WO2022041018A1 - 无线充电接收电路、终端设备和无线充电系统 - Google Patents

无线充电接收电路、终端设备和无线充电系统 Download PDF

Info

Publication number
WO2022041018A1
WO2022041018A1 PCT/CN2020/111533 CN2020111533W WO2022041018A1 WO 2022041018 A1 WO2022041018 A1 WO 2022041018A1 CN 2020111533 W CN2020111533 W CN 2020111533W WO 2022041018 A1 WO2022041018 A1 WO 2022041018A1
Authority
WO
WIPO (PCT)
Prior art keywords
input terminal
wireless charging
terminal
switch
circuit
Prior art date
Application number
PCT/CN2020/111533
Other languages
English (en)
French (fr)
Inventor
肖子剑
贾立刚
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2020/111533 priority Critical patent/WO2022041018A1/zh
Priority to CN202080104772.3A priority patent/CN116325430A/zh
Publication of WO2022041018A1 publication Critical patent/WO2022041018A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices

Definitions

  • the present application relates to the field of wireless charging, and in particular, to a wireless charging receiving circuit, a terminal device and a wireless charging system.
  • An existing wireless charging communication system based on the Qi protocol includes a wireless charging transmitting circuit and a wireless charging receiving circuit.
  • Frequency shift keying (FSK) modulation and amplitude shift keying (ASK) demodulation are performed in the wireless charging transmitting circuit
  • ASK modulation and FSK demodulation are performed in the wireless charging receiving circuit.
  • the modulation signal is used to control the switch to short the coupling capacitor to the ground, so as to achieve the modulation purpose.
  • the output voltage of the wireless charging receiving circuit is also getting higher and higher.
  • the ASK modulation signal directly grounds the coupling capacitor, because the output voltage is higher at this time, for For the coupling capacitor, it will be a large transient response, which may cause the output voltage to oscillate, resulting in the failure of the ASK demodulation of the wireless charging transmitter circuit.
  • Embodiments of the present application provide a wireless charging receiving circuit, a terminal device, and a wireless charging system, which are used to prevent the output voltage from oscillating when the wireless charging receiving circuit performs ASK modulation.
  • a first aspect provides a wireless charging receiving circuit, comprising: a rectifier bridge, a resonant circuit, a first capacitor, a first switch and a first synchronization circuit; the resonant circuit is electrically connected to the first AC input end of the rectifier bridge and the second Between the AC input terminals, the first switch and the first capacitor are connected in series between the first AC input terminal and the ground; the first synchronization circuit includes a first input terminal, a second input terminal and a first output terminal, and the first input terminal uses In the input amplitude shift keying ASK modulation signal, the second input terminal is electrically connected to the first AC input terminal, and the first output terminal is electrically connected to the control terminal of the first switch; the first synchronization circuit is used for the voltage at the second input terminal to change from When the positive voltage becomes a negative voltage (that is, at the zero-crossing time), the ASK modulation signal is output through the first output terminal to make the first switch conduct.
  • the dynamic response is small.
  • the first synchronization circuit when the voltage of the first AC input terminal changes from a positive voltage to a negative voltage, the first synchronization circuit outputs an ASK modulation signal through the first output terminal to turn on the first switch. At this time, at this time, the voltage drop of the first AC input terminal is very small near the zero-crossing point, and the transient response generated on the first capacitor is very small, which can prevent the output voltage from oscillating when the wireless charging receiving circuit performs ASK modulation. . Essentially, the first synchronization circuit is used to synchronize the ASK modulated signal with the zero-crossing moment of the first AC input.
  • it further includes: a second capacitor, a second switch and a second synchronization circuit; the second switch and the second capacitor are connected in series between the second AC input terminal and the ground; the second synchronization circuit includes a first Three input terminals, a fourth input terminal and a second output terminal, the third input terminal is used to input ASK modulation signal, the fourth input terminal is electrically connected to the second AC input terminal, and the second output terminal is electrically connected to the control of the second switch terminal; the second synchronization circuit is used to output the ASK modulation signal through the second output terminal when the voltage of the fourth input terminal changes from a positive voltage to a negative voltage (ie, the zero-crossing moment), so that the second switch is turned on.
  • the second synchronization circuit includes a first Three input terminals, a fourth input terminal and a second output terminal, the third input terminal is used to input ASK modulation signal, the fourth input terminal is electrically connected to the second AC input terminal, and the second output terminal is electrically connected to the control of the second switch terminal; the
  • the second synchronization circuit when the voltage of the second AC input terminal changes from a positive voltage to a negative voltage, the second synchronization circuit outputs an ASK modulation signal through the second output terminal to turn on the second switch. At this time, at this time, the voltage drop of the second AC input terminal is very small near the zero-crossing point, and the transient response generated on the second capacitor is very small, which can prevent the output voltage from oscillating when the wireless charging receiving circuit performs ASK modulation. .
  • the second synchronization circuit is used to synchronize the ASK modulated signal with the zero-crossing moment of the second AC input.
  • the second synchronization circuit further includes a second comparator and a second flip-flop, the non-inverting input terminal of the second comparator is electrically connected to ground, and the inverting input terminal of the second comparator is electrically connected To the second AC input terminal, the output terminal of the second comparator is electrically connected to the clock signal terminal of the second flip-flop, the data input terminal of the second flip-flop is used to input the ASK modulation signal, and the data output terminal of the second flip-flop is electrically connected. connected to the control terminal of the second switch.
  • This embodiment provides one possible structure of the second synchronization circuit.
  • the working principle of the second synchronous circuit is as follows: when the voltage of the second AC input terminal of the rectifier bridge circuit is a positive voltage, higher than the grounded (zero) voltage, the second comparator outputs a low level, and the second flip-flop does not output a signal .
  • the voltage of the second AC input terminal of the rectifier bridge circuit changes from a positive voltage to a negative voltage (ie, zero-crossing)
  • the voltage of the second AC input terminal is lower than the grounded (zero) voltage
  • the output of the second comparator changes from Low level changes to high level (ie rising edge)
  • the second synchronous circuit outputs a rising edge
  • the second flip-flop is triggered to work, and the modulated signal input from the data input terminal is output through the data output terminal to obtain a second signal, which is output to the control terminal of the second switch to control the conduction of the second switch.
  • the first synchronization circuit includes a first comparator and a first flip-flop, the non-inverting input terminal of the first comparator is electrically connected to ground, and the inverting input terminal of the first comparator is electrically connected to the first comparator.
  • an AC input terminal the output terminal of the first comparator is electrically connected to the clock signal terminal of the first flip-flop, the data input terminal of the first flip-flop is used to input the ASK modulation signal, and the data output terminal of the first flip-flop is electrically connected to The control terminal of the first switch.
  • the working principle of the first synchronization circuit is as follows: when the voltage of the first AC input terminal of the rectifier bridge circuit is a positive voltage, which is higher than the grounded (zero) voltage, the first comparator outputs a low level, and the first flip-flop does not output a signal .
  • the voltage of the first AC input terminal of the rectifier bridge circuit changes from a positive voltage to a negative voltage (ie, zero-crossing)
  • the voltage of the first AC input terminal is lower than the grounded (zero) voltage
  • the output of the first comparator changes from The low level changes to a high level (that is, a rising edge)
  • the first synchronous circuit outputs a rising edge
  • the first flip-flop is triggered to work, and the modulated signal input from the data input terminal is output through the data output terminal to obtain a first signal, which is output to the control terminal of the first switch Q5 to control the first switch to be turned on.
  • the rectifier bridge is a full-bridge rectifier bridge.
  • This embodiment provides one possible structure of a rectifier bridge.
  • the resonant circuit is an LC resonant circuit. This embodiment provides one possible structure of the resonant circuit.
  • the second switch is a metal oxide semiconductor MOS transistor, and the control terminal of the second switch is the gate of the MOS transistor.
  • This embodiment provides one possible configuration of the second switch.
  • the first switch is a MOS transistor, and the control terminal of the first switch is the gate of the MOS transistor.
  • This embodiment provides one possible configuration of the first switch.
  • the flip-flop involved in this embodiment of the present application is triggered by a rising edge (that is, the moment when it changes from a low level to a high level, or when it changes from "0" to "1").
  • flip-flops such as D flip-flops.
  • a terminal device including the wireless charging receiving circuit and the working circuit according to the first aspect and any of the embodiments thereof, where the wireless charging receiving circuit is used to supply power to the working circuit.
  • a wireless charging system including a wireless charger and the terminal device according to the second aspect, wherein the wireless charger includes a wireless charging transmitter circuit, and the wireless charging transmitter circuit is used to transmit power to the terminal device through an electromagnetic field wireless charging receiver circuit.
  • FIG. 1 is a schematic structural diagram of a wireless charging system according to an embodiment of the present application
  • FIG. 2 is a schematic time sequence diagram of an ASK modulated signal provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of another wireless charging system provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a first synchronization circuit provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a second synchronization circuit according to an embodiment of the present application.
  • the wireless charging system provides a wireless charging system, and the wireless charging system can comply with the Qi wireless charging protocol.
  • the wireless charging system includes a wireless charger (ie, a transmitter) 11 and a terminal device (ie, a receiver) 12 .
  • terminal device involved in the embodiments of the present application may be a device including a wireless transceiver function.
  • terminal equipment may refer to user equipment (UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, User Agent or User Device.
  • end devices can be cell phones, smart speakers, smart watches, handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, robots, drones, smart driving vehicles, smart homes, in-vehicle devices, Medical equipment, smart logistics equipment, wearable equipment, terminal equipment in a future fifth-generation (5th generation, 5G) mobile communication technology network or a network after 5G, etc., which are not limited in this embodiment of the present application.
  • 5G fifth-generation
  • the wireless charger 11 includes a first micro-controller unit (MCU) 111 and a wireless charging transmitting circuit 112 .
  • the wireless charging and transmitting circuit 112 includes a power circuit and a first resonance circuit, wherein the power circuit includes metal oxide semiconductor (MOS) transistors q1-q4, and the first resonance circuit includes an inductor L1 and a capacitor C1, and the inductor L1 is transmitter coil.
  • MOS metal oxide semiconductor
  • the terminal device 12 includes a second MCU 121, a wireless charging receiving circuit 122 and a working circuit, and the output end of the wireless charging receiving circuit 122 is connected to the working circuit to supply power to the working circuit.
  • the working circuit includes a low dropout regulator (LDO) 123, a charging chip 124 and a battery 125, and the wireless charging receiving circuit 122 supplies power to the battery 125 through the LDO 123 and the charging chip 124 in sequence.
  • LDO low dropout regulator
  • the wireless charging receiving circuit 122 includes a rectifier bridge circuit, a second resonant circuit, a first switch Q5, a second switch Q6, a first capacitor C3 and a second capacitor C4.
  • the first switch Q5 and the second switch Q6 are MOS transistors.
  • the rectifier bridge circuit may be a full-bridge rectifier bridge.
  • the rectifier bridge circuit includes MOS transistors Q1-Q4.
  • the second resonance circuit includes an inductor L2 and a capacitor C2 connected in series, and the inductor L2 is the receiving coil.
  • the second resonant circuit is electrically connected between the first AC input terminal AC1 and the second AC input terminal AC2 of the rectifier bridge circuit.
  • the first switch Q5 and the first capacitor C3 are connected in series between the first AC input terminal AC1 and the ground GND.
  • the second switch Q6 and the second capacitor C4 are connected in series between the second AC input terminal AC2 and the ground GND.
  • the wireless charging system works as follows:
  • the wireless charging and transmitting circuit 112 inputs the DC voltage Vin, and the first MCU 111 generates a pulse width modulation (PWM) control signal to control the MOS transistors q1/q3 and the MOS transistors q2/q4 to conduct alternately, so that the DC voltage Vin passes through the power circuit
  • PWM pulse width modulation
  • An AC voltage (square wave) is generated, and the AC voltage is applied to both ends of the first resonant circuit to generate an AC current, and the AC current generates an electromagnetic field through the inductor L1 (ie, the transmitting coil), and transmits electric energy to the wireless charging receiving circuit 122 of the terminal device through the electromagnetic field.
  • the inductance L2 (ie the receiving coil) of the wireless charging receiving circuit 122 induces an electromagnetic field, thereby generating an alternating current in the second resonant circuit, and the second MCU 121 generates a PWM control signal to control the MOS transistors Q1/Q3 and the MOS transistors Q2/Q4 to be turned on alternately,
  • the AC current is converted into a DC voltage through the rectifier bridge circuit, and the DC voltage is then charged to the battery 125 through the LDO 123 and the charging chip 124 .
  • a target voltage should be set for the voltage Vrect output by the rectifier bridge circuit, and fed back to the wireless charging transmitting circuit 112 through a feedback loop.
  • the target voltage is usually set a little higher than the input voltage of the LDO 123 .
  • the second MCU 121 collects the Vrect voltage and subtracts it from the target voltage to generate an error signal.
  • the error signal will be transmitted to the first MCU 11 through the communication method specified by the Qi protocol, and the first MCU 11 determines whether to increase or decrease the transmission energy according to the error signal.
  • the first MCU 11 controls the emission energy by controlling the input DC voltage Vin, the switching frequency and the duty cycle of the PWM control signal.
  • the second MCU 121 when the second MCU 121 transmits the above-mentioned error signal to the wireless charging transmitting circuit 112 through ASK modulation, it controls the first switch Q5 (the second switch Q6) by outputting the ASK modulation signal ASK_MOD (square wave).
  • the switch Q5 (the second switch Q6) is turned on and off, thereby controlling the first capacitor C3 (the second capacitor C4) to be grounded, thereby changing the equivalent impedance of the second resonant circuit. Changes in the equivalent impedance of the second resonant circuit will cause changes in the alternating current in the first resonant circuit and changes in the input voltage of the first resonant circuit.
  • the first MCU 111 can obtain the error signal by collecting and ASK demodulating the above current or voltage change.
  • the first MCU 111 fails to perform ASK demodulation.
  • the ASK modulation signal ASK_MOD controls the first switch Q5 to be turned on when the voltage of the first AC input terminal AC1 is about 7V, so that the first capacitor C3 is grounded.
  • the embodiment of the present application provides a wireless charging receiving circuit, which controls the first switch Q5 to be turned on by detecting when the first AC input terminal AC1 of the rectifier bridge circuit changes from a positive voltage to a negative voltage (ie, zero-crossing), and turns the first AC input terminal AC1 on.
  • the capacitor C3 is grounded. At this time, the voltage drop of the first capacitor C3 is very small near the zero-crossing point, and the resulting transient response is very small;
  • the second switch Q6 is controlled to be turned on, and the second capacitor C4 is grounded. At this time, the voltage drop of the second capacitor C4 is very small near the zero-crossing point, and the resulting transient response is small.
  • an embodiment of the present application provides another wireless charging receiving circuit, which, compared with the wireless charging receiving circuit shown in FIG. 1 , further includes a first synchronization circuit 1221 and a second synchronization circuit 1222 .
  • the first synchronization circuit 1221 is used for synchronizing the ASK modulation signal with the zero-crossing moment of the first AC input terminal AC1
  • the second synchronization circuit 1222 is used for synchronizing the ASK modulation signal with the zero-crossing moment of the second AC input terminal AC2.
  • the first synchronization circuit 1221 includes a first input terminal ASK1, a second input terminal IN1 and a first output terminal OUT1.
  • the first input terminal ASK1 is used to input the ASK modulation signal ASK_MOD
  • the second input terminal IN1 is electrically connected to the first AC input terminal AC1
  • the first output terminal OUT1 is electrically connected to the control terminal of the first switch Q5 (eg, the gate of the MOS transistor). ).
  • the first synchronization circuit 1221 is configured to output the ASK modulation signal ASK_MOD through the first output terminal OUT1 when the voltage of the second input terminal IN1 (ie, the first AC input terminal AC1 ) changes from a positive voltage to a negative voltage, so that the first switch Q5 is turned on and electrically connects the first capacitor C3 to the ground GND. At this time, the voltage drop of the first capacitor C3 is very small near the zero-crossing point, and the resulting transient response is very small. It should be noted that, in order to distinguish it from the original ASK modulation signal ASK_MOD, the signal output by the first output terminal OUT1 is represented as the first signal ASK_MOD_SYN1.
  • the second synchronization circuit 1222 includes a third input terminal ASK2, a fourth input terminal IN2 and a second output terminal OUT2.
  • the third input terminal ASK2 is used to input the ASK modulation signal ASK_MOD
  • the fourth input terminal IN2 is electrically connected to the second AC input terminal AC2
  • the second output terminal OUT2 is electrically connected to the control terminal of the second switch Q6 (eg the gate of the MOS transistor). ).
  • the second synchronization circuit 1222 is configured to output the ASK modulation signal ASK_MOD through the second output terminal OUT2 when the voltage of the fourth input terminal IN2 (ie, the second AC input terminal AC2 ) changes from a positive voltage to a negative voltage, so that the second switch Q6 is turned on and electrically connects the second capacitor C4 to ground GND. At this time, the voltage drop of the second capacitor C4 is very small near the zero-crossing point, and the resulting transient response is very small. It should be noted that, in order to distinguish it from the original ASK modulation signal ASK_MOD, the signal output by the second output terminal OUT2 is represented as the second signal ASK_MOD_SYN2.
  • the first signal ASK_MOD_SYN1 corresponding to the ASK modulation signal ASK_MOD will control the first switch Q5 to be turned on when the voltage of the first AC input terminal AC1 is about -300mV, so that the first capacitor C3 is grounded. .
  • the first switch Q5 is controlled to be turned on, so that the first capacitor C3 is grounded, and the voltage drop across the first capacitor C3 drops a lot, resulting in The transient response will also be much smaller.
  • the rise and fall of the voltage Vrect are relatively stable, and there is no oscillation phenomenon.
  • the wireless charging receiving circuit includes: a rectifier bridge, a resonance circuit, a first capacitor, a first switch, and a first synchronization circuit;
  • the resonance circuit is electrically connected to the Between the first AC input terminal and the second AC input terminal of the rectifier bridge, the first switch and the first capacitor are connected in series between the first AC input terminal and the ground;
  • the first synchronization circuit includes a first input terminal and a second input terminal and a first output terminal, the first input terminal is used to input amplitude shift keying ASK modulation signal, the second input terminal is electrically connected to the first AC input terminal, and the first output terminal is electrically connected to the control terminal of the first switch;
  • the first input terminal is electrically connected to the control terminal of the first switch;
  • the synchronization circuit is used for outputting an ASK modulation signal through the first output terminal when the voltage of the second input terminal changes from a positive voltage to a negative voltage, so that the first switch is turned
  • the present application does not limit the structures of the first synchronization circuit 1221 and the second synchronization circuit 1222.
  • a possible structure of the first synchronization circuit 1221 and the second synchronization circuit 1222 is described below:
  • the first synchronization circuit 1221 includes a first comparator CMP1 and a first flip-flop TR1.
  • the non-inverting input terminal + of the first comparator CMP1 is electrically connected to the ground GND; the inverting input terminal - of the first comparator CMP1 is electrically connected to the first AC input terminal AC1 for inputting the first AC input terminal AC1 of the rectifier bridge circuit voltage.
  • the output terminal of the first comparator CMP1 is electrically connected to the clock signal terminal CLK of the first flip-flop TR1.
  • the data input terminal D of the first flip-flop TR1 is used to input the ASK modulation signal ASK_MOD.
  • the data output terminal Q of the first flip-flop TR1 is electrically connected to the control terminal of the first switch Q5 for outputting the first signal ASK_MOD_SYN1 corresponding to the ASK modulation signal ASK_MOD, and controlling the first switch Q5 to be turned on and off.
  • the flip-flops involved in the embodiments of the present application are flip-flops that are triggered by a rising edge (ie, the time from a low level to a high level, or the time from "0" to "1"), such as a D flip-flop.
  • the working principle of the first synchronization circuit 1221 is as follows: when the voltage of the first AC input terminal AC1 of the rectifier bridge circuit is a positive voltage, which is higher than the (zero) voltage of the ground GND, the first comparator CMP1 outputs a low level, and the first The flip-flop TR1 does not output a signal.
  • the voltage of the first AC input terminal AC1 of the rectifier bridge circuit changes from a positive voltage to a negative voltage (ie, zero-crossing), the voltage of the first AC input terminal AC1 is lower than the (zero) voltage of the ground GND.
  • the output of the comparator CMP1 changes from a low level to a high level (that is, a rising edge), in other words, at the moment when the voltage of the first AC input terminal AC1 of the rectifier bridge circuit changes from a positive voltage to a negative voltage (that is, zero-crossing),
  • the first synchronization circuit 1221 outputs a rising edge, triggers the first flip-flop TR1 to work, and outputs the ASK modulation signal ASK_MOD input from the data input terminal D through the data output terminal Q to obtain the first signal ASK_MOD_SYN1, which is output to the first switch Q5.
  • the control terminal controls the first switch Q5 to be turned on.
  • the second synchronization circuit 1222 includes a second comparator CMP2 and a second flip-flop TR2.
  • the non-inverting input terminal + of the second comparator CMP2 is electrically connected to the ground GND, and the inverting input terminal - of the second comparator CMP2 is electrically connected to the second AC input terminal AC2 for inputting the second AC input terminal AC2 of the rectifier bridge circuit. voltage.
  • the output terminal of the second comparator CMP2 is electrically connected to the clock signal terminal CLK of the second flip-flop TR2.
  • the data input terminal D of the second flip-flop TR2 is used to input the ASK modulation signal ASK_MOD.
  • the data output terminal Q of the second flip-flop TR2 is electrically connected to the control terminal of the first switch Q5 for outputting the second signal ASK_MOD_SYN2 corresponding to the ASK modulation signal ASK_MOD, and controlling the second switch Q6 to be turned on and off.
  • the working principle of the second synchronization circuit 1222 is as follows: when the voltage of the second AC input terminal AC2 of the rectifier bridge circuit is a positive voltage, which is higher than the (zero) voltage of the ground GND, the second comparator CMP2 outputs a low level, and the second The flip-flop TR2 does not output a signal.
  • the voltage of the second AC input terminal AC2 of the rectifier bridge circuit changes from a positive voltage to a negative voltage (ie, zero-crossing), the voltage of the second AC input terminal AC2 is lower than the (zero) voltage of the ground GND.
  • the output of the comparator CMP2 changes from a low level to a high level (that is, a rising edge), in other words, at the moment when the voltage of the second AC input terminal AC2 of the rectifier bridge circuit changes from a positive voltage to a negative voltage (that is, zero-crossing),
  • the second synchronization circuit 1222 outputs a rising edge, triggers the second flip-flop TR2 to work, and outputs the ASK modulation signal ASK_MOD input from the data input terminal D through the data output terminal Q to obtain a second signal ASK_MOD_SYN2, which is output to the second switch Q6
  • the control terminal controls the second switch Q6 to be turned on.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种无线充电接收电路、终端设备和无线充电系统,用于防止无线充电接收电路在进行ASK调制时,输出电压产生震荡。无线充电接收电路包括:整流桥、谐振电路、第一电容(C3)、第一开关(Q5)和第一同步电路(1221);谐振电路电连接在整流桥的第一交流输入端(AC1)和第二交流输入端(AC2)之间,第一开关(Q5)和第一电容(C3)串联在第一交流输入端(AC1)和接地(GND)之间;第一同步电路(1221)包括第一输入端(ASK1)、第二输入端(IN1)和第一输出端(OUT1),第一输入端(ASK1)用于输入幅移键控ASK调制信号(ASK_MOD),第二输入端(IN1)电连接至第一交流输入端(AC1),第一输出端(OUT1)电连接至第一开关(Q5)的控制端;第一同步电路(1221)用于在第二输入端(IN1)的电压从正电压变为负电压时,通过第一输出端(OUT1)输出ASK调制信号,以使得第一开关(Q5)导通。

Description

无线充电接收电路、终端设备和无线充电系统 技术领域
本申请涉及无线充电领域,尤其涉及一种无线充电接收电路、终端设备和无线充电系统。
背景技术
在现有的基于Qi协议的无线充电通信系统中,包括无线充电发射电路和无线充电接收电路。在无线充电发射电路进行频移键控(frequency shift keying,FSK)调制和幅移键控(amplitude shift keying,ASK)解调,在无线充电接收电路进行ASK调制和FSK解调。其中,在无线充电接收电路进行ASK调制时,通过调制信号来控制开关将耦合电容短接到地,以此来达到调制目的。
随着无线充电的传输功率越来越大,无线充电接收电路的输出电压也越来越高,在进行ASK调制时,如果ASK调制信号直接将耦合电容接地,由于此时输出电压较高,对于耦合电容来说将是一个很大的瞬态响应,可能引起输出电压震荡,从而导致无线充电发射电路的ASK解调失败。
发明内容
本申请实施例提供一种无线充电接收电路、终端设备和无线充电系统,用于防止无线充电接收电路在进行ASK调制时,输出电压产生震荡。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,提供了一种无线充电接收电路,包括:整流桥、谐振电路、第一电容、第一开关和第一同步电路;谐振电路电连接在整流桥的第一交流输入端和第二交流输入端之间,第一开关和第一电容串联在第一交流输入端和接地之间;第一同步电路包括第一输入端、第二输入端和第一输出端,第一输入端用于输入幅移键控ASK调制信号,第二输入端电连接至第一交流输入端,第一输出端电连接至第一开关的控制端;第一同步电路用于在第二输入端的电压从正电压变为负电压(即过零时刻)时,通过第一输出端输出ASK调制信号,以使得第一开关导通,此时,第一电容在过零点附近压降很小,产生的瞬态响应很小。
本申请实施例提供的无线充电接收电路,在第一交流输入端的电压从正电压变为负电压时,第一同步电路通过第一输出端输出ASK调制信号,以使得第一开关导通。此时,此时,第一交流输入端在过零点附近压降很小,在第一电容上产生的瞬态响应很小,从而能够防止无线充电接收电路在进行ASK调制时,输出电压产生震荡。本质上,第一同步电路用于将ASK调制信号与第一交流输入端的过零时刻进行同步。
在一种可能的实施方式中,还包括:第二电容、第二开关和第二同步电路;第二开关和第二电容串联在第二交流输入端和接地之间;第二同步电路包括第三输入端、第四输入端和第二输出端,第三输入端用于输入ASK调制信号,第四输入端电连接至第二交流输入端,第二输出端电连接至第二开关的控制端;第二同步电路用于在第四输入端的电压从正电压变为负电压(即过零时刻)时,通过第二输出端输出ASK调制 信号,以使得第二开关导通,此时,第二电容在过零点附近压降很小,产生的瞬态响应很小。与第一同步电路的工作原理类似,在第二交流输入端的电压从正电压变为负电压时,第二同步电路通过第二输出端输出ASK调制信号,以使得第二开关导通。此时,此时,第二交流输入端在过零点附近压降很小,在第二电容上产生的瞬态响应很小,从而能够防止无线充电接收电路在进行ASK调制时,输出电压产生震荡。本质上第二同步电路用于将ASK调制信号与第二交流输入端的过零时刻进行同步。
在一种可能的实施方式中,第二同步电路还包括第二比较器和第二触发器,第二比较器的同相输入端电连接至接地,第二比较器的反相输入端为电连接至第二交流输入端,第二比较器的输出端电连接至第二触发器的时钟信号端,第二触发器的数据输入端用于输入ASK调制信,第二触发器的数据输出端电连接至第二开关的控制端。该实施方式提供了第二同步电路的一种可能结构。
第二同步电路的工作原理如下:当整流桥电路的第二交流输入端的电压为正电压时,高于接地的(零)电压,第二比较器输出低电平,第二触发器不输出信号。当整流桥电路的第二交流输入端的电压从正电压变为负电压(即过零)时,第二交流输入端的电压低于接地的(零)电压,此时,第二比较器的输出从低电平变为高电平(即上升沿),换言之,在整流桥电路的第二交流输入端的电压从正电压变为负电压(即过零)的时刻,第二同步电路输出上升沿,触发第二触发器工作,并将从数据输入端输入的调制信号通过数据输出端输出,得到第二信号,输出至第二开关的控制端,控制第二开关导通。
在一种可能的实施方式中,第一同步电路包括第一比较器和第一触发器,第一比较器的同相输入端电连接至接地,第一比较器的反相输入端电连接至第一交流输入端,第一比较器的输出端电连接至第一触发器的时钟信号端,第一触发器的数据输入端用于输入ASK调制信号,第一触发器的数据输出端电连接至第一开关的控制端。该实施方式提供了第一同步电路的一种可能结构。
第一同步电路的工作原理如下:当整流桥电路的第一交流输入端的电压为正电压时,高于接地的(零)电压,第一比较器输出低电平,第一触发器不输出信号。当整流桥电路的第一交流输入端的电压从正电压变为负电压(即过零)时,第一交流输入端的电压低于接地的(零)电压,此时,第一比较器的输出从低电平变为高电平(即上升沿),换言之,在整流桥电路的第一交流输入端的电压从正电压变为负电压(即过零)的时刻,第一同步电路输出上升沿,触发第一触发器工作,并将从数据输入端输入的调制信号通过数据输出端输出,得到第一信号,输出至第一开关Q5的控制端,控制第一开关导通。
在一种可能的实施方式中,整流桥为全桥整流桥。该实施方式提供了整流桥的一种可能结构。
在一种可能的实施方式中,谐振电路为LC谐振电路。该实施方式提供了谐振电路的一种可能结构。
在一种可能的实施方式中,第二开关为金属氧化物半导体MOS管,第二开关的控制端为MOS管的栅极。该实施方式提供了第二开关的一种可能结构。
在一种可能的实施方式中,第一开关为MOS管,第一开关的控制端为MOS管的 栅极。该实施方式提供了第一开关的一种可能结构。
在一种可能的实施方式中,本申请实施例涉及的触发器为通过上升沿(即从低电平变高电平的时刻,或者,从“0”变为“1”的时刻)触发的触发器,例如D触发器。
第二方面,提供了一种终端设备,包括如第一方面及其任一实施方式的无线充电接收电路和工作电路,无线充电接收电路用于向工作电路供电。
第三方面,提供了一种无线充电系统,包括无线充电器和如第二方面所述的终端设备,无线充电器包括无线充电发射电路,无线充电发射电路用于通过电磁场将电能传输给终端设备的无线充电接收电路。
关于第二方面或第三方面的技术效果参照第一方面及其任一实施方式内容,在此不再重复。
附图说明
图1为本申请实施例提供的一种无线充电系统的架构示意图;
图2为本申请实施例提供的一种ASK调制信号的时序示意图;
图3为本申请实施例提供的另一种无线充电系统的架构示意图;
图4为本申请实施例提供的一种采用本申请方案的电压Vrect无明显振荡的示意图;
图5为本申请实施例提供的一种第一同步电路的结构示意图;
图6为本申请实施例提供的一种第二同步电路的结构示意图。
具体实施方式
本申请实施例提供了一种无线充电系统,该无线充电系统可以遵循Qi无线充电协议。如图1所示,该无线充电系统包括无线充电器(即发射端)11和终端设备(即接收端)12。
本申请实施例涉及的终端设备可以为包含无线收发功能的设备。具体地,终端设备可以指用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信装置、用户代理或用户装置。例如,终端设备可以是手机、智能音箱、智能手表、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、机器人、无人机、智能驾驶车辆、智能家居、车载设备、医疗设备、智慧物流设备、可穿戴设备,未来第五代(5th generation,5G)移动通信技术网络或5G之后的网络中的终端设备等,本申请实施例对此不作限定。
无线充电器11包括第一微控制单元(micro-controller unit,MCU)111和无线充电发射电路112。无线充电发射电路112包括功率电路和第一谐振电路,其中,功率电路包括金属氧化物半导体(metal oxide semiconductor,MOS)管q1-q4,第一谐振电路包括电感L1和电容C1,电感L1即为发射线圈。
终端设备12包括第二MCU 121、无线充电接收电路122和工作电路,无线充电接收电路122的输出端连接至工作电路,以向工作电路供电。示例性的,工作电路包括低压降稳压器(low dropout regulator,LDO)123、充电芯片124和电池125,无线充电接收电路122依次通过LDO 123、充电芯片124向电池125供电。
无线充电接收电路122包括整流桥电路、第二谐振电路,还包括第一开关Q5、第 二开关Q6,第一电容C3和第二电容C4。示例性的,第一开关Q5、第二开关Q6为MOS管。
在一种可能的实施方式中,整流桥电路可以为全桥整流桥。例如,整流桥电路包括MOS管Q1-Q4。
第二谐振电路包括串联的电感L2和电容C2,电感L2即为接收线圈。第二谐振电路电连接在整流桥电路的第一交流输入端AC1和第二交流输入端AC2之间。第一开关Q5和第一电容C3串联在第一交流输入端AC1和接地GND之间。第二开关Q6和第二电容C4串联在第二交流输入端AC2和接地GND之间。
该无线充电系统的工作原理如下:
无线充电发射电路112输入直流电压Vin,第一MCU 111产生脉宽调制(pulse width modulation,PWM)控制信号控制MOS管q1/q3与MOS管q2/q4交替导通,使得直流电压Vin通过功率电路产生交流电压(方波),该交流电压加载在第一谐振电路两端产生交流电流,交流电流通过电感L1(即发射线圈)产生电磁场,通过电磁场将电能传输给终端设备的无线充电接收电路122。
无线充电接收电路122的电感L2(即接收线圈)感应电磁场,从而在第二谐振电路产生交流电流,第二MCU 121产生PWM控制信号控制MOS管Q1/Q3与MOS管Q2/Q4交替导通,使得交流电流通过整流桥电路转化为直流电压,直流电压再通过LDO123和充电芯片124向电池125充电。
为了保证整个无线充电系统工作稳定,要为整流桥电路输出的电压Vrect设定一个目标电压,并通过反馈环路来反馈给无线充电发射电路112。为了提高充电效率,该目标电压通常设置成比LDO 123的输入电压高一点。
第二MCU 121会采集Vrect电压,并与目标电压相减,产生一个误差信号。误差信号会通过Qi协议规定的通信方式传输给第一MCU 11,第一MCU 11根据误差信号确定增加发射能量还是减少发射能量。具体的,第一MCU 11通过控制输入的直流电压Vin、PWM控制信号的开关频率和占空比来控制发射能量。
示例性的,在第二MCU 121通过ASK调制向无线充电发射电路112来传输上述误差信号时,通过向第一开关Q5(第二开关Q6)输出ASK调制信号ASK_MOD(方波)来控制第一开关Q5(第二开关Q6)的导通和关断,从而控制第一电容C3(第二电容C4)接地,进而改变第二谐振电路的等效阻抗。第二谐振电路的等效阻抗发生变化会引起第一谐振电路里面的交流电流发生变化以及第一谐振电路的输入电压发生变化。第一MCU 111通过采集和ASK解调上述电流或电压的变化即可以得到误差信号。
当整流桥电路输出的电压Vrect较高时,如果直接将第一电容C3(第二电容C4)接地,会产生很大的瞬态响应,使得第二谐振电路的等效阻抗及电压Vrect震荡,从而导致第一MCU 111进行ASK解调失败。示例性的,如图2所示,ASK调制信号ASK_MOD会在第一交流输入端AC1的电压为7V左右时,控制第一开关Q5导通,使得第一电容C3接地。
本申请实施例提供了一种无线充电接收电路,通过检测整流桥电路的第一交流输入端AC1从正电压变为负电压(即过零)时,控制第一开关Q5导通,将第一电容C3接地,此时,第一电容C3在过零点附近压降很小,产生的瞬态响应很小;或者,检 测整流桥电路的第二交流输入端AC2从正电压变为负电压(即过零)时,控制第二开关Q6导通,将第二电容C4接地,此时,第二电容C4在过零点附近压降很小,产生的瞬态响应很小。通过以上方式可以避免对第二谐振电路的等效阻抗及电压Vrect产生影响,防止第一MCU 111进行ASK解调失败。
具体的,如图3所示,本申请实施例提供了另一种无线充电接收电路,与图1中所示的无线充电接收电路相比,还包括第一同步电路1221和第二同步电路1222。第一同步电路1221用于将ASK调制信号与第一交流输入端AC1的过零时刻进行同步,第二同步电路1222用于将ASK调制信号与第二交流输入端AC2的过零时刻进行同步。
第一同步电路1221包括第一输入端ASK1、第二输入端IN1和第一输出端OUT1。第一输入端ASK1用于输入ASK调制信号ASK_MOD,第二输入端IN1电连接至第一交流输入端AC1,第一输出端OUT1电连接至第一开关Q5的控制端(例如MOS管的栅极)。
第一同步电路1221用于在第二输入端IN1(即第一交流输入端AC1)的电压从正电压变为负电压时,通过第一输出端OUT1输出ASK调制信号ASK_MOD,以使得第一开关Q5导通,并将第一电容C3电连接至接地GND。此时,第一电容C3在过零点附近压降很小,产生的瞬态响应很小。需要说明的是,为了与原ASK调制信号ASK_MOD以示区别,第一输出端OUT1输出的信号表示为第一信号ASK_MOD_SYN1。
第二同步电路1222包括第三输入端ASK2、第四输入端IN2和第二输出端OUT2。第三输入端ASK2用于输入ASK调制信号ASK_MOD,第四输入端IN2电连接至第二交流输入端AC2,第二输出端OUT2电连接至第二开关Q6的控制端(例如MOS管的栅极)。
第二同步电路1222用于在第四输入端IN2(即第二交流输入端AC2)的电压从正电压变为负电压时,通过第二输出端OUT2输出ASK调制信号ASK_MOD,以使得第二开关Q6导通,并将第二电容C4电连接至接地GND。此时,第二电容C4在过零点附近压降很小,产生的瞬态响应很小。需要说明的是,为了与原ASK调制信号ASK_MOD以示区别,第二输出端OUT2输出的信号表示为第二信号ASK_MOD_SYN2。
示例性的,如图2所示,ASK调制信号ASK_MOD对应的第一信号ASK_MOD_SYN1会在第一交流输入端AC1的电压为-300mV左右时,控制第一开关Q5导通,使得第一电容C3接地。相比于ASK调制信号ASK_MOD在第一交流输入端AC1的电压为7V左右时,控制第一开关Q5导通,使得第一电容C3接地,第一电容C3两端的压降下降了很多,产生的瞬态响应也会小很多。另外,如图4所示,由于没有大的瞬态响应,电压Vrect的上升下降都比较稳定,无震荡现象。
本申请实施例提供的无线充电接收电路、终端设备和无线充电系统,其中,无线充电接收电路包括:整流桥、谐振电路、第一电容、第一开关和第一同步电路;谐振电路电连接在整流桥的第一交流输入端和第二交流输入端之间,第一开关和第一电容串联在第一交流输入端和接地之间;第一同步电路包括第一输入端、第二输入端和第一输出端,第一输入端用于输入幅移键控ASK调制信号,第二输入端电连接至第一交流输入端,第一输出端电连接至第一开关的控制端;第一同步电路用于在第二输入端的电压从正电压变为负电压时,通过第一输出端输出ASK调制信号,以使得第一开关 导通。此时,第一交流输入端在过零点附近压降很小,在第一电容上产生的瞬态响应很小,从而能够防止无线充电接收电路在进行ASK调制时,输出电压产生震荡。
本申请不限定第一同步电路1221和第二同步电路1222的结构,下面对第一同步电路1221和第二同步电路1222的一种可能的结构进行说明:
在一种可能的实施方式中,如图5所示,第一同步电路1221包括第一比较器CMP1和第一触发器TR1。第一比较器CMP1的同相输入端+电连接至接地GND;第一比较器CMP1的反相输入端-电连接至第一交流输入端AC1,用于输入整流桥电路的第一交流输入端AC1的电压。第一比较器CMP1的输出端电连接至第一触发器TR1的时钟信号端CLK。第一触发器TR1的数据输入端D用于输入ASK调制信号ASK_MOD。第一触发器TR1的数据输出端Q电连接至第一开关Q5的控制端,用于输出ASK调制信号ASK_MOD对应的第一信号ASK_MOD_SYN1,控制第一开关Q5导通和关断。
本申请实施例涉及的触发器为通过上升沿(即从低电平变高电平的时刻,或者,从“0”变为“1”的时刻)触发的触发器,例如D触发器。
第一同步电路1221的工作原理如下:当整流桥电路的第一交流输入端AC1的电压为正电压时,高于接地GND的(零)电压,第一比较器CMP1输出低电平,第一触发器TR1不输出信号。当整流桥电路的第一交流输入端AC1的电压从正电压变为负电压(即过零)时,第一交流输入端AC1的电压低于接地GND的(零)电压,此时,第一比较器CMP1的输出从低电平变为高电平(即上升沿),换言之,在整流桥电路的第一交流输入端AC1的电压从正电压变为负电压(即过零)的时刻,第一同步电路1221输出上升沿,触发第一触发器TR1工作,并将从数据输入端D输入的ASK调制信号ASK_MOD通过数据输出端Q输出,得到第一信号ASK_MOD_SYN1,输出至第一开关Q5的控制端,控制第一开关Q5导通。
在一种可能的实施方式中,如图6所示,第二同步电路1222包括第二比较器CMP2和第二触发器TR2。第二比较器CMP2的同相输入端+电连接至接地GND,第二比较器CMP2的反相输入端-电连接至第二交流输入端AC2,用于输入整流桥电路的第二交流输入端AC2的电压。第二比较器CMP2的输出端电连接至第二触发器TR2的时钟信号端CLK。第二触发器TR2的数据输入端D用于输入ASK调制信号ASK_MOD。第二触发器TR2的数据输出端Q电连接至第一开关Q5的控制端,用于输出ASK调制信号ASK_MOD对应的第二信号ASK_MOD_SYN2,控制第二开关Q6导通和关断。
第二同步电路1222的工作原理如下:当整流桥电路的第二交流输入端AC2的电压为正电压时,高于接地GND的(零)电压,第二比较器CMP2输出低电平,第二触发器TR2不输出信号。当整流桥电路的第二交流输入端AC2的电压从正电压变为负电压(即过零)时,第二交流输入端AC2的电压低于接地GND的(零)电压,此时,第二比较器CMP2的输出从低电平变为高电平(即上升沿),换言之,在整流桥电路的第二交流输入端AC2的电压从正电压变为负电压(即过零)的时刻,第二同步电路1222输出上升沿,触发第二触发器TR2工作,并将从数据输入端D输入的ASK调制信号ASK_MOD通过数据输出端Q输出,得到第二信号ASK_MOD_SYN2,输出至第二开关Q6的控制端,控制第二开关Q6导通。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单 元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (10)

  1. 一种无线充电接收电路,其特征在于,包括:整流桥、谐振电路、第一电容、第一开关和第一同步电路;
    所述谐振电路电连接在所述整流桥的第一交流输入端和第二交流输入端之间,所述第一开关和所述第一电容串联在所述第一交流输入端和接地之间;
    所述第一同步电路包括第一输入端、第二输入端和第一输出端,所述第一输入端用于输入幅移键控ASK调制信号,所述第二输入端电连接至所述第一交流输入端,所述第一输出端电连接至所述第一开关的控制端;
    所述第一同步电路用于在所述第二输入端的电压从正电压变为负电压时,通过所述第一输出端输出所述ASK调制信号,以使得所述第一开关导通。
  2. 根据权利要求1所述的无线充电接收电路,其特征在于,还包括:第二电容、第二开关和第二同步电路;所述第二开关和所述第二电容串联在所述第二交流输入端和接地之间;
    所述第二同步电路包括第三输入端、第四输入端和第二输出端,所述第三输入端用于输入所述ASK调制信号,所述第四输入端电连接至所述第二交流输入端,所述第二输出端电连接至所述第二开关的控制端;
    所述第二同步电路用于在所述第四输入端的电压从正电压变为负电压时,通过所述第二输出端输出所述ASK调制信号,以使得所述第二开关导通。
  3. 根据权利要求2所述的无线充电接收电路,其特征在于,所述第二同步电路还包括第二比较器和第二触发器,所述第二比较器的同相输入端电连接至接地,所述第二比较器的反相输入端为电连接至所述第二交流输入端,所述第二比较器的输出端电连接至所述第二触发器的时钟信号端,所述第二触发器的数据输入端用于输入所述ASK调制信号,所述第二触发器的数据输出端电连接至所述第二开关的控制端。
  4. 根据权利要求1-3任一项所述的无线充电接收电路,其特征在于,所述第一同步电路包括第一比较器和第一触发器,所述第一比较器的同相输入端电连接至接地,所述第一比较器的反相输入端电连接至所述第一交流输入端,所述第一比较器的输出端电连接至所述第一触发器的时钟信号端,所述第一触发器的数据输入端用于输入所述ASK调制信号,所述第一触发器的数据输出端电连接至所述第一开关的控制端。
  5. 根据权利要求1-4任一项所述的无线充电接收电路,其特征在于,所述整流桥为全桥整流桥。
  6. 根据权利要求1-5任一项所述的无线充电接收电路,其特征在于,所述谐振电路为LC谐振电路。
  7. 权利要求要求2所述的无线充电接收电路,其特征在于,所述第二开关为金属氧化物半导体MOS管,所述第二开关的控制端为MOS管的栅极。
  8. 权利要求要求1-7任一项所述的无线充电接收电路,其特征在于,所述第一开关为MOS管,所述第一开关的控制端为MOS管的栅极。
  9. 一种终端设备,其特征在于,包括如权利要求1-8任一项所述的无线充电接收电路和工作电路,所述无线充电接收电路用于向所述工作电路供电。
  10. 一种无线充电系统,其特征在于,包括无线充电器和如权利要求9所述的终 端设备,所述无线充电器包括无线充电发射电路,所述无线充电发射电路用于通过电磁场将电能传输给所述终端设备的无线充电接收电路。
PCT/CN2020/111533 2020-08-26 2020-08-26 无线充电接收电路、终端设备和无线充电系统 WO2022041018A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/111533 WO2022041018A1 (zh) 2020-08-26 2020-08-26 无线充电接收电路、终端设备和无线充电系统
CN202080104772.3A CN116325430A (zh) 2020-08-26 2020-08-26 无线充电接收电路、终端设备和无线充电系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/111533 WO2022041018A1 (zh) 2020-08-26 2020-08-26 无线充电接收电路、终端设备和无线充电系统

Publications (1)

Publication Number Publication Date
WO2022041018A1 true WO2022041018A1 (zh) 2022-03-03

Family

ID=80352307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/111533 WO2022041018A1 (zh) 2020-08-26 2020-08-26 无线充电接收电路、终端设备和无线充电系统

Country Status (2)

Country Link
CN (1) CN116325430A (zh)
WO (1) WO2022041018A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102149566A (zh) * 2008-09-11 2011-08-10 矢崎总业株式会社 车辆用无线充电系统
US20140265610A1 (en) * 2013-03-13 2014-09-18 Integrated Device Technology, Inc. Apparatuses and related methods for modulating power of a wireless power receiver
US20150049832A1 (en) * 2013-08-13 2015-02-19 Rohm Co., Ltd. Non-contact power supply transmitter system and receiving device
CN106560974A (zh) * 2016-10-28 2017-04-12 中兴新能源汽车有限责任公司 无线充电系统及汽车无线充电装置
CN109861353A (zh) * 2019-01-25 2019-06-07 华为技术有限公司 一种无线充电接收器以及无线充电方法
CN110149291A (zh) * 2019-05-06 2019-08-20 南京睿赫电子有限公司 一种用于无线充电接收端ask负载调制电路及调制方法
CN111257662A (zh) * 2018-12-03 2020-06-09 无锡华润矽科微电子有限公司 应用于无线充电设备检测的装置及相应的方法
CN111384934A (zh) * 2020-05-29 2020-07-07 成都市易冲半导体有限公司 无线充电接收端负载调制开关零电压异步控制方法及电路
EP3691076A1 (en) * 2019-01-31 2020-08-05 Beijing Xiaomi Mobile Software Co., Ltd. Wireless charging receiving end, terminal device and method for wireless charging

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102149566A (zh) * 2008-09-11 2011-08-10 矢崎总业株式会社 车辆用无线充电系统
US20140265610A1 (en) * 2013-03-13 2014-09-18 Integrated Device Technology, Inc. Apparatuses and related methods for modulating power of a wireless power receiver
US20150049832A1 (en) * 2013-08-13 2015-02-19 Rohm Co., Ltd. Non-contact power supply transmitter system and receiving device
CN106560974A (zh) * 2016-10-28 2017-04-12 中兴新能源汽车有限责任公司 无线充电系统及汽车无线充电装置
CN111257662A (zh) * 2018-12-03 2020-06-09 无锡华润矽科微电子有限公司 应用于无线充电设备检测的装置及相应的方法
CN109861353A (zh) * 2019-01-25 2019-06-07 华为技术有限公司 一种无线充电接收器以及无线充电方法
EP3691076A1 (en) * 2019-01-31 2020-08-05 Beijing Xiaomi Mobile Software Co., Ltd. Wireless charging receiving end, terminal device and method for wireless charging
CN110149291A (zh) * 2019-05-06 2019-08-20 南京睿赫电子有限公司 一种用于无线充电接收端ask负载调制电路及调制方法
CN111384934A (zh) * 2020-05-29 2020-07-07 成都市易冲半导体有限公司 无线充电接收端负载调制开关零电压异步控制方法及电路

Also Published As

Publication number Publication date
CN116325430A (zh) 2023-06-23

Similar Documents

Publication Publication Date Title
EP3164926B1 (en) Wireless power transfer systems using load feedback
CN111740512B (zh) 一种无线充电发射端系统以及控制方法
CN104158305A (zh) 基于自适应磁耦合谐振匹配的能量与信息同步传输系统
CN104319830A (zh) 一种基于近场通信的充电系统和方法
CN108923800B (zh) 一种无线携能通信系统及方法
Su et al. An F-type compensated capacitive power transfer system allowing for sudden change of pickup
CN104426205B (zh) 无线充电装置与方法以及使用该装置的移动终端
CN104981964B (zh) 无线电力传输设备及其方法
CN102931714A (zh) 一种无线充电系统
WO2021227652A1 (zh) 无线充电设备和待充电设备
WO2016190095A1 (ja) ワイヤレス給電システム
WO2018076690A1 (zh) 用于优化无线电力传输的自适应功率放大器
CN113765233B (zh) 一种电子设备及其控制方法
WO2016167123A1 (ja) 受電装置、受電方法、および給電システム
CN109586383A (zh) 无线充电系统、方法及智能电子设备
CN209267242U (zh) 无线充电系统及智能电子设备
JPH09182304A (ja) 非接触型充電器
WO2022041018A1 (zh) 无线充电接收电路、终端设备和无线充电系统
Lai et al. DC-DC Converter and Rectifier with Resonator for Underwater Wireless Power Transfer Module
CN206908386U (zh) 无线充电系统
CN102651568A (zh) 一种无线充电装置
CN211377644U (zh) 一种无线充电装置
EP4283856A1 (en) Rectifier and driving method and device therefor
JPH09182322A (ja) 非接触型電力伝送装置
CN112751394B (zh) 一种适用于电池负载的大功率无线充电系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20950690

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20950690

Country of ref document: EP

Kind code of ref document: A1