WO2022038987A1 - 熱可塑性樹脂組成物およびその成形品 - Google Patents

熱可塑性樹脂組成物およびその成形品 Download PDF

Info

Publication number
WO2022038987A1
WO2022038987A1 PCT/JP2021/028127 JP2021028127W WO2022038987A1 WO 2022038987 A1 WO2022038987 A1 WO 2022038987A1 JP 2021028127 W JP2021028127 W JP 2021028127W WO 2022038987 A1 WO2022038987 A1 WO 2022038987A1
Authority
WO
WIPO (PCT)
Prior art keywords
copolymer
meth
mass
acrylic acid
thermoplastic resin
Prior art date
Application number
PCT/JP2021/028127
Other languages
English (en)
French (fr)
Inventor
裕貴 田口
吉孝 内藤
Original Assignee
テクノUmg株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テクノUmg株式会社 filed Critical テクノUmg株式会社
Priority to US17/765,133 priority Critical patent/US11505693B1/en
Priority to EP21858135.3A priority patent/EP4201972A1/en
Priority to CN202180037327.4A priority patent/CN115667395B/zh
Publication of WO2022038987A1 publication Critical patent/WO2022038987A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • C08L33/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F279/00Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
    • C08F279/02Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00 on to polymers of conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F285/00Macromolecular compounds obtained by polymerising monomers on to preformed graft polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/18Homopolymers or copolymers of aromatic monomers containing elements other than carbon and hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/003Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D151/00Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
    • C09D151/003Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D151/00Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
    • C09D151/04Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D151/00Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
    • C09D151/06Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/30Applications used for thermoforming
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend

Definitions

  • the present invention relates to a thermoplastic resin composition capable of obtaining a molded product having excellent color development, weather resistance, and impact resistance, particularly weather color development resistance, and the molded product thereof.
  • Vehicle exterior parts such as door mirrors, pillars, garnishes, moldings, fenders, bumpers, front grilles, cowls, etc. are not only excellent in impact resistance and weather resistance, but also high in design of high-class products. Appearance quality is required. Specifically, high color development, particularly jet-black color development is required.
  • Patent Document 1 provides a molded product having a high jet-black appearance even with no coating or a clear coat, no light leakage from the inside of the product, good heat resistance and impact resistance, and high surface hardness.
  • Possible thermoplastic resin compositions include a graft copolymer (A), a copolymer (B) having an aromatic vinyl monomer unit and an unsaturated nitrile monomer unit, and an acrylic resin (C). , Carbon black (D) and dye (E), the content of the acetone insoluble content is 5 to 25% by mass, and the methacrylic acid ester unit and / or the acrylic acid ester unit in the acetone-soluble component.
  • a thermoplastic resin composition having a content of 35 to 85% by mass and containing a specific compound unit in a predetermined ratio in an acetone-soluble content is disclosed.
  • thermoplastic resin composition having excellent impact resistance, weather resistance, color development, etc.
  • an AES resin is blended with a methacrylic acid ester resin which is a hard resin so that a plurality of primary color synthetic dyes become black.
  • a thermoplastic resin composition colored black with an organic dye formulated in 1 has been proposed.
  • the transparency or weather resistance of the resin component itself is insufficient, so that the color development property by the dye, particularly the color development property of jet black, and the weather color development property thereof are inferior, and the color development property is jet black with time. There was a problem that the appearance of the tone was impaired.
  • An object of the present invention is to provide a thermoplastic resin composition and a molded product thereof, which can obtain a molded product having excellent color development, weather resistance, and impact resistance, particularly weather color development.
  • the present inventor uses a (meth) acrylic acid alkyl ester (a) and a (meth) acrylic acid ester (b) having an aromatic hydrocarbon group in a predetermined ratio, and has a specific average particle size and particle size distribution.
  • a graft copolymer obtained by graft-polymerizing a vinyl-based monomer mixture (m1) containing a (meth) acrylic acid alkyl ester, a vinyl cyanide compound and an aromatic vinyl compound in the presence of the copolymer (A) having the above.
  • thermoplastic resin composition containing the polymer (B) and the copolymer (C) which is a polymerization reaction product of the vinyl-based monomer mixture (m2) containing the (meth) acrylic acid alkyl ester provides color-developing property. It has been found that a molded product having excellent weather resistance and impact resistance and particularly excellent weather color development can be obtained.
  • the gist of the present invention is as follows.
  • thermoplastic resin composition containing the copolymer (C) which is a polymerization reaction product of (m2), and the graft copolymer (B) is a graft copolymer having a volume average particle diameter of at least 300 to 800 nm.
  • the content of the (meth) acrylic acid alkyl ester (a) unit in the polymer is 67 to 83% by mass, and the content of the (meth) acrylic acid ester (b) unit having an aromatic hydrocarbon group is 17 to 33% by mass.
  • the volume average particle diameter (X) of the copolymer (A) is 50 to 800 nm, and the volume average particle diameter (X) of the copolymer (A) is represented by X in the particle size distribution curve.
  • the particle size where the cumulative value of the frequency from the upper limit is 10% is represented by Y as the frequency upper limit 10% volume particle size (Y), and the cumulative value of the frequency from the lower limit in the particle size distribution curve is 10%.
  • the current particle size is represented by Z as the lower limit of frequency 10% volume particle diameter (Z)
  • the volume average particle diameter (X), the upper limit frequency 10% volume particle diameter (Y), and the lower limit frequency 10% volume particle diameter ( Z) is a thermoplastic resin composition, which satisfies the following (1) and (2).
  • thermoplastic resin composition according to [1] 10 to 50 parts by mass of the graft copolymer (B) and 50 to 50 parts by mass of the copolymer (C) in a total of 100 parts by mass of the graft copolymer (B) and the copolymer (C).
  • the thermoplastic resin composition according to [1] which comprises 90 parts by mass.
  • the vinyl-based monomer mixture (m1) contains 10 to 30% by mass of the (meth) acrylic acid alkyl ester, 10 to 30% by mass of the vinyl cyanide compound, and 50 to 70% by mass of the aromatic vinyl compound.
  • the ratio of the copolymer (A) to 100% by mass of the total of the copolymer (A) of the graft copolymer (B) and the vinyl-based monomer mixture (m1) is 50 to 80% by mass.
  • thermoplastic resin composition according to any one of [1] to [4], further containing the dye (D).
  • thermoplastic resin composition obtained by molding the thermoplastic resin composition according to any one of [1] to [5].
  • thermoplastic resin composition of the present invention a molded product having excellent color development property, weather resistance and impact resistance, and particularly excellent weather color development property is provided.
  • the molded product of the present invention formed by molding the thermoplastic resin composition of the present invention is suitable for vehicle exterior parts such as door mirrors, pillars, garnishes, moldings, fenders, bumpers, front grilles, cowls and the like. It can be used and can maintain a good appearance for a long period of time even if it is unpainted.
  • (meth) acrylic acid means one or both of “acrylic acid” and “methacrylic acid”, and the same applies to “(meth) acrylate”.
  • the “unit” means a structural portion derived from a compound (monomer, that is, a monomer) before polymerization contained in the polymer.
  • (meth) acrylic acid alkyl ester (a) unit means "a structural portion derived from (meth) acrylic acid alkyl ester (a) and contained in the copolymer (A)".
  • the content ratio of each monomer unit of the polymer corresponds to the content ratio of the monomer in the monomer mixture used for producing the polymer.
  • thermoplastic resin composition of the present invention is a copolymer (A) of a (meth) acrylic acid alkyl ester (a) and a (meth) acrylic acid ester (b) having an aromatic hydrocarbon group (hereinafter, ""
  • a vinyl-based monomer mixture (m1) containing a (meth) acrylic acid alkyl ester, a vinyl cyanide compound and an aromatic vinyl compound is grafted onto the copolymer (A) of the present invention.
  • a vinyl-based monomer mixture containing a polymerized graft copolymer (B) (hereinafter, may be referred to as "graft copolymer (B) of the present invention") and a (meth) acrylic acid alkyl ester. It is a thermoplastic resin composition containing the copolymer (C) which is a polymerization reaction product of (m2), and is a graft copolymer having a volume average particle diameter of at least 300 to 800 nm as the graft copolymer (B) of the present invention.
  • X is represented by X
  • Y the particle diameter where the cumulative value of the frequency from the upper limit in the particle size distribution curve is 10%
  • Z the particle diameter where the cumulative value of the frequency from the lower limit is 10%
  • Z the volume average particle diameter (X) and the frequency upper limit 10% volume particle diameter.
  • (Y) and the frequency lower limit of 10% volume particle diameter (Z) satisfy the following (1) and (2). (1) Y / X ⁇ 1.4 (2) Z / X ⁇ 0.6
  • the copolymer (A) of the present invention is a copolymer of a (meth) acrylic acid alkyl ester (a) and a (meth) acrylic acid ester (b) having an aromatic hydrocarbon group.
  • a (meth) acrylic acid alkyl ester having an alkyl group having 1 to 12 carbon atoms is preferable.
  • n-butyl acrylate, 2-ethylhexyl acrylate, and ethyl acrylate are particularly preferable because the thermoplastic resin composition of the present invention containing the obtained graft copolymer (B) has excellent impact resistance. preferable.
  • the (meth) acrylic acid alkyl ester (a) can be used alone or in combination of two or more.
  • the (meth) acrylic acid ester having an aromatic hydrocarbon group (b) may be an aromatic hydrocarbon group such as a phenyl group or a benzyl group, or a (meth) acrylic acid ester having a group containing an aromatic hydrocarbon group. Just do it. Examples thereof include (meth) acrylic acid aryl ester and (meth) acrylic acid aryloxy ester, and (meth) acrylic acid alkyl ester having an aryl group such as a phenyl group and an aryloxy group such as a phenoxy group as a substituent of the alkyl ester moiety. .. However, it is not limited to these.
  • thermoplastic resin composition of the present invention containing the obtained graft copolymer (B) has excellent impact resistance.
  • Benzyl acrylate and 2-phenoxyethyl acrylate are particularly preferred.
  • the (meth) acrylic acid ester (b) having an aromatic hydrocarbon group can be used alone or in combination of two or more.
  • the copolymer (A) of the present invention contains (meth) in a total of 100% by mass of the (meth) acrylic acid alkyl ester (a) unit and the (meth) acrylic acid ester (b) unit having an aromatic hydrocarbon group.
  • Acrylic acid alkyl ester (a) contains 67 to 83% by mass
  • (meth) acrylic acid ester (b) having an aromatic hydrocarbon group contains 17 to 33% by mass.
  • thermoplastic resin composition of the present invention which comprises the polymer (B), has excellent transparency, excellent color development, and excellent impact resistance. From this point of view, in a total of 100% by mass of the (meth) acrylic acid alkyl ester (a) unit of the copolymer (A) of the present invention and the (meth) acrylic acid ester (b) unit having an aromatic hydrocarbon group.
  • the content of each unit is 70 to 80% by mass of the (meth) acrylic acid alkyl ester (a) unit and 20 to 30% by mass of the (meth) acrylic acid ester (b) unit having an aromatic hydrocarbon group. It is preferable to have.
  • the content of the (meth) acrylic acid alkyl ester (a) is at least the above upper limit, the transparency and impact resistance are good.
  • the content of the (meth) acrylic acid alkyl ester (a) is not more than the above upper limit, the transparency tends to be good and the color development property tends to be good.
  • the content of the (meth) acrylic acid ester (a) unit and the (meth) acrylic acid ester (b) unit having an aromatic hydrocarbon group in the copolymer (A) is the same as that of the copolymer (A) or the graft.
  • (meth) accounts for the total of the (meth) acrylic acid alkyl ester (a) used in the production of the copolymer (A) and the (meth) acrylic acid ester (b) having an aromatic hydrocarbon group.
  • the content ratio of each of the acrylic acid alkyl ester (a) and the (meth) acrylic acid ester (b) having an aromatic hydrocarbon group is the (meth) acrylic acid alkyl ester (a) in the copolymer (A), respectively.
  • Units and content of (meth) acrylic acid ester (b) units having aromatic hydrocarbon groups are examples of (meth) acrylic acid alkyl ester (a) used in the production of the copolymer (A) and the (meth) acrylic acid ester (b) having an aromatic hydrocarbon group.
  • the copolymer (A) of the present invention contains units and grafts derived from a cross-linking agent. It is preferably a copolymer having either or both of the units derived from the cross-linking agent.
  • the copolymer (A) contains a unit derived from a graft cross-linking agent and / or a cross-linking agent, the impact resistance of the thermoplastic resin composition of the present invention comprising the obtained graft copolymer (B). The effect of further improving is achieved.
  • graft crossover examples include allyl compounds, specifically, allyl methacrylate, triallyl cyanurate, triallyl isocyanurate, and the like. Only one of these may be used, or two or more thereof may be mixed and used.
  • cross-linking agent examples include dimethacrylate compounds, and specific examples thereof include ethylene glycol dimethacrylate, propylene glycol dimethacrylate, 1,3-butylene glycol dimethacrylate, and 1,4-butylene glycol dimethacrylate. Only one of these may be used, or two or more thereof may be mixed and used.
  • the proportion of the unit derived from the cross-linking agent and / or the graft cross-linking agent in the copolymer (A) of the present invention contains the obtained graft copolymer (B).
  • the thermoplastic resin composition of the present invention is excellent in impact resistance, the (meth) acrylic acid alkyl ester (a) unit and the (meth) acrylic acid ester (b) unit having an aromatic hydrocarbon group And 0.1 to 3% by mass, more preferably 0.2 to 2% by mass, out of a total of 100% by mass of the unit derived from the cross-linking agent and / or the unit derived from the graft copolymer.
  • the copolymer (A) of the present invention has a (meth) acrylic acid alkyl ester (a) unit and a (meth) acrylic acid ester (b) unit having an aromatic hydrocarbon group, as long as the object of the present invention is not impaired. , It may contain other monomeric units other than the units derived from the cross-linking agent and / or the graft-crossing agent used as needed. Other monomer units that may be contained in the copolymer (A) of the present invention include the (meth) acrylic acid alkyl ester (a) contained in the vinyl-based monomer mixture (m1) described later. Examples thereof include one or more vinyl-based monomers other than the (meth) acrylic acid ester (b) having an aromatic hydrocarbon group.
  • the content of these other vinyl-based monomer units is 20% by mass or less, particularly 10% by mass or less, based on 100% by mass of the copolymer (A) of the present invention. It is preferable to have.
  • the method for producing the copolymer (A) of the present invention is not particularly limited.
  • a method for producing the copolymer (A) of the present invention a (meth) acrylic acid alkyl ester (a), a (meth) acrylic acid ester having an aromatic hydrocarbon group (b), a cross-linking agent and / or A method of emulsion polymerization or miniemulsion polymerization of a mixture containing a graft crossing agent is preferable.
  • the method of mini-emulsion polymerization is particularly preferable because the physical properties of the resin composition of the present invention, which comprises the obtained graft copolymer (B), are excellent.
  • a radical initiator As a method for producing the copolymer (A) by the emulsion polymerization method, a radical initiator, a (meth) acrylic acid alkyl ester (a), and a (meth) acrylic acid ester having an aromatic hydrocarbon group in an aqueous solvent (meth) acrylic acid ester (A method of adding a cross-linking agent and / or a graft cross-linking agent to b) and copolymerizing in the presence of an emulsifier can be mentioned.
  • the method of adding the radical initiator, the (meth) acrylic acid alkyl ester (a), the (meth) acrylic acid ester (b) having an aromatic hydrocarbon group, and the cross-linking agent and / or the graft crossing agent are collectively described. It may be divided or continuous.
  • the miniemulsion polymerization for producing the copolymer (A) is not limited to, for example, a (meth) acrylic acid alkyl ester (a) and a (meth) acrylic acid having an aromatic hydrocarbon group.
  • the ester (b), a cross-linking agent and / or a graft crossing agent, a hydrophobic substance, and an initiator are mixed, and water and an emulsifying agent are added to the obtained mixture to impart a shearing force to the preemulsion (b). It can include a step of making a miniemulsion) and a step of heating the mixture to the polymerization initiation temperature to polymerize it.
  • the miniemulsion step for example, by carrying out a shearing step by ultrasonic irradiation, the monomer is torn off by the shearing force, and monomer micro oil droplets covered with an emulsifier are formed. Then, by heating to the polymerization initiation temperature of the initiator, the monomer fine oil droplets are polymerized as they are, and polymer fine particles are obtained.
  • the high shearing device capable of forming a miniemulsion is not limited to these, and includes, for example, an emulsifying device including a high-pressure pump and an interaction chamber, and a device for forming a miniemulsion by ultrasonic energy or high frequency.
  • the emulsifying device including a high-pressure pump and an interaction chamber include a "pressure homogenizer” manufactured by SPX Corporation APV and a "microfluidizer” manufactured by Paulek Co., Ltd.
  • Examples of the device for forming a miniemulsion by ultrasonic energy or high frequency include “Sonic Dismembrator” manufactured by Fisher Scientific and “ULTRASONIC HOMOGENIZER” manufactured by Nissei Tokyo Office. However, it is not limited to these.
  • the amount of the aqueous solvent used in the miniemulsion should be other than water so that the solid content concentration of the reaction system after polymerization is about 5 to 50% by mass from the viewpoint of workability, stability, manufacturability, etc. It is preferably about 100 to 500 parts by mass with respect to 100 parts by mass of the mixture.
  • the copolymer (A) is produced by mini-emulsion polymerization, it is preferable to use a hydrophobic substance in a predetermined ratio.
  • a hydrophobic substance is added when forming a pre-emulsion, the production stability of the mini-emulsion polymerization tends to be further improved, and the copolymer (A) suitable for the present invention can be produced.
  • hydrophobic substance examples include hydrocarbons having 10 or more carbon atoms, alcohols having 10 or more carbon atoms, hydrophobic polymers having a mass average molecular weight (Mw) of less than 10,000, and hydrophobic monomers, for example, alcohols having 10 to 30 carbon atoms.
  • Hydrophobic chain transfer agents for example, hydrophobic peroxides and the like. These may be used alone or in admixture of two or more.
  • the hydrophobic substance includes hexadecane, octadecane, icosan, liquid paraffin, liquid isoparaffin, paraffin wax, polyethylene wax, olive oil, cetyl alcohol, stearyl acrylate, lauryl acrylate, stearyl acrylate, and lauryl methacrylate.
  • the hydrophobic substance is based on 100 parts by mass of the (meth) acrylic acid alkyl ester (a), the (meth) acrylic acid ester (b) having an aromatic hydrocarbon group, and the cross-linking agent and / or the graft crossing agent. , 0.1 to 10 parts by mass, particularly 1 to 3 parts by mass is preferable from the viewpoint of controlling the particle size of the copolymer (A).
  • Examples of the emulsifier used in producing the copolymer (A) of the present invention include oleic acid, palmitic acid, stearic acid, alkali metal salts of loginic acid, alkali metal salts of alkenyl succinic acid, and the like.
  • Use known emulsifiers alone or in combination of two or more, such as anionic emulsifiers selected from emulsifiers, alkyl sulfate esters, sodium alkylbenzene sulfonates, sodium alkylsulfosuccinates, sodium polyoxyethylene nonylphenyl ether sulfates, etc. can do.
  • the amount of the emulsifier added is 100 parts by mass in total of the (meth) acrylic acid alkyl ester (a), the (meth) acrylic acid ester (b) having an aromatic hydrocarbon group, and the cross-linking agent and / or the graft crossing agent.
  • 0.01 to 3.0 parts by mass, particularly 0.05 to 2.0 parts by mass are preferable from the viewpoint of controlling the particle size of the copolymer (A).
  • the initiator used in the production of the copolymer (A) is a radical polymerization initiator for radical polymerization, and the type thereof is not particularly limited.
  • the initiator include an azo polymerization initiator, a photopolymerization initiator, an inorganic peroxide, an organic peroxide, and a redox-based initiator in which an organic peroxide, a transition metal, and a reducing agent are combined.
  • azo polymerization initiators, inorganic peroxides, organic peroxides, and redox-based initiators that can initiate polymerization by heating are preferable. These may be used alone or in combination of two or more.
  • azo polymerization initiator examples include 2,2'-azobis (4-methoxy-2,4-dimethylvaleronitrile), 2,2'-azobis (2,4-dimethylvaleronitrile), and 2,2'-. Azobisisobutyronitrile, 2,2'-azobis (2-methylbutyronitrile), 1,1'-azobis (cyclohexane-1-carbonitrile), 1-[(1-cyano-1-methylethyl) Azo] form amide, 4,4'-azobis (4-cyanovaleric acid), dimethyl 2,2'-azobis (2-methylpropionate), dimethyl 1,1'-azobis (1-sikuhexanecarboxylate) ), 2,2'-Azobis [2-methyl-N- (2-hydroxyethyl) propionamide], 2,2'-azobis (N-butyl-2-methylpropionamide), 2,2'-azobis ( N-cyclohexyl-2-methylpropionamide), 2,2'-azobis [2-methyl
  • inorganic peroxide examples include potassium persulfate, sodium persulfate, ammonium persulfate, hydrogen peroxide and the like.
  • organic peroxides include peroxyester compounds. Specific examples thereof include ⁇ , ⁇ '-bis (neodecanoyl peroxy) diisopropylbenzene, cumylperoxyneodecanoate, 1,1,3,3-tetramethylbutylperoxyneodecanoate, 1-cyclohexyl-.
  • a combination of an organic peroxide, ferrous sulfate, a chelating agent and a reducing agent is preferable.
  • an organic peroxide for example, cumene hydroperoxide, ferrous sulfate, sodium pyrophosphate, and dextrose, or a combination of t-butyl hydroperoxide, sodium formaldehyde sulfoxylate (longalit), ferrous sulfate, and disodium ethylenediamine tetraacetate. And so on.
  • organic peroxides are particularly preferable as the initiator.
  • the amount of the initiator added is 100 parts by mass in total of the (meth) acrylic acid alkyl ester (a), the (meth) acrylic acid ester (b) having an aromatic hydrocarbon group, and the cross-linking agent and / or the graft crossing agent. It is usually 5 parts by mass or less, preferably 3 parts by mass or less, for example, 0.001 to 3 parts by mass.
  • the step of preparing the above pre-emulsion is usually performed at room temperature (about 10 to 50 ° C.).
  • the mini-emulsion polymerization step is carried out at 40 to 100 ° C. for about 30 to 600 minutes.
  • the particle size of the copolymer (A) of the present invention is usually 50 to 800 nm in volume average particle size, preferably 100 to 600 nm, and more preferably 250 to 450 nm.
  • volume average particle size is within the above range, there are few agglomerates during polymerization, and the thermoplastic resin composition of the present invention containing the graft copolymer (B) using this copolymer (A). The impact resistance becomes better.
  • the volume average particle size (X) is represented by X
  • the upper limit of the frequency is 10% when the cumulative value of the frequency from the upper limit in the particle size distribution curve is 10%.
  • the volume particle diameter (Y) is represented by Y
  • the particle diameter where the cumulative value of the frequency from the lower limit in the particle diameter distribution curve is 10% is represented by Z as the frequency lower limit 10% volume particle diameter (Z).
  • both of the following relational expressions (1) and (2) are satisfied.
  • the copolymer (A) of the present invention may satisfy the above relational expressions (1) and (2) as its particle size distribution, and in particular, the following relational expressions (1A) and (2A) can be satisfied. It is preferable from the viewpoint of impact resistance of the thermoplastic resin composition of the present invention.
  • (1A) 1.0 ⁇ Y / X ⁇ 1.3
  • (2A) 0.7 ⁇ Z / X ⁇ 1.0
  • the method for controlling the average particle size and particle size distribution of the copolymer (A) within the above-mentioned preferable range is not particularly limited.
  • a method of adjusting the type or amount of emulsifier used can be mentioned.
  • the volume average particle diameter (X), the frequency upper limit 10% volume particle diameter (Y), and the frequency lower limit 10% volume particle diameter (Z) of the copolymer (A) of the present invention are described in the section of Examples described later. For example, it is measured with respect to the copolymer (A) dispersed in the above-mentioned aqueous dispersion.
  • the graft copolymer (B) of the present invention is a vinyl-based monomer mixture containing a (meth) acrylic acid alkyl ester, a vinyl cyanide compound and an aromatic vinyl compound with respect to the copolymer (A) of the present invention.
  • m1 is a graft copolymer obtained by graft polymerization.
  • the graft copolymer (B) of the present invention is a vinyl-based monomer containing a (meth) acrylic acid alkyl ester, a vinyl cyanide compound and an aromatic vinyl compound in the presence of the copolymer (A) of the present invention. It is obtained by polymerizing the mixture (m1).
  • the (meth) acrylic acid alkyl ester contained in the vinyl-based monomer mixture (m1) preferably has an alkyl group having 1 to 20 carbon atoms, particularly 1 to 10 carbon atoms.
  • the alkyl group may be a linear alkyl group, a branched alkyl group, or a cycloalkyl group. It is preferably a linear alkyl group.
  • Examples of the (meth) acrylic acid alkyl ester include methyl acrylate, ethyl acrylate, n-propyl acrylate, i-propyl acrylate, n-butyl acrylate, i-butyl acrylate, t-butyl acrylate, and acrylic.
  • Acrylic acid alkyl esters such as amyl acid, isoamyl acrylate, octyl acrylate, -2-ethylhexyl acrylate, decyl acrylate, lauryl acrylate, stearyl acrylate, cyclohexyl acrylate, pentyl acrylate, benzyl acrylate; methacrylic acid.
  • methacrylic acid alkyl esters such as -2-ethylhexyl, decyl methacrylate, lauryl methacrylate, cyclohexyl methacrylate and benzyl methacrylate.
  • graft copolymer (B) from the viewpoint of enhancing the transparency, that is, the color development property, the impact resistance, and the weather resistance of the molded product made of the thermoplastic resin composition of the present invention containing the obtained graft copolymer (B).
  • Methyl acrylate, methyl methacrylate and ethyl methacrylate are preferable, and methyl methacrylate and ethyl methacrylate are more preferable.
  • acrylic acid alkyl esters may be used alone or in combination of two or more.
  • the (meth) acrylic acid alkyl ester contained in the vinyl-based monomer mixture (m1) has the same structure as the (meth) acrylic acid alkyl ester contained in the vinyl-based monomer mixture (m2) described later.
  • the thermoplastic resin composition of the present invention and its molded product are particularly preferable in terms of color development, impact resistance, and weather resistance.
  • the content of the (meth) acrylic acid alkyl ester contained in the vinyl-based monomer mixture (m1) is not particularly limited, but it is 10 to 30% by mass of the thermoplastic resin composition of the present invention and its molding. It is preferable because it has an excellent balance between impact resistance and color development of the product.
  • Examples of the vinyl cyanide compound contained in the vinyl-based monomer mixture (m1) include acrylonitrile and methacrylonitrile. Among these, acrylonitrile is preferable from the viewpoint of increasing the transparency of the obtained molded product, that is, color development and impact resistance.
  • vinyl cyanide compounds may be used alone or in combination of two or more.
  • the content of the vinyl cyanide compound contained in the vinyl-based monomer mixture (m1) is not particularly limited, but the resistance of the thermoplastic resin composition of the present invention and its molded product is 10 to 30% by mass. It is preferable because it has an excellent balance between impact resistance and color development.
  • Examples of the aromatic vinyl compound contained in the vinyl-based monomer mixture (m1) include styrene, ⁇ -methylstyrene, o-, m- or p-methylstyrene, vinylxylene, pt-butylstyrene, and ethyl. Examples include styrene. Among these, styrene is preferable from the viewpoint of enhancing the color development property and impact resistance of the obtained molded product.
  • aromatic vinyl compounds may be used alone or in combination of two or more.
  • the content of the aromatic vinyl compound contained in the vinyl-based monomer mixture (m1) is not particularly limited, but the resistance of the thermoplastic resin composition of the present invention and its molded product is 50 to 70% by mass. It is preferable because it has an excellent balance between impact resistance and color development.
  • the vinyl-based monomer mixture (m1) contains the above-mentioned (meth) acrylic acid alkyl ester, vinyl cyanide compound and aromatic vinyl compound, and other monomers copolymerizable with these, for example, methyl acrylate.
  • Acrylic acid alkyl esters such as ethyl acrylate can be included to suppress the depolymerization.
  • Examples of other monomers include N-methylmaleimide, N-ethylmaleimide, Nn-propylmaleimide, Ni-propylmaleimide, Nn-butylmaleimide, N-i-butylmaleimide, and N-.
  • N-cycloalkylmaleimide such as tert-butylmaleimide and N-cyclohexylmaleimide
  • N-arylmaleimide such as N-phenylmaleimide, N-alkyl substituted phenylmaleimide, N-chlorophenylmaleimide
  • maleimide-based compounds such as N-aralkylmaleimide Can be mentioned. These can be used alone or in combination of two or more.
  • the graft copolymer (B) of the present invention is a vinyl-based monomer mixture (m1) containing a (meth) acrylic acid alkyl ester, a vinyl cyanide compound and an aromatic vinyl compound in the copolymer (A) of the present invention. Is graft-polymerized.
  • the copolymer (A) used for producing the graft copolymer (B) is produced.
  • the vinyl-based monomer mixture (m1) is 50 to 80% by mass of the copolymer (A) and 20 to 50% by mass of the vinyl-based monomer mixture (m1) in 100% by mass of the graft copolymer (B). It is preferably by mass%.
  • the graft copolymer (B) of the present invention has a graft ratio of 25 because the thermoplastic resin composition of the present invention and the molded product thereof, which are blended with the obtained graft copolymer (B), have an excellent physical balance. It is preferably ⁇ 100%.
  • the graft ratio of the graft copolymer (B) is measured by the method described in the section of Examples described later.
  • the graft copolymer (B) is produced by a known method such as a bulk polymerization method, a solution polymerization method, a bulk suspension polymerization method, a suspension polymerization method, and an emulsion polymerization method.
  • the emulsion polymerization method is preferable because the thermoplastic resin composition of the present invention and the molded product thereof, which are blended with the obtained graft copolymer (B), have a good physical balance.
  • a vinyl-based monomer mixture (m1) is added collectively, continuously, or intermittently in the presence of the emulsion of the copolymer (A) of the present invention for radical polymerization.
  • a chain transfer agent is used for the purpose of adjusting the molecular weight of the graft polymer (B) and the graft ratio, and a known inorganic electrolyte or the like is used for the purpose of adjusting the viscosity and pH of the latex. You may do it.
  • various emulsifiers and radical initiators can be used as needed.
  • the type and amount of emulsifier and radical initiator added are not particularly limited.
  • examples of the emulsifier and the radical initiator include the emulsifier and the radical initiator exemplified above in the description of the copolymer (A).
  • (I) A method of putting an aqueous dispersion of the graft copolymer (B) into hot water in which a coagulant is dissolved and coagulating it into a slurry state to recover it (wet method).
  • (Ii) A method for semi-directly recovering the graft copolymer (B) by spraying an aqueous dispersion of the graft copolymer (B) in a heated atmosphere (spray drying method). And so on.
  • the coagulant examples include inorganic acids such as sulfuric acid, hydrochloric acid, phosphoric acid and nitric acid, and metal salts such as calcium chloride, calcium acetate and aluminum sulfate.
  • the coagulant is selected according to the emulsifier used in the polymerization. When only a carboxylic acid soap such as a fatty acid soap or a rosin acid soap is used as an emulsifier, any coagulant may be used.
  • the emulsifier contains an emulsifier that exhibits stable emulsifying power even in an acidic region such as sodium dodecylbenzene sulfonate, it is necessary to use a metal salt as the coagulant.
  • a method for obtaining the graft copolymer (B) in a dry state from the graft copolymer (B) in a slurry state (I) A method of elution of the emulsifier residue remaining in the slurry into water by washing, dehydrating the slurry with a centrifugal dehydrator or a press dehydrator, and further drying with an air flow dryer or the like (ii) Squeezing dehydrator, Examples thereof include a method of simultaneously performing dehydration and drying with an extruder or the like. After this drying, the graft copolymer (B) is obtained in the form of powder or particles.
  • the graft copolymer (B) discharged from the squeeze dehydrator or extruder can also be sent directly to the extruder or molding machine for producing the thermoplastic resin composition.
  • the thermoplastic resin composition of the present invention contains at least a graft copolymer (B) of the present invention having a volume average particle diameter of 300 to 800 nm, preferably 350 to 600 nm.
  • a graft copolymer (B) of the present invention having a volume average particle diameter of 300 to 800 nm, preferably 350 to 600 nm.
  • thermoplastic resin composition of the present invention since the impact resistance can be further enhanced, it is preferable to use a mixture of two or more kinds of graft copolymers (B) having different volume average particle diameters. ..
  • the volume average of the graft copolymer (B) having a relatively large particle size in the range of 300 to 800 nm (hereinafter, may be referred to as “graft copolymer (Ba)”) and the volume average.
  • graft copolymer (Ba) graft copolymer
  • It can be used in combination with a graft copolymer (B) having a relatively small particle size in the range of 50 to 150 nm (hereinafter, may be referred to as “graft copolymer (Bb)”).
  • graft copolymer (Bb) graft copolymer
  • the volume average particle size of the graft copolymer (Ba) is more preferably 350 to 600 nm.
  • the volume average particle size of the graft copolymer (Bb) is more preferably 80 to 140 nm.
  • the graft copolymer is used.
  • the proportion of the graft copolymer (Ba) in the total 100% by mass of the polymer (Ba) and the graft copolymer (Bb) is 20 to 80% by mass, and the proportion of the graft copolymer (Bb) is 20 to 20 to
  • the proportion of the graft copolymer (Ba) is preferably 30 to 70% by mass, and the proportion of the graft copolymer (Bb) is more preferably 30 to 70% by mass.
  • the combined use of the graft copolymer (Ba) and the graft copolymer (Bb) means that the volume average particle size of these graft copolymers (Ba) and the volume average particle size of the graft copolymer (Bb) are used. It differs from the use of only one type of graft copolymer (B) having a volume average particle size in the middle of the above in that the distance between particles can be shortened.
  • the method for controlling the volume average particle size of the graft copolymer (B), the graft copolymer (Ba), and the graft copolymer (Bb) within the above-mentioned preferable range is not particularly limited, but for example, the copolymer (A).
  • a method of adjusting the type or amount of the emulsifier at the time of production can be mentioned.
  • the volume average particle size of the graft copolymer (B) is measured by the method described in the section of Examples described later.
  • the copolymer (C) is obtained by polymerizing a vinyl-based monomer mixture (m2) containing a (meth) acrylic acid alkyl ester.
  • the vinyl-based monomer mixture (m2) contains (meth) acrylic acid ester as an essential component because the obtained thermoplastic resin composition of the present invention and its molded product are excellent in transparency, that is, color development and weather resistance. Is.
  • Examples of the (meth) acrylic acid alkyl ester contained in the vinyl-based monomer mixture (m2) include those described above as the (meth) acrylic acid alkyl ester contained in the vinyl-based monomer mixture (m1).
  • the above-mentioned (meth) acrylic acid alkyl esters methyl acrylate, methyl methacrylate, ethyl methacrylate from the viewpoint of enhancing the color development, impact resistance, and weather resistance of the thermoplastic resin composition of the present invention and its molded product. Is preferable, and methyl methacrylate and ethyl methacrylate are more preferable.
  • (meth) acrylic acid alkyl esters may be used alone or in combination of two or more.
  • methyl methacrylate and methyl acrylate in combination at a ratio of 1: 0.01 to 0.2 (mass ratio) because depolymerization of the copolymer (C) can be suppressed.
  • the content of the (meth) acrylic acid alkyl ester contained in the vinyl-based monomer mixture (m2) is 60 to 100% by mass, that is, the transparency and weather resistance of the thermoplastic resin composition of the present invention and its molded product. It is preferable in terms of excellent properties, and more preferably 70 to 100% by mass.
  • the vinyl-based monomer mixture (m2) is a range in which the above-mentioned (meth) acrylic acid alkyl ester and other monomers copolymerizable with the above-mentioned (meth) acrylic acid alkyl ester do not impair the physical properties of the thermoplastic resin composition and its molded product. Can be included in.
  • the other monomer include the vinyl cyanide compound contained in the vinyl-based monomer mixture (m1), the aromatic vinyl compound, and the above-mentioned other monomers. Other monomers may be used alone or in combination of two or more.
  • the mass average molecular weight of the copolymer (C) is not particularly limited, but is preferably in the range of 10,000 to 300,000, and particularly preferably in the range of 50,000 to 200,000. When the mass average molecular weight of the copolymer (C) is within the above range, the thermoplastic resin composition of the present invention has excellent fluidity and impact resistance.
  • the mass average molecular weight of the copolymer (C) is measured by the method described in the section of Examples described later.
  • the method for producing the copolymer (C) is not particularly limited, and examples thereof include known methods such as emulsion polymerization, suspension polymerization, bulk polymerization, and solution polymerization. Suspension polymerization and bulk polymerization are preferable from the viewpoint of heat resistance of the obtained thermoplastic resin composition.
  • the polymerization initiator used in the production of the copolymer (C) is not particularly limited, and examples thereof include organic peroxides.
  • a chain transfer agent can be used to adjust the molecular weight of the copolymer (C) during the production of the copolymer (C).
  • the chain transfer agent is not particularly limited, and examples thereof include mercaptans, ⁇ -methylstyrene dimers, and terpenes.
  • thermoplastic resin composition of the present invention preferably contains the dye (D) from the viewpoint of the effect of color development.
  • the dye (D) used in the present invention is not particularly limited, and examples thereof include organic dyes such as methine-based synthetic dyes, anthraquinone-based synthetic dyes, perinone-based synthetic dyes, azo-based synthetic dyes, and quinoline-based synthetic dyes. Only one of these dyes may be used, or two or more of these dyes may be mixed and used. In particular, it is preferable to mix and use two or more of these dyes so as to have a black color, because a remarkable effect on jet-blackness as a color-developing property can be obtained.
  • organic dyes such as methine-based synthetic dyes, anthraquinone-based synthetic dyes, perinone-based synthetic dyes, azo-based synthetic dyes, and quinoline-based synthetic dyes. Only one of these dyes may be used, or two or more of these dyes may be mixed and used. In particular, it is preferable to mix and use two or more of these dyes so as to have a black color, because
  • methine-based synthetic dyes include methine-based synthetic dyes commercially available with the color indexes of Solvent Orange 80, Solvent Orange 107, and Solvent Yellow 93.
  • anthraquinone-based synthetic dyes include Solvent Blue 35, Solvent Green 3, Solvent Orange 28, Solvent Red 111, Solvent Red 168, Solvent Red 207, Disperse Red 22, Solvent Red.
  • perinone-based synthetic dyes include solvent-based synthetic dyes commercially available with the color indexes of Solvent Orange 60, Solvent Red 135, and Solvent Red 179.
  • azo-based synthetic dyes include azo-based synthetic dyes commercially available with the color indexes of Solvent Yellow 14, Solvent Yellow 16, Solvent Red 23, Solvent Red 24, and Solvent Red 27.
  • quinoline-based synthetic dyes include quinoline-based synthetic dyes commercially available with the color indexes of Solvent Yellow 33, Solvent Yellow 157, Disperce Yellow 54, and Disperse Yellow 160.
  • Each of these synthetic dyes is not black by itself, but is black by combining multiple kinds with different color tones.
  • the combination of the plurality of synthetic dyes and their mass ratios are appropriately set so as to exhibit black color when they are mixed, depending on the color tone of each synthetic dye.
  • Examples of color tone combinations include, but are not limited to, combinations of orange, green, and red.
  • thermoplastic resin composition contains the above-mentioned graft copolymer (B) of the present invention and the above-mentioned copolymer (C), and preferably further contains the above-mentioned dye (D).
  • the content of the graft polymer (B) of the present invention in the thermoplastic resin composition of the present invention is 10 to 10 when the total of the graft copolymer (B) and the copolymer (C) is 100% by mass. It is preferably 50% by mass, and the content of the copolymer (C) is preferably 50 to 90% by mass.
  • the thermoplastic resin composition of the present invention and its molded product have excellent transparency, that is, color development and impact resistance. It becomes.
  • the content of the dye (D) is not particularly limited, but the graft copolymer (B) and the copolymer (C) of the present invention can be used. 0.1 to 3 parts by mass is preferable, and 0.1 to 2.5 parts by mass is more preferable with respect to 100 parts by mass in total.
  • the content of the dye (D) is within the above range, the obtained molded product is excellent in impact resistance and a balance between weather resistance and color development.
  • the thermoplastic resin composition of the present invention may contain other thermoplastic resins, if necessary, as long as the physical properties of the thermoplastic resin composition and its molded product are not impaired.
  • the other thermoplastic resin is not particularly limited, and for example, polycarbonate resin, polybutylene terephthalate (PBT resin), polyethylene terephthalate (PET resin), polyvinyl chloride, polystyrene, polyacetal resin, modified polyphenylene ether (modified PPE resin), and the like.
  • examples thereof include ethylene-vinyl acetate copolymers, polyarylates, liquid crystal polyester resins, polyethylene resins, polypropylene resins, fluororesins and polyamide resins (nylon). Only one of these may be used, or two or more thereof may be mixed and used.
  • thermoplastic resin composition of the present invention includes other conventional additives during the production (mixing) and molding of the thermoplastic resin composition as long as the physical properties of the thermoplastic resin composition and the molded product thereof are not impaired.
  • lubricants for example, lubricants, pigments, fillers (carbon black, silica, titanium oxide, etc.), heat resistant agents, oxidative deterioration inhibitors, weather resistant agents, mold release agents, plasticizers, antistatic agents, and the like can be blended.
  • thermoplastic resin composition of the present invention can be produced by a known method using a known device.
  • a melting and mixing method as a general method.
  • the apparatus used in the melt mixing method include an extruder, a Banbury mixer, a roller, a kneader and the like.
  • Either a batch type or a continuous type may be adopted for mixing.
  • the molded product of the present invention is a molded product of the thermoplastic resin composition of the present invention.
  • the molding method of the thermoplastic resin composition of the present invention include an injection molding method, an injection compression molding machine method, an extrusion method, a blow molding method, a vacuum molding method, a pneumatic molding method, a calendar molding method and an inflation molding method. Can be mentioned. Among these, an injection molding method and an injection compression molding method are preferable because they are excellent in mass productivity and can obtain a molded product with high dimensional accuracy.
  • the molded article of the present invention obtained from the thermoplastic resin composition of the present invention is excellent in color development property, impact resistance and weather resistance.
  • the use of the thermoplastic resin composition of the present invention and the molded product thereof is not particularly limited, but the thermoplastic resin composition of the present invention and the molded product thereof have excellent color development property, impact resistance and weather resistance. It is useful in a wide range of fields such as OA / home appliances, vehicles / ships, furniture / building materials and other housing-related fields, sanitary fields, miscellaneous goods, stationery / toys / sporting goods fields.
  • vehicle interior / exterior parts especially vehicle exterior parts, such as door mirrors, pillars, garnishes, moldings, fenders, bumpers, front grilles, etc.
  • vehicle exterior parts such as door mirrors, pillars, garnishes, moldings, fenders, bumpers, front grilles, etc.
  • cowls and the like it is possible to provide products having excellent design, luxury and durability.
  • volume average particle diameters (X) of the copolymers (A-1) to (A-12) produced in Examples and Comparative Examples and the graft copolymers (B-1) to (B-11) are determined by Nikkiso. It was obtained by a dynamic light scattering method using a Nanotrac UPA-EX150 manufactured by the same company.
  • the particle size distribution was obtained by the same method as described above, and the particle size with a frequency upper limit of 10% was set as the frequency upper limit of 10% volume particle size (Y).
  • the particle diameter of the lower limit of frequency of 10% was defined as the lower limit of frequency of 10%, and the ratio to the volume average particle diameter (X) was calculated.
  • Q is the mass (g) of the acetone-insoluble component of the graft copolymer (B)
  • W is the graft copolymers (B-1) to (B-11) used for determining Q.
  • the total mass (g) and the rubber content are the solid content concentrations of the copolymer (A) used in the production of the graft copolymers (B-1) to (B-11) in the aqueous dispersion.
  • Graft ratio (mass%) ⁇ (Q-W x rubber fraction) / W x rubber fraction ⁇ ⁇ 100...
  • Mass average molecular weight of copolymer (C)> The mass average molecular weight of the copolymer (C-1) was determined by dissolving it in tetrahydrofuran (THF) using gel permeation chromatography (GPC) in terms of standard polystyrene (PS).
  • Reactor equipped with reagent injection container, cooling tube, jacket heater and stirrer, n-butyl acrylate, 2-phenoxyethyl acrylate, liquid paraffin, allyl methacrylate, dilauroyl peroxide, ion-exchanged water, alkenyl succin
  • a preemulsion was obtained by charging dipotassium acid and subjecting it to ultrasonic treatment at room temperature for 20 minutes at an amplitude of 35 ⁇ m using ULTRASONIC HOMOGENIZER US-600 manufactured by Nissei Tokyo Office. The preemulsion was heated to 60 ° C. to initiate radical polymerization. Due to the polymerization, the liquid temperature rose to 78 ° C. The polymer was maintained at 75 ° C.
  • the volume average particle diameter (X), frequency upper limit 10% volume particle diameter (Y), frequency lower limit 10% volume particle diameter (Z), and Y / Z, Z / Y of the copolymer (A-1) are shown in the table. It was as shown in 1.
  • the polymerization temperature was adjusted to 65 ° C., and when the internal pressure reached 4.5 kg / cm 2 (gauge pressure) after 12 hours, unreacted 1,3-butadiene was recovered. Then, the internal temperature was set to 80 ° C. and kept for 1 hour to obtain a butadiene rubber latex.
  • the internal temperature was raised to 80 ° C. and held for 1 hour to obtain a copolymer (A-11) composed of butadiene rubber and acrylic rubber dispersed in the aqueous dispersion.
  • the volume average particle diameter (X), frequency upper limit 10% volume particle diameter (Y), frequency lower limit 10% volume particle diameter (Z), and Y / X, Z / X of the copolymer (A-11) are shown in the table. It was as shown in 1.
  • graft copolymers (B-2) to (B-11) were prepared in the same manner as the graft copolymer (B-1) except that the type of the copolymer (A) was changed as shown in Table 2. Obtained.
  • the graft ratios and volume average particle diameters of the graft copolymers (B-2) to (B-11) were as shown in Table 2.
  • Examples 1 to 9, Comparative Examples 1 to 9 Each component is mixed with the composition (parts by mass) shown in Tables 3A and 3B, and "NUBIAN PC-5856" manufactured by Orient Chemical Industry Co., Ltd. is further mixed therewith as a dye (D) in the amounts shown in Tables 3A and 3B.
  • a twin-screw extruder with a vacuum vent of 30 mm ⁇ (“PCM30” manufactured by Ikegai Corp.) was melt-kneaded at 240 ° C. to obtain a pellet-shaped thermoplastic resin composition.
  • the melt volume rate of the obtained thermoplastic resin composition was evaluated by the following method.
  • the impact resistance, color development property, and weather resistance of the molded product obtained by injection molding the obtained thermoplastic resin composition were evaluated by the following methods. The evaluation results are shown in Tables 3A and 3B.
  • ⁇ Injection molding 2 Pellets of the thermoplastic resin composition obtained by melt-kneading are vertically formed by an injection molding machine (manufactured by Toshiba Machinery Co., Ltd., "IS55FP-1.5A") under the conditions of a cylinder temperature of 200 to 270 ° C and a mold temperature of 60 ° C. A molded product having a width of 100 mm, a width of 100 mm, and a thickness of 3 mm was molded and used as a molded product for evaluating color development and weather resistance (molded product (Ma2)).
  • the brightness L * of the molded product (Ma2) was measured by the SCE method using a spectrocolorimeter (“CM-3500d” manufactured by Konica Minolta Optips). Let the measured L * be "L * (ma)". The lower the L * , the blacker the color, and it was judged that the color development was good.
  • “Brightness L * ” means the lightness value (L * ) among the color values in the L * a * b * color system adopted in JIS Z 8729.
  • the "SCE method” means a method of measuring color by removing specularly reflected light by an optical trap using a spectrocolorimeter compliant with JIS Z 8722.
  • ⁇ Evaluation of weather resistance> The molded product (Ma2) was treated with a sunshine weather meter (manufactured by Suga Test Instruments Co., Ltd.) for 1500 hours under the conditions of a black panel temperature of 63 ° C. and a cycle condition of 60 minutes (rainfall of 12 minutes).
  • the brightness L * tint a * and b * before and after this treatment were measured in the same manner as in the above evaluation of color development, and the change ⁇ E ( ⁇ L * + ⁇ a * + ⁇ b * ) was obtained and evaluated according to the following criteria.
  • Comparative Examples 3A and 3B The following can be seen from Tables 3A and 3B.
  • Comparative Examples 1 and 2 only the graft copolymer (B) having a small volume average particle size is used, and the impact resistance and the weather resistance are inferior.
  • Comparative Example 1 the color development property is also inferior.
  • the graft copolymer (B-8) having a volume average particle diameter of 500 nm used in Comparative Examples 3 and 4 the copolymer (A-8) used for its production does not satisfy the particle size distribution specified in the present invention. Therefore, Comparative Examples 3 and 4 are inferior in impact resistance. In Comparative Example 4, the color development property is further inferior.
  • the graft copolymer (B-9) having a volume average particle diameter of 500 nm used in Comparative Examples 5 and 6 was the copolymer (A-9) n-butyl acrylate (a) used for its production and acrylic. Since the compounding ratio with 2-phenoxyethyl (b) acid is out of the specified range of the present invention, Comparative Examples 5 and 6 are inferior in impact resistance and weather resistance. In the graft copolymer (B-10) having a volume average particle diameter of 420 nm used in Comparative Example 7, the copolymer (A-10) used for its production did not contain 2-phenoxyethyl acrylate (b).
  • Comparative Example 7 is inferior in impact resistance and weather resistance.
  • the copolymer (A-11) used for producing the graft copolymer (B-11) having a volume average particle diameter of 50 nm used in Comparative Example 8 did not use 2-phenoxyethyl acrylate (b) and was butadiene.
  • Comparative Example 8 is inferior in impact resistance and weather resistance because it uses rubber.
  • Comparative Example 9 only the copolymer (A-12) is used, not the graft copolymer, and the impact resistance is significantly inferior.
  • Examples 1 to 9 satisfying the provisions of the present invention are excellent in all of impact resistance, color development property and weather resistance.
  • Example 9 is an example in which only one type of graft copolymer (B-1) is used, as compared with Examples 1 to 8 in which two types of graft copolymers (B) having different particle sizes are used in combination.
  • the impact resistance is slightly inferior, it is within a practical range and has good color development and weather resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Graft Or Block Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

(メタ)アクリル酸アルキルエステル(a)と、芳香族炭化水素基を有する(メタ)アクリル酸エステル(b)とを特定の割合で共重合した共重合体(A)に対し、(メタ)アクリル酸アルキルエステル、シアン化ビニル化合物および芳香族ビニル化合物を含むビニル系単量体混合物(m1)をグラフト重合してなるグラフト共重合体(B)と、(メタ)アクリル酸アルキルエステルを含むビニル系単量体混合物(m2)の重合反応物である共重合体(C)とを含む熱可塑性樹脂組成物。グラフト共重合体(B)は少なくとも特定の体積平均粒子径のグラフト共重合体(B)を含む。共重合体(A)は特定の体積平均粒子径と粒度分布を有する。

Description

熱可塑性樹脂組成物およびその成形品
 本発明は、発色性、耐候性、および耐衝撃性、特に耐候発色性に優れた成形品を得ることができる熱可塑性樹脂組成物とその成形品に関する。
 車輌外装部品、例えば、ドアミラー、ピラー、ガーニッシュ、モール、フェンダー、バンパー、フロントグリル、カウル類等には、耐衝撃性、耐候性に優れることだけでなく、高級な製品の意匠性に合わせた高い外観品質が求められる。具体的には、高発色性、特に漆黒の発色性が要求される。
 従来、車輌外装部品等では、成形品を塗装して高い外観品質を得ていた。しかし、塗装によるものでは、環境への負荷が大きいこと、工程が煩雑であること、不良率が高いといった問題がある。このため、近年、予め熱可塑性樹脂に着色剤を配合して成形品の塗装を省略することが行われている。
 例えば、特許文献1には、無塗装もしくはクリアコートのみでも漆黒調の高い外観を有し且つ製品内部からの光漏れがなく、耐熱性、耐衝撃性が良好で表面硬度が高い成形体を与えることができる熱可塑性樹脂組成物として、グラフト共重合体(A)と、芳香族ビニル単量体単位と不飽和ニトリル単量体単位とを有する共重合体(B)と、アクリル樹脂(C)と、カーボンブラック(D)と、染料(E)とを含み、アセトン不溶分の含有量が5~25質量%であり、アセトン可溶分中のメタクリル酸エステル単位および/またはアクリル酸エステル単位の含有量が35~85質量%であり、アセトン可溶分中に、特定の化合物単位を所定の割合で含む熱可塑性樹脂組成物が開示されている。
 特許文献2には、耐衝撃性、耐候性、発色性等に優れる熱可塑性樹脂組成物として、硬質樹脂であるメタクリル酸エステル樹脂にAES樹脂を配合し、複数の原色合成染料が黒色になるように調合した有機染料によって黒色に着色した熱可塑性樹脂組成物が提案されている。
特開2015-93910号公報 特開2005-132970号公報
 従来の熱可塑性樹脂組成物では、樹脂成分自体の透明性ないしは耐候透明性が不十分であるために、染料による発色性、特に漆黒の発色性、さらにはその耐候発色性に劣り、経時により漆黒調の外観が損なわれるという問題があった。
 本発明は、発色性、耐候性、および耐衝撃性、特に耐候発色性に優れた成形品を得ることができる熱可塑性樹脂組成物とその成形品を提供することを課題とする。
 本発明者は、(メタ)アクリル酸アルキルエステル(a)と、芳香族炭化水素基を有する(メタ)アクリル酸エステル(b)とを所定の割合で用いた、特定の平均粒子径および粒度分布を有する共重合体(A)の存在下に、(メタ)アクリル酸アルキルエステル、シアン化ビニル化合物および芳香族ビニル化合物を含むビニル系単量体混合物(m1)をグラフト重合して得られるグラフト共重合体(B)と、(メタ)アクリル酸アルキルエステルを含むビニル系単量体混合物(m2)の重合反応物である共重合体(C)とを含む熱可塑性樹脂組成物により、発色性、耐候性、耐衝撃性に優れ、特に耐候発色性において顕著に優れた成形品を得ることができることを見出した。
 本発明は以下を要旨とする。
[1] (メタ)アクリル酸アルキルエステル(a)と、芳香族炭化水素基を有する(メタ)アクリル酸エステル(b)との共重合体(A)に対し、(メタ)アクリル酸アルキルエステル、シアン化ビニル化合物および芳香族ビニル化合物を含むビニル系単量体混合物(m1)をグラフト重合してなるグラフト共重合体(B)と、(メタ)アクリル酸アルキルエステルを含むビニル系単量体混合物(m2)の重合反応物である共重合体(C)とを含む熱可塑性樹脂組成物であって、該グラフト共重合体(B)として、少なくとも体積平均粒子径300~800nmのグラフト共重合体(B)を含み、該共重合体(A)中の(メタ)アクリル酸アルキルエステル(a)単位と芳香族炭化水素基を有する(メタ)アクリル酸エステル(b)単位との合計100質量%中の(メタ)アクリル酸アルキルエステル(a)単位の含有量が67~83質量%で、芳香族炭化水素基を有する(メタ)アクリル酸エステル(b)単位の含有量が17~33質量%であり、該共重合体(A)の体積平均粒子径(X)が50~800nmであり、該共重合体(A)の体積平均粒子径(X)をXで表し、粒子径分布曲線における上限からの頻度の累積値が10%になったところの粒子径を頻度上限10%体積粒子径(Y)としてYで表し、粒子径分布曲線における下限からの頻度の累積値が10%になったところの粒子径を頻度下限10%体積粒子径(Z)としてZで表したとき、体積平均粒子径(X)、頻度上限10%体積粒子径(Y)および頻度下限10%体積粒子径(Z)が、以下の(1)および(2)を満たすことを特徴とする熱可塑性樹脂組成物。
 (1) Y/X≦1.4
 (2) Z/X≧0.6
[2] 前記グラフト共重合体(B)と前記共重合体(C)との合計100質量部中にグラフト共重合体(B)を10~50質量部、共重合体(C)を50~90質量部含む、[1]に記載の熱可塑性樹脂組成物。
[3] 前記ビニル系単量体混合物(m1)が、(メタ)アクリル酸アルキルエステルを10~30質量%、シアン化ビニル化合物を10~30質量%、芳香族ビニル化合物を50~70質量%含む、[1]または[2]に記載の熱可塑性樹脂組成物。
[4] 前記グラフト共重合体(B)の共重合体(A)とビニル系単量体混合物(m1)との合計100質量%に対する共重合体(A)の割合が50~80質量%で、ビニル系単量体混合物(m1)の割合が20~50質量%である、[1]ないし[3]のいずれかに記載の熱可塑性樹脂組成物。
[5] 更に染料(D)を含む、[1]ないし[4]のいずれかに記載の熱可塑性樹脂組成物。
[6] [1]ないし[5]のいずれかに記載の熱可塑性樹脂組成物を成形してなる成形品。
 本発明の熱可塑性樹脂組成物によれば、発色性、耐候性および耐衝撃性に優れ、特に耐候発色性において顕著に優れた成形品が提供される。
 このため、本発明の熱可塑性樹脂組成物を成形してなる本発明の成形品は、車輌外装部品、例えば、ドアミラー、ピラー、ガーニッシュ、モール、フェンダー、バンパー、フロントグリル、カウル類等として好適に用いることができ、無塗装であっても、長期に亘り良好な外観を維持することができる。
 以下に本発明の実施の形態を詳細に説明する。
 本発明において、「(メタ)アクリル酸」とは、「アクリル酸」と「メタクリル酸」の一方または双方を意味するものであり、「(メタ)アクリレート」についても同様である。
 「単位」とは、重合体中に含まれる、重合前の化合物(単量体、即ちモノマー)に由来する構造部分を意味する。例えば、「(メタ)アクリル酸アルキルエステル(a)単位」とは「(メタ)アクリル酸アルキルエステル(a)に由来して共重合体(A)中に含まれる構造部分」を意味する。重合体の各単量体単位の含有割合は、当該重合体の製造に用いた単量体混合物中の該単量体の含有割合に該当する。
〔熱可塑性樹脂組成物〕
 本発明の熱可塑性樹脂組成物は、(メタ)アクリル酸アルキルエステル(a)と、芳香族炭化水素基を有する(メタ)アクリル酸エステル(b)との共重合体(A)(以下、「本発明の共重合体(A)」と称す場合がある。)に対し、(メタ)アクリル酸アルキルエステル、シアン化ビニル化合物および芳香族ビニル化合物を含むビニル系単量体混合物(m1)をグラフト重合してなるグラフト共重合体(B)(以下、「本発明のグラフト共重合体(B)」と称す場合がある。)と、(メタ)アクリル酸アルキルエステルを含むビニル系単量体混合物(m2)の重合反応物である共重合体(C)とを含む熱可塑性樹脂組成物であり、本発明のグラフト共重合体(B)として少なくとも体積平均粒子径300~800nmのグラフト共重合体(B)を含み、本発明の熱可塑性樹脂組成物に含まれる本発明の共重合体(A)中の(メタ)アクリル酸アルキルエステル(a)単位と芳香族炭化水素基を有する(メタ)アクリル酸エステル(b)単位との合計100質量%中の(メタ)アクリル酸アルキルエステル(a)単位の含有量が67~83質量%で、芳香族炭化水素基を有する(メタ)アクリル酸エステル(b)単位の含有量が17~33質量%であり、該共重合体(A)の体積平均粒子径(X)が50~800nmで、該共重合体(A)の体積平均粒子径(X)をXで表し、粒子径分布曲線における上限からの頻度の累積値が10%になったところの粒子径を頻度上限10%体積粒子径(Y)としてYで表し、粒子径分布曲線における下限からの頻度の累積値が10%になったところの粒子径を頻度下限10%体積粒子径(Z)としてZで表したとき、体積平均粒子径(X)、頻度上限10%体積粒子径(Y)および頻度下限10%体積粒子径(Z)が、以下の(1)および(2)を満たすことを特徴とする。
 (1) Y/X≦1.4
 (2) Z/X≧0.6
[共重合体(A)]
 本発明の共重合体(A)は、(メタ)アクリル酸アルキルエステル(a)と、芳香族炭化水素基を有する(メタ)アクリル酸エステル(b)との共重合体である。
 (メタ)アクリル酸アルキルエステル(a)としては、アルキル基の炭素数が1~12である(メタ)アクリル酸アルキルエステルが好ましい。中でも、得られるグラフト共重合体(B)を配合してなる本発明の熱可塑性樹脂組成物の耐衝撃性が優れることから、アクリル酸n-ブチル、アクリル酸2-エチルヘキシル、アクリル酸エチルが特に好ましい。
 (メタ)アクリル酸アルキルエステル(a)は、1種を単独でまたは2種以上を組み合わせて使用することができる。
 芳香族炭化水素基を有する(メタ)アクリル酸エステル(b)としては、フェニル基、ベンジル基等の芳香族炭化水素基あるいは芳香族炭化水素基を含む基を有する(メタ)アクリル酸エステルであればよい。例えば(メタ)アクリル酸アリールエステルや(メタ)アクリル酸アリーロキシエステル、アルキルエステル部分の置換基としてフェニル基等のアリール基やフェノキシ基等のアリーロキシ基を有する(メタ)アクリル酸アルキルエステルが挙げられる。ただし、何らこれらに限定されるものではない。
 芳香族炭化水素基を有する(メタ)アクリル酸エステル(b)としては、得られるグラフト共重合体(B)を配合してなる本発明の熱可塑性樹脂組成物の耐衝撃性が優れることから、アクリル酸ベンジル、アクリル酸2-フェノキシエチルが特に好ましい。
 芳香族炭化水素基を有する(メタ)アクリル酸エステル(b)は、1種を単独でまたは2種以上を組み合わせて使用することができる。
 本発明の共重合体(A)は、(メタ)アクリル酸アルキルエステル(a)単位と、芳香族炭化水素基を有する(メタ)アクリル酸エステル(b)単位の合計100質量%中、(メタ)アクリル酸アルキルエステル(a)単位を67~83質量%、芳香族炭化水素基を有する(メタ)アクリル酸エステル(b)単位を17~33質量%含む。(メタ)アクリル酸アルキルエステル(a)単位、芳香族炭化水素基を有する(メタ)アクリル酸エステル(b)単位が上記範囲内であることにより、この共重合体(A)から得られるグラフト共重合体(B)を配合してなる本発明の熱可塑性樹脂組成は、透明性に優れるものとなり、発色性に優れ、また、耐衝撃性にも優れたものとなる。
 この観点から、本発明の共重合体(A)の(メタ)アクリル酸アルキルエステル(a)単位と芳香族炭化水素基を有する(メタ)アクリル酸エステル(b)単位の合計100質量%中の各単位の含有量は、(メタ)アクリル酸アルキルエステル(a)単位が70~80質量%で、芳香族炭化水素基を有する(メタ)アクリル酸エステル(b)単位が20~30質量%であることが好ましい。
 (メタ)アクリル酸アルキルエステル(a)の含有量が上記上限以上であれば、透明性と耐衝撃性が良好となる。(メタ)アクリル酸アルキルエステル(a)の含有量が上記上限以下であれば、透明性が良好となり、発色性が良好となる傾向にある。
 共重合体(A)中の(メタ)アクリル酸エステル(a)単位および芳香族炭化水素基を有する(メタ)アクリル酸エステル(b)単位の含有量は、共重合体(A)やグラフト共重合体(B)、もしくはグラフト共重合体(B)と後述の共重合体(C)とを含む熱可塑性樹脂組成物およびその成形品を、600℃で加熱することでモノマー単位まで分解した後、GC-MS装置で成分分析することで算出することができる。
 前述の通り、共重合体(A)の製造に用いた(メタ)アクリル酸アルキルエステル(a)と芳香族炭化水素基を有する(メタ)アクリル酸エステル(b)との合計に占める(メタ)アクリル酸アルキルエステル(a)および芳香族炭化水素基を有する(メタ)アクリル酸エステル(b)のそれぞれの含有割合が、各々、共重合体(A)中の(メタ)アクリル酸アルキルエステル(a)単位および芳香族炭化水素基を有する(メタ)アクリル酸エステル(b)単位の含有量に該当する。
 本発明の共重合体(A)は、(メタ)アクリル酸アルキルエステル(a)と、芳香族炭化水素基を有する(メタ)アクリル酸エステル(b)以外に、架橋剤に由来する単位およびグラフト交叉剤に由来する単位のいずれか一方または両方を有する共重合体であることが好ましい。共重合体(A)がグラフト交叉剤および/または架橋剤に由来する単位を含むことでは、得られるグラフト共重合体(B)を配合してなる本発明の熱可塑性樹脂組成物の耐衝撃性をより一層改善する効果が奏される。
 グラフト交叉剤としては、アリル化合物、具体的には、メタクリル酸アリル、シアヌル酸トリアリル、イソシアヌル酸トリアリル等が挙げられる。これらは1種のみを用いてもよく、2種以上を混合して用いてもよい。
 架橋剤としては、ジメタクリレート系化合物、具体例には、エチレングリコールジメタクリレート、プロピレングリコールジメタクリレート、1,3-ブチレングリコールジメタクリレート、1,4-ブチレングリコールジメタクリレート等が挙げられる。これらは1種のみを用いてもよく、2種以上を混合して用いてもよい。
 架橋剤および/またはグラフト交叉剤を用いる場合、本発明の共重合体(A)中の架橋剤および/またはグラフト交叉剤に由来する単位の割合は、得られるグラフト共重合体(B)を配合してなる本発明の熱可塑性樹脂組成物の耐衝撃性が優れることから、(メタ)アクリル酸アルキルエステル(a)単位と、芳香族炭化水素基を有する(メタ)アクリル酸エステル(b)単位と、架橋剤に由来する単位および/またはグラフト交叉剤に由来する単位との合計100質量%中、0.1~3質量%が好ましく、0.2~2質量%がより好ましい。
 本発明の共重合体(A)は、本発明の目的を損なわない範囲で、(メタ)アクリル酸アルキルエステル(a)単位、芳香族炭化水素基を有する(メタ)アクリル酸エステル(b)単位、必要に応じて用いられる架橋剤および/またはグラフト交叉剤に由来する単位以外のその他の単量体単位を含んでいてもよい。
 本発明の共重合体(A)に含まれていてもよいその他の単量体単位としては、後述のビニル系単量体混合物(m1)に含まれる(メタ)アクリル酸アルキルエステル(a)および芳香族炭化水素基を有する(メタ)アクリル酸エステル(b)以外のビニル系単量体の1種または2種以上が挙げられる。本発明の効果を有効に得る上で、これらのその他のビニル系単量体単位の含有量は、本発明の共重合体(A)100質量%中20質量%以下、特に10質量%以下であることが好ましい。
 本発明の共重合体(A)の製造方法は特に制限されない。本発明の共重合体(A)の製造方法としては、(メタ)アクリル酸アルキルエステル(a)と、芳香族炭化水素基を有する(メタ)アクリル酸エステル(b)と、架橋剤および/またはグラフト交叉剤とを含む混合物を乳化重合、またはミニエマルション重合させる方法が好ましい。得られるグラフト共重合体(B)を配合してなる本発明の樹脂組成物の物性が優れることからミニエマルション重合させる方法が特に好ましい。
 共重合体(A)の乳化重合法による製造方法としては、水系溶媒にラジカル開始剤と、(メタ)アクリル酸アルキルエステル(a)と、芳香族炭化水素基を有する(メタ)アクリル酸エステル(b)と、架橋剤および/またはグラフト交叉剤とを加えて、乳化剤の存在下で共重合させる方法が挙げられる。
 ラジカル開始剤と、(メタ)アクリル酸アルキルエステル(a)と、芳香族炭化水素基を有する(メタ)アクリル酸エステル(b)と、架橋剤および/またはグラフト交叉剤の添加方法は、一括、分割、連続のいずれでもよい。
 共重合体(A)を製造するミニエマルション重合は、これに限定されるものではないが、例えば、(メタ)アクリル酸アルキルエステル(a)と、芳香族炭化水素基を有する(メタ)アクリル酸エステル(b)と、架橋剤および/またはグラフト交叉剤と、疎水性物質と、開始剤とを混合し、得られた混合物に水と、乳化剤とを加え、せん断力を付与してプレエマルション(ミニエマルション)を作製する工程、並びにこの混合物を重合開始温度まで加熱して重合させる工程を含むことができる。
 ミニエマルション化の工程では、例えば、超音波照射による剪断工程を実施することにより、前記剪断力によりモノマーが引きちぎられ、乳化剤に覆われたモノマー微小油滴が形成される。その後、開始剤の重合開始温度まで加熱することにより、モノマー微小油滴をそのまま重合し、高分子微粒子が得られる。
 ミニエマルションを形成させるための剪断力を加える方法は公知の任意の方法を用いることができる。ミニエマルションを形成できる高剪断装置としては、これらに限定されるものではないが、例えば、高圧ポンプおよび相互作用チャンバーからなる乳化装置、超音波エネルギーや高周波によりミニエマルションを形成させる装置等がある。高圧ポンプおよび相互作用チャンバーからなる乳化装置としては、例えば、SPX Corporation APV社製「圧力式ホモジナイザー」、(株)パウレック製「マイクロフルイダイザー」等が挙げられる。超音波エネルギーや高周波によりミニエマルションを形成させる装置としては、例えば、Fisher Scient製「ソニックディスメンブレーター」や(株)日本精機製作所製「ULTRASONIC HOMOGENIZER」等が挙げられる。ただし、これらに限定されるものではない。
 ミニエマルション化の際の水溶媒の使用量は、作業性、安定性、製造性等の観点から、重合後の反応系の固形分濃度が5~50質量%程度となるように、水以外の混合物100質量部に対して100~500質量部程度とすることが好ましい。
 ミニエマルション重合で共重合体(A)を製造する場合、疎水性物質を所定の割合で用いることが好ましい。プレエマルションを形成させる際に、疎水性物質を添加するとミニエマルション重合の製造安定性がより向上する傾向にあり、本発明に好適な共重合体(A)を製造することができる。
 疎水性物質としては、例えば炭素数10以上の炭化水素類、炭素数10以上のアルコール、質量平均分子量(Mw)10000未満の疎水性ポリマー、疎水性モノマー、例えば、炭素数10~30のアルコールのビニルエステル、炭素数12~30のアルコールのビニルエーテル、炭素数12~30の(メタ)アクリル酸アルキル、炭素数10~30(好ましくは炭素数10~22)のカルボン酸ビニルエステル、p-アルキルスチレン、疎水性の連鎖移動剤、疎水性の過酸化物等が挙げられる。これらは、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 疎水性物質としては、より具体的には、ヘキサデカン、オクタデカン、イコサン、流動パラフィン、流動イソパラフィン、パラフィンワックス、ポリエチレンワックス、オリーブ油、セチルアルコール、アクリル酸ステアリル、アクリル酸ラウリル、アクリル酸ステアリル、メタクリル酸ラウリル、メタクリル酸ステアリル、500~10000の数平均分子量(Mn)を有するポリスチレン、ポリ(メタ)アクリル酸エステル等が挙げられる。
 疎水性物質は、(メタ)アクリル酸アルキルエステル(a)と、芳香族炭化水素基を有する(メタ)アクリル酸エステル(b)と、架橋剤および/またはグラフト交叉剤の合計100質量部に対し、0.1~10質量部、特に1~3質量部用いることが、共重合体(A)の粒子径制御の点で好ましい。
 本発明の共重合体(A)を製造する際に用いる乳化剤としては、オレイン酸、パルミチン酸、ステアリン酸、ロジン酸のアルカリ金属塩、アルケニルコハク酸のアルカリ金属塩等で例示されるカルボン酸系の乳化剤、アルキル硫酸エステル、アルキルベンゼンスルホン酸ナトリウム、アルキルスルホコハク酸ナトリウム、ポリオキシエチレンノニルフェニルエーテル硫酸エステルナトリウムなどの中から選ばれるアニオン系乳化剤等、公知の乳化剤を単独または2種以上を組み合わせて使用することができる。
 乳化剤の添加量は、(メタ)アクリル酸アルキルエステル(a)と、芳香族炭化水素基を有する(メタ)アクリル酸エステル(b)と、架橋剤および/またはグラフト交叉剤の合計100質量部に対し、0.01~3.0質量部、特に0.05~2.0質量部が、共重合体(A)の粒子径制御の点で好ましい。
 共重合体(A)の製造に用いられる開始剤はラジカル重合するためのラジカル重合開始剤であり、その種類に特に制限はない。開始剤としては、例えば、アゾ重合開始剤、光重合開始剤、無機過酸化物、有機過酸化物、有機過酸化物と遷移金属と還元剤とを組み合わせたレドックス系開始剤等が挙げられる。これらのうち、加熱により重合を開始できるアゾ重合開始剤、無機過酸化物、有機過酸化物、レドックス系開始剤が好ましい。これらは1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。
 アゾ重合開始剤としては、例えば、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2-メチルブチロニトリル)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、1-[(1-シアノ-1-メチルエチル)アゾ]フォルムアミド、4,4’-アゾビス(4-シアノバレリックアシッド)、ジメチル2,2’-アゾビス(2-メチルプロピオネート)、ジメチル1,1’-アゾビス(1-シクヘキサンカルボキシレート)、2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド]、2,2’-アゾビス(N-ブチル-2-メチルプロピオンアミド)、2,2’-アゾビス(N-シクロヘキシル-2-メチルプロピオンアミド)、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]、2,2’-アゾビス(2,4,4-トリメチルペンタン)等が挙げられる。
 無機過酸化物としては、例えば、過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム、過酸化水素等が挙げられる。
 有機過酸化物としては、例えばペルオキシエステル化合物が挙げられる。その具体例としては、α,α’-ビス(ネオデカノイルペルオキシ)ジイソプロピルベンゼン、クミルペルオキシネオデカノエート、1,1,3,3-テトラメチルブチルペルオキシネオデカノエート、1-シクロヘキシル-1-メチルエチルペルオキシネオデカノエート、t-ヘキシルペルオキシネオデカノエート、t-ブチルペルオキシネオデカノエート、t-ヘキシルペルオキシピバレート、t-ブチルペルオキシピバレート、1,1,3,3-テトラメチルブチルペルオキシ-2-エチルヘキサノエート、2,5-ジメチル-2,5-ビス(2-エチルヘキサノイルペルオキシ)ヘキサン、1-シクロヘキシル-1-メチルエチルペルオキシ-2-エチルヘキサノエート、t-ヘキシルペルオキシ2-ヘキシルヘキサノエート、t-ブチルペルオキシ2-ヘキシルヘキサノエート、t-ブチルペルオキシイソブチレート、t-ヘキシルペルオキシイソプロピルモノカーボネート、t-ブチルペルオキシマレイックアシッド、t-ブチルペルオキシ3,5,5-トリメチルヘキサノエート、t-ブチルペルオキシラウレート、2,5-ジメチル-2,5-ビス(m-トルオイルペルオキシ)ヘキサン、t-ブチルペルオキシイソプロピルモノカーボネート、t-ブチルペルオキシ2-エチルヘキシルモノカーボネート、t-ヘキシルペルオキシベンゾエート、2,5-ジメチル-2,5-ビス(ベンゾイルペルオキシ)ヘキサン、t-ブチルペルオキシアセテート、t-ブチルペルオキシ-m-トルオイルベンゾエート、t-ブチルペルオキシベンゾエート、ビス(t-ブチルペルオキシ)イソフタレート、1,1-ビス(t-ヘキシルペルオキシ)3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ヘキシルペルオキシ)シクロヘキサン、1,1-ビス(t-ブチルペルオキシ)3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ブチルペルオキシ)シクロヘキサン、1,1-ビス(t-ブチルペルオキシ)シクロドデカン、2,2-ビス(t-ブチルペルオキシ)ブタン、n-ブチル4,4-ビス(t-ブチルペルオキシ)バレレート、2,2-ビス(4,4-ジ-t-ブチルペルオキシシクロヘキシル)プロパン、α,α’-ビス(t-ブチルペルオキシド)ジイソプロピルベンゼン、ジクミルペルオキシド、2,5-ジメチル-2,5-ビス(t-ブチルペルオキシ)ヘキサン、t-ブチルクミルペルオキシド、ジ-t-ブチルペルオキシド、クメンヒドロペルオキシド、ジイソプロピルベンゼンヒドロペルオキシド、ジラウロイルペルオキシド、ジイソノナノイルペルオキシド、t-ブチルヒドロペルオキシド、ベンゾイルペルオキシド、ラウロイルペルオキシド、ジメチルビス(t-ブチルペルオキシ)-3-ヘキシン、ビス(t-ブチルペルオキシイソプロピル)ベンゼン、ビス(t-ブチルペルオキシ)トリメチルシクロヘキサン、ブチル-ビス(t-ブチルペルオキシ)バレラート、2-エチルヘキサンペルオキシ酸t-ブチル、ジベンゾイルペルオキシド、パラメンタンハイドロペルオキシドおよびt-ブチルペルオキシベンゾエート等が挙げられる。
 レドックス系開始剤としては、有機過酸化物と硫酸第一鉄、キレート剤および還元剤を組み合わせたものが好ましい。例えば、クメンヒドロペルオキシド、硫酸第一鉄、ピロリン酸ナトリウム、およびデキストロースからなるものや、t-ブチルヒドロペルオキシド、ナトリウムホルムアルデヒトスルホキシレート(ロンガリット)、硫酸第一鉄、およびエチレンジアミン四酢酸二ナトリウムを組み合わせたもの等が挙げられる。
 開始剤としては、これらのうち、特に有機過酸化物が好ましい。
 開始剤の添加量は、(メタ)アクリル酸アルキルエステル(a)と、芳香族炭化水素基を有する(メタ)アクリル酸エステル(b)と、架橋剤および/またはグラフト交叉剤の合計100質量部に対して通常5質量部以下、好ましくは3質量部以下、例えば0.001~3質量部である。
 上記のプレエマルションを調製する工程は通常常温(10~50℃程度)で行われる。ミニエマルション重合の工程は40~100℃で30~600分程度行われる。
 本発明の共重合体(A)の粒子径は、体積平均粒子径で通常50~800nmであり、好ましくは100~600nm、より好ましくは250~450nmである。体積平均粒子径が上記範囲内であれば、重合時の凝塊物が少なく、この共重合体(A)を用いたグラフト共重合体(B)を配合した本発明の熱可塑性樹脂組成物の耐衝撃性がより良好となる。
 本発明の共重合体(A)は、体積平均粒子径(X)をXで表し、粒子径分布曲線における上限からの頻度の累積値が10%になったところの粒子径を頻度上限10%体積粒子径(Y)としてYで表し、粒子径分布曲線における下限からの頻度の累積値が10%になったところの粒子径を頻度下限10%体積粒子径(Z)としてZで表したとき、通常、下記(1),(2)の関係式を共に満たすものである。
 (1) Y/X≦1.4
 (2) Z/X≧0.6
 上記(1)および(2)を満たすことで、粒子径分布がより狭くなり、本発明の熱可塑性樹脂組成物の耐衝撃性、発色性が良好となる。本発明の共重合体(A)は、その粒度分布として上記(1)および(2)の関係式を満たせばよいが、特に下記(1A),(2A)の関係式を満たすことが、本発明の熱可塑性樹脂組成物の耐衝撃性の観点から好ましい。
 (1A) 1.0≦Y/X≦1.3
 (2A) 0.7≧Z/X≧1.0
 共重合体(A)の平均粒子径や粒度分布を上記好適範囲に制御する方法としては、特に制限されない。例えば、乳化剤の種類または使用量を調整する方法が挙げられる。
 本発明の共重合体(A)の体積平均粒子径(X)、頻度上限10%体積粒子径(Y)、頻度下限10%体積粒子径(Z)は、後述の実施例の項に記載される方法で、例えば上述の水性分散体に分散している共重合体(A)に対して測定される。
[グラフト共重合体(B)]
 本発明のグラフト共重合体(B)は、本発明の共重合体(A)に対し、(メタ)アクリル酸アルキルエステル、シアン化ビニル化合物および芳香族ビニル化合物を含むビニル系単量体混合物(m1)がグラフト重合したグラフト共重合体である。
 本発明のグラフト共重合体(B)は、本発明の共重合体(A)の存在下に、(メタ)アクリル酸アルキルエステル、シアン化ビニル化合物および芳香族ビニル化合物を含むビニル系単量体混合物(m1)を重合して得られる。
 ビニル系単量体混合物(m1)に含まれる(メタ)アクリル酸アルキルエステルとしては、アルキル基の炭素数が1~20、特に1~10のものが好ましい。そのアルキル基は直鎖アルキル基でも、分岐アルキル基でも、シクロアルキル基でもよい。好ましくは直鎖アルキル基である。
 (メタ)アクリル酸アルキルエステルとしては、例えばアクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸i-プロピル、アクリル酸n-ブチル、アクリル酸i-ブチル、アクリル酸t-ブチル、アクリル酸アミル、アクリル酸イソアミル、アクリル酸オクチル、アクリル酸-2-エチルヘキシル、アクリル酸デシル、アクリル酸ラウリル、アクリル酸ステアリル、アクリル酸シクロヘキシル、アクリル酸ペンチル、アクリル酸ベンジル等のアクリル酸アルキルエステル;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸i-プロピル、メタクリル酸n-ブチル、メタクリル酸i-ブチル、メタクリル酸t-ブチル、メタクリル酸アミル、メタクリル酸イソアミル、メタクリル酸オクチル、メタクリル酸-2-エチルヘキシル、メタクリル酸デシル、メタクリル酸ラウリル、メタクリル酸シクロヘキシル、メタクリル酸ベンジル等のメタクリル酸アルキルエステルなどが挙げられる。
 これらの中でも、得られるグラフト共重合体(B)を配合してなる本発明の熱可塑性樹脂組成物よりなる成形品の透明性、即ち発色性と、耐衝撃性、耐候性が高まる観点から、アクリル酸メチル、メタクリル酸メチル、メタクリル酸エチルが好ましく、メタクリル酸メチル、メタクリル酸エチルがより好ましい。
 これらの(メタ)アクリル酸アルキルエステルは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 ビニル系単量体混合物(m1)に含まれる(メタ)アクリル酸アルキルエステルは、後述のビニル系単量体混合物(m2)に含まれる(メタ)アクリル酸アルキルエステルと同じ構造であることが、本発明の熱可塑性樹脂組成物およびその成形品の発色性、耐衝撃性、耐候性の点で特に好ましい。
 ビニル系単量体混合物(m1)に含まれる(メタ)アクリル酸アルキルエステルの含有率に特に制限はないが、10~30質量%であることが、本発明の熱可塑性樹脂組成物およびその成形品の耐衝撃性と発色性のバランスが優れる点で好ましい。
 ビニル系単量体混合物(m1)に含まれるシアン化ビニル化合物としては、例えば、アクリロニトリル、メタクリロニトリルなどが挙げられる。これらの中でも、得られる成形品の透明性、即ち発色性と、耐衝撃性が高まる観点から、アクリロニトリルが好ましい。
 これらのシアン化ビニル化合物は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 ビニル系単量体混合物(m1)に含まれるシアン化ビニル化合物の含有率に特に制限はないが、10~30質量%であることが、本発明の熱可塑性樹脂組成物およびその成形品の耐衝撃性と発色性のバランスが優れる点で好ましい。
 ビニル系単量体混合物(m1)に含まれる芳香族ビニル化合物としては、例えば、スチレン、α-メチルスチレン、o-,m-もしくはp-メチルスチレン、ビニルキシレン、p-t-ブチルスチレン、エチルスチレンなどが挙げられる。これらの中でも、得られる成形品の発色性と耐衝撃性が高まる観点から、スチレンが好ましい。
 これらの芳香族ビニル化合物は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 ビニル系単量体混合物(m1)に含まれる芳香族ビニル化合物の含有率に特に制限はないが、50~70質量%であることが、本発明の熱可塑性樹脂組成物およびその成形品の耐衝撃性と発色性のバランスが優れる点で好ましい。
 ビニル系単量体混合物(m1)は、上記の(メタ)アクリル酸アルキルエステル、シアン化ビニル化合物および芳香族ビニル化合物と、これらと共重合可能な他の単量体を、例えば、アクリル酸メチル、アクリル酸エチルなどのアクリル酸アルキルエステルの解重合抑制のために含むことができる。
 他の単量体としては、例えば、N-メチルマレイミド、N-エチルマレイミド、N-n-プロピルマレイミド、N-i-プロピルマレイミド、N-n-ブチルマレイミド、N-i-ブチルマレイミド、N-tert-ブチルマレイミド、N-シクロヘキシルマレイミド等のN-シクロアルキルマレイミド、N-フェニルマレイミド、N-アルキル置換フェニルマレイミド、N-クロロフェニルマレイミド等のN-アリールマレイミド、N-アラルキルマレイミド等のマレイミド系化合物が挙げられる。これらは1種でまたは2種以上を組み合わせて使用できる。
 本発明のグラフト共重合体(B)は、本発明の共重合体(A)に(メタ)アクリル酸アルキルエステル、シアン化ビニル化合物および芳香族ビニル化合物を含むビニル系単量体混合物(m1)がグラフト重合している。
 得られるグラフト共重合体(B)を配合してなる本発明の熱可塑性樹脂組成物および成形品の物性バランスが優れることから、グラフト共重合体(B)の製造に用いる共重合体(A)およびビニル系単量体混合物(m1)は、グラフト共重合体(B)100質量%中、共重合体(A)が50~80質量%、ビニル系単量体混合物(m1)が20~50質量%であることが好ましい。
 本発明のグラフト共重合体(B)は、得られるグラフト共重合体(B)を配合してなる本発明の熱可塑性樹脂組成物およびその成形品の物性バランスが優れることから、グラフト率が25~100%であることが好ましい。グラフト共重合体(B)のグラフト率は、後述の実施例の項に記載の方法で測定される。
 グラフト共重合体(B)は、塊状重合法、溶液重合法、塊状懸濁重合法、懸濁重合法、乳化重合法等の公知の方法により製造される。得られるグラフト共重合体(B)を配合してなる本発明の熱可塑性樹脂組成物およびその成形品の物性バランスが良好なことから乳化重合法が好ましい。
 乳化グラフト重合の方法としては、本発明の共重合体(A)のエマルションの存在下に、ビニル系単量体混合物(m1)を一括で、または連続的、または断続的に添加してラジカル重合する方法が挙げられる。
 グラフト重合の際には、グラフト重合体(B)の分子量の調節やグラフト率を制御する目的で連鎖移動剤を使用したり、ラテックスの粘度やpHを調節する目的で公知の無機電解質等を使用したりしてもよい。乳化グラフト重合においては、各種の乳化剤やラジカル開始剤を必要に応じて使用することができる。
 乳化剤、ラジカル開始剤の種類や添加量については特に制限されない。乳化剤、ラジカル開始剤としては、共重合体(A)の説明において先に例示した乳化剤、ラジカル開始剤が挙げられる。
 グラフト共重合体(B)の水性分散体から、グラフト共重合体(B)を回収する方法としては、
(i)凝固剤を溶解させた熱水中にグラフト共重合体(B)の水性分散体を投入して、スラリー状態に凝析することによって回収する方法(湿式法)
(ii)加熱雰囲気中にグラフト共重合体(B)の水性分散体を噴霧することにより、半直接的にグラフト共重合体(B)を回収する方法(スプレードライ法)
等が挙げられる。
 凝固剤としては、硫酸、塩酸、リン酸、硝酸等の無機酸、塩化カルシウム、酢酸カルシウム、硫酸アルミニウム等の金属塩等が挙げられる。凝固剤は、重合で用いた乳化剤に対応させて選定される。乳化剤として脂肪酸石鹸、ロジン酸石鹸等のカルボン酸石鹸のみを用いた場合、どのような凝固剤を用いてもよい。乳化剤にドデシルベンゼンスルホン酸ナトリウム等の酸性領域でも安定な乳化力を示す乳化剤が含まれている場合、凝固剤としては金属塩を用いる必要がある。
 スラリー状態のグラフト共重合体(B)から乾燥状態のグラフト共重合体(B)を得る方法としては、
(i)洗浄によって、スラリーに残存する乳化剤残渣を水中に溶出させた後に、該スラリーを遠心脱水機またはプレス脱水機で脱水し、さらに気流乾燥機等で乾燥する方法
(ii)圧搾脱水機、押出機等で脱水と乾燥とを同時に実施する方法
等が挙げられる。
 この乾燥後、グラフト共重合体(B)は、粉体または粒子状で得られる。
 圧搾脱水機または押出機から排出されたグラフト共重合体(B)を直接、熱可塑性樹脂組成物を製造する押出機または成形機に送ることもできる。
 本発明の熱可塑性樹脂組成物は、本発明のグラフト共重合体(B)として、体積平均粒子径300~800nm、好ましくは350~600nmのものを少なくとも含む。体積平均粒子径300~800nmのグラフト共重合体(B)を含むことで、熱可塑性樹脂組成物の耐衝撃性を良好なものとすることができる。
 本発明の熱可塑性樹脂組成物においては、耐衝撃性をより高めることができることから、グラフト共重合体(B)として、体積平均粒子径の異なる2種以上のものを混合して用いることが好ましい。
 この場合、体積平均粒子径が300~800nmの範囲にある比較的粒子径の大きいグラフト共重合体(B)(以下、「グラフト共重合体(Ba)」と称す場合がある。)と体積平均粒子径が50~150nmの範囲にある比較的粒子径の小さいグラフト共重合体(B)(以下、「グラフト共重合体(Bb)」と称す場合がある。)とを混合して用いることが好ましい。このように、粒子径の異なるグラフト共重合体(Ba)とグラフト共重合体(Bb)とを混合して用いることにより粒子間距離が短くなり、耐衝撃性のより一層の向上効果を得ることができる。グラフト共重合体(Ba)の体積平均粒子径はより好ましくは350~600nmである。グラフト共重合体(Bb)の体積平均粒子径はより好ましくは80~140nmである。
 比較的粒子径の大きいグラフト共重合体(Ba)と比較的粒子径の小さいグラフト共重合体(Bb)とを混合して用いることによる耐衝撃性の向上効果を有効に得るために、グラフト共重合体(Ba)とグラフト共重合体(Bb)との合計100質量%中のグラフト共重合体(Ba)の割合は20~80質量%で、グラフト共重合体(Bb)の割合は20~80質量%であることが好ましく、グラフト共重合体(Ba)の割合は30~70質量%で、グラフト共重合体(Bb)の割合は30~70質量%であることがより好ましい。
 グラフト共重合体(Ba)とグラフト共重合体(Bb)とを組み合わせて用いるということは、これらグラフト共重合体(Ba)の体積平均粒子径とグラフト共重合体(Bb)の体積平均粒子径との中間の体積平均粒子径を有するグラフト共重合体(B)を1種のみ用いることとは粒子間距離を短くできるという点で異なる。
 グラフト共重合体(B)、グラフト共重合体(Ba)、グラフト共重合体(Bb)の体積平均粒子径を上記好適範囲に制御する方法としては特に制限されないが、例えば、共重合体(A)製造時に乳化剤の種類または使用量を調整する方法が挙げられる。
 グラフト共重合体(B)の体積平均粒子径は、後述の実施例の項に記載される方法で測定される。
[共重合体(C)]
 共重合体(C)は、(メタ)アクリル酸アルキルエステルを含むビニル系単量体混合物(m2)を重合して得られる。
 ビニル系単量体混合物(m2)は、得られる本発明の熱可塑性樹脂組成物およびその成形品の透明性、即ち発色性と、耐候性が優れることから、(メタ)アクリル酸エステルが必須成分である。
 ビニル系単量体混合物(m2)に含まれる(メタ)アクリル酸アルキルエステルとしては、ビニル系単量体混合物(m1)に含まれる(メタ)アクリル酸アルキルエステルとして前述したものが挙げられる。前述した(メタ)アクリル酸アルキルエステルの中でも、本発明の熱可塑性樹脂組成物およびその成形品の発色性と耐衝撃性、耐候性が高まる観点から、アクリル酸メチル、メタクリル酸メチル、メタクリル酸エチルが好ましく、メタクリル酸メチル、メタクリル酸エチルがより好ましい。
 これらの(メタ)アクリル酸アルキルエステルは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。例えば、メタクリル酸メチルとアクリル酸メチルとを1:0.01~0.2(質量比)の割合で併用することで、共重合体(C)の解重合を抑制できることから好ましい。
 ビニル系単量体混合物(m2)に含まれる(メタ)アクリル酸アルキルエステルの含有率は60~100質量%であることが、本発明の熱可塑性樹脂組成物およびその成形品の透明性と耐候性が優れる点で好ましく、70~100質量%であることがより好ましい。
 ビニル系単量体混合物(m2)は、上記の(メタ)アクリル酸アルキルエステルと、これらと共重合可能な他の単量体を、熱可塑性樹脂組成物およびその成形品の物性を損なわない範囲において、含むことができる。
 他の単量体としては、ビニル系単量体混合物(m1)に含まれるシアン化ビニル化合物、芳香族ビニル化合物および他の単量体として前述したものが挙げられる。他の単量体は1種でまたは2種以上を組み合わせて使用できる。
 共重合体(C)の質量平均分子量に特に制限はないが、10,000~300,000の範囲であることが好ましく、特に50,000~200,000の範囲であることが好ましい。共重合体(C)の質量平均分子量が上記範囲内であれば、本発明の熱可塑性樹脂組成物の流動性、耐衝撃性が優れる。
 共重合体(C)の質量平均分子量は、後述の実施例の項に記載の方法で測定される。
 共重合体(C)の製造方法は特に制限されず、乳化重合、懸濁重合、塊状重合、溶液重合などの公知の方法が挙げられる。得られる熱可塑性樹脂組成物の耐熱性の点からは、懸濁重合、塊状重合が好ましい
 共重合体(C)の製造時に用いる重合開始剤に特に制限はないが、例えば有機過酸化物類が挙げられる。
 共重合体(C)の製造時に、共重合体(C)の分子量を調整するため、連鎖移動剤を用いることができる。連鎖移動剤に特に制限はないが、メルカプタン類、α-メチルスチレンダイマー、テルペン類等が挙げられる。
[染料(D)]
 本発明の熱可塑性樹脂組成物は、発色性の効果の観点から、好ましくは染料(D)を含む。
 本発明で用いる染料(D)には特に制限はないが、例えば、メチン系合成染料、アントラキノン系合成染料、ペリノン系合成染料、アゾ系合成染料、キノリン系合成染料等の有機染料が挙げられる。
 これらの染料は1種のみを用いてもよく、2種以上を混合して用いてもよい。
 特に、これらの染料の2種以上を黒色になるように調合して用いることが、発色性としての漆黒性において顕著な効果が得られることから、好ましい。
 メチン系合成染料の具体例としては、Solvent Orange 80、Solvent Orenge 107、Solvent Yellow 93のカラーインデックスで市販されているメチン系合成染料が挙げられる。
 アントラキノン系合成染料の具体例としては、Solvet Blue 35、Solvent Green 3、Solvent Orange 28、Solvent Red 111、Solvent Red 168、Solvent Red 207、Disperse Red 22、Solvent Red 52、Disperse Red 60、Disperse Violet 31、Solvent Blue 36、Solvent Blue 83、Solvent Blue 97、Solvent Blue 78、Solvent Blue 94、Solvent Blue 63、Solvent Blue 87、Solvent Red 149、Solvent GREEN 28、Solvent Red 151、Solvent Red 150等のカラーインデックスで市販されているアントラキノン系合成染料が挙げられる。
 ペリノン系合成染料の具体例としては、Solvent Orange 60、Solvent Red 135、Solvent Red 179のカラーインデックスで市販されているペリノン系合成染料が挙げられる。
 アゾ系合成染料の具体例としては、Solvent Yellow 14、Solvent Yellow 16、Solvent Red 23、Solvent Red 24、Solvent Red 27のカラーインデックスで市販されているアゾ系合成染料が挙げられる。
 キノリン系合成染料の具体例としては、Solvent Yellow 33、Solvent Yellow 157、Disperce Yellow 54、Disperse Yellow 160のカラーインデックスで市販されているキノリン系合成染料が挙げられる。
 これらの合成染料はそれぞれ、一種単独では黒色ではなく、色調の異なる複数種が組み合わされることで黒色を呈する。複数種の合成染料の組み合わせおよびそれらの質量比は、各合成染料の色調に応じて、それらを混合したときに黒色を呈するように適宜設定される。
 色調の組み合わせの例としては、特に限定するものではないが、オレンジ色と緑色と
赤色との組み合わせが挙げられる。例えば、Solvent Orange 107とSolvent Green 3とSolvent Red 52とを、Solvent Orange 107:Solvent Green 3:Solvent Red 52=1:1:1の質量比で混合することで、黒色を呈する有機染料が得られる。
[熱可塑性樹脂組成物]
 本発明の熱可塑性樹脂組成物は、前述の本発明のグラフト共重合体(B)と上述の共重合体(C)とを含み、好ましくは、更に上記の染料(D)を含む。
 本発明の熱可塑性樹脂組成物における本発明のグラフト重合体(B)の含有率は、グラフト共重合体(B)と共重合体(C)の合計を100質量%とした場合に、10~50質量%であることが好ましく、共重合体(C)の含有率は50~90質量%であることが好ましい。グラフト重合体(B)および共重合体(C)の含有率が上記範囲であると、本発明の熱可塑性樹脂組成物およびその成形品の透明性即ち、発色性と耐衝撃性が優れたものとなる。
 本発明の熱可塑性樹脂組成物が染料(D)を含む場合、染料(D)の含有量には特に制限はないが、本発明のグラフト共重合体(B)と共重合体(C)の合計100質量部に対して0.1~3質量部が好ましく、0.1~2.5質量部がより好ましい。染料(D)の含有量が上記範囲内であれば、得られる成形品の耐衝撃性および耐候性と発色性のバランスに優れる。
 本発明の熱可塑性樹脂組成物は、熱可塑性樹脂組成物およびその成形品の物性を損なわない範囲において、必要に応じて、他の熱可塑性樹脂を含有してもよい。他の熱可塑性樹脂としては特に制限はなく、例えば、ポリカーボネート樹脂、ポリブチレンテレフタレート(PBT樹脂)、ポリエチレンテレフタレート(PET樹脂)、ポリ塩化ビニル、ポリスチレン、ポリアセタール樹脂、変性ポリフェニレンエーテル(変性PPE樹脂)、エチレン-酢酸ビニル共重合体、ポリアリレート、液晶ポリエステル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、フッ素樹脂およびポリアミド樹脂(ナイロン)等が挙げられる。これらは1種のみを用いてもよく、2種以上を混合して用いてもよい。
 本発明の熱可塑性樹脂組成物には、熱可塑性樹脂組成物およびその成形品の物性を損なわない範囲において、熱可塑性樹脂組成物の製造時(混合時)、成形時に、慣用の他の添加剤、例えば滑剤、顔料、充填剤(カーボンブラック、シリカ、酸化チタン等)、耐熱剤、酸化劣化防止剤、耐候剤、離型剤、可塑剤、帯電防止剤等を配合することができる。
 本発明の熱可塑性樹脂組成物は、公知の装置を使用した公知の方法で製造できる。例えば、一般的な方法として溶融混合法がある。溶融混合法で使用する装置としては、押出機、バンバリーミキサー、ローラー、ニーダー等が挙げられる。混合には回分式、連続式のいずれを採用してもよい。各成分の混合順序などにも特に制限はなく、全ての成分が均一に混合されればよい。
〔成形品〕
 本発明の成形品は、本発明の熱可塑性樹脂組成物が成形されたものである。
 本発明の熱可塑性樹脂組成物の成形方法としては、例えば、射出成形法、射出圧縮成形機法、押出法、ブロー成形法、真空成形法、圧空成形法、カレンダー成形法およびインフレーション成形法等が挙げられる。これらのなかでも、量産性に優れ、高い寸法精度の成形品を得ることができるため、射出成形法、射出圧縮成形法が好ましい。
〔用途〕
 本発明の熱可塑性樹脂組成物から得られる本発明の成形品は、発色性、耐衝撃性および耐候性に優れる。
 本発明の熱可塑性樹脂組成物およびその成形品の用途については特に制限はないが、本発明の熱可塑性樹脂組成物およびその成形品は、その優れた発色性、耐衝撃性、耐候性から、OA・家電分野、車輌・船舶分野、家具・建材などの住宅関連分野、サニタリー分野、雑貨、文具・玩具・スポーツ用品分野などの幅広い分野に有用である。特に、黒色染料を配合した場合の優れた耐候性、即ち、耐候漆黒性から、車輌内装・外装部品、とりわけ、車輌外装部品、例えば、ドアミラー、ピラー、ガーニッシュ、モール、フェンダー、バンパー、フロントグリル、カウル類等において、意匠性、高級感に優れ、耐久性にも優れた製品を提供することができる。
 以下に、実施例および比較例を挙げて本発明をより具体的に説明する。本発明は、その要旨を超えない限り、以下の実施例に何ら制限されるものではない。
 以下において、「部」は「質量部」、「%」は「質量%」を意味する。
〔測定・評価方法〕
 以下の実施例および比較例における各種測定および評価方法は以下の通りである。
<共重合体(A)とグラフト共重合体(B)の体積平均粒子径>
 実施例および比較例で製造した共重合体(A-1)~(A-12)と、グラフト共重合体(B-1)~(B-11)の体積平均粒子径(X)は、日機装社製のNanotrac UPA-EX150を用いて動的光散乱法より求めた。
 また、共重合体(A-1)~(A-12)については、上記と同様の方法で粒子径分布を求め、頻度上限10%の粒子径を頻度上限10%体積粒子径(Y)とし、頻度下限10%の粒子径を頻度下限10%体積粒子径(Z)とし、それぞれ体積平均粒子径(X)に対する比を算出した。
<グラフト共重合体(B)のグラフト率>
 グラフト共重合体(B-1)~(B-11)1gを80mLのアセトンに添加し、65~70℃にて3時間加熱還流し、得られた懸濁アセトン溶液を遠心分離機(日立工機社製「CR21E」)にて14,000rpm、30分間遠心分離して、沈殿成分(アセトン不溶成分)とアセトン溶液(アセトン可溶成分)を分取した。そして、沈殿成分(アセトン不溶成分)を乾燥させてその質量(Q(g))を測定し、下記式(3)によりグラフト率を算出した。なお、式(3)におけるQは、グラフト共重合体(B)のアセトン不溶成分の質量(g)、WはQを求める際に使用したグラフト共重合体(B-1)~(B-11)の全質量(g)、ゴム分率はグラフト共重合体(B-1)~(B-11)の製造に用いた共重合体(A)の水性分散体における固形分濃度である。
グラフト率(質量%)={(Q-W×ゴム分率)/W×ゴム分率}
                    ×100   …(3)
<共重合体(C)の質量平均分子量>
 共重合体(C-1)の質量平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)を用い、テトラヒドロフラン(THF)に溶解して測定したものを標準ポリスチレン(PS)換算で求めた。
[共重合体(A)の製造]
<共重合体(A-1)の製造>
 以下の配合で共重合体(A-1)を製造した。
〔配合〕
  アクリル酸n-ブチル    (a)       45部
  アクリル酸2-フェノキシエチル(b)      15部
  メタクリル酸アリル             0.24部
  1,3-ブチレングリコールジメタクリレート 0.12部
  流動パラフィン                0.6部
  アルケニルコハク酸ジカリウム        0.05部
  ジラウロイルペルオキシド           0.6部
  イオン交換水                 406部
 試薬注入容器、冷却管、ジャケット加熱機および攪拌装置を備えた反応器に、アクリル酸n-ブチル、アクリル酸2-フェノキシエチル、流動パラフィン、メタクリル酸アリル、ジラウロイルペルオキシド、イオン交換水、アルケニルコハク酸ジカリウム、を仕込み、常温下で(株)日本精機製作所製ULTRASONIC HOMOGENIZER US-600を用いて振幅35μmで20分間超音波処理を行うことでプレエマルションを得た。
 プレエマルションを60℃に加熱し、ラジカル重合を開始した。重合により、液温は78℃まで上昇した。30分間75℃で維持し、重合を完結させ、水性分散体に分散している共重合体(A-1)を得た。共重合体(A-1)の体積平均粒子径(X)、頻度上限10%体積粒子径(Y)、頻度下限10%体積粒子径(Z)、およびY/Z、Z/Yは、表1に示す通りであった。
<共重合体(A-2)~(A-10),(A-12)の製造>
 (メタ)アクリル酸アルキルエステル(a)、芳香族炭化水素基を有する(メタ)アクリル酸エステル(b)、アルケニルコハク酸ジカリウムの量を表1に示す通り変更したこと以外は、共重合体(A-1)と同様にして、水性分散体に分散している共重合体(A-2)~(A-10),(A-12)を得た。共重合体(A-2)~(A-10),(A-12)の体積平均粒子径(X)、頻度上限10%体積粒子径(Y)、頻度下限10%体積粒子径(Z)、およびY/Z、Z/Yは、表1に示す通りであった。
<共重合体(A-11)の製造>
 ステンレススチール製のオートクレーブ(以下、SUS製オートクレーブと略記)中に、イオン交換水(以下、単に水と略記)145部、ロジン酸カリウム1.0部、オレイン酸カリウム1.0部、水酸化ナトリウム0.06部、硫酸ナトリウム0.4部、t-ドデシルメルカプタン0.3部を仕込み、窒素置換した後、1,3-ブタジエン125部を仕込み、60℃に昇温した。
 次いで、過硫酸カリウム0.3部を水5部に溶解した水溶液を圧入して重合を開始した。重合中は重合温度を65℃に調節し、12時間後内圧が4.5kg/cm(ゲージ圧)となった時点で未反応の1,3-ブタジエンを回収した。その後、内温を80℃にして1時間保持してブタジエンゴムラテックスを得た。
 ブタジエンゴムラテックスの固形分換算で20部を5リットルのガラス製反応器に仕込み、次いでアルケニルコハク酸ジカリウム1.0部と水150部とを加えて窒素置換を行い、内温を70℃に昇温した。これに10部の水に過硫酸カリウム0.12部を溶解した水溶液を加え、引き続き予め窒素置換しておいたアクリル酸n-ブチル(a)79.5部、メタクリル酸アリル0.33部、1,3-ブチレングリコールジメタクリレート0.17部からなる単量体混合物を2時間かけて連続的に滴下した。滴下終了後、内温を80℃に昇温し、1時間保持して、水性分散体に分散しているブタジエンゴムとアクリルゴムとからなる共重合体(A-11)を得た。共重合体(A-11)の体積平均粒子径(X)、頻度上限10%体積粒子径(Y)、頻度下限10%体積粒子径(Z)、およびY/X、Z/Xは、表1に示す通りであった。
Figure JPOXMLDOC01-appb-T000001
[グラフト共重合体(B)の製造]
<グラフト共重合体(B-1)の製造>
 共重合体(A-1)を製造後、反応器の内温を75℃に保ったまま、共重合体(A-1)60部(固形分として)に対して、硫酸第一鉄0.001部、エチレンジアミン四酢酸二ナトリウム塩0.003部、ロンガリット0.3部、およびイオン交換水5部からなる水溶液を添加し、ついで、アルケニルコハク酸ジカリウム0.65部、およびイオン交換水10部からなる水溶液を添加した。その後、ビニル系単量体混合物(m1)としてメタクリル酸メチル8部、アクリロニトリル8部、スチレン24部の混合物と、t-ブチルヒドロペルオキシド0.18部を1時間30分にわたって滴下し、グラフト重合させた。
 滴下終了後、内温を75℃に10分間保持した後、冷却し、内温が60℃となった時点で、酸化防止剤(吉富製薬工業社製、アンテージW500)0.2部およびアルケニルコハク酸ジカリウム0.2部をイオン交換水5部に溶解した水溶液を添加した。ついで、反応生成物の水性分散体を硫酸水溶液で凝固、水洗した後、乾燥してグラフト共重合体(B-1)を得た。グラフト共重合体(B-1)のグラフト率は25%、体積平均粒子径は510nmであった。
<グラフト共重合体(B-2)~(B-11)の製造>
 共重合体(A)の種類を表2に示す通り変更したこと以外は、グラフト共重合体(B-1)と同様にして、グラフト共重合体(B-2)~(B-11)を得た。
 グラフト共重合体(B-2)~(B-11)のグラフト率、体積平均粒子径は、表2に示す通りであった。
Figure JPOXMLDOC01-appb-T000002
[共重合体(C)の製造]
<共重合体(C-1)の製造>
 耐圧反応容器にイオン交換水150部と、ビニル系単量体混合物(m2)としてメタクリル酸メチル99部、アクリル酸メチル1部の混合物と、2,2’-アゾビス(イソブチロニトリル)0.2部、n-オクチルメルカプタン0.45部、カルシウムハイドロオキシアパタイト0.47部、アルケニルコハク酸カリウム0.003部を仕込み、内温を75℃まで昇温し、3時間反応を行った。その後、90℃まで昇温し、60分間保持することで反応を完結させた。内容物を遠心脱水機で洗浄、脱水を繰り返し、乾燥させて質量平均分子量124,000の共重合体(C-1)を得た。
[実施例1~9、比較例1~9]
 表3A,3Bに示す組成(質量部)で各成分を混合し、さらにそこに染料(D)としてオリエント化学工業(株)社製「NUBIAN PC-5856」を表3A,3Bに示す量混合し、30mmφの真空ベント付き2軸押し出し機(池貝社製「PCM30」)を用いて240℃で溶融混練し、ペレット状の熱可塑性樹脂組成物を得た。
 得られた熱可塑性樹脂組成物についてメルトボリュームレートを以下の方法により評価した。
 得られた熱可塑性樹脂組成物を射出成形した成形品について、耐衝撃性、発色性、耐候性を以下の方法により評価した。
 評価結果を表3A,3Bに示す。
[各評価方法]
<メルトボリュームレート(MVR)の測定>
 ISO 1133:1997に準拠し、220℃における熱可塑性樹脂組成物のMVRを、98N(10kg)の荷重で測定した。なお、MVRは熱可塑性樹脂組成物の流動性の目安となり、数値が高いほど流動性に優れることを意味する。
<射出成形1>
 溶融混練して得られた熱可塑性樹脂組成物のペレットを射出成形機(東芝機械社製、「IS55FP-1.5A」)によりシリンダー温度200~270℃、金型温度60℃の条件で、縦80mm、横10mm、厚さ4mmの成形品を成形し、シャルピー衝撃試験用成形品(成形品(Ma1))として用いた。
<射出成形2>
 溶融混練して得られた熱可塑性樹脂組成物のペレットを射出成形機(東芝機械社製、「IS55FP-1.5A」)によりシリンダー温度200~270℃、金型温度60℃の条件で、縦100mm、横100mm、厚さ3mmの成形品を成形し、発色性および耐候性評価用成形品(成形品(Ma2))として用いた。
<耐衝撃性の評価:シャルピー衝撃試験>
 成形品(Ma1)について、ISO 179-1:2013年度版に準拠し、試験温度23℃の条件で成形品(タイプB1、ノッチ有:形状A シングルノッチ)のシャルピー衝撃強度(打撃方向:エッジワイズ)を測定した。シャルピー衝撃強度が高いほど、耐衝撃性に優れることを意味する。
<発色性の評価>
 成形品(Ma2)について、分光測色計(コニカミノルタオプティプス社製「CM-3500d」)を用いて、SCE方式にて明度Lを測定した。測定されたLを「L(ma)」とする。Lが低いほど黒色となり、発色性が良好と判定した。
 「明度L」とは、JIS Z 8729において採用されているL表色系における色彩値のうちの明度の値(L)を意味する。
 「SCE方式」とは、JIS Z 8722に準拠した分光測色計を用い、光トラップによって正反射光を除去して色を測る方法を意味する。
<耐候性の評価>
 成形品(Ma2)をサンシャインウェザーメーター(スガ試験機(株)製)を用い、ブラックパネル温度63℃、サイクル条件60分(降雨12分)の条件で1500時間処理した。この処理前後の明度L色味a、bを上記の発色性の評価と同様にして測定し、その変化ΔE(ΔL+Δa+Δb)を求め、下記基準で評価した。
  ○:ΔEが3以下で耐候性に優れる。
  △:ΔEが3より大きく5以下で耐候性にやや劣る。
  ×:ΔEが5より大きく耐候性に劣る。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表3A,3Bより次のことが分かる。
 比較例1,2では、グラフト共重合体(B)として体積平均粒子径の小さいもののみを用いており、耐衝撃性、耐候性が劣る。比較例1では発色性も劣る。
 比較例3,4で用いた体積平均粒子径500nmのグラフト共重合体(B-8)は、その製造に用いた共重合体(A-8)が、本発明で規定する粒度分布を満たさないために、比較例3,4は耐衝撃性に劣る。比較例4では更に発色性も劣る。
 比較例5,6で用いた体積平均粒子径500nmのグラフト共重合体(B-9)は、その製造に用いた共重合体(A-9)のアクリル酸n-ブチル(a)と、アクリル酸2-フェノキシエチル(b)との配合比が本発明の規定範囲外であるため、比較例5,6は耐衝撃性、耐候性に劣る。
 比較例7で用いた体積平均粒子径420nmのグラフト共重合体(B-10)は、その製造に用いた共重合体(A-10)がアクリル酸2-フェノキシエチル(b)を含まず、アクリル酸n-ブチル(a)のみを用いたものであるため、比較例7は耐衝撃性、耐候性に劣る。
 比較例8で用いた体積平均粒子径50nmのグラフト共重合体(B-11)の製造に用いた共重合体(A-11)は、アクリル酸2-フェノキシエチル(b)を用いず、ブタジエンゴムを用いたものであるために、比較例8は耐衝撃性、耐候性に劣る。
 比較例9ではグラフト共重合体ではなく、共重合体(A-12)のみを用いており、耐衝撃性に著しく劣る。
 これに対して、本発明の規定を満たす実施例1~9は、耐衝撃性、発色性、耐候性のすべてに優れる。
 実施例9は、グラフト共重合体(B-1)1種類のみを用いた例であり、粒子径の異なる2種類のグラフト共重合体(B)を組み合わせて用いた実施例1~8に比べて耐衝撃性が若干劣るが、実用可能な範囲であり、発色性と耐候性は良好である。
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2020年8月21日付で出願された日本特許出願2020-140254に基づいており、その全体が引用により援用される。

 

Claims (6)

  1.  (メタ)アクリル酸アルキルエステル(a)と、芳香族炭化水素基を有する(メタ)アクリル酸エステル(b)との共重合体(A)に対し、(メタ)アクリル酸アルキルエステル、シアン化ビニル化合物および芳香族ビニル化合物を含むビニル系単量体混合物(m1)をグラフト重合してなるグラフト共重合体(B)と、
     (メタ)アクリル酸アルキルエステルを含むビニル系単量体混合物(m2)の重合反応物である共重合体(C)と
    を含む熱可塑性樹脂組成物であって、
     該グラフト共重合体(B)として、少なくとも体積平均粒子径300~800nmのグラフト共重合体(B)を含み、
     該共重合体(A)中の(メタ)アクリル酸アルキルエステル(a)単位と芳香族炭化水素基を有する(メタ)アクリル酸エステル(b)単位との合計100質量%中の(メタ)アクリル酸アルキルエステル(a)単位の含有量が67~83質量%で、芳香族炭化水素基を有する(メタ)アクリル酸エステル(b)単位の含有量が17~33質量%であり、
     該共重合体(A)の体積平均粒子径(X)が50~800nmであり、
     該共重合体(A)の体積平均粒子径(X)をXで表し、粒子径分布曲線における上限からの頻度の累積値が10%になったところの粒子径を頻度上限10%体積粒子径(Y)としてYで表し、粒子径分布曲線における下限からの頻度の累積値が10%になったところの粒子径を頻度下限10%体積粒子径(Z)としてZで表したとき、体積平均粒子径(X)、頻度上限10%体積粒子径(Y)および頻度下限10%体積粒子径(Z)が、以下の(1)および(2)を満たすことを特徴とする熱可塑性樹脂組成物。
     (1) Y/X≦1.4
     (2) Z/X≧0.6
  2.  前記グラフト共重合体(B)と前記共重合体(C)との合計100質量部中にグラフト共重合体(B)を10~50質量部、共重合体(C)を50~90質量部含む、請求項1に記載の熱可塑性樹脂組成物。
  3.  前記ビニル系単量体混合物(m1)が、(メタ)アクリル酸アルキルエステルを10~30質量%、シアン化ビニル化合物を10~30質量%、芳香族ビニル化合物を50~70質量%含む、請求項1または2に記載の熱可塑性樹脂組成物。
  4.  前記グラフト共重合体(B)の共重合体(A)とビニル系単量体混合物(m1)との合計100質量%に対する共重合体(A)の割合が50~80質量%で、ビニル系単量体混合物(m1)の割合が20~50質量%である、請求項1ないし3のいずれか1項に記載の熱可塑性樹脂組成物。
  5.  更に染料(D)を含む、請求項1ないし4のいずれか1項に記載の熱可塑性樹脂組成物。
  6.  請求項1ないし5のいずれか1項に記載の熱可塑性樹脂組成物を成形してなる成形品。

     
PCT/JP2021/028127 2020-08-21 2021-07-29 熱可塑性樹脂組成物およびその成形品 WO2022038987A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/765,133 US11505693B1 (en) 2020-08-21 2021-07-29 Thermoplastic resin composition and molded article produced by molding the same
EP21858135.3A EP4201972A1 (en) 2020-08-21 2021-07-29 Thermoplastic resin composition and molded article thereof
CN202180037327.4A CN115667395B (zh) 2020-08-21 2021-07-29 热塑性树脂组合物及其成型品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020140254A JP6988966B1 (ja) 2020-08-21 2020-08-21 熱可塑性樹脂組成物およびその成形品
JP2020-140254 2020-08-21

Publications (1)

Publication Number Publication Date
WO2022038987A1 true WO2022038987A1 (ja) 2022-02-24

Family

ID=79239748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/028127 WO2022038987A1 (ja) 2020-08-21 2021-07-29 熱可塑性樹脂組成物およびその成形品

Country Status (5)

Country Link
US (1) US11505693B1 (ja)
EP (1) EP4201972A1 (ja)
JP (1) JP6988966B1 (ja)
CN (1) CN115667395B (ja)
WO (1) WO2022038987A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019082715A1 (ja) * 2017-10-24 2019-05-02 テクノUmg株式会社 ゴム質重合体、グラフト共重合体、熱可塑性樹脂組成物および成形品の製造方法
JP2019099698A (ja) * 2017-12-04 2019-06-24 ユーエムジー・エービーエス株式会社 グラフト共重合体、熱可塑性樹脂組成物およびその成形品
JP2019137751A (ja) * 2018-02-08 2019-08-22 ユーエムジー・エービーエス株式会社 熱可塑性樹脂組成物およびその成形品
JP2019151697A (ja) * 2018-03-01 2019-09-12 ユーエムジー・エービーエス株式会社 重合体、グラフト重合体および熱可塑性樹脂組成物
WO2020095622A1 (ja) * 2018-11-05 2020-05-14 テクノUmg株式会社 グラフト共重合体、熱可塑性樹脂組成物およびその成形品
JP2020140254A (ja) 2019-02-26 2020-09-03 キヤノン株式会社 画像形成装置及びその制御方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4954441B2 (ja) 2003-10-30 2012-06-13 ユーエムジー・エービーエス株式会社 熱可塑性樹脂組成物
JP6261957B2 (ja) 2013-11-11 2018-01-17 旭化成株式会社 熱可塑性樹脂組成物からなる漆黒部品及び自動車内装部品
EP3369755A4 (en) * 2015-10-28 2019-10-23 UMG ABS, Ltd. PFROPOPOPOLYMER, NETWORKED PARTICLES, GRAINED PARTICLES, PRECIOUS POLYMER AND THERMOPLASTIC RESIN COMPOSITION THEREWITH
JP7310140B2 (ja) * 2017-01-23 2023-07-19 テクノUmg株式会社 ゴム質重合体、グラフト共重合体および熱可塑性樹脂組成物
JP7305615B2 (ja) * 2017-07-21 2023-07-10 ローム アンド ハース カンパニー ポリ(メチルメタクリレート)樹脂組成物
JP7005990B2 (ja) * 2017-07-28 2022-01-24 テクノUmg株式会社 ゴム質重合体、グラフト共重合体および熱可塑性樹脂組成物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019082715A1 (ja) * 2017-10-24 2019-05-02 テクノUmg株式会社 ゴム質重合体、グラフト共重合体、熱可塑性樹脂組成物および成形品の製造方法
JP2019099698A (ja) * 2017-12-04 2019-06-24 ユーエムジー・エービーエス株式会社 グラフト共重合体、熱可塑性樹脂組成物およびその成形品
JP2019137751A (ja) * 2018-02-08 2019-08-22 ユーエムジー・エービーエス株式会社 熱可塑性樹脂組成物およびその成形品
JP2019151697A (ja) * 2018-03-01 2019-09-12 ユーエムジー・エービーエス株式会社 重合体、グラフト重合体および熱可塑性樹脂組成物
WO2020095622A1 (ja) * 2018-11-05 2020-05-14 テクノUmg株式会社 グラフト共重合体、熱可塑性樹脂組成物およびその成形品
JP2020140254A (ja) 2019-02-26 2020-09-03 キヤノン株式会社 画像形成装置及びその制御方法

Also Published As

Publication number Publication date
JP2022035734A (ja) 2022-03-04
CN115667395B (zh) 2024-01-30
US11505693B1 (en) 2022-11-22
JP6988966B1 (ja) 2022-01-05
US20220348758A1 (en) 2022-11-03
EP4201972A1 (en) 2023-06-28
CN115667395A (zh) 2023-01-31

Similar Documents

Publication Publication Date Title
JP7081624B2 (ja) グラフト共重合体、架橋粒子、グラフト架橋粒子、ゴム質重合体、およびそれを用いた熱可塑性樹脂組成物
JP7062931B2 (ja) グラフト共重合体、熱可塑性樹脂組成物およびその成形品
CN113166521B (zh) 包含(甲基)丙烯酸酯接枝共聚物的热塑性树脂组合物和制备热塑性树脂组合物的方法
US20220403153A1 (en) Thermoplastic resin and method of preparing the same
US11608402B2 (en) Graft copolymer, thermoplastic resin composition, and molded article produced by molding the same
JP6988967B1 (ja) 熱可塑性樹脂組成物およびその成形品
JP6988966B1 (ja) 熱可塑性樹脂組成物およびその成形品
JP7257108B2 (ja) グラフト重合体および熱可塑性樹脂組成物
JP7251106B2 (ja) グラフト共重合体、熱可塑性樹脂組成物およびその成形品
JP7404701B2 (ja) グラフト共重合体、熱可塑性樹脂組成物およびその成形品
JP7484107B2 (ja) グラフト共重合体、熱可塑性樹脂組成物およびその成形品
JP7192407B2 (ja) グラフト共重合体、熱可塑性樹脂組成物およびその成形品
JP2019151697A (ja) 重合体、グラフト重合体および熱可塑性樹脂組成物
JP7455961B2 (ja) 透明熱可塑性樹脂及びその製造方法
WO2019009203A1 (ja) 重合体、グラフト重合体および熱可塑性樹脂組成物
TW202402851A (zh) 熱塑性樹脂組成物、彼之製備方法及使用彼製造之模製物件
JP2019147866A (ja) 熱可塑性樹脂組成物およびその成形品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21858135

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021858135

Country of ref document: EP

Effective date: 20230321