WO2022041007A1 - 电机转子的旋转角度的测量方法、测量装置以及电机、云台和无人飞行器 - Google Patents

电机转子的旋转角度的测量方法、测量装置以及电机、云台和无人飞行器 Download PDF

Info

Publication number
WO2022041007A1
WO2022041007A1 PCT/CN2020/111520 CN2020111520W WO2022041007A1 WO 2022041007 A1 WO2022041007 A1 WO 2022041007A1 CN 2020111520 W CN2020111520 W CN 2020111520W WO 2022041007 A1 WO2022041007 A1 WO 2022041007A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
motor
magnetic induction
rotation angle
hall sensor
Prior art date
Application number
PCT/CN2020/111520
Other languages
English (en)
French (fr)
Inventor
李龙
谢文麟
李兵
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN202080035681.9A priority Critical patent/CN113853729A/zh
Priority to PCT/CN2020/111520 priority patent/WO2022041007A1/zh
Publication of WO2022041007A1 publication Critical patent/WO2022041007A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/215Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/30Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage

Definitions

  • the present disclosure relates to the technical field of electric motors, and more particularly, to a method for measuring the rotation angle of a motor rotor, a measuring device, and a motor, a gimbal, and an unmanned aerial vehicle including the measuring device.
  • the gimbal is usually a device equipped with a camera device, and the shooting angle of the camera device is controlled by controlling the AC servo motor in the gimbal.
  • the control of the AC servo motor of the gimbal it is generally necessary to know the position and speed of the rotor of the motor in order to accurately control the rotor of the motor, so that the shooting angle and attitude of the camera equipment mounted on the gimbal can be controlled accordingly.
  • the rotation angle of the motor rotor is generally measured by a Hall sensor.
  • a magnetic induction component is installed on the rotor of the motor to sense the alternating magnetic field generated during the rotation of the rotor.
  • a Hall element is installed on the stator of the motor, and the change in the magnetic induction component is sensed through the Hall element.
  • the magnetic field is generated, and the induced voltage is output through the output terminal of the Hall element, so that the induced voltage can be measured by an external sensing device, and the rotation angle of the rotor of the motor can be calculated through the change of the induced voltage.
  • the arrangement angle of the Hall sensor needs to satisfy certain conditions, otherwise the calculation of the rotor rotation angle cannot be realized. Therefore, it is necessary to provide a motor without special requirements on the arrangement angle of the Hall sensor, so as to facilitate the design and manufacture of the motor.
  • the present disclosure aims to solve at least one of the technical problems existing in the prior art.
  • an embodiment of the present disclosure provides a method for measuring the rotation angle of a rotor of a motor, characterized in that a magnetic induction component is provided on the rotor of the motor, and the magnetic induction component rotates together with the rotor; a Hall sensor is arranged on the stator of the motor, wherein the Hall sensor is arranged on the stator at any angle to sense the magnetic field generated by the magnetic induction component; the measurement method includes: acquiring the Hall sensor The first magnetic induction intensity value generated by the sensor; the coordinate rotation transformation is performed on the first magnetic induction intensity value to obtain a second magnetic induction intensity value; the rotation angle of the rotor is determined according to the second magnetic induction intensity value.
  • an embodiment of the present disclosure provides a device for measuring the rotation angle of a rotor of a motor, the device for measuring includes: a magnetic induction component, the magnetic induction component is disposed on the rotor of the motor and rotates together with the rotor; a Hall sensor, the hall sensor is arranged on the stator of the motor, wherein the hall sensor is arranged on the stator at any angle, and is used to sense the magnetic field generated by the magnetic induction component; the magnetic induction intensity acquisition unit , the magnetic induction intensity acquisition unit is used to obtain the first magnetic induction intensity value generated by the Hall sensor; the coordinate rotation transformation unit, the coordinate rotation transformation unit performs coordinate rotation transformation on the first magnetic induction intensity value to obtain the first magnetic induction intensity value. two magnetic induction intensity values; and a rotation angle determination unit, the rotation angle determination unit determining the rotation angle of the rotor according to the second magnetic induction intensity value.
  • an embodiment of the present disclosure provides a motor including the above-mentioned device for measuring the rotation angle of the motor rotor.
  • an embodiment of the present disclosure provides a pan/tilt head, where the pan/tilt head includes the motor as described above.
  • an embodiment of the present disclosure provides an unmanned aerial vehicle, where the unmanned aerial vehicle includes the gimbal as described above.
  • the method for measuring the rotation angle of the motor rotor adopts a Hall sensor arranged on the stator of the motor at any angle, and performs rotation coordinate transformation on the signal of the first magnetic induction intensity value obtained by the Hall sensor. , so that the parameter with a nonlinear relationship with the rotation angle is transformed into a parameter with a linear relationship with the rotation angle, and the acquisition of the rotation angle of the Hall sensor arranged at any angle is realized.
  • the method for measuring the rotation angle of the motor rotor according to the present disclosure does not require any special restriction on the setting angle of the Hall sensor on the stator during the setting and arrangement of the Hall sensor, and only needs to determine the lateral direction of the Hall sensor and the diameter of the motor. The included angle in the direction is sufficient, so it can provide convenience for the design and manufacture of the motor.
  • FIG. 1 shows a schematic diagram of the appearance structure of the Hall sensor.
  • FIG. 2 is a flowchart of a method of measuring the rotation angle of a motor rotor according to the present disclosure.
  • FIG. 3 is a schematic diagram of the arrangement of Hall sensors in the method for measuring the rotation angle of the motor rotor according to the present disclosure.
  • FIG. 4 is a structural block diagram of a device for measuring the rotation angle of a motor rotor according to the present disclosure.
  • FIG. 5 is a structural block diagram of a motor according to the present disclosure.
  • FIG. 6 is a structural block diagram of a pan/tilt according to the present disclosure.
  • FIG. 7 is a structural block diagram of an unmanned aerial vehicle according to the present disclosure.
  • 1-6 Pin; 7: Hall element; 10: Motor; 12: Rotor; 14: Magnetic induction part; 16: Stator; 18: Hall sensor; 100: Measuring device for the rotation angle of the motor rotor; 102: Magnetic induction intensity acquisition unit; 104: coordinate rotation transformation unit; 106: rotation angle determination unit; 200: motor; 300: PTZ; 400: unmanned aerial vehicle.
  • first and second are only used for description purposes, and cannot be interpreted as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, features defined as “first”, “second” may expressly or implicitly include one or more of said features.
  • “plurality” means two or more, unless expressly and specifically defined otherwise.
  • the terms “installed”, “connected” and “connected” should be understood in a broad sense, unless otherwise expressly specified and limited, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; it can be a mechanical connection, an electrical connection or can communicate with each other; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal communication of two elements or the interaction of two elements relation.
  • installed should be understood in a broad sense, unless otherwise expressly specified and limited, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; it can be a mechanical connection, an electrical connection or can communicate with each other; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal communication of two elements or the interaction of two elements relation.
  • the Hall sensor usually has a rectangular shape, such as the Hall sensor with six pins as shown in Figure 1, and its left and right sides each have three pins, the left side is pins 1, 2 and 3, and the right side is Pins 4, 5, and 6 are distributed symmetrically to pins 1, 2, and 3.
  • the direction of the straight line connecting the left and right corresponding pins is called the lateral direction.
  • the direction of the straight line X connecting the pin 2 and the pin 5 is called the lateral direction.
  • the direction of the two groups of straight lines is called the longitudinal direction, that is, the direction of the straight lines dividing the pins 1, 2 and 3 and the pins 4, 5 and 6 into two left and right groups is called the longitudinal direction.
  • the direction of the Hall sensor in the motor is such that the lateral direction coincides with the radial direction of the motor.
  • the longitudinal direction of the Hall sensor is perpendicular to the radial direction of the motor, that is, the longitudinal direction of the Hall sensor is the same as the radial direction of the motor.
  • the tangential directions of the motors are parallel so that the Hall element 7 can receive a magnetic field perpendicular to its magnetic field receiving plane.
  • the phase difference of the two sinusoidal signals output by the Hall sensor is exactly 90°, that is, the transverse magnetic field strength signal in the lateral direction of the Hall sensor and the longitudinal magnetic field in the longitudinal direction of the Hall sensor strength signal.
  • the above two sinusoidal signals are standard sinusoidal signals, from which the rotation angle of the motor rotor can be directly calculated.
  • the Hall sensor may not meet the above requirements, that is, the lateral direction of the Hall sensor may not be exactly the same as the diameter of the motor. The direction coincides, and the rotation angle cannot be calculated by the method in the prior art at this time. Therefore, in the prior art, the Hall sensor is arranged in such a way that its lateral direction coincides with the radial direction of the motor.
  • the interference of components occurs, it is usually necessary to redesign and arrange the structure of the motor. This leads to prolongation of the design period of the motor or the pan/tilt head using the motor and complication of the structure.
  • the present disclosure provides a method for measuring the rotation angle of the motor rotor.
  • the specific steps of the method for measuring the rotation angle of the motor rotor according to the present disclosure will be described below with reference to FIGS. 2 and 3 .
  • the measurement method includes the following operations. First, the hardware needs to be arranged, and S1 is executed.
  • the magnetic induction component 14 is arranged on the rotor 12 of the motor 10, that is, the magnetic induction component 14 is arranged on the rotor 12 of the motor 10.
  • the magnetic induction part 14 rotates together with the rotor 12 .
  • the windings in the rotor 12 apply a magnetic field to the magnetic induction part 14 , because the magnetic field generated by the winding is an alternating change that changes with the rotation of the rotor 12 . signal, thereby generating a corresponding alternating magnetic field signal through the magnetic induction component 14 .
  • the Hall sensor 18 is arranged on the stator 16 of the motor 10, that is, the Hall sensor 18 is arranged on the stator 16 of the motor 10.
  • the Hall sensor 18 can be arranged on the stator 16 at any angle, For sensing the magnetic field generated by the magnetic induction part 14 .
  • the Hall sensor 18 can sense the alternating magnetic field in the magnetic induction part 14 and generate a voltage signal on its output terminal, the voltage signal changes with the change of the alternating magnetic field, and thus can be passed through the Hall sensor 18.
  • the output alternating voltage signal determines the rotation angle of the rotor of the motor 10 .
  • execute S3 to obtain the first magnetic induction intensity value generated by the Hall sensor 18.
  • the voltage value at the output end of the Hall sensor 18 can be read, and the voltage value corresponds to the first magnetic induction intensity value, and the first magnetic induction intensity value can be read.
  • a magnetic induction value corresponds to the magnetic induction in the magnetic induction part 14 accordingly.
  • the first magnetic induction intensity value cannot be directly used to calculate the value of the rotor 12.
  • the first magnetic induction intensity value needs to be transformed at this time, that is, S4 is performed, and coordinate rotation transformation is performed on the first magnetic induction intensity value to obtain the second magnetic induction intensity value.
  • S4 is performed, and coordinate rotation transformation is performed on the first magnetic induction intensity value to obtain the second magnetic induction intensity value.
  • a second magnetic induction intensity value having a linear relationship with the rotation angle of the rotor 12 is obtained.
  • S5 is performed to determine the rotation angle of the rotor 12 according to the second magnetic induction intensity value.
  • the process of performing coordinate rotation transformation on the first magnetic induction intensity value generated by the Hall sensor 18 will be described below. Since the Hall sensor 18 is arranged on the stator 16 of the motor 10 at any angle, the installation angle of the Hall sensor 18 on the stator 16 needs to be determined first, that is, after the Hall sensor is arranged on the stator 16 of the motor 10, the present disclosure
  • the method further includes acquiring the angle between the lateral direction of the Hall sensor 18 and the radial direction of the motor, where the lateral direction of the Hall sensor 18 refers to the connection between two opposite pins of the Hall sensor 18
  • the direction of the lines, that is, the lateral direction of the Hall sensor 18 is parallel to the lateral arrangement direction of the pins of the Hall sensor 18 .
  • performing coordinate rotation transformation on the first magnetic induction intensity value in the method for measuring the rotation angle of the motor rotor according to the present disclosure includes transforming the first magnetic induction intensity value according to the following formula (1):
  • the output signal of the Hall sensor 18 can be obtained, that is, the first magnetic induction intensity value, for example, it can be recorded as Bm, and Bm can be regarded as a magnetic induction intensity vector, which can be decomposed into the horizontal direction of the Hall sensor 18.
  • is the angle between the lateral direction of the Hall sensor 18 and the radial direction of the motor 10, which can be selected as 45° here, as shown in FIG. Make specific restrictions.
  • Bx is the radial component value of the second magnetic induction intensity value after coordinate rotation transformation in the radial direction of the motor 10 .
  • By is the second magnetic induction intensity value after coordinate transformation in the tangential direction of the motor 10 . Tangential component value.
  • performing coordinate rotation transformation on the first magnetic induction intensity value Bm also includes transforming the first magnetic induction intensity value Bm according to the following formula (2):
  • the lateral component value Bmx and the longitudinal component value Bmy of the first magnetic induction intensity value Bm in the coordinate system corresponding to the lateral and longitudinal directions of the Hall sensor 18 can be converted into values corresponding to the radial direction of the motor 10 through the formula (2).
  • Determining the rotation angle of the rotor 12 according to the second magnetic induction value in the method for measuring the rotation angle of the motor rotor according to the present disclosure includes determining the radial relationship between the rotation angle of the rotor 12 and the second magnetic induction value in the radial direction of the motor 10 .
  • Br is the magnitude of the radial component value Bx of the second magnetic induction value in the radial direction of the motor 10 , which can be obtained through testing
  • Bt is the tangent of the second magnetic induction value in the tangential direction of the motor 10 .
  • is the rotation angle of the rotor 12 that needs to be finally obtained. That is, the magnitudes of the components of the second magnetic induction intensity value of the Hall sensor 18 in the radial direction and the tangential direction of the motor 10 can be obtained by testing the Hall sensor 18 .
  • determining the rotation angle of the rotor 10 according to the second magnetic induction value further includes calculating the rotation angle ⁇ of the rotor 12 according to the following formula (3):
  • the first magnetic induction intensity value Bm can be obtained through the Hall sensor 18, and thus the lateral component value Bmx of Bm along the lateral direction of the Hall sensor 18 and the longitudinal component value Bmy, ⁇ along the longitudinal direction of the Hall sensor 18 can be obtained.
  • Bt and Br which are the amplitudes, can also be obtained through experiments. Therefore, the value of the rotation angle of the rotor 12 of the motor 10 can be directly obtained through the output value of the Hall sensor 18, so that the precise control of the rotor 12 of the motor 10 can be realized. PTZ for precise control.
  • this design method can simplify the design process of the motor 10, because it is not necessary to ensure that the lateral direction of the Hall sensor 18 must coincide with the radial direction of the motor 10, so it not only provides the convenience of motor design, but also can be used for some
  • the special design of the motor provides for conditions such as the situation where the Hall sensor 18 cannot satisfy a specific angular relative positional relationship with the motor 10 due to space reasons.
  • the method for measuring the rotation angle of the motor rotor may further include the following operation, comparing the magnitude of the radial component value of the second magnetic induction value in the radial direction of the motor 10 and the second magnetic induction value in the radial direction of the motor 10
  • the magnitude of the tangential component value in the tangential direction is scaled. That is to say, in the process of measuring the magnitude of the radial component value of the second magnetic induction intensity value in the radial direction of the motor 10, the magnitude may not be particularly stable, and the magnitude may be measured multiple times. , to judge the accuracy of the amplitude. Corresponding multiple measurements are also made for the magnitude of the tangential component.
  • calibrating the magnitude of the radial component value of the second magnetic induction intensity value in the radial direction of the motor 10 includes obtaining the maximum value and the minimum value of the radial component value through testing, and the radial component value
  • the half of the difference between the maximum value and the minimum value of is the nominal amplitude of the radial component value. Since the radial component of the second magnetic induction intensity value is a sinusoidal alternating signal, it has a positive maximum value and a negative minimum value, and the difference between the maximum value and the minimum value is twice the magnitude of the radial component. In this way a more precise magnitude of the radial component can be obtained.
  • calibrating the magnitude of the tangential component value of the second magnetic induction intensity value in the tangential direction of the motor 10 includes obtaining the maximum value and the minimum value of the tangential component value through testing, and the tangential component value The half of the difference between the maximum value and the minimum value of , is the calibrated amplitude of the tangential component value. Since the tangential component of the second magnetic induction intensity value is a sinusoidal alternating signal, it has a positive maximum value and a negative minimum value, and the difference between the maximum value and the minimum value is twice the magnitude of the radial component. In this way a more precise magnitude of the radial component can be obtained.
  • the method for measuring the rotation angle of the motor rotor according to the present disclosure further includes an offset to the radial component value of the second magnetic induction value in the radial direction of the motor 10 and the second magnetic induction value in the tangential direction of the motor 10 Scaling by the offset of the tangential component value on .
  • an offset to the radial component value of the second magnetic induction value in the radial direction of the motor 10 and the second magnetic induction value in the tangential direction of the motor 10 Scaling by the offset of the tangential component value on .
  • the calibration of the offset of the radial component value of the second magnetic induction intensity value in the radial direction of the motor 10 includes obtaining the maximum value and the minimum value of the radial component value through testing, and the maximum value and the minimum value of the radial component value are obtained by testing. Half of the sum of the minimum values is the offset of the radial component value. Since the radial component of the second magnetic induction intensity value is a sinusoidal alternating signal, it has a maximum value of positive value and a minimum value of negative value, and half of the sum of the maximum value and the minimum value is the offset of the radial component value , a more accurate radial component amplitude can be obtained by offset calibration.
  • the calibration of the offset of the tangential component value of the second magnetic induction intensity value in the tangential direction of the motor 10 includes obtaining the maximum value and the minimum value of the tangential component value through testing, and the maximum value of the tangential component value is obtained. Half of the sum of the value and the minimum value is the offset of the tangential component value.
  • the tangential component of the second magnetic induction intensity value is a sinusoidal alternating signal, so it has a maximum value of positive value and a minimum value of negative value, and half of the sum of the maximum value and the minimum value is the offset of the tangential component value, A more accurate magnitude of the tangential component can be obtained through offset calibration.
  • the rotation angle of the rotor 12 of the motor 10 and the first magnetic induction value measured by the Hall sensor 18 have a linear relationship, so that the The first magnetic induction intensity value obtains a more accurate rotation angle value.
  • the magnetic induction component 14 provided on the rotor 12 includes a ring magnet, and the ring magnet induces the alternating magnetic field generated by the rotor 12 during the rotation process, and thereby To generate an induced magnetic field, the Hall sensor 18 can sense the induced magnetic field generated in the ring magnet and generate a corresponding output signal.
  • the above embodiments illustrate the method for measuring the rotation angle of the motor rotor according to the present disclosure by taking the 2-dimensional Hall sensor capable of measuring the magnetic induction in the radial and tangential directions of the motor 10 as an example. It should be understood that, The methods described in this disclosure are equally applicable to 3-dimensional Hall sensors capable of measuring magnetic induction in the radial, tangential, and axial directions of the motor 10 . In addition, two 1-dimensional Hall sensors may also be arranged on the stator of the motor 10 to replace the 2-dimensional Hall sensors described in the present disclosure.
  • the rotation axis is set at an angle of 90° from the center, one of the 1-dimensional Hall sensors is used to sense the magnetic field distributed along the radial direction of the motor 10 , and the other 1-dimensional Hall sensor is used to sense the tangential direction along the motor 10 .
  • the magnetic field distributed in the direction can achieve the same sensing result as a 2D Hall sensor.
  • the method for measuring the rotation angle of the motor rotor adopts the Hall sensor 18 arranged on the stator 16 of the motor 10 at an arbitrary angle, and rotates the coordinates by performing the rotation coordinate on the signal of the first magnetic induction intensity value obtained by the Hall sensor 18 Transformation from a parameter that has a nonlinear relationship with the rotation angle to a parameter that has a linear relationship with the rotation angle. Further, by calibrating the amplitude and offset of the second magnetic induction intensity value, the second magnetic induction intensity value is made more stable and accurate, thereby improving the measured rotation angle value of the motor rotor.
  • the method for measuring the rotation angle of the motor rotor does not require any special restriction on the setting angle of the Hall sensor 18 on the stator 16 during the setting and arrangement of the Hall sensor 18 , and only needs to determine the lateral direction of the Hall sensor 18
  • the included angle with the radial direction of the motor 10 is sufficient, so the design and manufacture of the motor 10 can be facilitated, and the motor 10 with special requirements for the installation space of the Hall sensor 18 can be provided. Design and manufacturing costs.
  • the present disclosure also relates to a measurement device 100 for the rotation angle of the motor rotor.
  • the measurement device 100 is configured to include: a magnetic induction part 14 , the magnetic induction part 14 is provided on the rotor 12 of the motor 10 and Rotate together with the rotor 12; the Hall sensor 18, which is arranged on the stator 16 of the motor 10, wherein the Hall sensor 18 is arranged on the stator 16 at any angle for sensing the magnetic induction component 14. Magnetic field; the magnetic induction intensity acquisition unit 102, which is used to obtain the first magnetic induction intensity value generated by the Hall sensor 18; the coordinate rotation transformation unit 104, which coordinates the first magnetic induction intensity value. and the rotation angle determination unit 106, the rotation angle determination unit 106 determines the rotation angle of the rotor 12 according to the second magnetic induction intensity value.
  • the magnetic induction intensity acquisition unit 102 , the coordinate rotation transformation unit 104 and the rotation angle determination unit 106 as described above may be arranged on the motor 10 , or may be arranged on other devices using the motor 10 , such as a cloud using the motor 10 . On the stage or on the drone with the above-mentioned gimbal.
  • the magnetic induction intensity acquisition unit 102 , the coordinate rotation transformation unit 104 and the rotation angle determination unit 106 may be separate components, or may be integrated into one component, for example, may be integrated in the central processing unit that controls the motor 10 .
  • the device 100 for measuring the rotation angle of the motor rotor may further include an angle acquisition unit for acquiring the angle between the lateral direction of the Hall sensor 18 and the radial direction of the motor 10 , wherein , the lateral direction of the Hall sensor 18 is parallel to the lateral arrangement direction of the pins of the Hall sensor 18 .
  • the included angle between the lateral direction of the Hall sensor 18 and the radial direction of the motor 10 can be input into the included angle obtaining unit through an input method, so as to obtain the included angle; or, the included angle can be obtained during the manufacturing process of the motor 10
  • the above-mentioned included angle is solidified into the program for controlling the operation of the motor 10.
  • the measuring device 100 can perform coordinate rotation transformation on the first magnetic induction intensity value obtained by the Hall sensor 18, and the coordinate rotation transformation unit transforms the first magnetic induction intensity value according to formula (1). :
  • Bmx is the lateral component value of the acquired first magnetic induction intensity value in the lateral direction of the Hall sensor 18
  • Bmy is the longitudinal component value of the acquired first magnetic induction intensity value in the longitudinal direction of the Hall sensor 18
  • is the angle between the lateral direction of the Hall sensor 18 and the radial direction of the motor 10
  • Bx is the radial component value of the second magnetic induction value in the radial direction of the motor 10
  • By is the second magnetic induction value The value of the tangential component in the tangential direction of the motor 10 .
  • the coordinate rotation transformation unit 104 of the measuring device 100 is used to transform the first magnetic induction intensity value according to the following formula (2):
  • the rotation angle determination unit 106 can be used to determine the rotation angle of the rotor 10 and the radial component value of the second magnetic induction value in the radial direction of the motor 10 and the tangential direction of the second magnetic induction value in the tangential direction of the motor 10
  • Br is the magnitude of the radial component value of the second magnetic induction intensity value in the radial direction of the motor 10 , which can be obtained through testing
  • Bt is the second magnetic induction intensity value in the tangential direction of the motor 10 .
  • the magnitude of the tangential component value of which can also be obtained by testing
  • is the rotation angle of the rotor 10 relative to the stator 16 .
  • the rotation angle determination unit 106 of the device 100 for measuring the rotation angle of the motor rotor according to the present disclosure can then calculate the rotation angle ⁇ of the rotor according to the following formula (3):
  • the device 100 for measuring the rotation angle of the motor rotor further includes an amplitude calibration unit, the amplitude calibration unit is used to determine the amplitude of the radial component value of the second magnetic induction value in the radial direction of the motor 10 and the The magnitude of the tangential component value of the second magnetic induction intensity value in the tangential direction of the motor 10 is calibrated.
  • calibrating the magnitude of the radial component value of the second magnetic induction value in the radial direction of the motor 10 includes obtaining the maximum value and the minimum value of the radial component value through testing, and the radial component value Half of the difference between the maximum value and the minimum value is the calibration amplitude of the radial component value; calibrating the amplitude of the tangential component value of the second magnetic induction intensity value in the tangential direction of the motor 10 includes passing The maximum value and the minimum value of the tangential component value are obtained by testing, and half of the difference between the maximum value and the minimum value of the tangential component value is the calibrated amplitude value of the tangential component value.
  • the device 100 for measuring the rotation angle of the motor rotor further includes an offset calibration unit, which offsets the radial component value of the second magnetic induction value in the radial direction of the motor 10 by the offset calibration unit. and the offset of the tangential component value of the second magnetic induction intensity value in the tangential direction of the motor 10 to be calibrated.
  • calibrating the offset of the radial component value of the second magnetic induction value in the radial direction of the motor 10 includes obtaining the maximum value and the minimum value of the radial component value through testing.
  • the method includes obtaining the maximum value and the minimum value of the tangential component value through testing, and half of the sum of the maximum value and the minimum value of the tangential component value is the offset of the tangential component value.
  • the magnetic induction part 14 of the device 100 for measuring the rotation angle of the motor rotor includes a ring magnet that can be circumferentially disposed around the end of the rotor 12 of the motor 10 , thereby being able to rotate the rotor 12 The magnetic field generated in the process is induced, so that the rotation angle of the rotor 12 can be calculated more accurately.
  • the Hall sensor 18 of the device 100 for measuring the rotation angle of the motor rotor is a 2-dimensional Hall sensor. 10 3-dimensional Hall sensor for magnetic induction in radial, tangential and axial directions.
  • two 1-dimensional Hall sensors can also be arranged on the stator 16 of the motor 10 to replace the 2-dimensional Hall sensors described in the present disclosure.
  • the two 1-dimensional Hall sensors can be used as the rotor of the motor 10
  • the rotation axis of the rotor 12 is set at an angle of 90°, that is, in the schematic diagram shown in Figure 3, two 1-dimensional Hall sensors are arranged in the form of a 90° angle around the axis of the rotor 12, one of which is a 1-dimensional Hall sensor.
  • another 1-dimensional Hall sensor is used for sensing the magnetic field distributed in the tangential direction of the motor 10, which can achieve the same sensing as a 2-dimensional Hall sensor. test effect.
  • the present disclosure also relates to a motor 200, as shown in FIG. 5, the motor 200 includes the above-mentioned measuring device 100 for the rotation angle of the motor rotor.
  • pan/tilt head 300 whichin the pan/tilt head 300 adopts the motor 200 including the rotation angle measuring device 100 of the motor rotor according to the present disclosure.
  • the present disclosure also relates to an unmanned aerial vehicle 400 including the gimbal 300 according to the present disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

本公开涉及一种电机转子的旋转角度的测量方法、测量装置以及包括该测量装置的电机、云台和无人飞行器,在该测量方法中,磁感应部件设置于电机的转子上,所述磁感应部件随所述转子一起旋转;霍尔传感器设置于电机的定子上,其中,所述霍尔传感器以任意角度设置在所述定子上,用于感测所述磁感应部件所产生的磁场;该方法包括:获取所述霍尔传感器所产生的第一磁感应强度值;对所述第一磁感应强度值进行坐标旋转变换,获得第二磁感应强度值;根据所述第二磁感应强度值确定所述转子的旋转角度。本公开通过以任意角度设置的霍尔传感器为电机内的相关部件的设置预留了空间,简化了电机的设计步骤,降低了设计成本。

Description

电机转子的旋转角度的测量方法、测量装置以及电机、云台和无人飞行器 技术领域
本公开涉及电机技术领域,更具体地,涉及一种电机转子的旋转角度的测量方法、测量装置以及包括该测量装置的电机、云台和无人飞行器。
背景技术
云台通常是一种搭载摄像设备的装置,通过对云台中的交流伺服电机的控制来实现对摄像设备的拍摄角度的控制。在云台的交流伺服电机的控制方面,一般需要获知电机转子的位置和转速,才能对电机转子进行精确控制,以便通过云台对搭载其上的摄像设备的拍摄角度和姿态进行相应控制。
现有技术中,一般通过霍尔传感器对电机转子的旋转角度进行测量。一般情况下,在电机的转子上安装磁感应部件,用于感应转子旋转过程中所产生的交变磁场,同时在电机的定子上安装霍尔元件,通过霍尔元件来感测磁感应部件中的变化磁场,并通过霍尔元件的输出端输出感应电压,以便通过外部感测设备对感应电压进行测量,通过感应电压的变化来推算电机的转子的旋转角度。现有技术中霍尔传感器的布置角度需要满足一定的条件,否则将无法实现转子旋转角度的计算。为此,需要提供一种对霍尔传感器的布置角度没有特殊要求的电机,以便为电机的设计和制造提供便利。
发明内容
本公开旨在至少解决现有技术中存在的技术问题之一。
第一方面,本公开实施例提供了一种电机转子的旋转角度的测量方法,其特征在于,磁感应部件设置于所述电机的转子上,所述磁感应部件随所述转子一起旋转;霍尔传感器设置于所述电机的定子上,其中,所述霍尔传感器以任意角度设置在所述定子上,用于感测所述磁感应部件所产生的磁场;所述测量方法包括:获取所述霍尔传感器所产生的第一磁感应强度值;对所述第一磁感应强度值进行坐标旋转变换,获得第二磁感应强度值;根据所述第二磁感应强度值确定所述转子的旋转角度。
第二方面,本公开实施例提供一种电机转子的旋转角度的测量装置,该测量装置包括:磁感应部件,所述磁感应部件设置在所述电机的转子上并且随所述转子一起旋 转;霍尔传感器,所述霍尔传感器设置在所述电机的定子上,其中,所述霍尔传感器以任意角度设置在所述定子上,用于感测所述磁感应部件所产生的磁场;磁感应强度获取单元,所述磁感应强度获取单元用于获取所述霍尔传感器所产生的第一磁感应强度值;坐标旋转变换单元,所述坐标旋转变换单元对所述第一磁感应强度值进行坐标旋转变换,获得第二磁感应强度值;以及旋转角度确定单元,所述旋转角度确定单元根据所述第二磁感应强度值确定所述转子的旋转角度。
第三方面,本公开实施例提供一种电机,所述电机包括如上所述的电机转子的旋转角度的测量装置。
第四方面,本公开实施例提供一种云台,所述云台包括如上所述的电机。
第五方面,本公开实施例提供一种无人飞行器,所述无人飞行器包括如上所述的云台。
本公开实施例提供的电机转子的旋转角度的测量方法,采用了以任意角度设置在电机的定子上的霍尔传感器,通过对由霍尔传感器获取的第一磁感应强度值的信号进行旋转坐标变换,使其由与旋转角度成非线性关系的参数转变成了与旋转角度成线性关系的参数,实现了霍尔传感器以任意角度布置的旋转角度的获取。根据本公开的电机转子的旋转角度的测量方法在霍尔传感器的设置和布置过程中无需对霍尔传感器在定子上的设置角度进行特别限制,仅需确定霍尔传感器的横向方向与电机的径向方向的夹角即可,因此能够为电机的设计和制造提供便利性。
附图说明
图1示出霍尔传感器的外观结构示意图。
图2是根据本公开的电机转子的旋转角度的测量方法的流程图。
图3是根据本公开的电机转子的旋转角度的测量方法中的霍尔传感器的布置方式的示意图。
图4是根据本公开的电机转子的旋转角度的测量装置的结构框图。
图5是根据本公开的电机的结构框图。
图6是根据本公开的云台的结构框图。
图7是根据本公开的无人飞行器的结构框图。
附图标记说明:
1-6:管脚;7:霍尔元件;10:电机;12:转子;14:磁感应部件;16:定子; 18:霍尔传感器;100:电机转子的旋转角度的测量装置;102:磁感应强度获取单元;104:坐标旋转变换单元;106:旋转角度确定单元;200:电机;300:云台;400:无人飞行器。
具体实施方式
下面详细描述本公开的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本公开,而不能理解为对本公开的限制。
在本公开的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本公开的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本公开的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通信;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
下文的公开提供了许多不同的实施方式或例子用来实现本公开的不同结构。为了简化本公开的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本公开。此外,本公开可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本公开提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
下面详细描述本公开的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本公开,而不能理解为对本公开的限制。
霍尔传感器通常具有长方形形状,比如如图1所示的具有六个管脚的霍尔传感器, 其左右两侧各具有三个管脚,左侧为管脚1、2和3,右侧为与管脚1、2和3相对称分布的管脚4、5和6。通常将连接左右两个对应管脚的直线的方向称为横向方向,比如,连接管脚2和管脚5的直线X的方向称为横向方向,将左右两侧的三个管脚分成对称的两组的直线的方向称为纵向方向,也就是将管脚1、2和3和管脚4、5和6分成左右两组的直线的方向称为纵向方向。通常情况下,霍尔传感器在电机内的设置方向使得横向方向与电机的径向方向重合,相应地,霍尔传感器的纵向方向与电机的径向方向垂直,也就是霍尔传感器的纵向方向与电机的切线方向平行,以使霍尔元件7能够接收垂直于其磁场接收平面的磁场。在这种情况下,霍尔传感器所输出的两个正弦信号的相位差刚好是90°,即在霍尔传感器的横向方向上的横向磁场强度信号和在霍尔传感器的纵向方向上的纵向磁场强度信号。在经过对霍尔信号的幅值和零偏进行标定之后,上述两个正弦信号即为标准的正弦信号,由此可以直接计算得出电机转子的旋转角度。然而,在电机的设计过程中,由于部件之间的干涉或其他空间需求,霍尔传感器不一定能够满足以上按照需求,也就是说,霍尔传感器的横向方向并不一定能够刚好与电机的径向方向重合,此时将无法通过现有技术中方法进行旋转角度的计算。因此,现有技术中均是将霍尔传感器设置成使其横向方向与电机的径向方向重合的形式,在遇到发生部件干涉等情况时,通常需要对电机的结构进行重新设计和布置,这导致电机或采用这种电机的云台的设计周期的延长以及结构的复杂化。
本公开提供一种电机转子的旋转角度的测量方法,以下将结合附图2和3对根据本公开的电机转子的旋转角度的测量方法的具体步骤进行说明。如附图所述,该测量方法包括如下操作,首先需要进行硬件的布置,执行S1,磁感应部件14设置于电机10的转子12上,也就是在电机10的转子12上设置磁感应部件14,该磁感应部件14随转子12一起旋转,在电机10的转子12的旋转过程中,转子12中的绕组向磁感应部件14施加磁场,由于绕组所产生的磁场为随着转子12的转动而变化的交变信号,由此通过磁感应部件14产生相应的交变磁场信号。进一步地,执行S2,霍尔传感器18设置于电机10的定子16上,即在电机10的定子16上设置霍尔传感器18,在此,霍尔传感器18可以以任意角度设置在定子16上,用于感测由磁感应部件14所产生的磁场。霍尔传感器18可以对磁感应部件14中的交变磁场进行感应,并在其输出端上生成电压信号,该电压信号随着交变磁场的变化而变化,由此可以通过对霍尔传感器18上输出的交变电压信号来确定电机10的转子的旋转角度。接着,执行S3,获取霍尔传感器18所产生的第一磁感应强度值,在此可以通过读取霍尔传感器18的输出端 的电压值,该电压值即对应于第一磁感应强度值,并且该第一磁感应强度值相应地对应于磁感应部件14中的磁感应强度。由于霍尔传感器18以任意角度设置在定子16上,也就是说霍尔传感器18的横向方向并不一定与电机的径向方向重合,因此,无法直接利用第一磁感应强度值来计算转子12的旋转角度,此时需要对第一磁感应强度值进行变换,也就是执行S4,对第一磁感应强度值进行坐标旋转变换,以获得第二磁感应强度值。通过将第一磁感应强度值进行坐标旋转变换以获得与转子12的旋转角度具有线性关系的第二磁感应强度值,最后,执行S5,根据第二磁感应强度值确定转子12的旋转角度。
以下将对由霍尔传感器18所产生的第一磁感应强度值进行坐标旋转变换的过程进行说明。由于霍尔传感器18以任意角度设置在电机10的定子16上,在此首先需要确定霍尔传感器18在定子16上的安装角度,即在电机10的定子16上设置霍尔传感器之后,本公开的方法还包括获取霍尔传感器18的横向方向与电机的径向方向之间的夹角,在此,霍尔传感器18的横向方向指的是霍尔传感器18的相对的两个管脚的连线的方向,也就是霍尔传感器18的横向方向平行于霍尔传感器18的管脚的横向排列方向。在确定了霍尔传感器18在定子16上的安装角度之后,则可以对由霍尔传感器18所感测的第一磁感应强度值进行相应的坐标变换。
接着,根据本公开的电机转子的旋转角度的测量方法中的对第一磁感应强度值进行坐标旋转变换包括按照以下式(1)对第一磁感应强度值进行变换:
Figure PCTCN2020111520-appb-000001
在此,可以获取霍尔传感器18的输出信号,即为第一磁感应强度值,比如可以记为Bm,可以将Bm视为磁感强度矢量,其可以分解为沿霍尔传感器18的横向方向的横向分量值Bmx和沿霍尔传感器18的纵向方向的纵向分量值Bmy。也就是说,式(1)中的Bmx是所获取的第一磁感应强度值Bm在霍尔传感器18的横向方向上的横向分量值,Bmy是所获取的第一磁感应强度值Bm在霍尔传感器18的纵向方向上的纵向分量值。另外,α为霍尔传感器18的横向方向与电机10的径向方向之间的夹角,在此可以选择为45°,如图3所示,当然还可设置为其他任意角度,在此不做具体限定。Bx则是经过坐标旋转变换后的第二磁感应强度值在电机10的径向方向上的径向分量值,By则是经过坐标变换后的第二磁感应强度值在电机10的切向方向上的切向分量 值。
进一步地,对第一磁感应强度值Bm进行坐标旋转变换还包括按照以下式(2)对第一磁感应强度值Bm进行变换:
Figure PCTCN2020111520-appb-000002
通过式(2)能够将处于与霍尔传感器18的横向方向和纵向方向相对应的坐标系内的第一磁感应强度值Bm的横向分量值Bmx和纵向分量值Bmy转换成与电机10的径向方向和切向方向相对应的坐标系内的第二磁感应强度值的径向分量值Bx和切向分量值By。
根据本公开的电机转子的旋转角度的测量方法中的根据第二磁感应强度值确定转子12的旋转角度包括确定转子12的旋转角度与第二磁感应强度值在电机10的径向方向上的径向分量值Bx和第二磁感应强度值在电机10的切向方向上的切向分量值By的关系:
Bx=Br*sinθ
By=Bt*cosθ
其中,Br是第二磁感应强度值在电机10的径向方向上的径向分量值Bx的幅值,能够通过测试获取,Bt则是第二磁感应强度值在电机10的切向方向上的切向分量值By的幅值,其也能够通过测试获取,θ是需要最终获得的转子12的旋转角度。也就是说,可以通过对霍尔传感器18进行测试来获取该霍尔传感器18的第二磁感应强度值在电机10的径向方向和切向方向上的分量的幅值。
随后,可以将Bx=Br*sinθ和By=Bt*cosθ分别代入式(2)中,则可以得到以下式(2-1):
Figure PCTCN2020111520-appb-000003
将式(2-1)展开,即可得到下式(2-2)和式(2-3):
Br*sinθ=Bmy*cosα-Bmy*sinα           (2-2)
Bt*cosθ=Bmx*sinα+Bmy*cosα            (2-3)
进一步地,式(2-2)和式(2-3)的比值即为:
Figure PCTCN2020111520-appb-000004
通过式(2-4)即可得到:
Figure PCTCN2020111520-appb-000005
由此,能够获得电机10的转子12的旋转角度与通过霍尔传感器18获取的第一磁感应强度值Bm的分量Bmx和Bmy的关系。即,根据第二磁感应强度值确定转子10的旋转角度还包括根据以下式(3)计算转子12的旋转角度θ:
Figure PCTCN2020111520-appb-000006
如上所述,式(3)能够由式(2-5)直接获得。
至此,通过霍尔传感器18能够获取第一磁感应强度值Bm,并由此获得Bm沿霍尔传感器18的横向方向的横向分量值Bmx和沿霍尔传感器18的纵向方向的纵向分量值Bmy,α是霍尔传感器18的横向方向与电机10的径向方向之间的夹角,这是在电机10的设计过程中所能够确定的,相应地,作为幅值的Bt和Br也是能够通过实验获知的,因此,可以通过霍尔传感器18的输出值直接得到电机10的转子12的旋转角度的值,由此能够实现对电机10的转子12的精确控制,相应地,能够对采用这种电机10的云台进行精确控制。同时,通过这种设计方式能够简化电机10的设计过程,由于无需保证霍尔传感器18的横向方向必须与电机10的径向方向重合,因此不仅提供了电机设计的便利性,而且能够为某些电机的特殊设计提供条件,比如由于空间原因霍尔传感器18不能与电机10满足特定角度的相对位置关系的情况。
根据本公开的电机转子的旋转角度的测量方法还可以包括以下操作,对第二磁感应强度值在电机10的径向方向上的径向分量值的幅值和第二磁感应强度值在电机10的切向方向上的切向分量值的幅值进行标定。也就是说,在对第二磁感应强度值在电机10的径向方向上的径向分量值的幅值进行测量的过程中,该幅值可能不是特别稳定, 可以通过对幅值进行多次测量,以判断幅值的准确性。对于切向分量的幅值也进行相应的多次测量。
具体地,对第二磁感应强度值在电机10的径向方向上的径向分量值的幅值进行标定包括通过测试获取所述径向分量值的最大值和最小值,所述径向分量值的最大值与最小值的差值的一半即为所述径向分量值的标定幅值。由于第二磁感应强度值的径向分量为正弦交变信号,因此其具有正值的最大值和负值的最小值,最大值和最小值之差即为径向分量幅值的两倍。通过这种方式能够获得更为精确的径向分量的幅值。
进一步地,对第二磁感应强度值在电机10的切向方向上的切向分量值的幅值进行标定包括通过测试获取所述切向分量值的最大值和最小值,所述切向分量值的最大值与最小值的差值的一半即为所述切向分量值的标定幅值。由于第二磁感应强度值的切向分量为正弦交变信号,因此其具有正值的最大值和负值的最小值,最大值和最小值之差即为径向分量幅值的两倍。通过这种方式能够获得更为精确的径向分量的幅值。
根据本公开的电机转子的旋转角度的测量方法还包括对第二磁感应强度值在电机10的径向方向上的径向分量值的偏移量和第二磁感应强度值在电机10的切向方向上的切向分量值的偏移量进行标定。在此,通过对第二磁感应强度值在电机10的径向方向的径向分量值和切向方向上的切向分量值的偏移量进行标定,能够获得更加准确的径向分量值和切向分量值。
对第二磁感应强度值在电机10的径向方向上的径向分量值的偏移量进行标定包括通过测试获取径向分量值的最大值和最小值,所述径向分量值的最大值和最小值的加和的一半即为所述径向分量值的偏移量。由于第二磁感应强度值的径向分量为正弦交变信号,因此其具有正值的最大值和负值的最小值,最大值和最小值之和的一半即为径向分量值的偏移量,通过偏移量的校准能够获得更为精确的径向分量的幅值。
对第二磁感应强度值在电机10的切向方向上的切向分量值的偏移量进行标定包括通过测试获取所述切向分量值的最大值和最小值,所述切向分量值的最大值和最小值的加和的一半即为所述切向分量值的偏移量。第二磁感应强度值的切向分量为正弦交变信号,因此其具有正值的最大值和负值的最小值,最大值和最小值之和的一半即为切向分量值的偏移量,通过偏移量的校准能够获得更为精确的切向分量的幅值。这样,通过对第二磁感应强度值的幅值和偏移的标定,使得电机10的转子12的旋转角度与通过霍尔传感器18所测得的第一磁感应强度值之间具有线性关系,以便通过第一磁感应强度值获得更加准确的旋转角度值。
在根据本公开的电机转子的旋转角度的测量方法中,在转子12上设置的磁感应部件14包括环形磁铁,通过环形磁铁对转子12在旋转过程中所产生的交变磁场进行感应,并由此产生感应磁场,霍尔传感器18能够对环形磁铁中产生的感应磁场进行感测,并产生相应的输出信号。
以上实施例以能够测量电机10的径向方向和切向方向上的磁感应强度的2维霍尔传感器为例对根据本公开的电机转子的旋转角度的测量方法进行了说明,应该理解的是,本公开所述的方法同样适用于能够测量电机10的径向方向、切向方向和轴向方向上的磁感应强度的3维霍尔传感器。此外,还可以在电机10的定子上设置2个1维霍尔传感器,以替代本公开中所述的2维霍尔传感器,在此,2个1维霍尔传感器可以以电机10的转子的旋转轴线为中心成90°角的方式设置,其中一个1维霍尔传感器用于感测沿电机10的径向方向分布的磁场,另一个1维霍尔传感器用于感测沿电机10的切向方向分布的磁场,其能够达到与一个2维霍尔传感器相同的感测结果。
根据本公开的电机转子的旋转角度的测量方法采用了以任意角度设置在电机10的定子16上的霍尔传感器18,通过对由霍尔传感器18获取的第一磁感应强度值的信号进行旋转坐标变换,使其由与旋转角度成非线性关系的参数转变成了与旋转角度成线性关系的参数。进一步地,通过对第二磁感应强度值的幅值和偏移量的标定,使得第二磁感应强度值更加稳定和准确,从而提高了所测量的电机转子的旋转角度值。根据本公开的电机转子的旋转角度的测量方法在霍尔传感器18的设置和布置过程中无需对霍尔传感器18在定子16上的设置角度进行特别限制,仅需确定霍尔传感器18的横向方向与电机10的径向方向的夹角即可,因此能够为电机10的设计和制造提供便利性,为对霍尔传感器18的设置空间具有特殊要求的电机10提供了方便,降低了电机10的设计和制造成本。
本公开还涉及一种电机转子的旋转角度的测量装置100,如图3和图4所示,该测量装置100设置成包括:磁感应部件14,该磁感应部件14设置在电机10的转子12上并且随转子12一起旋转;霍尔传感器18,该霍尔传感器18设置在电机10的定子16上,其中,霍尔传感器18以任意角度设置在定子16上,用于感测磁感应部件14所产生的磁场;磁感应强度获取单元102,该磁感应强度获取单元102用于获取霍尔传感器18所产生的第一磁感应强度值;坐标旋转变换单元104,该坐标旋转变换单元104对第一磁感应强度值进行坐标旋转变换,获得第二磁感应强度值;以及旋转角度确定单元106,该旋转角度确定单元106根据第二磁感应强度值确定转子12的旋转角 度。
如上所述的磁感应强度获取单元102、坐标旋转变换单元104以及旋转角度确定单元106可以设置在电机10上,也可以设置在采用该电机10的其他设备上,比如为采用这种电机10的云台上或采用上述云台的无人机上。另外,磁感应强度获取单元102、坐标旋转变换单元104和旋转角度确定单元106可以是单独的元器件,也可以集成为一个元器件,比如可以集成在控制电机10的中央处理器中。
根据本公开的电机转子的旋转角度的测量装置100还可以包括夹角获取单元,该夹角获取单元用于获取霍尔传感器18的横向方向与电机10的径向方向之间的夹角,其中,霍尔传感器18的横向方向平行于该霍尔传感器18的管脚的横向排列方向。在此,可以通过输入方式向夹角获取单元内输入霍尔传感器18的横向方向与电机10的径向方向之间的夹角,由此获得该夹角;或者,可以在电机10的制造过程中将上述夹角固化到控制电机10运转的程序中。
获取上述夹角之后,根据本公开的测量装置100则可以对通过霍尔传感器18获取的第一磁感应强度值进行坐标旋转变换,坐标旋转变换单元按照式(1)对第一磁感应强度值进行变换:
Figure PCTCN2020111520-appb-000007
其中:Bmx是所获取的第一磁感应强度值在霍尔传感器18的横向方向上的横向分量值,Bmy是所获取的第一磁感应强度值在霍尔传感器18的纵向方向上的纵向分量值,α为霍尔传感器18的横向方向与电机10的径向方向之间的夹角,Bx是第二磁感应强度值在电机10的径向方向上的径向分量值,By是第二磁感应强度值在电机10的切向方向上的切向分量值。
进一步地,该测量装置100的坐标旋转变换单元104用于按照下式(2)对第一磁感应强度值进行变换:
Figure PCTCN2020111520-appb-000008
旋转角度确定单元106可以用于确定转子10的旋转角度与第二磁感应强度值在电机10的径向方向上的径向分量值和第二磁感应强度值在电机10的切向方向上的切 向分量值的关系:
Bx=Br*sinθ
By=Bt*cosθ
在上述式子中,Br是第二磁感应强度值在电机10的径向方向上的径向分量值的幅值,能够通过测试获取,Bt是第二磁感应强度值在电机10的切向方向上的切向分量值的幅值,其也能够通过测试获取,θ是转子10相对于定子16的旋转角度。
接着,通过将Bx=Br*sinθ和By=Bt*cosθ带入式(2),即可获得转子的旋转角度θ与通过霍尔传感器18所测得的第一磁感应强度值之间的关系。
根据本公开的电机转子的旋转角度的测量装置100的旋转角度确定单元106则可以根据下式(3)计算转子的旋转角度θ:
Figure PCTCN2020111520-appb-000009
在如上所述的式(3)中,只要获得了霍尔传感器18安装时其横向方向与电机10的径向方向之间的夹角α以及通过霍尔传感器18测量的第一磁感应强度值即能够获得转子12的旋转角度θ的值,由此便能够通过电机10的控制器实现对电机10的转子12的精确控制。
根据本公开的电机转子的旋转角度的测量装置100还包括幅值标定单元,该幅值标定单元用于对第二磁感应强度值在电机10的径向方向上的径向分量值的幅值和第二磁感应强度值在电机10的切向方向上的切向分量值的幅值进行标定。在此,对第二磁感应强度值在电机10的径向方向上的径向分量值的幅值进行标定包括通过测试获取所述径向分量值的最大值和最小值,所述径向分量值的最大值与最小值的差值的一半即为所述径向分量值的标定幅值;对第二磁感应强度值在电机10的切向方向上的切向分量值的幅值进行标定包括通过测试获取所述切向分量值的最大值和最小值,所述切向分量值的最大值与最小值的差值的一半即为所述切向分量值的标定幅值。
根据本公开的电机转子的旋转角度的测量装置100还包括偏移量标定单元,该偏移量标定单元对第二磁感应强度值在电机10的径向方向上的径向分量值的偏移量和第二磁感应强度值在电机10的切向方向上的切向分量值的偏移量进行标定。在此,对第二磁感应强度值在电机10的径向方向上的径向分量值的偏移量进行标定包括通过测试获取所述径向分量值的最大值和最小值,所述径向分量值的最大值和最小值的加 和的一半即为所述径向分量值的偏移量;对第二磁感应强度值在电机10的切向方向上的切向分量值的偏移量进行标定包括通过测试获取所述切向分量值的最大值和最小值,所述切向分量值的最大值和最小值的加和的一半即为所述切向分量值的偏移量。通过对第二磁感应强度值的幅值和偏移量的标定能够使得第二磁感应强度值与电机10的转子12的旋转角度之间具有更加线性的关系,从而能够通过所获得的第二磁感应强度值计算得到更加精确的旋转角度值。以上所述夹角获取单元、幅值标定单元和偏移量标定单元可以是单独的处理单元,也可以集成在同一个处理单元中,比如可以集成在控制电机10的中央处理器中。
此外,根据本公开的电机转子的旋转角度的测量装置100的磁感应部件14包括环形磁铁,所述环形磁铁可以包围地设置在电机10的转子12的端部的周围,由此能够对转子12旋转过程中所产生的磁场进行感应,从而更加准确地计算转子12的旋转角度。
在此需要说明的是,根据本公开的电机转子的旋转角度的测量装置100的霍尔传感器18为2维霍尔传感器,应该理解的是,本公开所述的测量装置100可以采用能够测量电机10的径向方向、切向方向和轴向方向上的磁感应强度的3维霍尔传感器。此外,还可以在电机10的定子16上设置2个1维霍尔传感器,以替代本公开中所述的2维霍尔传感器,在此,2个1维霍尔传感器可以以电机10的转子的旋转轴线为中心成90°角设置,即在如图3所示的示意图中,2个1维霍尔传感器设置成围绕转子12的轴线成90°角的形式,其中一个1维霍尔传感器用于感测沿电机10的径向方向分布的磁场,另一个1维霍尔传感器用于感测沿电机10的切向方向分布的磁场,其能够实现与一个2维霍尔传感器相同的感测效果。
本公开还涉及一种电机200,如图5所示,该电机200包括如上所述的电机转子的旋转角度的测量装置100。
根据本公开的另一个方面,还涉及一种云台300,其中该云台300采用了包括根据本公开所述的电机转子的旋转角度的测量装置100的电机200。
进一步地,本公开还涉及一种无人飞行器400,该无人飞行器400包括根据本公开所述的云台300。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (29)

  1. 一种电机转子的旋转角度的测量方法,其特征在于,
    磁感应部件设置于所述电机的转子上,所述磁感应部件随所述转子一起旋转;
    霍尔传感器设置于所述电机的定子上,其中,所述霍尔传感器以任意角度设置在所述定子上,用于感测所述磁感应部件所产生的磁场;
    所述方法包括:
    获取所述霍尔传感器所产生的第一磁感应强度值;
    对所述第一磁感应强度值进行坐标旋转变换,获得第二磁感应强度值;
    根据所述第二磁感应强度值确定所述转子的旋转角度。
  2. 根据权利要求1所述的电机转子的旋转角度的测量方法,其特征在于,
    所述方法还包括获取所述霍尔传感器的横向方向与所述电机的径向方向之间的夹角,其中,所述霍尔传感器的横向方向平行于所述霍尔传感器的管脚的横向排列方向。
  3. 根据权利要求2所述的电机转子的旋转角度的测量方法,其特征在于,
    对所述第一磁感应强度值进行坐标旋转变换包括按照式(1)对所述第一磁感应强度值进行变换:
    Figure PCTCN2020111520-appb-100001
    其中:Bmx是所获取的所述第一磁感应强度值在所述霍尔传感器的横向方向上的横向分量值,Bmy是所获取的所述第一磁感应强度值在所述霍尔传感器的纵向方向上的纵向分量值,α为所述霍尔传感器的横向方向与所述电机的径向方向之间的夹角,Bx是所述第二磁感应强度值在所述电机的径向方向上的径向分量值,By是所述第二磁感应强度值在所述电机的切向方向上的切向分量值。
  4. 根据权利要求3所述的电机转子的旋转角度的测量方法,其特征在于,
    对所述第一磁感应强度值进行坐标旋转变换还包括按照式(2)对所述第一磁感 应强度值进行变换:
    Figure PCTCN2020111520-appb-100002
  5. 根据权利要求4所述的电机转子的旋转角度的测量方法,其特征在于,
    根据所述第二磁感应强度值确定所述转子的旋转角度包括:
    确定所述转子的旋转角度与所述第二磁感应强度值在所述电机的径向方向上的径向分量值和所述第二磁感应强度值在所述电机的切向方向上的切向分量值的关系:
    Bx=Br*sinθ
    By=Bt*cosθ
    其中,Br是第二磁感应强度值在所述电机的径向方向上的径向分量值的幅值,能够通过测试获取,Bt是第二磁感应强度值在所述电机的切向方向上的切向分量值的幅值,能够通过测试获取,θ是所述转子的旋转角度。
  6. 根据权利要求5所述的电机转子的旋转角度的测量方法,其特征在于,
    根据所述第二磁感应强度值确定所述转子的旋转角度还包括根据式(3)计算所述转子的旋转角度:
    Figure PCTCN2020111520-appb-100003
  7. 根据权利要求5所述的电机转子的旋转角度的测量方法,其特征在于,还包括:
    对所述第二磁感应强度值在所述电机的径向方向上的径向分量值的幅值和所述第二磁感应强度值在所述电机的切向方向上的切向分量值的幅值进行标定。
  8. 根据权利要求7所述的电机转子的旋转角度的测量方法,其特征在于,
    对所述第二磁感应强度值在所述电机的径向方向上的径向分量值的幅值进行标定包括通过测试获取所述径向分量值的最大值和最小值,所述径向分量值的最大值与 最小值的差值的一半即为所述径向分量值的标定幅值;
    对所述第二磁感应强度值在所述电机的切向方向上的切向分量值的幅值进行标定包括通过测试获取所述切向分量值的最大值和最小值,所述切向分量值的最大值与最小值的差值的一半即为所述切向分量值的标定幅值。
  9. 根据权利要求5所述的电机转子的旋转角度的测量方法,其特征在于,还包括:
    对所述第二磁感应强度值在所述电机的径向方向上的径向分量值的偏移量和所述第二磁感应强度值在所述电机的切向方向上的切向分量值的偏移量进行标定。
  10. 根据权利要求9所述的电机转子的旋转角度的测量方法,其特征在于,
    对所述第二磁感应强度值在所述电机的径向方向上的径向分量值的偏移量进行标定包括通过测试获取所述径向分量值的最大值和最小值,所述径向分量值的最大值和最小值的加和的一半即为所述径向分量值的偏移量;
    对所述第二磁感应强度值在所述电机的切向方向上的切向分量值的偏移量进行标定包括通过测试获取所述切向分量值的最大值和最小值,所述切向分量值的最大值和最小值的加和的一半即为所述切向分量值的偏移量。
  11. 根据权利要求1-10中任一项所述的电机转子的旋转角度的测量方法,其特征在于,
    所述磁感应部件包括环形磁铁。
  12. 根据权利要求1-10中任一项所述的电机转子的旋转角度的测量方法,其特征在于,
    所述霍尔传感器包括2维霍尔传感器或3维霍尔传感器。
  13. 根据权利要求1-10中任一项所述的电机转子的旋转角度的测量方法,其特征在于,
    所述霍尔传感器包括2个1维霍尔传感器,所述2个1维霍尔传感器以电机10的转子的旋转轴线为中心成90°角设置。
  14. 一种电机转子的旋转角度的测量装置,包括:
    磁感应部件,所述磁感应部件设置在所述电机的转子上并且随所述转子一起旋转;
    霍尔传感器,所述霍尔传感器设置在所述电机的定子上,其中,所述霍尔传感器以任意角度设置在所述定子上,用于感测所述磁感应部件所产生的磁场;
    磁感应强度获取单元,所述磁感应强度获取单元用于获取所述霍尔传感器所产生的第一磁感应强度值;
    坐标旋转变换单元,所述坐标旋转变换单元对所述第一磁感应强度值进行坐标旋转变换,获得第二磁感应强度值;以及
    旋转角度确定单元,所述旋转角度确定单元根据所述第二磁感应强度值确定所述转子的旋转角度。
  15. 根据权利要求14所述的电机转子的旋转角度的测量装置,其特征在于,
    所述测量装置还包括夹角获取单元,所述夹角获取单元用于获取所述霍尔传感器的横向方向与所述电机的径向方向之间的夹角,其中,所述霍尔传感器的横向方向平行于所述霍尔传感器的管脚的横向排列方向。
  16. 根据权利要求15所述的电机转子的旋转角度的测量装置,其特征在于,
    所述坐标旋转变换单元用于按照式(1)对所述第一磁感应强度值进行变换:
    Figure PCTCN2020111520-appb-100004
    其中:Bmx是所获取的所述第一磁感应强度值在所述霍尔传感器的横向方向上的横向分量值,Bmy是所获取的所述第一磁感应强度值在所述霍尔传感器的纵向方向上的纵向分量值,α为所述霍尔传感器的横向方向与所述电机的径向方向之间的夹角,Bx是所述第二磁感应强度值在所述电机的径向方向上的径向分量值,By是所述第二磁感应强度值在所述电机的切向方向上的切向分量值。
  17. 根据权利要求16所述的电机转子的旋转角度的测量装置,其特征在于,
    所述坐标旋转变换单元还用于按照式(2)对所述第一磁感应强度值进行变换:
    Figure PCTCN2020111520-appb-100005
  18. 根据权利要求17所述的电机转子的旋转角度的测量装置,其特征在于,
    所述旋转角度确定单元用于确定所述转子的旋转角度与所述第二磁感应强度值在所述电机的径向方向上的径向分量值和所述第二磁感应强度值在所述电机的切向方向上的切向分量值的关系:
    Bx=Br*sinθ
    By=Bt*cosθ
    其中,Br是第二磁感应强度值在所述电机的径向方向上的径向分量值的幅值,能够通过测试获取,Bt是第二磁感应强度值在所述电机的切向方向上的切向分量值的幅值,能够通过测试获取,θ是所述转子的旋转角度。
  19. 根据权利要求18所述的电机转子的旋转角度的测量装置,其特征在于,
    所述旋转角度确定单元还用于根据式(3)计算所述转子的旋转角度:
    Figure PCTCN2020111520-appb-100006
  20. 根据权利要求18所述的电机转子的旋转角度的测量装置,其特征在于,
    还包括幅值标定单元,所述幅值标定单元用于对所述第二磁感应强度值在所述电机的径向方向上的径向分量值的幅值和所述第二磁感应强度值在所述电机的切向方向上的切向分量值的幅值进行标定。
  21. 根据权利要求20所述的电机转子的旋转角度的测量装置,其特征在于,
    对所述第二磁感应强度值在所述电机的径向方向上的径向分量值的幅值进行标定包括通过测试获取所述径向分量值的最大值和最小值,所述径向分量值的最大值与最小值的差值的一半即为所述径向分量值的标定幅值;
    对所述第二磁感应强度值在所述电机的切向方向上的切向分量值的幅值进行标 定包括通过测试获取所述切向分量值的最大值和最小值,所述切向分量值的最大值与最小值的差值的一半即为所述切向分量值的标定幅值。
  22. 根据权利要求18所述的电机转子的旋转角度的测量装置,其特征在于,
    还包括偏移量标定单元,所述偏移量标定单元对所述第二磁感应强度值在所述电机的径向方向上的径向分量值的偏移量和所述第二磁感应强度值在所述电机的切向方向上的切向分量值的偏移量进行标定。
  23. 根据权利要求22所述的电机转子的旋转角度的测量装置,其特征在于,
    对所述第二磁感应强度值在所述电机的径向方向上的径向分量值的偏移量进行标定包括通过测试获取所述径向分量值的最大值和最小值,所述径向分量值的最大值和最小值的加和的一半即为所述径向分量值的偏移量;
    对所述第二磁感应强度值在所述电机的切向方向上的切向分量值的偏移量进行标定包括通过测试获取所述切向分量值的最大值和最小值,所述切向分量值的最大值和最小值的加和的一半即为所述切向分量值的偏移量。
  24. 根据权利要求14-23中任一项所述的电机转子的旋转角度的测量装置,其特征在于,
    所述磁感应部件包括环形磁铁。
  25. 根据权利要求14-23中任一项所述的电机转子的旋转角度的测量装置,其特征在于,
    所述霍尔传感器包括2维霍尔传感器或3维霍尔传感器。
  26. 根据权利要求14-23中任一项所述的电机转子的旋转角度的测量方法,其特征在于,
    所述霍尔传感器包括2个1维霍尔传感器,所述2个1维霍尔传感器以电机10的转子的旋转轴线为中心成90°角设置。
  27. 一种电机,其特征在于,所述电机包括根据权利要求14-26中任一项所述的 电机转子的旋转角度的测量装置。
  28. 一种云台,其特征在于,所述云台包括根据权利要求27所述的电机。
  29. 一种无人飞行器,其特征在于,所述无人飞行器包括根据权利要求28所述的云台。
PCT/CN2020/111520 2020-08-26 2020-08-26 电机转子的旋转角度的测量方法、测量装置以及电机、云台和无人飞行器 WO2022041007A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080035681.9A CN113853729A (zh) 2020-08-26 2020-08-26 电机转子的旋转角度的测量方法、测量装置以及电机、云台和无人飞行器
PCT/CN2020/111520 WO2022041007A1 (zh) 2020-08-26 2020-08-26 电机转子的旋转角度的测量方法、测量装置以及电机、云台和无人飞行器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/111520 WO2022041007A1 (zh) 2020-08-26 2020-08-26 电机转子的旋转角度的测量方法、测量装置以及电机、云台和无人飞行器

Publications (1)

Publication Number Publication Date
WO2022041007A1 true WO2022041007A1 (zh) 2022-03-03

Family

ID=78973096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/111520 WO2022041007A1 (zh) 2020-08-26 2020-08-26 电机转子的旋转角度的测量方法、测量装置以及电机、云台和无人飞行器

Country Status (2)

Country Link
CN (1) CN113853729A (zh)
WO (1) WO2022041007A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001165947A (ja) * 1999-12-14 2001-06-22 Tdk Corp 磁気回転センサ
US20100060263A1 (en) * 2008-09-08 2010-03-11 Infineon Technologies Ag Off-center angle measurement system
EP2339299A2 (de) * 2009-12-22 2011-06-29 AB Elektronik GmbH Drehwinkelsensoranordnung und Verfahren zur Feststellung der Drehposition einer Welle
CN202855522U (zh) * 2012-08-27 2013-04-03 日本精工株式会社 同步旋转变压器、旋转变压器以及角度检测装置
US20160109264A1 (en) * 2014-10-17 2016-04-21 Micronas Gmbh Apparatus and Method for Determining a Rotation Angle of a Rotor
CN107769653A (zh) * 2016-08-17 2018-03-06 现代摩比斯株式会社 估算电机中的转子角度的设备及方法
CN108886332A (zh) * 2017-10-31 2018-11-23 深圳市大疆创新科技有限公司 电机的机械位置获取方法和装置
CN110120724A (zh) * 2019-05-31 2019-08-13 上海拓为汽车技术有限公司 一种电机转子角度测量装置及方法
CN111314510A (zh) * 2020-01-19 2020-06-19 维沃移动通信有限公司 一种折叠屏组件、电子设备以及折叠屏角度检测方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012203225A1 (de) * 2012-03-01 2013-09-05 Tyco Electronics Amp Gmbh Verfahren zum berührungslosen messen einer relativen position mittels eines 3d-hallsensors mit messsignalspeicher
CN103731077B (zh) * 2014-01-21 2016-04-27 上海新世纪机器人有限公司 电机转子位置和转速的检测装置及方法
CN107070102A (zh) * 2017-03-21 2017-08-18 普宙飞行器科技(深圳)有限公司 电机、微型云台以及微型云台的电机控制方法
CN108199539B (zh) * 2018-01-17 2020-04-14 北京小米移动软件有限公司 云台

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001165947A (ja) * 1999-12-14 2001-06-22 Tdk Corp 磁気回転センサ
US20100060263A1 (en) * 2008-09-08 2010-03-11 Infineon Technologies Ag Off-center angle measurement system
EP2339299A2 (de) * 2009-12-22 2011-06-29 AB Elektronik GmbH Drehwinkelsensoranordnung und Verfahren zur Feststellung der Drehposition einer Welle
CN202855522U (zh) * 2012-08-27 2013-04-03 日本精工株式会社 同步旋转变压器、旋转变压器以及角度检测装置
US20160109264A1 (en) * 2014-10-17 2016-04-21 Micronas Gmbh Apparatus and Method for Determining a Rotation Angle of a Rotor
CN107769653A (zh) * 2016-08-17 2018-03-06 现代摩比斯株式会社 估算电机中的转子角度的设备及方法
CN108886332A (zh) * 2017-10-31 2018-11-23 深圳市大疆创新科技有限公司 电机的机械位置获取方法和装置
CN110120724A (zh) * 2019-05-31 2019-08-13 上海拓为汽车技术有限公司 一种电机转子角度测量装置及方法
CN111314510A (zh) * 2020-01-19 2020-06-19 维沃移动通信有限公司 一种折叠屏组件、电子设备以及折叠屏角度检测方法

Also Published As

Publication number Publication date
CN113853729A (zh) 2021-12-28

Similar Documents

Publication Publication Date Title
EP3384584B1 (en) Linear hall device based field oriented motor control method and motor drive system
CN110645882B (zh) 稳健对抗干扰场的位置传感器系统和方法
US10816361B2 (en) Arrangement for detecting the angular position of a rotatable component
CN109283380B (zh) 电力系统中线路电流的测量方法、装置、设备及存储介质
CN105492871B (zh) 位置检测器的角度误差校正装置以及角度误差校正方法
US11092461B2 (en) Magnetic position sensor system and method
US10732009B2 (en) Angle sensing in an off-axis configuration
WO2017059723A1 (zh) 一种校正初始零位偏差的方法及系统
CN104114980B (zh) 用于电机的角度测量系统的校准和监控
JP2003502681A (ja) 角度センサのオフセット補償方法
JP2012251993A (ja) 電流センサ
CN105048921B (zh) 相电流测量诊断
CN113820532B (zh) 非接触式双芯电缆电流测量方法和装置
CN109696187A (zh) 旋转编码器偏心校正装置
CN112986648A (zh) 一种长直导线电流测量方法及系统
WO2022041007A1 (zh) 电机转子的旋转角度的测量方法、测量装置以及电机、云台和无人飞行器
CN107607114B (zh) 一种数字陀螺稳定平台在线频率特性软测试方法
JP5107791B2 (ja) 回転角度センサ
US11489470B2 (en) Sensor device for an electric machine, method for the operation of a sensor device
CN202276311U (zh) 基于磁环及霍尔传感器的pet-ct机轮毂电机位置检测装置
CN104390624A (zh) 倾斜圆锥锥角水平旋转测量的方法
CN110417191B (zh) 获取辅助拍摄设备用电机的机械位置的方法及装置
JP4992888B2 (ja) 直線移動量検出装置
US20230160724A1 (en) Arrangement and method for position detection with error detection with a position encoder
US11885648B2 (en) Sensor devices and methods for determining a rotation angle of a magnet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20950679

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20950679

Country of ref document: EP

Kind code of ref document: A1