WO2022038694A1 - 表示装置およびその製造方法 - Google Patents

表示装置およびその製造方法 Download PDF

Info

Publication number
WO2022038694A1
WO2022038694A1 PCT/JP2020/031202 JP2020031202W WO2022038694A1 WO 2022038694 A1 WO2022038694 A1 WO 2022038694A1 JP 2020031202 W JP2020031202 W JP 2020031202W WO 2022038694 A1 WO2022038694 A1 WO 2022038694A1
Authority
WO
WIPO (PCT)
Prior art keywords
bis
phenyl
display device
tris
light emitting
Prior art date
Application number
PCT/JP2020/031202
Other languages
English (en)
French (fr)
Inventor
柏 張
浩司 安川
時由 梅田
猶基 植竹
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US18/022,128 priority Critical patent/US20230309334A1/en
Priority to PCT/JP2020/031202 priority patent/WO2022038694A1/ja
Publication of WO2022038694A1 publication Critical patent/WO2022038694A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • H10K50/181Electron blocking layers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels

Definitions

  • This disclosure relates to a display device and a manufacturing method thereof.
  • Patent Document 1 a method of forming a hole transport layer or an electron transport layer as a common layer common to a plurality of pixels has been used (for example, Patent Document 1). reference).
  • the hole transport layer or the electron transport layer as a common layer common to a plurality of pixels, for example, the number of steps can be reduced and the manufacturing cost can be reduced.
  • the hole transport layer or the electron transport layer as a common layer common to a plurality of pixels, it is possible to prevent the infiltration of foreign substances such as water and oxygen from the outside, and a more reliable display device can be obtained. Obtainable.
  • the hole transport layer or the electron transport layer is formed as a common layer common to a plurality of pixels
  • one pixel light emitting element
  • adjacent pixels adjacent pixels (adjacent pixels (light emitting element) are passed through the common layer.
  • optical crosstalk occurs in which the adjacent light emitting element is also lit. Such crosstalk causes deterioration of the display quality of the display device.
  • the present disclosure has been made in view of the above problems, and an object thereof is self-luminous light emission that does not cause crosstalk even though it has a common layer that transports carriers and is formed in common with a plurality of pixels.
  • the purpose is to provide a type display device and a method for manufacturing the same.
  • the display device is a display device having a plurality of pixels, and seals a support, a thin film transistor layer, a light emitting element layer, and the light emitting element layer.
  • the sealing layer for stopping is provided in this order, the light emitting element layer includes a plurality of light emitting elements having different emission colors, and the plurality of light emitting elements are formed corresponding to the pixels.
  • Each of the plurality of light emitting elements includes a lower electrode, an upper electrode, and a light emitting layer formed between the lower electrode and the upper electrode, and is formed between the light emitting layer and the lower electrode.
  • the lower electrode and the upper electrode are provided with at least the first carrier transport layer of the first carrier transport layer and the second carrier transport layer formed between the light emitting layer and the upper electrode.
  • the light emitting layer is formed in an island shape for each of the pixels, and at least the first carrier transport layer among the carrier transport layers included in the light emitting element is commonly formed in the light emitting elements in the plurality of pixels.
  • a carrier transport unit that is a common layer and is formed so as to be superimposed on the light emitting layer in each of the light emitting elements for each pixel and transports carriers to the light emitting layer, and the light emitting element in the adjacent pixels. It is provided with an adjacent pixel carrier blocking portion formed in the portion between the adjacent pixels and blocking the transport of carriers between the light emitting elements in the adjacent pixels.
  • the method for manufacturing the display device is the method for manufacturing the above-mentioned display device according to one aspect of the present disclosure, which includes a step of forming the lower electrode and the above. It includes a step of forming the first carrier transport layer, a step of forming the light emitting layer, and a step of forming the upper electrode.
  • a self-luminous display device and a method for manufacturing the same, which does not cause crosstalk even though it has a common layer that transports carriers and is formed in common with a plurality of pixels. can do.
  • FIG. It is a top view which shows an example of the schematic structure of the display device which concerns on Embodiment 1 by enlarging a part. It is a flowchart which shows the manufacturing process of the display device which concerns on Embodiment 1. It is sectional drawing which shows a part of the formation process of the light emitting element layer in the display device which concerns on Embodiment 1 in the order of process. It is another cross-sectional view which shows a part of the process of forming a light emitting element layer in the display device which concerns on Embodiment 1 in the order of process.
  • FIG. 3 is a cross-sectional view showing a part of the cross-sectional view taken along the line BB'shown in FIG. It is sectional drawing for demonstrating the problem of the conventional display device. It is a figure which shows typically another example of the laminated structure of the light emitting element which concerns on Embodiment 1.
  • FIG. It is sectional drawing which shows a part of the process of forming a light emitting element layer in the display device which concerns on modification 2 of Embodiment 1 in the order of process.
  • FIG. It is sectional drawing which shows an example of the schematic structure of the pixel in the display device which concerns on Embodiment 3.
  • FIG. It is sectional drawing which shows a part of the process of forming a light emitting element layer in the display device which concerns on Embodiment 3 in the order of process.
  • It is another cross-sectional view which shows a part of the process of forming a light emitting element layer in the display device which concerns on Embodiment 3 in the order of process.
  • FIG. It is still another cross-sectional view which shows a part of the process of forming a light emitting element layer in the display device which concerns on Embodiment 3 in the order of process.
  • FIG. 2 is a partially enlarged plan view showing an example of the schematic configuration of the display device 1 according to the present embodiment.
  • the display device 1 includes a display area DA including a plurality of pixels P, and a frame area NDA provided around the display area DA so as to surround the display area DA.
  • the frame area NDA is a non-display area, and has a terminal portion TS and a bent portion ZS provided between the display region DA.
  • the terminal portion TS is provided with an electronic circuit board (not shown) such as an IC (integrated circuit) chip and an FPC (flexible printed circuit board).
  • the display unit DA is provided with a plurality of wirings including a plurality of scanning signal lines and a plurality of data signal lines.
  • the scanning signal line extends in the row direction.
  • the data signal line extends in the column direction.
  • the display device 1 is a full-color active matrix type display device, and a plurality of pixels P are provided corresponding to the intersections of the scanning signal lines and the data signal lines.
  • the display device 1 has, as the pixel P, for example, a red (R) pixel RP, a green (G) pixel GP, and a blue (B) pixel, as shown by enlarging a part L of the display area DA.
  • these pixel RP, pixel GP, and pixel BP are collectively referred to simply as "pixel P".
  • the display device 1 includes these pixel RP, pixel GP, and pixel BP.
  • the above example is an example, and the display device 1 may include pixels P other than RGB.
  • the pixel P has a so-called pentile array based on the blue pixel BP is shown as an example. Therefore, in the display device 1 shown in FIG. 2, the pixels BP are arranged in a straight line in the column direction, but the pixel RP and the pixel GP are arranged alternately in the column direction.
  • the pixel arrangement of the display device 1 is not limited to the pentile arrangement, and may be another arrangement such as a stripe arrangement.
  • FIG. 1 is a cross-sectional view showing an example of a schematic configuration of pixels P in the display device 1 according to the present embodiment. Note that FIG. 1 is a cross-sectional view taken along the line AA'shown in FIG.
  • the display device 1 is a self-luminous display device called, for example, an organic EL (electroluminescence) display device. As shown in FIG. 1, each pixel P is formed with a self-luminous light emitting element ES called an OLED (organic light emitting diode) or an organic EL element.
  • OLED organic light emitting diode
  • OLED organic light emitting diode
  • the display device 1 is an organic EL display device (OLED display) including an OLED as a light emitting element ES will be described as an example.
  • the display device 1 may be a QLED display provided with a QLED (quantum dot light emitting diode) as the light emitting element ES.
  • the display device 1 may be an inorganic EL display device including an inorganic EL as the light emitting element ES.
  • the red pixel RP is provided with a light emitting element RES (red light emitting element) having a red light emitting color as the light emitting element ES.
  • the green pixel GP is provided with a light emitting element GES (green light emitting element) having a green light emitting color as the light emitting element ES.
  • the blue pixel BP is provided with a light emitting element BES (blue light emitting element) having a blue light emitting color as the light emitting element ES. Therefore, the display area DA is provided with a plurality of light emitting elements ES having different light emitting colors.
  • each layer in the light emitting element ES is also collectively referred to as the same when it is not necessary to distinguish between the light emitting element RES, the light emitting element GES, and the light emitting element BES.
  • the display device 1 includes a substrate 2, a thin film transistor layer 3, a light emitting element layer 4, and a sealing layer 5 in this order.
  • the substrate 2 is a support that supports each layer from the thin film transistor layer 3 to the sealing layer 5.
  • the substrate 2 may be, for example, an inorganic substrate made of an inorganic material such as glass, quartz, or ceramics, or may be a flexible substrate containing a resin such as polyethylene terephthalate, polycarbazole, or polyimide as a main component.
  • the substrate 2 can be composed of two layers of polyimide films and an inorganic film sandwiched between them.
  • a substrate made of a metal such as aluminum or iron coated with an insulating film such as silicon oxide (SiOx), lithicon nitride (SiNx), or an organic insulating material may be used.
  • a substrate or the like obtained by subjecting the surface of a metal substrate containing Al or the like to an insulation treatment by a method such as anodizing may be used.
  • the substrate 2 to be used is not particularly limited.
  • the substrate 2 is transparent or translucent. A sex substrate is used.
  • the thin film transistor layer 3 is formed with a pixel circuit that controls each light emitting element ES in the light emitting element layer 4 and a wiring 32 that connects to the pixel circuit.
  • the wiring 32 includes the plurality of scanning signal lines and the plurality of data signal lines described above.
  • the pixel circuit is provided in the display area DA for each pixel P corresponding to each pixel P.
  • the pixel circuit controls the current to the light emitting element ES by the gradation voltage.
  • the configuration of the pixel circuit is not particularly limited as long as the light emitting element ES in each pixel P can be individually driven.
  • Each pixel circuit is provided with a plurality of thin film transistors 31 including a thin film transistor connected to the lower electrode of the light emitting element ES in each pixel P.
  • the structure of the thin film transistor is well known. Therefore, the illustration and description of each layer in the thin film transistor 31 will be omitted.
  • the plurality of thin film transistors 31 and the plurality of wirings 32 are covered with a flattening film 33.
  • the thin film transistor layer 3 includes the plurality of thin film transistors 31 and the plurality of wirings 32, and a flattening film 33 covering the plurality of thin film transistors 31 and the plurality of wirings 32.
  • the flattening film 33 is provided with a contact hole 33a for electrically connecting the lower electrode of the light emitting element ES to the thin film transistor 31. As a result, the thin film transistor 31 is electrically connected to the light emitting element ES via the contact hole 33a.
  • the flattening film 33 can be made of a coatable photosensitive organic material such as a polyimide resin or an acrylic resin.
  • the light emitting element layer 4 includes the above-mentioned plurality of light emitting element ESs (specifically, light emitting elements RES, GES, BES). As described above, the light emitting element ES is formed for each pixel P corresponding to each pixel P.
  • the light emitting element ES is formed for each pixel P corresponding to each pixel P.
  • the light emitting element ES is a self-luminous element.
  • the light emitting element ES according to the present embodiment includes a cathode 45 and a light emitting layer (hereinafter referred to as “EML”) 43 provided between the anode 41 and the cathode 45.
  • a hole transport layer (hereinafter referred to as “HTL”) 42 is provided between the anode 41 and the EML 43 as a carrier transport layer.
  • An electron transport layer (hereinafter referred to as "ETL”) 44 is provided between the cathode 45 and the EML 43 as a carrier transport layer.
  • the carrier transport layer provided between the lower electrode and the EML43 will be referred to as a "first carrier transport layer”, and the carrier transport layer provided between the upper electrode and the EML43 will be referred to as a “second carrier transport layer”. It is called “carrier transport layer”. Therefore, in this embodiment, HTL42 is the first carrier transport layer and ETL44 is the second carrier transport layer.
  • the layer between the anode 41 and the cathode 45 in the light emitting element ES is collectively referred to as a functional layer.
  • the light emitting device ES shown in FIG. 1 includes HTL42, EML43, and ETL44 as functional layers.
  • the lower electrode is the anode 41 and the upper electrode is the cathode 45.
  • the anode 41 which is a lower electrode, is a pixel electrode (pattern anode) in which an island-shaped pattern is formed for each pixel P (in other words, for each light emitting element ES) corresponding to each pixel P.
  • the cathode 45 which is the upper electrode, is a common electrode (common cathode) provided in common with all pixels P (in other words, common to all light emitting elements ES).
  • the anode 41 is formed on the flattening film 33 adjacent to the flattening film 33.
  • the edge (pattern edge) of the anode 41 is covered with a bank BK called an edge cover.
  • the light emitting element layer 4 has a configuration in which the anode 41, the bank BK, the HTL42, the EML43, the ETL44, and the cathode 45 are laminated in this order from the thin film transistor layer 3 side.
  • Bank BK is an insulating layer for preventing a short circuit between the anode 41 and the cathode 45.
  • the bank BK also functions as an element separation film (also referred to as a pixel separation film) that separates the light emitting element ES in each pixel P.
  • the bank BK is provided with an opening BKa for each pixel P.
  • the opening BKa of this bank BK serves as a light emitting region of each pixel P.
  • the bank BK can be made of a coatable photosensitive organic material such as a polyimide resin or an acrylic resin.
  • the anode 41 is made of a conductive material and has a function of a hole injection layer (HIL) for injecting holes into the HTL 42.
  • the cathode 45 is made of a conductive material and has the function of an electron injection layer (EIL) for injecting electrons into the ETL44.
  • HIL hole injection layer
  • EIL electron injection layer
  • the electrode on the light extraction surface side needs to have light transmission.
  • the electrode on the side opposite to the light extraction surface may have light transmission or light reflection.
  • the cathode 45 which is an upper electrode
  • the anode 41 which is a lower electrode
  • the cathode 45 is formed of a light-transmitting electrode made of a light-transmitting material
  • the anode 41 which is a lower electrode
  • the cathode 45 is formed of a light-reflecting electrode made of a light-reflecting material
  • the anode 41 which is a lower electrode
  • a transparent electrode or a translucent electrode is used.
  • the transparent electrode for example, ITO (indium tin oxide), IZO (indium zinc oxide) and the like are used.
  • the translucent electrode for example, a light-transmitting metal thin film such as a magnesium-silver alloy is used.
  • a metal such as Ag (silver) or Al (aluminum), or an alloy containing these metals or the like is used.
  • HTL42 is a layer that transports holes from the anode 41 to the EML43.
  • the ETL44 is a layer that transports electrons from the cathode 45 to the EML43.
  • HTL42 and ETL44 are common layers provided in common to all pixels P (in other words, common to all light emitting elements ES).
  • the HTL42 includes a hole transport unit 42b as a carrier transport unit and an adjacent pixel hole blocking unit 42a as an adjacent pixel carrier blocking unit.
  • the hole transport unit 42b has a hole transport property.
  • the hole transport unit 42b is provided for each light emitting element ES so as to be superimposed on the EML43 in each light emitting element ES, and transports holes as carriers to the EML43.
  • the adjacent pixel hole blocking portion 42a is provided in a portion between the light emitting elements ES in the adjacent pixels P, and blocks the transport of holes between the light emitting elements ES in the adjacent pixels P. If the adjacent pixel hole blocking unit 42a is provided between the hole transport units 42b in the adjacent pixels P so that the hole transport between the light emitting elements ES in the adjacent pixels P can be blocked. ,
  • the size is not particularly limited.
  • the hole transport section 42b and the adjacent pixel hole blocking section 42a can be formed, for example, by transforming at least a part of a common layer commonly provided in all pixels P by a chemical reaction.
  • the hole transport portion 42b and the adjacent pixel hole blocking portion 42a thus formed are chemically bonded to each other and are integrally formed in the same layer.
  • the hole transport section 42b and the adjacent pixel hole blocking section 42a are suitable because at least a part of the common layer commonly provided in all the pixels P is modified by a chemical reaction as described above. Have substantially the same thickness.
  • the hole transport section 42b is made of a hole transport material.
  • the adjacent pixel hole blocking portion 42a is made of a hole blocking material that blocks the transport of holes.
  • the hole blocking material may be an organic insulating material or an electron transporting material.
  • the hole transporting unit 42b may be formed by forming a hole transporting material into a film, and by converting (transforming) an organic insulating material or an electron transporting material into a hole transporting material by a chemical reaction. It may be formed. Therefore, the hole transport section 42b may be formed by modifying the hole blocking material used for the adjacent pixel hole blocking section 42a by a chemical reaction.
  • the adjacent pixel hole blocking portion 42a may be formed by forming an organic insulating material or an electron transporting material into a film, and the organic insulating material or the hole transporting material is converted into an electron transporting material by a chemical reaction ( It may be formed by (transformation).
  • the hole transport portion 42b and the adjacent pixel hole blocking portion 42a may be patterned with different materials.
  • the pattern formation can be performed by, for example, the following method.
  • the material of the hole transport portion 42b and the adjacent pixel hole blocking portion 42a is a powder (solid)
  • FMM fine metal mask
  • Inkjet method (3) A method of transferring the above-mentioned material into each of these pixels by using a silicon rubber having a pattern corresponding to the pixel RP, the pixel GP, and the pixel BP.
  • the pattern forming method includes the method (2), the method (3), and (4) the material.
  • a method of performing photolithography after applying the above-mentioned material to the entire surface of the substrate, (5) a method of performing laser processing after applying the above-mentioned material to the entire surface of the substrate, and the like can be mentioned.
  • the conversion (transformation) of the material may be performed after the formation of the pattern accompanied by the conversion (transformation) of the material, and is performed after the formation of both the hole transport portion 42b and the adjacent pixel hole blocking portion 42a. You may be broken.
  • the conversion (transformation) of the material may be performed after the patterning, or may be performed after the film formation and before the pattern formation.
  • the hole transport section 42b and the adjacent pixel hole blocking section 42a are formed by modifying at least a part of the common layer by a chemical reaction, the hole transport section 42b and the adjacent pixel hole blocking section 42a are formed. And are chemically bonded to each other by covalent bonds.
  • the hole transport section 42b and the adjacent pixel hole blocking section 42a are, for example, chemical substances of the material. They are chemically bonded to each other by intermolecular force (Van der Waals force) or hydrogen bond between them to form one integrated layer. Also in this case, adjacent pixel hole blocking portions 42a integrally formed with the hole transport portions 42b are provided between the hole transport portions 42b adjacent to each other in the same layer.
  • hole-transporting material examples include inorganic hole-transporting materials such as graphene oxide, copper thiosocyanate (CuSCN), and tungsten oxide (WO3 -x ); 2,6-bis (9H-carbazoyl-9-).
  • inorganic hole-transporting materials such as graphene oxide, copper thiosocyanate (CuSCN), and tungsten oxide (WO3 -x ); 2,6-bis (9H-carbazoyl-9-).
  • a known photosensitive resin that can be patterned can be used as the organic insulating material.
  • the organic insulating material include polyimide (PI), polyetherimide (PEI), polyacrylonitrile (PAN), polyetheretherketone (PEEK), polyvinyl alcohol (PVA), polyisoprene, novolak resin, and polyacrylamide. Examples thereof include at least one kind of resin selected from the group consisting of.
  • the electron-transporting material examples include inorganic electron-transporting materials such as graphene, tin oxide (IV), and zinc oxide; tris (2,4,6-trimethyl-3- (pyridine-3-yl) phenyl) borane.
  • 3TPYMB 4,6-bis (3,5-di (pyridine-3-yl) phenyl) -2-methylpyrimidine
  • B3PYMPM 4,6-bis (3,5-di (pyridine-3-yl) phenyl) -2-methylpyrimidine
  • B3PYMPM 4,6-bis (3,5-di (pyridine-3-yl) phenyl) -2-methylpyrimidine
  • B3PYMPM 1,3-bis (3,5-dipyrido-3) -Ilphenyl) benzene
  • B3PyPB 2,7-bis (2,2'-bipyridine-5-yl) triphenylene
  • BPy-TP2 2,8-quinolinolate lithium
  • the electron transporting material is an inorganic electron transporting material
  • the inorganic electron transporting material may be nanoparticles.
  • the electron transporting material may be graphene (induced graphene) derived from an organic insulating material.
  • organic insulating materials such as PI, PEI, and PAN have sufficient heat resistance and contain carbon, and are converted to graphene by exposure to, for example, laser light.
  • PAN is used as the organic insulating material, PAN is converted into graphene by gradually heating it.
  • the laser source is not particularly limited, and may be any laser source having a laser excitation wavelength that matches the absorption wavelength of the organic insulating material (resin) constituting the organic insulating film.
  • the laser source examples include a CO 2 laser, a solid-state laser, a gas phase laser, an infrared laser, an ultraviolet laser, a visible laser, and the like. A plurality of these laser sources can be used in combination.
  • the laser source can be used at various wavelengths. Further, the laser source can be operated in various output ranges.
  • the laser source has various pulse widths (pulse time widths).
  • a CO 2 laser is preferably used as the laser source.
  • the laser scribing for selectively irradiating the laser beam only in each pixel P can be incorporated into the CO 2 laser cutter system.
  • the CO 2 laser cutter system can perform alignment of the laser head to the pixel P, laser intensity setting, scan rate intensity setting, and the like.
  • the hole transport section 42b can be formed, for example, by modifying the hole blocking material by a chemical reaction.
  • the hole blocking material is graphene
  • graphene exhibits electron transportability, but is converted to graphene oxide exhibiting hole transportability by an oxidation reaction.
  • Graphene has, for example, a structure represented by the following structural formula (1). Further, graphene oxide has, for example, a structure represented by the following structural formula (2).
  • flake-shaped single graphenes are randomly overlapped with each other, and the flake-shaped single graphenes are overlapped with each other. It has a structure in which the parts in contact with each other are chemically bonded to each other.
  • flake-shaped single graphene oxides are randomly overlapped, and the portions where the flake-shaped single graphene oxides are in contact with each other are chemically bonded. Has a structure that is connected to each other.
  • Examples of the method for obtaining graphene oxide by oxidizing graphene include the Studio method, Brodie method, Hofmann method, Hummers method, Tour method and the like.
  • the Tour method is considered to be suitable for production in consideration of reaction time, simplicity, toxicity and the like.
  • Graphene becomes graphene oxide by, for example, exposing it to a solution prepared by dissolving KMnO 4 (potassium permanganate) in H 2 SO 4 (sulfuric acid).
  • graphene becomes graphene oxide by doping oxygen by UV / O3 treatment using O3 ( ozone) caused by UV ( ultraviolet rays) (see, for example, Non-Patent Document 1).
  • the hole transporting portion 42b made of the hole transporting material is contained in the same layer.
  • the adjacent pixel hole blocking portion 42a made of the organic insulating material or the electron transporting material that has not been converted into the hole transporting material can be integrally formed.
  • the hole blocking portion 42a of the adjacent pixel is a graphene derived from, for example, an organic insulating material
  • the organic insulating material is converted into a hole transporting material and an electron transporting material.
  • a hole transporting portion 42b made of a hole transporting material and an adjacent pixel hole blocking portion 42a made of an electron transporting material can be integrally formed.
  • the hole blocking material constituting the adjacent pixel hole blocking portion 42a may be the same as or different from the hole blocking material before being converted (transformed) into the hole transporting material. ..
  • the adjacent pixel hole blocking portion 42a may be formed, for example, by modifying a hole transporting material by a chemical reaction.
  • graphene oxide exhibits hole transportability as described above, but is converted to graphene (reduced graphene oxide) by reduction.
  • Graphene (reduced graphene oxide) reduced from graphene oxide has an electron transport property (for example, about 2 ⁇ 10 2 S / m) although it has a defect (see, for example, Non-Patent Document 2).
  • a method for reducing graphene oxide for example, a heat reduction method in which graphene oxide is heated to a high temperature to desorb oxygen-containing groups, a chemical reduction method using a reducing agent, and the like are known.
  • Examples of the chemical reduction method include a reduction method using hydrazine (N 2 H 4 ) as a reducing agent as shown in the following formula (3) (see, for example, Non-Patent Document 2).
  • the following formula shows the reaction scheme between graphene oxide and hydrazine as an example of the chemical reduction method.
  • graphene oxide describes only the portion involved in the reaction with hydrazine.
  • the adjacent pixel hole blocking portion 42a made of the electron transporting material is formed in the same layer.
  • the hole transport portion 42b made of graphene oxide which has not been converted into an electron transport material may be integrally formed.
  • the thickness of the HTL 42 is more preferably 30 nm or more in order to adjust the optical path length. Further, the thickness of the HTL 42 is more preferably 300 nm or less in order to reduce the manufacturing cost.
  • the hole transport portion 42b and the adjacent pixel hole blocking portion 42a have substantially the same thickness as described above, but the thicknesses of the adjacent pixel hole blocking portions 42a may be different from each other.
  • the hole transport section 42b is formed by modifying an organic insulating material by a chemical reaction, the tunnel effect is obtained if the thickness of the portion made of the unmodified organic insulating material is within the range of 0.5 to 3 nm. It is possible to transport holes to EML43. Therefore, in the hole transport section 42b, the thickness of the HTL 42 has a thickness of more than 3 nm, which does not exhibit the tunnel effect, and the thickness of the portion made of the unmodified organic insulating material is 0.5, which exhibits the tunnel effect. As long as it is within the range of about 3 nm, it may be provided only on the surface of HTL42.
  • the ETL44 is formed of an electron transporting material common to all pixels P (in other words, common to all light emitting element ES).
  • a known electron transporting material can be used for ETL44.
  • the electron transporting material is not particularly limited, and for example, at least one kind of electron transporting material selected from the group consisting of the above-exemplified electron transporting materials can be used.
  • the thickness of ETL44 can be set in the same manner as before.
  • the thickness of ETL44 is set, for example, in the range of 30 nm or less. If the thickness of the ETL 44 exceeds 30 nm, the mobility tends to be slow and the drive voltage of the display device 1 tends to increase.
  • the EML 43 is a layer having a function of recombining holes (h + ) injected from the anode 41 and electrons (e ⁇ ) injected from the cathode 45 to emit light.
  • the light emitting device ES When the light emitting device ES is an OLED, in the light emitting device ES, holes and electrons are recombinated in the EML 43 by the driving current between the anode 41 and the cathode 45, and the excitons generated thereby transition to the basal state. It emits light in the process.
  • the light emitting element ES When the light emitting element ES is a QLED, holes and electrons are recombined in the EML43 due to the driving current between the anode 41 and the cathode 45, and the excitons generated by this recombine the conduction band level of the quantum dots. Light (fluorescence or phosphorescence) is emitted in the process of transitioning from to the valence band level.
  • the light emitting element ES may be a light emitting element (for example, an inorganic light emitting diode or the like) other than the OLED and the QLED.
  • the EML43 has an island-like pattern formed on the HTL42 for each pixel P (in other words, for each light emitting element ES) so as to cover at least the opening BKa of the bank BK corresponding to each pixel P.
  • the EML43 is formed of, for example, an organic light emitting material such as a small molecule fluorescent dye or a metal complex.
  • the organic light emitting material may be a phosphorescent light emitting material or a fluorescent light emitting material.
  • the EML 43 may be formed of a two-component system of a host material responsible for transporting holes and electrons and a light emitting dopant material responsible for light emission as a light emitting material, or may be formed of the light emitting material alone.
  • the EML43 contains, for example, nano-sized quantum dots (semiconductor nanoparticles) as the light emitting material.
  • quantum dots can be used as the quantum dots.
  • the quantum dots include, for example, Cd (cadmium), S (sulfur), Te (tellurium), Se (selenium), Zn (zinc), In (indium), N (nitrogen), P (phosphorus), As (arsenic). ), Sb (antimony), aluminum (Al), Ga (gallium), Pb (lead), Si (silicon), Ge (germanium), Mg (magnesium), composed of at least one element selected from the group. It may contain at least one type of semiconductor material that has been used.
  • the quantum dots may be a two-component core type, a three-component core type, a four-component core type, a core-shell type or a core multi-shell type. Further, the quantum dots may contain nanoparticles doped with at least one of the above elements, and may have a structure with an inclined composition.
  • the light emitting element RES includes an anode 41R, HTL42R, EML43R, ETL44, and a cathode 45.
  • the light emitting element GES includes an anode 41G, HTL42G, EML43G, ETL44, and a cathode 45.
  • the light emitting element BES includes an anode 41B, HTL42B, EML43B, ETL44, and a cathode 45.
  • the HTL42R is a hole transporting portion 42b of the HTL42 in the pixel RP.
  • the HTL42G is a hole transporting portion 42b of the HTL42 in the pixel GP.
  • the HTL 42B is a hole transporting portion 42b of the HTL 42 in the pixel BP.
  • the sealing layer 5 is a layer that prevents foreign substances such as water and oxygen from permeating into the light emitting element layer 4.
  • the sealing layer 5 is, for example, an inorganic sealing film 51 covering an upper electrode (cathode 45 in this embodiment), an organic buffer film 52 above the inorganic sealing film 51, and a layer above the organic buffer film 52. Inorganic sealing film 53 and the like.
  • the inorganic sealing film 51 and the inorganic sealing film 53 are translucent inorganic insulating films, for example, an inorganic insulating film such as a silicon oxide film or a silicon nitride film formed by a CVD (chemical vapor deposition) method. Can be configured.
  • the organic buffer film 52 is a translucent organic insulating film having a flattening effect, and can be made of a coatable organic material such as acrylic.
  • the organic buffer film 52 can be formed, for example, by inkjet coating, but a bank (not shown) for stopping the droplets may be provided in the frame region NDA.
  • a functional film (not shown) is provided on the sealing layer 5.
  • the functional film has, for example, at least one of an optical compensation function, a touch sensor function, and a protection function.
  • FIG. 3 is a flowchart showing the manufacturing process of the display device 1 in the order of the processes.
  • a plurality of thin film transistors 31 and wiring 32, and a flattening film 33 covering these thin film transistors 31 and wiring 32 are provided on the substrate 2.
  • the thin film transistor layer 3 is formed (step S1).
  • the light emitting element layer 4 is formed on the thin film transistor layer 3 (step S2).
  • a sealing layer 5 is formed on the light emitting element layer 4 so as to cover the light emitting element layer 4 (step S3).
  • a CVD method can be used for forming the inorganic sealing film 51 and the inorganic sealing film 53.
  • a coating method such as an inkjet method can be used for forming the organic buffer film 52.
  • step S4 the laminate including the substrate 2, the thin film transistor layer 3, the light emitting element layer 4, and the sealing layer 5 is divided to obtain a plurality of pieces (step S4).
  • a functional film (not shown) is attached to the obtained pieces (step S5).
  • an electronic circuit board (for example, an IC chip and an FPC) (not shown) is mounted on a part (terminal portion TS) of the frame region NDA outside the display region DA on which the plurality of pixels P are formed (step S6). ..
  • steps S1 to S6 are performed by a display device manufacturing apparatus (including a film forming apparatus that performs each step of steps S1 to S3).
  • a step of forming a resin layer on a translucent support substrate (for example, mother glass) and a barrier on the resin layer are performed before the step S1. It may further include a step of forming a layer.
  • the thin film transistor layer 3 is formed on the barrier layer.
  • the sealing layer 5 is formed in step S3, the upper surface film is attached on the sealing layer 5.
  • the support substrate is peeled off from the resin layer by irradiation with a laser beam or the like, and a bottom film is attached to the lower surface of the resin layer.
  • step S4 the laminate including the lower surface film, the resin layer, the barrier layer, the thin film transistor layer 3, the light emitting element layer 4, the sealing layer 5, and the upper surface film is divided to obtain a plurality of pieces.
  • FIGS. 4 and 5 are cross-sectional views showing a part of the process of forming the light emitting element layer 4 in step S2 in the order of the processes, respectively.
  • FIG. 5 shows a manufacturing process after the manufacturing process shown in FIG. Note that FIGS. 4 and 5 show a cross section corresponding to a part of the cross section taken along the line BB'shown in FIG. Step S2 includes steps S11 to S14 shown in FIG. 4 and steps S15 to S18 shown in FIG.
  • the hole transport portion 42b and the adjacent pixel hole blocking portion 42a are formed by modifying at least a part of the organic insulating film commonly provided for all the pixels P as a common layer by a chemical reaction. Let's take an example.
  • step S2 first, as shown in S11 in FIG. 4, an anode 41 is formed as a lower electrode on the flattening film 33 in the thin film transistor layer 3 in an island shape for each pixel P (step S11, lower electrode).
  • the process of forming For forming the anode 41, various conventionally known methods such as a sputtering method, a vacuum vapor deposition method, a CVD method, a plasma CVD method, and a printing method can be used.
  • a bank BK serving as a pixel separation film is formed on the flattening film 33 so as to cover the pattern edge of the anode 41 in each pixel P (step S12).
  • the bank BK can be formed by applying an organic material such as polyimide or acrylic on the flattening film 33 so as to cover the anode 41 and then patterning by photolithography.
  • an organic insulating material that is finally converted into a material exhibiting hole transportability by a chemical reaction is formed on the anode 41 and the bank BK in a solid shape over all the pixels P.
  • the organic insulating film 111 is formed (step S13, first film forming step).
  • organic insulating film 111 As the organic insulating film 111, as described above, for example, a resin film made of an organic insulating material such as PI, PEI, or PAN can be mentioned. As mentioned above, these organic insulating materials have sufficient heat resistance, contain carbon, and are converted to graphene by exposure to laser light. Graphene exhibits electron transportability, but is converted to graphene oxide, which exhibits hole transportability, by an oxidation reaction.
  • organic insulating material such as PI, PEI, or PAN
  • these organic insulating materials have sufficient heat resistance, contain carbon, and are converted to graphene by exposure to laser light. Graphene exhibits electron transportability, but is converted to graphene oxide, which exhibits hole transportability, by an oxidation reaction.
  • the organic insulating film 111 is coated with a resin precursor such as a PI precursor, a PEI precursor, or a PAN precursor by a known thin film forming technique such as a spin coating method, and is subjected to heat or light (for example, ultraviolet light). By curing, a film can be formed.
  • a resin precursor such as a PI precursor, a PEI precursor, or a PAN precursor
  • a known thin film forming technique such as a spin coating method
  • the laser beam is selectively irradiated only in each pixel P (specifically, in the opening BKa of the bank BK).
  • a PI is used for the organic insulating film 111, and a laser system using a CO 2 laser as a laser source is used.
  • the pulse time width is about 14 ⁇ s
  • the laser excitation wavelength is 10.6 ⁇ m
  • the beam size width is about 120 ⁇ m
  • the laser output is in the range of 2.4 W or more and 5.4 W or less
  • the scan rate is 3.5 inches. s -1
  • the number of pulses per inch is 1000p. p. I made it i.
  • the organic insulating film 111 in each pixel P is graphene by irradiating the laser beam only in each pixel P (specifically, in the opening BKa of the bank BK). Convert to.
  • the graphene film 112 is formed in each pixel P, and the adjacent pixel positive made of the organic insulating film 111 blocks the transport of holes between the light emitting elements ES in these pixels P between the adjacent pixels P.
  • the hole blocking portion 42a is formed (step S14, first transformation step, first carrier transport portion modification step).
  • the graphene film 112 is oxidized and converted into the graphene oxide film 113 (step S15, first modification step, first carrier transport section modification step).
  • graphene oxide can be formed by oxidizing graphene.
  • graphene becomes graphene oxide by, for example, exposing it to a solution obtained by dissolving KMnO 4 in H 2 SO 4 .
  • KMnO 460 g is mixed with 1320 mL of a solution containing H 2 SO 4 and H 3 PO 4 (phosphoric acid) in a ratio of 9: 1.
  • the substrate is immersed in the mixed solution and the substrate is rotated for 12 hours. After the surface of the substrate has returned to room temperature, the substrate is immersed in 30% hydrogen peroxide solution at 0 ° C., and after about 5 minutes, washed with water, 30% hydrochloric acid and ethanol. Finally, the substrate is dried in a vacuum chamber for 8-12 hours. Thereby, the graphene film 112 formed on the substrate obtained in step S14 can be converted into the graphene oxide film 113.
  • the above method is an example, and the present embodiment is not limited to the above method.
  • the graphene film 112 and the oxidizing agent can be obtained by supplying a solution containing an oxidizing agent to the substrate on which the graphene film 112 is formed. May be contacted.
  • Graphene oxide has hole transport properties. Therefore, according to the present embodiment, the hole transport portion 42b made of the graphene oxide film 113 can be formed in each pixel P by the above step.
  • an EML43 is formed for each pixel P on the HTL 42 provided with the adjacent pixel hole blocking portion 42a and the hole transport portion 42b (step S16, the light emitting layer is formed.
  • the process of forming the EML 43 is formed in an island shape for each pixel P (in other words, for each light emitting element ES) so as to correspond to each pixel P and cover at least the opening BK of the bank BK.
  • the method for forming the EML 43 is not particularly limited as long as it is a method capable of forming a fine pattern required for the light emitting device ES.
  • various methods conventionally known as a method for forming an EML such as a thin-film deposition method and an inkjet method, can be used.
  • ETL44 is formed on the EML43 (step S17, a step of forming the second carrier transport layer).
  • the ETL 44 is a common layer provided in common to all the pixels P as shown in FIG. 1, but the present embodiment is not limited to this.
  • the ETL44 may be formed in an island shape for each pixel P (in other words, for each light emitting element ES) so as to correspond to each pixel P and cover at least the opening BKa of the bank BK.
  • various methods conventionally known as a method for forming an ETL such as a thin-film deposition method and an inkjet method, can be used.
  • a cathode 45 is formed as an upper electrode on the ETL44 (step S8, a step of forming the upper electrode).
  • various conventionally known methods such as a sputtering method, a vacuum vapor deposition method, a CVD method, a plasma CVD method, and a printing method can be used.
  • the light emitting element layer 4 including the plurality of light emitting element ESs is formed on the flattening film 33.
  • FIG. 7 is a cross-sectional view showing a part of the cross section taken along the line BB'shown in FIG.
  • FIG. 8 is a cross-sectional view for explaining a problem of a conventional display device.
  • FIG. 8 shows a cross section of a portion of a conventional display device corresponding to the cross section shown in FIG. 7.
  • components having the same functions as those shown in FIG. 7 are designated by the same reference numerals, and detailed description thereof will be omitted.
  • HTL42 will be described as a conventional subject.
  • the HTL 42 is provided in common to a plurality of light emitting element ESs, for example, when the light emitting element BES is lit, the light emitting element BES is connected to the light emitting element BES via the HTL 42. Holes (h + ) are also transported to, for example, the light emitting device RES adjacent to.
  • the cathode 45 and the ETL 44 at least the cathode 45 is a common layer provided in common to all the pixels P.
  • the light emitting element BES when the light emitting element BES is lit, electrons are also transported to, for example, the light emitting element RES adjacent to the light emitting element BES via at least the cathode 45 of the cathode 45 and the ETL44. Therefore, when the light emitting element BES is lit as described above, when holes are transported to the light emitting element RES of the adjacent pixel RP via the HTL 42, the light emitting element BES in the EML43R of the light emitting element RES The holes and electrons transported from are recombined, and the light emitting device RES glows weakly.
  • FIG. 8 illustrates a case where the light emitting element RES of the pixel RP adjacent to the light emitting element BES is weakly shining when the light emitting element BES is shining as described above.
  • the light emitting element GES of the pixel GP adjacent to the light emitting element BES also shines weakly. Such a phenomenon is called optical crosstalk and causes deterioration of display quality.
  • the display device 1 has adjacent pixels that block the transport of holes between the light emitting elements ES in the adjacent pixels P and between the light emitting elements ES in the adjacent pixels P.
  • a hole blocking portion 42a is provided. Therefore, as shown in FIG. 7, the transport of holes to the light emitting element ES in the adjacent pixels P is blocked. Therefore, according to the present embodiment, it is possible to provide the display device 1 in which crosstalk does not occur.
  • the hole transport section 42b and the adjacent pixel hole blocking section 42a are a part of the common layer HTL42.
  • the HTL 42 according to the present embodiment and the display device 1 provided with the HTL 42 have a simple processing process as compared with the case where the HTL 42 is formed in an island shape for each pixel P, and the manufacturing cost is significantly reduced. be able to.
  • the organic insulating material used as the graphene precursor is cheaper than the conventional hole transport material, and the graphene oxide finally formed has high temperature stability and chemical stability. Therefore, according to the present embodiment, it is possible to provide a display device 1 having higher reliability than a display device made of a conventional hole transport material.
  • graphene and graphene oxide have high carrier transport properties. Therefore, according to the present embodiment, it is possible to reduce the drive voltage and the power consumption of the display device 1, and it is possible to lengthen the display time and the standby time of the display device 1.
  • the organic materials conventionally used for HTL may have low adhesion between the materials.
  • the hole transport section 42b and the adjacent pixel hole blocking section 42a are a part of the common layer HTL42, are chemically bonded to each other, and are in the same layer. They are integrally formed inside each other. Therefore, according to the present embodiment, the materials have high adhesion between the hole transport portion 42b and the adjacent pixel hole blocking portion 42a, and it is possible to prevent foreign substances such as water and oxygen from permeating from the outside. Therefore, according to the present embodiment, it is possible to provide a more reliable display device 1.
  • FIG. 9 is a diagram schematically showing another example of the laminated structure of the light emitting element ES according to the present embodiment.
  • the light emitting device ES may have a configuration in which the anode 41, the HTL 42, the EML 43, and the cathode 45 are laminated in this order from the thin film transistor layer 3 side. Also in this case, the same effect as the above-mentioned effect can be obtained.
  • FIG. 10 is a cross-sectional view showing a part of the process of forming the light emitting element layer 4 in the display device 1 according to the present modification in the order of the processes.
  • FIG. 10 shows a part of the manufacturing process after the manufacturing process shown in FIG. 4 in process order. It should be noted that FIG. 10 also shows a cross section corresponding to a part of the cross section taken along the line BB'shown in FIG.
  • step S15 in FIG. 10 after steps S11 to S14, the same step S15 as in step S15 shown in FIG. 5 is performed.
  • Step S21 by irradiating the adjacent pixel hole blocking portion 42a made of the organic insulating film 111 with laser light, the organic insulating film 111 in the adjacent pixel hole blocking portion 42a is formed into the graphene film 114.
  • Step S21 first transformation step, first adjacent pixel hole blocking portion transformation step.
  • the adjacent pixel hole blocking portion 42a made of the graphene film 114 having electron transporting property is formed.
  • step S14 The method of converting the organic insulating film 111 in the adjacent pixel hole blocking portion 42a into the graphene film 114 is described in step S14 shown in FIG. 4 in each pixel P (specifically, in the opening BKa of the bank BK). ) Is the same as the method of converting the organic insulating film 111 into the graphene film 112. Therefore, the description of the method of converting the organic insulating film 111 in the adjacent pixel hole blocking portion 42a into the graphene film 114 will be omitted.
  • step S16 in FIG. 10 the same step S16 as in step S16 shown in FIG. 5 is performed, and each pixel P is placed on the HTL 42 provided with the adjacent pixel hole blocking unit 42a and the hole transport unit 42b. EML43 is formed in.
  • steps S17 and S18 shown in FIG. 5 a light emitting element layer 4 having a light emitting element ES whose adjacent pixel hole blocking portion 42a is made of an electron transporting material is formed.
  • the organic insulating material is transformed into a hole transporting material and an electron transporting material by a chemical reaction, whereby the hole transporting unit 42b made of the hole transporting material and the electron transporting material are separated. Adjacent pixel hole blocking portion 42a was formed.
  • the present embodiment is not limited to this.
  • a hole transport section 42b made of a hole transport material and an electron transport material are formed by converting (transforming) a part of the film made of the hole transport material into an electron transport film by a chemical reaction.
  • the case of forming the adjacent pixel hole blocking portion 42a composed of the above will be described as an example.
  • FIG. 11 is a cross-sectional view showing a part of the process of forming the light emitting element layer 4 in the display device 1 according to the present modification in the order of the processes.
  • FIG. 11 shows a part of the manufacturing process after step S12 shown in FIG. It should be noted that FIG. 11 also shows a cross section corresponding to a part of the cross section taken along the line BB'shown in FIG.
  • step S22 In the example shown in FIG. 11, after steps S11 to S12 shown in FIG. 4, as shown in S22 in FIG. 11, holes converted into a material exhibiting electron transportability by a chemical reaction on the anode 41 and the bank BK.
  • a hole transport film made of a transportable material is formed in a solid shape over all pixels P (step S22, first film formation step).
  • Examples of the hole transporting material include graphene oxide. As described above, graphene oxide is converted to graphene (reduced graphene oxide) exhibiting electron transportability by reduction.
  • the hole transport membrane is the graphene oxide membrane 121
  • a method for forming the graphene oxide film 121 various known methods can be used and are not particularly limited.
  • the graphene oxide film 121 can be formed, for example, by applying a solution in which graphene oxide is dissolved in a solvent by a known coating method such as a spin coating method or a spray coating method and drying the film.
  • the graphene oxide film 121 may be a film formed by oxidizing graphene as described above.
  • the organic insulating film 111 is formed on the anode 41 and the bank BK in the same manner as in step S13 shown in FIG.
  • the organic insulating film 111 is irradiated with a laser to form graphene, and then further oxidized.
  • the graphene oxide film 121 may be formed. Further, as shown in Modification 4 described later, the graphene film formed by growing graphene may be oxidized.
  • the graphene oxide film 121 between the light emitting elements ES in the adjacent pixels P is selectively reduced by, for example, irradiating with a femtosecond laser.
  • the graphene oxide film 121 between the light emitting elements ES is converted into the graphene film 122 (reduced graphene oxide film) (step S23, first transformation step).
  • an HTL 42 having an adjacent pixel hole blocking portion 42a made of a graphene film 122 having an electron transporting property and a hole transporting part 42b made of a graphene oxide film 121 having a hole transporting property is formed.
  • step S16 in FIG. 11 the same step S16 as in step S16 shown in FIG. 5 is performed, and each pixel P is placed on the HTL 42 provided with the adjacent pixel hole blocking unit 42a and the hole transport unit 42b. EML43 is formed in.
  • steps S17 and S18 shown in FIG. 5 a light emitting element layer 4 having a light emitting element ES whose adjacent pixel hole blocking portion 42a is made of an electron transporting material is formed.
  • a hole transport section 42b made of a hole transport material and an electron transport material are formed by converting (transforming) a part of the film made of the electron transport material into a hole transport film by a chemical reaction.
  • the case of forming the adjacent pixel hole blocking portion 42a composed of the above will be described as an example.
  • FIG. 12 is a cross-sectional view showing a part of the process of forming the light emitting element layer 4 in the display device 1 according to the present modification in the order of the processes.
  • FIG. 12 shows a part of the manufacturing process after step S12 shown in FIG. It should be noted that FIG. 12 also shows a cross section corresponding to a part of the cross section taken along the line BB'shown in FIG.
  • step S24 first film formation step
  • Examples of the electron transporting material include graphene. As mentioned above, graphene is converted to graphene oxide, which exhibits hole transportability, by oxidation.
  • the electron transport film is the graphene film 131
  • various known methods can be used and are not particularly limited.
  • the graphene film 131 may be, for example, a film derived from an organic insulating film as described above.
  • the organic insulating film 111 is formed on the anode 41 and the bank BK in the same manner as in step S13 shown in FIG. 4, and then the entire organic insulating film 111 is irradiated with a laser to form graphene, thereby forming the graphene film 131. May be formed.
  • the graphene film 131 is formed directly on the substrate to be processed by growing graphene on the substrate to be processed by, for example, dissociation of a carbon-containing gas as a film-forming raw material gas by remote microwave plasma. You can also. It is also possible to form a graphene film by forming a support on the graphene film grown on the catalyst, removing the catalyst by etching to transfer the graphene film to the target substrate, and then removing the support.
  • a part of the graphene film 131 is selectively oxidized to convert the graphene film 131 in each pixel P (specifically, in the opening BKa of the bank BK) into the graphene oxide film 132.
  • a mask opening MA that covers the graphene film 131 between the light emitting elements ES and exposes the graphene film 131 in the opening BKa of the bank BK by photolithography.
  • a mask M having, for example, made of PMMA (polymethylmethacrylate) is formed on the graphene film 131 (step S25, first modification step).
  • the portion of the graphene film 131 exposed from the mask opening MA is subjected to, for example , UV / O3 treatment.
  • the portion of the graphene film 131 exposed from the mask opening MA is selectively oxidized and selectively converted into the graphene oxide film 132 (step S26, first transformation step).
  • step S27 first transformation step.
  • acetone or the like can be used to remove the mask M.
  • an adjacent pixel hole blocking portion 42a made of graphene film 131 having electron transporting property and a hole transporting part 42b made of graphene oxide film 132 having hole transporting property are formed.
  • step S16 in FIG. 12 the same step S16 as in step S16 shown in FIG. 5 is performed, and each pixel P is placed on the HTL 42 provided with the adjacent pixel hole blocking unit 42a and the hole transport unit 42b. EML43 is formed in.
  • steps S17 and S18 shown in FIG. 5 a light emitting element layer 4 having a light emitting element ES whose adjacent pixel hole blocking portion 42a is made of an electron transporting material is formed.
  • the oxidation method is not particularly limited as long as the oxidation conditions are set so that the graphene film 131 remains between the adjacent openings BKa of the bank BK. Partial oxidation of the graphene membrane 131 may be carried out, for example, by selectively dropping a solution containing an oxidizing agent onto the graphene membrane 131 using a mask. Further, the surface of the graphene film 131 may be partially modified by, for example, partially irradiating the graphene film 131 with UV or the like prior to the partial oxidation. The oxidation region can be controlled by partially modifying the surface of the graphene film 131 to partially impart water repellency or hydrophilicity.
  • the adjacent pixel hole blocking portion 42a and the hole transport portion 42b may be patterned so as to be finally formed into one layer by chemically bonding.
  • the hole transporting portion 42b and the adjacent pixel hole blocking portion 42a are patterned with different materials will be described as an example.
  • FIG. 13 is a cross-sectional view showing a part of the process of forming the light emitting element layer 4 in the display device 1 according to the present modification in the order of the processes.
  • FIG. 13 shows a part of the manufacturing process after step S12 shown in FIG. It should be noted that FIG. 13 also shows a cross section corresponding to a part of the cross section taken along the line BB'shown in FIG.
  • holes are formed as adjacent pixel hole blocking portions 42a on the bank BK between adjacent pixels P.
  • a film 141 made of a blocking material is patterned (step S28, a step of patterning a carrier transport portion).
  • the film 141 made of the hole blocking material may be an organic insulating material or an electron transporting material. In this case, various materials described above can be used as the organic insulating material or the electron transporting material.
  • the method for forming the pattern of the film 141 made of the hole blocking material is not particularly limited, and for example, the above-mentioned pattern forming methods (1) to (5) can be used.
  • the graphene film may be a film formed by converting an organic insulating film into graphene, or a graphene film formed by reducing a graphene oxide film (a graphene film). It may be a reduced graphene oxide film).
  • the patterned organic insulating film may be grapheneized, or the solid organic insulating film may be grapheneized and then obtained.
  • the graphene film may be patterned.
  • the entire solid organic insulating film 111 formed in step S13 may be grapheneized and then patterned, or the solid organic insulating film 111 may be patterned and then grapheneized. You may.
  • an organic insulating material such as PI is formed on the bank BK by a soft nanoimprint method, and then the organic insulating material is transformed into graphene by laser irradiation. You may.
  • the film 141 made of the hole blocking material is a reduced graphene oxide film obtained by reducing the graphene oxide film
  • the patterned graphene oxide film may be reduced to graphene. Further, after reducing the entire solid graphene oxide film, the obtained reduced graphene oxide film may be patterned.
  • the reduction method in an aqueous solution is shown below.
  • the substrate on which the graphene oxide film (100 mg) is formed is immersed in water (minimum 100 mL).
  • hydrazine (1.00 mL, 32.1 mmol) is dissolved in water and heated at 100 ° C. for 24 hours to carry out a reduction reaction.
  • the substrate is washed 5 times with, for example, 100 mL of water and then 5 times with 100 mL of methanol. After washing, it is dried for about an hour in a vacuum heating environment. This makes it possible to form a reduced graphene oxide film.
  • the graphene oxide film may be pre-patterned or may be patterned after reduction.
  • the film 142 made of the hole transporting material is patterned as the hole transporting portion 42b.
  • Step S29 step of forming a pattern of adjacent pixel carrier blocking portions.
  • the film 142 made of the hole transporting material is patterned so as to cover the anode 41 in each pixel P (specifically, the region surrounded by the film 141 made of the hole blocking material). ..
  • the hole transporting material the above-mentioned various materials can be used.
  • the method for forming the pattern of the film 142 made of the hole transporting material is not particularly limited. Also in this case, for example, the pattern forming methods (1) to (5) described above can be used.
  • the adjacent pixel hole blocking portion 42a made of the film 141 made of the hole blocking material and the hole transporting portion 42b made of the film 142 made of the hole transporting material are formed.
  • step S16 in FIG. 13 the same step S16 as in step S16 shown in FIG. 5 is performed, and each pixel P is placed on the HTL 42 provided with the adjacent pixel hole blocking unit 42a and the hole transport unit 42b. EML43 is formed in.
  • steps S17 and S18 shown in FIG. 5 a light emitting element layer 4 having a light emitting element ES whose adjacent pixel hole blocking portion 42a is made of an electron transporting material is formed.
  • the adjacent pixel hole blocking portion 42a made of the film 141 made of the hole blocking material formed in this modification and the hole transporting portion 42b made of the film 142 made of the hole transporting material are in contact with each other. In, they chemically bond to each other. Therefore, according to the above method, the HTL 42 in which the adjacent pixel hole blocking portion 42a and the hole transport portion 42b are integrally formed can be formed in the same layer.
  • the hole transporting portion 42b is formed after forming the pattern of the adjacent pixel hole blocking portion 42a has been described as an example.
  • this modification is not limited to this, and the hole transporting portion 42b may be patterned and then the adjacent pixel hole blocking portion 42a may be patterned.
  • FIG. 14 is a cross-sectional view showing an example of a schematic configuration of pixels P in the display device 1 according to the present embodiment.
  • An enlarged plan view showing an example of the schematic configuration of the display device 1 according to the present embodiment is the same as that of FIG. FIG. 14 corresponds to the cross-sectional view taken along the line AA'shown in FIG.
  • the display device 1 shown in FIG. 14 has the same configuration as the display device 1 according to the first embodiment, except for the following points.
  • the ETL 44 includes an electron transport unit 44b as a carrier transport unit and an adjacent pixel electron blocking unit 44a as an adjacent pixel carrier blocking unit. That is, in the display device 1 according to the present embodiment, the HTL 42 and the ETL 44 each include a carrier transport unit and an adjacent pixel carrier blocking unit, respectively.
  • the electron transport unit 44b has electron transportability.
  • the electron transport unit 44b is provided for each light emitting element ES so as to be superimposed on the EML43 in each light emitting element ES, and transports electrons to the EML43 as a carrier.
  • the adjacent pixel electron blocking unit 44a is provided in a portion between the light emitting elements ES in the adjacent pixels P, and blocks the transport of electrons between the light emitting elements ES in the adjacent pixels P. If the adjacent pixel electron blocking unit 44a is provided between the electron transport units 44b in the adjacent pixels P so that the electron transport between the light emitting elements ES in the adjacent pixels P can be blocked, the size thereof is large.
  • the above is not particularly limited.
  • the electron transport unit 44b and the adjacent pixel electron blocking unit 44a can be formed, for example, by transforming at least a part of a common layer commonly provided in all pixels P by a chemical reaction.
  • the electron transporting portion 44b and the adjacent pixel electron blocking portion 44a formed in this manner are chemically bonded to each other and are integrally formed in the same layer.
  • the electron transporting unit 44b and the adjacent pixel electron blocking unit 44a are preferably formed by modifying at least a part of the common layer commonly provided in all the pixels P by a chemical reaction as described above. , Have substantially the same thickness.
  • the electron transport unit 44b is composed of an electron transportable material.
  • the adjacent pixel electron blocking portion 44a is composed of an electron blocking material that blocks the transport of electrons.
  • the electron blocking material for example, an organic insulating material can be used.
  • the electron blocking material may be a hole transporting material.
  • the electron transporting unit 44b may be formed by forming an electron transporting material into a film, and is formed by converting (transforming) an organic insulating material or a hole transporting material into an electron transporting material by a chemical reaction. May be. Therefore, the electron transport section 44b may be formed by modifying the electron blocking material used for the adjacent pixel electron blocking section 44a by a chemical reaction.
  • the adjacent pixel electron blocking portion 44a may be formed by forming an organic insulating material or a hole transporting material into a film, and the organic insulating material or the electron transporting material is converted into a hole transporting material by a chemical reaction ( It may be formed by (transformation).
  • the electron transport section 44b and the adjacent pixel electron blocking section 44a may be patterned with different materials.
  • the pattern formation can be performed by, for example, the following method.
  • the pattern forming method includes (1) a method of separately coating and depositing using FMM (fine metal mask). , (2) Inkjet method, (3) A method of transferring the above-mentioned material into each of these pixels by using a silicon rubber having a pattern corresponding to the pixel RP, the pixel GP, and the pixel BP.
  • the pattern forming method includes the method (2), the method (3), and (4) the material as a substrate. Examples thereof include a method of performing photolithography after coating on the entire surface, and (5) a method of performing laser processing.
  • the material when the electron transport section 44b and the adjacent pixel electron blocking section 44a are separately patterned and at least one of the electron transport section 44b and the adjacent pixel electron blocking section 44a is accompanied by material conversion (transformation), the material.
  • the conversion (transformation) of the material may be performed after the formation of the pattern accompanied by the conversion (transformation) of the material, or may be performed after the formation of both the pattern of the electron transport portion 44b and the adjacent pixel electron blocking portion 44a.
  • the conversion (transformation) of the material may be performed after the patterning, or may be performed after the film formation and before the pattern formation.
  • the electron transport section 44b and the adjacent pixel electron blocking section 44a are formed by modifying at least a part of the common layer by a chemical reaction, the electron transport section 44b and the adjacent pixel electron blocking section 44a are shared. By binding, they are chemically bonded to each other.
  • the electron transport section 44b and the adjacent pixel electron blocking section 44a are, for example, molecules between chemical substances of the material. It is chemically bonded to each other by an inter-force (Van der Waals force) or a hydrogen bond to form one integrated layer. Further, in this case as well, adjacent pixel electron blocking portions 44a integrally formed with the electron transport portions 44b are provided between the adjacent electron transport portions 44b in the same layer.
  • the electron transporting material for example, at least one kind of electron transporting material selected from the group consisting of the electron transporting materials exemplified in the first embodiment can be used.
  • the organic insulating material for example, at least one organic insulating material selected from the group consisting of the organic insulating materials exemplified in the first embodiment can be used.
  • the hole transporting material for example, at least one kind of hole transporting material selected from the group consisting of the hole transporting materials exemplified in the first embodiment can be used.
  • the electron transport unit 44b can be formed, for example, by modifying the electron blocking material by a chemical reaction.
  • organic insulating materials such as PI, PEI, PAN, etc. have sufficient heat resistance, contain carbon, and are converted to graphene by exposure to laser light.
  • graphene oxide is converted to graphene (reduced graphene oxide) by reduction. Therefore, the electron-transporting material may be graphene (induced graphene) derived from an organic insulating material, or graphene (reduced graphene oxide) obtained by reducing graphene oxide.
  • the adjacent pixel electron blocking portion 44a may be formed, for example, by modifying an electron transporting material by a chemical reaction. As described in the first embodiment, graphene exhibits electron transportability, but is converted to graphene oxide exhibiting hole transportability by an oxidation reaction.
  • the electron transporting unit 44b made of the electron transporting material can be contained in the same layer.
  • the adjacent pixel electron blocking portion 44a made of the organic insulating material or the hole transporting material that has not been converted into the electron transporting material can be integrally formed.
  • the adjacent pixel electron blocking portion 44a made of the electron transporting material and the hole transporting can be performed in the same layer.
  • the electron transport section 44b made of the electron transport material that has not been converted into a sex material can be integrally formed.
  • the thickness of the ETL44 is more preferably 1 nm or more in order to adjust the carrier balance between electrons and holes. Further, when the thickness of the ETL44 exceeds 30 nm, the mobility of electrons tends to be slow, and the drive voltage of the display device 1 tends to be high. Therefore, the thickness of the ETL44 is more preferably 30 nm or less.
  • the electron transport section 44b and the adjacent pixel electron blocking section 44a have substantially the same thickness as described above, but the thicknesses of the electron transport section 44b and the adjacent pixel electron blocking section 44a may be different from each other.
  • the tunnel effect causes the thickness of the portion made of the unmodified organic insulating material to be within the range of 0.5 to 3 nm. It is possible to transport electrons to EML43. Therefore, in the electron transport unit 44b, the thickness of the ETL44 is more than 3 nm, which does not exhibit the tunnel effect, and the thickness of the portion made of the unmodified organic insulating material is 0.5 to 0.5 to exhibit the tunnel effect. As long as it is within the range of 3 nm, it may be provided only on the surface of ETL44.
  • the light emitting element RES includes an anode 41R, HTL42R, EML43R, ETL44R, and a cathode 45.
  • the light emitting element GES includes an anode 41G, HTL42G, EML43G, ETL44G, and a cathode 45.
  • the light emitting element BES includes an anode 41B, HTL42B, EML43B, ETL44B, and a cathode 45.
  • the ETL44R is an electron transport unit 44b of the ETL44 in the pixel RP.
  • the ETL44G is an electron transport unit 44b of the ETL44 in the pixel GP.
  • the ETL44B is an electron transport unit 44b of the ETL44 in the pixel BP.
  • FIG. 15 is another cross-sectional view showing a part of the manufacturing process after step S15 shown in FIG. 5 in process order. It should be noted that FIG. 15 also shows a cross section corresponding to a part of the cross section taken along the line BB'shown in FIG.
  • an electron transporting portion 44b and an adjacent pixel electron blocking portion 44a are formed by transforming at least a part of an organic insulating film commonly provided in all pixels P as a common layer by a chemical reaction. I will explain it by citing it.
  • step S16 in FIG. 15 after steps S11 to S14, the same step S16 as in step S16 shown in FIG. 5 is performed.
  • steps S31 to S33 are performed instead of steps S17 and S18 shown in FIG.
  • step S16 after the above step S16, first, as shown in S31 in FIG. 15, an organic insulating material that is converted into a material exhibiting electron transportability by a chemical reaction is placed on the HTL42 so as to cover the EML43. , A solid film is formed over all pixels P. As a result, a solid organic insulating film 115 is formed (step S31, second film forming step).
  • the organic insulating film 115 a case where a resin as a graphene precursor material that is converted to graphene by exposure to laser light is used for the organic insulating film 115 will be described as an example.
  • the same material as the organic insulating film 111 can be used for the organic insulating film 115.
  • the method of forming the organic insulating film 115 is the same as the method of forming the organic insulating film 111 in step S13. Therefore, the description of the film forming method of the organic insulating film 115 will be omitted here.
  • the organic insulating film in each pixel P is selectively irradiated with the laser beam only in each pixel P (specifically, in the opening BKa of the bank BK). Convert 115 to graphene. As a result, a graphene film 116 is formed in each pixel P, and adjacent pixel electron blocking made of an organic insulating film 115 blocks the transport of electrons between the light emitting elements ES in these pixels P between adjacent pixels P.
  • Part 44a is formed (step S32, second transformation step, second carrier transport section transformation step).
  • a cathode 45 is formed as an upper electrode on the ETL44 provided with the adjacent pixel electron blocking portion 44a and the electron transport portion 44b (step S33, a step of forming the upper electrode).
  • the method of forming the cathode 45 on the ETL44 is the same as the method of forming the cathode 45 on the ETL44 in step S18 shown in FIG.
  • the light emitting element layer 4 including the plurality of light emitting element ESs is formed on the flattening film 33.
  • the HTL 42 and the ETL 44 may each include a carrier transport unit and an adjacent pixel carrier blocking unit, respectively.
  • the adjacent pixel electron blocking portion 44a made of the hole-transporting material and the electron-transporting material are used.
  • the case of forming the electron transport section 44b including the electron transport section 44b will be described as an example.
  • FIG. 16 is a cross-sectional view showing a part of the process of forming the light emitting element layer 4 in the display device 1 according to the present modification in the order of the processes.
  • FIG. 16 shows a part of the manufacturing process after step S15 shown in FIG. It should be noted that FIG. 16 also shows a cross section corresponding to a part of the cross section taken along the line BB'shown in FIG.
  • step S41 the material is converted into a material exhibiting electron transportability by a chemical reaction on the HTL42 so as to cover the EML43.
  • a hole transport film made of a hole transport material is formed in a solid shape over all pixels P (step S41, second film formation step).
  • examples of the hole transporting material include graphene oxide.
  • the hole transport membrane is the graphene oxide membrane 151
  • the method for forming the graphene oxide film 151 is the same as the method for forming the graphene oxide film 121 in step S22 of the first embodiment. Therefore, the description of the film forming method of the graphene oxide film 151 will be omitted here.
  • the graphene oxide film 151 in each pixel P (specifically, in the opening BKa of the bank BK) is selectively reduced by, for example, irradiating with a femtosecond laser. do.
  • the graphene oxide film 151 in each pixel P is converted into the graphene film 152 (reduced graphene oxide film) (step S42, second film formation step, second carrier transport section transformation step).
  • step S42 second film formation step, second carrier transport section transformation step.
  • an adjacent pixel electron blocking portion 44a made of a graphene oxide film 151 having a hole transport property and an electron transport section 44b made of a graphene film 152 having an electron transport property are formed.
  • step S33 in FIG. 16 the same step S33 as in step S33 shown in FIG. 15 is performed, and the cathode 45 is used as an upper electrode on the ETL44 provided with the adjacent pixel electron blocking unit 44a and the electron transport unit 44b. To form. As a result, the light emitting element layer 4 according to this modification is formed.
  • Modification 2 In this modification, a part of the film made of the electron-transporting material is converted (transformed) into a hole-transporting film by a chemical reaction, so that the adjacent pixel electron blocking portion 44a made of the hole-transporting material and the electron-transporting material are used.
  • the case of forming the electron transport section 44b including the electron transport section 44b will be described as an example.
  • FIG. 17 is a cross-sectional view showing a part of the process of forming the light emitting element layer 4 in the display device 1 according to the present modification in the order of the processes.
  • FIG. 17 shows a part of the manufacturing process after step S15 shown in FIG. It should be noted that FIG. 17 also shows a cross section corresponding to a part of the cross section taken along the line BB'shown in FIG.
  • the electron transporting material for example, graphene can be mentioned.
  • the electron transport film is the graphene film 161
  • the method for forming the graphene film 161 is the same as the method for forming the graphene film 131 in step S24 of the first embodiment. Therefore, the description of the method for forming the graphene film 161 will be omitted here.
  • a part of the graphene film 161 is selectively oxidized to convert the graphene film 161 between the light emitting elements ES in the adjacent pixels P into the graphene oxide film 162.
  • the opening MA that covers the graphene film 131 in the opening BKa of the bank BK and exposes the graphene film 161 between the light emitting elements ES by photolithography.
  • a mask M comprising, for example, PMMA, is formed on the graphene film 161 (step S44, second transformation step).
  • the portion of the graphene film 161 exposed from the mask opening MA is subjected to, for example , UV / O3 treatment.
  • the portion of the graphene film 161 exposed from the mask opening MA is selectively oxidized and selectively converted into the graphene oxide film 162 (step S45, second transformation step).
  • step S46 second transformation step.
  • acetone or the like can be used to remove the mask M.
  • an adjacent pixel electron blocking portion 44a made of a graphene oxide film 162 having a hole transport property and an electron transport section 44b made of a graphene film 161 having an electron transport property are formed.
  • step S33 in FIG. 17 the same step S33 as in step S33 shown in FIG. 15 is performed, and the cathode 45 is used as an upper electrode on the ETL44 provided with the adjacent pixel electron blocking unit 44a and the electron transport unit 44b. To form. As a result, the light emitting element layer 4 according to this modification is formed.
  • the case where, for example , UV / O3 treatment is used for the oxidation of the graphene film 161 has been described as an example.
  • the method for oxidizing the graphene film 161 is not particularly limited as long as a part of the graphene film 161 can be selectively oxidized.
  • the adjacent pixel electron blocking portion 44a and the electron transport portion 44b may be patterned so as to be finally formed into one layer by chemically bonding.
  • a case where the adjacent pixel electron blocking portion 44a and the electron transport portion 44b are patterned with different materials will be described as an example.
  • FIG. 18 is a cross-sectional view showing a part of the process of forming the light emitting element layer 4 in the display device 1 according to the present modification in the order of the processes.
  • FIG. 18 shows a part of the manufacturing process after step S152 shown in FIG. It should be noted that FIG. 18 also shows a cross section corresponding to a part of the cross section taken along the line BB'shown in FIG.
  • step S47 a step of pattern forming a carrier transport portion
  • the film 171 made of the electron blocking material may be an organic insulating material or a hole transporting material. In this case, various materials described above can be used as the organic insulating material or the hole transporting material.
  • the method for forming the pattern of the film 171 made of the electron blocking material is not particularly limited, and for example, the above-mentioned pattern forming methods (1) to (5) can be used.
  • the film 171 made of the electron blocking material is, for example, a graphene oxide film obtained by oxidizing a graphene film
  • the patterned graphene film may be oxidized, or after the solid graphene film is oxidized. , The obtained graphene oxide film may be patterned.
  • the film 171 made of the electron blocking material is, for example, a graphene oxide film obtained by oxidizing the obtained graphene film after grapheneizing the organic insulating film, grapheneization of the organic insulating film and the graphene film are performed.
  • the order of oxidation and patterning is not particularly limited.
  • the graphene formation of the organic insulating film and the oxidation of the graphene film may be performed after the patterning of the organic insulating film, and after the graphene formation of the organic insulating film and the oxidation of the graphene film, the obtained graphene oxide film is patterned. It is also good. Further, the graphene film may be patterned between the graphene formation of the organic insulating film and the oxidation of the graphene film.
  • the film 172 made of the electron transporting material is patterned as the electron transporting unit 44b (step).
  • step 48 a step of forming a pattern of an adjacent pixel carrier blocking portion).
  • the film 172 made of an electron transporting material is patterned in each pixel P (specifically, a region surrounded by the film 171 made of an electron blocking material) so as to cover the EML43.
  • the electron transporting material the above-mentioned various materials can be used.
  • the method for forming a pattern of the film 172 made of an electron transporting material is not particularly limited. Also in this case, for example, the pattern forming methods (1) to (5) described above can be used.
  • the adjacent pixel electron blocking portion 44a made of the film 171 made of the electron blocking material and the electron transport portion 44b made of the film 172 made of the electron transporting material are formed.
  • step S33 in FIG. 17 the same step S33 as in step S33 shown in FIG. 15 is performed, and the cathode 45 is used as an upper electrode on the ETL44 provided with the adjacent pixel electron blocking unit 44a and the electron transport unit 44b. To form. As a result, the light emitting element layer 4 according to this modification is formed.
  • the adjacent pixel electron blocking portion 44a made of the film 171 made of the electron blocking material formed in this modification and the electron transporting portion 44b made of the film 172 made of the electron transporting material are chemically bonded to each other at their respective contact portions. To combine. Therefore, according to the above method, it is possible to form the ETL44 in which the adjacent pixel electron blocking portion 44a and the electron transporting portion 44b are integrally formed in the same layer.
  • the electron transporting portion 44b is formed after forming the pattern of the adjacent pixel electron blocking portion 44a has been described as an example.
  • the present modification is not limited to this, and the adjacent pixel electron blocking portion 44a may be formed after pattern forming the electron transport portion 44b.
  • FIG. 19 is a cross-sectional view showing an example of a schematic configuration of a pixel P in the display device 1 according to the present embodiment.
  • An enlarged plan view showing an example of the schematic configuration of the display device 1 according to the present embodiment is the same as that of FIG. FIG. 19 corresponds to the cross-sectional view taken along the line AA'shown in FIG.
  • the display device 1 shown in FIG. 19 has the same configuration as the display device 1 according to the first embodiment, except for the following points.
  • the light emitting element layer 4 of the display device 1 shown in FIG. 19 has a structure in which a cathode 45, a bank BK, an ETL44, an EML43, an HTL42, and an anode 41 are laminated in this order from the thin film transistor layer 3 side. Therefore, in this embodiment, ETL44 is the first carrier transport layer and HTL42 is the second carrier transport layer. As shown in FIG. 19, in the first and second embodiments, the stacking order from the anode 41 to the cathode 45 in the light emitting device ES may be reversed.
  • At least the electrode on the light extraction surface side of the anode 41 and the cathode 45 needs to have light transmission.
  • the electrode on the side opposite to the light extraction surface may have light transmission or light reflection.
  • the anode 41 which is an upper electrode
  • the cathode 45 which is a lower electrode. Is formed by a light-reflecting electrode made of a light-reflecting material.
  • the anode 41 which is an upper electrode
  • the cathode 45 which is a lower electrode
  • the anode 41 which is an upper electrode
  • the cathode 45 which is a lower electrode
  • the display device 1 shown in FIG. 19 includes an electron transport unit 44b as a carrier transport unit and an adjacent pixel electron blocking unit 44a as an adjacent pixel carrier blocking unit.
  • the electron transport unit 44b and the adjacent pixel electron blocking unit 44a are the same as the electron transport unit 44b and the adjacent pixel electron blocking unit 44a described in the second embodiment. Therefore, in this embodiment, the description thereof will be omitted.
  • a known hole transporting material can be used for HTL42.
  • the hole transporting material for example, at least one kind of hole transporting material selected from the group consisting of the hole transporting materials exemplified in the first embodiment can be used.
  • the light emitting element RES shown in FIG. 19 includes a cathode 45R, ETL44R, EML43R, HTL42, and an anode 41.
  • the light emitting element GES includes a cathode 45G, ETL44G, EML43G, HTL42, and an anode 41.
  • the light emitting element BES includes a cathode 45B, ETL44B, EML43B, HTL42, and an anode 41.
  • Step S2 is cross-sectional views showing a part of the process of forming the light emitting element layer 4 in step S2 in the order of the processes, respectively.
  • FIG. 20 shows a manufacturing process after the manufacturing process shown in FIG. It should be noted that FIGS. 20 and 21 show a cross section corresponding to a part of the cross section taken along the line BB'shown in FIG. Step S2 includes steps S51 to S54 shown in FIG. 20 and steps S55 to S57 shown in FIG. 21.
  • a cathode 45 is formed as a lower electrode on the flattening film 33 in the thin film transistor layer 3 in an island shape for each pixel P (step S51, lower electrode).
  • the process of forming For the formation of the cathode 45, the same method as the method for forming the cathode 45 according to the first embodiment can be used.
  • a bank BK serving as a pixel separation film is formed on the flattening film 33 so as to cover the pattern edge of the cathode 45 in each pixel P (step S52).
  • the same method as the method for forming the bank BK according to the first embodiment can be used.
  • an organic insulating material that is converted into a material exhibiting electron transportability by a chemical reaction is formed on the cathode 45 and the bank BK in a solid shape over all the pixels P.
  • the organic insulating film 115 is formed (step S53, first film forming step).
  • the case where the same resin as the graphene precursor material that is converted to graphene by exposure to laser light is used for the organic insulating film 115 will be described as an example.
  • the method of forming the organic insulating film 115 is the same as that of step S31 of the second embodiment.
  • the organic insulating film in each pixel P is selectively irradiated with the laser beam only in each pixel P (specifically, in the opening BKa of the bank BK). Convert 115 to graphene. As a result, a graphene film 116 is formed in each pixel P, and adjacent pixel electron blocking made of an organic insulating film 115 blocks the transport of electrons between the light emitting elements ES in these pixels P between adjacent pixels P. Part 44a is formed (step S54, first transformation step).
  • an EML43 is formed for each pixel P on the ETL44 provided with the adjacent pixel electron blocking unit 44a and the electron transporting unit 44b (step S55, forming a light emitting layer).
  • step S55 forming a light emitting layer.
  • the same method as the method for forming EML43 according to the first embodiment can be used.
  • HTL42 is formed on the EML43 (step S56, step of forming the second carrier transport layer).
  • the HTL 42 is a common layer provided in common to all the pixels P as shown in FIG. 16, but the present embodiment is not limited to this.
  • the HTL 42 is formed in an island shape for each pixel P (in other words, for each light emitting element ES) so as to correspond to each pixel P and cover at least the opening BKa of the bank BK. May be good.
  • a method for forming the HTL 42 various methods conventionally known as a method for forming the HTL, such as a thin-film deposition method and an inkjet method, can be used.
  • an anode 41 is formed as an upper electrode on the HTL 42 (step S57, a step of forming the upper electrode).
  • various conventionally known methods for forming the cathode such as a sputtering method, a vacuum vapor deposition method, a CVD method, a plasma CVD method, and a printing method, can be used.
  • the light emitting element layer 4 including the plurality of light emitting element ESs is formed on the flattening film 33.
  • the display device 1 is an adjacent pixel electron blocking unit that blocks the transport of electrons between the light emitting elements ES in the adjacent pixels P and between the light emitting elements ES in the adjacent pixels P. 44a is provided. Therefore, in the present embodiment, the transport of electrons to the light emitting element ES in the adjacent pixels P is blocked. Therefore, according to the present embodiment, it is possible to provide the display device 1 in which crosstalk does not occur.
  • the electron transport unit 44b and the adjacent pixel electron blocking unit 44a are a part of the ETL44 which is a common layer.
  • the ETL44 according to the present embodiment and the display device 1 provided with the ETL44 have a simple processing process as compared with the case where the ETL44 is formed in an island shape for each pixel P, and the manufacturing cost is significantly reduced. be able to.
  • the organic insulating material used as a graphene precursor is cheaper than the conventional electron transport material, and has high temperature stability and chemical stability. Therefore, according to the present embodiment, it is possible to provide a display device 1 having higher reliability than a display device made of a conventional electron transport material. Further, as described above, graphene and graphene oxide have high carrier transport properties. Therefore, according to the present embodiment, it is possible to reduce the drive voltage and the power consumption of the display device 1, and it is possible to lengthen the display time and the standby time of the display device 1.
  • the organic materials conventionally used for ETL may have low adhesion between the materials.
  • the electron transport section 44b and the adjacent pixel electron blocking section 44a are a part of the common layer ETL44, are chemically bonded to each other, and are contained in the same layer. They are integrally formed with each other. Therefore, according to the present embodiment, the materials in the electron transport section 44b and the adjacent pixel electron blocking section 44a have high adhesion to each other, and foreign substances such as water and oxygen can be prevented from permeating from the outside. Therefore, according to the present embodiment, it is possible to provide a more reliable display device 1.
  • FIG. 22 is a diagram schematically showing another example of the laminated structure of the light emitting element ES according to the present embodiment.
  • the light emitting device ES may have a configuration in which the cathode 45, the ETL44, the EML43, and the anode 41 are laminated in this order from the thin film transistor layer 3 side. Also in this case, the same effect as the above-mentioned effect can be obtained.
  • the display device 1 may include a carrier transport unit and an adjacent pixel carrier blocking unit, respectively, of the ETL44 and the HTL42.
  • FIG. 23 is another cross-sectional view showing a part of the manufacturing process after step S54 shown in FIG. 20 in process order. It should be noted that FIG. 20 also shows a cross section corresponding to a part of the cross section taken along the line BB'shown in FIG.
  • step S55 in FIG. 20 after steps S51 to S54, the same step S55 as in step S55 shown in FIG. 21 is performed.
  • steps S61 to S64 are performed instead of steps S56 to S57 shown in FIG.
  • step S61 the material is converted onto the ETL44 so as to cover the EML43 and finally to a material exhibiting hole transportability by a chemical reaction.
  • the organic insulating material is formed into a solid film over all the pixels P.
  • a solid organic insulating film 111 is formed (step S61).
  • the case where the same organic insulating material as in the first embodiment is used for the organic insulating film 111 will be described as an example.
  • the method of forming the organic insulating film 111 is the same as that of step S13 of the first embodiment.
  • the organic insulating film in each pixel P is selectively irradiated with the laser beam only in each pixel P (specifically, in the opening BKa of the bank BK). Convert 111 to graphene. As a result, the graphene film 112 is formed in each pixel P, and the adjacent pixel positive composed of the organic insulating film 111 blocks the transport of holes between the light emitting elements ES in these pixels P between the adjacent pixels P.
  • the hole blocking portion 42a is formed (step S62).
  • the graphene film 112 is oxidized and converted into the graphene oxide film 113 (step S63).
  • the hole transport portion 42b made of the graphene oxide film 113 can be formed in each pixel P.
  • the method of oxidizing the graphene film 112 to convert it to the graphene oxide film 113 is, for example, the same as step S15 of the first embodiment.
  • an anode 41 is formed as an upper electrode on the HTL 42 provided with the adjacent pixel hole blocking portion 42a and the hole transport portion 42b (step S64).
  • the same method as in step S57 shown in FIG. 21 can be used for forming the anode 41.
  • the light emitting element layer 4 including the plurality of light emitting element ESs is formed on the flattening film 33.
  • the HTL 42 can be modified in the same manner as the modification shown in the first embodiment. Therefore, the HTL 42 is, for example, the method shown in steps S15 and S21 shown in FIG. 10, the method shown in steps S22 to S23 shown in FIG. 11, the method shown in steps S24 to S27 shown in FIG. 12, or FIG. It can be formed by the method shown in steps S28 to S29 shown in. Further, also in this embodiment, the ETL44 can be modified in the same manner as the modification shown in the second embodiment. Therefore, the ETL44 is formed, for example, by the method shown in steps S41 to S42 shown in FIG. 16, the method shown in steps S43 to S46 shown in FIG. 17, or the method shown in steps S47 to S48 shown in FIG. Can be done.

Abstract

表示装置(1)は、各画素(P)における発光素子(ES)の発光層(43)とその下方の陽極(41)との間に、複数の発光素子に共通する正孔輸送層(42)を備えている。正孔輸送層は、発光層に正孔を輸送する正孔輸送部(42b)と、隣り合う画素における発光素子の間の部分に形成され、隣り合う画素における発光素子間の正孔の輸送をブロッキングする隣接画素正孔ブロッキング部(42a)と、を備えている。

Description

表示装置およびその製造方法
 本開示は、表示装置およびその製造方法に関する。
 従来、発光素子を備えた自発光型の表示装置の製造において、正孔輸送層あるいは電子輸送層を、複数の画素に共通する共通層として形成する方法が用いられている(例えば、特許文献1参照)。
日本国公開特許公報「特開2003-142277号公報」
Sung Huh,外5名, UV/Ozone-Oxidized Large-Scale Graphene Platform with Large Chemical Enhancement in Surface-Enhanced Raman Scattering, American Chemical Society, ACSNANO, VOL. 5, No.12, 2011年11月9日, p.9799-9806 Sasha Stankovich, 外8名, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon, Volume 45, 2007年6月7日, p.1558-1565 Yonglai Zhang, 外8名, Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction, Nano Today (2010) 5, p15-20
 上述したように、正孔輸送層あるいは電子輸送層を複数の画素に共通する共通層として形成することで、例えば、工程数を削減して製造にかかるコストを削減することができる。
 また、正孔輸送層あるいは電子輸送層を複数の画素に共通する共通層として形成することで、外部からの水、酸素等の異物の浸透を防ぐことができ、より信頼性が高い表示装置を得ることができる。
 しかしながら、正孔輸送層あるいは電子輸送層を、複数の画素に共通する共通層として形成した場合、一つの画素(発光素子)が点灯しているとき、上記共通層を介して、隣接する画素(発光素子)の発光層にもキャリアが輸送されることで、当該隣接する発光素子も点灯する、光学的なクロストークが発生する。このようなクロストークは、表示装置の表示品位低下の原因となる。
 本開示は、上記問題点に鑑みなされたものであり、その目的は、キャリアを輸送する、複数の画素に共通して形成された共通層を備えるにも拘らず、クロストークが生じない自発光型の表示装置およびその製造方法を提供することにある。
 上記の課題を解決するために、本開示の一態様に係る表示装置は、複数の画素を有する表示装置であって、支持体と、薄膜トランジスタ層と、発光素子層と、上記発光素子層を封止する封止層とを、この順に備え、上記発光素子層は、発光色が互いに異なる複数の発光素子を備え、上記複数の発光素子は、それぞれ、上記画素に対応して形成されており、上記複数の発光素子は、それぞれ、下部電極と、上部電極と、上記下部電極と上記上部電極との間に形成された発光層とを備えるともに、上記発光層と上記下部電極との間に形成される第1のキャリア輸送層、および、上記発光層と上記上部電極との間に形成される第2のキャリア輸送層、のうち少なくとも上記第1のキャリア輸送層を備え、上記下部電極および上記発光層は、上記画素毎に島状に形成されており、上記発光素子が備える上記キャリア輸送層のうち少なくとも上記第1のキャリア輸送層は、上記複数の画素における発光素子に共通して形成された共通層であり、かつ、上記画素毎に、それぞれの上記発光素子における上記発光層と重畳して形成され、該発光層にキャリアを輸送するキャリア輸送部と、隣り合う上記画素における上記発光素子の間の部分に形成され、隣り合う上記画素における上記発光素子間のキャリアの輸送をブロッキングする隣接画素キャリアブロッキング部と、を備えている。
 上記の課題を解決するために、本開示の一態様に係る表示装置の製造方法は、本開示の一態様に係る上記表示装置の製造方法であって、上記下部電極を形成する工程と、上記第1のキャリア輸送層を形成する工程と、上記発光層を形成する工程と、上記上部電極を形成する工程と、を含む。
 本開示の一態様によれば、キャリアを輸送する、複数の画素に共通して形成された共通層を備えるにも拘らず、クロストークが生じない自発光型の表示装置およびその製造方法を提供することができる。
実施形態1に係る表示装置における画素の概略構成の一例を示す断面図である。 実施形態1に係る表示装置の概略構成の一例を、一部を拡大して示す平面図である。 実施形態1に係る表示装置の製造工程を工程順に示すフローチャートである。 実施形態1に係る表示装置における発光素子層の形成工程の一部を、工程順に示す断面図である。 実施形態1に係る表示装置における発光素子層の形成工程の一部を、工程順に示す他の断面図である。 レーザ照射によるポリイミドの熱反応を示す図である。 図2に示すB-B’線矢視断面の一部を示す断面図である。 従来の表示装置の課題を説明するための断面図である。 実施形態1に係る発光素子の積層構造の他の一例を模式的に示す図である。 実施形態1の変形例2に係る表示装置における発光素子層の形成工程の一部を工程順に示す断面図である。 実施形態1の変形例3に係る表示装置における発光素子層の形成工程の一部の一例を工程順に示す断面図である。 実施形態1の変形例4に係る表示装置における発光素子層の形成工程の一部の他の一例を工程順に示す断面図である。 実施形態1の変形例5に係る表示装置における発光素子層の形成工程の一部の他の一例を工程順に示す断面図である。 実施形態2に係る表示装置における画素の概略構成の一例を示す断面図である。 実施形態2に係る表示装置における発光素子層の形成工程の一部を、工程順に示す断面図である。 実施形態2の変形例1に係る表示装置における発光素子層の形成工程の一部の他の一例を工程順に示す断面図である。 実施形態2の変形例2に係る表示装置における発光素子層の形成工程の一部の他の一例を工程順に示す断面図である。 実施形態2の変形例3に係る表示装置における発光素子層の形成工程の一部の他の一例を工程順に示す断面図である。 実施形態3に係る表示装置における画素の概略構成の一例を示す断面図である。 実施形態3に係る表示装置における発光素子層の形成工程の一部を、工程順に示す断面図である。 実施形態3に係る表示装置における発光素子層の形成工程の一部を、工程順に示す他の断面図である。 実施形態3に係る発光素子の積層構造の他の一例を模式的に示す図である。 実施形態3に係る表示装置における発光素子層の形成工程の一部を、工程順に示すさらに他の断面図である。
 〔実施形態1〕
 本発明の実施の一形態について、図1~図13に基づいて説明すれば、以下の通りである。
 (表示装置の概略構成)
 図2は、本実施形態に係る表示装置1の概略構成の一例を、一部を拡大して示す平面図である。
 図2に示すように、表示装置1は、複数の画素Pを含む表示領域DAと、表示領域DAを取り囲むように表示領域DAの周囲に設けられた額縁領域NDAとを備えている。
 額縁領域NDAは、非表示領域であり、端子部TSと、表示領域DAとの間に設けられた折り曲げ部ZSとを有する。端子部TSには、例えば、IC(集積回路)チップおよびFPC(フレキシブル印刷回路基板)等の、図示しない電子回路基板が設けられている。
 表示部DAには、複数の走査信号線および複数のデータ信号線を含む複数の配線が設けられている。走査信号線は、行方向に延設されている。データ信号線は、列方向に延設されている。表示装置1は、フルカラーのアクティブマトリクス型の表示装置であり、これら走査信号線とデータ信号線との交点に対応して、画素Pが複数設けられている。
 表示装置1は、表示領域DAの一部の領域Lを拡大して示すように、画素Pとして、例えば、赤色(R)の画素RP、緑色(G)の画素GP、青色(B)の画素BPを有している。なお、本実施形態では、これら画素RP、画素GP、画素BPを特に区別する必要がない場合、これら画素RP、画素GP、および画素BPを総称して単に「画素P」と称する。
 以下では、表示装置1が、これら画素RP、画素GP、画素BPを備えているものとして説明を行う。但し、上記例示は一例であり、表示装置1は、RGB以外の画素Pを備えていてもよい。
 また、図2では、画素Pが、一例として、青色の画素BPをベースとする所謂ペンタイル配列を有している場合を例に挙げて図示している。このため、図2に示す表示装置1では、画素BPは列方向に一直線に並んでいるものの、画素RPと画素GPとは、列方向に交互に並んでいる。但し、表示装置1の画素配列は、ペンタイル配列に限定されるものではなく、例えばストライプ配列等、他の配列であってもよい。
 図1は、本実施形態に係る表示装置1における画素Pの概略構成の一例を示す断面図である。なお、図1は、図2に示すA-A’線矢視断面図である。
 表示装置1は、例えば有機EL(エレクトロルミネッセンス)表示装置と称される自発光型の表示装置である。図1に示すように、各画素Pには、OLED(有機発光ダイオード)または有機EL素子と称される、それぞれが自発光型の発光素子ESが形成されている。以下、表示装置1が、発光素子ESとしてOLEDを備えた有機EL表示装置(OLEDディスプレイ)である場合を例に挙げて説明する。しかしながら、本実施形態は、これに限定されるものではなく、上記表示装置1は、発光素子ESとしてQLED(量子ドット発光ダイオード)を備えたQLEDディスプレイであってもよい。また、上記表示装置1は、発光素子ESとして無機ELを備えた無機EL表示装置であってもよい。
 赤色の画素RPには、発光素子ESとして、発光色が赤色の発光素子RES(赤色発光素子)が設けられている。緑色の画素GPには、発光素子ESとして、発光色が緑色の発光素子GES(緑色発光素子)が設けられている。青色の画素BPには、発光素子ESとして、発光色が青色の発光素子BES(青色発光素子)が設けられている。このため、表示領域DAには、発光色が互いに異なる複数の発光素子ESが設けられている。なお、本実施形態では、これら発光素子RES、発光素子GES、発光素子BESを特に区別する必要がない場合、これら発光素子RES、発光素子GES、発光素子BESを総称して単に「発光素子ES」と称する。また、発光素子ESにおける各層についても、発光素子RESと発光素子GESと発光素子BESとで特に区別する必要がない場合、同様に総称するものとする。
 図1に示すように、表示装置1は、基板2と、薄膜トランジスタ層3と、発光素子層4と、封止層5とを、この順に備えている。
 基板2は、薄膜トランジスタ層3から封止層5までの各層を支持する支持体である。基板2は、例えば、ガラス、石英、セラミックス等の無機材料からなる無機基板であってもよく、ポリエチレンテレフタレート、ポリカルバゾール、ポリイミド等の樹脂を主成分とする可撓性基板であってもよい。例えば、2層のポリイミド膜およびこれらに挟まれた無機膜によって基板2を構成することもできる。また、基板2には、アルミニウム、鉄等の金属からなる金属基板の表面に、酸化シリコン(SiOx)、窒化リシコン(SiNx)、有機絶縁材料等の絶縁膜をコーティングした基板を用いてもよい。また、基板2には、Al等を含む金属基板の表面に陽極酸化等の方法で絶縁化処理を施した基板等を用いてもよい。
 なお、表示装置1が、発光素子ESの上方(つまり、発光素子ESにおける基板2とは反対側)から光を射出するトップエミッション型の表示装置である場合、使用する基板2は特に限定されない。しかしながら、表示装置1が、発光素子ESの下方(つまり、基板2の裏面側)から光を射出するボトムエミッション型の表示装置である場合には、基板2としては、透明または半透明の透光性基板が用いられる。
 薄膜トランジスタ層3には、発光素子層4における各発光素子ESを制御する画素回路および該画素回路に接続する配線32が形成されている。配線32は、前述した複数の走査信号線および複数のデータ信号線を含んでいる。画素回路は、表示領域DAに、各画素Pに対応して、画素P毎に設けられている。
 画素回路は、階調電圧による発光素子ESへの電流制御を行う。画素回路の構成は、各画素Pにおける発光素子ESを個々に駆動させることができれば、特に限定されるものではない。各画素回路には、各画素Pにおける発光素子ESの下部電極に接続された薄膜トランジスタを含む複数の薄膜トランジスタ31がそれぞれ設けられている。なお、薄膜トランジスタの構成は従来からよく知られている。したがって、薄膜トランジスタ31における各層の図示並びに説明は省略する。
 これら複数の薄膜トランジスタ31および複数の配線32は、平坦化膜33で覆われている。薄膜トランジスタ層3は、これら複数の薄膜トランジスタ31および複数の配線32と、これら複数の薄膜トランジスタ31および複数の配線32を覆う平坦化膜33と、を備えている。
 平坦化膜33には、発光素子ESにおける下部電極を薄膜トランジスタ31に電気的に接続するためのコンタクトホール33aが設けられている。これにより、薄膜トランジスタ31は、上記コンタクトホール33aを介して、発光素子ESに電気的に接続されている。平坦化膜33は、例えば、ポリイミド樹脂やアクリル樹脂等の塗布可能な感光性有機材料によって構成することができる。
 発光素子層4は、上述した複数の発光素子ES(具体的には、発光素子RES・GES・BES)を備えている。発光素子ESは、上述したように、各画素Pに対応して、画素P毎に形成されている。
 発光素子ESは、自発光素子である。本実施形態に係る発光素子ESは、陰極45と、陽極41と陰極45との間に設けられた発光層(以下、「EML」と記す)43とを備えている。陽極41とEML43との間には、キャリア輸送層として、正孔輸送層(以下、「HTL」と記す)42が設けられている。陰極45とEML43との間には、キャリア輸送層として、電子輸送層(以下、「ETL」と記す)44が設けられている。
 なお、以下では、下部電極とEML43との間に設けられたキャリア輸送層を「第1のキャリア輸送層」と称し、上部電極とEML43との間に設けられたキャリア輸送層を「第2のキャリア輸送層」と称する。したがって、本実施形態では、HTL42が第1のキャリア輸送層であり、ETL44が第2のキャリア輸送層である。
 また、以下では、発光素子ESにおける陽極41と陰極45との間の層を総称して機能層と称する。図1に示す発光素子ESは、機能層として、HTL42、EML43、およびETL44を備えている。
 図1に示す発光素子ESは、下部電極が陽極41であり、上部電極が陰極45である。下部電極である陽極41は、各画素Pに対応して、画素P毎(言い替えれば、発光素子ES毎)に島状にパターン形成された画素電極(パターン陽極)である。一方、上部電極である陰極45は、全画素Pに共通(言い替えれば、全発光素子ESに共通)して設けられた共通電極(共通陰極)である。
 陽極41は、平坦化膜33上に、該平坦化膜33に隣接して形成されている。陽極41のエッジ(パターンエッジ)は、エッジカバーと称されるバンクBKによって覆われている。
 発光素子層4は、陽極41、バンクBK、HTL42、EML43、ETL44、陰極45が、薄膜トランジスタ層3側からこの順に積層された構成を有している。
 バンクBKは、陽極41と陰極45との短絡を防止するための絶縁層である。バンクBKは、各画素Pにおける発光素子ESを分離する素子分離膜(画素分離膜とも言う)としても機能する。バンクBKには、画素P毎に開口部BKaが設けられている。このバンクBKの開口部BKaが、各画素Pの発光領域となる。バンクBKは、例えば、ポリイミド樹脂、アクリル樹脂等の塗布可能な感光性有機材料によって構成することができる。
 陽極41は導電性材料からなり、HTL42に正孔を注入する正孔注入層(HIL)の機能を有する。陰極45は導電性材料からなり、ETL44に電子を注入する電子注入層(EIL)の機能を有する。
 陽極41および陰極45のうち、少なくとも、光の取出し面側となる電極は光透過性を有している必要がある。一方、光の取出し面と反対側の電極は、光透過性を有していてもよいし、光反射性を有していてもよい。
 例えば、表示装置1をトップエミッション型の表示装置とする場合、上部電極である陰極45を光透過性材料からなる光透過性電極で形成し、下部電極である陽極41を、光反射性材料からなる光反射電極で形成する。一方、表示装置1をボトムエミッション型の表示装置とする場合、上部電極である陰極45を光反射性材料からなる光反射電極で形成し、下部電極である陽極41を光透過性材料からなる光透過性電極で形成する。
 なお、上記光透過性電極としては、透明電極あるいは半透明電極が用いられる。上記透明電極には、例えば、ITO(インジウム錫酸化物)、IZO(インジウム亜鉛酸化物)等が用いられる。上記半透明電極には、例えば、マグネシウム銀合金等の光透過性を有する金属薄膜が用いられる。上記光反射性電極には、例えば、Ag(銀)、Al(アルミニウム)等の金属、あるいは、これら金属を含む合金等が用いられる。なお、透光性材料と光反射性材料との積層体とすることで、光反射性を有する電極としてもよい。
 HTL42は、陽極41からEML43に正孔を輸送する層である。ETL44は、陰極45からEML43に電子を輸送する層である。HTL42およびETL44は、全画素Pに共通(言い替えれば、全発光素子ESに共通)して設けられた共通層である。
 但し、これらHTL42およびETL44のうち、HTL42は、キャリア輸送部としての正孔輸送部42bと、隣接画素キャリアブロッキング部としての隣接画素正孔ブロッキング部42aと、を備えている。
 正孔輸送部42bは、正孔輸送性を有している。正孔輸送部42bは、発光素子ES毎に、それぞれの発光素子ESにおけるEML43と重畳して設けられ、該EML43に、キャリアとして正孔を輸送する。
 隣接画素正孔ブロッキング部42aは、隣り合う画素Pにおける発光素子ESの間の部分に設けられ、隣り合う画素Pにおける発光素子ES間の正孔の輸送をブロッキングする。なお、隣接画素正孔ブロッキング部42aは、隣り合う画素Pにおける発光素子ES間の正孔の輸送をブロッキングできるように、隣り合う画素Pにおける正孔輸送部42b同士の間に設けられていれば、その大きさは、特に限定されるものではない。
 正孔輸送部42bと隣接画素正孔ブロッキング部42aとは、例えば、全画素Pに共通して設けられた共通層の少なくとも一部を化学反応により変成することで形成することができる。このようにして形成された正孔輸送部42bと隣接画素正孔ブロッキング部42aとは、互いに化学的に結合されており、同一層内に互いに一体的に形成されている。また、正孔輸送部42bと隣接画素正孔ブロッキング部42aとは、上述したように全画素Pに共通して設けられた共通層の少なくとも一部を化学反応により変成してなることで、好適には、実質的に同一の厚みを有している。
 正孔輸送部42bは、正孔輸送性材料で構成される。一方、隣接画素正孔ブロッキング部42aは、正孔の輸送をブロッキングする正孔ブロッキング材料で構成される。上記正孔ブロッキング材料は、有機絶縁材料であってもよく、電子輸送性材料であってもよい。
 正孔輸送部42bは、正孔輸送性材料を成膜することで形成されていてもよく、有機絶縁材料あるいは電子輸送性材料を化学反応により正孔輸送性材料に転化(変成)させることで形成されていてもよい。したがって、正孔輸送部42bは、隣接画素正孔ブロッキング部42aに用いられている正孔ブロッキング材料を化学反応により変成することで形成されていてもよい。
 隣接画素正孔ブロッキング部42aは、有機絶縁材料あるいは電子輸送性材料を成膜することで形成されていてもよく、有機絶縁材料あるいは正孔輸送性材料を化学反応により電子輸送性材料に転化(変成)させることで形成されていてもよい。
 但し、本実施形態は、これに限定されるものではない。正孔輸送部42bと隣接画素正孔ブロッキング部42aとは、それぞれ別々の材料でパターン形成されていてもよい。
 正孔輸送部42bと隣接画素正孔ブロッキング部42aとを別々の材料でパターン形成する場合、上記パターン形成は、例えば、以下の方法により行うことができる。
 例えば、上記正孔輸送部42bおよび隣接画素正孔ブロッキング部42aの材料が粉体(固体)である場合、上記パターン形成方法としては、(1)FMM(ファインメタルマスク)を用いて塗分け蒸着する方法、(2)インクジェット法、(3)画素RP、画素GP、画素BPに応じたパターンを有するシリコンゴムを用いて、これら画素内にそれぞれ上記材料を転写する方法、等が挙げられる。
 上記正孔輸送部42bおよび隣接画素正孔ブロッキング部42aの材料が液体である場合、上記パターン形成方法としては、上記(2)の方法、上記(3)の方法、並びに、(4)上記材料を基板全面に塗布後、フォトリソグラフィーを行う方法、(5)上記材料を基板全面に塗布後、レーザ加工を行う方法、等が挙げられる。
 また、正孔輸送部42bと隣接画素正孔ブロッキング部42aとを別々にパターン形成する場合に正孔輸送部42bおよび隣接画素正孔ブロッキング部42aのうち少なくとも一方が材料の転化(変成)を伴う場合、該材料の転化(変成)は、該材料の転化(変成)を伴うパターンの形成後に行われてもよく、正孔輸送部42bおよび隣接画素正孔ブロッキング部42aの両パターンの形成後に行われてもよい。また、成膜とパターニングとが別々に行われる場合、上記材料の転化(変成)は、パターニング後に行われてもよく、成膜後、パターン形成を行う前に行われてもよい。
 上述したように共通層の少なくとも一部を化学反応により変成することで正孔輸送部42bと隣接画素正孔ブロッキング部42aとを形成する場合、正孔輸送部42bと隣接画素正孔ブロッキング部42aとは、共有結合により、互いに化学的に結合される。
 一方、正孔輸送部42bと隣接画素正孔ブロッキング部42aとを、それぞれ別々の材料でパターン形成する場合、正孔輸送部42bと隣接画素正孔ブロッキング部42aとは、例えば、材料の化学物質の間の分子間力(ファンデルワールス力)あるいは水素結合等により互いに化学的に結合されて、一体化した一つの層となる。そして、この場合にも、同一層内において隣り合う正孔輸送部42b間に、これら正孔輸送部42bと一体的に形成された隣接画素正孔ブロッキング部42aが設けられる。
 上記正孔輸送性材料としては、例えば、グラフェンオキサイド、チオシアン酸銅(CuSCN)、酸化タングステン(WO3-x)等の無機正孔輸送性材料;2,6-ビス(9H-カルバゾイル-9-イル)ピリジン、4,4’-ビス(3-エチル-N-カルバゾイル)-1,1’-ビフェニル、4-(ジベンジルアミノ)ベンズアルデヒド-N,N’-ジフェニルヒドラゾン、9,9’-[2,2’-ジメチル(1,1’-ビフェニル)-4,4’-ジイル]ビス-9H-カルバゾール、2,2’-ジメチル-N,N’-ジ(1-ナフチル-N,N’-ジフェニル)-1,1’-ビフェニル-4,4’-ジアミン、9,9’-ジメチル-N,N’-ジ(1-ナフチル)-N,N’-ジフェニル-9H-フルオレン-2,7-ジアミン、N,N’-ジ(2-ナフチル-N,N’-ジフェニル)-1,1’-ビフェニル-4,4’-ジアミン、N,N’-ジフェニル-N,N’-ビス[4-(フェニル-m-トリルアミノ)フェニル]ビフェニル-4,4’-ジアミン、N,N’-ジフェニル-N,N’-ジ-p-トリルベンゼン-1,4-ジアミン、N,N’-ジ(1-ナフチル)-N,N’-ジフェニル-1,1’-ビフェニル-4,4’-ジアミン、N4,N4’-ビス{4-[ビス(3-メチルフェニル)アミノ]フェニル}-N4,N4’-ジフェニル-(1,1’-ビフェニル)-4,4’-ジアミン(「DNTPD」)、3-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-9-フェニル-9H-カルバゾール(「DPTPCz」)、9-(2-エチルヘキシル)-N,N,N,N-テトラキス(4-メトキシフェニル)-9H-カルバゾール-2,7-ジアミン(「EH44」)、塩化インジウム(III)フタロシアニン、ポリ[N,N’-ビス(4-ブチルフェニル)-N,N’-ビス(フェニル)-ベンジジン](「Poly-TPD」)、2,8-ビス(ジフェニルホスフィンオキシド)ジベンゾフラン(「PPF」)、4,4’,4'',4'''-シランテトライルテトラキス(N,N-ビス(4-メトキシフェニル)アニリン(「Si-OMeTPA」)、スピロ[9H-フルオレン-9,9’-(9H)キサンチン]-2,7-ジアミン、スピロ[9H-フルオレン-9,9’-(9H)キサンチン]-2,2’-7,7’-テトラミン、2,4,6-トリス[3-(カルバゾール-9-イル)フェニル]トリアジン(「TCPZ」)、N,N,N’,N’-テトラキス(4-メトキシフェニル)ベンジジン、N,N,N’,N’-テトラキス(3-メチルフェニル)-3,3’-ジメチルベンジジン、N,N,N’,N’-テトラキス(2-ナフチル)ベンジジン、テトラ-N-フェニルベンジジン、N,N,N’,N’-テトラフェニルナフタレン-2,6-ジアミン、ポリ[(9,9-ジクチルフルオレニル-2,7-ジイル)-co-{4,4’-[N-(4-sec-ブチルフェニル)ジフェニルアミン]}(「TFB」)、チタニルフタロシアニン、1,3,5-トリス[(3-メチルフェニル)フェニルアミノ]ベンゼン、4,4’,4''-トリス[2-ナフチル(フェニル)アミノ]トリフェニルアミン、バナジルフタロシアニン、4,4’-シクロヘキシリデンビス[N,N-ビス(4-メチルフェニル)ベンゼンアミン]、ジピラジノ[2,3-f:2’,3’-h]キノキサリン-2,3,6,7,10,11-ヘキサカルボニトリル、スズ(IV)2,3-ナフロシアニン二塩化物、N2,N2,N2’,N2’,N7,N7,N7’,N7’-オクタキス(4-メトキシフェニル)-9,9’-スピロビ[9H-フルオレン]-2,2’,7,7’-テトラミン(「スピロ-MeOTD」)、チタニルフタロシアニン、1,3,5-トリス(2-9-エチルカバジル-3)エチレン)ベンゼン、トリス(4-カルバゾイル-9-イルフェニル)アミン、トリス[4-(ジエチルアミノ)フェニル]アミン、1,3,5-トリス(ジフェニルアミノ)ベンゼン、4,4’,4''-トリス[フェニル(m-トルイル)アミノ]トリフェニルアミン、4,4’-ビス(N-カルバゾリル)-1,1’-ビフェニル、1,3-ビス(N-カルバゾリル)ベンゼン、1,4-ビス(N-カルバゾリル)ベンゼン、N,N’-ビス(3-メチルフェニル)-N,N’-ジフェニルベンジジン、ポリ(N-エチル-2-ビニルカルバゾール)、ポリ[ビス(4-フェニル)(2,4,6-トリメチルフェニル)アミン]、ポリ(9-ビニルカルバゾール)、ポリ(1-ビニルナフタレン)、ポリ(2-ビニルナフタレン)、ポリ(銅フタロシアニン)、および銅(II)フタロシアニン等の有機正孔輸送性材料;からなる群より選ばれる少なくとも一種の正孔輸送性材料が挙げられる。なお、上記正孔輸送性材料が無機正孔輸送性材料である場合、該無機正孔輸送性材料は、ナノ粒子であってもよい。
 上記有機絶縁材料には、パターニング可能な公知の感光性樹脂を使用することができる。上記有機絶縁材料としては、例えば、ポリイミド(PI)、ポリエーテルイミド(PEI)、ポリアクリロニトリル(PAN)、ポリエーテルエーテルケトン(PEEK)、ポリビニルアルコール(PVA)、ポリイソプレン、ノボラック樹脂、およびポリアクリルアミドからなる群より選ばれる少なくとも一種の樹脂が挙げられる。
 上記電子輸送性材料としては、例えば、グラフェン、酸化スズ(IV)、酸化亜鉛等の無機電子輸送性材料;トリス(2,4,6-トリメチル-3-(ピリジン-3-イル)フェニル)ボラン(「3TPYMB」)、4,6-ビス(3,5-ジ(ピリジン-3-イル)フェニル)-2-メチルピリミジン(「B3PYMPM」)、1,3-ビス(3,5-ジピリド-3-イルフェニル)ベンゼン(「B3PyPB」)、2,7-ビス(2,2’-ビピリジン-5-イル)トリフェニレン(「BPy-TP2」)、8-キノリノレートリチウム、ポリ[(9,9-ビス(3’-((N,N-ジメチル)-N-エチルアンモニウム)-プロピル)-2,7-フルオレン)-alt-2,7-(9,9-ジオクチルフルオレン)]ジブロミド(「PFN-Br」)、ポリ[(9,9-ビス(3’-(N,N-ジメチルアミノ)プロピル)-2,7-フルオレン)-alt-2,7-(9,9-ジオクチルフルオレン)](「PFN-DOF」)、(1,3,5-トリアジン-2,4,6-トリイル)トリス(ベンゼン-3,1-ジイル)トリス(ジフェニルホスフィンオキサイド)(「PO-T2T」)、2,5,8,11-テトラキス(1,1-ジメチルエチル)ペリレン(「TBPe」)、1,3,5-トリス(3-ピリジル-3-フェニル)ベンゼン(「TmPyPB」)、1,3,5-トリス(1-フェニル-1H-ベンゾイミダゾール-2-イル)ベンゼン(「TPBi」)、ジフェニル[4-(トリフェニルシリル)フェニル]ホスフィンオキサイド(「TSPO1」)、3,5-ジフェニル-4-(1-ナフチル)-1H--1,2,4-トリアゾール、トリス(8-ヒドロキシキノリン)アルミニウム、2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン(「バソクプロイン」)、4.7-ジフェニル-1.10-フェナントロリン(「バソフェナントロリン」)、2,5-ビス(1-ナフチル)-1,3,5-オキサジアゾール、ビス(8-ヒドロキシ-2-メチルキノリン)-(4-フェニルフェノキシ)アルミニウム、3,5-ビス(4-tert-ブチルフェニル)-4-フェニル-4H-1,2,4-トリアゾール、2-(4-ビフェニリル)-5-フェニル-1,3,4-オキサジアゾール、3-(ビフェニル-4-イル)-5-(4-tert-ブチルフェニル)-4-フェニル-4H-1,2,4-トリアゾール、2-(4-tert-ブチルフェニル)-5-(4-ビフェニリル)-1,3,4-オキサジアゾール等の有機電子輸送性材料;からなる群より選ばれる少なくとも一種の電子輸送性材料が挙げられる。なお、上記電子輸送性材料が無機電子輸送性材料である場合、該無機電子輸送性材料は、ナノ粒子であってもよい。
 なお、上記電子輸送性材料が無機電子輸送性材料である場合、該無機電子輸送性材料は、ナノ粒子であってもよい。
 また、上記隣接画素正孔ブロッキング部42aが電子輸送性材料からなる場合、該電子輸送性材料は、有機絶縁材料から誘導されるグラフェン(誘導グラフェン)であってもよい。例えば、PI、PEI、PAN等の有機絶縁材料は、十分な耐熱性を有するとともに、炭素を含み、例えばレーザ光に曝露することによって、グラフェンに転化する。なお、有機絶縁材料としてPANを用いる場合、徐々に加熱することで、PANがグラフェン化する。
 レーザ源は、特に限定されるものではなく、有機絶縁膜を構成する有機絶縁材料(樹脂)の吸収波長に適合するレーザ励起波長を有するレーザ源であればよい。
 上記レーザ源としては、例えば、COレーザ、固体レーザ、気相レーザ、赤外線レーザ、紫外線レーザ、可視レーザ等が挙げられる。なお、これらレーザ源は、複数組みあわせて使用することができる。上記レーザ源は、種々の波長において用いることができる。また、上記レーザ源は、種々の出力範囲にて操作することができる。上記レーザ源は、種々のパルス幅(パルス時間幅)を有する。
 有機絶縁膜が、例えばPI、PEI、あるいはPANである場合、レーザ源には、COレーザが好適に用いられる。この場合、各画素P内にのみレーザ光を選択的に照射するためのレーザスクライビングは、COレーザカッタシステムに組み込むことができる。COレーザカッタシステムは、レーザヘッドの画素Pへのアライメント、レーザ強度設定、スキャンレート強度設定等を行うことができる。
 また、前述したように、正孔輸送部42bは、例えば、上記正孔ブロッキング材料を化学反応により変成することで形成することができる。例えば、上記正孔ブロッキング材料がグラフェンである場合、グラフェンは、電子輸送性を示すが、酸化反応により、正孔輸送性を示すグラフェンオキサイドに転化する。
 グラフェンは、例えば、下記構造式(1)で示される構造を有している。また、グラフェンオキサイドは、例えば、下記構造式(2)で示される構造を有している。
Figure JPOXMLDOC01-appb-C000001
 なお、前述したようにレーザ照射によってPI等の有機絶縁膜から変換した(言い替えれば、転化させた)グラフェン膜は、フレーク状の単体のグラフェンがランダムに重なり合うとともに、フレーク状の単体のグラフェン同士が互いに接触している部分が化学的に結合することで互いに繋がっている構造を有する。
 また、上記グラフェン膜を酸化させてなるグラフェンオキサイド膜は、フレーク状の単体のグラフェンオキサイドがランダムに重なり合うとともに、フレーク状の単体のグラフェンオキサイド同士が互いに接触している部分が化学的に結合することで互いに繋がっている構造を有する。
 グラフェンを酸化させてグラフェンオキサイドを得る方法としては、例えば、Staudenmaier法、Brodie法、Hofmann法、Hummers法、Tour法等が挙げられる。これらの方法のなかでも、反応時間、簡易性、毒性等を総合的に考慮して、Tour法が生産に適していると考えられる。
 グラフェンは、例えば、HSO(硫酸)にKMnO(過マンガン酸カリウム)を溶解させてなる溶液に曝すことでグラフェンオキサイドとなる。
 また、グラフェンは、UV(紫外線)によって引き起こされたO(オゾン)を用いるUV/O処理により酸素をドープすることで、グラフェンオキサイドとなる(例えば非特許文献1参照)。
 したがって、例えば、上記有機絶縁材料または電子輸送性材料からなる共通層の一部を正孔輸送性材料に転化させることで、同一層内に、該正孔輸送性材料からなる正孔輸送部42bと、正孔輸送性材料に転化させていない上記有機絶縁材料または上記電子輸送性材料からなる隣接画素正孔ブロッキング部42aとを一体的に形成することができる。
 また、上述したように、上記隣接画素正孔ブロッキング部42aが例えば有機絶縁材料から誘導されるグラフェンである場合、上記有機絶縁材料を正孔輸送性材料と電子輸送性材料とに転化させることで、同一層内に、正孔輸送性材料からなる正孔輸送部42bと、電子輸送性材料からなる隣接画素正孔ブロッキング部42aとを一体的に形成することができる。このように、隣接画素正孔ブロッキング部42aを構成する正孔ブロッキング材料は、正孔輸送性材料に転化(変成)させる前の正孔ブロッキング材料と同じであってもよく、異なっていてもよい。
 また、前述したように、隣接画素正孔ブロッキング部42aは、例えば、正孔輸送性材料を化学反応により変成することで形成してもよい。例えば、グラフェンオキサイドは、上述したように正孔輸送性を示すが、還元することでグラフェン(還元型グラフェンオキサイド)に転化する。グラフェンオキサイドから還元されたグラフェン(還元型グラフェンオキサイド)は、欠陥を有するものの、電子輸送性(例えば、約2×10S/m)を有している(例えば、非特許文献2参照)。
 グラフェンオキサイドの還元方法としては、例えば、グラフェンオキサイドを高温に加熱して酸素含有基を脱離させる加熱還元法、還元剤を用いた化学的還元法等が知られている。
 化学的還元法としては、例えば、次式(3)に示すように、還元剤としてヒドラジン(N)を用いた還元方法が挙げられる(例えば、非特許文献2参照)。なお、次式は、化学的還元法の一例として、グラフェンオキサイドとヒドラジンとの反応スキームを示している。なお、図示の便宜上、次式において、グラフェンオキサイドは、ヒドラジンとの反応に関与する部分のみを記載している。
Figure JPOXMLDOC01-appb-C000002
 また、グラフェンオキサイドの還元には、還元剤として、ヒドラジンに代えて、水素化ホウ素ナトリウム(NaBH)、アスコルビン酸、ヨウ化水素(HI)等を用いることができることも知られている。グラフェンオキサイドは、水溶液中でも薄膜の状態でも還元が可能である。
 また、グラフェンオキサイドは、フェムト秒レーザを照射することでグラフェンに還元されることも知られている(例えば非特許文献3参照)。
 したがって、正孔輸送性材料である例えばグラフェンオキサイドからなる共通層の一部を電子輸送性材料に転化させることで、同一層内に、該電子輸送性材料からなる隣接画素正孔ブロッキング部42aと、電子輸送性材料に転化させていないグラフェンオキサイドからなる正孔輸送部42bとを一体的に形成してもよい。
 上記HTL42の厚みは、光路長の調整のため、30nm以上であることがより好ましい。また、上記HTL42の厚みは、製造コスト削減のため、300nm以下であることがより好ましい。
 なお、正孔輸送部42bと隣接画素正孔ブロッキング部42aとは、前述したように実質的に同一の厚みを有していることが好ましいが、互いの厚みが異なっていても構わない。正孔輸送部42bが、有機絶縁材料を化学反応により変成することで形成される場合、変成されていない有機絶縁材料からなる部分の厚みが0.5~3nmの範囲内であれば、トンネル効果によりEML43に正孔を輸送することが可能である。このため、正孔輸送部42bは、HTL42の厚みが、トンネル効果を発現しない3nmを超える厚みを有し、変成されていない有機絶縁材料からなる部分の厚みが、トンネル効果を発現する0.5~3nmの範囲内であれば、HTL42の表面にのみ設けられていても構わない。
 一方、図1に示す発光素子ESにおいて、ETL44は、全画素Pに共通(言い替えれば、全発光素子ESに共通)の電子輸送性材料で形成されている。この場合、ETL44には、公知の電子輸送性材料を用いることができる。上記電子輸送性材料としては、特に限定されるものではなく、例えば、前記例示の電子輸送性材料からなる群より選ばれる少なくとも一種の電子輸送性材料を用いることができる。
 この場合、ETL44の厚みは、従来と同様に設定することが可能である。ETL44の厚みは、例えば、30nm以下の範囲内に設定される。ETL44の厚みが30nmを超えると、移動度が遅くなって、表示装置1の駆動電圧が上がる傾向がある。
 EML43は、陽極41から注入された正孔(h)と陰極45から注入された電子(e)とを再結合させて光を出射する機能を有する層である。
 発光素子ESがOLEDである場合、発光素子ESは、陽極41と陰極45との間の駆動電流によって正孔と電子とがEML43内で再結合し、これによって生じたエキシトンが基底状態に遷移する過程で光を放出する。なお、発光素子ESがQLEDである場合、陽極41と陰極45との間の駆動電流によって正孔と電子とがEML43内で再結合し、これによって生じたエキシトンが、量子ドットの伝導帯準位から価電子帯準位に遷移する過程で光(蛍光もしくは燐光)が放出される。但し、発光素子ESは、OLED、QLED以外の発光素子(例えば無機発光ダイオード等)であってもよい。
 EML43は、HTL42上に、各画素Pに対応して、少なくともバンクBKの開口部BKaを覆うように、画素P毎(言い替えれば、発光素子ES毎)に島状にパターン形成されている。
 発光素子ESがOLEDである場合、EML43は、例えば、低分子蛍光色素、金属錯体等の有機発光材料で形成される。なお、上記有機発光材料は、燐光発光材料であってもよく、蛍光発光材料であってもよい。また、EML43は、正孔および電子の輸送を担うホスト材料と、発光材料として発光を担う発光ドーパント材料との2成分系で形成されていてもよく、発光材料単独で形成されていてもよい。
 なお、発光素子ESがQLEDである場合、EML43は、発光材料として、例えば、ナノサイズの量子ドット(半導体ナノ粒子)を含む。上記量子ドットには、公知の量子ドットを用いることができる。上記量子ドットは、例えば、Cd(カドミウム)、S(硫黄)、Te(テルル)、Se(セレン)、Zn(亜鉛)、In(インジウム)、N(窒素)、P(リン)、As(ヒ素)、Sb(アンチモン)、アルミニウム(Al)、Ga(ガリウム)、Pb(鉛)、Si(ケイ素)、Ge(ゲルマニウム)、Mg(マグネシウム)、からなる群より選択される少なくとも一種の元素で構成されている少なくとも一種の半導体材料を含んでいてもよい。また、上記量子ドットは、二成分コア型、三成分コア型、四成分コア型、コアシェル型またはコアマルチシェル型であってもよい。また、上記量子ドットは、上記元素の少なくとも一種がドープされたナノ粒子を含んでいてもよく、組成傾斜した構造を備えていてもよい。
 図1に示すように、発光素子RESは、陽極41R、HTL42R、EML43R、ETL44、陰極45を備えている。発光素子GESは、陽極41G、HTL42G、EML43G、ETL44、陰極45を備えている。発光素子BESは、陽極41B、HTL42B、EML43B、ETL44、陰極45を備えている。HTL42Rは、画素RPにおける、HTL42の正孔輸送部42bである。HTL42Gは、画素GPにおける、HTL42の正孔輸送部42bである。HTL42Bは、画素BPにおける、HTL42の正孔輸送部42bである。
 封止層5は、発光素子層4への水、酸素等の異物の浸透を防ぐ層である。封止層5は、例えば、上部電極(本実施形態では陰極45)を覆う無機封止膜51と、無機封止膜51よりも上層の有機バッファ膜52と、有機バッファ膜52よりも上層の無機封止膜53と、を含む。
 無機封止膜51および無機封止膜53は、透光性無機絶縁膜であり、例えば、CVD(化学気相成長)法によって形成された、酸化シリコン膜、窒化シリコン膜等の無機絶縁膜で構成することができる。有機バッファ膜52は、平坦化効果のある透光性有機絶縁膜であり、アクリル等の塗布可能な有機材料によって構成することができる。有機バッファ膜52は、例えばインクジェット塗布によって形成することができるが、液滴を止めるための図示しないバンクを、額縁領域NDAに設けてもよい。
 封止層5上には、図示しない機能フィルムが設けられる。機能フィルムは、例えば、光学補償機能、タッチセンサ機能、保護機能の少なくとも1つを有する。
 (表示装置1の製造方法)
 次に、表示装置1の製造方法について説明する。
 図3は、表示装置1の製造工程を工程順に示すフローチャートである。
 図3に示すように、本実施形態に係る表示装置1の製造工程では、まず、基板2上に、複数の薄膜トランジスタ31および配線32と、これら薄膜トランジスタ31および配線32を覆う平坦化膜33と、を備えた薄膜トランジスタ層3を形成する(ステップS1)。次いで、薄膜トランジスタ層3上に、発光素子層4を形成する(ステップS2)。次いで、発光素子層4上に、該発光素子層4を覆うように封止層5を形成する(ステップS3)。前述したように、無機封止膜51および無機封止膜53の形成には、例えばCVD法を用いることができる。また、有機バッファ膜52の形成には、例えばインクジェット法等の塗布法を用いることができる。次いで、上記基板2、薄膜トランジスタ層3、発光素子層4、封止層5を含む積層体を分断し、複数の個片を得る(ステップS4)。次いで、得られた個片に、図示しない機能フィルムを貼り付ける(ステップS5)。次いで、複数の画素Pが形成された表示領域DAよりも外側の額縁領域NDAの一部(端子部TS)に、図示しない電子回路基板(例えば、ICチップおよびFPC)をマウントする(ステップS6)。これにより、本実施形態に係る表示装置1が製造される。なお、ステップS1~S6は、表示装置製造装置(ステップS1~S3の各工程を行う成膜装置を含む)が行う。
 また、表示装置1としてフレキシブルな表示装置を製造する場合、上記ステップS1の前に、透光性の支持基板(例えば、マザーガラス)上に樹脂層を形成する工程と、該樹脂層上にバリア層を形成する工程と、をさらに備えていてもよい。この場合、ステップS1では、上記バリア層上に、薄膜トランジスタ層3を形成する。また、ステップS3において封止層5を形成した後、該封止層5上に、上面フィルムを貼り付ける。その後、レーザ光の照射等によって支持基板を上記樹脂層から剥離し、上記樹脂層の下面に、下面フィルムを貼り付ける。その後、ステップS4で、上記下面フィルム、樹脂層、バリア層、薄膜トランジスタ層3、発光素子層4、封止層5、上記上面フィルムを含む積層体を分断し、複数の個片を得る。
 図4および図5は、それぞれ、ステップS2における発光素子層4の形成工程の一部を工程順に示す断面図である。図5は、図4に示す製造工程の後の製造工程を示している。なお、図4および図5は、図2に示すB-B’線矢視断面の一部に対応する断面を示している。ステップS2は、図4に示すステップS11~ステップS14および図5に示すステップS15~ステップS18を備えている。
 以下では、共通層として全画素Pに共通して設けられた有機絶縁膜の少なくとも一部を化学反応により変成することで正孔輸送部42bと隣接画素正孔ブロッキング部42aとを形成する場合を例に挙げて説明する。
 ステップS2では、まず、図4にS11で示すように、薄膜トランジスタ層3における平坦化膜33上に、下部電極として、陽極41を、画素P毎に島状にパターン形成する(ステップS11、下部電極を形成する工程)。陽極41の形成には、例えば、スパッタ法、真空蒸着法、CVD法、プラズマCVD法、印刷法等、陽極の形成方法として従来公知の各種方法を用いることができる。
 次いで、図4にS12で示すように、上記平坦化膜33上に、各画素Pにおける陽極41のパターンエッジを覆うように、画素分離膜となるバンクBKを形成する(ステップS12)。バンクBKは、上記平坦化膜33上に、陽極41を覆うように、例えば、ポリイミド、アクリル等の有機材料を塗布した後にフォトリソグラフィーによってパターニングすることで形成することができる。
 次いで、図4にS13で示すように、陽極41およびバンクBK上に、化学反応により最終的に正孔輸送性を示す材料に転化する有機絶縁材料を、全画素Pに渡ってベタ状に成膜することで、有機絶縁膜111を形成する(ステップS13、第1成膜工程)。
 上記有機絶縁膜111としては、前述したように、例えば、PI、PEI、PAN等の有機絶縁材料からなる樹脂膜が挙げられる。前述したように、これら有機絶縁材料は、十分な耐熱性を有するとともに、炭素を含み、レーザ光に曝露することによって、グラフェンに転化する。グラフェンは、電子輸送性を示すが、酸化反応により、正孔輸送性を示すグラフェンオキサイドに転化する。
 以下では、上記有機絶縁膜111に、上述したようにレーザ光に曝露することでグラフェンに転化するグラフェン前駆体材料となる樹脂を使用する場合を例に挙げて説明する。
 有機絶縁膜111は、例えばスピンコート法等の公知の薄膜形成技術で、PI前駆体、PEI前駆体、あるいはPAN前駆体等の樹脂前駆体を塗布し、熱あるいは光(例えば、紫外光)で硬化させることにより、成膜することができる。
 次いで、図4にS14で示すように、各画素P内(具体的には、バンクBKの開口部BKa内)にのみレーザ光を選択的に照射する。
 本実施形態では、一例として、有機絶縁膜111に例えばPIを使用し、レーザ源にCOレーザを用いたレーザシステムを使用した。また、一例として、パルス時間幅は約14μs、レーザ励起波長は10.6μm、ビームサイズ幅は約120μm、レーザ出力は2.4W以上、5.4W以下の範囲内、スキャンレートは3.5インチs-1、1インチあたりのパルス数は1000p.p.iとした。
 図6は、レーザ照射によるPIの熱反応を示す図である。図6に示すように、レーザ照射によるPIの熱反応により、PIのヘテロ原子ボンド(例えば、C=O結合、C-N結合)が切断されて、残りの芳香族化合物が再結合し、グラフェンを形成する。
 本実施形態によれば、このように、各画素P内(具体的には、バンクBKの開口部BKa内)にのみレーザ光を照射することにより、各画素P内の有機絶縁膜111をグラフェンに転化させる。これにより、各画素P内に、グラフェン膜112を形成するとともに、隣り合う画素P間に、これら画素Pにおける発光素子ES間の正孔の輸送をブロッキングする、有機絶縁膜111からなる隣接画素正孔ブロッキング部42aを形成する(ステップS14、第1変成工程、第1キャリア輸送部変成工程)。
 次いで、図5にS15で示すように、グラフェン膜112を酸化させてグラフェンオキサイド膜113に変換する(ステップS15、第1変成工程、第1キャリア輸送部変成工程)。前述したように、グラフェンオキサイドは、グラフェンを酸化することによって形成することができる。
 前述したように、グラフェンは、例えば、HSOにKMnOを溶解させてなる溶液に曝すことでグラフェンオキサイドとなる。
 例えば、ステップS14で得られた基板に形成されているグラフェンが10gの場合、HSOとHPO(リン酸)とを9:1の割合で含む溶液1320mLにKMnO60gを混合させた混合液に上記基板を浸漬し、上記基板を12時間回転させる。上記基板の表面が常温に戻った後、該基板を、0℃の30%過酸化水素水に浸漬し、約5分後、水、30%の塩酸、エタノールで洗浄する。最後に、上記基板を、真空チャンバで8~12時間乾燥する。これにより、ステップS14で得られた基板に形成されているグラフェン膜112を、グラフェンオキサイド膜113に変換することができる。
 但し、上記方法は、一例であって、本実施形態は、上記方法に限定さない。例えば、グラフェン膜112が形成された基板を、酸化剤を含む溶液に浸漬する代わりに、グラフェン膜112が形成された基板に酸化剤を含む溶液を供給することで、グラフェン膜112と酸化剤とを接触させてもよい。
 グラフェンオキサイドは正孔輸送性を有する。このため、本実施形態によれば、上記工程により、各画素P内に、グラフェンオキサイド膜113からなる正孔輸送部42bを形成することができる。
 次いで、図5にS16で示すように、上記隣接画素正孔ブロッキング部42aおよび上記正孔輸送部42bが設けられたHTL42上に、画素P毎に、EML43を形成する(ステップS16、発光層を形成する工程)。このとき、EML43は、各画素Pに対応して、少なくともバンクBKの開口部BKaを覆うように、画素P毎(言い替えれば、発光素子ES毎)に島状に形成される。EML43の形成方法としては、発光素子ESに要求される微細なパターンの形成が可能な方法であれば特に限定されるものではない。EML43の形成方法としては、例えば蒸着法、インクジェット法等、従来、EMLの形成方法として知られている各種方法を用いることができる。
 次いで、図5にS17で示すように、EML43上にETL44を形成する(ステップS17、第2のキャリア輸送層を形成する工程)。なお、本実施形態では、ETL44を、図1に示すように全画素Pに共通して設けられた共通層としたが、本実施形態は、これに限定されるものではない。ETL44は、EML43同様、各画素Pに対応して、少なくともバンクBKの開口部BKaを覆うように、画素P毎(言い替えれば、発光素子ES毎)に島状に形成してもよい。ETL44の形成方法としては、例えば蒸着法、インクジェット法等、従来、ETLの形成方法として知られている各種方法を用いることができる。
 次いで、図5にS18で示すように、上記ETL44上に、上部電極として陰極45を形成する(ステップS8、上部電極を形成する工程)。陰極45の形成には、例えば、スパッタ法、真空蒸着法、CVD法、プラズマCVD法、印刷法等、陰極の形成方法として従来公知の各種方法を用いることができる。
 これにより、平坦化膜33上に、複数の発光素子ESを含む発光素子層4が形成される。
 (効果)
 次に、本実施形態に係る表示装置1による効果について、図7および図8を参照して以下に説明する。
 図7は、図2に示すB-B’線矢視断面の一部を示す断面図である。図8は、従来の表示装置の課題を説明するための断面図である。図8は、従来の表示装置における、図7に示す断面に対応する部分の断面を示している。なお、図8中、図7に示す構成要素と同じ機能を有する構成要素については、同じ符号を付記し、その詳細な説明を省略する。
 以下では、従来の課題として、HTL42に着目して説明する。図8に示すように、HTL42が複数の発光素子ESに共通して設けられている場合、例えば、発光素子BESが点灯しているとき、HTL42を介して、発光素子BESから、該発光素子BESに隣り合う例えば発光素子RESにも正孔(h)が輸送される。前述したように、陰極45およびETL44のうち、少なくとも陰極45は、全画素Pに共通して設けられた共通層である。したがって、発光素子BESが点灯しているとき、該発光素子BESに隣り合う例えば発光素子RESにも、陰極45およびETL44のうち、少なくとも陰極45を介して電子が輸送される。このため、上述したように発光素子BESが点灯しているとき、HTL42を介して、隣接する画素RPの発光素子RESに正孔が輸送されると、該発光素子RESのEML43Rにおいて、発光素子BESから輸送された正孔と電子とが再結合し、発光素子RESが弱く光る。このように、一つの発光素子ESが点灯しているとき、HTL42を介して、隣接する画素PのEML43にホールが輸送されると、該隣接する画素Pの発光素子ESが、弱い光ながら点灯する。なお、図8では、上述したように、発光素子BESが光っているときに、該発光素子BESに隣り合う画素RPの発光素子RESが弱く光っている場合を例に挙げて図示している。しかしながら、このとき、上記発光素子BESに隣り合う画素GPの発光素子GESも同様に弱く光る。このような現象は、光学的なクロストークと呼ばれ、表示品位低下の原因となっている。
 一方、本実施形態に係る表示装置1は、図7に示すように、隣り合う画素Pにおける発光素子ES間に、該隣り合う画素Pにおける発光素子ES間の正孔の輸送をブロッキングする隣接画素正孔ブロッキング部42aが設けられている。このため、図7に示すように、隣り合う画素Pにおける発光素子ESへの正孔の輸送がブロッキングされる。したがって、本実施形態によれば、クロストークが生じない表示装置1を提供することができる。
 また、本実施形態によれば、正孔輸送部42bと隣接画素正孔ブロッキング部42aとは、共通層であるHTL42の一部である。本実施形態に係るHTL42および該HTL42を備えた表示装置1は、HTL42を画素P毎に島状に形成する場合と比較して、加工プロセスが簡素であり、製造に係る費用を大幅に削減することができる。
 特に、グラフェン前駆体として用いられる有機絶縁材料は、従来の正孔輸送材料に比べて安価であり、また、最終的に形成されるグラフェンオキサイドは、温度安定性並びに化学的安定性が高い。このため、本実施形態によれば、従来の正孔輸送材料で形成された表示装置よりも信頼性が高い表示装置1を提供することができる。また、グラフェンおよびグラフェンオキサイドは、キャリア輸送性が速い。このため、本実施形態によれば、表示装置1の駆動電圧並びに消費電力を低減することが可能であり、表示装置1の表示時間並びに待機時間を長くすることができる。
 また、従来HTLに用いられている有機材料は、材料同士の密着性が低い場合がある。しかしながら、本実施形態によれば、上述したように、正孔輸送部42bと隣接画素正孔ブロッキング部42aとは、共通層であるHTL42の一部であり、互いに化学結合しており、同一層内に互いに一体的に形成されている。このため、本実施形態によれば、正孔輸送部42bと隣接画素正孔ブロッキング部42aとにおける材料同士の密着性が高く、外部からの水、酸素等の異物の浸透を防ぐことができる。このため、本実施形態によれば、より信頼性が高い表示装置1を提供することができる。
 (変形例1)
 図9は、本実施形態に係る発光素子ESの積層構造の他の一例を模式的に示す図である。
 図9に示すように、発光素子ESは、薄膜トランジスタ層3側から、陽極41、HTL42、EML43、陰極45の順に積層された構成を有していてもよい。この場合にも、上述した効果と同様の効果を得ることができる。
 (変形例2)
 図5では、S15で示すように、隣接画素正孔ブロッキング部42aが、有機絶縁膜111の一部であり、該有機絶縁膜111に用いられる有機絶縁材料(樹脂)からなる場合を例に挙げて説明した。しかしながら、前述したように、隣接画素正孔ブロッキング部42aを構成する正孔ブロッキング材料は、電子輸送性材料であってもよい。図10は、本変形例に係る表示装置1における発光素子層4の形成工程の一部を、工程順に示す断面図である。図10は、図4に示す製造工程の後の製造工程の一部を工程順に示している。なお、図10でも、図2に示すB-B’線矢視断面の一部に対応する断面を示している。
 本変形例では、図10にS15で示すように、ステップS11~ステップS14の後、図5に示すステップS15と同じステップS15を行う。
 次いで、図10にS21で示すように、有機絶縁膜111からなる隣接画素正孔ブロッキング部42aにレーザ光を照射することにより、隣接画素正孔ブロッキング部42a内の有機絶縁膜111をグラフェン膜114に転化させる(ステップS21、第1変成工程、第1隣接画素正孔ブロッキング部変成工程)。これにより、電子輸送性を有するグラフェン膜114からなる隣接画素正孔ブロッキング部42aを形成する。
 なお、隣接画素正孔ブロッキング部42a内の有機絶縁膜111をグラフェン膜114に転化させる方法は、図4に示すステップS14において、各画素P内(具体的には、バンクBKの開口部BKa内)の有機絶縁膜111をグラフェン膜112に転化させる方法と同じである。したがって、隣接画素正孔ブロッキング部42a内の有機絶縁膜111をグラフェン膜114に転化させる方法については、その説明を省略する。
 次いで、図10にS16で示すように、図5に示すステップS16と同じステップS16を行い、上記隣接画素正孔ブロッキング部42aおよび上記正孔輸送部42bが設けられたHTL42上に、画素P毎に、EML43を形成する。その後、図5に示すステップS17およびステップS18を行うことで、隣接画素正孔ブロッキング部42aが電子輸送性材料からなる発光素子ESを備えた発光素子層4が形成される。
 (変形例3)
 変形例2では、有機絶縁材料を、化学反応により、正孔輸送性材料および電子輸送性材料にそれぞれ変成することで、正孔輸送性材料からなる正孔輸送部42bと、電子輸送性材料からなる隣接画素正孔ブロッキング部42aとを形成した。しかしながら、本実施形態は、これに限定されるものではない。
 本変形例では、正孔輸送性材料からなる膜の一部を化学反応により電子輸送膜に転化(変成)させることで、正孔輸送性材料からなる正孔輸送部42bと、電子輸送性材料からなる隣接画素正孔ブロッキング部42aとを形成する場合を例に挙げて説明する。
 図11は、本変形例に係る表示装置1における発光素子層4の形成工程の一部を、工程順に示す断面図である。図11は、図4に示すステップS12の後の製造工程の一部を示している。なお、図11でも、図2に示すB-B’線矢視断面の一部に対応する断面を示している。
 図11に示す例では、図4に示すステップS11~ステップS12の後、図11にS22で示すように、陽極41およびバンクBK上に、化学反応により電子輸送性を示す材料に転化する正孔輸送性材料からなる正孔輸送膜を、全画素Pに渡ってベタ状に形成する(ステップS22、第1成膜工程)。
 上記正孔輸送性材料としては、例えば、グラフェンオキサイドが挙げられる。前述したように、グラフェンオキサイドは、還元することで、電子輸送性を示すグラフェン(還元型グラフェンオキサイド)に転化する。
 以下では、上記正孔輸送膜がグラフェンオキサイド膜121である場合を例に挙げて説明する。グラフェンオキサイド膜121の形成方法としては、公知の各種方法を用いることができ、特に限定されない。グラフェンオキサイド膜121は、例えば、グラフェンオキサイドを溶媒に溶解させた溶液を、スピンコート法、スプレー塗布法等の公知の塗布法で塗布して乾燥させることでして形成することができる。また、グラフェンオキサイド膜121は、前述したようにグラフェンを酸化してなる膜であってもよい。例えば、陽極41およびバンクBK上に、図4に示すステップS13と同様にして有機絶縁膜111を形成した後、該有機絶縁膜111にレーザを照射してグラフェン化した後、さらに酸化させることで、グラフェンオキサイド膜121を形成してもよい。また、後述する変形例4で示すように、グラフェンを成長させることで形成されたグラフェン膜を酸化させてもよい。
 次いで、図11にS23で示すように、例えばフェムト秒レーザを照射する等して、隣り合う画素Pにおける発光素子ES間のグラフェンオキサイド膜121を選択的に還元する。これにより各発光素子ES間のグラフェンオキサイド膜121を、グラフェン膜122(還元型グラフェンオキサイド膜)に転化させる(ステップS23、第1変成工程)。これにより、電子輸送性を有するグラフェン膜122からなる隣接画素正孔ブロッキング部42aと、正孔輸送性を有するグラフェンオキサイド膜121からなる正孔輸送部42bとを有するHTL42を形成する。
 次いで、図11にS16で示すように、図5に示すステップS16と同じステップS16を行い、上記隣接画素正孔ブロッキング部42aおよび上記正孔輸送部42bが設けられたHTL42上に、画素P毎に、EML43を形成する。その後、図5に示すステップS17およびステップS18を行うことで、隣接画素正孔ブロッキング部42aが電子輸送性材料からなる発光素子ESを備えた発光素子層4が形成される。
 なお、本変形例では、上述したように、グラフェンオキサイド膜121の還元に、例えばフェムト秒レーザを用いる場合を例に挙げて説明した。しかしながら、グラフェンオキサイド膜121の一部を選択的に還元することができれば、グラフェンオキサイド膜121の還元方法は、特に限定されるものではない。
 (変形例4)
 本変形例では、電子輸送性材料からなる膜の一部を化学反応により正孔輸送膜に転化(変成)させることで、正孔輸送性材料からなる正孔輸送部42bと、電子輸送性材料からなる隣接画素正孔ブロッキング部42aとを形成する場合を例に挙げて説明する。
 図12は、本変形例に係る表示装置1における発光素子層4の形成工程の一部の一例を、工程順に示す断面図である。図12は、図4に示すステップS12の後の製造工程の一部を示している。なお、図12でも、図2に示すB-B’線矢視断面の一部に対応する断面を示している。
 図12に示す例では、図4に示すステップS11~ステップS12の後、図12にS24で示すように、陽極41およびバンクBK上に、化学反応により正孔輸送性を示す材料に転化する電子輸送性材料からなる電子輸送膜を、全画素Pに渡ってベタ状に形成する(ステップS24、第1成膜工程)。
 上記電子輸送性材料としては、例えば、グラフェンが挙げられる。前述したように、グラフェンは、酸化することで、正孔輸送性を示すグラフェンオキサイドに転化する。
 以下では、上記電子輸送膜がグラフェン膜131である場合を例に挙げて説明する。グラフェン膜131の形成方法としては、公知の各種方法を用いることができ、特に限定されない。グラフェン膜131は、例えば、前述したように有機絶縁膜から誘導される膜であってもよい。例えば、陽極41およびバンクBK上に、図4に示すステップS13と同様にして有機絶縁膜111を形成した後、該有機絶縁膜111全体にレーザを照射してグラフェン化することで、グラフェン膜131を形成してもよい。また、グラフェン膜131は、例えば、リモートマイクロ波プラズマによる、成膜原料ガスとしての炭素含有ガスの解離により、被処理基板上にグラフェンを成長させることで、被処理基板上に直接成膜することもできる。なお、触媒上に成長させたグラフェン膜上にサポートを形成し、触媒をエッチング除去してグラフェン膜をターゲット基板に転写した後、サポートを除去することでグラフェン膜を形成することも可能である。
 次いで、グラフェン膜131の一部を選択的に酸化させて、各画素P内(具体的には、バンクBKの開口部BKa内)のグラフェン膜131を、グラフェンオキサイド膜132に転化させる。
 具体的には、例えば、図12にS25で示すように、フォトリソグラフィーにより、各発光素子ES間のグラフェン膜131を覆うとともに、バンクBKの開口部BKa内のグラフェン膜131を露出させるマスク開口MAを有する、例えばPMMA(ポリメチルメタクリレート)からなるマスクMを、グラフェン膜131上に形成する(ステップS25、第1変成工程)。
 次いで、図12にS26で示すように、グラフェン膜131における、マスク開口MAから露出している部分を、例えば、UV/O処理する。これにより、グラフェン膜131における、マスク開口MAから露出している部分を選択的に酸化させて、選択的にグラフェンオキサイド膜132に転化させる(ステップS26、第1変成工程)。
 その後、図12にS27で示すように、マスクMを除去する(ステップS27、第1変成工程)。マスクMの除去には例えばアセトン等を用いることができる。これにより、電子輸送性を有するグラフェン膜131からなる隣接画素正孔ブロッキング部42aと、正孔輸送性を有するグラフェンオキサイド膜132からなる正孔輸送部42bとを形成する。
 次いで、図12にS16で示すように、図5に示すステップS16と同じステップS16を行い、上記隣接画素正孔ブロッキング部42aおよび上記正孔輸送部42bが設けられたHTL42上に、画素P毎に、EML43を形成する。その後、図5に示すステップS17およびステップS18を行うことで、隣接画素正孔ブロッキング部42aが電子輸送性材料からなる発光素子ESを備えた発光素子層4が形成される。
 なお、本変形例では、上述したように、グラフェン膜131の酸化に、例えばUV/O処理を用いる場合を例に挙げて説明した。しかしながら、グラフェン膜131の一部を選択的に酸化することができれば、グラフェン膜131の酸化方法は、特に限定されるものではない。
 グラフェンを酸化させてグラフェンオキサイドを得る方法としては、前述した、公知の各種方法を用いることができる。隣り合う、バンクBKの開口部BKa間に、グラフェン膜131が残存するように酸化条件が設定されていれば、酸化方法は特に限定されない。グラフェン膜131の部分酸化は、例えば、マスクを用いて、酸化剤を含む溶液を選択的にグラフェン膜131に滴下することで行われてもよい。また、部分酸化に先立って、例えばグラフェン膜131にUV等を部分的に照射する等して、グラフェン膜131の表面を部分的に改質してもよい。グラフェン膜131の表面を部分的に改質して、部分的に撥水性あるいは親水性を付与することで、酸化領域を制御することができる。
 (変形例5)
 隣接画素正孔ブロッキング部42aと正孔輸送部42bとは、化学的に結合することで最終的に1つの層となるようにパターン形成されていてもよい。本変形例では、正孔輸送部42bと隣接画素正孔ブロッキング部42aとを、それぞれ別々の材料でパターン形成する場合を例に挙げて説明する。
 図13は、本変形例に係る表示装置1における発光素子層4の形成工程の一部を、工程順に示す断面図である。図13は、図4に示すステップS12の後の製造工程の一部を示している。なお、図13でも、図2に示すB-B’線矢視断面の一部に対応する断面を示している。
 図13に示す例では、図4に示すステップS11~ステップS12の後、図13にS28で示すように、隣り合う画素P間のバンクBK上に、隣接画素正孔ブロッキング部42aとして、正孔ブロッキング材料からなる膜141をパターン形成する(ステップS28、キャリア輸送部をパターン形成する工程)。上記正孔ブロッキング材料からなる膜141は、有機絶縁材料であってもよく、電子輸送性材料であってもよい。この場合、上記有機絶縁材料あるいは上記電子輸送性材料には、前述した各種材料を用いることができる。
 上記正孔ブロッキング材料からなる膜141をパターン形成する方法としては、特に限定されるものではなく、例えば、前述した(1)~(5)のパターン形成方法を用いることができる。
 なお、上記正孔ブロッキング材料からなる膜141がグラフェン膜である場合、該グラフェン膜は、有機絶縁膜をグラフェン化してなる膜であってもよいし、グラフェンオキサイド膜を還元してなるグラフェン膜(還元型グラフェンオキサイド膜)であってもよい。
 上記正孔ブロッキング材料からなる膜141が有機絶縁膜をグラフェン化してなる膜である場合、パターン形成した有機絶縁膜をグラフェン化してもよいし、ベタ状の有機絶縁膜をグラフェン化した後、得られたグラフェン膜をパターニングしてもよい。
 例えば、図4に示すステップS13の後、ステップS13で形成したベタ状の有機絶縁膜111全体をグラフェン化してからパターニングしてもよいし、ベタ状の有機絶縁膜111をパターニングした後、グラフェン化してもよい。
 また、パターン形成した有機絶縁膜をグラフェン化する場合、例えば、ソフトナノインプリント方法により、PI等の有機絶縁材料をバンクBK上に成膜し、その後、レーザ照射により、上記有機絶縁材料をグラフェンに変成してもよい。
 同様に、上記正孔ブロッキング材料からなる膜141がグラフェンオキサイド膜を還元してなる還元型グラフェンオキサイド膜である場合、パターン形成したグラフェンオキサイド膜を還元してグラフェン化してもよい。また、ベタ状のグラフェンオキサイド膜全体を還元した後、得られた還元型グラフェンオキサイド膜をパターニングしてもよい。
 一例として、水溶液中での還元方法を以下に示す。例えば、まず、グラフェンオキサイド膜(100mg)が形成された基板を、水(最小100mL)中に浸漬する。次いで、ヒドラジン(1.00mL、32.1mmol)を水に溶解し、100℃で24時間加熱して還元反応を行う。なお、上記還元反応中は、気体となったヒドラジンを循環させ、グラフェンオキサイドとの還元反応を継続化させるため、コンデンサを使用することが望ましい。その後、上記基板を、例えば、100mLの水で5回洗浄した後、100mLのメタノールで5回洗浄する。洗浄後、真空加熱環境下で、約時間乾燥を行う。これにより、還元型グラフェンオキサイド膜を形成することができる。なお、上述したように、グラフェンオキサイド膜は、予めパターン化されていてもよく、還元後にパターン化してもよい。
 上記パターニングには、フォトリソグラフィー、レーザ加工等、公知のパターニング技術を用いることができる。
 本変形例では、このように正孔ブロッキング材料からなる膜141をパターン形成した後、図13にS29で示すように、正孔輸送部42bとして、正孔輸送性材料からなる膜142をパターン形成する(ステップS29、隣接画素キャリアブロッキング部をパターン形成する工程)。このとき、正孔輸送性材料からなる膜142は、各画素P内(具体的には、正孔ブロッキング材料からなる膜141で囲まれた領域)に、陽極41を覆うようにパターン形成される。上記正孔輸送性材料には、前述した各種材料を用いることができる。
 正孔輸送性材料からなる膜142をパターン形成する方法としては、特に限定されるものではない。この場合にも、例えば、前述した(1)~(5)のパターン形成方法を用いることができる。
 これにより、上記正孔ブロッキング材料からなる膜141からなる隣接画素正孔ブロッキング部42aと、上記正孔輸送性材料からなる膜142からなる正孔輸送部42bとが形成される。
 次いで、図13にS16で示すように、図5に示すステップS16と同じステップS16を行い、上記隣接画素正孔ブロッキング部42aおよび上記正孔輸送部42bが設けられたHTL42上に、画素P毎に、EML43を形成する。その後、図5に示すステップS17およびステップS18を行うことで、隣接画素正孔ブロッキング部42aが電子輸送性材料からなる発光素子ESを備えた発光素子層4が形成される。
 本変形例で形成された正孔ブロッキング材料からなる膜141からなる隣接画素正孔ブロッキング部42aと、上記正孔輸送性材料からなる膜142からなる正孔輸送部42bとは、それぞれの接触部において、互いに化学的に結合する。このため、上記の方法によれば、同一層内に、隣接画素正孔ブロッキング部42aと、正孔輸送部42bとが一体的に形成されたHTL42を形成することができる。
 なお、本変形例では、隣接画素正孔ブロッキング部42aをパターン形成した後、正孔輸送部42bをパターン形成する場合を例に挙げて説明した。しかしながら、本変形例は、これに限定されるものではなく、正孔輸送部42bをパターン形成した後、隣接画素正孔ブロッキング部42aをパターン形成してもよい。
 (変形例6)
 また、本実施形態では、表示装置1が、赤色、緑色及び青色の光をそれぞれ発光する3種類の発光素子RES・GES・BESを備えた場合を一例に挙げて説明した。しかしながら、本実施形態は、これに限定されることはなく、それぞれ異なる色の光を発光する4種類以上の発光素子を備えていてもよく、2種類の発光素子を備えていてもよい。
 〔実施形態2〕
 本発明の実施の他の形態について、図14~図18に基づいて説明すれば、以下の通りである。なお、本実施形態では、実施形態1との相異点について説明する。説明の便宜上、実施形態1で説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 図14は、本実施形態に係る表示装置1における画素Pの概略構成の一例を示す断面図である。本実施形態に係る表示装置1の概略構成の一例を、一部を拡大して示す平面図は、図2と同じである。図14は、図2に示すA-A’線矢視断面図に相当する。
 図14に示す表示装置1は、以下に示す点を除けば、実施形態1に係る表示装置1と同じ構成を有している。図14に示す表示装置1は、ETL44が、キャリア輸送部としての電子輸送部44bと、隣接画素キャリアブロッキング部としての隣接画素電子ブロッキング部44aと、を備えている。すなわち、本実施形態に係る表示装置1は、HTL42およびETL44が、それぞれ、キャリア輸送部と、隣接画素キャリアブロッキング部と、を備えている。
 電子輸送部44bは、電子輸送性を有している。電子輸送部44bは、発光素子ES毎に、それぞれの発光素子ESにおけるEML43と重畳して設けられ、該EML43に、キャリアとして電子を輸送する。
 隣接画素電子ブロッキング部44aは、隣り合う画素Pにおける発光素子ESの間の部分に設けられ、隣り合う画素Pにおける発光素子ES間の電子の輸送をブロッキングする。なお、隣接画素電子ブロッキング部44aは、隣り合う画素Pにおける発光素子ES間の電子の輸送をブロッキングできるように、隣り合う画素Pにおける電子輸送部44b同士の間に設けられていれば、その大きさは、特に限定されるものではない。
 電子輸送部44bと隣接画素電子ブロッキング部44aとは、例えば、全画素Pに共通して設けられた共通層の少なくとも一部を化学反応により変成することで形成することができる。このようにして形成された電子輸送部44bと隣接画素電子ブロッキング部44aとは、互いに化学的に結合されており、同一層内に互いに一体的に形成されている。また、電子輸送部44bと隣接画素電子ブロッキング部44aとは、上述したように全画素Pに共通して設けられた共通層の少なくとも一部を化学反応により変成してなることで、好適には、実質的に同一の厚みを有している。
 電子輸送部44bは、電子輸送性材料で構成される。一方、隣接画素電子ブロッキング部44aは、電子の輸送をブロッキングする電子ブロッキング材料で構成される。上記電子ブロッキング材料としては、例えば、有機絶縁材料を用いることができる。なお、上記電子ブロッキング材料は、正孔輸送性材料であってもよい。
 電子輸送部44bは、電子輸送性材料を成膜することで形成されていてもよく、有機絶縁材料あるいは正孔輸送性材料を化学反応により電子輸送性材料に転化(変成)させることで形成されていてもよい。したがって、電子輸送部44bは、隣接画素電子ブロッキング部44aに用いられている電子ブロッキング材料を化学反応により変成することで形成されていてもよい。
 隣接画素電子ブロッキング部44aは、有機絶縁材料あるいは正孔輸送性材料を成膜することで形成されていてもよく、有機絶縁材料あるいは電子輸送性材料を化学反応により正孔輸送性材料に転化(変成)させることで形成されていてもよい。
 但し、本実施形態は、これに限定されるものではない。電子輸送部44bと隣接画素電子ブロッキング部44aとは、それぞれ別々の材料でパターン形成されていてもよい。
 電子輸送部44bと隣接画素電子ブロッキング部44aとを別々の材料でパターン形成する場合、上記パターン形成は、例えば、以下の方法により行うことができる。
 例えば、上記電子輸送部44bおよび隣接画素電子ブロッキング部44aの材料が粉体(固体)である場合、上記パターン形成方法としては、(1)FMM(ファインメタルマスク)を用いて塗分け蒸着する方法、(2)インクジェット法、(3)画素RP、画素GP、画素BPに応じたパターンを有するシリコンゴムを用いて、これら画素内にそれぞれ上記材料を転写する方法、等が挙げられる。
 上記電子輸送部44bおよび隣接画素電子ブロッキング部44aの材料が液体である場合、上記パターン形成方法としては、上記(2)の方法、上記(3)の方法、並びに、(4)上記材料を基板全面に塗布後、フォトリソグラフィーを行う方法、(5)レーザ加工を行う方法、等が挙げられる。
 また、電子輸送部44bと隣接画素電子ブロッキング部44aとを別々にパターン形成する場合に電子輸送部44bおよび隣接画素電子ブロッキング部44aのうち少なくとも一方が材料の転化(変成)を伴う場合、該材料の転化(変成)は、該材料の転化(変成)を伴うパターンの形成後に行われてもよく、電子輸送部44bおよび隣接画素電子ブロッキング部44aの両パターンの形成後に行われてもよい。また、成膜とパターニングとが別々に行われる場合、上記材料の転化(変成)は、パターニング後に行われてもよく、成膜後、パターン形成を行う前に行われてもよい。
 上述したように共通層の少なくとも一部を化学反応により変成することで電子輸送部44bと隣接画素電子ブロッキング部44aとを形成する場合、電子輸送部44bと隣接画素電子ブロッキング部44aとは、共有結合により、互いに化学的に結合される。
 一方、電子輸送部44bと隣接画素電子ブロッキング部44aとを、それぞれ別々の材料でパターン形成する場合、電子輸送部44bと隣接画素電子ブロッキング部44aとは、例えば、材料の化学物質の間の分子間力(ファンデルワールス力)あるいは水素結合等により互いに化学的に結合されて、一体化した一つの層となる。そして、この場合にも、同一層内において隣り合う電子輸送部44b間に、これら電子輸送部44bと一体的に形成された隣接画素電子ブロッキング部44aが設けられる。
 上記電子輸送性材料としては、例えば、実施形態1で例示した電子輸送性材料からなる群より選ばれる少なくとも一種の電子輸送性材料を用いることができる。
 上記有機絶縁材料としては、例えば、実施形態1で例示した有機絶縁材料からなる群より選ばれる少なくとも一種の有機絶縁材料を用いることができる。
 上記正孔輸送性材料としては、例えば、実施形態1で例示した正孔輸送性材料からなる群より選ばれる少なくとも一種の正孔輸送性材料を用いることができる。
 前述したように、電子輸送部44bは、例えば、上記電子ブロッキング材料を化学反応により変成することで形成することができる。実施形態1で説明したように、PI、PEI、PAN等の有機絶縁材料は、十分な耐熱性を有するとともに、炭素を含み、レーザ光に曝露することによって、グラフェンに転化する。また、実施形態1で説明したように、グラフェンオキサイドは、還元することで、グラフェン(還元型グラフェンオキサイド)に転化する。したがって、上記電子輸送性材料は、有機絶縁材料から誘導されるグラフェン(誘導グラフェン)であってもよく、グラフェンオキサイドを還元してなるグラフェン(還元型グラフェンオキサイド)であってもよい。
 また、前述したように、隣接画素電子ブロッキング部44aは、例えば、電子輸送材料を化学反応により変成することで形成してもよい。実施形態1で説明したように、グラフェンは、電子輸送性を示すが、酸化反応により、正孔輸送性を示すグラフェンオキサイドに転化する。
 したがって、例えば、上記有機絶縁材料または上記正孔輸送性材料からなる共通層の一部を電子輸送性材料に転化させることで、同一層内に、該電子輸送性材料からなる電子輸送部44bと、電子輸送性材料に転化させていない上記有機絶縁材料または上記正孔輸送性材料からなる隣接画素電子ブロッキング部44aとを一体的に形成することができる。
 また、例えば、上記電子輸送性材料からなる共通層の一部を正孔輸送性材料に転化させることで、同一層内に、電子輸送性材料からなる隣接画素電子ブロッキング部44aと、正孔輸送性材料に転化させていない上記電子輸送性材料からなる電子輸送部44bとを一体的に形成することができる。
 上記ETL44の厚みは、電子と正孔とのキャリアバランスを調整するため、1nm以上であることがより好ましい。また、上記ETL44の厚みが30nmを超えると、電子の移動度が遅くなり、表示装置1の駆動電圧が高くなる傾向がある。このため、上記ETL44の厚みは、30nm以下であることがより好ましい。
 なお、電子輸送部44bと隣接画素電子ブロッキング部44aとは、前述したように実質的に同一の厚みを有していることが好ましいが、互いの厚みが異なっていても構わない。電子輸送部44bが、有機絶縁材料を化学反応により変成することで形成される場合、変成されていない有機絶縁材料からなる部分の厚みが0.5~3nmの範囲内であれば、トンネル効果によりEML43に電子を輸送することが可能である。このため、電子輸送部44bは、ETL44の厚みが、トンネル効果を発現しない3nmを超える厚みを有し、変成されていない有機絶縁材料からなる部分の厚みが、トンネル効果を発現する0.5~3nmの範囲内であれば、ETL44の表面にのみ設けられていても構わない。
 図14に示すように、本実施形態に係る発光素子RESは、陽極41R、HTL42R、EML43R、ETL44R、陰極45を備えている。発光素子GESは、陽極41G、HTL42G、EML43G、ETL44G、陰極45を備えている。発光素子BESは、陽極41B、HTL42B、EML43B、ETL44B、陰極45を備えている。ETL44Rは、画素RPにおける、ETL44の電子輸送部44bである。ETL44Gは、画素GPにおける、ETL44の電子輸送部44bである。ETL44Bは、画素BPにおける、ETL44の電子輸送部44bである。
 (表示装置1の製造方法)
 次に、表示装置1の製造方法について、実施形態1と異なる部分について説明する。
 図15は、図5に示すステップS15の後の製造工程の一部を工程順に示す他の断面図である。なお、図15でも、図2に示すB-B’線矢視断面の一部に対応する断面を示している。
 以下では、共通層として全画素Pに共通して設けられた有機絶縁膜の少なくとも一部を化学反応により変成することで電子輸送部44bと隣接画素電子ブロッキング部44aとを形成する場合を例に挙げて説明する。
 本実施形態では、図15にS16で示すように、ステップS11~ステップS14の後、図5に示すステップS16と同じステップS16を行う。本実施形態では、図5に示すステップS17およびステップS18に代えて、以下のステップS31~ステップS33を行う。
 つまり、本実施形態では、上記ステップS16の後、まず、図15にS31で示すように、EML43を覆うように、HTL42上に、化学反応により電子輸送性を示す材料に転化する有機絶縁材料を、全画素Pに渡ってベタ状に成膜する。これにより、ベタ状の有機絶縁膜115を形成する(ステップS31、第2成膜工程)。
 以下では、上記有機絶縁膜115に、レーザ光に曝露することでグラフェンに転化するグラフェン前駆体材料となる樹脂を使用する場合を例に挙げて説明する。有機絶縁膜115には、有機絶縁膜111と同じ材料を使用することができる。この場合、有機絶縁膜115を成膜する方法は、ステップS13において有機絶縁膜111を成膜する方法と同じである。したがって、ここでは、有機絶縁膜115の成膜方法についての説明を省略する。
 次いで、図15にS32で示すように、各画素P内(具体的には、バンクBKの開口部BKa内)にのみレーザ光を選択的に照射することにより、各画素P内の有機絶縁膜115をグラフェンに転化させる。これにより、各画素P内に、グラフェン膜116を形成するとともに、隣り合う画素P間に、これら画素Pにおける発光素子ES間の電子の輸送をブロッキングする、有機絶縁膜115からなる隣接画素電子ブロッキング部44aを形成する(ステップS32、第2変成工程、第2キャリア輸送部変成工程)。
 次いで、図15にS33で示すように、上記隣接画素電子ブロッキング部44aおよび上記電子輸送部44bが設けられたETL44上に、上部電極として陰極45を形成する(ステップS33、上部電極を形成する工程)。なお、ETL44上に陰極45を形成する方法は、図5に示すステップS18において、ETL44上に陰極45を形成する方法と同じである。
 これにより、平坦化膜33上に、複数の発光素子ESを含む発光素子層4が形成される。このように、表示装置1は、HTL42およびETL44が、それぞれ、キャリア輸送部と、隣接画素キャリアブロッキング部と、を備えていてもよい。
 (変形例1)
 図15では、S32で示すように、隣接画素電子ブロッキング部44aが、有機絶縁膜115の一部であり、該有機絶縁膜115に用いられる有機絶縁材料(樹脂)からなる場合を例に挙げて説明した。しかしながら、前述したように、隣接画素電子ブロッキング部44aを構成する電子ブロッキング材料は、正孔輸送性材料であってもよい。
 本変形例では、正孔輸送性材料からなる膜の一部を化学反応により電子輸送膜に転化(変成)させることで、正孔輸送性材料からなる隣接画素電子ブロッキング部44aと電子輸送性材料からなる電子輸送部44bとを形成する場合を例に挙げて説明する。
 図16は、本変形例に係る表示装置1における発光素子層4の形成工程の一部を、工程順に示す断面図である。図16は、図5に示すステップS15の後の製造工程の一部を示している。なお、図16でも、図2に示すB-B’線矢視断面の一部に対応する断面を示している。
 図16に示す例では、図15に示すステップS16と同じステップS16の後、図16にS41で示すように、EML43を覆うように、HTL42上に、化学反応により電子輸送性を示す材料に転化する正孔輸送性材料からなる正孔輸送膜を、全画素Pに渡ってベタ状に形成する(ステップS41、第2成膜工程)。
 上記正孔輸送性材料としては、前述したように、例えば、グラフェンオキサイドが挙げられる。以下では、上記正孔輸送膜がグラフェンオキサイド膜151である場合を例に挙げて説明する。この場合、グラフェンオキサイド膜151を成膜する方法は、実施形態1のステップS22においてグラフェンオキサイド膜121を成膜する方法と同じである。したがって、ここでは、グラフェンオキサイド膜151の成膜方法についての説明を省略する。
 次いで、図16にS42で示すように、例えばフェムト秒レーザを照射する等して、各画素P内(具体的には、バンクBKの開口部BKa内)のグラフェンオキサイド膜151を選択的に還元する。これにより、各画素P内のグラフェンオキサイド膜151を、グラフェン膜152(還元型グラフェンオキサイド膜)に転化させる(ステップS42、第2成膜工程、第2キャリア輸送部変成工程)。これにより、正孔輸送性を有するグラフェンオキサイド膜151からなる隣接画素電子ブロッキング部44aと、電子輸送性を有するグラフェン膜152からなる電子輸送部44bとを形成する。
 次いで、図16にS33で示すように、図15に示すステップS33と同じステップS33を行い、上記隣接画素電子ブロッキング部44aおよび上記電子輸送部44bが設けられたETL44上に、上部電極として陰極45を形成する。これにより、本変形例に係る発光素子層4が形成される。
 なお、本変形例では、上述したように、グラフェンオキサイド膜151の還元に、例えばフェムト秒レーザを用いる場合を例に挙げて説明した。しかしながら、グラフェンオキサイド膜151の一部を選択的に還元することができれば、グラフェンオキサイド膜151の還元方法は、特に限定されるものではない。
 (変形例2)
 本変形例では、電子輸送性材料からなる膜の一部を化学反応により正孔輸送膜に転化(変成)させることで、正孔輸送性材料からなる隣接画素電子ブロッキング部44aと電子輸送性材料からなる電子輸送部44bとを形成する場合を例に挙げて説明する。
 図17は、本変形例に係る表示装置1における発光素子層4の形成工程の一部の一例を、工程順に示す断面図である。図17は、図5に示すステップS15の後の製造工程の一部を示している。なお、図17でも、図2に示すB-B’線矢視断面の一部に対応する断面を示している。
 図17に示す例では、図15に示すステップS16と同じステップS16の後、図17にS43で示すように、EML43を覆うように、HTL42上に、化学反応により正孔輸送性を示す材料に転化する電子輸送性材料からなる電子輸送膜を、全画素Pに渡ってベタ状に形成する(ステップS43、第2成膜工程)。
 上記電子輸送性材料としては、前述したように、例えば、グラフェンが挙げられる。以下では、上記電子輸送膜がグラフェン膜161である場合を例に挙げて説明する。この場合、グラフェン膜161を成膜する方法は、実施形態1のステップS24においてグラフェン膜131を成膜する方法と同じである。したがって、ここでは、グラフェン膜161の成膜方法についての説明を省略する。
 次いで、グラフェン膜161の一部を選択的に酸化させて、隣り合う画素Pにおける発光素子ES間のグラフェン膜161を、グラフェンオキサイド膜162に転化させる。
 具体的には、例えば、図17にS44で示すように、フォトリソグラフィーにより、バンクBKの開口部BKa内のグラフェン膜131を覆うとともに、各発光素子ES間のグラフェン膜161を露出させる開口部MAを有する、例えばPMMAからなるマスクMを、グラフェン膜161上に形成する(ステップS44、第2変成工程)。
 次いで、図17にS45で示すように、グラフェン膜161における、マスク開口MAから露出している部分を、例えば、UV/O処理する。これにより、グラフェン膜161における、マスク開口MAから露出している部分を選択的に酸化させて、選択的にグラフェンオキサイド膜162に転化させる(ステップS45、第2変成工程)。
 その後、図17にS46で示すように、マスクMを除去する(ステップS46、第2変成工程)。マスクMの除去には例えばアセトン等を用いることができる。これにより、正孔輸送性を有するグラフェンオキサイド膜162からなる隣接画素電子ブロッキング部44aと、電子輸送性を有するグラフェン膜161からなる電子輸送部44bとを形成する。
 次いで、図17にS33で示すように、図15に示すステップS33と同じステップS33を行い、上記隣接画素電子ブロッキング部44aおよび上記電子輸送部44bが設けられたETL44上に、上部電極として陰極45を形成する。これにより、本変形例に係る発光素子層4が形成される。
 なお、本変形例では、上述したように、グラフェン膜161の酸化に、例えばUV/O処理を用いる場合を例に挙げて説明した。しかしながら、グラフェン膜161の一部を選択的に酸化することができれば、グラフェン膜161の酸化方法は、特に限定されるものではない。
 (変形例3)
 隣接画素電子ブロッキング部44aと電子輸送部44bとは、化学的に結合することで最終的に1つの層となるようにパターン形成されていてもよい。本変形例では、隣接画素電子ブロッキング部44aと電子輸送部44bとを、それぞれ別々の材料でパターン形成する場合を例に挙げて説明する。
 図18は、本変形例に係る表示装置1における発光素子層4の形成工程の一部を、工程順に示す断面図である。図18は、図5に示すステップS152の後の製造工程の一部を示している。なお、図18でも、図2に示すB-B’線矢視断面の一部に対応する断面を示している。
 図18に示す例では、図15に示すステップS16と同じステップS16の後、図18にS47で示すように、隣り合う画素P間のバンクBK上に、隣接画素電子ブロッキング部44aとして、電子ブロッキング材料からなる膜171をパターン形成する(ステップS47、キャリア輸送部をパターン形成する工程)。上記電子ブロッキング材料からなる膜171は、有機絶縁材料であってもよく、正孔輸送性材料であってもよい。この場合、上記有機絶縁材料あるいは上記正孔輸送性材料には、前述した各種材料を用いることができる。
 上記電子ブロッキング材料からなる膜171をパターン形成する方法としては、特に限定されるものではなく、例えば、前述した(1)~(5)のパターン形成方法を用いることができる。
 なお、上記電子ブロッキング材料からなる膜171が、例えば、グラフェン膜を酸化してなるグラフェンオキサイド膜である場合、パターン形成したグラフェン膜を酸化してもよいし、ベタ状のグラフェン膜を酸化した後、得られたグラフェンオキサイド膜をパターニングしてもよい。同様に、上記電子ブロッキング材料からなる膜171が、例えば、有機絶縁膜をグラフェン化した後、得られたグラフェン膜を酸化してなるグラフェンオキサイド膜である場合、有機絶縁膜のグラフェン化並びにグラフェン膜の酸化とパターニングとの順番は、特に限定されない。例えば、有機絶縁膜のグラフェン化並びにグラフェン膜の酸化は、有機絶縁膜のパターニング後に行われてもよく、有機絶縁膜のグラフェン化並びにグラフェン膜の酸化後に、得られたグラフェンオキサイド膜をパターニングしてもよい。また、有機絶縁膜のグラフェン化と、グラフェン膜の酸化との間で、グラフェン膜のパターニングが行われてもよい。
 上記パターニングには、フォトリソグラフィー、レーザ加工等、公知のパターニング技術を用いることができる。
 本変形例では、このように電子ブロッキング材料からなる膜171をパターン形成した後、図18にS48で示すように、電子輸送部44bとして、電子輸送性材料からなる膜172をパターン形成する(ステップS48、隣接画素キャリアブロッキング部をパターン形成する工程)。このとき、電子輸送性材料からなる膜172は、各画素P内(具体的には、電子ブロッキング材料からなる膜171で囲まれた領域)に、EML43を覆うようにパターン形成される。上記電子輸送性材料には、前述した各種材料を用いることができる。
 電子輸送性材料からなる膜172をパターン形成する方法としては、特に限定されるものではない。この場合にも、例えば、前述した(1)~(5)のパターン形成方法を用いることができる。
 これにより、上記電子ブロッキング材料からなる膜171からなる隣接画素電子ブロッキング部44aと、上記電子輸送性材料からなる膜172からなる電子輸送部44bとが形成される。
 次いで、図17にS33で示すように、図15に示すステップS33と同じステップS33を行い、上記隣接画素電子ブロッキング部44aおよび上記電子輸送部44bが設けられたETL44上に、上部電極として陰極45を形成する。これにより、本変形例に係る発光素子層4が形成される。
 本変形例で形成された電子ブロッキング材料からなる膜171からなる隣接画素電子ブロッキング部44aと、上記電子輸送性材料からなる膜172からなる電子輸送部44bとは、それぞれの接触部において、互いに化学的に結合する。このため、上記の方法によれば、同一層内に、隣接画素電子ブロッキング部44aと、電子輸送部44bとが一体的に形成されたETL44を形成することができる。
 なお、本変形例では、隣接画素電子ブロッキング部44aをパターン形成した後、電子輸送部44bをパターン形成する場合を例に挙げて説明した。しかしながら、本変形例は、これに限定されるものではなく、電子輸送部44bをパターン形成した後、隣接画素電子ブロッキング部44aをパターン形成してもよい。
 〔実施形態3〕
 本発明の実施の他の形態について、図19~図23に基づいて説明すれば、以下の通りである。なお、本実施形態では、実施形態1、2との相異点について説明する。説明の便宜上、実施形態1、2で説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 図19は、本実施形態に係る表示装置1における画素Pの概略構成の一例を示す断面図である。本実施形態に係る表示装置1の概略構成の一例を、一部を拡大して示す平面図は、図2と同じである。図19は、図2に示すA-A’線矢視断面図に相当する。
 図19に示す表示装置1は、以下に示す点を除けば、実施形態1に係る表示装置1と同じ構成を有している。図19に示す表示装置1の発光素子層4は、陰極45、バンクBK、ETL44、EML43、HTL42、陽極41が、薄膜トランジスタ層3側からこの順に積層された構成を有している。このため、本実施形態では、ETL44が第1のキャリア輸送層であり、HTL42が第2のキャリア輸送層である。図19に示すように、実施形態1、2において、発光素子ESにおける陽極41から陰極45までの積層順は、逆であってもよい。
 なお、実施形態1で説明したように、陽極41および陰極45のうち、少なくとも、光の取出し面側となる電極は光透過性を有している必要がある。一方、光の取出し面と反対側の電極は、光透過性を有していてもよいし、光反射性を有していてもよい。
 したがって、本実施形態では、例えば、表示装置1をトップエミッション型の表示装置とする場合、上部電極である陽極41を光透過性材料からなる光透過性電極で形成し、下部電極である陰極45を、光反射性材料からなる光反射電極で形成する。一方、表示装置1をボトムエミッション型の表示装置とする場合、上部電極である陽極41を光反射性材料からなる光反射電極で形成し、下部電極である陰極45を光透過性材料からなる光透過性電極で形成する。
 図19に示す表示装置1は、ETL44およびHTL42のうち、ETL44が、キャリア輸送部としての電子輸送部44bと、隣接画素キャリアブロッキング部としての隣接画素電子ブロッキング部44aと、を備えている。
 なお、電子輸送部44bおよび隣接画素電子ブロッキング部44aは、実施形態2で説明した電子輸送部44bおよび隣接画素電子ブロッキング部44aと同じである。このため、本実施形態では、その説明を省略する。
 なお、本実施形態において、HTL42には、公知の正孔輸送性材料を用いることができる。上記正孔輸送性材料としては、例えば、実施形態1で例示した正孔輸送性材料からなる群より選ばれる少なくとも一種の正孔輸送性材料を用いることができる。
 図19に示す発光素子RESは、陰極45R、ETL44R、EML43R、HTL42、陽極41を備えている。発光素子GESは、陰極45G、ETL44G、EML43G、HTL42、陽極41を備えている。発光素子BESは、陰極45B、ETL44B、EML43B、HTL42、陽極41を備えている。
 (発光素子層4の形成工程)
 以下では、実施形態1との相違点として、発光素子層4の形成工程について説明する。
図20および図21は、それぞれ、ステップS2における発光素子層4の形成工程の一部を工程順に示す断面図である。図20は、図20に示す製造工程の後の製造工程を示している。なお、図20および図21は、図2に示すB-B’線矢視断面の一部に対応する断面を示している。ステップS2は、図20に示すステップS51~ステップS54および図21に示すステップS55~ステップS57を備えている。
 ステップS2では、まず、図20にS51で示すように、薄膜トランジスタ層3における平坦化膜33上に、下部電極として、陰極45を、画素P毎に島状にパターン形成する(ステップS51、下部電極を形成する工程)。陰極45の形成には、実施形態1に係る陰極45の形成方法と同様の方法を用いることができる。
 次いで、図20にS52で示すように、上記平坦化膜33上に、各画素Pにおける陰極45のパターンエッジを覆うように、画素分離膜となるバンクBKを形成する(ステップS52)。バンクBKの形成には、実施形態1に係るバンクBKの形成方法と同様の方法を用いることができる。
 次いで、図20にS53で示すように、陰極45およびバンクBK上に、化学反応により電子輸送性を示す材料に転化する有機絶縁材料を、全画素Pに渡ってベタ状に成膜することで、有機絶縁膜115を形成する(ステップS53、第1成膜工程)。
 以下では、上記有機絶縁膜115に、実施形態2と同じ、レーザ光に曝露することでグラフェンに転化するグラフェン前駆体材料となる樹脂を使用する場合を例に挙げて説明する。この場合、有機絶縁膜115を成膜する方法は、実施形態2のステップS31と同じである。
 次いで、図20にS54で示すように、各画素P内(具体的には、バンクBKの開口部BKa内)にのみレーザ光を選択的に照射することにより、各画素P内の有機絶縁膜115をグラフェンに転化させる。これにより、各画素P内に、グラフェン膜116を形成するとともに、隣り合う画素P間に、これら画素Pにおける発光素子ES間の電子の輸送をブロッキングする、有機絶縁膜115からなる隣接画素電子ブロッキング部44aを形成する(ステップS54、第1変成工程)。
 次いで、図21にS55で示すように、上記隣接画素電子ブロッキング部44aおよび上記電子輸送部44bが設けられたETL44上に、画素P毎に、EML43を形成する(ステップS55、発光層を形成する工程)。EML43の形成には、実施形態1に係るEML43の形成方法と同様の方法を用いることができる。
 次いで、図21にS56で示すように、EML43上にHTL42を形成する(ステップS56、第2のキャリア輸送層を形成する工程)。なお、本実施形態では、HTL42を、図16に示すように全画素Pに共通して設けられた共通層としたが、本実施形態は、これに限定されるものではない。本実施形態において、HTL42は、EML43同様、各画素Pに対応して、少なくともバンクBKの開口部BKaを覆うように、画素P毎(言い替えれば、発光素子ES毎)に島状に形成してもよい。HTL42の形成方法としては、例えば蒸着法、インクジェット法等、従来、HTLの形成方法として知られている各種方法を用いることができる。
 次いで、図21にS57で示すように、上記HTL42上に、上部電極として陽極41を形成する(ステップS57、上部電極を形成する工程)。陽極41の形成には、例えば、スパッタ法、真空蒸着法、CVD法、プラズマCVD法、印刷法等、陰極の形成方法として従来公知の各種方法を用いることができる。
 これにより、平坦化膜33上に、複数の発光素子ESを含む発光素子層4が形成される。
 (効果)
 本実施形態に係る表示装置1は、図19に示すように、隣り合う画素Pにおける発光素子ES間に、該隣り合う画素Pにおける発光素子ES間の電子の輸送をブロッキングする隣接画素電子ブロッキング部44aが設けられている。このため、本実施形態では、隣り合う画素Pにおける発光素子ESへの電子の輸送がブロッキングされる。したがって、本実施形態によれば、クロストークが生じない表示装置1を提供することができる。
 また、本実施形態によれば、電子輸送部44bと隣接画素電子ブロッキング部44aとは、共通層であるETL44の一部である。本実施形態に係るETL44および該ETL44を備えた表示装置1は、ETL44を画素P毎に島状に形成する場合と比較して、加工プロセスが簡素であり、製造に係る費用を大幅に削減することができる。
 特に、グラフェン前駆体として用いられる有機絶縁材料は、従来の電子輸送材料に比べて安価であり、また、温度安定性並びに化学的安定性が高い。このため、本実施形態によれば、従来の電子輸送材料で形成された表示装置よりも信頼性が高い表示装置1を提供することができる。また、前述したように、グラフェンおよびグラフェンオキサイドは、キャリア輸送性が速い。このため、本実施形態によれば、表示装置1の駆動電圧並びに消費電力を低減することが可能であり、表示装置1の表示時間並びに待機時間を長くすることができる。
 また、従来ETLに用いられている有機材料は、材料同士の密着性が低い場合がある。しかしながら、本実施形態によれば、上述したように、電子輸送部44bと隣接画素電子ブロッキング部44aとは、共通層であるETL44の一部であり、互いに化学結合しており、同一層内に互いに一体的に形成されている。このため、本実施形態によれば、電子輸送部44bと隣接画素電子ブロッキング部44aとにおける材料同士の密着性が高く、外部からの水、酸素等の異物の浸透を防ぐことができる。このため、本実施形態によれば、より信頼性が高い表示装置1を提供することができる。
 (変形例1)
 図22は、本実施形態に係る発光素子ESの積層構造の他の一例を模式的に示す図である。
 図22に示すように、発光素子ESは、薄膜トランジスタ層3側から、陰極45、ETL44、EML43、陽極41の順に積層された構成を有していてもよい。この場合にも、上述した効果と同様の効果を得ることができる。
 (変形例2)
 本実施形態でも、表示装置1は、ETL44およびHTL42が、それぞれ、キャリア輸送部と、隣接画素キャリアブロッキング部と、を備えていてもよい。
 図23は、図20に示すステップS54の後の製造工程の一部を工程順に示す他の断面図である。なお、図20でも、図2に示すB-B’線矢視断面の一部に対応する断面を示している。
 本変形例では、図20にS55で示すように、ステップS51~ステップS54の後、図21に示すステップS55と同じステップS55を行う。本実施形態では、図21に示すステップS56~ステップS57に代えて、以下のステップS61~ステップS64を行う。
 つまり、本実施形態では、上記ステップS55の後、まず、図23にS61で示すように、EML43を覆うように、ETL44上に、化学反応により最終的に正孔輸送性を示す材料に転化する有機絶縁材料を、全画素Pに渡ってベタ状に成膜する。これにより、ベタ状の有機絶縁膜111を形成する(ステップS61)。
 以下では、上記有機絶縁膜111に、実施形態1と同じ有機絶縁材料を使用する場合を例に挙げて説明する。この場合、有機絶縁膜111を成膜する方法は、実施形態1のステップS13と同じである。
 次いで、図23にS62で示すように、各画素P内(具体的には、バンクBKの開口部BKa内)にのみレーザ光を選択的に照射することにより、各画素P内の有機絶縁膜111をグラフェンに転化させる。これにより、各画素P内に、グラフェン膜112を形成するとともに、隣り合う画素P間に、これら画素Pにおける発光素子ES間の正孔の輸送をブロッキングする、有機絶縁膜111からなる隣接画素正孔ブロッキング部42aを形成する(ステップS62)。
 次いで、図23にS63で示すように、グラフェン膜112を酸化させてグラフェンオキサイド膜113に変換する(ステップS63)。これにより、各画素P内に、グラフェンオキサイド膜113からなる正孔輸送部42bを形成することができる。この場合、グラフェン膜112を酸化させてグラフェンオキサイド膜113に変換する方法は、例えば、実施形態1のステップS15と同じである。
 次いで、図23にS64で示すように、上記隣接画素正孔ブロッキング部42aおよび上記正孔輸送部42bが設けられたHTL42上に、上部電極として陽極41を形成する(ステップS64)。陽極41の形成には、図21に示すステップS57と同様の方法を用いることができる。
 これにより、平坦化膜33上に、複数の発光素子ESを含む発光素子層4が形成される。
 (変形例3)
 なお、本実施形態でも、HTL42は、実施形態1に示す変形例と同様の変形を行うことができる。したがって、HTL42は、例えば、図10に示すステップS15およびステップS21に示す方法、図11に示すステップS22~S23に示す方法、あるいは、図12に示すステップS24~S27に示す方法、あるいは、図13に示すステップS28~S29に示す方法で形成することができる。また、本実施形態でも、ETL44は、実施形態2に示す変形例と同様の変形を行うことができる。したがって、ETL44は、例えば、図16に示すステップS41~S42に示す方法、あるいは、図17に示すステップS43~S46に示す方法、あるいは、図18に示すステップS47~S48に示す方法で形成することができる。
 本開示は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本開示の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
 1  表示装置
 2  基板(支持体)
 3  薄膜トランジスタ層
 4  発光素子層
 5  封止層
 31  薄膜トランジスタ
 33  平坦化膜
 41、41R、41G、41B  陽極
 42、42R、42G、42B  HTL(正孔輸送層)
 42a  隣接画素正孔ブロッキング部
 42b  正孔輸送部
 43、43R、43G、43B  EML
 44、44R、44G、44B  ETL
 44a  隣接画素電子ブロッキング部
 44b  電子輸送部
 45、45R、45G、45B  陰極
 111、115  有機絶縁膜
 112、114、116、122、131、152、161  グラフェン膜
 113、121、132、151、162  グラフェンオキサイド膜
 141  正孔ブロッキング材料からなる膜
 142  正孔輸送性材料からなる膜
 171  電子ブロッキング材料からなる膜
 172  電子輸送性材料からなる膜
 BKa  開口部

Claims (62)

  1.  複数の画素を有する表示装置であって、
     支持体と、薄膜トランジスタ層と、発光素子層と、上記発光素子層を封止する封止層とを、この順に備え、
     上記発光素子層は、発光色が互いに異なる複数の発光素子を備え、
     上記複数の発光素子は、それぞれ、上記画素に対応して形成されており、
     上記複数の発光素子は、それぞれ、下部電極と、上部電極と、上記下部電極と上記上部電極との間に形成された発光層とを備えるともに、上記発光層と上記下部電極との間に形成される第1のキャリア輸送層、および、上記発光層と上記上部電極との間に形成される第2のキャリア輸送層、のうち少なくとも上記第1のキャリア輸送層を備え、
     上記下部電極および上記発光層は、上記画素毎に島状に形成されており、
     上記発光素子が備える上記キャリア輸送層のうち少なくとも上記第1のキャリア輸送層は、上記複数の画素における発光素子に共通して形成された共通層であり、かつ、上記画素毎に、それぞれの上記発光素子における上記発光層と重畳して形成され、該発光層にキャリアを輸送するキャリア輸送部と、隣り合う上記画素における上記発光素子の間の部分に形成され、隣り合う上記画素における上記発光素子間のキャリアの輸送をブロッキングする隣接画素キャリアブロッキング部と、を備えていることを特徴とする表示装置。
  2.  上記キャリア輸送部と上記隣接画素キャリアブロッキング部とは、同一層内に互いに一体的に形成されていることを特徴とする請求項1に記載の表示装置。
  3.  上記キャリア輸送部と上記隣接画素キャリアブロッキング部とは、互いに化学的に結合されていることを特徴とする請求項1または2に記載の表示装置。
  4.  上記下部電極は陽極であり、
     上記上部電極は陰極であり、
     上記第1のキャリア輸送層は正孔輸送層であることを特徴とする請求項1~3の何れか1項に記載の表示装置。
  5.  上記第1のキャリア輸送層の上記キャリア輸送部は、正孔輸送部であり、グラフェンオキサイド、チオシアン酸銅、酸化タングステン、2,6-ビス(9H-カルバゾイル-9-イル)ピリジン、4,4’-ビス(3-エチル-N-カルバゾイル)-1,1’-ビフェニル、4-(ジベンジルアミノ)ベンズアルデヒド-N,N’-ジフェニルヒドラゾン、9,9’-[2,2’-ジメチル(1,1’-ビフェニル)-4,4’-ジイル]ビス-9H-カルバゾール、2,2’-ジメチル-N,N’-ジ(1-ナフチル-N,N’-ジフェニル)-1,1’-ビフェニル-4,4’-ジアミン、9,9’-ジメチル-N,N’-ジ(1-ナフチル)-N,N’-ジフェニル-9H-フルオレン-2,7-ジアミン、N,N’-ジ(2-ナフチル-N,N’-ジフェニル)-1,1’-ビフェニル-4,4’-ジアミン、N,N’-ジフェニル-N,N’-ビス[4-(フェニル-m-トリルアミノ)フェニル]ビフェニル-4,4’-ジアミン、N,N’-ジフェニル-N,N’-ジ-p-トリルベンゼン-1,4-ジアミン、N,N’-ジ(1-ナフチル)-N,N’-ジフェニル-1,1’-ビフェニル-4,4’-ジアミン、N4,N4’-ビス{4-[ビス(3-メチルフェニル)アミノ]フェニル}-N4,N4’-ジフェニル-(1,1’-ビフェニル)-4,4’-ジアミン、3-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-9-フェニル-9H-カルバゾール、9-(2-エチルヘキシル)-N,N,N,N-テトラキス(4-メトキシフェニル)-9H-カルバゾール-2,7-ジアミン、塩化インジウム(III)フタロシアニン、ポリ[N,N’-ビス(4-ブチルフェニル)-N,N’-ビス(フェニル)-ベンジジン]、2,8-ビス(ジフェニルホスフィンオキシド)ジベンゾフラン、4,4’,4'',4'''-シランテトライルテトラキス(N,N-ビス(4-メトキシフェニル)アニリン、スピロ[9H-フルオレン-9,9’-(9H)キサンチン]-2,7-ジアミン、スピロ[9H-フルオレン-9,9’-(9H)キサンチン]-2,2’-7,7’-テトラミン、2,4,6-トリス[3-(カルバゾール-9-イル)フェニル]トリアジン、N,N,N’,N’-テトラキス(4-メトキシフェニル)ベンジジン、N,N,N’,N’-テトラキス(3-メチルフェニル)-3,3’-ジメチルベンジジン、N,N,N’,N’-テトラキス(2-ナフチル)ベンジジン、テトラ-N-フェニルベンジジン、N,N,N’,N’-テトラフェニルナフタレン-2,6-ジアミン、ポリ[(9,9-ジクチルフルオレニル-2,7-ジイル)-co-{4,4’-[N-(4-sec-ブチルフェニル)ジフェニルアミン]}、チタニルフタロシアニン、1,3,5-トリス[(3-メチルフェニル)フェニルアミノ]ベンゼン、4,4’,4''-トリス[2-ナフチル(フェニル)アミノ]トリフェニルアミン、バナジルフタロシアニン、4,4’-シクロヘキシリデンビス[N,N-ビス(4-メチルフェニル)ベンゼンアミン]、ジピラジノ[2,3-f:2’,3’-h]キノキサリン-2,3,6,7,10,11-ヘキサカルボニトリル、スズ(IV)2,3-ナフロシアニン二塩化物、N2,N2,N2’,N2’,N7,N7,N7’,N7’-オクタキス(4-メトキシフェニル)-9,9’-スピロビ[9H-フルオレン]-2,2’,7,7’-テトラミン、チタニルフタロシアニン、1,3,5-トリス(2-9-エチルカバジル-3)エチレン)ベンゼン、トリス(4-カルバゾイル-9-イルフェニル)アミン、トリス[4-(ジエチルアミノ)フェニル]アミン、1,3,5-トリス(ジフェニルアミノ)ベンゼン、4,4’,4''-トリス[フェニル(m-トルイル)アミノ]トリフェニルアミン、4,4’-ビス(N-カルバゾリル)-1,1’-ビフェニル、1,3-ビス(N-カルバゾリル)ベンゼン、1,4-ビス(N-カルバゾリル)ベンゼン、N,N’-ビス(3-メチルフェニル)-N,N’-ジフェニルベンジジン、ポリ(N-エチル-2-ビニルカルバゾール)、ポリ[ビス(4-フェニル)(2,4,6-トリメチルフェニル)アミン]、ポリ(9-ビニルカルバゾール)、ポリ(1-ビニルナフタレン)、ポリ(2-ビニルナフタレン)、ポリ(銅フタロシアニン)、および銅(II)フタロシアニンからなる群より選ばれる少なくとも一種の正孔輸送性材料で構成されていることを特徴とする請求項4に記載の表示装置。
  6.  上記正孔輸送部がグラフェンオキサイドで構成されていることを特徴とする請求項5に記載の表示装置。
  7.  上記第1のキャリア輸送層の上記隣接画素キャリアブロッキング部は、隣り合う上記画素における上記発光素子間の正孔の輸送をブロッキングする隣接画素正孔ブロッキング部であり、有機絶縁材料で構成されていることを特徴とする請求項4~6の何れか1項に記載の表示装置。
  8.  上記有機絶縁材料は、ポリイミド、ポリエーテルイミド、ポリアクリロニトリル、ポリエーテルエーテルケトン、ポリビニルアルコール、ポリイソプレン、ノボラック樹脂、およびポリアクリルアミドからなる群より選ばれる少なくとも一種の樹脂であることを特徴とする請求項7に記載の表示装置。
  9.  上記有機絶縁材料は、ポリイミド、ポリエーテルイミド、ポリアクリロニトリル、ポリビニルアルコールからなる群より選ばれる少なくとも一種の樹脂であることを特徴とする請求項8に記載の表示装置。
  10.  上記第1のキャリア輸送層の上記隣接画素キャリアブロッキング部は、隣り合う上記画素における上記発光素子間の正孔の輸送をブロッキングする隣接画素正孔ブロッキング部であり、電子輸送性材料で構成されていることを特徴とする請求項4~6の何れか1項に記載の表示装置。
  11.  上記電子輸送性材料は、グラフェン、酸化スズ(IV)、酸化亜鉛、トリス(2,4,6-トリメチル-3-(ピリジン-3-イル)フェニル)ボラン、4,6-ビス(3,5-ジ(ピリジン-3-イル)フェニル)-2-メチルピリミジン、1,3-ビス(3,5-ジピリド-3-イルフェニル)ベンゼン、2,7-ビス(2,2’-ビピリジン-5-イル)トリフェニレン、8-キノリノレートリチウム、ポリ[(9,9-ビス(3’-((N,N-ジメチル)-N-エチルアンモニウム)-プロピル)-2,7-フルオレン)-alt-2,7-(9,9-ジオクチルフルオレン)]ジブロミド、ポリ[(9,9-ビス(3’-(N,N-ジメチルアミノ)プロピル)-2,7-フルオレン)-alt-2,7-(9,9-ジオクチルフルオレン)]、(1,3,5-トリアジン-2,4,6-トリイル)トリス(ベンゼン-3,1-ジイル)トリス(ジフェニルホスフィンオキサイド)、2,5,8,11-テトラキス(1,1-ジメチルエチル)ペリレン、1,3,5-トリス(3-ピリジル-3-フェニル)ベンゼン、1,3,5-トリス(1-フェニル-1H-ベンゾイミダゾール-2-イル)ベンゼン、ジフェニル[4-(トリフェニルシリル)フェニル]ホスフィンオキサイド、3,5-ジフェニル-4-(1-ナフチル)-1H--1,2,4-トリアゾール、トリス(8-ヒドロキシキノリン)アルミニウム、2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン、4.7-ジフェニル-1.10-フェナントロリン、2,5-ビス(1-ナフチル)-1,3,5-オキサジアゾール、ビス(8-ヒドロキシ-2-メチルキノリン)-(4-フェニルフェノキシ)アルミニウム、3,5-ビス(4-tert-ブチルフェニル)-4-フェニル-4H-1,2,4-トリアゾール、2-(4-ビフェニリル)-5-フェニル-1,3,4-オキサジアゾール、3-(ビフェニル-4-イル)-5-(4-tert-ブチルフェニル)-4-フェニル-4H-1,2,4-トリアゾール、2-(4-tert-ブチルフェニル)-5-(4-ビフェニリル)-1,3,4-オキサジアゾールからなる群より選ばれる少なくとも一種の電子輸送性材料であることを特徴とする請求項10に記載の表示装置。
  12.  上記電子輸送性材料がグラフェンであることを特徴とする請求項11に記載の表示装置。
  13.  上記上部電極と上記発光層との間に、上記第2のキャリア輸送層を備え、
     上記第2のキャリア輸送層は、電子輸送層であり、該電子輸送層は、上記複数の画素における発光素子に共通して形成された共通層であることを特徴とする請求項4~12の何れか1項に記載の表示装置。
  14.  上記電子輸送層は、グラフェン、酸化スズ(IV)、酸化亜鉛、トリス(2,4,6-トリメチル-3-(ピリジン-3-イル)フェニル)ボラン、4,6-ビス(3,5-ジ(ピリジン-3-イル)フェニル)-2-メチルピリミジン、1,3-ビス(3,5-ジピリド-3-イルフェニル)ベンゼン、2,7-ビス(2,2’-ビピリジン-5-イル)トリフェニレン、8-キノリノレートリチウム、ポリ[(9,9-ビス(3’-((N,N-ジメチル)-N-エチルアンモニウム)-プロピル)-2,7-フルオレン)-alt-2,7-(9,9-ジオクチルフルオレン)]ジブロミド、ポリ[(9,9-ビス(3’-(N,N-ジメチルアミノ)プロピル)-2,7-フルオレン)-alt-2,7-(9,9-ジオクチルフルオレン)]、(1,3,5-トリアジン-2,4,6-トリイル)トリス(ベンゼン-3,1-ジイル)トリス(ジフェニルホスフィンオキサイド)、2,5,8,11-テトラキス(1,1-ジメチルエチル)ペリレン、1,3,5-トリス(3-ピリジル-3-フェニル)ベンゼン、1,3,5-トリス(1-フェニル-1H-ベンゾイミダゾール-2-イル)ベンゼン、ジフェニル[4-(トリフェニルシリル)フェニル]ホスフィンオキサイド、3,5-ジフェニル-4-(1-ナフチル)-1H--1,2,4-トリアゾール、トリス(8-ヒドロキシキノリン)アルミニウム、2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン、4.7-ジフェニル-1.10-フェナントロリン、2,5-ビス(1-ナフチル)-1,3,5-オキサジアゾール、ビス(8-ヒドロキシ-2-メチルキノリン)-(4-フェニルフェノキシ)アルミニウム、3,5-ビス(4-tert-ブチルフェニル)-4-フェニル-4H-1,2,4-トリアゾール、2-(4-ビフェニリル)-5-フェニル-1,3,4-オキサジアゾール、3-(ビフェニル-4-イル)-5-(4-tert-ブチルフェニル)-4-フェニル-4H-1,2,4-トリアゾール、2-(4-tert-ブチルフェニル)-5-(4-ビフェニリル)-1,3,4-オキサジアゾールからなる群より選ばれる少なくとも一種の電子輸送性材料で構成されていることを特徴とする請求項13に記載の表示装置。
  15.  上記電子輸送層は、上記画素毎に、それぞれの上記発光素子における上記発光層と重畳して形成され、該発光層に電子を輸送する電子輸送部と、隣り合う上記画素における上記発光素子の間の部分に形成され、隣り合う上記画素における上記発光素子間の電子の輸送をブロッキングする隣接画素電子ブロッキング部と、を備えていることを特徴とする請求項13に記載の表示装置。
  16.  上記電子輸送部は、グラフェン、酸化スズ(IV)、酸化亜鉛、トリス(2,4,6-トリメチル-3-(ピリジン-3-イル)フェニル)ボラン、4,6-ビス(3,5-ジ(ピリジン-3-イル)フェニル)-2-メチルピリミジン、1,3-ビス(3,5-ジピリド-3-イルフェニル)ベンゼン、2,7-ビス(2,2’-ビピリジン-5-イル)トリフェニレン、8-キノリノレートリチウム、ポリ[(9,9-ビス(3’-((N,N-ジメチル)-N-エチルアンモニウム)-プロピル)-2,7-フルオレン)-alt-2,7-(9,9-ジオクチルフルオレン)]ジブロミド、ポリ[(9,9-ビス(3’-(N,N-ジメチルアミノ)プロピル)-2,7-フルオレン)-alt-2,7-(9,9-ジオクチルフルオレン)]、(1,3,5-トリアジン-2,4,6-トリイル)トリス(ベンゼン-3,1-ジイル)トリス(ジフェニルホスフィンオキサイド)、2,5,8,11-テトラキス(1,1-ジメチルエチル)ペリレン、1,3,5-トリス(3-ピリジル-3-フェニル)ベンゼン、1,3,5-トリス(1-フェニル-1H-ベンゾイミダゾール-2-イル)ベンゼン、ジフェニル[4-(トリフェニルシリル)フェニル]ホスフィンオキサイド、3,5-ジフェニル-4-(1-ナフチル)-1H--1,2,4-トリアゾール、トリス(8-ヒドロキシキノリン)アルミニウム、2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン、4.7-ジフェニル-1.10-フェナントロリン、2,5-ビス(1-ナフチル)-1,3,5-オキサジアゾール、ビス(8-ヒドロキシ-2-メチルキノリン)-(4-フェニルフェノキシ)アルミニウム、3,5-ビス(4-tert-ブチルフェニル)-4-フェニル-4H-1,2,4-トリアゾール、2-(4-ビフェニリル)-5-フェニル-1,3,4-オキサジアゾール、3-(ビフェニル-4-イル)-5-(4-tert-ブチルフェニル)-4-フェニル-4H-1,2,4-トリアゾール、2-(4-tert-ブチルフェニル)-5-(4-ビフェニリル)-1,3,4-オキサジアゾールからなる群より選ばれる少なくとも一種の電子輸送性材料で構成されていることを特徴とする請求項15に記載の表示装置。
  17.  上記電子輸送性材料がグラフェンであることを特徴とする請求項16に記載の表示装置。
  18.  上記隣接画素電子ブロッキング部は、有機絶縁材料で構成されていることを特徴とする請求項15~17の何れか1項に記載の表示装置。
  19.  上記有機絶縁材料は、ポリイミド、ポリエーテルイミド、ポリアクリロニトリル、ポリエーテルエーテルケトン、ポリビニルアルコール、ポリイソプレン、ノボラック樹脂、およびポリアクリルアミドからなる群より選ばれる少なくとも一種の樹脂であることを特徴とする請求項18に記載の表示装置。
  20.  上記有機絶縁材料は、ポリイミド、ポリエーテルイミド、ポリアクリロニトリルからなる群より選ばれる少なくとも一種の樹脂であることを特徴とする請求項19に記載の表示装置。
  21.  上記隣接画素電子ブロッキング部は、正孔輸送性材料で構成されていることを特徴とする請求項15~17の何れか1項に記載の表示装置。
  22.  上記正孔輸送性材料は、グラフェンオキサイド、チオシアン酸銅、酸化タングステン、2,6-ビス(9H-カルバゾイル-9-イル)ピリジン、4,4’-ビス(3-エチル-N-カルバゾイル)-1,1’-ビフェニル、4-(ジベンジルアミノ)ベンズアルデヒド-N,N’-ジフェニルヒドラゾン、9,9’-[2,2’-ジメチル(1,1’-ビフェニル)-4,4’-ジイル]ビス-9H-カルバゾール、2,2’-ジメチル-N,N’-ジ(1-ナフチル-N,N’-ジフェニル)-1,1’-ビフェニル-4,4’-ジアミン、9,9’-ジメチル-N,N’-ジ(1-ナフチル)-N,N’-ジフェニル-9H-フルオレン-2,7-ジアミン、N,N’-ジ(2-ナフチル-N,N’-ジフェニル)-1,1’-ビフェニル-4,4’-ジアミン、N,N’-ジフェニル-N,N’-ビス[4-(フェニル-m-トリルアミノ)フェニル]ビフェニル-4,4’-ジアミン、N,N’-ジフェニル-N,N’-ジ-p-トリルベンゼン-1,4-ジアミン、N,N’-ジ(1-ナフチル)-N,N’-ジフェニル-1,1’-ビフェニル-4,4’-ジアミン、N4,N4’-ビス{4-[ビス(3-メチルフェニル)アミノ]フェニル}-N4,N4’-ジフェニル-(1,1’-ビフェニル)-4,4’-ジアミン、3-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-9-フェニル-9H-カルバゾール、9-(2-エチルヘキシル)-N,N,N,N-テトラキス(4-メトキシフェニル)-9H-カルバゾール-2,7-ジアミン、塩化インジウム(III)フタロシアニン、ポリ[N,N’-ビス(4-ブチルフェニル)-N,N’-ビス(フェニル)-ベンジジン]、2,8-ビス(ジフェニルホスフィンオキシド)ジベンゾフラン、4,4’,4'',4'''-シランテトライルテトラキス(N,N-ビス(4-メトキシフェニル)アニリン、スピロ[9H-フルオレン-9,9’-(9H)キサンチン]-2,7-ジアミン、スピロ[9H-フルオレン-9,9’-(9H)キサンチン]-2,2’-7,7’-テトラミン、2,4,6-トリス[3-(カルバゾール-9-イル)フェニル]トリアジン、N,N,N’,N’-テトラキス(4-メトキシフェニル)ベンジジン、N,N,N’,N’-テトラキス(3-メチルフェニル)-3,3’-ジメチルベンジジン、N,N,N’,N’-テトラキス(2-ナフチル)ベンジジン、テトラ-N-フェニルベンジジン、N,N,N’,N’-テトラフェニルナフタレン-2,6-ジアミン、ポリ[(9,9-ジクチルフルオレニル-2,7-ジイル)-co-{4,4’-[N-(4-sec-ブチルフェニル)ジフェニルアミン]}、チタニルフタロシアニン、1,3,5-トリス[(3-メチルフェニル)フェニルアミノ]ベンゼン、4,4’,4''-トリス[2-ナフチル(フェニル)アミノ]トリフェニルアミン、バナジルフタロシアニン、4,4’-シクロヘキシリデンビス[N,N-ビス(4-メチルフェニル)ベンゼンアミン]、ジピラジノ[2,3-f:2’,3’-h]キノキサリン-2,3,6,7,10,11-ヘキサカルボニトリル、スズ(IV)2,3-ナフロシアニン二塩化物、N2,N2,N2’,N2’,N7,N7,N7’,N7’-オクタキス(4-メトキシフェニル)-9,9’-スピロビ[9H-フルオレン]-2,2’,7,7’-テトラミン、チタニルフタロシアニン、1,3,5-トリス(2-9-エチルカバジル-3)エチレン)ベンゼン、トリス(4-カルバゾイル-9-イルフェニル)アミン、トリス[4-(ジエチルアミノ)フェニル]アミン、1,3,5-トリス(ジフェニルアミノ)ベンゼン、4,4’,4''-トリス[フェニル(m-トルイル)アミノ]トリフェニルアミン、4,4’-ビス(N-カルバゾリル)-1,1’-ビフェニル、1,3-ビス(N-カルバゾリル)ベンゼン、1,4-ビス(N-カルバゾリル)ベンゼン、N,N’-ビス(3-メチルフェニル)-N,N’-ジフェニルベンジジン、ポリ(N-エチル-2-ビニルカルバゾール)、ポリ[ビス(4-フェニル)(2,4,6-トリメチルフェニル)アミン]、ポリ(9-ビニルカルバゾール)、ポリ(1-ビニルナフタレン)、ポリ(2-ビニルナフタレン)、ポリ(銅フタロシアニン)、および銅(II)フタロシアニンからなる群より選ばれる少なくとも一種の正孔輸送性材料であることを特徴とする請求項21に記載の表示装置。
  23.  上記正孔輸送性材料がグラフェンオキサイドであることを特徴とする請求項22に記載の表示装置。
  24.  上記下部電極は陰極であり、
     上記上部電極は陽極であり、
     上記第1のキャリア輸送層は電子輸送層であることを特徴とする請求項1~3の何れか1項に記載の表示装置。
  25.  上記第1のキャリア輸送層の上記キャリア輸送部は、電子輸送部であり、グラフェン、酸化スズ(IV)、酸化亜鉛、トリス(2,4,6-トリメチル-3-(ピリジン-3-イル)フェニル)ボラン、4,6-ビス(3,5-ジ(ピリジン-3-イル)フェニル)-2-メチルピリミジン、1,3-ビス(3,5-ジピリド-3-イルフェニル)ベンゼン、2,7-ビス(2,2’-ビピリジン-5-イル)トリフェニレン、8-キノリノレートリチウム、ポリ[(9,9-ビス(3’-((N,N-ジメチル)-N-エチルアンモニウム)-プロピル)-2,7-フルオレン)-alt-2,7-(9,9-ジオクチルフルオレン)]ジブロミド、ポリ[(9,9-ビス(3’-(N,N-ジメチルアミノ)プロピル)-2,7-フルオレン)-alt-2,7-(9,9-ジオクチルフルオレン)]、(1,3,5-トリアジン-2,4,6-トリイル)トリス(ベンゼン-3,1-ジイル)トリス(ジフェニルホスフィンオキサイド)、2,5,8,11-テトラキス(1,1-ジメチルエチル)ペリレン、1,3,5-トリス(3-ピリジル-3-フェニル)ベンゼン、1,3,5-トリス(1-フェニル-1H-ベンゾイミダゾール-2-イル)ベンゼン、ジフェニル[4-(トリフェニルシリル)フェニル]ホスフィンオキサイド、3,5-ジフェニル-4-(1-ナフチル)-1H--1,2,4-トリアゾール、トリス(8-ヒドロキシキノリン)アルミニウム、2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン、4.7-ジフェニル-1.10-フェナントロリン、2,5-ビス(1-ナフチル)-1,3,5-オキサジアゾール、ビス(8-ヒドロキシ-2-メチルキノリン)-(4-フェニルフェノキシ)アルミニウム、3,5-ビス(4-tert-ブチルフェニル)-4-フェニル-4H-1,2,4-トリアゾール、2-(4-ビフェニリル)-5-フェニル-1,3,4-オキサジアゾール、3-(ビフェニル-4-イル)-5-(4-tert-ブチルフェニル)-4-フェニル-4H-1,2,4-トリアゾール、2-(4-tert-ブチルフェニル)-5-(4-ビフェニリル)-1,3,4-オキサジアゾールからなる群より選ばれる少なくとも一種の電子輸送性材料で構成されていることを特徴とする請求項24に記載の表示装置。
  26.  上記電子輸送部がグラフェンで構成されていることを特徴とする請求項25に記載の表示装置。
  27.  上記第1のキャリア輸送層の上記隣接画素キャリアブロッキング部は、隣り合う上記画素における上記発光素子間の電子の輸送をブロッキングする隣接画素電子ブロッキング部であり、有機絶縁材料で構成されていることを特徴とする請求項24~26の何れか1項に記載の表示装置。
  28.  上記有機絶縁材料は、ポリイミド、ポリエーテルイミド、ポリアクリロニトリル、ポリエーテルエーテルケトン、ポリビニルアルコール、ポリイソプレン、ノボラック樹脂、およびポリアクリルアミドからなる群より選ばれる少なくとも一種の樹脂であることを特徴とする請求項18に記載の表示装置。
  29.  上記有機絶縁材料は、ポリイミド、ポリエーテルイミド、ポリアクリロニトリルからなる群より選ばれる少なくとも一種の樹脂であることを特徴とする請求項28に記載の表示装置。
  30.  上記第1のキャリア輸送層の上記隣接画素キャリアブロッキング部は、隣り合う上記画素における上記発光素子間の電子の輸送をブロッキングする隣接画素電子ブロッキング部であり、正孔輸送性材料で構成されていることを特徴とする請求項24~26の何れか1項に記載の表示装置。
  31.  上記正孔輸送性材料は、グラフェンオキサイド、チオシアン酸銅、酸化タングステン、2,6-ビス(9H-カルバゾイル-9-イル)ピリジン、4,4’-ビス(3-エチル-N-カルバゾイル)-1,1’-ビフェニル、4-(ジベンジルアミノ)ベンズアルデヒド-N,N’-ジフェニルヒドラゾン、9,9’-[2,2’-ジメチル(1,1’-ビフェニル)-4,4’-ジイル]ビス-9H-カルバゾール、2,2’-ジメチル-N,N’-ジ(1-ナフチル-N,N’-ジフェニル)-1,1’-ビフェニル-4,4’-ジアミン、9,9’-ジメチル-N,N’-ジ(1-ナフチル)-N,N’-ジフェニル-9H-フルオレン-2,7-ジアミン、N,N’-ジ(2-ナフチル-N,N’-ジフェニル)-1,1’-ビフェニル-4,4’-ジアミン、N,N’-ジフェニル-N,N’-ビス[4-(フェニル-m-トリルアミノ)フェニル]ビフェニル-4,4’-ジアミン、N,N’-ジフェニル-N,N’-ジ-p-トリルベンゼン-1,4-ジアミン、N,N’-ジ(1-ナフチル)-N,N’-ジフェニル-1,1’-ビフェニル-4,4’-ジアミン、N4,N4’-ビス{4-[ビス(3-メチルフェニル)アミノ]フェニル}-N4,N4’-ジフェニル-(1,1’-ビフェニル)-4,4’-ジアミン、3-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-9-フェニル-9H-カルバゾール、9-(2-エチルヘキシル)-N,N,N,N-テトラキス(4-メトキシフェニル)-9H-カルバゾール-2,7-ジアミン、塩化インジウム(III)フタロシアニン、ポリ[N,N’-ビス(4-ブチルフェニル)-N,N’-ビス(フェニル)-ベンジジン]、2,8-ビス(ジフェニルホスフィンオキシド)ジベンゾフラン、4,4’,4'',4'''-シランテトライルテトラキス(N,N-ビス(4-メトキシフェニル)アニリン、スピロ[9H-フルオレン-9,9’-(9H)キサンチン]-2,7-ジアミン、スピロ[9H-フルオレン-9,9’-(9H)キサンチン]-2,2’-7,7’-テトラミン、2,4,6-トリス[3-(カルバゾール-9-イル)フェニル]トリアジン、N,N,N’,N’-テトラキス(4-メトキシフェニル)ベンジジン、N,N,N’,N’-テトラキス(3-メチルフェニル)-3,3’-ジメチルベンジジン、N,N,N’,N’-テトラキス(2-ナフチル)ベンジジン、テトラ-N-フェニルベンジジン、N,N,N’,N’-テトラフェニルナフタレン-2,6-ジアミン、ポリ[(9,9-ジクチルフルオレニル-2,7-ジイル)-co-{4,4’-[N-(4-sec-ブチルフェニル)ジフェニルアミン]}、チタニルフタロシアニン、1,3,5-トリス[(3-メチルフェニル)フェニルアミノ]ベンゼン、4,4’,4''-トリス[2-ナフチル(フェニル)アミノ]トリフェニルアミン、バナジルフタロシアニン、4,4’-シクロヘキシリデンビス[N,N-ビス(4-メチルフェニル)ベンゼンアミン]、ジピラジノ[2,3-f:2’,3’-h]キノキサリン-2,3,6,7,10,11-ヘキサカルボニトリル、スズ(IV)2,3-ナフロシアニン二塩化物、N2,N2,N2’,N2’,N7,N7,N7’,N7’-オクタキス(4-メトキシフェニル)-9,9’-スピロビ[9H-フルオレン]-2,2’,7,7’-テトラミン、チタニルフタロシアニン、1,3,5-トリス(2-9-エチルカバジル-3)エチレン)ベンゼン、トリス(4-カルバゾイル-9-イルフェニル)アミン、トリス[4-(ジエチルアミノ)フェニル]アミン、1,3,5-トリス(ジフェニルアミノ)ベンゼン、4,4’,4''-トリス[フェニル(m-トルイル)アミノ]トリフェニルアミン、4,4’-ビス(N-カルバゾリル)-1,1’-ビフェニル、1,3-ビス(N-カルバゾリル)ベンゼン、1,4-ビス(N-カルバゾリル)ベンゼン、N,N’-ビス(3-メチルフェニル)-N,N’-ジフェニルベンジジン、ポリ(N-エチル-2-ビニルカルバゾール)、ポリ[ビス(4-フェニル)(2,4,6-トリメチルフェニル)アミン]、ポリ(9-ビニルカルバゾール)、ポリ(1-ビニルナフタレン)、ポリ(2-ビニルナフタレン)、ポリ(銅フタロシアニン)、および銅(II)フタロシアニンからなる群より選ばれる少なくとも一種の正孔輸送性材料であることを特徴とする請求項30に記載の表示装置。
  32.  上記正孔輸送性材料がグラフェンオキサイドであることを特徴とする請求項31に記載の表示装置。
  33.  上記上部電極と上記発光層との間に、上記第2のキャリア輸送層を備え、
     上記第2のキャリア輸送層は、正孔輸送層であり、該正孔輸送層は、上記複数の画素における発光素子に共通して形成された共通層であることを特徴とする請求項24~32の何れか1項に記載の表示装置。
  34.  上記正孔輸送層は、グラフェンオキサイド、チオシアン酸銅、酸化タングステン、2,6-ビス(9H-カルバゾイル-9-イル)ピリジン、4,4’-ビス(3-エチル-N-カルバゾイル)-1,1’-ビフェニル、4-(ジベンジルアミノ)ベンズアルデヒド-N,N’-ジフェニルヒドラゾン、9,9’-[2,2’-ジメチル(1,1’-ビフェニル)-4,4’-ジイル]ビス-9H-カルバゾール、2,2’-ジメチル-N,N’-ジ(1-ナフチル-N,N’-ジフェニル)-1,1’-ビフェニル-4,4’-ジアミン、9,9’-ジメチル-N,N’-ジ(1-ナフチル)-N,N’-ジフェニル-9H-フルオレン-2,7-ジアミン、N,N’-ジ(2-ナフチル-N,N’-ジフェニル)-1,1’-ビフェニル-4,4’-ジアミン、N,N’-ジフェニル-N,N’-ビス[4-(フェニル-m-トリルアミノ)フェニル]ビフェニル-4,4’-ジアミン、N,N’-ジフェニル-N,N’-ジ-p-トリルベンゼン-1,4-ジアミン、N,N’-ジ(1-ナフチル)-N,N’-ジフェニル-1,1’-ビフェニル-4,4’-ジアミン、N4,N4’-ビス{4-[ビス(3-メチルフェニル)アミノ]フェニル}-N4,N4’-ジフェニル-(1,1’-ビフェニル)-4,4’-ジアミン、3-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-9-フェニル-9H-カルバゾール、9-(2-エチルヘキシル)-N,N,N,N-テトラキス(4-メトキシフェニル)-9H-カルバゾール-2,7-ジアミン、塩化インジウム(III)フタロシアニン、ポリ[N,N’-ビス(4-ブチルフェニル)-N,N’-ビス(フェニル)-ベンジジン]、2,8-ビス(ジフェニルホスフィンオキシド)ジベンゾフラン、4,4’,4'',4'''-シランテトライルテトラキス(N,N-ビス(4-メトキシフェニル)アニリン、スピロ[9H-フルオレン-9,9’-(9H)キサンチン]-2,7-ジアミン、スピロ[9H-フルオレン-9,9’-(9H)キサンチン]-2,2’-7,7’-テトラミン、2,4,6-トリス[3-(カルバゾール-9-イル)フェニル]トリアジン、N,N,N’,N’-テトラキス(4-メトキシフェニル)ベンジジン、N,N,N’,N’-テトラキス(3-メチルフェニル)-3,3’-ジメチルベンジジン、N,N,N’,N’-テトラキス(2-ナフチル)ベンジジン、テトラ-N-フェニルベンジジン、N,N,N’,N’-テトラフェニルナフタレン-2,6-ジアミン、ポリ[(9,9-ジクチルフルオレニル-2,7-ジイル)-co-{4,4’-[N-(4-sec-ブチルフェニル)ジフェニルアミン]}、チタニルフタロシアニン、1,3,5-トリス[(3-メチルフェニル)フェニルアミノ]ベンゼン、4,4’,4''-トリス[2-ナフチル(フェニル)アミノ]トリフェニルアミン、バナジルフタロシアニン、4,4’-シクロヘキシリデンビス[N,N-ビス(4-メチルフェニル)ベンゼンアミン]、ジピラジノ[2,3-f:2’,3’-h]キノキサリン-2,3,6,7,10,11-ヘキサカルボニトリル、スズ(IV)2,3-ナフロシアニン二塩化物、N2,N2,N2’,N2’,N7,N7,N7’,N7’-オクタキス(4-メトキシフェニル)-9,9’-スピロビ[9H-フルオレン]-2,2’,7,7’-テトラミン、チタニルフタロシアニン、1,3,5-トリス(2-9-エチルカバジル-3)エチレン)ベンゼン、トリス(4-カルバゾイル-9-イルフェニル)アミン、トリス[4-(ジエチルアミノ)フェニル]アミン、1,3,5-トリス(ジフェニルアミノ)ベンゼン、4,4’,4''-トリス[フェニル(m-トルイル)アミノ]トリフェニルアミン、4,4’-ビス(N-カルバゾリル)-1,1’-ビフェニル、1,3-ビス(N-カルバゾリル)ベンゼン、1,4-ビス(N-カルバゾリル)ベンゼン、N,N’-ビス(3-メチルフェニル)-N,N’-ジフェニルベンジジン、ポリ(N-エチル-2-ビニルカルバゾール)、ポリ[ビス(4-フェニル)(2,4,6-トリメチルフェニル)アミン]、ポリ(9-ビニルカルバゾール)、ポリ(1-ビニルナフタレン)、ポリ(2-ビニルナフタレン)、ポリ(銅フタロシアニン)、および銅(II)フタロシアニンからなる群より選ばれる少なくとも一種の正孔輸送性材料で構成されていることを特徴とする請求項33に記載の表示装置。
  35.  上記正孔輸送層は、上記画素毎に、それぞれの上記発光素子における上記発光層と重畳して形成され、該発光層に正孔を輸送する正孔輸送部と、隣り合う上記画素における上記発光素子の間の部分に形成され、隣り合う上記画素における上記発光素子間の正孔の輸送をブロッキングする隣接画素正孔ブロッキング部と、を備えていることを特徴とする請求項33に記載の表示装置。
  36.  上記正孔輸送部は、グラフェンオキサイド、チオシアン酸銅、酸化タングステン、2,6-ビス(9H-カルバゾイル-9-イル)ピリジン、4,4’-ビス(3-エチル-N-カルバゾイル)-1,1’-ビフェニル、4-(ジベンジルアミノ)ベンズアルデヒド-N,N’-ジフェニルヒドラゾン、9,9’-[2,2’-ジメチル(1,1’-ビフェニル)-4,4’-ジイル]ビス-9H-カルバゾール、2,2’-ジメチル-N,N’-ジ(1-ナフチル-N,N’-ジフェニル)-1,1’-ビフェニル-4,4’-ジアミン、9,9’-ジメチル-N,N’-ジ(1-ナフチル)-N,N’-ジフェニル-9H-フルオレン-2,7-ジアミン、N,N’-ジ(2-ナフチル-N,N’-ジフェニル)-1,1’-ビフェニル-4,4’-ジアミン、N,N’-ジフェニル-N,N’-ビス[4-(フェニル-m-トリルアミノ)フェニル]ビフェニル-4,4’-ジアミン、N,N’-ジフェニル-N,N’-ジ-p-トリルベンゼン-1,4-ジアミン、N,N’-ジ(1-ナフチル)-N,N’-ジフェニル-1,1’-ビフェニル-4,4’-ジアミン、N4,N4’-ビス{4-[ビス(3-メチルフェニル)アミノ]フェニル}-N4,N4’-ジフェニル-(1,1’-ビフェニル)-4,4’-ジアミン、3-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-9-フェニル-9H-カルバゾール、9-(2-エチルヘキシル)-N,N,N,N-テトラキス(4-メトキシフェニル)-9H-カルバゾール-2,7-ジアミン、塩化インジウム(III)フタロシアニン、ポリ[N,N’-ビス(4-ブチルフェニル)-N,N’-ビス(フェニル)-ベンジジン]、2,8-ビス(ジフェニルホスフィンオキシド)ジベンゾフラン、4,4’,4'',4'''-シランテトライルテトラキス(N,N-ビス(4-メトキシフェニル)アニリン、スピロ[9H-フルオレン-9,9’-(9H)キサンチン]-2,7-ジアミン、スピロ[9H-フルオレン-9,9’-(9H)キサンチン]-2,2’-7,7’-テトラミン、2,4,6-トリス[3-(カルバゾール-9-イル)フェニル]トリアジン、N,N,N’,N’-テトラキス(4-メトキシフェニル)ベンジジン、N,N,N’,N’-テトラキス(3-メチルフェニル)-3,3’-ジメチルベンジジン、N,N,N’,N’-テトラキス(2-ナフチル)ベンジジン、テトラ-N-フェニルベンジジン、N,N,N’,N’-テトラフェニルナフタレン-2,6-ジアミン、ポリ[(9,9-ジクチルフルオレニル-2,7-ジイル)-co-{4,4’-[N-(4-sec-ブチルフェニル)ジフェニルアミン]}、チタニルフタロシアニン、1,3,5-トリス[(3-メチルフェニル)フェニルアミノ]ベンゼン、4,4’,4''-トリス[2-ナフチル(フェニル)アミノ]トリフェニルアミン、バナジルフタロシアニン、4,4’-シクロヘキシリデンビス[N,N-ビス(4-メチルフェニル)ベンゼンアミン]、ジピラジノ[2,3-f:2’,3’-h]キノキサリン-2,3,6,7,10,11-ヘキサカルボニトリル、スズ(IV)2,3-ナフロシアニン二塩化物、N2,N2,N2’,N2’,N7,N7,N7’,N7’-オクタキス(4-メトキシフェニル)-9,9’-スピロビ[9H-フルオレン]-2,2’,7,7’-テトラミン、チタニルフタロシアニン、1,3,5-トリス(2-9-エチルカバジル-3)エチレン)ベンゼン、トリス(4-カルバゾイル-9-イルフェニル)アミン、トリス[4-(ジエチルアミノ)フェニル]アミン、1,3,5-トリス(ジフェニルアミノ)ベンゼン、4,4’,4''-トリス[フェニル(m-トルイル)アミノ]トリフェニルアミン、4,4’-ビス(N-カルバゾリル)-1,1’-ビフェニル、1,3-ビス(N-カルバゾリル)ベンゼン、1,4-ビス(N-カルバゾリル)ベンゼン、N,N’-ビス(3-メチルフェニル)-N,N’-ジフェニルベンジジン、ポリ(N-エチル-2-ビニルカルバゾール)、ポリ[ビス(4-フェニル)(2,4,6-トリメチルフェニル)アミン]、ポリ(9-ビニルカルバゾール)、ポリ(1-ビニルナフタレン)、ポリ(2-ビニルナフタレン)、ポリ(銅フタロシアニン)、および銅(II)フタロシアニンからなる群より選ばれる少なくとも一種の正孔輸送性材料で構成されていることを特徴とする請求項35に記載の表示装置。
  37.  上記正孔輸送性材料がグラフェンオキサイドであることを特徴とする請求項36に記載の表示装置。
  38.  上記隣接画素正孔ブロッキング部は、有機絶縁材料で構成されていることを特徴とする請求項35~37の何れか1項に記載の表示装置。
  39.  上記有機絶縁材料は、ポリイミド、ポリエーテルイミド、ポリアクリロニトリル、ポリエーテルエーテルケトン、ポリビニルアルコール、ポリイソプレン、ノボラック樹脂、およびポリアクリルアミドからなる群より選ばれる少なくとも一種の樹脂であることを特徴とする請求項38に記載の表示装置。
  40.  上記有機絶縁材料は、ポリイミド、ポリエーテルイミド、ポリアクリロニトリルからなる群より選ばれる少なくとも一種の樹脂であることを特徴とする請求項39に記載の表示装置。
  41.  上記隣接画素正孔ブロッキング部は、電子輸送性材料で構成されていることを特徴とする請求項35~37の何れか1項に記載の表示装置。
  42.  上記電子輸送性材料は、グラフェン、酸化スズ(IV)、酸化亜鉛、トリス(2,4,6-トリメチル-3-(ピリジン-3-イル)フェニル)ボラン、4,6-ビス(3,5-ジ(ピリジン-3-イル)フェニル)-2-メチルピリミジン、1,3-ビス(3,5-ジピリド-3-イルフェニル)ベンゼン、2,7-ビス(2,2’-ビピリジン-5-イル)トリフェニレン、8-キノリノレートリチウム、ポリ[(9,9-ビス(3’-((N,N-ジメチル)-N-エチルアンモニウム)-プロピル)-2,7-フルオレン)-alt-2,7-(9,9-ジオクチルフルオレン)]ジブロミド、ポリ[(9,9-ビス(3’-(N,N-ジメチルアミノ)プロピル)-2,7-フルオレン)-alt-2,7-(9,9-ジオクチルフルオレン)]、(1,3,5-トリアジン-2,4,6-トリイル)トリス(ベンゼン-3,1-ジイル)トリス(ジフェニルホスフィンオキサイド)、2,5,8,11-テトラキス(1,1-ジメチルエチル)ペリレン、1,3,5-トリス(3-ピリジル-3-フェニル)ベンゼン、1,3,5-トリス(1-フェニル-1H-ベンゾイミダゾール-2-イル)ベンゼン、ジフェニル[4-(トリフェニルシリル)フェニル]ホスフィンオキサイド、3,5-ジフェニル-4-(1-ナフチル)-1H--1,2,4-トリアゾール、トリス(8-ヒドロキシキノリン)アルミニウム、2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン、4.7-ジフェニル-1.10-フェナントロリン、2,5-ビス(1-ナフチル)-1,3,5-オキサジアゾール、ビス(8-ヒドロキシ-2-メチルキノリン)-(4-フェニルフェノキシ)アルミニウム、3,5-ビス(4-tert-ブチルフェニル)-4-フェニル-4H-1,2,4-トリアゾール、2-(4-ビフェニリル)-5-フェニル-1,3,4-オキサジアゾール、3-(ビフェニル-4-イル)-5-(4-tert-ブチルフェニル)-4-フェニル-4H-1,2,4-トリアゾール、2-(4-tert-ブチルフェニル)-5-(4-ビフェニリル)-1,3,4-オキサジアゾールからなる群より選ばれる少なくとも一種の電子輸送性材料であることを特徴とする請求項41に記載の表示装置。
  43.  上記電子輸送性材料がグラフェンであることを特徴とする請求項42に記載の表示装置。
  44.  請求項1に記載の表示装置の製造方法であって、
     上記下部電極を形成する工程と、
     上記第1のキャリア輸送層を形成する工程と、
     上記発光層を形成する工程と、
     上記上部電極を形成する工程と、を含むことを特徴とする表示装置の製造方法。
  45.  上記第1のキャリア輸送層を形成する工程は、
     上記複数の発光素子に共通するように、上記複数の画素に共通する第1の膜を成膜する第1成膜工程と、
     上記第1の膜の少なくとも一部を化学反応により変成する第1変成工程と、を含むことを特徴とする請求項44に記載の表示装置の製造方法。
  46.  上記第1成膜工程では、上記第1の膜として、有機絶縁材料からなる膜を形成するとともに、
     上記第1変成工程は、上記第1のキャリア輸送層の上記キャリア輸送部となる部分の上記有機絶縁材料を化学反応により変成する第1キャリア輸送部変成工程を含むことを特徴とする請求項45に記載の表示装置の製造方法。
  47.  上記下部電極を形成する工程では、上記下部電極として陽極を形成し、
     上記上部電極を形成する工程では、上記上部電極として陰極を形成し、
     上記第1キャリア輸送部変成工程では、上記第1のキャリア輸送層の上記キャリア輸送部となる部分の上記有機絶縁材料を正孔輸送性材料に変成することで、上記第1のキャリア輸送層の上記キャリア輸送部として正孔輸送部を形成するとともに、上記第1のキャリア輸送層の上記隣接画素キャリアブロッキング部として隣接画素正孔ブロッキング部を形成することを特徴とする請求項46に記載の表示装置の製造方法。
  48.  上記有機絶縁材料は、ポリイミド、ポリエーテルイミド、ポリアクリロニトリルからなる群より選ばれる少なくとも一種の樹脂であり、
     上記第1キャリア輸送部変成工程は、
     上記第1のキャリア輸送層の上記正孔輸送部となる部分の上記有機絶縁材料にレーザを照射することで、上記有機絶縁材料をグラフェンに変成する工程と、
     上記グラフェンを酸化してグラフェンオキサイドに変成する工程と、を含むことを特徴とする請求項47に記載の表示装置の製造方法。
  49.  上記第1変成工程は、
     上記第1の膜における、上記第1のキャリア輸送層の上記隣接画素正孔ブロッキング部となる部分の上記有機絶縁材料にレーザを照射することで、上記第1のキャリア輸送層の上記隣接画素正孔ブロッキング部の上記有機絶縁材料をグラフェンに変成する第1隣接画素正孔ブロッキング部変成工程をさらに含むことを特徴とする請求項48に記載の表示装置の製造方法。
  50.  上記下部電極を形成する工程では、上記下部電極として陰極を形成し、
     上記上部電極を形成する工程では、上記上部電極として陽極を形成し、
     上記第1キャリア輸送部変成工程では、上記第1のキャリア輸送層の上記キャリア輸送部となる部分の上記有機絶縁材料を電子輸送性材料に変成することで、上記第1のキャリア輸送層の上記キャリア輸送部として電子輸送部を形成するとともに、上記第1のキャリア輸送層の上記隣接画素キャリアブロッキング部として隣接画素電子ブロッキング部を形成することを特徴とする請求項46に記載の表示装置の製造方法。
  51.  上記有機絶縁材料は、ポリイミド、ポリエーテルイミド、ポリアクリロニトリルからなる群より選ばれる少なくとも一種の樹脂であり、
     上記第1キャリア輸送部変成工程では、
     上記第1のキャリア輸送層の上記電子輸送部となる部分の上記有機絶縁材料にレーザを照射することで、上記有機絶縁材料をグラフェンに変成することを特徴とする請求項50に記載の表示装置の製造方法。
  52.  上記下部電極を形成する工程では、上記下部電極として陽極を形成し、
     上記上部電極を形成する工程では、上記上部電極として陰極を形成し、
     上記第1成膜工程では、上記第1の膜として、正孔輸送性材料からなる膜を形成するとともに、
     上記第1変成工程では、上記第1のキャリア輸送層の上記隣接画素キャリアブロッキング部となる部分の上記正孔輸送性材料を化学反応により電子輸送性材料に変成することで、上記第1のキャリア輸送層の上記隣接画素キャリアブロッキング部として隣接画素正孔ブロッキング部を形成するとともに、上記第1のキャリア輸送層の上記キャリア輸送部として正孔輸送部を形成することを特徴とする請求項45に記載の表示装置の製造方法。
  53.  上記正孔輸送性材料がグラフェンオキサイドであり、
     上記第1変成工程では、上記第1のキャリア輸送層の上記隣接画素正孔ブロッキング部となる部分の上記グラフェンオキサイドを還元してグラフェンに変成することを特徴とする請求項52に記載の表示装置の製造方法。
  54.  上記下部電極を形成する工程では、上記下部電極として陽極を形成し、
     上記上部電極を形成する工程では、上記上部電極として陰極を形成し、
     上記第1成膜工程では、上記第1の膜として、電子輸送性材料からなる膜を形成するとともに、
     上記第1変成工程では、上記第1のキャリア輸送層の上記キャリア輸送部となる部分の上記電子輸送性材料を化学反応により正孔輸送性材料に変成することで、上記第1のキャリア輸送層の上記キャリア輸送部として正孔輸送部を形成するとともに、上記第1のキャリア輸送層の上記隣接画素キャリアブロッキング部として隣接画素正孔ブロッキング部を形成することを特徴とする請求項45に記載の表示装置の製造方法。
  55.  上記電子輸送性材料がグラフェンであり、
     上記第1変成工程では、上記第1のキャリア輸送層の上記正孔輸送部となる部分の上記グラフェンを酸化してグラフェンオキサイドに変成することを特徴とする請求項54に記載の表示装置の製造方法。
  56.  上記下部電極を形成する工程では、上記下部電極として陰極を形成し、
     上記上部電極を形成する工程では、上記上部電極として陽極を形成し、
     上記第1成膜工程では、上記第1の膜として、電子輸送性材料からなる膜を形成するとともに、
     上記第1変成工程では、上記第1のキャリア輸送層の上記隣接画素キャリアブロッキング部となる部分の上記電子輸送性材料を化学反応により正孔輸送性材料に変成することで、上記第1のキャリア輸送層の上記隣接画素キャリアブロッキング部として隣接画素電子ブロッキング部を形成するとともに、上記第1のキャリア輸送層の上記キャリア輸送部として電子輸送部を形成することを特徴とする請求項45に記載の表示装置の製造方法。
  57.  上記電子輸送性材料がグラフェンであり、
     上記第1変成工程では、上記第1のキャリア輸送層の上記隣接画素電子ブロッキング部となる部分の上記グラフェンを酸化してグラフェンオキサイドに変成することを特徴とする請求項56に記載の表示装置の製造方法。
  58.  上記下部電極を形成する工程では、上記下部電極として陰極を形成し、
     上記上部電極を形成する工程では、上記上部電極として陽極を形成し、
     上記第1成膜工程では、上記第1の膜として、正孔輸送性材料からなる膜を形成するとともに、
     上記第1変成工程では、上記第1のキャリア輸送層の上記キャリア輸送部となる部分の上記正孔輸送性材料を化学反応により電子輸送性材料に変成することで、上記第1のキャリア輸送層の上記キャリア輸送部として電子輸送部を形成するとともに、上記第1のキャリア輸送層の上記隣接画素キャリアブロッキング部として隣接画素電子ブロッキング部を形成することを特徴とする請求項45に記載の表示装置の製造方法。
  59.  上記正孔輸送性材料がグラフェンオキサイドであり、
     上記第1変成工程では、上記第1のキャリア輸送層の上記電子輸送部となる部分の上記グラフェンオキサイドを還元してグラフェンに変成することを特徴とする請求項58に記載の表示装置の製造方法。
  60.  上記第1のキャリア輸送層を形成する工程は、
     上記第1のキャリア輸送層の上記キャリア輸送部をパターン形成する工程と、
     上記第1のキャリア輸送層の上記隣接画素キャリアブロッキング部をパターン形成する工程と、を含むことを特徴とする請求項44に記載の表示装置の製造方法。
  61.  上記発光層を形成する工程と、上記上部電極を形成する工程との間に、
     第2のキャリア輸送層を形成する工程を含み、
     上記第2のキャリア輸送層を形成する工程は、
     上記複数の発光素子に共通するように、上記複数の画素に共通する第2の膜を成膜する第2成膜工程と、
     上記第2の膜の少なくとも一部を化学反応により変成する第2変成工程と、を含むことを特徴とする請求項44~60の何れか1項に記載の表示装置の製造方法。
  62.  上記発光層を形成する工程と、上記上部電極を形成する工程との間に、
     第2のキャリア輸送層を形成する工程を含み、
     上記第2のキャリア輸送層を形成する工程は、
     上記第2のキャリア輸送層の上記キャリア輸送部をパターン形成する工程と、
     上記第2のキャリア輸送層の上記隣接画素キャリアブロッキング部をパターン形成する工程と、を含むことを特徴とする請求項44~60の何れか1項に記載の表示装置の製造方法。
PCT/JP2020/031202 2020-08-19 2020-08-19 表示装置およびその製造方法 WO2022038694A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/022,128 US20230309334A1 (en) 2020-08-19 2020-08-19 Display device and method for manufacturing same
PCT/JP2020/031202 WO2022038694A1 (ja) 2020-08-19 2020-08-19 表示装置およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/031202 WO2022038694A1 (ja) 2020-08-19 2020-08-19 表示装置およびその製造方法

Publications (1)

Publication Number Publication Date
WO2022038694A1 true WO2022038694A1 (ja) 2022-02-24

Family

ID=80323496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/031202 WO2022038694A1 (ja) 2020-08-19 2020-08-19 表示装置およびその製造方法

Country Status (2)

Country Link
US (1) US20230309334A1 (ja)
WO (1) WO2022038694A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115340520A (zh) * 2022-06-27 2022-11-15 太原理工大学 一种小迟滞钙钛矿电池的空穴传输材料及其制备与应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015002125A (ja) * 2013-06-17 2015-01-05 独立行政法人産業技術総合研究所 フレキシブル有機el表示装置及びその製造方法
JP2017091946A (ja) * 2015-11-16 2017-05-25 株式会社ジャパンディスプレイ 表示装置および表示装置の製造方法
JP2017514783A (ja) * 2014-02-17 2017-06-08 ウィリアム・マーシュ・ライス・ユニバーシティ レーザーで誘導されたグラフェン材料および電子装置におけるそれらの使用
JP2017120894A (ja) * 2015-12-28 2017-07-06 エルジー ディスプレイ カンパニー リミテッド アクティブ層、薄膜トランジスタアレイ基板及び表示装置
JP2018055936A (ja) * 2016-09-28 2018-04-05 株式会社Joled 有機el表示パネル、及び有機el表示パネルの製造方法
WO2018179116A1 (ja) * 2017-03-29 2018-10-04 シャープ株式会社 有機el表示装置
WO2019038558A1 (en) * 2017-08-24 2019-02-28 RD Graphene Limited GRAPHENE IN 3D
JP2019096603A (ja) * 2017-11-21 2019-06-20 三星電子株式会社Samsung Electronics Co.,Ltd. 量子ドット素子及び電子装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015002125A (ja) * 2013-06-17 2015-01-05 独立行政法人産業技術総合研究所 フレキシブル有機el表示装置及びその製造方法
JP2017514783A (ja) * 2014-02-17 2017-06-08 ウィリアム・マーシュ・ライス・ユニバーシティ レーザーで誘導されたグラフェン材料および電子装置におけるそれらの使用
JP2017091946A (ja) * 2015-11-16 2017-05-25 株式会社ジャパンディスプレイ 表示装置および表示装置の製造方法
JP2017120894A (ja) * 2015-12-28 2017-07-06 エルジー ディスプレイ カンパニー リミテッド アクティブ層、薄膜トランジスタアレイ基板及び表示装置
JP2018055936A (ja) * 2016-09-28 2018-04-05 株式会社Joled 有機el表示パネル、及び有機el表示パネルの製造方法
WO2018179116A1 (ja) * 2017-03-29 2018-10-04 シャープ株式会社 有機el表示装置
WO2019038558A1 (en) * 2017-08-24 2019-02-28 RD Graphene Limited GRAPHENE IN 3D
JP2019096603A (ja) * 2017-11-21 2019-06-20 三星電子株式会社Samsung Electronics Co.,Ltd. 量子ドット素子及び電子装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115340520A (zh) * 2022-06-27 2022-11-15 太原理工大学 一种小迟滞钙钛矿电池的空穴传输材料及其制备与应用
CN115340520B (zh) * 2022-06-27 2023-10-10 太原理工大学 一种小迟滞钙钛矿电池的空穴传输材料及其制备与应用

Also Published As

Publication number Publication date
US20230309334A1 (en) 2023-09-28

Similar Documents

Publication Publication Date Title
KR100775734B1 (ko) 유기발광소자 및 이의 제조 방법
JP7029769B2 (ja) El表示パネルの製造方法、el表示パネルの製造装置、およびel表示パネルとel表示装置。
KR20080110486A (ko) 발광장치 및 전자기기, 및 발광장치의 제조 방법
JPWO2018047853A1 (ja) 有機発光素子
KR20190086585A (ko) 발광 소자
KR20150135511A (ko) 유기 일렉트로 루미네선스 소자
JP2009245747A (ja) 有機発光表示装置
JP2009016298A (ja) 有機発光表示装置及びその製造方法
WO2016031962A1 (ja) 有機半導体素子の製造方法および有機半導体素子
KR20150012548A (ko) 유기발광소자, 이를 포함하는 유기 발광 표시장치 및 그 제조방법
CN111261798A (zh) 表面等离子体泵浦发光装置
US7812359B2 (en) Organic electroluminescent device
CN111903189B (zh) 发光元件以及发光元件的制造方法
JP2008300270A (ja) 発光素子
WO2022038694A1 (ja) 表示装置およびその製造方法
CN112909211B (zh) 蓝色发光层形成用材料、发光器件、发光基板和发光装置
WO2012086349A1 (ja) 有機電界発光素子及びその製造方法
JP2005174675A (ja) 有機電界発光素子及び発光装置
JP2019129163A (ja) El表示パネルとel表示装置およびel表示パネルの製造方法とel表示パネルの製造装置。
JP6648418B2 (ja) 有機エレクトロルミネッセンス素子
JP2011146610A (ja) 有機エレクトロルミネッセンス表示装置とその製造方法
WO2022085097A1 (ja) 表示装置およびその製造方法
KR20120125771A (ko) 2종의 유기층을 이용하는 백색 유기 발광 다이오드 및 이의 제조 방법
CN113725377B (zh) 发光器件、发光基板及发光装置
JP7281811B2 (ja) El表示パネルの製造装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20950260

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20950260

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP