WO2022040767A1 - Processo e aparatos aplicados a sistemas de terceiro estágio de ciclones em unidades de fcc - Google Patents

Processo e aparatos aplicados a sistemas de terceiro estágio de ciclones em unidades de fcc Download PDF

Info

Publication number
WO2022040767A1
WO2022040767A1 PCT/BR2021/050353 BR2021050353W WO2022040767A1 WO 2022040767 A1 WO2022040767 A1 WO 2022040767A1 BR 2021050353 W BR2021050353 W BR 2021050353W WO 2022040767 A1 WO2022040767 A1 WO 2022040767A1
Authority
WO
WIPO (PCT)
Prior art keywords
stage
vessel
cyclones
cyclone
stream
Prior art date
Application number
PCT/BR2021/050353
Other languages
English (en)
French (fr)
Inventor
Emanuel Freire Sandes
Claudio DE OLIVEIRA MENDONCA
Claudio Fonseca Machado Dos Santos
Leonardo RODRIGUES CODECO
Daniel DE CARVALHO SCHMIDT
Nelson Patricio Junior
William Victor CARLOS CANDIDO
Jorivaldo Medeiros
Paulo Sergio Freire
Raphael COELHO SCHIAVO
Herbert CAMPOS GONCALVES TEIXEIRA
Gustavo DE OLIVEIRA WARDIL
Wilson Kenzo Huziwara
Fabio SABINO DA SILVA
Fabio Marini
Original Assignee
Petróleo Brasileiro S.A. - Petrobras
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Petróleo Brasileiro S.A. - Petrobras filed Critical Petróleo Brasileiro S.A. - Petrobras
Priority to MX2023002270A priority Critical patent/MX2023002270A/es
Priority to PE2023000531A priority patent/PE20230964A1/es
Publication of WO2022040767A1 publication Critical patent/WO2022040767A1/pt
Priority to CONC2023/0003260A priority patent/CO2023003260A2/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/005Separating solid material from the gas/liquid stream
    • B01J8/0055Separating solid material from the gas/liquid stream using cyclones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D45/00Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C7/00Apparatus not provided for in group B04C1/00, B04C3/00, or B04C5/00; Multiple arrangements not provided for in one of the groups B04C1/00, B04C3/00, or B04C5/00; Combinations of apparatus covered by two or more of the groups B04C1/00, B04C3/00, or B04C5/00
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D45/00Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
    • B01D45/12Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces
    • B01D45/16Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces generated by the winding course of the gas stream, the centrifugal forces being generated solely or partly by mechanical means, e.g. fixed swirl vanes

Definitions

  • the present invention deals with a process and apparatus applied particularly to third-stage cyclone systems used in Fluid Catalytic Cracking (FCC) units and whose objective is to reduce the concentration of catalyst particles in the flue gases, in compliance with environmental legislation.
  • FCC Fluid Catalytic Cracking
  • the process and configurations developed in this invention aim to increase the overall efficiency of separation of these systems, being a lower cost alternative when compared to traditional alternatives.
  • Fluid Catalytic Cracking Units are present in most oil refineries around the world.
  • the main objective of these units is to produce, from the cracking of residual loads, such as diesel and atmospheric residue, products with higher added value, such as gasoline and LPG.
  • the fluid catalytic cracking process makes use of a catalyst in the form of a finely divided powder which, when in contact with the load and at the proper temperature, is able to reduce or break longer carbon chains into shorter ones, such as present in the gasoline range.
  • the FCC catalyst is composed of a set of particles of minute sizes, normally from 1 to 160 pm, with an average size of 70 to 80 pm, which circulate from the regeneration section of the catalyst to the reaction section in the FCC unit. , and from the reaction section back to the regeneration section in colossal amounts that typically vary, depending on the size of the unit, from 10 to 40 tons per minute.
  • the catalyst regeneration section is typically provided with a set of cyclones arranged in pairs of two separation stages in series. Particles below 20 pm are normally not collected by these cyclones, and end up leaving the regenerator along with the flue gases. Despite the high efficiency of regenerator cyclones, the typical concentration of solids from the catalyst in this stream is generally 200 to 300 mg/Nm 3
  • FCC units Other equipment normally present in FCC units are turboexpanders, turbines capable of transforming the pressure energy present in the combustion gases into electrical energy.
  • FCC units with turboexpanders require the use of third-stage cyclone systems upstream of this equipment, in order to remove catalyst particles larger than 10 pm, which could cause erosion and damage to the turbine blades.
  • Licensors of third stage systems aim to provide projects capable of, in addition to protecting the turboexpanders, fit the concentration of solids in the flue gases within the limits established by environmental legislation.
  • stripping eliminates cross talking in the third stage vessel, it introduces the need to provide an additional separation stage to remove solids from the underflow stream.
  • one more cyclone is normally used, called a fourth stage cyclone, or a total block filter.
  • the fourth stage cyclone is a conventional cyclone, whose typical efficiency is 90 to 95%. Although its use increases the overall separation efficiency of the system when compared to a system with cross talking, it is observed that 5 to 10% of the material that has previously been collected in the third stage vessel ends up being lost to the environment, since the fourth stage cyclone is not 100% efficient.
  • US6797026 discloses a cyclone separator for removing fine solid particles from the gas stream.
  • the separator is especially applied in third stage separation equipment, often used for the purification of off-gas from a catalytic regenerator of a fluid catalytic cracking (FCC) unit.
  • FCC fluid catalytic cracking
  • a small flow of gas (underflow) leaves the container along with the solids removed at the bottom of the separator.
  • the document does not discuss how to reduce the concentration of solids in the underflow stream before releasing it to the environment.
  • Document US7547427 discloses a container for separating solid particles from contaminated gas streams, in which the multi-stage separator vessel (MSS) includes at least two separation systems equipped with cyclones, being arranged in series operation. Each stage includes a tube laminated at the top and bottom, in which a plurality of cyclones are installed. Solid particles in the gas stream are separated from the stream and dispensed between the laminated tubes as the gas stream travels between each stage.
  • the vessel has an inlet to receive the gas streams containing the particles, and the flow typically travels downstream, past the first stage and then traveling through at least the second stage. A small flow of gas (underflow) leaves the vessel along with the solids removed at each stage of separation.
  • the document does not discuss how to reduce the concentration of solids in underflow streams before releasing them to the environment. Without addressing this problem, the increase in separation efficiency obtained by adding one more stage is harmless from the point of view of the final emission of particulate matter into the environment.
  • the document US5464528 discloses an inertial filtering separator in a single container, where gases and solids are added tangentially to an annular space, formed by a cylindrical insert in a container. The gas flows over the insert and is carried to the filters in the container. Solids are removed at the annular base.
  • inertial sedimentation by gravity and filtration, which are practiced in a single container.
  • the document proposes an alternative solution to the use of traditional third-stage cyclone systems. Despite not incurring cross talking problems, it uses metallic filters to filter the total flue gas current, a solution whose cost is extremely high, reaching twice the investment required in third-stage cyclone systems.
  • the present invention proposes a process capable of minimizing catalyst losses through the third stage cyclone system without the use of total block filters.
  • the process of this invention seeks to reduce the emission of particulate matter in FCC units equipped with third-stage cyclone systems, which are normally composed of a vessel containing several cyclones in parallel, which reduce the concentration of solids in the gases of combustion at values compatible with those required by law.
  • This invention aims to provide a solution to deal with the cross talking phenomenon observed in third stage cyclone systems. in the cases of the industry, the exemption of the high investment required by the total blocking filters and the framing of the emission of particulate material in the levels required by the environmental legislation.
  • the present invention is particularly applicable to third stage cyclone systems, equipment normally used in conjunction with fourth stage cyclones to reduce the concentration of catalyst particles in the flue gases of Fluid Catalytic Cracking (FCC) units ).
  • FCC Fluid Catalytic Cracking
  • the system developed in this invention allows to increase the overall efficiency of solids separation, being a lower cost alternative when compared, for example, to the use of total block filters.
  • a regenerator (6) whose output gas stream “a”, containing 25 kg/h of solids, is sent to a third-stage vessel (1), equipped inside with a set of third-stage cyclones (2 );
  • a fourth stage cyclone (3) with 95% collection efficiency, which receives the gas stream “c” (underflow) from the third stage vessel bottom (1) containing 22 kg/h of solids;
  • FIG. 3 illustrating a comparison between a configuration used in the State of the Art (A), in which the bleed stream “c” is withdrawn at the bottom of the third stage vessel (1) and the configuration of the proposed invention (B), in which the bleed stream “c” is withdrawn through the top of the third stage vessel (1 ).
  • the configuration (B) is also equipped with a nozzle (8) to dispose of solids separated by the third stage cyclone (2).
  • the streams “a” (output from the regenerator) and “b” (output from the third stage vessel) correspond to the solids concentration of 350 and 42 mg/Nm 3 , respectively.
  • Bleed stream “c” has a concentration of 15,000 mg/Nm 3 in configuration (A) and 1,500 mg/Nm 3 in configuration (B).
  • the solid curve corresponds to the stream of separated solids and the dotted curve corresponds to the gas stream.
  • the third stage vessel (1) is equipped with a nozzle (9) through which the gas stream “a” from the regenerator enters, a gas outlet nozzle (10), whose stream “b” is normally destined for a turboexpander or sent to a boiler, before being released into the chimney of the FCC unit (7), and a nozzle (8) to dispose of solids separated by the third stage cyclone (2).
  • the solid curve corresponds to the stream of separated solids and the dotted curve corresponds to the gas stream.
  • nozzle (8) for solids disposal separated by the third stage cyclone (2) and the fourth stage cyclone (3) the nozzle (9) through which the gas stream “a” from the regenerator enters, and the gas outlet nozzle (10), whose stream “b” is normally destined for a turboexpander or sent to a boiler, before being released into the chimney of the FCC unit (7).
  • the current “g” is also illustrated, which represents the motive fluid of the ejector (11).
  • the solid curve corresponds to the stream of separated solids and the dotted curve corresponds to the gas stream.
  • the solids return tube (12) to the third stage vessel (1) the nozzle (8) for solids disposal separated by the third stage cyclone (2) and the fourth stage cyclone (3) , the nozzle (9) through which the gas stream “a” from the regenerator enters, and the gas outlet nozzle (10), whose stream “b” is normally destined for a turboexpander or sent to a boiler, before being released into the chimney of the FCC unit (7).
  • the current “g” is also illustrated, which represents the motive fluid of the ejector (11).
  • the solid curve corresponds to the stream of separated solids and the dotted curve corresponds to the gas stream.
  • FIG. 7 illustrating a system for discarding solids accumulated in the third stage vessel (1 ), where the solids are drained through a small pressure differential between the third stage vessel (1 ) and the fines silo (5) .
  • the third stage vessel (1) is provided with a solids disposal nozzle (8), a solids disposal line (14) connected to a conveyor (16) in which a small flow of entrainment air (15) is injected capable of transporting the solids to the fines silo (5). Also shown are a full block filter (13) and a relief line (17) to the chimney of the FCC unit (7).
  • the solid curve corresponds to the stream of separated solids in the third stage vessel (1 ).
  • Figure 1 presents an example of a configuration of a third stage cyclone system commonly adopted in FCC units around the world.
  • the cyclone, or set of third-stage cyclones (2) is located inside the third-stage vessel (1).
  • the output of the solids disposal tube at the bottom of the third stage vessel (1) is connected to a fourth stage cyclone (3) equipped with a critical orifice (4), in order to promote the removal of a small fraction of the gases (bleeding or underflow), together with the solids separated by the third stage cyclones, thus eliminating the reverse flow of gases from the vessel towards the cyclones (cross talking).
  • An additional separation stage is promoted by the fourth stage cyclone or set of cyclones (3), in order to remove the solids present in the bleed stream from the third stage vessel, which are then sent to a fines silo (5) .
  • the bleed gas stream in this configuration thus serves a dual purpose: to eliminate backflow of gases in the third stage cyclones and to transport the separated solids from the third stage vessel to the fourth stage cyclone.
  • the vessel that lies between the fourth stage cyclone (3) and the fines silo (5) is an intermediate silo, used to accumulate material when the fines silo (5) is unloading to a truck. It is a conventional component of these systems and, unlike the case of the fourth stage cyclone (3) and the fines silo (5), it is not related to the invention.
  • Figure 2 presents a mass balance in a characteristic configuration with a third stage cyclone system coupled to a fourth stage cyclone system.
  • the balance sheet illustrates a case of a commercial unit where the contribution of the fourth stage cicione in the total emission of particulate matter in the chimney of the FCC unit is 25%, indicating that isolated gains in the increase of the efficiency of the third stage cyclones can be easily lost in the cyclone of fourth stage.
  • Figure 3 shows a comparison between the configuration used in the State of the Art (A) and the one proposed in this invention (B).
  • the dotted lines represent the gas stream that is withdrawn from the vessel through a critical orifice (4) (bleed), while the solid lines represent the solids separated by the third stage cyclones.
  • the configuration proposed in this invention comprises the withdrawal of a bleed stream continuously through the top of the third stage vessel (1), contrary to what is verified in configurations presented in the State of the Art (for example , Figure 3A), in which the bleed stream from the third stage vessel (1) is withdrawn through the bottom of the vessel, along with the collected solid material.
  • the configuration of the present invention makes use of the extensive length of the third stage vessel (1), thus introducing a natural separation step, where the particles present in the stream are released from the gas that ascends the vessel at low speed ( ⁇ 0 .03 m/s), returning to the bottom.
  • the material collected by the third stage cyclones (2) is accumulated in the third stage vessel cone (1), being discarded in regular periods, normally from 5 to 10 days.
  • the advantage of the configuration proposed in this invention in relation to the State of the Art is that the concentration of solids in the bleed stream, thanks to the natural separation that occurs in the third stage vessel (1), is reduced by more than 10 times, dramatically decreasing the solids load for the fourth stage cyclone (3).
  • the particulate material present in this stream has a smaller granulometry than that observed in the configuration of the State of the Art, and, therefore, is more difficult to be separately, it is estimated that the contribution of the fourth stage cyclone to the emission of particulate matter to the environment will be reduced by more than 50%.
  • this particular configuration has a great advantage, since the material collected by the fourth stage cyclone, for being very fine (mean size ⁇ 10 pm), it is prone to clogging (particles have high cohesive strength).
  • the continuous flow of the motive fluid through the ejector keeps the leg always free of solid accumulation and, consequently, free of an eventual obstruction.
  • the motive fluid “g” may consist of steam d ! superheated water, air or any other gas.
  • the flow of the bleed stream "c" is defined by a critical orifice (4) installed in the outlet line (18) of the fourth stage cyclone (3), at the downstream of this, normally dimensioned to aspirate from 2 to 5% of the gases that enter the third stage vessel (1 ).
  • the point of collection of the bleed stream should be positioned in a central region of the vessel, in order to promote a uniform withdrawal of gases.
  • a collection duct (not shown in the Figures) must be provided.
  • Figure 7 illustrates one of the possible configurations that can be adopted for the disposal of solids accumulated in the third stage vessel (1 ).
  • the disposal maneuver is performed, which lasts a few hours.
  • a small pressure differential between the third stage vessel (1) and the fines silo (5), and the injection of a low flow rate of carrier air (15) in the transport line (16) are sufficient to promote drainage.
  • the third stage vessel (1) which occurs from a captive discharge nozzle (8) designed for this purpose.
  • the material accumulated in the fines silo (5) is disposed of by truck to a suitable destination.
  • the fines silo (5) should preferably be equipped with a ballistic separator (not shown), responsible for performing the separation between the carrier air and the transported solids.
  • a ballistic separator responsible for performing the separation between the carrier air and the transported solids.
  • the present invention does not compromise the efficiency of third stage cyclones (2).
  • concentration of solids in the stream leaving the third stage vessel (1) through the nozzle (10), as well as its granulometry, is not modified by the present invention. This is an important aspect to be highlighted, since it preserves the necessary conditions to guarantee the integrity and good operation of the turboexpanders, equipment commonly found in FCC units.

Abstract

A presente invenção é aplicável, em especial, a sistemas de terceiro estágio de ciclones, equipamentos normalmente usados em conjunto com ciclones de quarto estágio para reduzir a concentração de partículas de catalisador nos gases de combustão de unidades de Craqueamento Catalítico Fluido (FCC). A invenção trata de um processo onde a corrente de sangria do vaso de terceiro estágio de ciclones é retirada continuamente pelo topo do vaso de terceiro estágio, utilizando o extenso comprimento deste vaso para introduzir uma etapa de separação natural, onde as partículas presentes nesta corrente se desprendem do gás que ascende o vaso a baixa velocidade, retornando para o fundo do vaso. O material coletado pelos ciclones de terceiro estágio passa a ser acumulado no cone do vaso, sendo descartado deste em períodos regulares. Tal processo propõe-se a elevar a eficiência global de separação do sistema, sendo uma alternativa de menor custo quando comparada ao uso de filtros de bloqueio total.

Description

“PROCESSO E APARATOS APLICADOS A SISTEMAS DE TERCEIRO ESTÁGIO DE CICLONES EM UNIDADES DE FCC”
Campo da Invenção
[001] A presente invenção trata de um processo e de aparatos aplicados particularmente a sistemas de terceiro estágio de ciclones utilizados em unidades de Craquemento Catalítico Fluido (FCC) e que têm como objetivo reduzir a concentração de partículas de catalisador nos gases de combustão, em atendimento à legislação ambiental. O processo e as configurações desenvolvidas nesta invenção propõem-se a elevar a eficiência global de separação destes sistemas, sendo uma alternativa de menor custo quando comparada às alternativas tradicionais.
Descrição do Estado da Técnica
[002] Unidades de Craqueamento Catalítico Fluido (FCC) estão presentes na maior parte das refinarias de petróleo ao redor do mundo. Essas unidades têm como objetivo principal produzir, a partir do craqueamento de cargas residuais, como gasóleo e resíduo atmosférico, produtos de maior valor agregado, como gasolina e GLP. O processo de craqueamento catalítico fluido faz uso de um catalisador na forma de um pó finamente dividido que, quando em contato com a carga e na temperatura adequada, é capaz de reduzir ou quebrar as cadeias de carbono mais longas em cadeias mais curtas, como as presentes na faixa da gasolina.
[003] O catalisador de FCC é composto por um conjunto de partículas de tamanhos diminutos, normalmente de 1 a 160 pm, com tamanho médio de 70 a 80 pm, que circulam da seção de regeneração do catalisador para seção de reação na unidade de FCC, e da seção de reação de volta para seção de regeneração em quantidades colossais que variam normalmente, dependendo do porte da unidade, de 10 a 40 toneladas por minuto.
[004] A separação do catalisador presente tanto nos produtos da seção de reação como nos gases de combustão da seção de regeneração é feita pela ação de ciclones, equipamentos de alta eficiência de coleta (> 99,99%) que garantem a retenção do catalisador no conversor na unidade de FCC. Sem esses equipamentos, a perda de catalisador em unidades de FCC seria tão elevada que o processo se tornaria inviável.
[005] A seção de regeneração do catalisador é dotada tipicamente de um conjunto de ciclones dispostos em pares de dois estágios de separação em série. Partículas abaixo de 20 pm normalmente não são coletadas por esses ciclones, e acabam deixando o regenerador junto com os gases de combustão. A despeito da elevada eficiência dos ciclones do regenerador, a concentração típica de sólidos provenientes do catalisador nesta corrente geralmente é de 200 a 300 mg/Nm3
[006] Em muitos países a legislação ambiental restringe a emissão de material particulado para o meio ambiente a valores abaixo de 75 mg/Nm3. Para atingir esta especificação, faz~se necessário acrescentar à seção de regeneração das unidades de FCC um estágio de abatimento complementar de material particulado. Normalmente são empregados para esse objetivo equipamentos como precipitadores eletrostáticos, lavadores de gases, filtros de bloqueio total, ou sistemas de terceiro estágio de ciclones.
[007] Outros equipamentos normalmente presentes em unidades de FCC são os turboexpansores, turbinas capazes de transformar a energia de pressão presente nos gases de combustão em energia elétrica. Unidades de FCC com turboexpansores exigem o uso de sistemas de ciclones de terceiro estágio à montante desses equipamentos, de modo a remover as partículas de catalisador com dimensões acima de 10 pm, que poderiam causar erosão e danos às palhetas das turbinas.
[008] Licenciadores de sistemas de terceiro estágio têm como objetivo fornecer projetos capazes de, além de proteger os turboexpansores, enquadrar a concentração de sólidos nos gases de combustão dentro dos limites estabelecidos pela legislação ambiental.
[009] Embora os sistemas comercialmente utilizados possam diferir entre si de acordo com número e geometria dos ciclones empregados (diâmetro convencional ou de tamanho reduzido), o tipo de entrada dos gases (tangencial ou axial), ou a direção das correntes de gás e sólidos (bidirecional ou unidirecional), é comum a todos eles a dificuldade de lidar com a perda de eficiência resultante de um fenômeno denominado de comunicação cruzada (cross talking).
[0010] Como os ciclones dos sistemas de terceiro estágio operam em pressão positiva e a perda de carga neles, embora próxima, não é a mesma, devido à distribuição não uniforme da carga de sólidos e/ou pequenas diferenças geométricas, o uso de um sistema composto por vários ciclones em paralelo confinados em um vaso comum resulta no fluxo indesejado de gases de um ciclone para outro, uma resposta natural do sistema para equalizar as perdas de carga entre os diversos ciclones.
[0011] A comunicação indesejada entre os ciclones causa rearraste de parte do material previamente separado e acaba por reduzir a eficiência de coleta do sistema. Mesmo que o sistema fosse composto por um único ciclone, o descarte de sólidos para o vaso sempre é acompanhado de um fluxo de gás, que é aspirado pelos sólidos. Sem lugar para ir, a corrente de gás que deixa o ciclone em direção ao vaso junto com os sólidos não tem outra opção senão retomar para o ciclone, causando rearraste e perda de eficiência de coleta de sólidos. Em um vaso munido de diversos ciclones, a interação entre eles pode ser caracterizada como caótica, resultando em perda substancial de eficiência de separação.
[0012] A solução normalmente empregada para lidar com o problema de cross talking passa por forçar, através do uso de um orifício crítico, a retirada de uma pequena fração dos gases, normalmente 2% a 5%, denominada de sangria (underflow), junto com os sólidos separados, eliminando assim o fluxo reverso de gases do vaso em direção aos ciclones.
[0013] Embora a retirada dos gases elimine o cross talking no vaso de terceiro estágio, ela introduz a necessidade de se prever um estágio de separação adicional para remover os sólidos da corrente de underflow. Para esse fim, normalmente é utilizado mais um ciclone, denominado de ciclone de quarto estágio, ou um filtro de bloqueio total.
[0014] O ciclone de quarto estágio é um ciclone convencional, cuja eficiência típica é de 90 a 95%. Embora seu uso aumente a eficiência global de separação do sistema quando comparado com um sistema com ocorrência de cross talking, observa-se que 5 a 10% do material que tenha sido previamente coletado no vaso de terceiro estágio acaba sendo perdido para o meio ambiente, uma vez que o ciclone de quarto estágio não tem eficiência de 100%.
[0015] A contribuição do ciclone de quarto estágio na emissão total de material particulado na chaminé da unidade de FCC pode atingir 25%, ou até mesmo em alguns casos, 50%, ficando claro que ganhos isolados no aumento da eficiência dos ciclones de terceiro estágio podem ser facilmente destruídos no ciclone de quarto estágio.
[0016] A solução empregada para evitar esta perda passa por substituir o ciclone de quarto estágio por um filtro de bloqueio total, cuja elevada eficiência (>99,9%) reduz de forma significativa a contribuição da corrente de underflow na emissão global de material particulado na chaminé da unidade de de FCC. Embora seja uma solução eficaz, o custo de sua implantação é extremamente elevado, algo da ordem de cinco milhões de dólares para uma unidade de porte médio.
[0017] Trabalhos encontrados no Estado da Técnica têm se dedicado a realizar modificações na geometria dos ciclones do vaso de terceiro estágio, visando eliminar o fenômeno de cross talking e, assim, reduzir o rearraste, como é o caso, por exemplo, das inovações descritas em US5681450 e US2018/0043292A1 . De um modo geral, o objetivo principal é aumentar a eficiência de coleta do Sistema de Terceiro Estágio, de modo a torná-lo capaz de, além de proteger os turboexpansores, atender aos requisitos ambientais, dispensando a necessidade de uso de equipamentos para um abatimento complementar, como precipitadores eletrostáticos ou lavadores de gases. [0018] Esforços isolados no aumento da eficiência de coleta dos ciclones de terceiro estágio, porém, só serão completamente eficazes, do ponto de vista da emissão de material particulado, se forem instalados filtros de bloqueio total na corrente de sangria (underflow) que transporta os sólidos separados no vaso de terceiro estágio, pois caso contrário será infrutífero aumentar a eficiência de coleta dos ciclones de terceiro estágio se o material adicional coletado for perdido no ciclone de quarto estágio.
[0019] O documento US6797026 revela um separador de ciclone para a remoção de finas partículas sólidas do fluxo de gás. O separador é especialmente aplicado em equipamentos de separação de terceiro estágio, frequentemente usados para a purificação de efluentes gasosos de um regenerador catalítico de uma unidade de craqueamento catalítico de fluido (FCC). Uma pequena vazão de gás (underflow) deixa o recipiente junto com os sólidos removidos no fundo do separador. O documento não discute como reduzir a concentração de sólidos na corrente de underflow antes de liberá-la para o meio-ambiente.
[0020] O documento US7547427 revela um recipiente de separação de partículas sólidas de fluxos de gases contaminados, no qual o recipiente separador de múltiplos estágios (MSS) inclui pelo menos dois sistemas de separação munidos de ciclones, sendo organizados em operação em série. Cada estágio inclui um tubo laminado nas partes superior e inferior, no qual uma pluralidade de ciclones é instalada. Partículas sólidas no fluxo de gás são separadas da corrente e dispensadas entre os tubos laminados, assim que a corrente de gás se desloca entre cada estágio. O recipiente possui uma entrada para receber as correntes de gás contendo as partículas, e o fluxo se desloca tipicamente à jusante, passado pelo primeiro estágio e depois se deslocando, pelo menos, no segundo estágio. Uma pequena vazão de gás (underflow) deixa o recipiente junto com os sólidos removidos em cada estágio de separação. O documento não discute como reduzir a concentração de sólidos nas correntes de underflow antes de liberá-las para o meio-ambiente. Sem equacionar este problema, o aumento de eficiência de separação obtido através da adição de mais um estágio é inócuo do ponto de vista da emissão final de material particulado para o meio-ambiente.
[0021] O documento US5464528 revela um separador inercial de filtragem em um único recipiente, onde gases e sólidos são adicionados tangencialmente a um espaço anular, formado por uma inserção cilíndrica em um recipiente. O gás flui sobre a inserção e é carreado até os filtros no recipiente. Os sólidos são retirados na base anular. São feitos três tipos de coleta: inercial, sedimentação por gravidade e filtração, os quais são praticados em um único recipiente. O documento propõe uma solução alternativa ao uso dos sistemas tradicionais de terceiro estágio de ciclones. Apesar de não incorrer em problemas de cross talking, faz o uso de filtros metálicos para filtragem da corrente total de gases de combustão, uma solução cujo custo é extremamente elevado, chegando a ser o dobro do investimento requerido em sistemas de terceiro estágio de ciclones.
[0022] A presente invenção propõe um processo capaz de minimizar as perdas de catalisador através do sistema de terceiro estágio de ciclones sem o uso de filtros de bloqueio total.
[0023] Embora outros trabalhos já tenham tentado esse objetivo, como é o caso de US7597748B2, a presente invenção utiliza uma abordagem completamente diferente, mais simples e livre das etapas que podem ser observadas no processo proposto por US 7597748B2, o qual prevê a adição de uma seção de lavagem com água após o ciclone de quarto estágio.
[0024] Embora possa ser empregada, com alguma adequação, a qualquer tipo de sistema de terceiro estágio de ciclones, como por exemplo aqueles descritos nas invenções US5514271 e US2006/0070362, que fazem uso de um grande número de ciclones de pequeno diâmetro, a concepção da presente invenção é preferencialmente direcionada para os sistemas de terceiro estágio dotados de ciclones convencionais. [0025] Assim, nenhum documento do Estado da Técnica reveia um processo para aumentar a eficiência global de separação do sistema de terceiro estágio de ciclones tal como este da presente invenção.
[0026] O processo desta invenção busca reduzir a emissão de material particulado em unidades de FCC munidas de sistemas de terceiro estágio de ciclones, os quais são normalmente compostos por um vaso contendo vários ciclones em paralelo, que reduzem a concentração de sólidos nos gases de combustão a valores compatíveis com os exigidos por lei.
[0027] Esta invenção tem como finalidade fornecer uma solução para lidar com o fenômeno de cross talking observado em sistemas de terceiro estágio de ciclones, A solução tem custo similar ao empregado com um ciclone de quarto estágio, mas uma eficiência superior viabilizando, para muitos dos casos da indústria, a dispensa do alto investimento requerido pelos filtros de bloqueio total e o enquadramento da emissão de material particulado nos níveis exigidos pela legislação ambiental.
Descrição Resumida da Invenção
[0028] A presente invenção é aplicável, em especial, a sistemas de terceiro estágio de ciclones, equipamentos normalmente usados em conjunto com ciclones de quarto estágio para reduzir a concentração de partículas de catalisador nos gases de combustão de unidades de Craqueamento Catalítico Fluido (FCC).
[0029] O sistema desenvolvido nesta invenção permite elevar a eficiência global de separação de sólidos, sendo uma alternativa de menor custo quando comparada, por exemplo, ao uso de filtros de bloqueio total.
Breve Descrição dos Desenhos
[0030] A presente invenção será descrita com mais detalhes a seguir, com referência às figuras em anexo que, de uma forma esquemática e não limitativa do escopo inventivo, representam exemplos de sua realização. Nos desenhos, têm-se: - A Figura 1 ilustrando um exemplo de uma configuração de um sistema de terceiro estágio de ciclones comumente adotada em unidades de FCC, onde são representados: vaso de terceiro estágio (1 ), ciclone de terceiro estágio (2), ciclone de quarto estágio (3), orifício crítico (4), e silo de finos (5);
- A Figura 2 ilustrando um balanço de massa simplificado de um sistema de terceiro estágio de ciclones, munido de um ciclone de quarto estágio, apresentando 84% de eficiência global de coleta de sólidos, onde estão representados:
- Um regenerador (6), cuja corrente gasosa de saída “a”, contendo 25 kg/h de sólidos, é enviada para um vaso de terceiro estágio (1 ), dotado no seu interior de um conjunto de ciclones de terceiro estágio (2);
- Um conjunto de ciclones de terceiro estágio (2), com 88% de eficiência de coleta, que remove 22 kg/h de sólidos da corrente “a”;
- Uma corrente gasosa “b”, que deixa o vaso de terceiro estágio (1 ), contendo 3 kg/h de sólidos, que após passar pelos demais equipamentos da seção de regeneração é enviada para chaminé da unidade de FCC (7);
- Um ciclone de quarto estágio (3), com 95% de eficiência de coleta, que recebe a corrente gasosa “c” (underflow) proveniente do fundo vaso de terceiro estágio (1 ) contendo 22 kg/h de sólidos;
- Uma corrente de sólidos “d” de 21 kg/h, coletada pelo ciclone de quarto estágio (3), e enviada para o silo de finos (5) para descarte posterior para caminhão.
- Uma corrente gasosa “e”, contendo 1 kg/h de sólidos, que após deixar o ciclone de quarto estágio (3), passa pelo orifício crítico (4) e se mistura com a corrente “b” proveniente do vaso de terceiro estágio (1 ), antes de ser liberada na chaminé da unidade de FCC (7);
- Uma corrente gasosa “f”, proveniente da combinação das correntes “b” e “e”, contendo 4 kg/h de sólidos, que é liberada para o meio ambiente no topo da chaminé da unidade de FCC (7); - Uma corrente de sólidos “d” de 21 kg/h, coletada pelo ciclone de quarto estágio (3), e enviada para o silo de finos (5) para descarte posterior para caminhão.
- A Figura 3 ilustrando uma comparação entre uma configuração usada no Estado da Técnica (A), na qual a corrente de sangria “c” é retirada no fundo do vaso de terceiro estágio (1 ) e a configuração da invenção proposta (B), na qual a corrente de sangria “c” é retirada pelo topo do vaso de terceiro estágio (1 ). A configuração (B) é dotada ainda de um bocal (8) para descarte de sólidos separados pelo ciclone de terceiro estágio (2). As correntes “a” (saída do regenerador) e “b” (saída do vaso de terceiro estágio) correspondem à concentração de sólidos de 350 e 42 mg/Nm3, respectivamente. A corrente de sangria “c” tem a concentração de 15.000 mg/Nm3 na configuração (A) e 1.500 mg/Nm3 na configuração (B). A curva solida corresponde à corrente de sólidos separados e a curva pontilhada corresponde à corrente de gás.
- A Figura 4 ilustrando a corrente de sangria ”c” da configuração da invenção proposta sendo enviada para um ciclone de quarto estágio (3) externo acoplado a um silo de finos (5), cuja corrente de saída “e”, após passar pelo orifício crítico (4) instalado na linha de saída (18) do ciclone de quarto estágio (3), se mistura à corrente “b” antes de ser liberada na chaminé da unidade de FCC (7). O vaso de terceiro estágio (1) é dotado de um bocal (9) por onde adentra a corrente gasosa “a” proveniente do regenerador, um bocal de saída dos gases (10), cuja corrente “b” normalmente é destinada a um turboexpansor ou enviada para uma caldeira, antes de ser liberada na chaminé da unidade de FCC (7), e um bocal (8) para descarte de sólidos separados pelo ciclone de terceiro estágio (2). A curva solida corresponde à corrente de sólidos separados e a curva pontilhada corresponde à corrente de gás.
- A Figura 5 ilustrando a corrente de sangria ”c” da configuração da invenção proposta sendo enviada para um ciclone de quarto estágio (3) dotado de um ejetor (11 ), situado no interior do vaso de terceiro estágio (1 ), cuja corrente de saída “e”, após passar pelo orifício crítico (4) instalado na linha de saída (18) do cicione de quarto estágio (3), se mistura à corrente “b” antes de ser liberada na chaminé da unidade de FCC (7). Estão também representados: bocal (8) para descarte de sólidos separados pelo ciclone de terceiro estágio (2) e pelo ciclone de quarto estágio (3), o bocal (9) por onde adentra a corrente gasosa “a” proveniente do regenerador, e o bocal de saída dos gases (10), cuja corrente “b” normalmente é destinada a um turboexpansor ou enviado para uma caldeira, antes de ser liberada na chaminé da unidade de FCC (7). É também ilustrada a corrente “g”, que representa o fluido motriz do ejetor (11 ). A curva solida corresponde à corrente de sólidos separados e a curva pontilhada corresponde à corrente de gás.
- A Figura 6 ilustrando a corrente de sangria ”c” da configuração da invenção proposta sendo enviada para um ciclone de quarto estágio (3) dotado de um ejetor (11 ), situado externamente ao vaso de terceiro estágio (1), cuja corrente de saída “e”, após passar pelo orifício crítico (4) instalado na linha de saída (18) do ciclone de quarto estágio (3), se mistura à corrente “b” antes de ser liberada na chaminé da unidade de FCC (7). Estão também representados: o tubo de retorno dos sólidos (12) para o vaso de terceiro estágio (1 ), o bocal (8) para descarte de sólidos separados pelo ciclone de terceiro estágio (2) e pelo ciclone de quarto estágio (3), o bocal (9) por onde adentra a corrente gasosa “a” proveniente do regenerador, e o bocal de saída dos gases (10), cuja corrente “b” normalmente é destinada a um turboexpansor ou enviado para uma caldeira, antes de ser liberada na chaminé da unidade de FCC (7). É também ilustrada a corrente “g”, que representa o fluido motriz do ejetor (11 ). A curva solida corresponde à corrente de sólidos separados e a curva pontilhada corresponde à corrente de gás.
- A Figura 7 ilustrando um sistema de descarte de sólidos acumulados no vaso de terceiro estágio (1 ), onde os sólidos são drenados através de um pequeno diferencial de pressão entre o vaso de terceiro estágio (1 ) e o silo de finos (5). O vaso de terceiro estágio (1 ) é dotado de um bocal de descarte de sólidos (8), uma linha de descarte de sólidos (14) conectada a uma linha de transporte (16) na qual é feita a injeção de uma pequena vazão de ar de arraste (15) capaz de transportar os sólidos até o silo de finos (5). Estão também representados um filtro de bloqueio total (13) e uma linha de alívio (17) para a chaminé da unidade de FCC (7). A curva solida corresponde à corrente de sólidos separados no vaso de terceiro estágio (1 ).
Descrição Detalhada da Invenção
[0031] A Figura 1 apresenta um exemplo de uma configuração de um sistema de terceiro estágio de ciclones comumente adotada em unidades de FCC ao redor do mundo. O ciclone, ou conjunto de ciclones de terceiro estágio (2) é situado no interior do vaso de terceiro estágio (1 ). A saída do tubo de descarte de sólidos no fundo do vaso de terceiro estágio (1 ) é conectada a um ciclone de quarto estágio (3) dotado de um orifício crítico (4), de modo a promover a retirada de uma pequena fração dos gases (sangria ou underflow), juntamente com os sólidos separados pelos ciclones de terceiro estágio, eliminando assim o fluxo reverso de gases do vaso em direção aos ciclones (cross talking). Um estágio de separação adicional é promovido pelo ciclone ou conjunto de ciclones de quarto estágio (3), de modo a remover os sólidos presentes na corrente de sangria proveniente do vaso de terceiro estágio, sendo estes então encaminhados a um silo de finos (5). A corrente de gás de sangria nesta configuração tem assim dupla finalidade: eliminar o fluxo reverso de gases nos ciclones de terceiro estágio e transportar os sólidos separados do vaso de terceiro estágio para o ciclone de quarto estágio. O vaso que fica compreendido entre o ciclone de quarto estágio (3) e o silo de finos (5) é um silo intermediário, usado para acumular material quando o silo de finos (5) está descarregando para caminhão. É um componente convencional desses sistemas e, ao contrário do caso do ciclone de quarto estágio (3) e do silo de finos (5), não guarda relação com a invenção.
[0032] A Figura 2 apresenta um balanço de massa em uma configuração característica com um sistema de ciclone de terceiro estágio acoplado a um sistema de ciclone de quarto estágio. Particularmente, o balanço ilustra um caso de uma unidade comercial em que a contribuição do cicione de quarto estágio na emissão total de material particulado na chaminé da unidade de FCC é de 25%, indicando que ganhos isolados no aumento da eficiência dos ciclones de terceiro estágio podem ser facilmente perdidos no ciclone de quarto estágio.
[0033] A Figura 3 mostra uma comparação entre a configuração usada no Estado da Técnica (A) e a proposta nesta invenção (B). As linhas pontilhadas representam a corrente de gás que é retirada do vaso através de um orifício crítico (4) (sangria), enquanto as linhas sólidas representam os sólidos separados pelos ciclones de terceiro estágio.
[0034] A configuração proposta nesta invenção, ilustrada na Figura 3B, compreende a retirada de uma corrente de sangria continuamente pelo topo do vaso de terceiro estágio (1 ), ao contrário do que é verificado em configurações apresentadas no Estado da Técnica (por exemplo, a Figura 3A), nas quais a corrente de sangria do vaso de terceiro estágio (1 ) é retirada pelo fundo deste, junto com o material sólido coletado.
[0035] A configuração da presente invenção faz uso do extenso comprimento do vaso de terceiro estágio (1), introduzindo assim uma etapa de separação natural, onde as partículas presentes na corrente se desprendem do gás que ascende o vaso em baixa velocidade (< 0,03 m/s), retomando para o fundo deste. O material coletado pelos ciclones de terceiro estágio (2) passa a ser acumulado no cone do vaso de terceiro estágio (1), sendo descartado em períodos regulares, normalmente de 5 a 10 dias.
[0036] A vantagem da configuração proposta nesta invenção em relação ao Estado da Técnica é que a concentração de sólidos na corrente de sangria, graças à separação natural que ocorre no vaso de terceiro estágio (1 ), é reduzida em mais de 10 vezes, diminuindo drasticamente a carga de sólidos para o ciclone de quarto estágio (3). Apesar do material particulado presente nesta corrente ter uma granulometria menor do que a observada na configuração do Estado da Técnica, e, portanto, ser mais difícil de ser separada, estima-se que a contribuição do ciclone de quarto estágio para a emissão de material particulado para o meio ambiente será reduzida em mais de 50%.
[0037] De acordo com esta invenção, para a remoção dos sólidos ainda presentes na corrente de sangria podem ser previstas, entre outras, as seguintes configurações:
(a) Envio da corrente de sangria para um ciclone de quarto estágio (3) externo acoplado a um silo de finos (5), conforme mostrado na Figura 4;
(b) Envio da corrente de sangria para um ciclone de quarto estágio (3) interno ao vaso de terceiro estágio (1 ), munido de um ejetor (11 ) na perna, descartando-a no vaso de terceiro estágio (1), conforme mostrado na Figura 5;
(c) Envio da corrente de sangria para um ciclone de quarto estágio (3) externo ao vaso de terceiro estágio (1 ), munido de um ejetor (11 ) na perna, descartando-a no vaso de terceiro estágio (1), conforme mostrado na Figura 6.
[0038] Como pode ser observado nas Figuras 5 e 6, o uso de ejetor (11 ) na denominada perna do ciclone de quarto estágio (3), conforme o documento US7081229, é incorporado completamente à presente invenção. A injeção de um fluido motriz “g” na perna do ciclone de quarto estágio (3), seja interno ou externo, tem a finalidade de forçar uma sangria na perna, do ciclone para o vaso, evitando o fluxo reverso indesejado de gases do vaso em direção à perna (o que prejudicaria a eficiência da coleta do ciclone de quarto estágio). Por dispensar o uso de uma válvula na extremidade da perna, bem como a formação interna de uma coluna de sólidos para vencer o balanço de pressão, essa configuração em particular traz grande vantagem, uma vez que o material coletado pelo ciclone de quarto estágio, por ser muito fino (tamanho médio < 10 pm), é propenso à obstrução (as partículas têm elevada força de coesão). O fluxo contínuo do fluido motriz através do ejetor mantém a perna sempre livre de acúmulo de sólidos e, consequentemente, livre de uma eventual obstrução. O fluido motriz “g” pode ser constituído de vapor d!água superaquecido, ar ou outro gás qualquer.
[0039] Nas configurações mostradas nas Figuras 4, 5 e 6, a vazão da corrente de sangria “c” é definida por um orifício crítico (4) instalado na linha de saída (18) do ciclone de quarto estágio (3), à jusante deste, dimensionado normalmente para aspirar de 2 a 5% dos gases que adentram o vaso de terceiro estágio (1 ).
[0040] Sempre que possível, preferencialmente, o ponto de coleta da corrente de sangria deve ser posicionado em uma região central do vaso, de modo a promover uma retirada uniforme dos gases. Para tal, um duto de coleta (não mostrado nas Figuras) deve ser previsto.
[0041] A Figura 7 ilustra uma das possíveis configurações que podem ser adotadas para o descarte de sólidos acumulados no vaso de terceiro estágio (1 ). Quando o nível de sólidos se aproxima da extremidade das pernas dos ciclones de terceiro estágio, o que pode ser verificado através do uso de instrumentos de nível do tipo radiativo instalados no cone do vaso de terceiro estágio, realiza-se a manobra de descarte, que dura poucas horas. Um pequeno diferencial de pressão entre o vaso de terceiro estágio (1 ) e o silo de finos (5), e a injeção de uma baixa vazão de ar de arraste (15) na linha de transporte (16) são suficientes para promover a drenagem do vaso de terceiro estágio (1 ), que ocorre a partir de um bocal cativo de descarte (8) projetado para este fim. Posteriormente, em uma manobra separada, o material acumulado no silo de finos (5) é descartado por caminhão para um destino adequado.
[0042] O silo de finos (5) deve ser equipado preferencialmente com um separador balístico (não mostrado), responsável por realizar a separação entre o ar de arraste e os sólidos transportados. Para eliminar por completo a presença de material particulado na corrente de gás que deixa o silo, recomenda-se instalar um pequeno filtro de bloqueio total (13) na linha de alívio (17) que será enviada para a chaminé da unidade de FCC (7). Por ser a vazão de ar de arraste 50 vezes menor do que a vazão da corrente de sangria e, em virtude de o ar estar a baixa temperatura (< 300°C), o filtro requerido para realizar essa operação é de pequeno porte e de baixo custo.
[0043] Deve ser notado que, apesar de a presente invenção ter sido descrita com relação aos desenhos em anexo, esta poderá sofrer modificações e adaptações pelos técnicos versados no assunto, dependendo da situação específica, mas desde que dentro do escopo inventivo aqui definido.
[0044] Há de se ressaltar que a presente invenção não compromete a eficiência dos ciclones de terceiro estágio (2). A concentração de sólidos na corrente que deixa o vaso de terceiro estágio (1 ) pelo bocal (10), bem como a sua granulometria, não é modificada pela presente invenção. Este é um aspecto importante a ser ressaltado, uma vez que preserva as condições necessárias para garantir a integridade e boa operação dos turboexpansores, equipamentos comumente encontrados em unidades de FCC.

Claims

Reivindicações
1- PROCESSO APLICADO A SISTEMAS DE TERCEIRO ESTÁGIO DE CICLONES EM UNIDADES DE FCC, caracterizado por compreender as seguintes etapas: a) Retirar a corrente de sangria proveniente do ciclone de terceiro estágio (2) de forma contínua pelo topo do vaso de terceiro estágio (1 ); b) Utilizar o vaso de terceiro estágio (1 ) como uma etapa de separação natural entre o gás ascendente (corrente de sangria) e as partículas sólidas; c) Descartar periodicamente o material acumulado separado no cone do vaso de terceiro estágio (1 ).
2- APARATO APLICADO A SISTEMAS DE TERCEIRO ESTÁGIO DE CICLONES EM UNIDADES DE FCC para a realização do processo definido na reivindicação 1 , caracterizado pelo fato de que a vazão da corrente de sangria é definida por um orifício crítico (4) instalado na linha de saída (18) do ciclone de quarto estágio (3).
3- APARATO APLICADO A SISTEMAS DE TERCEIRO ESTÁGIO DE CICLONES EM UNIDADES DE FCC, de acordo com a reivindicação 2, caracterizado pelo fato de que a vazão da corrente de sangria é normalmente constituída de 2 a 5% dos gases que adentram o vaso de terceiro estágio (1 ) pelo bocal (9).
4- APARATO APLICADO A SISTEMAS DE TERCEIRO ESTÁGIO DE CICLONES EM UNIDADES DE FCC para a realização do processo definido na reivindicação 1 , caracterizado pelo fato de que o ponto de coleta da corrente de sangria deve ser preferencialmente posicionado em uma região central do vaso.
5- APARATO APLICADO A SISTEMAS DE TERCEIRO ESTÁGIO DE CICLONES EM UNIDADES DE FCC para a realização do processo definido na reivindicação 1 , caracterizado peio fato de que o envio da corrente de sangria pode ser feito para um ciclone de quarto estágio (3) externo acoplado a um silo de finos (5).
6- APARATO APLICADO A SISTEMAS DE TERCEIRO ESTÁGIO DE CICLONES EM UNIDADES DE FCC para a realização do processo definido na reivindicação 1 , caracterizado pelo fato de que o envio da corrente de sangria pode ser feito para um ciclone de quarto estágio (3) interno, munido de um ejetor (11 ) na perna do ciclone que faz uso de um fluido motriz, descartando a referida corrente no vaso de terceiro estágio (1 ).
7- APARATO APLICADO A SISTEMAS DE TERCEIRO ESTÁGIO DE CICLONES EM UNIDADES DE FCC para a realização do processo definido na reivindicação 1 , caracterizado pelo fato de que o envio da corrente de sangria pode ser feito para um ciclone de quarto estágio (3) externo, munido de um ejetor (11 ) na perna do ciclone que faz uso de um fluido motriz, descartando a referida corrente no vaso de terceiro estágio (1 ) através de um tubo de retomo de sólidos (12).
8- APARATO APLICADO A SISTEMAS DE TERCEIRO ESTÁGIO DE CICLONES EM UNIDADES DE FCC para realização do processo definido na reivindicação 1 , caracterizado pelo fato de que o envio dos sólidos separados pelos ciclones de terceiro estágio (2) e o ciclone de quarto estágio (3) pode ser feito do vaso de terceiro estágio (1 ) para o silo de finos (5) através de um bocal cativo (8) no fundo do vaso de terceiro estágio (1 ), através da aplicação de um pequeno diferencial de pressão entre o vaso de terceiro estágio (1 ) e o silo de finos (5), associado à injeção de uma baixa vazão de ar de arraste (15) na linha de transporte (16).
9- APARATO APLICADO A SISTEMAS DE TERCEIRO ESTÁGIO DE CICLONES EM UNIDADES DE FCC de acordo com a reinvindicação 8, caracterizado pelo fato de que pode ser instalado um pequeno filtro de bloqueio total (13) na linha de alívio (17) para a chaminé da unidade de FCC (7), localizada na saída do silo de finos (5).
PCT/BR2021/050353 2020-08-25 2021-08-20 Processo e aparatos aplicados a sistemas de terceiro estágio de ciclones em unidades de fcc WO2022040767A1 (pt)

Priority Applications (3)

Application Number Priority Date Filing Date Title
MX2023002270A MX2023002270A (es) 2020-08-25 2021-08-20 Proceso y aparato aplicados a sistemas de ciclon de tercera etapa en unidades de fcc.
PE2023000531A PE20230964A1 (es) 2020-08-25 2021-08-20 Proceso y aparato aplicados a sistemas de ciclon de tercera etapa en unidades de fcc
CONC2023/0003260A CO2023003260A2 (es) 2020-08-25 2023-03-16 Proceso y aparato aplicados a sistemas de ciclón de tercera etapa en unidades de fcc

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BR102020017321-9A BR102020017321A2 (pt) 2020-08-25 2020-08-25 Processo e aparatos aplicados a sistemas de terceiro estágio de ciclones em unidades de fcc
BR1020200173219 2020-08-25

Publications (1)

Publication Number Publication Date
WO2022040767A1 true WO2022040767A1 (pt) 2022-03-03

Family

ID=77999759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2021/050353 WO2022040767A1 (pt) 2020-08-25 2021-08-20 Processo e aparatos aplicados a sistemas de terceiro estágio de ciclones em unidades de fcc

Country Status (9)

Country Link
AR (1) AR123311A1 (pt)
BR (1) BR102020017321A2 (pt)
CL (1) CL2023000538A1 (pt)
CO (1) CO2023003260A2 (pt)
EC (1) ECSP23020675A (pt)
MX (1) MX2023002270A (pt)
PE (1) PE20230964A1 (pt)
UY (1) UY39392A (pt)
WO (1) WO2022040767A1 (pt)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5514271A (en) * 1994-04-28 1996-05-07 Mobil Oil Corporation Underflow cyclone with perforated barrel
US6797026B2 (en) * 2000-06-02 2004-09-28 Uop Llc Apparatus and process for separating fine solid particulates from a gas stream
US6902593B2 (en) * 2003-02-26 2005-06-07 Kellogg Brown And Root, Inc. Separation device to remove fine particles
US7081229B2 (en) * 2003-04-15 2006-07-25 Petroleo Brasileiro S.A. Second stage cyclone dipleg termination device in FCC units

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5514271A (en) * 1994-04-28 1996-05-07 Mobil Oil Corporation Underflow cyclone with perforated barrel
US6797026B2 (en) * 2000-06-02 2004-09-28 Uop Llc Apparatus and process for separating fine solid particulates from a gas stream
US6902593B2 (en) * 2003-02-26 2005-06-07 Kellogg Brown And Root, Inc. Separation device to remove fine particles
US7081229B2 (en) * 2003-04-15 2006-07-25 Petroleo Brasileiro S.A. Second stage cyclone dipleg termination device in FCC units

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BUSSEY KARL B, GIRISH K. CHITNIS , KLAUS W. SCHATZ: "New FCC Particulate Abatement Technology", NPRA ANNUAL MEETING, 1 January 1998 (1998-01-01), pages 1 - 18, XP055909083 *
CHEN, Y.M.: "Recent advances in FCC technology", POWDER TECHNOLOGY, vol. 163, no. 1-2, 25 April 2006 (2006-04-25), Basel (CH) , pages 2 - 8, XP025124359, ISSN: 0032-5910, DOI: 10.1016/j.powtec.2006.01.001 *
DRIES, H W; GEIGER, F J; BEKINK, S J; [1] POSTMA, R S; HOFFMANN, A C: "Hot flue gas clean up with the Shell Third Stage Separator", 6TH INTERNATIONAL CONFERENCE ON CIRCULATING FLUIDIZED BEDS (CFB-6), AND EXHIBITION, WURZBURG, GERMANY; AUGUST 22-27, 1999, 1 July 1999 (1999-07-01) - 27 August 1999 (1999-08-27), Oxford, pages 501 - 506, XP009535033 *

Also Published As

Publication number Publication date
PE20230964A1 (es) 2023-06-16
ECSP23020675A (es) 2023-06-30
MX2023002270A (es) 2023-03-09
CL2023000538A1 (es) 2023-07-28
UY39392A (es) 2021-09-30
AR123311A1 (es) 2022-11-16
BR102020017321A2 (pt) 2022-03-08
CO2023003260A2 (es) 2023-03-27

Similar Documents

Publication Publication Date Title
CN111315491B (zh) 用于气体-固体分离的设备和方法
US20110226129A1 (en) Cyclone separator and separation method
JP2010501033A (ja) 粒子含有ガス流から粒子を分離する方法
WO2009070058A3 (fr) Séparateur centrifuge servant à séparer des particules de liquide d&#39;un flux gazeux
RU2471565C2 (ru) Сепаратор газа и твердых частиц
JPS63501378A (ja) 固体セパレータを一体的に有する流動層燃焼装置
US6658988B1 (en) Apparatus and process for removing solid particles from gases
WO2022040767A1 (pt) Processo e aparatos aplicados a sistemas de terceiro estágio de ciclones em unidades de fcc
JP2000509419A (ja) パーホレーション・バレルを有するアンダーフロー・サイクロン
ES2203430T3 (es) Procedimientos de separacion de gases/solidos.
JP5867675B2 (ja) 排ガスのダスト除去装置及び方法
JPH06114226A (ja) 高温ガス用脱塵装置
KR102271577B1 (ko) 배기 가스 후처리 시스템 및 배기 가스 후처리 방법
CN203196518U (zh) 废气处理系统
KR102482802B1 (ko) 엔진 배기가스 또는 공정 장치로부터 미립자 물질의 제거를 위한 방법 및 시스템
US7597748B2 (en) Process to separate solids from solids laden gaseous flow
KR200178881Y1 (ko) 폐가스 처리 장치
JP3288104B2 (ja) 高温ガス用除塵装置
JP6101952B2 (ja) 同伴触媒粒子をガスから除去するための装置
CN1798823B (zh) 分离装置
KR102554706B1 (ko) 고효율 사이클론 집진장치
JP4794472B2 (ja) サイクロン詰まり対応方法
WO2016156947A1 (en) A gas-solid separator and a process for gas-solid separation
US11584538B2 (en) Inerting system with particulate removal
CN116367926A (zh) 具有自泄放的第三级系统及其用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21859434

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21859434

Country of ref document: EP

Kind code of ref document: A1