WO2022037678A1 - 电子烟、电子烟雾化器及雾化组件 - Google Patents

电子烟、电子烟雾化器及雾化组件 Download PDF

Info

Publication number
WO2022037678A1
WO2022037678A1 PCT/CN2021/113797 CN2021113797W WO2022037678A1 WO 2022037678 A1 WO2022037678 A1 WO 2022037678A1 CN 2021113797 W CN2021113797 W CN 2021113797W WO 2022037678 A1 WO2022037678 A1 WO 2022037678A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic cigarette
electrode connection
connection part
resistance heating
atomizing
Prior art date
Application number
PCT/CN2021/113797
Other languages
English (en)
French (fr)
Inventor
石文
张晓飞
袁军
罗家懋
雷宝灵
徐中立
李永海
Original Assignee
深圳市合元科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市合元科技有限公司 filed Critical 深圳市合元科技有限公司
Priority to EP21857766.6A priority Critical patent/EP4201236A4/en
Priority to CA3192074A priority patent/CA3192074A1/en
Priority to KR1020237009387A priority patent/KR20230052953A/ko
Priority to US18/022,271 priority patent/US20230320423A1/en
Priority to JP2023512022A priority patent/JP7575575B2/ja
Publication of WO2022037678A1 publication Critical patent/WO2022037678A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/04Waterproof or air-tight seals for heaters
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/42Cartridges or containers for inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/44Wicks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/03Electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/26Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base
    • H05B3/265Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base the insulating base being an inorganic material, e.g. ceramic
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/002Heaters using a particular layout for the resistive material or resistive elements
    • H05B2203/003Heaters using a particular layout for the resistive material or resistive elements using serpentine layout
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/013Heaters using resistive films or coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/016Heaters using particular connecting means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/017Manufacturing methods or apparatus for heaters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/021Heaters specially adapted for heating liquids
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/022Heaters specially adapted for heating gaseous material

Definitions

  • the embodiments of the present application relate to the technical field of aerosol generating devices, and in particular, to an electronic cigarette, an electronic cigarette atomizer, and an atomizing assembly.
  • Smoking articles eg, cigarettes, cigars, etc.
  • Burn tobacco during use to produce tobacco smoke.
  • Attempts have been made to replace these tobacco-burning products by making products that release compounds without burning them.
  • a heating device that releases a compound by heating rather than burning a material.
  • the material may be tobacco or other non-tobacco products, which may or may not contain nicotine.
  • aerosol-providing articles such as so-called electronic cigarette devices. These devices typically contain a liquid that is heated to vaporize it, resulting in a breathable vapor or aerosol.
  • the liquid may contain nicotine and/or fragrance and/or aerosol-generating substances (eg, glycerin).
  • the core component of a known electronic cigarette product is an atomizing component that vaporizes liquid to generate aerosol;
  • the atomizing component has a porous body for absorbing and conducting liquid, and a heating element disposed on the porous body for Heating and atomizing the liquid absorbed and conducted by the porous body.
  • the porous body has capillary pores inside, through which liquid can be absorbed and transferred to the heating element.
  • An embodiment of the present application aims to provide an electronic cigarette atomizer, configured to atomize a liquid substrate to generate an aerosol for inhalation; comprising: a liquid storage chamber for storing the liquid substrate; a porous body, which is connected with the storage chamber.
  • a liquid chamber in fluid communication to absorb a liquid matrix
  • a heating element formed on the porous body for heating the liquid matrix in at least a portion of the porous body to form an aerosol
  • the heating element comprising a first electrode connection, a second electrode connection part, and a resistance heating trace extending between the first electrode connection part and the second electrode connection part;
  • the resistance heating trace includes a first portion adjacent to and connected to the first electrode connection part, and The second portion of the second electrode connection portion is close to and connected; the curvature of any position of the first portion and/or the second portion is not zero.
  • the heating element of the above electronic cigarette vaporizer is heated by a specially designed resistance heating track, and the resistance heating track is in a curved shape with a non-zero curvature in the part where the temperature difference between the resistance heating track and the connecting part of the electrode is large, so as to change the heat of this part.
  • the stress state at the time of impact eliminates or disperses part of the internal stress caused by the difference in shrinkage and expansion, preventing the heating element from deforming or breaking under the cycle of cold and heat.
  • the resistive heating trace is constructed such that the entire trace contains only a limited number of points with zero curvature. This configuration makes the entire heating track form a track connected by curves in different bending directions, and overall optimizes the stress state of the heating track during thermal shock.
  • the resistive heating trace is configured to connect with the electrode connection, and there is a straight line that passes through the connection point and intersects the resistive heating trace at two points, the two points. The distance between is greater than the distance between the connection point and its adjacent intersection. This setting will reduce the high temperature difference of the resistance heating trace, improve the temperature distribution characteristics near the connection point, and then improve the stress state during thermal shock.
  • first portion and the second portion are symmetrical.
  • the symmetry may be axisymmetric, centrosymmetric, or rotational symmetry.
  • the first portion and/or the second portion is configured in the shape of a circular arc with constant curvature.
  • the curvature of the first portion and/or the second portion varies.
  • the porous body has an atomizing surface on which the heating element is formed.
  • the atomizing surface is a flat plane.
  • the atomizing surface includes a length direction and a width direction perpendicular to the length direction;
  • the first electrode connection part and the second electrode connection part are arranged in sequence along the length direction;
  • a straight line in the atomization surface that passes through the connection between the first part and the first electrode connection part along the width direction, and the connection that passes through the second part and the second electrode connection part along the width direction The area of the area defined between the straight lines is less than two-thirds of the area of the atomization surface.
  • the atomizing surface includes a length direction and a width direction perpendicular to the length direction;
  • the first portion and/or the second portion is configured to be curved outward in the width direction.
  • the first portion and/or the second portion is defined as a portion having an extension less than one eighth of the extension of the resistive heating track.
  • the resistive heating trace is a meandering or reciprocatingly curved shape.
  • the resistance heating trace includes at least one bending direction transition point; and the first portion is formed by a portion between the bending direction transition point near the first electrode connection portion and the first electrode connection portion , and the second portion is formed by a portion between a bending direction transition point near the second electrode connection portion and the second electrode connection portion.
  • the bending directions of the first portion and the second portion are opposite.
  • the resistance heating trace includes a first bending direction transition point close to the first electrode connection portion and a second bending direction transition point close to the second electrode connection portion, and is formed by the The portion between the first bending direction transition point and the first electrode connection portion forms the first portion, and the portion between the second bending direction transition point and the second electrode connection portion forms the second portion.
  • the resistive heating trace further includes a third portion located between the first bending direction transition point and the second bending direction transition point; wherein,
  • the third portion is opposite to the bending direction of the first portion; and/or the third portion is opposite to the bending direction of the second portion.
  • the curvature at any location of the third portion is not zero.
  • the curvature of the first portion and/or the second portion is greater than that of the third portion.
  • the atomization surface has a straight line passing through the connection between the first part and the first electrode connecting part and the first bending direction transition point, and the straight line and the third part have a straight line.
  • the width of the resistive heating trace is substantially constant.
  • the width of the resistance heating track is between 0.2 and 0.5 mm;
  • the extension length of the resistance heating track is between 5 and 50 mm;
  • the resistance value of the resistance heating track ranges from 0.5 to 2.0 ⁇ .
  • the resistive heating trace is a meandering or reciprocatingly curved shape.
  • the first electrode connection portion and/or the second electrode connection portion is substantially located at the center of the atomization surface along the width direction.
  • the porous body comprises a porous ceramic.
  • the present application also proposes an electronic cigarette, including an atomizing device for atomizing a liquid substrate to generate aerosol for inhalation, and a power supply device for supplying power to the atomizing device; the atomizing device includes the electronic cigarette described above. Smoker.
  • the present application also proposes an atomizing assembly for an electronic cigarette, which includes a porous body for absorbing a liquid matrix, and a heating element formed on the porous body;
  • the heating element includes a first electrode connection part, a second an electrode connection part, and a resistance heating trace extending between the first electrode connection part and the second electrode connection part;
  • the resistance heating trace includes a first part adjacent to and connected to the first electrode connection part, and a first part adjacent to and connected to the first electrode connection part, and a resistance heating trace extending between the first electrode connection part and the second electrode connection part;
  • a second portion of the second electrode connecting portion is connected; the curvature of any position of the first portion and/or the second portion is not zero.
  • FIG. 1 is a schematic structural diagram of an electronic cigarette vaporizer provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a heating element proposed in an embodiment
  • Fig. 3 is the schematic diagram that the bending part of the heating element in Fig. 2 forms stress under the impact of cold and heat;
  • FIG. 4 is a schematic structural diagram of a heating element proposed by yet another embodiment
  • FIG. 5 is a schematic structural diagram of a porous body proposed by another embodiment
  • FIG. 6 is a schematic diagram of surface mounting in the preparation of an atomizing assembly according to an embodiment
  • FIG. 7 is a schematic diagram of peeling off the screen plate after laser printing in the preparation of the atomizing assembly in one embodiment
  • FIG. 8 is a schematic diagram of the atomization assembly obtained after sintering in the preparation of the atomization assembly in one embodiment
  • FIG. 9 is a schematic structural diagram of a heating element of a comparative example.
  • FIG. 10 is a schematic structural diagram of a heating element of another comparative example.
  • Fig. 11 is the electron microscope observation diagram of the heating element after the heating and cooling cycle test in one embodiment
  • Fig. 12 is an enlarged view at A in Fig. 11;
  • Fig. 13 is an electron microscope observation diagram of a heating element of a comparative example after the heating and cooling cycle test
  • Fig. 14 is an enlarged view at B in Fig. 13;
  • 15 is a schematic diagram of the temperature field of the atomization assembly of one embodiment
  • 16 is a schematic diagram of the temperature field of the atomization assembly of another embodiment
  • 17 is a schematic diagram of the temperature field of the atomization assembly of yet another embodiment
  • Fig. 18 is a schematic diagram of the temperature field of the atomizing assembly of a comparative example
  • FIG. 19 is a schematic diagram of the temperature field of the atomization assembly of yet another comparative example.
  • FIG. 20 is a schematic structural diagram of an electronic cigarette proposed by an embodiment.
  • FIG. 1 shows a schematic structural diagram of an electronic cigarette vaporizer according to an embodiment, including:
  • the main casing 10 is roughly in the shape of a hollow cylinder, and of course its interior is a necessary functional device for storing and atomizing the liquid matrix; in FIG. 1, the main casing 10 is open along the length direction.
  • the lower end of the main casing 10 is provided with an end cover 20 which closes the lower end of the main casing 10 .
  • the main casing 10 is provided with:
  • the smoke output pipe 11 extending along the axial direction provides a smoke output channel for outputting the formed aerosol to the upper end for inhalation;
  • the liquid storage cavity 12 formed between the flue gas output pipe 11 and the inner wall of the main casing 10 is used for storing the liquid matrix.
  • a porous body 30 is also provided in the main casing 10 .
  • the porous body 30 is in the form of a sheet or block in the preferred implementation shown in FIG. 1 , and has a liquid absorbing surface 310 and an atomizing surface 320 that are opposite to each other in the axial direction of the main casing 10 ; wherein,
  • the liquid absorption surface 310 is the upper surface of the porous body 30 in FIG. 1 , and is in fluid communication with the liquid storage cavity 12. In use, the liquid matrix in the liquid storage cavity 12 can be transferred to the upper surface 310 along the arrow R1 to be absorbed;
  • the atomizing surface 320 is the lower surface of the porous body 30 in FIG. 1 , on which a heating element 40 is arranged for heating and vaporizing at least a part of the liquid matrix in the porous body 30 to generate an aerosol for inhalation.
  • the atomizing surface 320 is in airflow communication with the flue gas output pipe 11, and the generated aerosol is released or escaped from the atomizing surface 320, and then output through the flue gas output pipe 11 as indicated by arrow R2.
  • FIG. 2 shows a schematic view of the heating element 40 formed by the atomizing surface 320 of the porous body 30 .
  • the atomizing surface 320 is a square structure extending along the lateral direction of the main casing 10 .
  • the porous body 30 is usually made of porous ceramics, inorganic porous materials, and porous rigid materials, and the porous ceramics most commonly used in electronic cigarette vaporizers include silicon-based ceramics such as silicon dioxide, silicon carbide and silicon nitride, and aluminum-based ceramics such as nitride. At least one of aluminum and alumina, and zirconia ceramics, diatomite ceramics, etc.; the micropore diameter of the porous body 30 is preferably 5-60 ⁇ m, and the porosity is 30%-60%.
  • the heating element 40 includes a first electrode connection part 41 close to one side in the longitudinal direction of the atomizing surface 320 and a second electrode connection part 41 close to the other side in the longitudinal direction of the atomizing surface 320 42;
  • the first electrode connecting portion 41 and the second electrode connecting portion 42 are electrically connected by abutting or welding the positive/negative electrodes 21 in FIG.
  • the first electrode connection part 41 and the second electrode connection part 42 are configured in a generally square shape, or in other optional implementations, they may also be circular or oval, etc. get shape.
  • the first electrode connecting portion 41 and the second electrode connecting portion 42 are preferably made of gold, silver and other materials with low resistivity and high electrical conductivity.
  • Heating element 40 also includes resistive heating traces 43 extending between first electrode connection 41 and second electrode connection 42 .
  • the resistance heating track 43 is based on the functional requirements for heating and atomization, and usually adopts a resistive metal material or metal alloy material with appropriate impedance; for example, suitable metal or alloy materials include nickel, cobalt, zirconium, titanium, nickel alloy, cobalt alloy, At least one of zirconium alloy, titanium alloy, nickel-chromium alloy, nickel-iron alloy, iron-chromium alloy, titanium alloy, iron-manganese-aluminum-based alloy or stainless steel, etc.
  • the resistance heating trace 43 includes a first portion 431 adjacent to and connected to the first electrode connection portion 41, and a second portion 432 adjacent to and connected to the second electrode connection portion 42; the first portion 431 and the first portion 431
  • the second portion 432 is configured to be curved rather than straight.
  • the first electrode connection portion 41 and the second electrode connection portion 42 are located at the central positions of the atomization surface 320 in the width direction.
  • the first electrode connection parts 41 and the second electrode connection parts 42 are staggered along the width direction of the atomization surface 320 .
  • the first electrode connecting portion 41 is close to the lower end along the width direction of the atomizing surface 320
  • the second electrode connecting portion 42 is close to the upper end along the width direction of the atomizing surface 320 .
  • the temperature of the first electrode connection part 41 and the second electrode connection part 42 is relatively low; while the first part 431 and/or the second part 432 are far away from the central high temperature area of the resistance heating track 43 , and then the first part 431 and/or the second part 432 are /or the second part 432 is at the position where the temperature changes the most, and the internal stress caused by the difference in shrinkage and expansion during the cooling and heating cycle is relatively large.
  • the first part 431 and/or the second part 432 are designed in a curved shape, any position is subjected to three-way tensile stress as shown at A1 in FIG.
  • the tensile stresses F1 and F2 in the direction and the tensile stress F3 along the bending direction can be offset by force decomposition, which can effectively prevent the heating element from being deformed or cracked under the cooling and heating cycle.
  • the first portion 431 and/or the second portion 432 are circular arcs with a constant curvature value.
  • the curvature of the first portion 431a and/or the second portion 432a is varied.
  • the width direction of the atomizing surface 320 there is a straight line L1 passing through the connection between the first electrode connecting portion 41 and the first portion 431 , and a width along the atomizing surface 320 .
  • the direction has a straight line L2 through the junction of the second electrode connection 42 and the second portion 432; the resistance heating trace 43 is arranged between the straight line L1 and the straight line L2.
  • the area of the region S1 defined between the straight line L1 and the straight line L2 does not exceed two-thirds of the total area of the atomizing surface 320 . More preferably, the area of the region S1 does not exceed half of the total area of the atomizing surface 320 .
  • the atomizing surface 320 of the block-shaped porous body 30 has a length of about 8 mm and a width of about 4.2 mm, and the distance between L1 and the left end is about 1.8 mm, namely the straight line L1 and the straight line L2
  • the length of the area S1 defined therebetween is about 4.4 mm, and the area is slightly less than half of the total area of the atomizing surface 320 . It is helpful to concentrate the main heat-generating area that the resistance heating track 43 can radiate at the most suitable part of the atomizing surface 320 .
  • the first portion 431 and/or the second portion 432 is one portion of the resistive heating trace 43; there is no discernible or significant distinction from the other portions in terms of shape or color or material visible to the naked eye.
  • the length of the first portion 431 and/or the second portion 432 is less than about one-eighth of the total extension length of the resistive heating trace 43 .
  • the first part 431 and/or the second part 432 have a length of about 2-3 mm, and the total extension length of the conductive trace 43 after expansion is about 5-50 mm.
  • the temperature difference between the two sides of the first part 431 and/or the second part 432 defined by this size ratio is relatively significant, which is exactly the part where the stress is concentrated and is more likely to be broken.
  • the first portion 431 and the second portion 432 are defined by the location of the transition of the bending direction of the reciprocatingly curved resistive heating trace 43 .
  • the resistive heating trace 43 has a first bending direction transition point 434 and a second bending direction transition point 435 .
  • the first bending direction transition point 434 is close to the first electrode connection part 41, and the part between the first bending direction transition point 434 and the first electrode connection part 41 is used as the first part 431, and the second bending direction transition point
  • the portion between 435 and the second electrode connecting portion 42 is the first portion 432 .
  • the resistance heating trace 43 further includes a third portion 433 located between the first bending direction transition point 434 and the second bending direction transition point 435 .
  • the third portion 433 is also a curved shape whose curvature is not zero at any position, that is, a non-straight shape. According to what is shown in FIG. 2 , the bending direction of the third portion 433 is opposite to that of the first portion 431 and/or the second portion 432 .
  • the curvature of the first portion 431 and/or the second portion 432 is greater than the curvature of the third portion 433 .
  • the heat radiation range of the third part 433 is wider, and can cover the first part 431 and/or the second part 432 as much as possible, thereby reducing the temperature difference between the first part and/or the second part 432 .
  • the resistive heating traces 43 have an approximate width dimension of approximately 0.35 mm and are substantially constant. Based on the requirement that the resistance value of the heating element 40 is generally between 0.5 and 2.0 ⁇ , the resistance heating track 43 / 43a may adopt a width of 0.2 to 0.5 mm.
  • the following Figure 10 shows a prepared resistance heating track 43 suitable for the current classic low-power flat cigarette under a microscope; the total extension length of the resistance heating track 43 is 10.5-10.6mm, and Width 0.35mm, resistance value 1.1 ⁇ (tolerance ⁇ 0.15).
  • the resistive heating trace 43 is constructed such that it has a straight line m passing through the junction of the first electrode connection 41 and the first portion 431 , and the first bending direction transition point 434 , the straight line m and
  • the third portion 433 of the resistive heating trace 43 has an intersection m1.
  • the distance between the connection between the first electrode connecting portion 41 and the first portion 431 and the first bending direction transition point 434 is smaller than the distance between the first bending direction transition point 434 and the intersection m1 .
  • the main temperature region of the resistance heating track 43 can be substantially close to or cover the first electrode connecting portion 41 or the first portion 431, thereby helping the temperature difference between the two sides of the first portion 431 not to be too large during operation , resulting in the easy generation of large internal stress during cooling and heating cycles.
  • the shape of the resistance heating track 43 is approximately “ ⁇ ” shape, and the temperature field formed by the resistance heating track 43 using this shape is generally a relatively uniform circle.
  • the shortest distance between the resistance heating track 43 and the upper or lower end of the atomizing surface 320 is less than one-fifth of the width of the atomizing surface 320 , so that the resistance heating track 43 mainly generates heat as much as possible.
  • the area of temperature radiation does not exceed the atomization surface 320 .
  • the shortest distance n between the resistance heating track 43 and the upper end and the lower end of the atomizing surface 320 is about 0.8 mm.
  • the shortest distance n of the resistance heating track 43 from the upper end of the atomizing surface 320 can be further increased to 1.2 mm, that is, the resistance heating track 43 shown in FIG. 2 and FIG. 4 can be designed with Flatter, may be advantageous for temperature concentration.
  • the shape of the resistance heating track 43a can also be referred to as shown in FIG. 4, which is generally S-shaped; any position of the resistance heating track 43a, especially the first part 431a and/or the second part 432a is curved , and then in addition to making the temperature match transition in various places, it can also eliminate the internal tensile stress caused by the difference in shrinkage and expansion, and prevent the heating element from being deformed or cracked.
  • the arrangement position of the resistance heating track 43a and the dimensional distance from each side end of the atomizing surface 320a can also be performed according to the position shown in FIG. 2 .
  • the first portion 431a and/or the second portion 432a in FIG. 4 may also be defined by the ratio of the extension length of the overall resistance heating track 43a, or by the bending direction transition point 434a.
  • the bending of the resistance heating traces 43/43a is reciprocating and detouring, so that the resistance heating traces 43/43a can extend a sufficient length under a given area to achieve the required resistance value.
  • the first portion 431/431a and/or the second portion 432/432a is curved outwards, rather than inwards, along the width of the atomizing surface 320/320a.
  • FIG. 5 shows the structure of a commonly-shaped porous body 30d, which has an atomizing surface 320d for forming the heating element 40, which is similar to that of the heating element 40.
  • the surface opposite to the atomizing surface 320d has structures such as grooves 31d, and the space of the grooves 31d helps to shorten the transmission distance of the liquid matrix to the atomizing surface 320d.
  • the projection area S2 of the corresponding groove 31d on the atomizing surface 320d (that is, the part between the dotted lines L3 and L4 in FIG. 5), the heating element 40 is located in the concave area on the atomizing surface 320d.
  • the liquid matrix can be smoothly and quickly transferred to the heating element 40 in use.
  • An embodiment of the present application also provides an atomization assembly for an electronic cigarette atomizer, comprising a porous body 30 for absorbing a liquid matrix, and a heating element 40 formed on the porous body 30;
  • the heating element 40 includes a first The electrode connection part 41 , the second electrode connection part 42 , and the resistance heating trace 43 extending between the first electrode connection part 41 and the second electrode connection part 42 ;
  • the resistance heating trace 43 includes adjacent to and connected to the first electrode connection part 41 and the second portion 432 close to and connected to the second electrode connecting portion 42; the curvature of any position of the first portion 431 and/or the second portion 432 is not zero.
  • An embodiment of the present application also provides a method for preparing an atomization assembly for an electronic cigarette atomizer; wherein the atomization assembly includes the above porous body 30 and a heating element 40 .
  • the preparation method is carried out in the way of sintering after SMT (surface mount) laser printing, and the sintering precision after SMT screen printing is higher than that of the current SMT.
  • FIG. 6 to FIG. 8 the detailed steps are shown in FIG. 6 to FIG. 8 , including:
  • the paste composition includes:
  • the solid-phase heating functional component adopts the aforementioned electrothermal metal or alloy powder, the fineness is 600 meshes, and the shape is approximately spherical, accounting for about 80-90wt% of the solid phase component of the slurry;
  • the glass phase component used for curing and molding adopts SiO2 glass powder, Al2O3, MgO or CaO or their mixture, with a particle size of about 4-5 ⁇ m, accounting for about 1-10wt% of the solid phase component of the slurry;
  • the liquid auxiliary components for auxiliary paste printing can be obtained by purchasing commercially available organic additives for laser printing; the components generally include solvents, thickeners, leveling agents, surfactants, thixotropic agents, etc.
  • the addition ratio accounts for the above solids. 10-20 wt% of the mass percentage of the phase components.
  • step S30 SMT mounting: as shown in FIG. 6 , on the surface of the porous body 30 used for the atomization surface 320 in step S10, the laser printing screen 50 having the hollow 51 in the shape of the heating element 40 shown in FIG. 2 is attached, usually Generally, steel mesh panels are used;
  • step S40 the printing paste prepared in step S20 is printed on the surface of the porous body 30 on which the laser printing screen 50 is attached by a laser printing device, and after the printing is completed, the laser printing screen 50 is peeled off or removed, as shown in FIG. 7 . , then the surface of the porous body 30 is deposited to form the heating element 40;
  • the porous body 30 obtained in step S40 is baked in a 100°C oven for 20 minutes, and then transferred to a sintering furnace for sintering in a protective atmosphere furnace at 1100-1150°C for 30 minutes, and a batch is obtained after sintering
  • the prepared atomizing components are shown in Figure 8; a large number of single atomizing components can be obtained by subsequent cutting and separation with a grinding wheel.
  • the above method of laser printing is used to form a printing paste layer of the required thickness with a laser printing device at one time, which is faster and more accurate than the screen printing process that requires multiple printing and thickening to form a paste layer of the required thickness.
  • the pattern formed by laser printing has no spillover, strong three-dimensional effect, and beautiful printing; the laser printing process is simple, the printing efficiency is high, and the cost is low, which is suitable for industrial large-scale automatic production.
  • FIGS. 2 and 4 of the present application performance tests are carried out on the atomizing components of the various embodiments of the present application, including the fracture test under thermal shock, and the thermal shock. Field distribution test.
  • the heating elements 40b/40c shown in Figures 9 and 10 were used as a comparison in the test.
  • the resistive heating trace 43b shown in FIG. 9 is a comparative example of the first portion 431b and/or the second portion 432b which are generally straight.
  • FIG. 10 is a comparative example after further increasing the extension length of the resistance heating trace 43 in FIG. 2 .
  • Fig. 11 shows the overall microscopic topography of the atomizing assembly of the example of Fig. 2 under the electron microscope after 50 cycles of the resistance heating track 43;
  • Fig. 12 shows a partial enlarged view of A in Fig. 11; 12, the resistance heating traces 43 are still in good condition, and no cracks appear under the microscope.
  • the silver-platinum alloy powder with high conductivity used in the first electrode connecting portion 41 and the second electrode connecting portion 42 at both ends as electrodes is generally white in color.
  • Figure 13 shows the overall microscopic topography of the resistance heating track 43b of the atomization assembly when it is cycled until cracks appear;
  • Figure 14 is a partial enlarged view of B in Figure 13; it can be seen from Figure 14 that the statistical resistance heating The trace 43b had cracks in the first portion 431b, and the average period of cracking in the test was 25 times.
  • the reason for the cracks is that the first part 431b has a straight shape, and the temperature difference on both sides produces opposite tensile stresses F4 and F5 along the extension direction as shown in FIG. 9 . Once the temperature difference is too large, the difference between F4 and F5 exceeds a certain threshold. cracks are formed.
  • Test of S200 temperature field The atomizing component prepared by using the shape of the porous body 30d in Figure 5 combined with the resistance heating traces 43/43a/43b/43c of the above examples and comparative examples was loaded with a constant power of 6.5W, and simulated 1S dry burning After the temperature field, convection and radiation heat dissipation were not considered in the test, and the results are shown in Figure 15 to Figure 19.
  • the materials of the atomizing components of each example are all the same, and the relevant parameters are shown in the table below.
  • the maximum temperature of the resistance heating track 43 is 964.14°C, and it can be seen from Figure 15 that the temperature in the main heat radiation area (the central yellow area) It is basically uniform; at the same time, in the result, the temperature difference between the two sides of the first part 431/the second part 432 is about 100-150°C.
  • Fig. 16 is a schematic diagram showing the result of the temperature field of the example of reducing the size of the resistance heating track 43 in the width direction of the atomizing surface 320 in Fig. 15, that is, the above-mentioned flattened example.
  • the shape of the overall heat radiation area is basically the same as that of Fig. 15.
  • the relatively flattened resistance value has changed, and the maximum temperature has dropped to 870.25°C.
  • the temperature in the main heat radiation area is basically uniform; the temperature difference between the first part 431 and the second part 432 is also about 100-150°C.
  • Fig. 17 is a schematic diagram of the result of the temperature field of the resistance heating track 43a of the example shown in Fig. 4; the maximum temperature of the resistance heating track 43a under this shape is 922.794°C, and the main heat radiation area is slightly smaller than that in Figs. 15 and 16.
  • the temperature difference between the two sides of the part 431a/the second part 432a is increased to about 180-200°C.
  • FIG. 18 is a schematic diagram of the results of the temperature field of the resistance heating track 43b of the comparative example shown in FIG. 9; the maximum temperature of the resistance heating track 43b is 1042.98°C, and the area of the main heat radiation area is smaller and the uniformity is worse than the previous example.
  • the temperature difference between the two sides of the first part 431b/the second part 432b of the straight shape exceeds 300°C, which makes it easier to shrink, expand and form stress under the impact of cold and heat.
  • Fig. 19 is a schematic diagram showing the result of the temperature field of the resistance heating track 43c of the comparative example shown in Fig. 10; since the resistance heating track 43c extends longer along the length direction of the atomized surface, the resistance value of the resistance increases and the heating temperature is slightly increased Somewhat lower, the maximum temperature is only 729.116 °C. At the same time, the overall area of the temperature radiation area is correspondingly increased, but the heat utilization rate is relatively low; at the same time, since the first part 431c/the second part 432c is farther from the central area, the temperature difference between the two ends is about 250°C.
  • FIG. 20 Another embodiment of the present application also proposes an electronic cigarette, the schematic diagram of which is shown in FIG. 20 , including an atomizing device 100 and a power supply device 200 for supplying power to the atomizing device 100 ; the power supply device 200 is provided with at least part of an atomizer for receiving 100, and the positive and negative electrodes 220 of the power supply device 200 are used to form a closed electrical circuit with the electrode 21 of the atomizer 100, thereby supplying power to the atomizer 100.
  • the atomizing device 100 may include the electronic cigarette atomizer shown in FIG. 1 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Resistance Heating (AREA)
  • Electrostatic Spraying Apparatus (AREA)

Abstract

一种电子烟、电子烟雾化器及雾化组件;其中,电子烟雾化器包括:存储液体基质的储液腔(12);多孔体(30),与储液腔(12)流体连通以吸收液体基质;加热元件(40),包括第一电极连接部(41)、第二电极连接部(42),以及于第一电极连接部(41)和第二电极连接部(42)之间延伸的电阻加热轨迹(43);电阻加热轨迹(43)靠近并连接第一电极连接部(41)和/或第二电极连接部(42)的部分的任何位置的曲率均不为零。该电子烟雾化器的加热元件(40)采用电阻加热轨迹(43)进行加热,并且使电阻加热轨迹(43)在靠近和连接电极连接部的部分呈曲率不为零的弯曲形,从而消除由于缩胀差异形成的内部拉应力,阻止加热元件(40)在冷热循环下产生形变或断裂。

Description

电子烟、电子烟雾化器及雾化组件
本申请要求于2020年08月20日提交中国专利局,申请号为202010855599.2,名称为“电子烟、电子烟雾化器及雾化组件”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及气溶胶生成装置技术领域,尤其涉及一种电子烟、电子烟雾化器及雾化组件。
背景技术
烟制品(例如,香烟、雪茄等)在使用过程中燃烧烟草以产生烟草烟雾。人们试图通过制造在不燃烧的情况下释放化合物的产品来替代这些燃烧烟草的制品。
此类产品的示例为加热装置,其通过加热而不是燃烧材料来释放化合物。例如,该材料可为烟草或其他非烟草产品,这些非烟草产品可包含或可不包含尼古丁。作为另一示例,存在有气溶胶提供制品,例如,所谓的电子烟装置。这些装置通常包含液体,该液体被加热以使其发生汽化,从而产生可吸入蒸气或气溶胶。该液体可包含尼古丁和/或芳香剂和/或气溶胶生成物质(例如,甘油)。
已知的电子烟产品的核心部件为对液体进行蒸发生成气溶胶的雾化组件;雾化组件具有一个用于吸取和传导液体的多孔体、以及一设置于多孔体上的加热元件,用于对多孔体吸取和传导的液体进行加热雾化。其中,多孔体内部具有毛细微孔,可以通过内部的微孔进行吸收液体并向加热元件传递。已知的加热元件在工作中,主要发热区域集中在加热元件中央部位、靠近边缘部位温度较低,加热元件各部位温度是渐变的;而在工作时冷热循环冲击效应下不同温度部位产生不同程度的缩胀,导致加热元件弯曲或者是断裂,降低雾化芯的使用寿命。
申请内容
本申请的一个实施例的目的在于提供一种电子烟雾化器,被配置为雾化液体基质生成供吸食的气溶胶;包括:储液腔,用于存储液体基质;多孔体,与所述储液腔流体连通以吸收液体基质;加热元件,形成于所述多孔体上,用于加热所述多孔体的至少一部分中的液体基质以形成气溶胶;所述加热元件包括第一电极连接部、第二电极连接部,以及于所述第一电极连接部和第二电极连接部之间延伸的电阻加热轨迹;所述电阻加热轨迹包括靠近并连接所述第一电极连接部的第一部分、以及靠近并连接所述第二电极连接部的第二部分;所述第一部分和/或第二部分的任何位置的曲率均不为零。
以上电子烟雾化器的加热元件采用特别设计的电阻加热轨迹进行加热,并且使电阻加热轨迹在靠近和连接电极连接部的温差较大部分呈曲率不为零的弯曲形,从而改变这部分的热冲击时的应力状态,消除或分散部分由于缩胀差异形成的内部应力,阻止加热元件在冷热循环下产生形变或断裂。
更加优选的实施中,电阻加热轨迹被构造为整个轨迹仅包含有限个曲率为零的点。这种构造使得整个加热轨迹呈不同弯曲方向曲线连接的轨迹,整体上优化加热轨迹在冷热冲击时的应力状态。
更加优选的实施中,所述电阻加热轨迹被构造为与所述电极连接部连接,存在这样一条直线,其通过该连接点,并与所述电阻加热轨迹相交于两个点,所述两点之间的距离大于所述连接点与其邻近交点的距离。这样的设置,将降低电阻加热轨迹高的温差,改善连接点附近的温度分布特征,进而改善冷热冲击时的应力状态。
在更加优选的实施中,所述第一部分和第二部分是对称的。在具体的可选实施中,对称可以是轴对称、或者中心对称、旋转对称的。
在更加优选的实施中,所述第一部分和/或第二部分被构造呈曲率为恒定的圆弧形。
在更加优选的实施中,所述第一部分和/或第二部分的曲率是变化的。
在更加优选的实施中,所述多孔体具有雾化面,所述加热元件形成 于该雾化面上。
在更加优选的实施中,所述雾化面是平坦的平面。
在更加优选的实施中,所述雾化面包括长度方向和垂直于所述长度方向的宽度方向;
所述第一电极连接部和第二电极连接部沿所述长度方向依次布置;
所述雾化面内沿所述宽度方向穿过所述第一部分与第一电极连接部的连接处的直线、与沿所述宽度方向穿过所述第二部分与第二电极连接部的连接处的直线之间界定的区域面积,小于所述雾化面面积的三分之二。
在更加优选的实施中,所述雾化面包括长度方向和垂直于所述长度方向的宽度方向;
所述第一部分和/或第二部分被构造成沿所述宽度方向向外弯曲。
在更加优选的实施中,所述第一部分和/或第二部分限定为延伸长度小于所述电阻加热轨迹延伸长度的八分之一的部分。
在更加优选的实施中,所述电阻加热轨迹是迂回或往复弯曲的形状。
在更加优选的实施中,所述电阻加热轨迹包括至少一个弯曲方向转变点;并由靠近所述第一电极连接部的弯曲方向转变点与第一电极连接部之间的部分形成所述第一部分,以及由靠近所述第二电极连接部的弯曲方向转变点与第二电极连接部之间的部分形成所述第二部分。
在更加优选的实施中,所述第一部分和第二部分的弯曲方向是相反的。
在更加优选的实施中,所述电阻加热轨迹包括靠近所述第一电极连接部的第一弯曲方向转变点、以及靠近所述第二电极连接部的第二弯曲方向转变点,并由所述第一弯曲方向转变点与第一电极连接部之间的部分形成所述第一部分、以及由所述第二弯曲方向转变点与第二电极连接部之间的部分形成所述第二部分。
在更加优选的实施中,所述电阻加热轨迹还包括位于所述第一弯曲方向转变点与第二弯曲方向转变点之间的第三部分;其中,
所述第三部分与第一部分的弯曲方向相反;和/或,所述第三部分与第二部分的弯曲方向相反。
在更加优选的实施中,所述第三部分的任何位置的曲率均不为零。
在更加优选的实施中,所述第一部分和/或第二部分的曲率大于所述第三部分。
在更加优选的实施中,所述雾化面内具有穿过所述第一部分与第一电极连接部的连接处与所述第一弯曲方向转变点的直线,该直线与所述第三部分具有交点;所述第一部分与第一电极连接部的连接处与所述第一弯曲方向转变点之间的距离,小于所述第一弯曲方向转变点与所述交点的距离。
在更加优选的实施中,所述电阻加热轨迹的宽度基本是恒定的。
在更加优选的实施中,所述电阻加热轨迹的宽度介于0.2~0.5mm;
和/或,所述电阻加热轨迹的延伸长度介于5~50mm;
和/或,所述电阻加热轨迹的电阻值介于0.5~2.0Ω。
在更加优选的实施中,所述电阻加热轨迹是迂回或往复弯曲的形状。
在更加优选的实施中,所述第一电极连接部和/或第二电极连接部基本位于所述雾化面沿宽度方向的中央。
在更加优选的实施中,所述多孔体包括多孔陶瓷。
本申请还提出一种电子烟,包括用于雾化液体基质生成供吸食的气溶胶的雾化装置、以及为所述雾化装置供电的电源装置;所述雾化装置包括以上所述的电子烟雾化器。
本申请还提出一种用于电子烟的雾化组件,包括用于吸收液体基质的多孔体,以及形成于所述多孔体上的加热元件;所述加热元件包括第一电极连接部、第二电极连接部,以及于所述第一电极连接部和第二电极连接部之间延伸的电阻加热轨迹;所述电阻加热轨迹包括靠近并连接所述第一电极连接部的第一部分、以及靠近并连接所述第二电极连接部的第二部分;所述第一部分和/或第二部分的任何位置的曲率均不为零。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是本申请一实施例提供的电子烟雾化器的结构示意图;
图2是一实施例提出的加热元件的结构示意图;
图3是图2中加热元件弯曲部位在冷热冲击下形成应力的示意图;
图4是又一个实施例提出的加热元件的结构示意图;
图5是又一个实施例提出的多孔体的结构示意图;
图6是一个实施例制备雾化组件中进行表面贴装的示意图;
图7是一个实施例制备雾化组件中在激光打印后剥离网版的示意图;
图8是一个实施例制备雾化组件中烧结后获得的雾化组件的示意图;
图9是一个对比例的加热元件的结构示意图;
图10是又一个对比例的加热元件的结构示意图;
图11是一个实施例中加热元件经过冷热循环测试后的电镜观察图;
图12是图11中A处的放大图;
图13是一个对比例的加热元件经过冷热循环测试后的电镜观察图;
图14是图13中B处的放大图;
图15是一个实施例的雾化组件的温度场的示意图;
图16是又一个实施例的雾化组件温度场的示意图;
图17是又一个实施例的雾化组件的温度场的示意图;
图18是一个对比例的雾化组件的温度场的示意图;
图19是又一个对比例的雾化组件的温度场的示意图;
图20是一个实施例提出的电子烟的结构示意图。
具体实施方式
为了便于理解本申请,下面结合附图和具体实施方式,对本申请进行更详细的说明。
本申请的一个实施例提出一种电子烟雾化器,用于对液体基质加热汽化生成供吸食的气溶胶。图1示出了一个实施例的电子烟雾化器的结构示意图,包括:
主壳体10;该主壳体10大致呈中空的筒状,当然其内部是中空用于存储和雾化液体基质的必要功能器件;在图1中主壳体10其沿长度方向为敞口的下端设置有封闭主壳体10下端的端盖20。
主壳体10内设有:
沿轴向方向延伸的烟气输出管11,提供用于将形成的气溶胶输出至上端吸食的烟气输出通道;
由烟气输出管11与主壳体10内壁之间形成的储液腔12,用于存储液体基质。
主壳体10内还设有多孔体30。该多孔体30在图1所示的优选实施中呈片状或块状,具有沿主壳体10轴向相背的吸液面310和雾化面320;其中,
吸液面310在图1中是多孔体30的上表面,与储液腔12是流体连通的,在使用中储液腔12内的液体基质可以沿箭头R1所示传递至上表面310被吸收;
雾化面320在图1中是多孔体30的下表面,其上设置有加热元件40,用于对多孔体30内的至少一部分液体基质进行加热汽化生成供吸食的气溶胶。雾化面320是与烟气输出管11气流连通的,进而所生成的气溶胶由雾化面320释放或逸出之后,沿箭头R2所示经烟气输出管11输出。
图2示出了多孔体30的雾化面320形成的加热元件40的示意图。其中,雾化面320在图2的优选实施中,是沿主壳体10的横向方向延伸的方形构造。多孔体30通常采用多孔陶瓷、无机多孔材料、多孔刚性材料制备,而最常用于电子烟雾化器的多孔陶瓷有硅系陶瓷如二氧化硅、碳化硅和氮化硅、铝系陶瓷如氮化铝和氧化铝、以及氧化锆陶瓷、 硅藻土陶瓷等中的至少一种;多孔体30的微孔孔径优选5~60μm,孔隙率30%~60%。
在图2所示的实施中,加热元件40包括靠近雾化面320的长度方向一侧的第一电极连接部41、以及靠近雾化面320的长度方向的另一侧的第二电极连接部42;在使用中该第一电极连接部41和第二电极连接部42通过图1中的正/负电极21抵靠或者焊接等方式形成电连接,进而为加热元件40供电。
在图2中所示的优选实施中,第一电极连接部41和第二电极连接部42被构造成大体是方形的形状,或者在其他的可选实施中还可以是圆形或者椭圆形等得形状。在材质上第一电极连接部41和第二电极连接部42优选采用电阻系数低、导电性能高的金、银等材质。
加热元件40还包括在第一电极连接部41和第二电极连接部42之间延伸的电阻加热轨迹43。电阻加热轨迹43基于对加热雾化的功能需求,通常采用具有适当阻抗的电阻性金属材料、金属合金材料;比如适当的金属或合金材料包括镍、钴、锆、钛、镍合金、钴合金、锆合金、钛合金、镍铬合金、镍铁合金、铁铬合金、钛合金、铁锰铝基合金或不锈钢等中的至少一种。
在图2的优选实施中,电阻加热轨迹43包括靠近并与第一电极连接部41连接的第一部分431、以及靠近并与第二电极连接部42连接的第二部分432;第一部分431和第二部分432被构造成是弯曲的而非平直的形状。优选的实施中,第一电极连接部41和第二电极连接部42是位于雾化面320的宽度方向的中央位置的。
或者在其他的可选实施中,第一电极连接部41和第二电极连接部42沿雾化面320的宽度方向是交错布置的。例如,第一电极连接部41沿雾化面320的宽度方向靠近下侧端、第二电极连接部42沿雾化面320的宽度方向靠近上侧端。
在实施中,第一电极连接部41和第二电极连接部42的温度是比较低的;而第一部分431和/或第二部分432远离电阻加热轨迹43的中心高温区域,进而第一部分431和/或第二部分432处于温度变化最大的 部位,在冷热循环中缩胀差异产生的内部应力是比较大的。而将第一部分431和/或第二部分432设计成弯曲的形状,则任意位置上受到三向拉应力的作用如图3中A1处所示,包括由沿延伸方向两侧不同温差产生的相反方向的拉应力F1和F2、以及沿弯曲方向的拉应力F3,进而可以通过力的分解产生相互抵消,有效防止加热元件在冷热循环下产生形变或裂痕。
在图2所示的优选的实施中,第一部分431和/或第二部分432是曲率值恒定的圆弧形。或者在图4所示的变化实施中,第一部分431a和/或第二部分432a的曲率是变化的。
进一步在优选的实施中,参见图2所示,沿着雾化面320的宽度方向具有过第一电极连接部41与第一部分431的连接处的直线L1、以及沿着雾化面320的宽度方向具有过第二电极连接部42与第二部分432的连接处的直线L2;电阻加热轨迹43被布置为位于直线L1和直线L2之间。并且,由直线L1和直线L2之间界定的区域S1的面积不超过雾化面320的总面积的三分之二。更加优选地区域S1的面积不超过雾化面320的总面积的二分之一。
在图2所示的优选实施中,块状多孔体30的雾化面320大约具有8mm左右的长度、4.2mm左右的宽度,L1与左侧端的距离大约具有1.8mm,即直线L1和直线L2之间界定的区域S1的长度大约4.4mm,面积略微小于雾化面320的总面积的二分之一。有助于将电阻加热轨迹43能辐射的主要发热区域集中在雾化面320的最适部位。
通常在实施中,第一部分431和/或第二部分432是电阻加热轨迹43的一个部分;在肉眼可见的形状或颜色或材料等方面与其他的部分是不存在明显或显著的区分的。
通常在实施中,以第一部分431和/或第二部分432的长度小于电阻加热轨迹43总延伸长度的大约八分之一的部分定义是较为合理的。例如图2的导电轨迹43的形状尺寸中,第一部分431和/或第二部分432大约具有2~3mm的长度,导电轨迹43展开后的总延伸长度大约5~50mm。在使用中,这一尺寸比例定义的第一部分431和/或第二部分432 两侧的温差是较为显著的,正好是应力集中进而较容易断裂的部位。
或者在图2所示的又一个实施中,第一部分431和第二部分432是由往复弯曲的电阻加热轨迹43的弯曲方向的转变的位置界定的。具体,从图2中可以看出,电阻加热轨迹43具有第一弯曲方向转变点434、以及第二弯曲方向转变点435。其中,第一弯曲方向转变点434靠近第一电极连接部41,并由第一弯曲方向转变点434与第一电极连接部41之间的部分作为第一部分431、以及由第二弯曲方向转变点435与第二电极连接部42之间的部分作为第一部分432。
同时,电阻加热轨迹43还包括有位于第一弯曲方向转变点434与第二弯曲方向转变点435之间的第三部分433。当然,第三部分433也是任意位置的曲率均不为零的弯曲形状,即非平直的形状。根据图2中所示,第三部分433的弯曲方向与第一部分431和/或第二部分432是相反的。
并且,第一部分431和/或第二部分432的曲率大于第三部分433的曲率。第三部分433的热量辐射范围更广,并且能尽可能的覆盖第一部分431和/或第二部分432,降低第一部分和/或第二部分432的温差。
在图2所示的实施中,电阻加热轨迹43大约宽度尺寸大约0.35mm,并且基本是恒定的。基于通常加热元件40的电阻值介于0.5~2.0Ω的要求,电阻加热轨迹43/43a可以采用0.2~0.5mm的宽度范围。
在具体的产品实施中,以下图10示出了一个制备的适用于目前经典小功率扁烟的电阻加热轨迹43在显微镜下的观察图;电阻加热轨迹43的延伸总长度10.5-10.6mm、线宽0.35mm、电阻值为1.1Ω(公差±0.15)。
进一步在图2优选的实施中,电阻加热轨迹43的构造使其具有穿过第一电极连接部41与第一部分431的连接处、以及第一弯曲方向转变点434的直线m,该直线m与电阻加热轨迹43的第三部分433具有交点m1。其中,第一电极连接部41与第一部分431的连接处与第一弯曲方向转变点434的距离,小于第一弯曲方向转变点434与交点m1的距离。通过这一构造,使电阻加热轨迹43的主要温度区域能基本靠近或 者覆盖到第一电极连接部41或第一部分431的,从而有助于在工作中第一部分431两侧的温差不至于过大,导致容易在冷热循环中产生大的内部应力。
在图2所示的优选实施中,电阻加热轨迹43形状呈近似“Ω”形状,采用这一形状的电阻加热轨迹43形成的温度场大致上是比较均匀的圆形。
图2所示的优选形状和位置上,电阻加热轨迹43离雾化面320上侧端或下侧端的最短距离小于雾化面320宽度的五分之一,以尽量使电阻加热轨迹43主要发热温度辐射的区域不超出雾化面320。例如,图2中,电阻加热轨迹43离雾化面320上侧端和下侧端的最短距离n大约为0.8mm。在图2所示的变化中,电阻加热轨迹43的离雾化面320上侧端的最短距离n还可以进一步增加至1.2mm,即可以将图2和图4所示的电阻加热轨迹43设计的更扁,对于温度的集中可能是有利的。
在可选的实施中,电阻加热轨迹43a的形状还可以参见图4所示,大体上是S形形状;电阻加热轨迹43a的任意位置尤其是第一部分431a和/或第二部分432a是弯曲的,进而在工作中使各处温度吻合过渡之外,还能消除缩胀差异产生内部的拉应力,防止加热元件产生形变或裂痕。同样,电阻加热轨迹43a布置的位置、以及与雾化面320a各侧端的尺寸间距也可以按照图2的位置进行。在图4中第一部分431a和/或第二部分432a同样可以采用整体电阻加热轨迹43a的延伸长度的比例界定,或者是由弯曲方向转变点434a进行界定。
进一步在以上实施中,电阻加热轨迹43/43a的弯曲是往复迂回的,目的是使给定面积下电阻加热轨迹43/43a能延伸足够的长度,进而达到所需要的电阻值。
在图2和图4所示的优选的实施中,第一部分431/431a和/或第二部分432/432a是沿雾化面320/320a的宽度方向向外弯曲的,而非向内弯曲。
在其他的可选实施中,多孔体30的形状可以任意变化的;例如图5示出了一个常用形状的多孔体30d的构造,其具有用于形成加热元件40 的雾化面320d,其与雾化面320d相背的表面上具有凹槽31d等的构造,凹槽31d的空间有助于缩短液体基质向雾化面320d的传递距离。
进一步在图5所示的实施中,雾化面320d上对应凹槽31d的投影区域S2(即图5中虚线L3和L4之间的部分),加热元件40在雾化面320d上是位于凹槽31d的投影区域S2内的;进而在使用中液体基质能顺畅快速地传递至加热元件40。
本申请的一个实施例还提出一种用于电子烟雾化器的雾化组件,包括用于吸收液体基质的多孔体30,以及形成于多孔体30上的加热元件40;加热元件40包括第一电极连接部41、第二电极连接部42,以及于第一电极连接部41和第二电极连接部42之间延伸的电阻加热轨迹43;电阻加热轨迹43包括靠近并连接第一电极连接部41的第一部分431、以及靠近并连接第二电极连接部42的第二部分432;第一部分431和/或第二部分432的任何位置的曲率均不为零。
本申请的一个实施例还提出一种用于电子烟雾化器的雾化组件的制备方法;其中雾化组件包括以上多孔体30和加热元件40。在一个实施例中制备的方法过程是以SMT(表面贴装)激光印刷后烧结的方式进行的,相比目前的SMT丝网印刷后烧结精度更高。
为了进一步体现本申请的SMT激光印刷工艺制备雾化组件的可行性,在一个实施例中,详细的步骤过程参见图6至图8所示,包括:
S10,获取以上图中片状的多孔体30,材质为添加有氧化铝和玻璃粉的硅藻土系多孔陶瓷体,可以直接购买获得或自行烧制均可;
S20,制备电阻加热轨迹43的打印浆料,浆料成分包括:
固相发热功能成分,采用前述电热金属或合金粉,细度为600目、形貌近似球形,占浆料固相成分质量百分数约80-90wt%;
用于固化成型的玻璃相成分,采用SiO2玻璃粉、Al2O3、MgO或CaO或它们的混合,粒径约4-5μm左右,占浆料固相成分质量百分数约1-10wt%;
辅助浆料打印的液体助剂成分,购买市售激光打印有机助剂即可获得;成分一般包括溶剂、增稠剂、流平剂、表面活性剂、触变剂等组成, 添加比例占以上固相成分的质量百分数的10-20wt%。
S30,SMT贴装:如图6所示,在步骤S10的多孔体30用于雾化面320的表面上贴附上具有图2所示加热元件40形状镂空51的激光打印网板50,通常一般采用钢质网板;
S40,将步骤S20制备的打印浆料,通过激光打印设备在贴装有激光打印网版50的多孔体30表面进行打印,打印完成之后剥离或移除激光打印网版50,如图7所示,则多孔体30表面即沉积形成加热元件40;
S50,烧结固化:将步骤S40获得的多孔体30于100℃烘箱中烘烤20min烘干之后,再转移至烧结炉中于1100-1150℃的保护性气氛炉中烧结30min,烧结之后即获得批量制备的雾化组件,如图8所示;后续再用砂轮进行切割分离即可获得大量的单个雾化组件。
其中,以上步骤S20制备电阻加热轨迹43的打印浆料的过程中,可以采用先按照所需比例获取固相成分,球磨混合均匀若干时间后,加入液体助剂成分,搅拌混合后用三辊机轧制,使固相粉末在液体助剂的有机相中均匀分散,获得合适粘度的打印浆料;而后置于16℃的冷藏柜中,陈腐一段时间使性状更加稳定后使用。
以上采用激光印刷的方式以激光打印设备一次打印形成所需厚度的打印浆料层,比丝网印刷工艺中需要多次印刷加厚形成所需厚度的浆料层更加快捷,精度也更高一些。同时,激光印刷形成的图案无外溢,立体感较强,印刷美观;激光印刷工艺流程简单,印刷效率高,成本较低,适合工业大批量自动化生产。
进一步为了体现本申请的图2和图4示例的雾化组件与现有的雾化组件进步性,通过对本申请各实施例的雾化组件进行性能测试,包括冷热冲击下断裂测试、以及温场分布测试。测试中以图9和图10所示的加热元件40b/40c作为对比。其中,图9所示的电阻加热轨迹43b是常规呈平直的第一部分431b和/或第二部分432b的对比示例。图10是将图2中电阻加热轨迹43进一步增加延伸长度后的一个对比示例。
S100断裂测试:将图2和图9示例的雾化组件的电阻加热轨迹进行冷热循环,并测试冷热循环冲击下的断裂情况;具体包括:
在直流电源恒功率6.5W条件下,以通电3秒断电15秒为一个周期,对电阻加热轨迹进行冷热循环冲击,在可视显微镜下持续观察电阻加热轨迹的断裂情况,每组试验包括5个重复。结果参见图10至图13所示。
结果中,图11示出了图2示例的雾化组件在电阻加热轨迹43循环50次后电镜下的整体微观形貌图;图12示出了图11中A处局部放大图;从图11和图12中看出,电阻加热轨迹43仍然状态良好,显微镜下观察未出现裂纹。同时,两端作为电极的第一电极连接部41和第二电极连接部42采用的导电性高的银铂合金粉,颜色大体上是白色。
图13示例的雾化组件的电阻加热轨迹43b在循环至出现裂纹时电镜下的整体微观形貌图;图14是图13中B处局部放大图;从图14中可以看出统计中电阻加热轨迹43b在第一部分431b有裂痕,并且测试中出现裂纹的平均周期为25次。出现裂痕的原因在于第一部分431b呈平直的形状,两侧的温差产生图9中所示的沿延伸方向的相反的拉应力F4和F5,一旦温差过大导致F4和F5差值超过一定阈值时就形成裂痕。
S200温度场的测试:将采用图5中多孔体30d的形状结合以上各实施例和对比例的电阻加热轨迹43/43a/43b/43c制备的雾化组件加载恒定功率6.5W,仿真1S干烧后的温度场,测试中未考虑对流和辐射散热,结果参见图15至图19所示。当然,在测试中作为相互的对照,各示例的雾化组件的材质全部都相同,相关的参数参见下表。
电阻加热轨迹
Fe-Cr合金 导热系数 12.8W/m/K
比热容 490J/kg/℃
密度 7200kg/m3
多孔陶瓷体
氧化铝-氧化锆 导热系数 1W/m/K
比热容 430J/kg/℃
密度 900kg/m3
测试结果中,图15所示实例的雾化组件的温度场的结果示意图中,电阻加热轨迹43的最高温度是964.14℃,从图15中可以看出主要热量 辐射区域(中心黄色区域)内温度基本均匀;同时结果中,第一部分431/第二部分432两侧温差大约为100~150℃。
图16是将图15中电阻加热轨迹43在雾化面320的宽度方向尺寸减小即上述压扁后的实例的温度场的结果示意图,整体热量辐射区域形状与图15基本相同,由于轨迹大小被相对压扁电阻值有所改变,最高温度有所下降为870.25℃,主要热量辐射区域内温度基本均匀;第一部分431/第二部分432两侧的温度差也约为100~150℃。
图17是图4所示实例的电阻加热轨迹43a的温度场的结果示意图;这一形状下的电阻加热轨迹43a的最高温度为922.794℃,主要热量辐射区域比图15和图16稍小,第一部分431a/第二部分432a两侧的温度差有所增大、约为180~200℃。
图18是图9所示对比示例的电阻加热轨迹43b的温度场的结果示意图;电阻加热轨迹43b的最高温度为1042.98℃,主要热量辐射区域面积相比更小、均匀性较前述的示例差。同时平直形状的第一部分431b/第二部分432b两侧的温度差超过300℃,更容易在冷热冲击下缩胀及形成应力。
图19是图10所示对比示例的电阻加热轨迹43c的温度场的结果示意图;由于电阻加热轨迹43c沿雾化面的长度方向延伸的长度更长,电阻阻值增大进而在发热温度上稍微有所降低,最高温度仅有729.116℃。同时温度辐射区域面积整体也相应有所增大,但热量利用率相对低一些;同时由于第一部分431c/第二部分432c离中心区域更远,两端的温度差约250℃。
本申请又一个实施例还提出一种电子烟,其结构示意图参见图20所示,包括雾化装置100和为雾化装置100供电的电源装置200;电源装置200设有至少部分接收雾化器100的接受腔210,并且电源装置200的正极和负极220用于与雾化器100的电极21形成闭合的电回路,进而为雾化装置100供电。雾化装置100可以包括图1所示的电子烟雾化器。
需要说明的是,本申请的说明书及其附图中给出了本申请的较佳的 实施例,但并不限于本说明书所描述的实施例,进一步地,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本申请所附权利要求的保护范围。

Claims (25)

  1. 一种电子烟雾化器,被配置为雾化液体基质生成供吸食的气溶胶;其特征在于,包括:
    储液腔,用于存储液体基质;
    多孔体,与所述储液腔流体连通以吸收液体基质;
    加热元件,形成于所述多孔体上,用于加热所述多孔体的至少一部分中的液体基质以形成气溶胶;所述加热元件包括第一电极连接部、第二电极连接部,以及于所述第一电极连接部和第二电极连接部之间延伸的电阻加热轨迹;所述电阻加热轨迹包括靠近并连接所述第一电极连接部的第一部分、以及靠近并连接所述第二电极连接部的第二部分;所述第一部分和/或第二部分的任何位置的曲率均不为零。
  2. 如权利要求1所述的电子烟雾化器,其特征在于,所述第一部分和第二部分是对称的。
  3. 如权利要求1或2所述的电子烟雾化器,其特征在于,所述电阻加热轨迹被构造为整个轨迹仅包含有限个曲率为零的点。
  4. 如权利要求1或2所述的电子烟雾化器,其特征在于,所述电阻加热轨迹被构造为与所述电极连接部连接;存在这样一条直线,其通过所述电阻加热轨迹与电极连接部的连接点,并与所述电阻加热轨迹相交于两个交点,所述两个交点之间的距离大于所述连接点与其邻近的交点之间的距离。
  5. 如权利要求1或2所述的电子烟雾化器,其特征在于,所述第一部分和/或第二部分被构造呈曲率为恒定的圆弧形。
  6. 如权利要求1或2所述的电子烟雾化器,其特征在于,所述第 一部分的曲率是变化的;
    和/或第二部分曲率是变化的。
  7. 如权利要求1或2所述的电子烟雾化器,其特征在于,所述多孔体具有雾化面,所述加热元件形成于该雾化面上。
  8. 如权利要求7所述的电子烟雾化器,其特征在于,所述雾化面是平坦的平面。
  9. 如权利要求8所述的电子烟雾化器,其特征在于,所述雾化面包括长度方向和垂直于所述长度方向的宽度方向;
    所述第一电极连接部和第二电极连接部沿所述长度方向依次布置;
    所述雾化面内沿所述宽度方向穿过所述第一部分与第一电极连接部的连接处的直线、与沿所述宽度方向穿过所述第二部分与第二电极连接部的连接处的直线之间界定的区域面积,小于所述雾化面面积的三分之二。
  10. 如权利要求8述的电子烟雾化器,其特征在于,所述雾化面包括长度方向和垂直于所述长度方向的宽度方向;
    所述第一部分和/第二部分被构造成沿所述宽度方向向外弯曲。
  11. 如权利要求1或2所述的电子烟雾化器,其特征在于,所述第一部分和/或第二部分的延伸长度小于所述电阻加热轨迹延伸长度的八分之一。
  12. 如权利要求1或2所述的电子烟雾化器,其特征在于,所述电阻加热轨迹是迂回或往复弯曲的形状。
  13. 如权利要求12所述的电子烟雾化器,其特征在于,所述电阻 加热轨迹包括至少一个弯曲方向转变点;并由靠近所述第一电极连接部的弯曲方向转变点与第一电极连接部之间的部分形成所述第一部分,以及由靠近所述第二电极连接部的弯曲方向转变点与第二电极连接部之间的部分形成所述第二部分。
  14. 如权利要求12所述的电子烟雾化器,其特征在于,所述第一部分和第二部分的弯曲方向是相反的。
  15. 如权利要求12所述的电子烟雾化器,其特征在于,所述电阻加热轨迹包括靠近所述第一电极连接部的第一弯曲方向转变点、以及靠近所述第二电极连接部的第二弯曲方向转变点,并由所述第一弯曲方向转变点与第一电极连接部之间的部分形成所述第一部分、以及由所述第二弯曲方向转变点与第二电极连接部之间的部分形成所述第二部分。
  16. 如权利要求15所述的电子烟雾化器,其特征在于,所述电阻加热轨迹还包括位于所述第一弯曲方向转变点与第二弯曲方向转变点之间的至少一个第三部分;其中,
    至少一个所述第三部分与第一部分的弯曲方向相反;和/或,所述第三部分与第二部分的弯曲方向相反。
  17. 如权利要求16所述的电子烟雾化器,其特征在于,所述第三部分的任何位置的曲率均不为零。
  18. 如权利要求17所述的电子烟雾化器,其特征在于,所述第一部分和/或第二部分的曲率大于所述第三部分。
  19. 如权利要求16所述的电子烟雾化器,其特征在于,所述雾化面内具有穿过所述第一部分与第一电极连接部的连接处与所述第一弯曲方向转变点的直线,该直线与所述第三部分具有交点;
    所述第一部分与第一电极连接部的连接处与所述第一弯曲方向转变点之间的距离,小于所述第一弯曲方向转变点与所述交点的距离。
  20. 如权利要求1或2所述的电子烟雾化器,其特征在于,所述电阻加热轨迹的宽度基本是恒定的。
  21. 如权利要求1或2所述的电子烟雾化器,其特征在于,所述电阻加热轨迹的宽度介于0.2~0.5mm;
    和/或,所述电阻加热轨迹的延伸长度介于5~50mm;
    和/或,所述电阻加热轨迹的电阻值介于0.5~2.0Ω。
  22. 如权利要求9所述的电子烟雾化器,其特征在于,所述第一电极连接部和/或第二电极连接部基本位于所述雾化面沿宽度方向的中央。
  23. 如权利要求1或2所述的电子烟雾化器,其特征在于,所述多孔体包括多孔陶瓷体。
  24. 一种电子烟,包括用于雾化液体基质生成供吸食的气溶胶的雾化装置、以及为所述雾化装置供电的电源装置;其特征在于,所述雾化装置包括权利要求1至23任一项所述的电子烟雾化器。
  25. 一种用于电子烟的雾化组件,包括用于吸收液体基质的多孔体,以及形成于所述多孔体上的加热元件;其特征在于,所述加热元件包括第一电极连接部、第二电极连接部,以及于所述第一电极连接部和第二电极连接部之间延伸的电阻加热轨迹;所述电阻加热轨迹包括靠近并连接所述第一电极连接部的第一部分、以及靠近并连接所述第二电极连接部的第二部分;所述第一部分和/或第二部分的任何位置的曲率均不为零。
PCT/CN2021/113797 2020-08-20 2021-08-20 电子烟、电子烟雾化器及雾化组件 WO2022037678A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP21857766.6A EP4201236A4 (en) 2020-08-20 2021-08-20 ELECTRONIC CIGARETTE, ELECTRONIC CIGARETTE ATOMIZER AND ATOMIZING ARRANGEMENT
CA3192074A CA3192074A1 (en) 2020-08-20 2021-08-20 E-cigarette, e-cigarette vaporizer, and vaporization assembly
KR1020237009387A KR20230052953A (ko) 2020-08-20 2021-08-20 전자 담배, 전자 담배 무화기 및 무화 어셈블리
US18/022,271 US20230320423A1 (en) 2020-08-20 2021-08-20 E-cigarette, e-cigarette vaporizer, and vaporization assembly
JP2023512022A JP7575575B2 (ja) 2020-08-20 2021-08-20 電子タバコ、電子タバコ用アトマイザ及び噴霧化アセンブリ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010855599.2A CN114073338A (zh) 2020-08-20 2020-08-20 电子烟、电子烟雾化器及雾化组件
CN202010855599.2 2020-08-20

Publications (1)

Publication Number Publication Date
WO2022037678A1 true WO2022037678A1 (zh) 2022-02-24

Family

ID=80282748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/113797 WO2022037678A1 (zh) 2020-08-20 2021-08-20 电子烟、电子烟雾化器及雾化组件

Country Status (6)

Country Link
US (1) US20230320423A1 (zh)
EP (1) EP4201236A4 (zh)
KR (1) KR20230052953A (zh)
CN (1) CN114073338A (zh)
CA (1) CA3192074A1 (zh)
WO (1) WO2022037678A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110277756A1 (en) * 2010-05-15 2011-11-17 Nathan Andrew Terry Activation trigger for a personal vaporizing inhaler
CN205492631U (zh) * 2016-03-25 2016-08-24 深圳市博迪科技开发有限公司 一种电子烟用玻璃基发热件、电子烟雾化器及电子烟
CN107801375A (zh) * 2015-07-09 2018-03-13 菲利普莫里斯生产公司 用于气溶胶生成系统的加热器组件
CN208624642U (zh) * 2018-03-30 2019-03-22 上海新型烟草制品研究院有限公司 雾化芯体结构及电子烟
CN110384258A (zh) * 2019-06-14 2019-10-29 深圳麦克韦尔科技有限公司 电子雾化装置及其雾化器和发热组件
CN110432557A (zh) * 2019-09-10 2019-11-12 苏州晶品新材料股份有限公司 多加热通路雾化器
CN210520094U (zh) * 2019-06-24 2020-05-15 深圳哈卡科技有限公司 雾化器及电子烟
CN212590295U (zh) * 2020-08-20 2021-02-26 深圳市合元科技有限公司 电子烟、电子烟雾化器及雾化组件

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3286984B1 (en) * 2015-04-23 2021-08-04 Altria Client Services LLC Unitary heating element and heater assemblies, cartridges, and e-vapor devices including a unitary heating element
US10791761B2 (en) * 2017-08-17 2020-10-06 Rai Strategic Holdings, Inc. Microtextured liquid transport element for aerosol delivery device
US11191303B2 (en) * 2018-03-30 2021-12-07 Shenzhen First Union Technology Co., Ltd. Atomizer and electronic cigarette having same
CN110089778A (zh) * 2019-05-31 2019-08-06 合肥微纳传感技术有限公司 一种电子烟雾化芯片及电子烟

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110277756A1 (en) * 2010-05-15 2011-11-17 Nathan Andrew Terry Activation trigger for a personal vaporizing inhaler
CN107801375A (zh) * 2015-07-09 2018-03-13 菲利普莫里斯生产公司 用于气溶胶生成系统的加热器组件
CN205492631U (zh) * 2016-03-25 2016-08-24 深圳市博迪科技开发有限公司 一种电子烟用玻璃基发热件、电子烟雾化器及电子烟
CN208624642U (zh) * 2018-03-30 2019-03-22 上海新型烟草制品研究院有限公司 雾化芯体结构及电子烟
CN110384258A (zh) * 2019-06-14 2019-10-29 深圳麦克韦尔科技有限公司 电子雾化装置及其雾化器和发热组件
CN210520094U (zh) * 2019-06-24 2020-05-15 深圳哈卡科技有限公司 雾化器及电子烟
CN110432557A (zh) * 2019-09-10 2019-11-12 苏州晶品新材料股份有限公司 多加热通路雾化器
CN212590295U (zh) * 2020-08-20 2021-02-26 深圳市合元科技有限公司 电子烟、电子烟雾化器及雾化组件

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4201236A4 *

Also Published As

Publication number Publication date
CN114073338A (zh) 2022-02-22
US20230320423A1 (en) 2023-10-12
JP2023539098A (ja) 2023-09-13
CA3192074A1 (en) 2022-02-24
EP4201236A1 (en) 2023-06-28
KR20230052953A (ko) 2023-04-20
EP4201236A4 (en) 2024-02-07

Similar Documents

Publication Publication Date Title
CN212590295U (zh) 电子烟、电子烟雾化器及雾化组件
RU2698847C1 (ru) Нагреватель игольчатого типа и способ его изготовления и электрически нагреваемая сигарета, содержащая указанный нагреватель
CN209376696U (zh) 电子烟雾化器及包含该电子烟雾化器的电子烟
EP3881696A1 (en) Porous heating body and atomizer comprising same
CN102665459B (zh) 具有内部或外部加热器的电加热的发烟系统
WO2018201561A1 (zh) 一种复合的陶瓷雾化器及其制备方法
WO2020057313A1 (zh) 烘烤烟具及其加热组件
CN110022622B (zh) 一种氧化铝蜂窝陶瓷发热体及其制备方法
CN110037349A (zh) 一种用于电子烟的微孔陶瓷加热器及其制备方法
CN209965236U (zh) 一种用于电子烟的微孔加热器
CN208318240U (zh) 微孔陶瓷雾化芯
CN111770593B (zh) 发热体及其制备方法和加热装置
WO2022206966A1 (zh) 气溶胶生成装置以及加热器
WO2022037678A1 (zh) 电子烟、电子烟雾化器及雾化组件
CN114176263A (zh) 发热组件、发热组件的制备方法及电子雾化装置
RU2812371C1 (ru) Электронная сигарета, испаритель для электронной сигареты и узел испарения
CN216601672U (zh) 电子烟及其雾化芯、雾化芯组件和发热件
WO2022166660A1 (zh) 雾化器、电阻浆料、加热组件及气溶胶生成装置
CN218073515U (zh) 加热组件及电子雾化装置
CN117530496A (zh) 多孔玻璃发热体及其制备方法
CN217791483U (zh) 发热组件及电子雾化装置
WO2023125861A1 (zh) 多孔体、雾化器及电子雾化装置
WO2024114367A1 (zh) 气雾生成装置及用于气雾生成装置的加热器
CN115886343A (zh) 用于气雾生成装置的加热器、气雾生成装置及制备方法
KR20230149134A (ko) 에어로졸 발생 장치의 세라믹 무화기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21857766

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3192074

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2023512022

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237009387

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021857766

Country of ref document: EP

Effective date: 20230320