随之增大,而第二腔室的体积随之减小,或者随着螺母做直线运动,第一腔室的体积随之增大,而第二腔室的体积随之减少。因为第一腔室的通液口和液压组件连接,第二腔室的通液口和液压组件连接,所以第一腔室的体积被压缩时,第一腔室中的液体可以自由的通过管道流入液压组件之中,第二腔室的体积被压缩时,第二腔室中的液体可以自由的通过管道流入液压组件之中。这种设计是为了保证当电动控制系统发生故障时,可以无缝衔接切换到液压控制系统。举例说明,比如当第一腔室中的体积为第一体积,第二腔室的体积为第二体积时,此时对应的车轮组件的转向为A位置。若在这种状态下,电动控制系统发生故障,则切换到液压控制 系统,液压组件中的液体流入第一腔室,使第一腔室的体积由第一体积开始增大,或者液压组件中的液体流入第二腔室,使第二腔室的体积由第二体积开始增大,这都会保证车轮组件由A位置无缝过渡到B位置,B位置可以根据转向信号确定,比如可以是根据方向盘转角信息确定的车轮转角。下面再对液压控制系统的工作原理进行简要说明,ECU可以控制液压组件中的液体流入第一腔室或者第二腔室,以使第一腔室和第二腔室产生压强差,压强差使螺母产生直线运动,以通过螺母驱动滚珠丝杠输出旋转扭矩,旋转扭矩用于驱动车轮组件转向,通过这部分的结构可以实现液压转向功能。
通过本申请提供的设计方案,在电动控制系统中,可以通过电机组件驱动滚珠丝杠,通过滚珠丝杠输出的旋转扭矩驱动车轮组件转向,在液压控制系统中,可以通过第一腔室和第二腔室的压强差使滚珠丝杠的螺母进行直线运动,进而使滚珠丝杠输出旋转扭矩,通过该旋转扭矩驱动车轮组件转向。本申请提供的控制系统不仅提供了一种具备冗余设计的控制系统,还可以保证两套控制系统可以独立工作,当一个系统发生故障时,可以快速切换到另一个系统,保证安全性。本申请提供的控制系统中的两套系统还可以同时工作,提升转向能力。本申请提供的控制系统还可以实现四轮独立转向,针对四轮中的任意一个或者多个车轮的控制系统进行冗余设计,并且本申请提供的控制系统可以满足多种驾驶模式下的转向需求,比如可以原地转向,横向移动,小转弯半径转向等等。
基于上面的研究思路,下面对本申请提供的技术方案进行具体的介绍。
参阅图1-a,为本申请实施例提供的一种控制系统的结构示意图。电机组件10,滚珠丝杠20,螺母组件30,液压组件40,电子控制单元ECU50,以及车轮组件60。需要说明的是,图1-a所示为本申请提供的一种控制系统的结构的截面图示意图。
滚珠丝杠20的一端连接电机组件10,滚珠丝杠20的另一端连接车轮组件60,螺母组件30和滚珠丝杠20之间包括腔体,螺母组件30和滚珠丝杠20的螺母201通过连接件13连接,连接件13将腔体分割为第一腔室11和第二腔室12,第一腔室11的通液口连接液压组件40,第二腔室12的通液口连接液压组件40。
电机组件10驱动滚珠丝杠20输出旋转扭矩,旋转扭矩用于驱动车轮组件60转向;或者ECU50控制液压组件40中的液体流入第一腔室11或者第二腔室12,以使第一腔室11和第二腔室12产生压强差,压强差使螺母201产生直线运动,以通过螺母驱动滚珠丝杠20输出旋转扭矩,旋转扭矩用于驱动车轮组件60转向。
由图1-a所示的结构可知,本申请提供的一种控制系统包括两个动力源,其中一个动力源是电机,另一个动力源是液压组件。两个动力源共用一套执行机构,该执行机构包括滚珠丝杠30。此外,可以通过ECU50控制液压组件中的液体流入第一腔室11或者第二腔室12,从而在两套控制系统之间进行切换。举例说明,当控制系统切换到电动控制系统时,此时的动力源是电机组件10,而不是液压组件40,无需ECU控制液压组件40中的液体流入第一腔室11或者第二腔室12,即无需通过压强差驱动滚珠丝杠。控制系统切换到电动控制系统时,电机组件10是动力源,驱动执行机构滚珠丝杠20输出旋转扭矩,进而带动车轮组件60转动。此外,在滚珠丝杠输出旋转扭矩的同时,滚珠丝杠的螺母201会做直线运动,进而带动连接件13做直线运动,第一腔室11和第二腔室12的体积也会随时变化,第一腔室11和第二腔室12中的液体可以自由的流入液压组件中,通过这样的设计可以保 证在电动控制系统发生故障时,可以很快,几乎是无缝衔接的切换到液压控制系统,实现液压执行单元与电动执行单元的自动同步耦合。需要说明的是,本申请将整体的结构划分为一个一个组件是为了更好的解释方案,不应当理解为对方案的限定,比如本申请将与滚珠丝杠的螺母201连接的器件称为螺母组件,可以认为螺母组件包括连接件13,也可以认为螺母组件不包括连接件13,或者可以认为滚珠丝杠的螺母201,以及与滚珠丝杠的螺母201连接的器件都看做螺母组件。
在一个可能的实施方式中,液压组件可以包括油壶401和液压源402。在电动控制系统中,第一腔室11的液体和第二腔室12的液体可以自由的流入油壶401中,或者油壶401中的液体可以自由的流入第一腔室11或者第二腔室12。在液压转动系统中,ECU50可以通过多种方式控制液压组件的液压源402的液体流入第一腔室11或者第二腔室12。本申请提供的控制系统可以通过多种结构设计实现上述过程,比如参阅图1-b,该控制系统还可以包括换向组件70,ECU与换向组件70电连接,用于控制换向组件切换工作位置,通过换向组件实现在电动控制系统中,第一腔室11的液体和第二腔室12的液体可以自由的流入油壶401中,或者油壶401中的液体可以自由的流入第一腔室11或者第二腔室12。在液压转动系统中,ECU可以控制液压组件的液压源402的液体流入第一腔室11或者第二腔室12。
为了更好的展示本方案,下面结合两个优选的结构进行说明。
参阅图2至图4,为本申请实施例提供的另一种控制系统的结构示意图。换向组件包括至少一个三位五通电磁阀700。需要说明的是,本申请有时也将电磁阀700称为换向阀700,比如将三位五通电磁阀700称为三位五通换向阀700,二者表述相同的意思。该三位五通电磁阀700包括三种工作位置,三种工作位置中的每一种工作位置包括两条通路,两条通路中的一条通路用于第一腔室11和液压组件的油壶401之间的液体传输,两路通路中的另一条通路用于第二腔室12和液压组件的油壶401之间的液体传输;或者两条通路中的一条通路用于第一腔室11和液压组件的液压源402之间的液体传输,两条通路中的另一条通路用于第二腔室12和液压组件的油壶401之间的液体传输;或者两条通路中的一条通路用于第一腔室11和液压组件的油壶401之间的液体传输,两条通路中的另一条通路用于第二腔室12和液压组件的液压源402之间的液体传输。下面结合图2至图4分别进行说明。
参阅图2,ECU控制三位五通电磁阀700切换到第一工作位置时,第一腔室11的通液口通过三位五通换向阀700与油壶401连通,第二腔室12的通液口通过三位五通换向阀700与油壶401连通。对于三位五通电磁阀700,包括三种工作位置,每一种工作位置包括5个接口,在第一种工作位置时,连接液压源402的接口不与其他4个接口连通,换句话说,液压源402的液体既不流入第一腔室11也不流入第二腔室12,即不需要利用液压驱动车轮转动。三位五通电磁阀700切换到第一工作位置时,系统是电机驱动转向,即三位五通电磁阀700切换到第一工作位置时,对应系统是电动控制系统。
参阅图2-a,电机组件驱动滚珠丝杠输出第一旋转扭矩,同时滚珠丝杠的螺母201向第一腔室11的方向做直线运动,螺母的运动会带动分割件的运动,比如,图2中连接件13在A位置,图2-a中为B位置。第一腔室11的体积被压缩,第一腔室11的液体可以通过三位五通电磁阀700自由的流入油壶401中。参阅图2-b,电机组件驱动滚珠丝杠输出 第二旋转扭矩,同时滚珠丝杠的螺母201向第二腔室12的方向做直线运动,螺母的运动会带动分割件的运动,比如,图2中连接件13在A位置,图2-b中为C位置。第二腔室12的体积被压缩,第二腔室12的液体可以通过三位五通电磁阀700自由的流入油壶401中。
参阅图3,ECU控制三位五通电磁阀700切换到第二工作位置,在第二工作位置时,第一腔室11的通液口通过三位五通电磁阀700连接液压组件的液压源402,第二腔室12的通液口通过三位五通电磁阀700连接液压组件的油壶401。则液压源402中的液体可以通过三位五通电磁阀700进入到第一腔室11,使第一腔室11的压强大于第二腔室12的压强,第二腔室12的液体可以自由的通过三位五通电磁阀700流入油壶401中,连接件13会向第二腔室12的方向做直线运动。由于连接件13和滚珠丝杠的螺母201连接,螺母也会随之做直线运动,进而使滚珠丝杠输出旋转扭矩,带动车轮转动。在这种场景中,无需电机驱动滚珠丝杠输出旋转扭矩,可以通过液压源402驱动滚珠丝杠的螺母201做直线运动,进而驱动滚珠丝杠输出旋转扭矩。下面对当一个系统发送故障后,可以快速切换到另一个系统进行举例说明。在图2-b中,是电机驱动车轮转向,假设分割件在C位置时,电机组件出现故障,则ECU可以将三位五通电磁阀700由第一工作位置切换到第二工作位置,如图3所示,切换到液压控制系统,继续工作。
参阅图4,ECU控制三位五通电磁阀700切换到第三工作位置,在第三工作位置时,第一腔室11的通液口通过三位五通电磁阀700连接液压组件的油壶401,第二腔室12的通液口通过三位五通电磁连接液压组件的液压源402。则液压源402中的液体可以通过三位五通电磁阀700进入到第二腔室12,使第二腔室12的压强大于第一腔室11的压强,第一腔室11的液体可以自由的通过三位五通电磁阀700流入油壶401中,连接件13会向第一腔室11的方向做直线运动。由于连接件13和滚珠丝杠的螺母201连接,螺母也会随之做直线运动,进而使滚珠丝杠输出旋转扭矩,带动车轮转动。在这种场景中,无需电机驱动滚珠丝杠输出旋转扭矩,可以通过液压源402驱动滚珠丝杠的螺母201做直线运动,进而驱动滚珠丝杠输出旋转扭矩。下面对当一个系统发送故障后,可以快速切换到另一个系统再次举例说明。在图2-a中,是电机驱动车轮转向,假设分割件在B位置时,电机组件出现故障,则ECU可以将三位五通电磁阀700由第一工作位置切换到第三工作位置,如图4所示,切换到液压控制系统,继续工作。
图2至图4为换向组件是三位五通换向阀700时的一种控制系统的结构示意图。本申请还可以通过其他结构实现在电动控制系统中,第一腔室11的液体和第二腔室12的液体可以自由的流入油壶401中,或者油壶401中的液体可以自由的流入第一腔室11或者第二腔室12。在液压转动系统中,ECU可以通过多种方式控制液压组件的液压源402的液体流入第一腔室11或者第二腔室12。下面再给出一种优选的实施方式。图5至图7为本申请实施例提供的另一种控制系统的结构示意图。
换向组件包括至少一个两位两通常开电磁阀702,至少两个两位两通常闭电磁阀701和703以及至少一个三位三通常闭电磁阀704。至少两个两位两通常闭电磁阀中的第一两位两通常闭电磁阀701的一端连接第一腔室11的通液口,第一两位两通常闭电磁阀701的另一端连接油壶401,至少两个两位两通常闭电磁阀中的第二两位两通常闭电磁阀703的一端连接第二腔室12的通液口,第二两位两通常闭电磁阀703的另一端连接油壶401,两 位两通常开电磁阀702的一端连接第一腔室11的通液口,两位两通常开电磁阀的另一端连接第二腔室12的通液口。三位三通常闭电磁阀704包括三种工作位置,三种工作位置中的每一种位置包括三个接口,每一种位置的三个接口之间的连通关系不同,三个接口之间的连通关系包括第一接口和第三接口连通,第二接口和第三接口连通,以及第一接口,第二接口和第三接口均不连通,三个接口中的第一接口用于连接第一腔室11的通液口,三个接口中的第二接口用于连接第二腔室12,三个接口中的第三接口用于连接液压源402。需要说明的是,以下将两位两通常开电磁阀702简称为电磁阀702,将两位两通常闭电磁阀701简称为电磁阀701,将两位两通常闭电磁阀703简称为电磁阀703,将三位三通常闭电磁阀704简称为电磁阀704。
参阅图5,展示了电机驱动车轮组件转向时,各个电磁阀的开闭状态。如图5所示,通过两位两通常开电磁阀702,第一腔室11和第二腔室12处于连通状态。电磁阀701和电磁阀703处于关闭状态,第一腔室11和油壶401之间的管道不连通,第二腔室12和油壶401之间的管道也不连通。电磁阀704处于第一种工作位置,3个接口均不连通。电机组件驱动滚珠丝杠输出旋转扭矩的同时,滚珠丝杠的螺母201会进行直线运动,如果螺母向第一腔室11的方向进行直线运动,第一腔室11中的液体可以通过两位两通常开电磁阀702流入第二腔室12中,如果螺母向第二腔室12的方向进行直线运动,第二腔室12中的液体可以通过两位两通常开电磁阀701流入第二腔室12中。通过这样的设计,可以使电动控制系统发生故障时,无缝衔接切换到液压工作系统,这在上文已经进行了说明,这里进一步的举例说明。假设每一个车轮分别安装有本申请实施例提供的控制系统,通过上述的结构设计,当一套系统发生故障,切换到另一套系统时,四个车轮可以做到同步切换,不会因为切换了系统,影响转向的性能。
参阅图7,展示了另一种液压驱动车轮组件转向时,各个电磁阀的开闭状态。ECU控制电磁阀702关闭,第一腔室11的液体无法自由流入到第二腔室12,第二腔室12的液体也无法自由流入到第一腔室11。ECU控制电磁阀703关闭,第二腔室12中的液体无法自由流入到油壶401中。ECU控制电磁阀701打开,第一腔室11中的液体可以通过电磁阀701自由流入到油壶401中。ECU控制电磁阀704处于第三工作位置,第二腔室12的通液口和液压源402通过电磁阀704连通。液压源402中的液体可以通过电磁阀704进入到第二腔室12,使第二腔室12的压强大于第一腔室11的压强,第一腔室11的液体可以自由的通过电磁阀703流入油壶401中,连接件13会向第一腔室11的方向做直线运动。由于连接件13和滚珠丝杠的螺母201连接,螺母也会随之做直线运动,进而使滚珠丝杠输出旋转扭矩,带动车轮转动。
需要说明的是,本申请提供的一种控制系统中的两套系统也可以同时工作,提升转向能力。比如,在图3所示的结构中,电机控制系统和液压控制系统可以同步工作,比如电机组件驱动滚珠丝杠输出第一旋转扭矩,连接件13向第二腔室12的方向移动,同时,液压源402中的液体进入到第一腔室11,加速连接件13向第二腔室12的方向移动的速度,进而可以提升转向能力。再比如,在图4所示的结构中,电机组件驱动滚珠丝杠输出第二旋转扭矩,连接件13向第一腔室11的方向移动,同时,液压源402中的液体进入到第二腔室12,加速连接件13向第一腔室11的方向移动的速度,进而可以提升转向能力。再比 如,在图6所示的结构中,电机组件驱动滚珠丝杠输出第一旋转扭矩,连接件13向第二腔室12的方向移动,同时,液压源402中的液体进入到第一腔室11,加速连接件13向第二腔室12的方向移动的速度,进而可以提升转向能力。再比如,在图7所示的结构中,电机组件驱动滚珠丝杠输出第二旋转扭矩,连接件13向第一腔室11的方向移动,同时,液压源402中的液体进入到第二腔室12,加速连接件13向第一腔室11的方向移动的速度,进而可以提升转向能力。
需要说明的是,本申请提供的控制系统除了包括以上提到的电机组件10,滚珠丝杠20,螺母组件30,液压组件40,电子控制单元ECU50,以及车轮组件60。还可以包括其他器件,比如在一个可能的实施方式中,还可以包括安装板,安装板用于根据应用环境,将本申请提供的控制系统固定在车架上,或者悬架或相关壳体上,保证系统安装的可靠性和牢固性,并承担相关轴向负荷。此外,本申请提供的方案的各个组件可以有更细节的设计,比如在一个可能的实施方式中,螺母组件包括导轨和滑动件,滑动件与导轨滑动连接,滑动件和分割件是一体成型的,第一腔室11和第二腔室12的压强差使滑动件沿着导轨产生直线运动。再比如,在一个可能的实施方式中,液压组件的油壶401和液压组件的液压源402之间的通路上布置有单向阀,单向阀的导通方向是从油壶401到液压源402的方向。再比如,在一个可能的实施方式中,第一腔室11由连接件13,滚珠丝杠,螺母组件以及第一挡板组成,第一挡板的两端安装有密封圈,第一挡板位于滚珠丝杠和螺母组件之间,第二腔室12由连接件13,滚珠丝杠,螺母组件以及第二挡板组成,第二挡板的两端安装有密封圈,第二挡板位于滚珠丝杠和螺母组件之间,第一挡板通过第一安装板固定在电机组件上,第二挡板通过第二安装板固定在滚珠丝杠上。再比如,在一个可能的实施方式中,电机组件包括电机和变速器,电机通过变速器驱动滚珠丝杠输出旋转扭矩。在一个可能的实施方式中,还包括角度扭矩传感器,角度扭矩传感器设置在滚珠丝杠上,角度扭矩传感器用于获取滚珠丝杠输出的旋转扭矩。在一个可能的实施方式中,还包括位移传感器,位移传感器设置在螺母组件上,位移传感器用于获取螺母组件的直线位移。为了更好的体现本申请提供的控制系统,下面结合图8和图9对本申请实施例提供的控制系统进行介绍。
参阅图8,为本申请实施例提供的一种控制系统的结构示意图。如图8所示的结构中,电机组件10可以包括电机101,减速器102以及角度扭矩传感器103。螺母组件30包括导轨302和滑动件301,滑动件301与导轨302滑动连接,使滑动件301可以沿着导轨做直线运动。还可以包括位移传感器306,位移传感器设置在螺母组件上。如图8所示的结构中,滚珠丝杠的螺母201,连接件13以及滑动件是一体成型。即,如图8所示的“H”型的结构。第一腔室11由连接件13,滚珠丝杠,螺母组件以及第一挡板303组成。或者可以认为第一腔室11由螺母组件(或者螺母)和第一挡板303组成。为了使第一腔室11的密封性更好,可以在第一挡板的两端安装密封圈304。第二腔室12由连接件13,滚珠丝杠,螺母组件以及第二挡板305组成,或者可以认为第二腔室12由螺母组件(或者螺母)和第二挡板组成。为了使第二腔室12的密封性更好,可以在第二挡板的两端安装密封圈。第一挡板通过第一安装板80固定在电机组件上,第二挡板通过第二安装板90固定在滚珠丝杠上。
在一个可能的实施方式中,可以认为滑动件和连接件13一体成型,或者滚珠丝杠的螺 母201和连接件13一体成型。本申请提供的控制系统关注在滚珠丝杠的周围形成两个腔体,使滚珠丝杠的螺母201做直线运动时,两个腔体的体积可以随之变化,至于通过何种安装方式形成两个腔体,可以有多种方式。参阅图9,为本申请提供的另一种控制系统的结构示意图,将图8所示的控制系统的结构中的换向组件替换为另一种形式。
以上对本申请提供的一种控制系统进行了介绍,需要说明的是,本申请提供的控制系统是模块化设计,可以针对每一个车轮分别布置本申请提供的控制系统,实现针对每个车轮的控制系统的冗余设计之外,还可以保证四轮独立转向。此外,本申请提供的控制系统可以和现有的常规控制系统,线控控制系统,四轮独立控制系统进行结合,可以应用于各类控制系统的冗余设计。以下以换向组件是三位五通换向阀的结构为例,分别进行说明。
参阅图10,为本申请实施例提供的另一种控制系统的结构示意图。本申请提供的控制系统具有高度模块化,可以直接替换当前四轮独立控制系统中的控制系统。可以保证当前四轮独立转向具备的全部优势功能,如图11-a至图11-e,本申请提供的方案可以实现四轮独立控制系统中的各类工作模式,图11-a至图11-e中的模块1(M1),模块2(M2),模块3(M3)以及模块4(M4)分别代表一个模块化设计,本申请提供的一种控制系统是一种模块化设计,其中模块1至模块4可以参照图1至图10中的一种控制系统进行理解。如图11-a所示的正常行驶模式,如图11-b所示的高速转向的模式,如图11-c所示的小转弯半径转向的模式,图11-d所示的原地转向的模式,如图11-e所示的横向移动模式,等等,通过本申请提供的方案实现车轮灵活,快捷,准确,小空间的转动,车轮变阿克曼转角等的功能。其中安装板可以固定在车体的悬架上。滚珠丝杠输出端可以通过齿轮,齿条等中间零部件与现有系统中的输出部件直接连接,完全借用现有系统悬架下与车轮相关的机构和部件,如图10所示的四轮冗余独立控制系统,四套冗余系统分别安装在各个轮胎上,分别驱动各自的轮胎转向,其中控制单元,液压源,油壶合并在一起,分别控制和输送相关的液体到4个独立系统中。关于总控制器根据转动信号向ECU发送指令,以使ECU可以控制各个系统中的电磁阀的开闭将在下文进行叙说,这里暂时不展开说明。
需要说明的是,由于每个车轮可以分别安装本申请实施例提供的控制系统,每一个车轮可以采用不同的控制系统。比如,前轮采用电动控制系统,后轮采用液压控制系统,或者左侧车轮采用电动控制系统,右侧车轮采用液压控制系统,或者其中三个车轮采用电动控制系统,其余一个车轮采用液压控制系统,等等。关于某个车轮在何种状态下切换到哪个控制系统可以有不同的设定规则,本申请在下文将会结合一种优选的方案进行说明,这里暂时不展开说明。为了更好的展现本申请提供的方案,示例性的,下面给出两种不同的车轮组件可以切换到不同的控制系统进行工作进行举例说明。参阅图12,四个车轮中的每一个车轮对应的控制系统可以切换到液压控制系统进行工作。参阅图13,四个车轮中的两个车轮切换到电动控制系统进行工作,其余两个车轮切换到液压控制系统进行工作。
此外,因为本申请提供的控制系统是模块化的设计,比如看做第一模块,本申请提供的控制系统可以和现有的控制系统进行结合,可以实现应用于各类控制系统的冗余设计。参阅图14-a,为本申请提供的控制系统和常规控制系统进行结合的示意图。通过将常规控制系统的动力系统直接替换成本申请提供的控制系统,即能够实现动力系统的作用,又可以实现冗余备份。参阅图14-b,为本申请提供的控制系统和常规控制系统进行结合的另一 种示意图,示例性的,本申请提供的控制系统的滚珠丝杠的输出端可以通过齿条连接在原系统上。通过常规控制系统的动力系统加上本申请提供的控制系统,实现三重冗余备份,比如当常规控制系统的电机出现故障时,可以切换到本申请提供的控制系统的电动控制系统或者液压控制系统,当本申请提供的电动控制系统出现故障时,可以切换到常规控制系统,或者本申请提供的液压控制系统,当本申请提供的液压控制系统出现故障时,可以切换到常规控制系统,或者本申请提供的电动控制系统。参阅图14-c,为另一种控制系统和本申请实施例提供的控制系统的结合示意图,本申请提供的控制系统的滚珠丝杠的输出端可以通过丝杠连接在原系统上。参阅图15,为本申请提供的控制系统和线控控制系统进行结合的示意图。方向盘组件可以和本申请提供的控制系统的ECU电连接。本申请提供的控制系统和线控控制系统结合后,使线控控制系统也具备了冗余设计,当电动控制系统出现故障时,可以切换到液压控制系统,当液压控制系统出现故障时,可以切换到电动控制系统。需要说明的是,非自动驾驶阶段,方向盘的转动信号传递到ECU,ECU根据接收到的方向盘信号,实现转向的控制,在自动驾驶阶段,ECU可以根据ADAS直接发送的指令实现转向的控制。
随着自动驾驶技术的快速发展,现有的传统或线控控制系统已经不能够满足自动驾驶的需求,本系统在保持当前系统基本结构与原理不变的情况下,将现有系统进行了性能和功能的提升,可以包含以下几点:本系统具有极高的适用性,可以在当前常用的各类助力控制系统中通过替换本申请提供的控制系统,或者增加本申请提供的控制系统,将当前常规系统提升为冗余系统,可以满足自动驾驶的基本要求。本申请提供的控制系统具有高度的集成度,将电控与液压两套系统的执行机构集成在一套结构中,实现了极小的空间占用率。本申请提供的控制系统中引入了液压系统,实现了液压转向模式下推力的极大提升。在整车中,本系统可以作为独立转向模块安装在无转向能力的轮胎上,与原始控制系统配合,形成独立转向,实现小半径转向,高速转向等模式。
以上对本申请提供的一种控制系统的结构进行了描述,本申请提供的方案通过总控制器,ECU与换向组件的配合,可以很好的适应于车辆的各种工况中。下面对本申请提供的一种控制方法进行说明。
参阅图16,为本申请实施例提供的一种控制方法的流程。
如图16所示,本申请实施例提供的一种控制方法,可以包括以下步骤:
1601、获取转向信号。
本申请有时也将转向信号称为转动信号,本申请并不对信号的名称进行限定,接收到该信号时,则启动转向本申请实施例提供的一种控制系统。
在一个可能的实施方式中,总控制器可以根据安装在方向盘上的传感器获取转向信号。即获取驾驶员操控方向盘的转角信号。总控制器可以依据该传感器发送的信号确定车辆的转向需求,并控制控制系统等工作以为车辆提供转向力。比如通过控制系统,实现每个车轮左转多少度,或者右转多少度。
在一个可能的实施方式中,在一个具体的实施方式中,比如在智能驾驶的场景中,转动信号还可以通过上层高级驾驶辅助系统(advanced driverassistant system,ADAS)指令获取。ADAS包括驾驶员辅助功能,例如预碰撞安全功能、自适应巡航控制功能和车道保 持辅助功能。这些驾驶辅助功能被构造在同一车辆中,以帮助驾驶员躲避碰撞,跟随前面车辆或者将自身车辆保持在其车道内。在一个具体的实施方式中,转动信号还可以是其他的与车辆状态相关的信息,比如转动信号还可以是轮速信号,纵向加速度(车辆在当前时刻的行进方向为纵向),横向加速度等等。
本申请中的总控制器也可以看做一种ECU。需要说明的是,在一个可能的实施方式中,可以将本申请中涉及的ECU理解为各种型号的处理器、个人电脑(personal computer,PC)、整车控制器(vehicle control unit,VCU)等。为了区分不同的ECU,再不特殊强调之时,本申请中的ECU指控制换向组件切换工作位置的ECU,但是应当理解,也可以将总控制器看做一种ECU。
1602、根据转向信号确定驱动车轮组件转向的方式。该方式包括电机组件驱动滚珠丝杠输出旋转扭矩,旋转扭矩用于驱动车轮组件转向,以及电子控制单元ECU控制液压组件中的液体流入第一腔室或者第二腔室,以使第一腔室和第二腔室产生压强差,压强差使滚珠丝杠的螺母产生直线运动,以通过螺母驱动滚珠丝杠输出旋转扭矩,旋转扭矩用于驱动车轮组件转向。
关于控制系统的结构可以参照图1-a至图15所描述的结构进行理解,这里不再展开描述。比如,参阅图1-a所示的结构,滚珠丝杠的一端连接电机组件,滚珠丝杠的另一端连接车轮组件,螺母组件和滚珠丝杠之间包括腔体,螺母组件和螺母通过连接件连接,连接件将腔体分割为第一腔室和第二腔室,第一腔室的通液口连接液压组件,第二腔室的通液口连接液压组件。
由图16所示的实施例可知,总控制器可以根据转动信号选择电动控制系统或者液压控制系统,关于控制系统的结构可以参照图1-a至图15所描述的结构进行理解。下面将结合一个优选的实施方式,对总控制如何根据转动信号确定选择电动控制系统还是液压控制系统进行说明。
参阅图17,为本申请实施例提供的另一种控制方法的流程示意图。
如图17所示,本申请实施例提供的另一种控制方法可以包括以下步骤:
1701、根据转向信号检测电机组件和液压组件是否正常工作。
当总控制器获取转向信号后,启动电机组件和液压组件的检测工作。
1702、确定电机组件的工作状态。
假设本申请提供的方案应用在车辆上,车辆的4个车轮分别是车轮A,车轮B,车轮C以及车轮D。其中车轮A装配有A控制系统,车轮B装配有B控制系统,车轮C装配有C控制系统,车轮D装配有D控制系统,控制系统A至控制系统D均为本申请实施例提供的控制系统。总控制器可以同时测试控制系统A至控制系统D中的电机组件是否正常工作,也可以逐一测试每个控制系统是否正常工作。
在一个可能的实施方式中,总控制器可以给控制系统A至控制系统D的电机组件发送指令(可以同时发送指令,也可以分别发送指令),指示向某个方向转动某个角度。如果某个控制系统无法实现转动,则认为该电机组件无法正常工作,或者出现故障。
1703、确定液压组件的工作状态。
在一个可能的实施方式中,可以检测液压源的电机是否可以正常工作。
总控制器可以给控制系统A至控制系统D的ECU发送指令(可以同时发送指令,也可以分别发送指令),指示向某个方向转动某个角度。如果某个控制系统无法实现转动,则认为该液压组件无法正常工作,或者出现故障。在一个可能的实施方式中,控制系统A至控制系统D可以共用一套液压组件,即共同一个ECU,则总控制可以向该ECU指令即可。本文对此不再重复赘述。
在一个可能的实施方式中,可以确定电机组件的工作状态为故障后,再确定液压组件的工作状态。即如果电机组件的工作状态为正常时,暂时不确定液压组件的工作状态。
在一个可能的实施方式中,确定电机组件的工作状态后,确认液压组件的工作状态,即不论电机组件的工作状态是正常还是故障,确认完电机组件的工作后,都要确认液压组件的工作状态。
在一个可能的实施方式中,如果电机组件的工作状态为正常,可以在步骤1704中确定电机组件无法输出足够的驱动力后确定液压组件的工作状态。
1704、如果电机组件的工作状态是正常的,则确定电机组件是否能够输出足够的驱动力。
当某个控制系统的电机组件可以驱动车轮转动,但是无法转动到指令指示的角度时(比如可以指示一个大角度的转角),如果该控制系统的液压组件可以正常工作,则总控制器可以指示液压控制系统一同加入,以确定是否是电机组件输出的驱动力不足。比如,A控制系统中的电机组件可以驱动车轮A转向,但是无法达到指令指示的角度,则总控制发出指令,使A控制系统的液压控制系统工作,即A控制系统中的电动控制系统和液压控制系统共同工作,驱动车轮A转向。如果确定加入了液压控制系统之后,可以达到指令指示的转动角度,则确定是电机组件输出的驱动力不足。
1705、如果电机组件能够输出足够的驱动力,则通过电动控制系统驱动车轮转向。
总控制器确定通过电动控制系统驱动车轮转向时,则总控制器向ECU发送指令,使ECU控制换向组件切换到第一工作位置。比如,总控制器确定通过A控制系统的电动控制系统驱动车轮A转动,则总控制器向ECU发送指令,使ECU控制A控制系统中的换向组件切换到第一工作位置。关于第一工作位置的理解可以参照上文关于本申请提供的一种控制系统的结构的描述进行理解,这里不再重复赘述。需要说明的是,以下涉及控制系统的各器件之间的连接关系以及位置关系均参照上文图1-a至图15中关于控制系统的结构的描述进行理解,以下均不再重复赘述。
1706、如果电机组件不能够输出足够的驱动力,则通过混合控制系统驱动车轮转向。
即如果电动控制系统不能输出足够的驱动力,则电动控制系统和液压控制系统一起工作,共同驱动车轮转向。
1707、如果电机组件是故障的,且液压组件的工作状态是正常的,则确定通过液压控制系统驱动车轮转向。
即在一个优选的实施方式中,优先电动控制系统驱动车轮转向,以保证车轮在行驶过程中转向的敏捷性。当电动控制系统出现故障,无法驱动车轮控制系统时,则考虑通过液压控制系统驱动车轮转向。当转向力不足的情况下,可以采用混合控制系统,使电动控制系统和液压控制系统同时工作。
比如,如果确定A控制系统,B控制系统,C控制系统的电机组件的工作状态是正常的,且A控制系统的电机组件不能输出足够的驱动力,B控制系统和C控制系统能够输出足够的驱动力,D控制系统的电机组件的工作状态是故障的但是D控制系统的液压组件的工作状态时正常的。则采用混合控制系统驱动车轮A转向,即通过A控制系统中的电动控制系统,液压控制系统共同驱动车轮A转向,通过B控制系统的电动控制系统驱动车轮B转向,通过C控制系统的电动控制系统驱动车轮C转向,通过D控制系统的液压控制系统驱动车轮D转向。
为了更好的体现本方案,下面结合表1进行说明。假设本申请提供的方案应用在车辆上,针对车辆的每一个车轮分别装配本申请提供的控制系统,其中,每个车轮具备独立的电动控制系统,即表1中所示的电机组件1至电机组件4,每个车轮共用一套液压控制系统,即表1中所示的液压组件,具体结构可以参考图10至图13进行理解。
表1:
Figure PCTCN2020112680-appb-000001
如表1中所示,在一个可能的实施方式中,只要电机组件正常,则无论液压组件是正常还是故障,优先采用电动控制系统。当电机组件故障,液压组件正常时,则可以切换到液压转动系统进行故障。如果电机组件正常,且液压组件正常,并且电机组件无法提供足够的驱动力时,则可以通过混合控制系统为车轮提供转向力,或存在一组到三组电机组件失效,剩余三套到一套电机正常,且液压组件正常,此时也可以通过混合控制系统为车轮提供转向力,此两种情况下,电动控制系统和液压控制系统共同工作。如果电机组件和液压组件都是故障状态,则确定控制系统失效。
总控制器确定要通过液压控制系统驱动车轮转向时,向ECU发送指令,使ECU控制所述换向组件切换到第二工作位置,或者使ECU控制所述换向组件切换到第三工作位置。需要说明的是,确定液压控制系统驱动车轮转向包括只通过液压控制系统驱动车轮转向,以及通过电动控制系统和液压控制系统共同驱动车轮转向。
1708、如果电机组件是故障的,且液压组件也是故障的,则确定控制系统无法正常工作。
参阅图18-a,为本申请实施例提供的一种控制方法的应用场景的示意图。驾驶员可以选择启动控制系统的检测,或者系统自动进行控制系统的检测。在状态检测时,会将每个独立的控制系统都进行检测,探测当前各个控制系统是否可以正常工作。如果任意系统的电动控制系统或者液压控制系统发生故障,可以发出报警或者提醒,提示用户危险性。如果双系统均发生故障,则系统被锁定,车辆无法启动,保证安全性。一般情况下,可以优选执行电控转向,以保证车辆在行驶过程中转向的敏捷性,在转向力不足情况下,执行混 合转向,在电控转向故障状态下,可以执行液压转向。如图18-b,为本申请实施例提供的另一种控制方法的应用场景的示意图。当一个控制系统发生故障时,可以发出提示消息,提示用户将切换到另一套控制系统进行工作,比如某个车轮装配的控制系统中的电动控制系统出现故障时,可以提示用户将切换到液压转动系统进行工作。如图18-c,为本申请实施例提供的另一种控制方法的应用场景的示意图。当电动控制系统提供的驱动力不足时,可以发送提示消息,提示用户即将进入混合驱动模式。即电动控制系统和液压控制系统共同驱动车轮转向。
在一些可能的实施方式中,为了更获得更精确的转向结果,可以在车辆转向的过程中,形成闭环控制,不断的调整车辆的转向角度,以实现更好的转向效果,下面对此进行说明。
参阅图19,为本申请实施例提供的另一种控制方法的流程示意图。
如图19所示,本申请实施例提供的另一种控制方法可以包括以下步骤:
1901、根据转向信号确定目标转角。
假设本申请提供的方案应用在车辆上,车辆的4个车轮分别是车轮A,车轮B,车轮C以及车轮D。则根据转向信号确定车轮A至车轮D每个车轮的旋转方向以及旋转角度。比如,根据转向信号确定车轮A左转第一角度。
1902、确定接传感器的状态以及车轮的转角。
确定接收到转向信号时传感器的状态以及车轮的转角。比如本申请实施例在描述一种控制系统的结构时,介绍到本申请提供的控制系统包括传感器,比如扭矩传感器,用于获取滚珠丝杠输出的旋转扭矩,比如位移传感器,用于获取螺母组件的直线位移。在步骤1902中,当确定接收到转向信号后,确定本申请提供的控制系统中各个传感器的状态,比如确定传感器当前获取的数据。
1903、根据控制系统中电机组件以及液压组件的工作状态,确定驱动车轮组件转向的方式。
步骤1903可以参照图17对应的实施例中的步骤1701至步骤1708进行理解,此处不再重复赘述。
1904、驱动车轮组件转向后,检测车轮组件的转向角度。
当根据步骤1903确定了驱动车轮组件转向的方式后,比如确定通过电动控制系统驱动车轮组件,或者通过液压控制系统驱动车轮组件,或者同时通过电动控制系统和液压控制系统驱动车轮组件后,检测车轮组件的转向角度,并将当前的车轮组件的转向角度和目标转角进行比较,不断的调整车辆组件的转向角度,直到解决目标转角。即闭环控制各个电机转动角度或者各液压执行模块中螺母需要移动的方向和行程,输出转向扭矩,进行转向,同时将当前转交数据与目标进行对比矫正,并完成转向。举例说明,比如根据转向信号确定车轮A的目标转角是第一角度,且确定通过电动控制系统驱动车轮A转向,则通过电动控制系统驱动车轮A转向后,获取车轮A的转角角度,并和第一角度进行比对,直到车轮A的转角为第一角度,或者与第一角度的差值满足预设条件时,完成车轮A的转向。
需要说明的是,本申请在介绍控制系统以及控制方法时,多以车辆进行举例说明,但是本申请提供的控制系统不止可以安装在车辆上,由于本申请提供的控制系统具有高度的模块化的特点,本申请提供的一种控制系统可以作为模块化单元使用在其他旋转性工况和 结构中,实现冗余备份功能,例如在机器人,工程机械,风电等领域都可以适用。
本申请实施例中还提供一种计算机可读存储介质,该计算机可读存储介质中存储有总控制器根据转向信号确定车轮组件转向的方式。当其在计算机上行驶时,使得计算机执行如前述图16、图17以及图19中所示实施例描述的方法中总控制器所执行的步骤。
本申请实施例中还提供一种计算机可读存储介质,该计算机可读存储介质中存储有ECU根据总控制器发送的指令切换换向组件的工作位置的方式。当其在计算机上行驶时,使得计算机执行如前述图16、图17以及图19中所示实施例描述的方法中ECU所执行的步骤。
本申请实施例中还提供一种包括计算机程序产品,当其在计算机上行驶时,使得计算机执行如前述图16、图17以及图19所示实施例描述的方法中总控制器所执行的步骤。
本申请实施例中还提供一种包括计算机程序产品,当其在计算机上行驶时,使得计算机执行如前述图16、图17以及图19所示实施例描述的方法中ECU所执行的步骤。
所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
另外需说明的是,以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。另外,本申请提供的装置实施例附图中,模块之间的连接关系表示它们之间具有通信连接,具体可以实现为一条或多条通信总线或信号线。
请参阅图20,本申请还提供一种车辆的结构示意图,该车辆可以是轿车、客车、半挂车、越野车、专用汽车、载货汽车、牵引车、自卸汽车等,图20中的汽车仅为示意图,具体的该汽车可以是电动汽车,新能源汽车等等。该汽车上安装有上述图1-a至图15所描述的转动系统。该汽车可以包括传感器2001,ECU2002以及外围设备2003。当然还可以包括其他器件,比如还可以包括整车控制器(body control module,BCM)可以给ECU2002提供车辆发动机状态,速率,档位等信息。ECU2002可以根据传感器2001提供的信息,比如扭矩传感器,位移传感器提供的信息,按照图16至图19中所描述的ECU2002执行的动作控制流量调节组件的开度,此处的ECU包括总控制器。
车辆可以通过外围设备2003与传感器2001、其他车辆、其他计算机系统或用户之间进行交互。外围设备2003可包括无线通信系统、导航系统、麦克风和/或扬声器。用户可以通过外围设备2003的触摸屏幕,获取控制系统的工作状态,比如可以参照图18-a至图 18-c进行理解。在其他情况中,外围设备2003可提供用于车辆与位于车内的其它设备通信的手段。例如,麦克风可从车辆的用户接收音频(例如,语音命令或其他音频输入)。类似地,扬声器可向车辆的用户输出音频。无线通信系统可以直接地或者经由通信网络来与一个或多个设备无线通信。例如,无线通信系统可使用3G蜂窝通信,例如如码分多址(code division multiple access,CDMA)、EVD0、全球移动通信系统(global system for mobile communications,GSM)/是通用分组无线服务技术(general packet radio service,GPRS),或者4G蜂窝通信,例如长期演进(long term evolution,LTE),或者5G蜂窝通信。无线通信系统可利用WiFi与无线局域网(wireless local area network,WLAN)通信。在一些实施例中,无线通信系统可利用红外链路、蓝牙或ZigBee与设备直接通信。其他无线协议,例如各种车辆通信系统,例如,无线通信系统可包括一个或多个专用短程通信(dedicated short range communications,DSRC)设备,这些设备可包括车辆和/或路边台站之间的公共和/或私有数据通信。

Claims (36)

  1. 一种控制系统,其特征在于,包括:滚珠丝杠20,螺母组件30,液压组件40,以及电子控制单元ECU50,
    所述螺母组件30和所述滚珠丝杠20的螺母201通过连接件13连接,所述螺母组件30和所述滚珠丝杠20之间包括腔体,所述连接件13将所述腔体分割为第一腔室11和第二腔室12,所述第一腔室11的通液口连接所述液压组件40,所述第二腔室12的通液口连接所述液压组件40;
    所述ECU50用于控制所述液压组件40中的液体流入所述第一腔室11或者所述第二腔室12,以使所述第一腔室11和所述第二腔室12产生压强差,所述压强差使所述螺母201产生直线运动,以通过所述螺母201驱动所述滚珠丝杠20输出旋转扭矩。
  2. 根据权利要求1所述的控制系统,其特征在于,还包括电机组件10和车轮组件60,
    所述滚珠丝杠20的一端连接所述电机组件10,所述滚珠丝杠20的另一端连接所述车轮组件60,
    所述电机组件10用于驱动所述滚珠丝杠20输出旋转扭矩,所述旋转扭矩用于驱动所述车轮组件60转向。
  3. 根据权利要求2所述的控制系统,其特征在于,所述控制系统还包括换向组件70,所述ECU50与所述换向组件70电连接,用于控制所述换向组件70切换到第一工作位置,所述换向组件70在第一工作位置时,所述第一腔室11的通液口通过所述换向组件70连接所述液压组件40的油壶401,所述第二腔室12的出液口通过所述换向组件70连接所述油壶401;
    所述旋转扭矩还用于通过所述螺母201使所述连接件13产生直线运动,使所述第一腔室11中的液体流入所述油壶401或者使所述第二腔室12中的液体流入所述油壶401。
  4. 根据权利要求3所述的控制系统,其特征在于,所述ECU50还用于控制所述换向组件70切换到第二工作位置,所述换向组件70在第二工作位置时,所述第一腔室11的通液口通过所述换向组件70连接所述液压组件40的液压源402,所述第二腔室12的通液口通过所述换向组件70连接所述油壶401;
    所述液压源402中的液压液通过所述换向组件70流入所述第一腔室11,所述第一腔室11的压强大于所述第二腔室12的压强,使所述螺母201向着所述第二腔室12的方向产生直线运动,以通过所述螺母201驱动所述滚珠丝杠20输出所述第一旋转扭矩。
  5. 根据权利要求3或4所述的控制系统,其特征在于,所述ECU50还用于控制所述换向组件70切换到第三工作位置,所述换向组件70在第三工作位置时,所述第一腔室11的通液口通过所述换向组件70连接所述油壶401,所述第二腔室12的通液口通过所述换向组件70连接所述液压组件40的液压源402;
    所述液压源402中的液压液通过所述换向组件70流入所述第二腔室12,所述第二腔室12的压强大于所述第一腔室11的压强,以使所述螺母向着所述第一腔室11的方向产生直线运动,以通过所述螺母驱动所述滚珠丝杠20输出所述第一旋转扭矩。
  6. 根据权利要求3至5任一项所述的控制系统,其特征在于,所述换向组件70是三 位五通电磁阀700。
  7. 根据权利要求3至5任一项所述的控制系统,其特征在于,所述换向组件70包括第一两位两通常闭电磁阀701,两位两通常开电磁阀702,第二两位两通常闭电磁阀703以及至少一个三位三通常闭电磁阀704,
    所述第一两位两通常闭电磁阀701的一端连接所述第一腔室11的通液口,所述第一两位两通常闭电磁阀701的另一端连接所述油壶401,所述第二两位两通常闭电磁阀703的一端连接所述第二腔室12的通液口,所述第二两位两通常闭电磁阀703的另一端连接所述油壶401,所述两位两通常开电磁阀702的一端连接所述第一腔室11的通液口,所述两位两通常开电磁阀702的另一端连接所述第二腔室12的通液口,所述三位三通常闭电磁阀704包括三种工作位置,所述三种工作位置中的每一种位置包括三个接口,每一种所述位置的所述三个接口之间的连通关系不同,所述三个接口之间的连通关系包括所述第一接口和所述第三接口连通,或者,所述第二接口和所述第三接口连通,或者,所述第一接口,所述第二接口和所述第三接口均不连通;所述三个接口中的所述第一接口用于连接所述第一腔室11的通液口,所述三个接口中的第二接口用于连接所述第二腔室12,所述三个接口中的所述第三接口用于连接所述液压源402。
  8. 根据权利要求1至7任一项所述的控制系统,其特征在于,所述螺母201和所述连接件13是一体成型的。
  9. 根据权利要求1至8任一项所述的控制系统,其特征在于,所述螺母组件30包括滑动件301和导轨302,所述滑动件301与所述导轨302滑动连接,所述滑动件301和所述连接件13是一体成型的,所述第一腔室11和所述第二腔室12的压强差使所述滑动件301沿着所述导轨产生直线运动。
  10. 根据权利要求1至9任一项所述的控制系统,其特征在于,所述液压组件40的油壶401和所述液压组件40的液压源402之间的通路上布置有单向阀,所述单向阀的导通方向是从所述油壶401到所述液压源402的方向。
  11. 根据权利要求1至10任一项所述的控制系统,其特征在于,所述第一腔室11由所述连接件13,所述滚珠丝杠20,所述螺母组件30以及第一挡板303组成,所述第一挡板303的两端安装有密封圈304,所述第一挡板303位于所述滚珠丝杠20和所述螺母组件30之间,所述第二腔室12由所述连接件13,所述滚珠丝杠20,所述螺母组件30以及第二挡板305组成,所述第二挡板305的两端安装有密封圈304,所述第二挡板305位于所述滚珠丝杠20和所述螺母组件30之间,所述第一挡板303通过第一安装板80转动连接在所述滚珠丝杠20上,所述第二挡板通过第二安装板90转动连接在在所述滚珠丝杠20上。
  12. 根据权利要求1至11任一项所述的控制系统,其特征在于,所述电机组件10包括电机101和变速器102,所述电机101通过所述变速器102驱动所述滚珠丝杠20输出旋转扭矩。
  13. 根据权利要求1至12任一项所述的控制系统,其特征在于,还包括角度扭矩传感器103,所述角度扭矩传感器103设置在所述滚珠丝杠20上,所述角度扭矩传感器103用于获取所述滚珠丝杠20输出的旋转扭矩。
  14. 根据权利要求1至13任一项所述的控制系统,其特征在于,还包括位移传感器 306,所述位移传感器306设置在所述螺母组件30上,所述位移传感器306用于获取所述螺母组件30的直线位移。
  15. 一种控制方法,其特征在于,包括:
    获取转向信号;
    根据所述转向信号确定输出旋转扭矩的方式,所述方式包括电子控制单元ECU控制液压组件中的液体流入第一腔室或者第二腔室,以使所述第一腔室和所述第二腔室产生压强差,所述压强差使所述滚珠丝杠的螺母产生直线运动,以通过所述螺母驱动滚珠丝杠输出旋转扭矩,
    螺母组件和所述滚珠丝杠之间包括腔体,所述螺母组件和所述螺母通过连接件连接,所述连接件将所述腔体分割为所述第一腔室和所述第二腔室,所述第一腔室的通液口连接所述液压组件,所述第二腔室的通液口连接所述液压组件。
  16. 根据根据权利要求15所述的控制方法,其特征在于,所述方式还包括电机组件驱动所述滚珠丝杠输出旋转扭矩,所述旋转扭矩用于驱动所述车轮组件转向,
    所述滚珠丝杠的一端连接所述电机组件,所述滚珠丝杠的另一端连接所述车轮组件。
  17. 根据权利要求16所述的控制方法,其特征在于,所述方法还包括:
    根据所述转向信号检测所述电机组件和所述液压组件是否正常工作;
    所述根据所述转向信号确定驱动车辆组件转向的方式,包括:
    若所述电机组件正常工作,则确定通过所述电机组件驱动滚珠丝杠输出旋转扭矩。
  18. 根据权利要求17所述的控制方法,其特征在于,所述方法还包括:
    若所述旋转扭矩输出的驱动力不满足预设条件,且所述液压组件正常工作,则确定通过所述电机组件驱动滚珠丝杠输出第一旋转扭矩,且通过所述液压组件控制液压组件中的液体流入第一腔室或者第二腔室,以使所述第一腔室和所述第二腔室产生压强差,所述压强差使所述滚珠丝杠的螺母产生直线运动,以通过所述螺母驱动所述滚珠丝杠输出第二旋转扭矩,所述第一旋转扭矩和所述第二旋转扭矩共同驱动所述车轮组件转向。
  19. 根据权利要求16所述的控制方法,其特征在于,所述方法还包括:
    根据所述转向信号检测所述电机组件和所述液压组件是否正常工作;
    所述根据所述转向信号确定驱动车辆组件转向的方式,包括:
    若所述电机组件故障,且所述液压组件正常工作,则确定通过所述液压组件控制液压组件中的液体流入第一腔室或者第二腔室,以使所述第一腔室和所述第二腔室产生压强差,所述压强差使所述滚珠丝杠的螺母产生直线运动,以通过所述螺母驱动所述滚珠丝杠输出旋转扭矩。
  20. 根据权利要求16所述的控制方法,其特征在于,所述方法还包括:
    根据所述转向信号检测所述电机组件和所述液压组件是否正常工作;
    若所述电机组件或者所述液压组件无法正常工作,则发送提示消息,所述提示消息用于指示所述电机组件故障,或者所述液压组件故障。
  21. 根据权利要求16至20任一项所述的控制方法,其特征在于,所述方法还包括:
    控制换向组件切换到第一工作位置,所述换向组件和所述ECU电连接,所述换向组件在第一工作位置时,所述第一腔室的通液口通过所述换向组件连接所述液压组件的油壶, 所述第二腔室的出液口通过所述换向组件连接所述油壶;
    所述电机组件驱动所述滚珠丝杠输出旋转扭矩,所述旋转扭矩还用于通过所述螺母使所述连接件产生直线运动,所述第一腔室和所述第二腔室的体积随着所述连接件的直线运动而增大或者缩小。
  22. 根据权利要求21所述的控制方法,其特征在于,所述方法还包括:
    控制所述换向组件切换到第二工作位置,所述换向组件在第二工作位置时,所述第一腔室的通液口通过所述换向组件连接所述液压组件的液压源,所述第二腔室的通液口通过所述换向组件连接所述油壶;
    所述液压源中的液压液通过所述换向组件流入所述第一腔室,所述第一腔室的压强大于所述第二腔室的压强,使所述螺母向着所述第二腔室的方向产生直线运动,以通过所述螺母驱动所述滚珠丝杠输出第一旋转扭矩。
  23. 根据权利要求21或22所述的控制方法,其特征在于,所述方法还包括:
    控制所述换向组件切换到第三工作位置,所述换向组件在第三工作位置时,所述第一腔室的通液口通过所述换向组件连接所述油壶,所述第二腔室的通液口通过所述换向组件连接所述液压组件的液压源;
    所述液压源中的液压液通过所述换向组件流入所述第二腔室,所述第二腔室的压强大于所述第一腔室的压强,以使所述螺母向着所述第一腔室的方向产生直线运动,以通过所述螺母驱动所述滚珠丝杠输出第二旋转扭矩。
  24. [根据细则91更正 01.04.2021]
    根据权利要求21至23任一项所述的控制方法,其特征在于,所述换向组件是三位五通电磁阀,所述三位五通电磁阀包括三种工作位置,
    当所述换向组件切换到第一工作位置时,所述第一腔室11的通液口通过所述三位五通电磁阀700连接所述液压组件40的油壶401,所述第二腔室12的出液口通过所述三位五通电磁阀700连接所述油壶401;
    当所述三位五通电磁阀切换到第二工作位置时,所述第一腔室11的通液口通过所述三位五通电磁阀700连接所述液压组件40的液压源402,所述第二腔室12的通液口通过所述三位五通电磁阀700连接所述油壶401;
    当所述三位五通电磁阀切换到第三工作位置时,所述第一腔室11的通液口通过所述三位五通电磁阀700连接所述油壶401,所述第二腔室12的通液口通过所述三位五通电磁阀700连接所述液压组件40的液压源402。
  25. 根据权利要求21至23任一项所述的控制方法,其特征在于,所述换向组件包括至少一个两位两通常开电磁阀,至少两个两位两通常闭电磁阀以及至少一个三位三通常闭电磁阀,
    所述至少两个两位两通常闭电磁阀中的第一两位两通常闭电磁阀的一端连接所述第一腔室的通液口,所述第一两位两通常闭电磁阀的另一端连接所述油壶,所述至少两个两位两通常闭电磁阀中的第二两位两通常闭电磁阀的一端连接所述第二腔室的通液口,所述第二两位两通常闭电磁阀的另一端连接所述油壶,所述两位两通常开电磁阀的一端连接所述第一腔室的通液口,所述两位两通常开电磁阀的另一端连接所述第二腔室的通液口,所述三位三通常闭电磁阀包括三种工作位置,所述三种工作位置中的每一种位置包括三个接口, 每一种所述位置的所述三个接口之间的连通关系不同,所述三个接口之间的连通关系包括所述第一接口和所述第三接口连通,或者,所述第二接口和所述第三接口连通,或者,所述第一接口,所述第二接口和所述第三接口均不连通;所述三个接口中的所述第一接口用于连接所述第一腔室的通液口,所述三个接口中的第二接口用于连接所述第二腔室,所述三个接口中的所述第三接口用于连接所述液压源。
  26. 根据权利要求15至25任一项所述的控制方法,其特征在于,所述螺母和所述连接件是一体成型的。
  27. 根据权利要求15至26任一项所述的控制方法,其特征在于,所述螺母组件包括导轨和滑动件,所述滑动件与所述导轨滑动连接,所述滑动件和所述分割件是一体成型的,所述第一腔室和所述第二腔室的压强差使所述滑动件沿着所述导轨产生直线运动。
  28. 根据权利要求15至27任一项所述的控制方法,其特征在于,所述第一腔室由所述连接件,所述滚珠丝杠,所述螺母组件以及第一挡板组成,所述第一挡板的两端安装有密封圈,所述第一挡板位于所述滚珠丝杠和所述螺母组件之间,所述第二腔室由所述连接件,所述滚珠丝杠,所述螺母组件以及第二挡板组成,所述第二挡板的两端安装有密封圈,所述第二挡板位于所述滚珠丝杠和所述螺母组件之间,所述第一挡板通过第一板转动连接在所述滚珠丝杠上,所述第二挡板通过第二安装板转动连接在所述滚珠丝杠上。
  29. 根据权利要求16至26任一项所述的控制方法,其特征在于,所述电机组件包括电机和变速器,所述电机通过所述变速器驱动所述滚珠丝杠输出旋转扭矩。
  30. 根据权利要求15至27任一项所述的控制方法,其特征在于,还包括角度扭矩传感器,所述角度扭矩传感器设置在所述滚珠丝杠上,所述角度扭矩传感器用于获取所述滚珠丝杠输出的旋转扭矩。
  31. 根据权利要求15至28任一项所述的控制方法,其特征在于,还包括位移传感器,所述位移传感器设置在所述螺母组件上,所述位移传感器用于获取所述螺母组件的直线位移。
  32. 一种智能汽车,其特征在于,所述智能汽车包括控制系统,所述控制系统是权利要求1至权利要求14任一项所述的控制系统。
  33. 一种转向设备,其特征在于,所述转向设备包括控制系统,所述控制系统是权利要求1至权利要求14任一项所述的控制系统。
  34. 一种转向设备,其特征在于,包括:存储器,用于存储计算机可读指令;
    还包括,与所述存储器耦合的处理器,用于执行所述存储器中的计算机可读指令从而执行如权利要求15至31任一项所描述的方法。
  35. 一种计算机可读存储介质,其特征在于,当指令在计算机装置上运行时,使得所述计算机装置执行如权利要求15至31任一项所描述的方法。
  36. 一种计算机程序产品,当在计算机上运行时,使得计算机可以执行如权利要求15至31任一所描述的方法。
PCT/CN2020/112680 2020-08-31 2020-08-31 一种控制系统、控制方法、智能汽车以及装置 WO2022041248A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080004907.9A CN112654931B (zh) 2020-08-31 2020-08-31 一种控制系统、控制方法、智能汽车以及装置
PCT/CN2020/112680 WO2022041248A1 (zh) 2020-08-31 2020-08-31 一种控制系统、控制方法、智能汽车以及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/112680 WO2022041248A1 (zh) 2020-08-31 2020-08-31 一种控制系统、控制方法、智能汽车以及装置

Publications (1)

Publication Number Publication Date
WO2022041248A1 true WO2022041248A1 (zh) 2022-03-03

Family

ID=75368414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/112680 WO2022041248A1 (zh) 2020-08-31 2020-08-31 一种控制系统、控制方法、智能汽车以及装置

Country Status (2)

Country Link
CN (1) CN112654931B (zh)
WO (1) WO2022041248A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114645628A (zh) * 2022-03-22 2022-06-21 北京长征天民高科技有限公司 一种冗余升降装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114109213B (zh) * 2021-10-29 2023-05-02 遵化市忠诚门业有限公司 一种建筑消防通道用防火门
WO2023141785A1 (zh) * 2022-01-25 2023-08-03 华为技术有限公司 转向手感模拟助力器、转向助力器、转向系统及控制方法
CN115091450B (zh) * 2022-07-15 2023-09-01 万勋科技(深圳)有限公司 柔性机械臂及机器人

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10113817A1 (de) * 2000-05-05 2001-11-15 Festo Ag & Co Drehantriebsvorrichtung
JP2008304034A (ja) * 2007-06-11 2008-12-18 Sumitomo Heavy Industries Techno-Fort Co Ltd シリンダ装置および鍛造プレスにおけるノックアウト装置
CN101451555A (zh) * 2007-11-30 2009-06-10 中国航空工业第一集团公司沈阳发动机设计研究所 一种输出角位移和扭矩的液压作动筒
CN103148045A (zh) * 2013-03-13 2013-06-12 武汉海力威机电科技有限公司 一种液压助力电动缸及其控制方法
CN106678324A (zh) * 2016-12-08 2017-05-17 中船重工中南装备有限责任公司 输出扭矩的液压装置
CN206633806U (zh) * 2017-04-17 2017-11-14 吉林大学 一种转向与驱动集成式轮边电驱动系统及车辆
CN207421019U (zh) * 2017-09-30 2018-05-29 深圳领威科技有限公司 复合油缸

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5603279A (en) * 1995-04-17 1997-02-18 Performance 1 Marine, Inc. Power steering assist
JP4902309B2 (ja) * 2006-10-13 2012-03-21 日立オートモティブシステムズ株式会社 ステアリング装置
CN104309684B (zh) * 2014-10-20 2016-05-25 浙江万达汽车方向机股份有限公司 一种循环球式磁流体电控液压助力转向装置及控制方法
CN104608819B (zh) * 2014-12-04 2016-11-02 中联重科股份有限公司 用于多轴车辆的多轴转向系统和多轴车辆
CN104864061B (zh) * 2015-04-02 2017-06-30 青岛整流器制造有限公司 一种电液混合驱动的丝杠传动系统及其控制方法
CN110626337B (zh) * 2019-10-17 2020-09-15 北京易控智驾科技有限公司 一种无人驾驶商用车转向安全冗余系统及控制方法
CN111152835B (zh) * 2020-01-13 2020-11-06 南京航空航天大学 一种基于双绕组电机的线控电液转向系统及混杂控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10113817A1 (de) * 2000-05-05 2001-11-15 Festo Ag & Co Drehantriebsvorrichtung
JP2008304034A (ja) * 2007-06-11 2008-12-18 Sumitomo Heavy Industries Techno-Fort Co Ltd シリンダ装置および鍛造プレスにおけるノックアウト装置
CN101451555A (zh) * 2007-11-30 2009-06-10 中国航空工业第一集团公司沈阳发动机设计研究所 一种输出角位移和扭矩的液压作动筒
CN103148045A (zh) * 2013-03-13 2013-06-12 武汉海力威机电科技有限公司 一种液压助力电动缸及其控制方法
CN106678324A (zh) * 2016-12-08 2017-05-17 中船重工中南装备有限责任公司 输出扭矩的液压装置
CN206633806U (zh) * 2017-04-17 2017-11-14 吉林大学 一种转向与驱动集成式轮边电驱动系统及车辆
CN207421019U (zh) * 2017-09-30 2018-05-29 深圳领威科技有限公司 复合油缸

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114645628A (zh) * 2022-03-22 2022-06-21 北京长征天民高科技有限公司 一种冗余升降装置

Also Published As

Publication number Publication date
CN112654931B (zh) 2022-05-13
CN112654931A (zh) 2021-04-13

Similar Documents

Publication Publication Date Title
WO2022041248A1 (zh) 一种控制系统、控制方法、智能汽车以及装置
CN109850010B (zh) 一种线控独立转向系统及其方法
CN103303361B (zh) 用于车辆的电动助力转向装置
CN109291991B (zh) 一种双电机线控复合转向系统及其控制方法
CN201405922Y (zh) 一种汽车线控转向系统
CN108749916B (zh) 一种多模式线控转向装置及其控制方法
US9988079B2 (en) Independent steering mechanism of controllable hydraulic locking type for left and right wheels
CN102874304A (zh) 一种具有多转向模式的四轮独立线控转向系统
WO2021223706A1 (zh) 冗余线控转向装置、冗余线控转向系统架构以及驾驶设备
EP2091807B1 (en) Articulation control system
CN103241286A (zh) 液压助力转向系统
CN104608819B (zh) 用于多轴车辆的多轴转向系统和多轴车辆
CN103223940A (zh) 一种电动汽车协调控制系统
CN104015787A (zh) 车辆电气动力转向控制系统
CN208053434U (zh) 车辆冗余电子助力转向系统
CN106697040B (zh) 一种双电机耦合电动助力转向装置及其控制方法
CN112896298B (zh) 一种具有差速控制功能的线控转向容错装置及其控制方法
CN210364033U (zh) 一种基于六相容错电机的汽车线控转向系统
CN210502856U (zh) 车辆转向系统及车辆
CN208682909U (zh) 一种多模式线控转向装置
CN104769299A (zh) 离合器装置以及转向操纵装置
CN204383556U (zh) 一种实现智能车辆的自主转向的装置
CN113226891B (zh) 一种具有冗余功能的线控独立转向机构及控制方法
CN115303358B (zh) 一种分布式驱动线控底盘、控制方法及新能源电车
CN114056420B (zh) 车辆转向系统及其控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20950917

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20950917

Country of ref document: EP

Kind code of ref document: A1