WO2022037522A1 - 一种供电系统及方法 - Google Patents

一种供电系统及方法 Download PDF

Info

Publication number
WO2022037522A1
WO2022037522A1 PCT/CN2021/112746 CN2021112746W WO2022037522A1 WO 2022037522 A1 WO2022037522 A1 WO 2022037522A1 CN 2021112746 W CN2021112746 W CN 2021112746W WO 2022037522 A1 WO2022037522 A1 WO 2022037522A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
voltage compensation
string
compensation unit
unit
Prior art date
Application number
PCT/CN2021/112746
Other languages
English (en)
French (fr)
Inventor
陈东
曹震
刘永泉
姚晓锋
Original Assignee
华为数字能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为数字能源技术有限公司 filed Critical 华为数字能源技术有限公司
Priority to JP2023512106A priority Critical patent/JP2023539112A/ja
Priority to AU2021327804A priority patent/AU2021327804A1/en
Priority to EP21857617.1A priority patent/EP4187736A4/en
Publication of WO2022037522A1 publication Critical patent/WO2022037522A1/zh
Priority to US18/170,606 priority patent/US20230208182A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0083Converters characterised by their input or output configuration
    • H02M1/0093Converters characterised by their input or output configuration wherein the output is created by adding a regulated voltage to or subtracting it from an unregulated input
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/106Parallel operation of dc sources for load balancing, symmetrisation, or sharing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/002Flicker reduction, e.g. compensation of flicker introduced by non-linear load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/102Parallel operation of dc sources being switching converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • H02J2300/26The renewable source being solar energy of photovoltaic origin involving maximum power point tracking control for photovoltaic sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/0077Plural converter units whose outputs are connected in series

Definitions

  • the present application relates to the technical field of power supply, in particular to a power supply system and method.
  • a string is composed of multiple photovoltaic modules or multiple batteries in series, and a power supply system can be formed by connecting multiple strings in parallel.
  • This power supply system can be widely used in scenarios such as solar power generation and uninterruptible power supply.
  • each string in the prior art adopts the power supply system as shown in Fig. 1, in which DC is connected to the branch where each string is located.
  • -DC converter Direct-Current-Direct-Current converter, a voltage converter that converts the input DC voltage into a set DC voltage and outputs it
  • each DC-DC converter is respectively connected to the output voltage of the branch
  • each string in the prior art is connected in series with a DC-DC converter, and the output current of the string must flow through the DC-DC converter, which brings about the problem of high system loss.
  • the present application provides a power supply system and method, which can reduce system loss and system cost.
  • a first aspect of an embodiment of the present application provides a power supply system, including: a first branch where the first group string is located, a second branch where the second group string is located, a switch unit, a first voltage compensation unit, and a controller ;
  • the switch unit selects to connect the first voltage compensation unit to the first branch according to the voltage compensation enable signal sent by the controller, so that the first voltage compensation unit compensates the output voltage of the first branch , the voltage compensation enable signal is generated by the controller according to the working state parameters of the first group of strings and the working state parameters of the second group of strings. That is, according to the working state parameters between different strings, only the voltage compensation unit is connected to the branch where the string that needs voltage compensation is located, and the branch where the string that does not need voltage compensation is located is not connected.
  • the voltage compensation unit avoids unnecessary system loss caused by the voltage compensation unit in the branches that do not need voltage compensation, thereby reducing the system loss.
  • the power supply system further includes a first DC bus and a second DC bus;
  • the first voltage compensation unit includes a first output terminal and a second output terminal, and the above-mentioned first voltage compensation unit includes a first output terminal and a second output terminal.
  • the first output end of a voltage compensation unit is connected to the first DC bus;
  • the switch unit connects the second output end of the first voltage compensation unit to the first group string according to the voltage compensation enable signal one end; the other end of the first set of strings is connected to the second DC bus.
  • the first DC bus may be a positive DC bus or a negative DC bus
  • the switch unit and the first voltage compensation unit may be arranged on either the positive DC bus side or the negative DC bus side
  • the switch unit connects one end of the second group of strings to the first DC bus according to the voltage compensation enable signal ;
  • the other end of the second group string is connected to the second DC bus.
  • the second group of strings is directly connected to the DC bus without passing through the first voltage compensation unit, so as to avoid unnecessary loss of the voltage compensation unit in the second branch.
  • the first voltage compensation unit further includes a first input terminal and a second input end;
  • the first input terminal of the first voltage compensation unit is connected to the first DC bus, and the second input terminal of the first voltage compensation unit is connected to the second DC bus.
  • the output of the second group of strings is actually used as the power supply of the first voltage compensation unit, avoiding external power supply, and reducing the system power supply. quantity, improving the simplicity of the system.
  • the first group string includes at least two sub-group strings.
  • at least two sub-groups are connected in series and parallel, and a switch unit and a voltage compensation unit are shared, which can further reduce the system cost.
  • the output voltage intervals corresponding to the respective maximum power points of the at least two substrings included in the first group string at least partially overlap.
  • the switch unit includes a first voltage compensation unit between the first voltage compensation unit and the first group string.
  • a switching sub-switch the first switching sub-switch is a contact switch or a semiconductor switch;
  • the switch unit controls the first switch sub-switch to connect the first voltage compensation unit and the first string according to the voltage compensation enable signal.
  • the above switch unit further includes a second switch sub-switch
  • the switch unit controls the second switch sub-switch to connect the first DC bus in the power supply system with the second group string according to the voltage compensation enable signal.
  • the first switching sub-switch includes a first semiconductor switch and a second semiconductor switch, wherein the first semiconductor switch is used to connect the a voltage compensation unit and the first string, the second semiconductor switch is used for disconnecting the first string and the first DC bus in the power supply system;
  • the switch unit controls the first semiconductor switch to connect the first voltage compensation unit and the first string according to the voltage compensation enable signal, and controls the second semiconductor switch to disconnect the first string and the first string DC bus.
  • the first switching sub-switch includes a third semiconductor switch and a diode, wherein the third semiconductor switch is used to connect the first voltage compensation The unit and the first group of strings, the diode is in a reverse cut-off state when the third semiconductor switch connects the first voltage compensation unit and the first group of strings, so as to disconnect the first group of strings from the first group of strings.
  • a first DC bus in the power supply system
  • the switch unit controls the third semiconductor switch to connect the first voltage compensation unit and the first string according to the voltage compensation enable signal, and disconnect the first string from the first DC bus.
  • the controller is further based on the operating state parameters of the first group string and the operating state of the second group string. parameters, determine the voltage compensation reference value, and send the voltage compensation reference value to the first voltage compensation unit, and the first voltage compensation unit compensates the output voltage of the first branch according to the voltage compensation reference value.
  • the first voltage compensation unit includes a non-isolated step-down conversion circuit.
  • a small-sized and high-efficiency non-isolated step-down converter circuit is used as the voltage compensation unit, which can reduce the system volume and improve the system efficiency.
  • the above-mentioned power supply system includes N branches where N group strings are located and M voltage compensation units , N and M are both positive integers, and M is less than N; the N branches include the first branch and the second branch, the M voltage compensation units include the first voltage compensation unit; the switch unit , which is used to connect some or all of the voltage compensation units to some branches respectively according to the above voltage compensation enable signal.
  • the voltage compensation unit by connecting the voltage compensation unit to the branch that needs voltage compensation, and not to the branch that does not need voltage compensation, the voltage compensation unit is not connected, so as to avoid the voltage compensation unit not needing voltage compensation. Unnecessary system losses are caused in the branches, and the number of voltage compensation units is less than the number of strings. Compared with the prior art, the number of voltage compensation units is equal to the number of strings, which can reduce the number of voltage compensation units and system costs.
  • each group string includes at least one DC component and a converter corresponding to the DC component.
  • the controller is used to adjust the working state of the above-mentioned corresponding DC components.
  • the converter converts the input voltage into a constant voltage by buck-boosting, that is, the converter is used to adjust the voltage of the DC components in the string, thereby optimizing the working state of the DC components.
  • the first string and the second string are photovoltaic strings.
  • the above-mentioned first group of strings and the above-mentioned second group of strings are storage Can battery strings.
  • a second aspect of the embodiments of the present application provides a string compensation method, which is applied to a power supply system, where the power supply system includes a first branch where the first string is located, a second branch where the second string is located, and a first voltage Compensation unit and controller, the above method includes:
  • Receive a voltage compensation enable signal from the controller connect the first voltage compensation unit to the first branch according to the voltage compensation enable signal, and the voltage compensation enable signal is the operation of the controller according to the first string
  • the state parameter and the working state parameter of the second group string are generated; the above-mentioned first voltage compensation unit is used to compensate the output voltage of the above-mentioned first branch. That is, according to the working state parameters between different strings, only the voltage compensation unit is connected to the branch where the string that needs voltage compensation is located, and the branch where the string that does not need voltage compensation is located is not connected.
  • the voltage compensation unit avoids unnecessary system loss caused by the voltage compensation unit in the branches that do not need voltage compensation, thereby reducing the system loss.
  • the power supply system further includes a first DC bus and a second DC bus;
  • the first voltage compensation unit includes a first output terminal and a second output terminal, and the above-mentioned first voltage compensation unit includes a first output terminal and a second output terminal.
  • a first output end of a voltage compensation unit is connected to the first DC bus;
  • the second output end of the first voltage compensation unit is connected to one end of the first group string; the other end of the first group string is connected to the second DC bus.
  • the above method further includes:
  • one end of the second group of strings is connected to the first DC bus; the other end of the second group of strings is connected to the second DC bus.
  • the switch unit includes a first switch sub-switch between the first voltage compensation unit and the first string, and the switch unit
  • the first switch sub-switch is a contact switch or a semiconductor switch
  • the first switching sub-switch is controlled to connect the first voltage compensation unit and the first group of strings.
  • the switch unit further includes a second switch sub-switch; the method further includes:
  • the second switching sub-switch is controlled to connect the first DC bus in the power supply system with the second group string.
  • the above-mentioned first switching sub-switch includes a first semiconductor switch and a second semiconductor switch;
  • the first semiconductor switch is controlled to connect the first voltage compensation unit and the first string
  • the second semiconductor switch is controlled to disconnect the first string and the first DC bus.
  • the above-mentioned first switching sub-switch includes a third semiconductor switch and a diode
  • the third semiconductor switch is controlled to connect the first voltage compensation unit and the first group of strings, and the diode is in a reverse cut-off state, thereby disconnecting the first group of strings and the first group of strings.
  • DC bus According to the voltage compensation enable signal, the third semiconductor switch is controlled to connect the first voltage compensation unit and the first group of strings, and the diode is in a reverse cut-off state, thereby disconnecting the first group of strings and the first group of strings.
  • the above-mentioned controller is further configured to perform according to the working state parameters of the above-mentioned first group of strings and the above-mentioned second group of strings the working state parameters, determine the voltage compensation reference value, and send the voltage compensation reference value to the first voltage compensation unit. to compensate.
  • the above-mentioned power supply system includes N branches where N group strings are located and M voltage compensation units, N and M are both positive integers, and M is less than N; the N branches include the first branch and the second branch, and the M voltage compensation units include the first voltage compensation unit;
  • the above method also includes:
  • some or all of the voltage compensation units are respectively connected to some branches.
  • each group string includes at least one DC component and a converter corresponding to the DC component
  • the above-mentioned controller is also used for controlling the converter to adjust the working state of the above-mentioned corresponding DC components.
  • Fig. 1 is a kind of power supply system that the prior art provides
  • FIG. 2 is a structural block diagram of a power supply system provided by an embodiment of the present application.
  • FIG. 3 is a schematic circuit diagram of a voltage compensation unit provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a system architecture of a power supply system provided by an embodiment of the present application.
  • 5A-5C are schematic diagrams of a switch provided by an embodiment of the present application, respectively;
  • FIG. 6 is a schematic diagram of a system architecture of another power supply system provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of another switch provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a system architecture of another power supply system provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of another switch provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a system architecture of another power supply system provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a system architecture of another power supply system provided by an embodiment of the present application.
  • FIG. 12 is a voltage-power curve between substrings according to an embodiment of the present application.
  • FIG. 13 is a schematic diagram of a system architecture of another power supply system provided by an embodiment of the present application.
  • FIG. 14A-FIG. 14B are schematic diagrams of another kind of switch provided by the embodiment of the present application respectively;
  • FIG. 15A-FIG. 15D are schematic diagrams of another switch provided by the embodiment of the present application, respectively.
  • each string is connected in parallel, no matter what the voltage at both ends of the string is connected in parallel, each string cannot work in its own optimal state. Therefore, as shown in Figure 1, a DC-DC converter is connected to the branch where each string is located, and the output current of each string must pass through the DC-DC converter, which brings about the problem of high system loss. .
  • the voltage compensation unit is selected to be connected to the branch where the strings that need voltage compensation are located, and the branch where the strings that do not need voltage compensation are located is not connected.
  • the input voltage compensation unit reduces the system loss and reduces the system cost.
  • each string included in the power supply system provided by the present application is a photovoltaic string, and each photovoltaic string may include multiple series and/or PV modules connected in parallel.
  • the power supply system may further include a photovoltaic inverter control module, and the photovoltaic inverter control module inverts and outputs the output voltage of each photovoltaic string.
  • the power supply system can transmit the inverted voltage to the power grid.
  • the power supply system can also be applied to the uninterruptible power supply scenario, that is, an energy storage device can be installed between the photovoltaic inverter control module and the power grid. Batteries, such as nickel-cadmium batteries, nickel-hydrogen batteries, lithium-ion batteries, lithium-polymer batteries, etc.
  • the controller obtains the working state parameters of each PV string, such as the output voltage, and when the working state parameters of the PV strings are different, generates a voltage compensation enable signal, and sends the voltage compensation enable signal to the switch unit in the power supply system.
  • the switch unit Based on the voltage compensation enable signal, the switch unit selects to connect the voltage compensation unit in the power supply system to the branch that needs voltage compensation, and the branch that does not need voltage compensation is not connected to the voltage compensation unit , to avoid unnecessary system losses caused by the voltage compensation unit in the branches that do not need voltage compensation, and the number of voltage compensation units is less than the number of strings, compared with the number of voltage compensation units in the prior art that is equal to the number of strings, you can Reduce the number of voltage compensation units and reduce system cost.
  • the controller may be provided in the photovoltaic inverter control module or each string.
  • each string included in the power supply system provided by the present application is an energy storage battery string, and each energy storage battery string A string may include multiple energy storage cells connected in series and/or in parallel.
  • the input end of the power supply system is connected with the charging equipment, and the output end is connected with the electric equipment.
  • the charging device may be, for example, a charging pile or a power grid, and the electrical device may be, for example, an in-vehicle system or the like.
  • the power supply system may be connected to the electrical equipment through a DC-DC converter, and the DC-DC converter may convert the output voltage of the power supply system into a preset fixed voltage value for output to the electrical equipment.
  • the controller obtains the working state parameters of each energy storage battery string, such as battery voltage, charging current, etc., in the case of the working state parameters of the energy storage battery string, generates a voltage compensation enable signal, and switches to the power supply system.
  • the switch unit sends the voltage compensation enable signal, so that the switch unit selects to connect the voltage compensation unit in the power supply system to the branch that needs voltage compensation based on the voltage compensation enable signal, instead of the branch that needs voltage compensation.
  • the voltage compensation unit is not connected to the circuit to avoid unnecessary system loss caused by the voltage compensation unit in the branch that does not need voltage compensation, and the number of voltage compensation units is less than the number of strings, compared with the voltage compensation units in the prior art.
  • the number is equal to the number of strings, which can reduce the number of voltage compensation units and reduce system costs.
  • the controller obtains that the battery voltage of the first energy storage battery string is 6V, and the battery voltage of the second energy storage battery string is 8V, Generate a voltage compensation enable signal, and send the voltage compensation enable signal to the switch unit in the power supply system, so that the switch unit connects the voltage compensation unit to the first energy storage battery string based on the voltage compensation enable signal
  • the output voltage of the voltage compensation unit is 2V, so that the first energy storage battery string will not be overcharged or overdischarged, while the second energy storage battery string can be fully charged or fully discharged. That is, it can be understood that the battery voltages between the energy storage battery strings reach an equilibrium state.
  • the controller may be provided in a power supply system, a charging device or an electrical device.
  • FIG. 2 is a structural block diagram of a power supply system provided by an embodiment of the present application.
  • the power supply system may include: a first branch 201 where the first string 2011 is located, a second branch 202 where the second string 2022 is located, a switch unit 203 and a first voltage compensation unit 204 .
  • the first branch 201 is connected in parallel with the second branch 202
  • the switch unit 203 is connected to the first branch 201 , the second branch 202 and the first voltage compensation unit 204 respectively.
  • the switch unit 203 connects the first voltage compensation unit 204 to the first branch 201 according to the voltage compensation enable signal received from the controller 207 .
  • the input terminal of the controller 207 is connected to the first group string 2011 and the second group string 2022, and the input terminals connected to the first group string 2011 and the second group string 2022 may be the same port or different ports.
  • the output terminal of the controller 207 is connected to the first voltage compensation unit 204 .
  • the controller 207 can acquire the working state parameters of the first string 2011 and the second string 2022 in real time, and generate the above-mentioned voltage compensation enable signal according to the working state parameters of the first string 2011 and the working state parameters of the second string 2022 .
  • the first voltage compensation unit 204 compensates the output voltage of the first branch 201 .
  • the working state parameter of the group string may be the output voltage, and/or the output current, and/or the output power, etc. of the group string, and the present application takes the output voltage as an example for description.
  • the controller 207 acquires the operating state parameters of the first string 2011 and the second string 2022 , and generates the voltage compensation enable signal according to the operating state parameters of the first string 2011 and the operating state parameters of the second string 2022 .
  • the controller 207 can generate a voltage compensation enable signal, and switch to the The switch unit 203 sends the voltage compensation enable signal, and when the switch unit 203 receives the voltage compensation enable signal, controls the first voltage compensation unit 204 to access the first branch 201 .
  • the first voltage compensation unit 204 is only connected to the first branch 201 that needs voltage compensation, and the second branch 202 that does not need voltage compensation is not connected to the first voltage compensation unit 204, so as to avoid the voltage compensation unit in the first Unnecessary system losses are caused in the two branches 202, and at the same time, the number of voltage compensation units in the power supply system can be reduced, and the system cost can be reduced.
  • the power supply system further includes a first DC bus 205 and a second DC bus 206
  • the first voltage compensation unit 204 includes a first output terminal and a second output terminal, wherein the first output terminal is connected to The first DC bus 205 .
  • the switch unit 203 controls the first voltage compensation unit 204 to access the first branch 201, which can be specifically implemented as connecting the second output end of the first voltage compensation unit 204 to the first branch circuit 201.
  • One end of the first set of strings 2011. The other end of the first string 2011 is connected to the second DC bus 206 .
  • the switch unit 203 connects one end of the second group string 2022 to the first DC bus 205 when receiving the above-mentioned voltage compensation enable signal.
  • the other end of the second string 2022 is connected to the second DC bus 206 .
  • the first voltage compensation unit 204 is neither connected to the first branch 201 nor the second branch 202 .
  • the controller 207 may not generate the above voltage according to the operating state parameters of the first string 2011 and the operating state parameters of the second string 2022
  • the compensation enable signal or the voltage compensation default signal is generated.
  • the switch unit 203 does not receive the voltage compensation enable signal or receives the voltage compensation default signal, it controls the first voltage compensation unit 204 to neither access the first branch. 201 is also not connected to the second branch 202 .
  • the power supply system is applied to photovoltaics
  • the first string 2011 and the second string 2022 are photovoltaic strings
  • the controller 207 may be provided in a photovoltaic inverter control module in the power supply system.
  • the first group string 2011 and the second group string 2022 are respectively provided with processors, and each processor can collect the working state parameters of the corresponding group strings, and summarize the collected working state parameters into any
  • the processor that obtains all the working state parameters of the strings is the controller 207 .
  • the controller 207 can also determine the voltage compensation reference value according to the working state parameter of the first group string 2011 and the working state parameter of the second group string 2022, and send the voltage compensation reference value to the first voltage compensation unit 204,
  • the first voltage compensation unit 204 is made to compensate the output voltage of the first branch 201 according to the voltage compensation reference value, that is, the output voltage of the first voltage compensation unit 204 is equal to the voltage compensation reference value.
  • the voltage compensation reference value is 100V, that is, the output voltage of the first voltage compensation unit 204 is 100V.
  • the input of the first voltage compensation unit 204 may be from a DC voltage source independent of the power supply system. In another alternative embodiment, the input of the first voltage compensation unit 204 may be the second set of strings 2022 . In a specific implementation, the first voltage compensation unit 204 further includes a first input end and a second input end, the first input end of the first voltage compensation unit 204 is connected to the first DC bus 205 , and the first voltage compensation unit 204 The second input terminal is connected to the second DC bus 206 .
  • the first input terminal of the first voltage compensation unit 204 is a negative input terminal; when the first DC bus 205 is a positive DC bus, the first input terminal of the first voltage compensation unit 204 The input terminal is the positive input terminal.
  • the first voltage compensation unit 204 may include a non-isolated step-down conversion circuit.
  • FIG. 3 is a circuit schematic diagram of a voltage compensation unit provided by an embodiment of the present application.
  • the non-isolated step-down conversion circuit ie, the buck circuit
  • the non-isolated step-down conversion circuit includes a switch K1, an inductor L1, a diode D5 and a capacitor C1. It can be understood that the non-isolated step-down conversion circuit represents the difference between the input and output of the conversion circuit. It has an electrical connection, which is different from the use of a transformer in an isolated circuit to electrically isolate the input and output of the conversion circuit.
  • the switch K1 can be an insulated gate bipolar transistor (Insulated Gate Bipolar Transistor, IGBT) and its anti-parallel diode, or can be a metal-oxide-semiconductor field-effect transistor (Metal-Oxide-Semiconductor Field-Effect Transistor, MOSFET).
  • IGBT Insulated Gate Bipolar Transistor
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • the input and output are isolated, otherwise the converter cannot work normally, but the isolated converter is bulky and low in efficiency.
  • the two strings share a voltage compensation unit, and the voltage compensation unit uses the string that does not need voltage compensation as the input power supply, and outputs to the string that needs voltage compensation, so it can be small in size and high in efficiency.
  • the non-isolated step-down converter circuit reduces the system volume and improves the system efficiency.
  • the first voltage compensation unit 204 may also use an isolated resonant circuit, an isolated phase-shift circuit or a flyback circuit.
  • switch unit The specific implementation of the switch unit will be exemplarily described below with reference to FIGS. 4 to 9 .
  • FIG. 4 is a schematic diagram of a system architecture of a power supply system provided by an embodiment of the present application.
  • the power supply system in this embodiment may include a first branch 401 where a first group string 4011 is located, a second group string The second branch 402 where 4022 is located, the switch unit 403 and the first voltage compensation unit 404.
  • the switch unit 403 includes a first switch sub-switch 4031 between the first voltage compensation unit 404 and the first string 4011, and the switch unit 403 compensates according to the voltage received from the controller (not shown in the figure).
  • the enable signal controls the first switching sub-switch 4031 to connect the first voltage compensation unit 404 and the first group string 4011 .
  • the controller may be located in the photovoltaic inverter control module included in the power supply system of this embodiment.
  • the controller generates the above voltage compensation enable signal, which may be sent to the switch unit 403 , or sent to at least one processor, and the processor may forward the signal to the switch unit 403 .
  • the first switching sub-switch 4031 may be a contact switch, including a first terminal, a second terminal and a third terminal.
  • the first end of the first switching sub-switch 4031 is connected to one end of the first group string 4011; the second end of the first switching sub-switch 4031 is connected to the second output end of the first voltage compensation unit 404; the first switching sub-switch 4031
  • the third end of the first string 4011 and the other end of the second string 4022 are respectively connected to the second DC bus 406 .
  • the first DC bus 405 may be a positive DC bus or a negative DC bus.
  • the switch unit 403 controls the first switch sub-switch 4031 to connect the first voltage compensation unit 404 and the first group string 4011, and specifically controls the first end of the first switch sub-switch 4031 to connect with the second end.
  • the first switch sub-switch 4031 may include a single changeover contact switch as shown in FIG. 5A .
  • the single change-over contact switch includes two stationary contacts a2 and a3, a moving contact a1 and a coil, wherein a1 is connected to the first end of the first changeover sub-switch 4031, and a2 is connected to the first end of the first changeover sub-switch 4031 The two terminals are connected, and a3 is connected to the third terminal of the first switch sub-switch 4031 .
  • the switch unit 403 controls the coil of the single change-over contact switch to flow current, so that a1 and a2 are in contact, that is, the first end of the first switch sub-switch 4031 is connected to the second end, thereby connecting the first voltage compensation unit 404 and the second end.
  • a1 and a2 are in contact, that is, the first end of the first switch sub-switch 4031 is connected to the second end, thereby connecting the first voltage compensation unit 404 and the second end.
  • a1 and a2 are in contact, that is, the first end of the first switch sub-switch 4031 is connected to the second end, thereby connecting the first voltage compensation unit 404 and the second end.
  • String 4011 and first DC bus 405 exemplary, in the default state of the single change-over contact switch, no current flows through the coil, and a1 is in contact with a3, that is, the default state of the first switch sub-switch 4031 is that
  • the first switch sub-switch 4031 may include two single normally open contact switches as shown in FIG. 5B .
  • Each single normally open contact switch includes a static contact, a moving contact and a coil.
  • the single normally open contact switch can be understood as the static contact and the moving contact are disconnected in the default state.
  • the moving contacts of the two single normally open contact switches are b1 and b2 respectively, and the static contacts of the two single normally open contact switches are b3 and b4 respectively.
  • b1 and b2 are both connected to the first end of the first switch sub-switch 4031
  • b3 and b4 may be connected to either the second end or the third end of the first switch sub-switch 4031 .
  • b3 is connected to the second end of the first changeover sub-switch 4031, and b4 is connected to the third end of the first changeover sub-switch 4031.
  • the changeover switch unit 403 controls the coil of the single normally open contact switch where b3 is located to flow current. , so that b1 and b3 are in contact, that is, the first end of the first switching sub-switch 4031 is connected to the second end, so that the first voltage compensation unit 404 and the first group string 4011 are connected.
  • the switch unit 403 controls the coil of the single normally open contact switch where b4 is located to flow current, and b2 is in contact with b4, that is, the first end of the first changeover sub-switch 4031 is connected to the third end, Thus, the first group string 4011 and the first DC bus 405 are connected.
  • the first switch sub-switch 4031 may include a single normally open contact switch and a single normally closed contact switch as shown in FIG. 5C , the single normally open contact switch and the single normally closed contact switch Contact switches include a static contact, a moving contact and a coil.
  • the difference between the single normally closed contact switch and the single normally open contact switch is that the static contact and the moving contact of the single normally closed contact switch are in contact by default.
  • the moving contact of the single normally closed contact switch is c2, and the static contact is c4; the moving contact of the single normally open contact switch is c1, and the static contact is c3.
  • both c1 and c2 are connected to the first terminal of the first switch sub-switch 4031
  • c3 is connected to the second terminal of the first switch sub-switch 4031
  • c4 is connected to the third terminal of the first switch sub-switch 4031 .
  • the switch unit 403 controls the coil of the single normally open contact switch where c3 is located to flow current, so that c1 is in contact with c3, that is, the first end of the first switch sub-switch 4031 is connected to the second end, thereby connecting the first voltage compensation unit 404 with the first set of strings 4011.
  • the switch unit 403 Since the single normally closed contact switch is in contact with c2 and c4 in the default state, that is, the first end of the first switch sub-switch 4031 is connected to the third end, the switch unit 403 also needs to connect the first voltage compensation unit 404 with the third end.
  • the coil of the single normally closed contact switch where c4 is located is further controlled to flow current, so that c2 and c4 are not in contact, that is, the first end and the third end of the first switching sub-switch 4031 are disconnected, thereby breaking the circuit.
  • the first group string 4011 and the first DC bus 405 are opened.
  • the switch unit 403 may further include a second switch sub-switch 4032.
  • the switch unit 403 controls the second switch sub-switch 4032 to connect to the power supply system according to the received voltage compensation enable signal.
  • the second switch sub-switch 4032 can be a contact switch, including a first terminal, a second terminal and a third terminal.
  • the second output terminal of a voltage compensation unit 404 is connected, and the third terminal is connected to the first DC bus 405 .
  • the first switching sub-switch 4031 connecting the first voltage compensation unit 404 and the first string 4011
  • the second switching sub-switch 4032 connecting the second string 4022 and the first DC bus 405
  • the specific For the structure reference may be made to the description of the first switching sub-switch 4031 in FIGS. 5A to 5C , which will not be repeated here. It can be understood that, the first switching sub-switch 4031 and the second switching sub-switch 4032 may be integrated into one switching device, or may be set independently, and this embodiment does not limit the setting positions of the switching sub-switches.
  • the first switching sub-switch 4031 and/or the second switching sub-switch 4032 can be implemented as any one of FIGS. 5A to 5C , and the first voltage compensation unit 404 is controlled to be connected to the first branch 401 and not connected to into the second branch 402 to achieve the beneficial effects described in FIG. 2 , which will not be repeated here.
  • FIG. 6 is a schematic diagram of the system architecture of another power supply system provided by an embodiment of the present application.
  • the power supply system in this embodiment may include a first branch 601 where the first group string 6011 is located, a second group The second branch 602 where the string 6022 is located, the switch unit 603 and the first voltage compensation unit 604.
  • the switch unit 603 includes a first switch sub-switch 6031a between the first voltage compensation unit 604 and the first string 6011, and the switch unit 603 compensates according to the voltage received from the controller (not shown in the figure).
  • the enable signal controls the first switching sub-switch 6031a to connect the first voltage compensation unit 604 with the first group string 6011 .
  • the controller may be located in the photovoltaic inverter control module included in the power supply system of this embodiment.
  • the controller generates the foregoing voltage compensation enable signal, which may be sent to the switch unit 603 , or sent to at least one processor, and the processor may forward the signal to the switch unit 603 .
  • the first switching sub-switch 6031a may be a semiconductor switch, including a first terminal, a second terminal and a third terminal.
  • the first end of the first switching sub-switch 6031a is connected to one end of the first group string 6011; the second end of the first switching sub-switch 6031a is connected to the second output end of the first voltage compensation unit 604; the first switching The third end of the sub-switch 6031a and the first output end of the first voltage compensation unit 604 are respectively connected to the first DC bus 605; the other end of the first string 6011 and the other end of the second string 6022 are respectively connected to the second DC bus 605 bus 606.
  • the first switching sub-switch 6031a in this embodiment may include a first semiconductor switch and a second semiconductor switch as shown in FIG. 6 . semiconductor switch.
  • the first semiconductor switch is Q1 for connecting the first voltage compensation unit 604 with the first string 6011 ;
  • the second semiconductor switch is Q2 for disconnecting the first string 6011 and the first DC bus 605 .
  • both the first semiconductor switch Q1 and the second semiconductor switch Q2 are MOSFETs.
  • the source of the first semiconductor switch Q1 and the drain of the second semiconductor switch Q2 are respectively connected to the first terminal of the first switching sub-switch 6031a; the drain of the first semiconductor switch Q1 is connected to the second terminal of the first switching sub-switch 6031a,
  • the source of the second semiconductor switch Q2 is connected to the third terminal of the first switching sub-switch 6031a.
  • the switch unit 603 outputs a drive signal to the first semiconductor switch Q1 according to the received voltage compensation enable signal, and controls the first semiconductor switch Q1 to be turned on, thereby connecting the first voltage compensation unit 604 and the first group of strings 6011; and The output of the driving signal to the second semiconductor switch Q2 is stopped, and the second semiconductor switch Q2 is controlled to be turned off, thereby disconnecting the first group string 6011 and the first DC bus 605 .
  • the semiconductor switch as the switch unit, compared with the contact switch, the volume of the power supply system can be reduced, and the on and off operations can be performed under the condition of high voltage and high current, which improves the safety of the system.
  • the first switching sub-switch 6031a may include a third semiconductor switch and a diode as shown in FIG. 7 .
  • the third semiconductor switch is Q5, which is used to connect the first voltage compensation unit 604 and the first group of strings 6011; the diode is D1, and the third semiconductor switch Q5 is used to connect the first voltage compensation unit 604 and the first group of strings 6011. In the case of reverse cut-off state, the first group string 6011 and the first DC bus 605 are disconnected.
  • the source of the third semiconductor switch Q5 and the cathode of the diode D1 are respectively connected to the first terminal of the first switching sub-switch 6031a, the drain of the third semiconductor switch Q5 is connected to the second terminal of the first switching sub-switch 6031a, and the anode of the diode D1
  • the third terminal of the first switch sub-switch 6031a is connected.
  • the switch unit 603 outputs a driving signal to the third semiconductor switch Q5 according to the received voltage compensation enable signal, and controls the third semiconductor switch Q5 to be turned on, thereby connecting the first voltage compensation unit 604 and the first group of strings 6011.
  • the specific implementation principle is: the third semiconductor switch Q5 is in the conducting state.
  • the first DC bus 605 is the negative DC bus V-
  • the first DC bus 605 is connected to the first DC bus 605
  • the first output terminal of the voltage compensation unit 604 is a negative output terminal
  • the second output terminal is a positive output terminal.
  • the positive voltage output by the positive output terminal of the first voltage compensation unit 604 is applied to the first switching sub-switch 6031a through the third semiconductor switch Q5.
  • the first terminal is the cathode terminal of the diode D1
  • the negative voltage output from the negative output terminal of the first voltage compensation unit 604 is applied to the anode terminal of the diode D1, so that the diode D1 is turned off in the reverse direction, that is, the first string 6011 is connected to the first The DC bus 605 is disconnected.
  • the system cost is further reduced relative to using two semiconductor switches.
  • FIG. 8 is a schematic diagram of a system architecture of another power supply system provided by an embodiment of the present application.
  • the first switching sub-switch 6031a is replaced with the first switching sub-switch 6031b shown in FIG. 8
  • the first switching sub-switch 6031b includes a fourth semiconductor switch and a fifth semiconductor switch, the fourth switching sub-switch 6031b
  • the semiconductor switch is Q6 and the fifth semiconductor switch is Q7.
  • the drain of the fourth semiconductor switch Q6 and the source of the fifth semiconductor switch Q7 are respectively connected to the first terminal of the first switching sub-switch 6031b, and the source of the fourth semiconductor switch Q6 is connected to the second terminal of the first switching sub-switch 6031b, The drain of the fifth semiconductor switch Q7 is connected to the third terminal of the first switching sub-switch 6031b.
  • the switch unit 603 outputs a drive signal to the fourth semiconductor switch Q6 according to the received voltage compensation enable signal, and controls the fourth semiconductor switch Q6 to be turned on, thereby connecting the first voltage compensation unit 604 and the first group of strings 6011; and The output of the driving signal to the fifth semiconductor switch Q7 is stopped, and the fifth semiconductor switch Q7 is controlled to be turned off, thereby disconnecting the first group string 6011 and the first DC bus 605 .
  • the first switching sub-switch 6031b may include a sixth semiconductor switch and a diode as shown in FIG. 9 .
  • the sixth semiconductor switch is Q10
  • the diode is D2
  • the drain of the sixth semiconductor switch Q10 and the anode of the diode D2 are respectively connected to the first end of the first switching sub-switch 6031b
  • the source of the sixth semiconductor switch Q10 is connected to the first end of the first switching sub-switch 6031b.
  • the second terminal of the switching sub-switch 6031b is connected, and the cathode of the diode D2 is connected to the third terminal of the first switching sub-switch 6031b.
  • the switch unit 603 outputs a drive signal to the sixth semiconductor switch Q10 according to the received voltage compensation enable signal, and controls the sixth semiconductor switch Q10 to be turned on, thereby connecting the first voltage compensation unit 604 and the first group string 6011.
  • the specific implementation principle is: the sixth semiconductor switch Q10 is in an on state, since the first DC bus 605 is a positive DC bus, the first voltage compensation unit connected to the first DC bus 605
  • the first output terminal of 604 is a positive output terminal
  • the second output terminal is a negative output terminal
  • the negative voltage output by the negative output terminal of the first voltage compensation unit 604 is applied to the first switching sub-switch 6031b through the sixth semiconductor switch Q10.
  • the first DC bus 605 can be adapted to two situations in which the first DC bus 605 is a positive DC bus or a negative DC bus, thereby improving the applicability of the power supply system.
  • the switch unit 603 may further include a second switch sub-switch 6032a, and the switch unit 603 can compensate the voltage according to the received voltage.
  • the power signal controls the second switching sub-switch 6032a to connect the first DC bus 605 and the second string 6022 in the power supply system.
  • the second switch sub-switch 6032a may be a semiconductor switch, including a first terminal, a second terminal and a third terminal. The first terminal of the second switch sub-switch 6032a is connected to one end of the second string, and the second terminal is connected to the first voltage The second output terminal of the compensation unit 604 is connected, and the third terminal is connected to the first DC bus 605 .
  • the second switching sub-switch 6032a connects the second string 6022 and the first DC bus 605, and the second switching sub-switch 6032a
  • the description of the first switching sub-switch 6031a with reference to FIG. 6 to FIG. 7 , which will not be repeated here.
  • the switch unit 603 may further include a second switch sub-switch 6032b, and the switch unit 603 enables compensation according to the received voltage. signal to control the second switching sub-switch 6032b to connect the first DC bus 605 with the second string 6022 .
  • the second switch sub-switch 6032b may be a semiconductor switch, including a first terminal, a second terminal and a third terminal. The first terminal of the second switch sub-switch 6032b is connected to one end of the second string, and the second terminal is connected to the first The second output terminal of the voltage compensation unit 604 is connected, and the third terminal is connected to the first DC bus 605 .
  • the second switching sub-switch 6032b connecting the second string 6022 and the first DC bus 605
  • the specific For the structure reference may be made to the description of the first switching sub-switch 6031b in FIG. 8 to FIG. 9 , which will not be repeated here.
  • the switch unit in the present application may include at least one contact switch and/or at least one semiconductor switch, that is, the specific structures of the first switch sub-switch and the second switch sub-switch may be different, for example, the first switch sub-switch and the second switch sub-switch may have different specific structures.
  • One toggle sub-switch is a contact switch and the second toggle sub-switch is a semiconductor switch, or vice versa.
  • the semiconductor switches Q1, Q2, Q3, Q4, etc. may be MOSFETs, or may be IGBTs and their anti-parallel diodes. 4 to 9, the MOSFET is used as an example. If Q1, Q2, Q3, Q4, etc. are IGBTs and their anti-parallel diodes, the source of the MOSFET is replaced with the emitter of the IGBT, and the drain of the MOSFET is replaced. It is the collector of the IGBT, the anode of the anti-parallel diode is connected to the emitter of the IGBT, and the cathode is connected to the collector of the IGBT.
  • FIG. 10 is a schematic diagram of a system architecture of another power supply system provided by an embodiment of the present application.
  • Each group string in this embodiment includes at least one DC component and a converter corresponding to the DC component, and the converter is used to adjust the working state of the corresponding DC component.
  • the output end of the DC component 1-1 is connected to the input end of the converter 1-1
  • the output end of the DC component 1-2 is connected to the input end of the converter 1-2
  • the output end of the DC component 1-a The input ends of the converters 1-a are connected, and the output ends of the converters 1-1, 1-2...
  • the two DC buses 1006 are connected, and the second output terminal of the converter 1-a is connected to the switch unit 1003, where a is not less than 1; similarly, the output terminal of the DC component 2-1 is connected to the input terminal of the converter 2-1 , the output end of the DC component 2-2 is connected to the input end of the converter 2-2, the output end of the DC component 2-b is connected to the input end of the converter 2-b, each converter 2-1, 2-2...2
  • the output terminals of -b are sequentially connected in series to form a second group string 10022, the first output terminal of the converter 2-1 is connected to the second DC bus 1006, the second output terminal of the converter 2-b is connected to the switch unit 1003, where b is not less than 1.
  • b can be the same as a or different from a.
  • Each of the above-mentioned converters converts the input voltage into a constant voltage through buck-boost, that is, by using the converter to adjust the voltage of the DC components in the string, thereby optimizing the working state of the DC components.
  • the first DC bus 1005 may be a negative DC bus or a positive DC bus.
  • the first output terminal of the converter is a positive output terminal, and the second output terminal is a negative output terminal;
  • the first DC bus 1005 is a positive DC bus, the first output terminal of the converter is a positive output terminal.
  • One output terminal is a negative output terminal, and the second output terminal is a positive output terminal.
  • the DC components can be photovoltaic modules, ie solar cell modules.
  • the present application can also be applied in energy storage scenarios, that is, the DC component can be an energy storage battery, such as a nickel-cadmium battery, a nickel-metal hydride battery, a lithium-ion battery, a lithium-polymer battery, and the like.
  • FIG. 11 is a schematic diagram of a system architecture of another power supply system provided by an embodiment of the present application.
  • FIG. 11 takes the example that the first group string 1101 includes two sub-group strings 11011 and 11012 , which is not exhaustive, and should be understood as including but not limited to two sub-group strings. That is, the first group string 1101 may include at least two subgroup strings.
  • the first substring 11011 and the second substring 11012 are connected in parallel to form the first string 1101, and the output voltage ranges corresponding to the maximum power points of the first substring 11011 and the second substring 11012 at least partially overlap.
  • the voltage and power curve of the first substring 11011 can be the C curve in FIG. 12
  • the voltage and power curve of the second substring 11012 can be the D curve in FIG. 12 .
  • the first substring 11011 and the second substring The output voltage ranges corresponding to the respective maximum power points of 11012 overlap between 250V and 310V. At this time, it is considered that the first substring 11011 and the second substring 11012 have a high degree of adaptation.
  • the maximum power point tracking (MPPT) control can be used to convert the first sub-string 11012.
  • the output voltage of one substring 11011 is adjusted to 300V, or the output voltage of the second substring 11012 is adjusted to 280V through MPPT control, or the output voltage of the first substring 11011 is adjusted to 290V through MPPT control and the first substring 11011 is adjusted to 290V through MPPT control.
  • the output voltage of the two sub-strings 11012 is adjusted to 290V and so on.
  • MPPT control can be understood as continuously adjusting the output voltage of the target string according to the working environment of the target string (such as light intensity, ambient temperature, etc.), so that the target string can output the maximum power.
  • the above-mentioned MPPT control is exemplified by adjusting the output voltage of the first substring 11011 and/or the second substring 11012 to be 300V, 280V or 290V, and is not exhaustive. That is, the output voltages of the first sub-string 11011 and the second sub-string 11012 can be adjusted to be the same through MPPT control, thereby sharing the first switching sub-switch 11031 and the first voltage compensation unit 1104 .
  • the system cost can be further reduced by connecting the two subgroups with a higher degree of adaptation in series and parallel, and sharing a switch unit and a voltage compensation unit.
  • the first sub-string 11011 and/or the second sub-string 11012 may include at least one DC component and a converter corresponding to the DC component.
  • the implementation described above in conjunction with FIG. 10 For example, it will not be repeated here.
  • the first DC bus 1105 may be a negative DC bus, and the second DC bus 1106 may be a positive DC bus; or the first DC bus 1105 may be a positive DC bus, and the second DC bus 1106 may be a negative DC bus.
  • the second string 1102 may also include at least two substrings, and each substring shares the second switching sub-switch 11032 and the first voltage compensation unit 1104 . That is, each string in the power supply system may include at least two sub-strings, and not only one of the strings may include sub-strings.
  • the number of sub-strings included in a string depends on whether the output voltage ranges corresponding to the maximum power points between the sub-strings overlap. If the output voltage ranges corresponding to the maximum power points overlap, they can be connected in parallel to share a voltage. Compensation unit and a toggle sub-switch.
  • FIG. 13 is a schematic diagram of a system architecture of another power supply system provided by an embodiment of the present application.
  • Fig. 13 is an example in which the power supply system includes three branches where three strings are located and two voltage compensation units, which is not exhaustive. It should be understood that the power supply system may include N branches where N strings are located and M Voltage compensation unit, N and M are both positive integers, and M is less than N. As shown in FIG.
  • the power supply system in this embodiment may include a first branch 1301 where the first string 13011 is located, a second branch 1302 where the second string 13022 is located, and a third branch where the third string 13033 is located
  • the switch unit 1304 may include a first switch sub-switch 13041 , a second switch sub-switch 13042 and a third switch sub-switch 13043 .
  • Each switch sub-switch includes a first terminal, a second terminal and a third terminal, wherein the first terminal of the first switch sub-switch 13041 is connected to one end of the first group string 13011, and the second terminal of the first switch sub-switch 13041 is connected to The second output terminal of the first voltage compensation unit 1305 is connected, the third terminal of the first switching sub-switch 13041 and the first output terminal of the first voltage compensation unit 1305 are respectively connected to the first DC bus 1307; the second switching sub-switch The first end of 13042 is connected to one end of the second group string 13022, the second end of the second switch sub-switch 13042 is connected to the second output end of the second voltage compensation unit 1306, and the third end of the second switch sub-switch 13042 and The first output terminals of the second voltage compensation unit 1306 are respectively connected to the first DC bus 1307; the first terminal of the third switching sub-switch 13043 is connected to one terminal of the third string 13033, and the second switching The terminal is connected to
  • the controller obtains the working state parameters of the first string 13011, the second string 13022 and the third string 13033, and generates voltage compensation according to the working state parameters of the first string 13011, the second string 13022 and the third string 13033 enable signal.
  • the controller when the output voltages of the first string 13011 , the second string 13022 and the third string 13033 are different, the controller generates a voltage compensation enable signal, and sends the voltage compensation to the switch unit 1304 enable signal.
  • the switch unit 1304 connects some or all of the voltage compensation units to some branches respectively according to the voltage compensation enable signal.
  • the switch unit 1304 controls the first voltage compensation unit 1305 to connect to the first branch 1301, and the second voltage compensation unit 1306 to connect to the second branch 1302; or the output voltages of the first string 13011 and the third string 13033 are relatively small, the switch unit 1304 controls the first voltage compensation unit 1305 to be connected to the first branch 1301, and the second voltage compensation unit 1306 to be connected The third branch 1303; or the output voltages of the second string 13022 and the third string 13033 are relatively small, and the switch unit 1304 controls the second voltage compensation unit 1306 to access the second branch 1302 and the first voltage compensation unit 1305 Connect to the third branch 1303; or the output voltage of the first string 13011 is small, the switch unit 1304 controls the first voltage compensation unit 1305 to connect to the first branch 1301, and the second voltage compensation unit 1306 outputs the voltage can be zero; or the output voltage of the second group string 13022 is relatively small, the switch unit 1304 controls the second voltage compensation unit
  • the voltage compensation unit By connecting the voltage compensation unit to the branch that needs voltage compensation, and not to the branch that does not need voltage compensation, the voltage compensation unit is not connected to avoid unnecessary voltage compensation units in the branch that does not need voltage compensation.
  • System loss, and the number of voltage compensation units is less than the number of strings, compared with the number of voltage compensation units in the prior art equal to the number of strings, the number of voltage compensation units can be reduced and the system cost can be reduced.
  • the first branch 1301 , the second branch 1302 and the third branch 1303 may not be connected to any voltage compensation unit in a default state.
  • the above-mentioned controller can The working state parameters of the 2000 do not generate the voltage compensation enable signal or generate the voltage compensation default signal.
  • the switch unit 1304 does not receive the voltage compensation enable signal or receives the voltage compensation default signal, it controls the voltage compensation unit not to connect to the first branch. Road 1301, second branch 1302 and third branch 1303.
  • the controller of this embodiment may be provided in a photovoltaic inverter control module included in the power supply system.
  • the above-mentioned controller can also determine at least one voltage compensation reference value according to the working state parameters of the first group string 13011, the second group string 13022 and the third group string 13033, and send the reference value to the first voltage compensation unit 1305 and the third group string respectively.
  • the second voltage compensation unit 1306 sends the corresponding voltage compensation reference value, so that the first voltage compensation unit 1305 compensates the first branch 1301 or the third branch 1303 according to the received voltage compensation reference value, and the second voltage compensation unit 1306 compensates according to the received voltage compensation reference value.
  • the received voltage compensation reference value compensates the second branch 1302 or the third branch 1303 .
  • the output voltage value of the first group string 13011 is 200V
  • the output voltage value of the second group string 13022 is 300V
  • the output voltage value of the third group string 13033 is 250V
  • the controller to the first voltage compensation unit The voltage compensation value sent by 1305 is 100V
  • the voltage compensation value sent to the second voltage compensation unit 1306 is 50V.
  • first switching sub-switch 13041 and the second switching sub-switch 13042 may refer to the embodiments described in FIGS. 4 to 9 , and details are not repeated here.
  • the specific structure and specific implementation manner of the third switching sub-switch 13043 will be exemplarily described below with reference to FIGS. 14A to 15D .
  • the third switch sub-switch 13043 may be a contact switch. Referring to Figures 14A-14B.
  • the third switch sub-switch 13043 may include three single normally open contact switches as shown in FIG. 14A , each single normally open contact switch includes a static contact, a dynamic contact Contact and a coil, a single normally open contact switch can be understood as the default state when the static contact and the moving contact are disconnected.
  • the moving contacts of the three single normally open contact switches are A1, A2 and A3 respectively, and the static contacts of the three single normally open contact switches are A4, A5 and A6 respectively.
  • A1 , A2 and A3 are all connected to the first terminal of the third switch sub-switch 13043 .
  • A4, A5 and A6 may be connected to any one of the fourth terminal, the second terminal or the third terminal of the third switching sub-switch 13043.
  • the switch unit 1304 controls whether current flows through the coils of each single normally open contact switch to control whether each contact is in contact, thereby controlling whether each port of the third switch sub-switch 13043 is connected.
  • A4 is connected to the fourth end of the third changeover sub-switch 13043
  • A5 is connected to the second end of the third changeover sub-switch 13043
  • A6 is connected to the third end of the third changeover sub-switch 13043.
  • the changeover switch unit 1304 controls the A current flows through the coil where A5 is located, so that A2 and A5 are in contact, that is, the first end of the third switching sub-switch 13043 is connected to the second end, thereby connecting the first voltage compensation unit 1305 and the third group string 13033, the first voltage compensation unit 1305 is connected to the third branch 1303; or the switch unit 1304 controls the coil where A6 is located to flow current, so that A3 and A6 are in contact, that is, the first end of the third switch sub-switch 13043 is connected to the third end, thereby connecting the second voltage
  • the compensation unit 1306 is connected to the third string 13033, and the second voltage compensation unit 1306 is connected to the third branch 1303; or the switch unit 1304 controls the coil where A4 is located to flow current, so that A1 and A4 are in contact, that is, the third switch sub-switch 13043
  • the first end of the 1 is connected to the fourth end, so as to connect the third string 13033 and the first DC bus 13
  • the third switch sub-switch 13043 may include a single normally closed contact switch and two single normally open contact switches as shown in FIG. 14B .
  • Both the single normally open contact switch and the single normally closed contact switch include a static contact, a moving contact and a coil.
  • the difference between the single normally closed contact switch and the single normally open contact switch is that the static contact and the moving contact of the single normally closed contact switch are in contact by default.
  • the moving contact of the single normally closed contact switch is B1 and the static contact is B4; the moving contacts of the two single normally open contact switches are B2 and B3 respectively, and the static contacts are B5 and B6 respectively.
  • B1, B2 and B3 are all connected to the first terminal of the third switch sub-switch 13043, and B4 is connected to the fourth terminal of the third switch sub-switch 13043.
  • B1 and B4 are in contact, that is, the third switch sub-switch 13043 is in the In the default state, the first terminal is connected to the fourth terminal, connecting the third string 13033 and the first DC bus 1307, and the third branch 1303 is not connected to any voltage compensation unit.
  • B5 and B6 can be connected to either the second terminal or the third terminal of the third switching sub-switch 13043 .
  • the switch unit 1304 controls whether the coils of the single normally closed contact switch and the single normally open contact switch flow current to control whether the contacts are in contact, thereby controlling whether the port of the third switch sub-switch 13043 is connected. In this embodiment, it is connected with B5
  • the second end of the third switch sub-switch 13043 and B6 are connected to the third end of the third switch sub-switch 13043 for example, the switch unit 1304 controls the coil where B5 is located to flow current, so that B2 and B5 are in contact, that is, the third switch sub-switch
  • the first end of 13043 is connected to the second end, thereby connecting the first voltage compensation unit 1305 and the third group string 13033, the first voltage compensation unit 1305 is connected to the third branch 1303, and the switch unit 1304 also controls the coil where B4 is located.
  • the switch unit 1304 controls the coil where B6 is located to flow current, so that B3 and B6 are in contact, that is, the first end of the third switch sub-switch 13043 is connected to the third end, thereby connecting the second voltage compensation unit 1306 and the third group string 13033 , the second voltage compensation unit 1306 is connected to the third branch 1303, and the switch unit 1304 also controls the coil where B4 is located to flow current, so that B1 and B4 are not in contact, that is, the first end of the third switch sub-switch 13043 is connected to the fourth The terminal is disconnected, thereby disconnecting the third group string 13033 from the first DC bus 1307 .
  • the third switching sub-switch 13043 may be a semiconductor switch, refer to FIGS. 15A to 15D .
  • the third switching sub-switch 13043 may include a seventh semiconductor switch, an eighth semiconductor switch, and a ninth semiconductor switch as shown in FIG. 15A .
  • the seventh semiconductor switch is Q11, which is used to control the on-off between the first DC bus 1307 and the third group string 13033;
  • the eighth semiconductor switch is formed by connecting Q14 and Q15 to the top, and is used to control the first voltage
  • the ninth semiconductor is formed by connecting Q12 and Q13 on top of each other, and is used to control the on-off between the second voltage compensation unit 1306 and the third string 13033 .
  • the source of Q14 is connected to the source of Q15, the source of Q12 is connected to the source of Q13, the drain of Q11, the drain of Q12 and the drain of Q14 are respectively connected to the first end of the third switching sub-switch 13043 , the source of Q11 is connected to the fourth terminal of the third switching sub-switch 13043 , the drain of Q13 is connected to the third terminal of the third switching sub-switch 13043 , and the drain of Q15 is connected to the second terminal of the third switching sub-switch 13043 .
  • the source of Q11 is connected to the fourth terminal of the third switching sub-switch 13043
  • the drain of Q13 is connected to the third terminal of the third switching sub-switch 13043
  • the drain of Q15 is connected to the second terminal of the third switching sub-switch 13043 .
  • the second terminal of the third switching sub-switch 13043 is connected to the first voltage compensation unit 1305, and the third terminal is connected to the second voltage compensation unit 1306.
  • the relationship between the output voltages of the first voltage compensation unit 1305 and the second voltage compensation unit 1306 is uncertain, and the MOSFET has a parasitic diode or the IGBT has an anti-parallel diode.
  • the second voltage compensation unit 1306 applies a voltage of 20V to the third
  • the first terminal of the switch sub-switch 13043 is switched, and the second terminal of the third switch sub-switch 13043 is applied with a voltage of 10V by the first voltage compensation unit 1305, and the voltage between the first terminal and the second terminal of the third switch sub-switch 13043 is switched
  • the difference can turn on the parasitic diode of Q15 so that the first voltage compensation unit 1305 is also connected to the third group string 13033 .
  • the eighth semiconductor switch uses two MOSFETs to be connected to the top, and an inverse MOSFET, ie Q14, is added.
  • the ninth semiconductor switch uses two MOSFETs to be connected to the top, adding a reverse MOSFET, that is, Q12.
  • the switch unit 1304 can output a drive signal to Q14 and Q15 according to the voltage compensation enable signal, and connect the first voltage compensation unit 1305 and the third string 13033, that is, the first voltage compensation unit 1305 is connected to the third branch 1303; or Output the driving signal to Q12 and Q13 to connect the second voltage compensation unit 1306 with the third string 13033, that is, the second voltage compensation unit 1306 is connected to the third branch 1303; or output the driving signal to Q11 to connect the first DC bus 1307 and the third string 13033, that is, the third branch 1303 is not connected to any voltage compensation unit.
  • the third switching sub-switch 13043 may include a tenth semiconductor switch, an eleventh semiconductor switch and a diode as shown in FIG. 15B .
  • the diode is D3, which is used to control the on-off between the first DC bus 1307 and the third group string 13033; the tenth semiconductor switch is formed by connecting Q18 and Q19 on top of each other, and is used to control the first voltage compensation unit 1305 On-off between the third string 13033; the eleventh semiconductor switch is formed by connecting Q16 and Q17 to the top, and is used to control the on-off between the second voltage compensation unit 1306 and the third string 13033, Fig.
  • the reason for adding the reverse series MOSFETs Q18 and Q16 in 15B can refer to the description of Q14 and Q12 in FIG. 15A, and will not be repeated here.
  • the source of Q18 is connected to the source of Q19
  • the source of Q16 is connected to the source of Q17
  • the cathode of diode D3 the drain of Q16 and the drain of Q18 are respectively connected to the first end of the third switching sub-switch 13043
  • the anode of diode D3 is connected to the fourth terminal of the third switch sub-switch 13043
  • the drain of Q17 is connected to the third terminal of the third switch sub-switch 13043
  • the drain of Q19 is connected to the second terminal of the third switch sub-switch 13043 .
  • the switch unit 1304 can output driving signals to Q18 and Q19 according to the voltage compensation enable signal, and connect the first voltage compensation unit 1305 with the third string 13033, that is, the first voltage compensation unit 1305 is connected to the third branch 1303; or
  • the driving signal is output to Q16 and Q17 to connect the second voltage compensation unit 1306 and the third group string 13033 , that is, the second voltage compensation unit 1306 is connected to the third branch 1303 .
  • the diode D3 is in a reverse cut-off state when the first voltage compensation unit 1305 is connected to the third branch 1303, or the second voltage compensation unit 1306 is connected to the third branch 1303, thereby disconnecting the third string 13033 from the first
  • the specific implementation principle may refer to the embodiment described above in conjunction with FIG. 7, and will not be repeated here.
  • the third switching sub-switch 13043 may include a twelfth semiconductor switch, a thirteenth semiconductor switch, and a fourteenth semiconductor switch as shown in FIG. 15C semiconductor switch.
  • the twelfth semiconductor switch is Q20, which is used to control the on-off between the first DC bus 1307 and the third group string 13033; the thirteenth semiconductor switch is formed by connecting Q23 and Q24 to the top, and is used to control the first DC bus 1307 and the third group string 13033.
  • the on-off between a voltage compensation unit 1305 and the third string 13033; the fourteenth semiconductor is formed by connecting Q21 and Q22 on top of each other, and is used to control the voltage between the second voltage compensation unit 1306 and the third string 13033 on and off.
  • the source of Q23 is connected to the source of Q24, the source of Q21 is connected to the source of Q22, the source of Q20, the drain of Q21 and the drain of Q23 are respectively connected to the first end of the third switching sub-switch 13043 , the drain of Q20 is connected to the fourth terminal of the third switching sub-switch 13043 , the drain of Q22 is connected to the third terminal of the third switching sub-switch 13043 , and the drain of Q24 is connected to the second terminal of the third switching sub-switch 13043 .
  • the switch unit 1304 can output a drive signal to Q23 and Q24 according to the voltage compensation enable signal, and connect the first voltage compensation unit 1305 and the third string 13033, that is, the first voltage compensation unit 1305 is connected to the third branch 1303; or Output the driving signal to Q21 and Q22 to connect the second voltage compensation unit 1306 and the third group string 13033, that is, the second voltage compensation unit 1306 is connected to the third branch 1303; or output the driving signal to Q20 to connect the first DC bus 1307 and the third string 13033, that is, the third branch 1203 is not connected to any voltage compensation unit.
  • the third switching sub-switch 13043 may include a fifteenth semiconductor switch, a sixteenth semiconductor switch and a diode as shown in FIG. 15D .
  • the diode is D4, which is used to control the on-off between the first DC bus 1307 and the third group string 13033;
  • the fifteenth semiconductor switch is formed by connecting Q27 and Q28 on top of each other, and is used to control the first voltage compensation unit On-off between 1305 and the third string 13033;
  • the sixteenth semiconductor is formed by connecting Q25 and Q26 to the top, and is used to control the on-off between the second voltage compensation unit 1306 and the third string 13033.
  • the source of Q27 is connected to the source of Q28, the source of Q25 is connected to the source of Q26, the anode of diode D4, the drain of Q27 and the drain of Q25 are respectively connected to the first end of the third switching sub-switch 13043 , the cathode of diode D4 is connected to the fourth terminal of the third switch sub-switch 13043 , the drain of Q26 is connected to the third terminal of the third switch sub-switch 13043 , and the drain of Q28 is connected to the second terminal of the third switch sub-switch 13043 .
  • the switch unit 1304 can output drive signals to Q27 and Q28 according to the voltage compensation enable signal, and connect the first voltage compensation unit 1305 and the third group string 13033, that is, the first voltage compensation unit 1305 is connected to the third branch 1303; or The driving signals are output to Q25 and Q26 to connect the second voltage compensation unit 1306 and the third group string 13033 , that is, the second voltage compensation unit 1306 is connected to the third branch 1303 .
  • the diode D4 is in a reverse cut-off state when the first voltage compensation unit 1305 is connected to the third branch 1303, or the second voltage compensation unit 1306 is connected to the third branch 1303, thereby disconnecting the third group string 13033 from the first direct line.
  • the specific implementation principle may refer to the embodiment described above in conjunction with FIG. 9, and will not be repeated here.
  • the switch unit 1304 may include N switch sub-switches between the string and the voltage compensation unit, for example, a first switch sub-switch, a second switch sub-switch...
  • the N-1th switch sub-switch includes three terminals, which are respectively used to switch The first group string, the second group string...the N-1th string is connected to the voltage compensation unit or the DC bus, and the Nth switch sub-switch selectively connects the Nth string to any voltage compensation unit or the DC bus , that is, the Nth switch sub-switch needs to include M+2 terminal, where the M terminal is used to select any one of the M voltage compensation units, one of the remaining two ends is used to connect the Nth group string, and the other terminal is Used to connect the DC bus.
  • the first group string 13011, the second group string 13022, and the third group string 13033 may include at least one DC component and a converter.
  • first group string 13011, the second group string 13022, and the third group string 13033 may be combined with the embodiments described in FIG. 11, and at least one group string may include at least two subgroup strings.
  • the switch unit 1304 in the present application may include at least one contact switch and/or at least one semiconductor switch, namely the first switch sub-switch 13041 , the second switch sub-switch 13042 and the third switch sub-switch 13042 .
  • the specific structure of the switch 13043 may be different, for example, the first switching sub-switch 13041 is a contact switch, the second switching sub-switch 13042 is a contact switch, and the third switching sub-switch 13043 is a semiconductor switch; or the first switching sub-switch 13041 is a contact switch, the second switching sub-switch 13042 is a semiconductor switch, and the third switching sub-switch 13043 is a contact switch and so on.
  • Q11, Q12, Q13, Q14, etc. in the semiconductor switch may be MOSFETs, or may be IGBTs and their anti-parallel diodes.
  • 15A to 15D are used as an example to illustrate the description. If Q11, Q12, Q13, Q14, etc. are IGBTs and their anti-parallel diodes, the source of the MOSFET is replaced with the emitter of the IGBT, and the drain of the MOSFET is replaced It is the collector of the IGBT, the anode of the anti-parallel diode is connected to the emitter of the IGBT, and the cathode is connected to the collector of the IGBT.
  • An embodiment of the present application further provides a string compensation method, which is applied to any of the power supply systems described above.
  • the power supply system includes a first branch where the first string is located, and a second branch where the second string is located.
  • a branch circuit, a first voltage compensation unit and a controller, the method includes the following steps:
  • the switch unit receives a voltage compensation enable signal from the controller, connects the first voltage compensation unit to the first branch according to the voltage compensation enable signal, and the voltage compensation enable signal is based on the working state parameters of the first group string and the working state parameters of the second group of strings; the first voltage compensation unit is used for compensating the output voltage of the first branch.
  • the switch unit is located in the above-mentioned power supply system.
  • the working state parameter of the group string may be the output voltage, and/or the output current, and/or the output power, etc. of the group string, and the present application takes the output voltage as an example for description.
  • the controller obtains the operating state parameters of the first group string and the second group string, and generates a voltage compensation enable according to the operating state parameter of the first group string and the operating state parameter of the second group string Signal. For example, when the output voltages of the first string and the second string are different, for example, the output voltage of the first string is small, the controller can generate a voltage compensation enable signal and send the signal to the switch unit. The voltage compensation enable signal is sent, and when the switch unit receives the voltage compensation enable signal, the switch unit controls the first voltage compensation unit to access the first branch.
  • the first voltage compensation unit is only connected to the first branch that needs voltage compensation, and the second branch that does not need voltage compensation is not connected to the first voltage compensation unit, so as to avoid the voltage compensation unit in the second branch.
  • the first voltage compensation unit is only connected to the first branch that needs voltage compensation
  • the second branch that does not need voltage compensation is not connected to the first voltage compensation unit, so as to avoid the voltage compensation unit in the second branch.
  • the power supply system further includes a first DC bus and a second DC bus;
  • the first voltage compensation unit includes a first output terminal and a second output terminal, wherein the first output terminal is connected to the first DC bus;
  • a switch The unit connects the first voltage compensation unit to the first branch according to the voltage compensation enable signal.
  • the switching unit connects the second output end of the first voltage compensation unit to the first branch according to the voltage compensation enable signal.
  • One end of the group string; the other end of the first group string is connected to the second DC bus.
  • the first DC bus is a negative DC bus
  • the first output terminal of the first voltage compensation unit is a negative output terminal
  • the second output terminal is a positive output terminal
  • the first DC bus is a positive DC bus
  • the The first output terminal of the first voltage compensation unit is a positive output terminal
  • the second output terminal is a negative output terminal.
  • the switch unit and the first voltage compensation unit can be arranged on either the positive DC bus side or the negative DC bus side, The applicability of the power supply system can be improved.
  • the switch unit also connects one end of the second group of strings to the first DC bus according to the voltage compensation enable signal; the other end of the second group of strings is connected to the second DC bus.
  • the first voltage compensation unit is neither connected to the first branch nor the second branch.
  • the controller may not generate a voltage compensation enable according to the operating state parameters of the first group string and the operating state parameters of the second group string signal or generate a voltage compensation default signal, when the switch unit does not receive the voltage compensation enable signal or receives the voltage compensation default signal, controls the first voltage compensation unit to neither access the first branch nor the second branch road.
  • the power supply system is applied to photovoltaics
  • the first string and the second string are photovoltaic strings
  • the controller may be provided in a photovoltaic inverter control module in the power supply system.
  • the first group string and the second group string of the power supply system are respectively provided with a processor, the processor can collect the working state parameters of the corresponding group strings, and summarize the collected working state parameters into
  • the processor that obtains the working state parameters of all the strings is the above-mentioned controller.
  • the controller may further determine a voltage compensation reference value according to the working state parameters of the first string and the working state parameters of the second string, and send the reference value to the first voltage compensation unit.
  • the voltage compensation reference value enables the first voltage compensation unit to compensate the output voltage of the first branch according to the voltage compensation reference value, that is, the voltage compensation reference value is the output voltage value of the first voltage compensation unit.
  • the switch unit includes a first switch sub-switch between the first voltage compensation unit and the first group of strings, and the first switch sub-switch is a contact switch or a semiconductor switch.
  • the above-mentioned switching unit for connecting the first voltage compensation unit to the first branch according to the voltage compensation enable signal is specifically implemented as follows: the switch unit controls the first switch sub-switch to connect to the first voltage compensation according to the voltage compensation enable signal unit with the first set of strings.
  • the first switching sub-switch includes a first semiconductor switch and a second semiconductor switch, wherein the first semiconductor switch is used for connecting the first voltage compensation unit and the first group string, and the second semiconductor switch is used for disconnecting the second semiconductor switch
  • a group of strings is connected to the first DC bus in the power supply system.
  • the switch unit according to the voltage compensation enable signal, controls the first switch sub-switch to connect the first voltage compensation unit and the first group of strings.
  • the voltage compensation unit is connected to the first string, and controls the second semiconductor switch to disconnect the first string and the first DC bus.
  • the first switching sub-switch includes a third semiconductor switch and a diode, wherein the third semiconductor switch is used to connect the first voltage compensation unit and the first group string, and the diode is connected to the first voltage compensation unit at the third semiconductor switch In the case of the first group string, it is in a reverse cut-off state, thereby disconnecting the first group string and the first DC bus in the power supply system.
  • the switch unit controls the first switch sub-switch to connect the first voltage compensation unit and the first group string.
  • the three-semiconductor switch connects the first voltage compensation unit and the first group of strings, and disconnects the first group of strings from the first DC bus.
  • the switch unit further includes a second switch sub-switch; the switch unit also controls the second switch sub-switch to connect to the first DC bus in the power supply system according to the voltage compensation enable signal with the second set of strings.
  • the above-mentioned controller can re-configure according to the working state parameters between the strings.
  • the first group string is determined, that is, the group string that needs voltage compensation is re-determined.
  • the controller may first control the output voltage value of the first voltage compensation unit to be equal to or lower than a preset value before turning off the switch unit. Threshold value, and then control the switch unit to turn off, the preset threshold value is determined by the model of the contact switch.
  • the power supply system includes N branches where N groups of strings are located and M voltage compensation units, where N and M are both positive integers, and M is less than N; the N branches include the th A branch and a second branch, the M voltage compensation units include a first voltage compensation unit.
  • the switch unit may further connect some or all of the voltage compensation units to some of the branches according to the voltage compensation enable signal.
  • each string includes at least one DC component and a converter corresponding to the DC component; the controller controls the converter to adjust the working state of the corresponding DC component.
  • the converter may be a buck circuit or a boost circuit, and the controller adjusts the working state of the DC component by controlling the magnitude of the output voltage of the converter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本申请提供了一种供电系统及方法,该供电系统包括:第一组串所在的第一支路、第二组串所在的第二支路、切换开关单元、第一电压补偿单元以及控制器;切换开关单元,用于根据从控制器接收到的电压补偿使能信号,将第一电压补偿单元接入第一支路;电压补偿使能信号是控制器根据第一组串的工作状态参数以及第二组串的工作状态参数生成的;第一电压补偿单元,用于对第一支路的输出电压进行补偿。采用本申请,只将电压补偿单元接入需要进行电压补偿的组串的所在支路,而不需要进行电压补偿的组串的所在支路则不接入电压补偿单元,避免电压补偿单元在不需要进行电压补偿的支路中造成不必要的系统损耗,同时可以降低系统成本。

Description

一种供电系统及方法
本申请要求于2020年08月19日提交中国专利局、申请号为202010839416.8、申请名称为“一种供电系统及方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电源技术领域,尤其是一种供电系统及方法。
背景技术
组串是由多个光伏组件或者多个电池串联构成的,而多个组串之间通过并联连接可以形成供电系统,该供电系统可以广泛应用于太阳能发电、不间断供电电源等场景中。各个组串之间存在差异性,例如在光伏应用中,各个组串遮挡情况不一样,导致各个组串的最大功率点输出电压不一样,因此供电系统的输出功率有所损失;又例如在电池放电应用中,各个组串包含的电池数量和/或电池折旧程度不一样,各个组串的放电终止电压不同,导致有些组串中的电池已经放完电,而有些组串中的电池还未放完电等等。
为了保证该供电系统的输出功率,或为了让各个组串的放电终止电压可以一致,现有技术采用的是如图1所示的供电系统,在每一组串的所在支路中接入DC-DC变换器(Direct-Current-Direct-Current converter,一种转变输入直流电压为设定直流电压并输出的电压转换器),每个DC-DC变换器分别对各自接入支路的输出电压进行补偿,现有技术的每个组串都与DC-DC变换器串联,组串的输出电流都要流经DC-DC变换器,由此带来系统损耗高的问题。
发明内容
基于上面所述的问题,本申请提供了一种供电系统及方法,可以降低系统损耗,并且可以降低系统成本。
本申请实施例第一方面提供了一种供电系统,包括:第一组串所在的第一支路、第二组串所在的第二支路、切换开关单元、第一电压补偿单元以及控制器;
该切换开关单元根据该控制器发送的电压补偿使能信号,选择将上述第一电压补偿单元接入上述第一支路,使得该第一电压补偿单元对上述第一支路的输出电压进行补偿,该电压补偿使能信号是该控制器根据第一组串的工作状态参数以及第二组串的工作状态参数生成的。即根据不同组串之间的工作状态参数的情况,只将电压补偿单元接入需要进行电压补偿的组串的所在支路,而不需要进行电压补偿的组串的所在支路则不接入电压补偿单元,避免电压补偿单元在不需要进行电压补偿的支路中造成不必要的系统损耗,从而降低了系统损耗。
结合第一方面,在第一种可能的实现方式中,上述供电系统还包括第一直流总线和第二直流总线;上述第一电压补偿单元包括第一输出端以及第二输出端,上述第一电压补偿单元的第一输出端连接至上述第一直流总线;上述切换开关单元根据上述电压补偿使能信号,将上述第一电压补偿单元的第二输出端连接至上述第一组串的一端;上述第一组串的 另一端连接至上述第二直流总线。上述可能的实现方式中,第一直流总线可以是正直流总线或负直流总线,上述切换开关单元以及上述第一电压补偿单元既可以设置在正直流总线侧,也可以设置在负直流总线侧,可以提高供电系统的适用性。
结合第一方面第一种可能的实现方式,在第二种可能的实现方式中,上述切换开关单元根据上述电压补偿使能信号,将上述第二组串的一端连接至上述第一直流总线;上述第二组串的另一端连接至上述第二直流总线。上述可能的实现方式中,将上述第二组串直接连接至直流总线而不经过上述第一电压补偿单元,避免电压补偿单元在第二支路产生不必要的损耗。
结合第一方面第一种可能的实现方式或结合第一方面第二种可能的实现方式,在第三种可能的实现方式中,上述第一电压补偿单元还包括第一输入端和第二输入端;
上述第一电压补偿单元的第一输入端连接至上述第一直流总线,上述第一电压补偿单元的第二输入端连接至上述第二直流总线。上述可能的实现方式中,通过将直流总线连接上述第一电压补偿单元的输入,实际上是将第二组串的输出作为该第一电压补偿单元的电源,避免外接其他电源,可以减少系统电源数量,提高系统的简洁性。
结合第一方面或结合第一方面上述的任意一种可能的实现方式,在第四种可能的实现方式中,上述第一组串包括至少两个子组串。上述可能的实现方式中,将至少两个子组串并联,共用一个切换开关单元以及电压补偿单元,可以进一步地降低系统成本。
结合第一方面第四种可能的实现方式,在第五种可能的实现方式中,上述第一组串中包括的至少两个子组串各自最大功率点所对应的输出电压区间至少部分重合。
结合第一方面或结合第一方面上述任意一种可能的实现方式,在第六种可能的实现方式中,上述切换开关单元包括上述第一电压补偿单元与上述第一组串之间的第一切换子开关,上述第一切换子开关为触点开关或半导体开关;
上述切换开关单元根据上述电压补偿使能信号,控制上述第一切换子开关连通上述第一电压补偿单元与上述第一组串。
结合第一方面第六种可能的实现方式,在第七种可能的实现方式中,上述切换开关单元还包括第二切换子开关;
上述切换开关单元根据上述电压补偿使能信号,控制上述第二切换子开关连通上述供电系统中的第一直流总线与上述第二组串。
结合第一方面第六种可能的实现方式,在第八种可能的实现方式中,上述第一切换子开关包括第一半导体开关和第二半导体开关,其中上述第一半导体开关用于连通上述第一电压补偿单元与上述第一组串,上述第二半导体开关用于断开上述第一组串与上述供电系统中的第一直流总线;
上述切换开关单元根据上述电压补偿使能信号,控制上述第一半导体开关连通上述第一电压补偿单元与上述第一组串,并控制上述第二半导体开关断开上述第一组串与上述第一直流总线。上述可能的实现方式中,通过使用半导体开关作为切换开关单元,相对于触点开关来说,可以缩小供电系统的体积,并且可以在高电压高电流情况下进行导通以及关断操作,提高了系统安全性。
结合第一方面第六种可能的实现方式,在第九种可能的实现方式中,上述第一切换子 开关包括第三半导体开关和二极管,其中上述第三半导体开关用于连通上述第一电压补偿单元与上述第一组串,上述二极管在上述第三半导体开关连通上述第一电压补偿单元与上述第一组串的情况下处于反向截止状态,从而用于断开上述第一组串与该供电系统中的第一直流总线;
上述切换开关单元根据上述电压补偿使能信号,控制上述第三半导体开关连通上述第一电压补偿单元与上述第一组串,并使得上述第一组串与上述第一直流总线断开。上述可能的实现方式中,通过使用半导体开关和二极管的组合来作为切换开关单元,相对于使用两个半导体开关来说,进一步地降低了系统成本。
结合第一方面或结合第一方面上述任意一种可能的实现方式,在第十种可能实现方式中,上述控制器还根据上述第一组串的工作状态参数以及上述第二组串的工作状态参数,确定电压补偿参考值,并向上述第一电压补偿单元发送上述电压补偿参考值,上述第一电压补偿单元根据该电压补偿参考值,对上述第一支路的输出电压进行补偿。
结合第一方面或结合第一方面上述的任意一种可能的实现方式,在第十一种可能的实现方式中,上述第一电压补偿单元包括非隔离型降压式变换电路。上述可能的实现方式中,采用体积小且效率高的非隔离型降压式变换电路来作为电压补偿单元,可以缩小系统体积,提高系统效率。
结合第一方面或结合第一方面上述的任意一种可能的实现方式,在第十二种可能的实现方式中,上述供电系统包括N个组串所在的N个支路以及M个电压补偿单元,N和M均为正整数,且M小于N;上述N个支路包括上述第一支路和上述第二支路,上述M个电压补偿单元包括上述第一电压补偿单元;上述切换开关单元,用于根据上述电压补偿使能信号,将部分或全部的电压补偿单元分别接入部分支路。上述可能的实现方式中,通过将电压补偿单元接入需要进行电压补偿的支路,而不需要进行电压补偿的支路则不接入电压补偿单元,避免电压补偿单元在不需要进行电压补偿的支路中造成不必要的系统损耗,并且电压补偿单元的数量小于组串数量,相对于现有技术中电压补偿单元的数量等于组串数量,可以减少电压补偿单元的数量,降低系统成本。
结合第一方面或结合第一方面上述的任意一种可能的实现方式,在第十三种可能的实现方式中,每个组串包括至少一个直流组件以及与直流组件对应的变换器,该变换器用于调节上述对应直流组件的工作状态。上述可能的实现方式中,变换器通过升降压将输入电压转换为恒定电压,即通过采用变换器来对组串中的直流组件进行电压调整,从而优化上述直流组件的工作状态。
结合第一方面或结合第一方面上述任意一种可能的实现方式,在第十四种可能的实现方式中,上述第一组串和上述第二组串为光伏组串。
结合第一方面或结合第一方面第一种可能的实现方式至第十三种可能的实现方式,在第十五种可能的实现方式中,上述第一组串和上述第二组串为储能电池组串。
本申请实施例第二方面提供了一种组串补偿方法,应用于供电系统,该供电系统包括第一组串所在的第一支路、第二组串所在的第二支路、第一电压补偿单元以及控制器,上述方法包括:
从该控制器接收电压补偿使能信号,根据该电压补偿使能信号将上述第一电压补偿单 元接入上述第一支路,该电压补偿使能信号是该控制器根据第一组串的工作状态参数和第二组串的工作状态参数生成的;上述第一电压补偿单元,用于对上述第一支路的输出电压进行补偿。即根据不同组串之间的工作状态参数的情况,只将电压补偿单元接入需要进行电压补偿的组串的所在支路,而不需要进行电压补偿的组串的所在支路则不接入电压补偿单元,避免电压补偿单元在不需要进行电压补偿的支路中造成不必要的系统损耗,从而降低了系统损耗。
结合第二方面,在第一种可能的实现方式中,上述供电系统还包括第一直流总线和第二直流总线;上述第一电压补偿单元包括第一输出端以及第二输出端,上述第一电压补偿单元的第一输出端连接至上述第一直流总线;
上述根据电压补偿使能信号将上述第一电压补偿单元接入上述第一支路具体实现为:
根据电压补偿使能信号,将上述第一电压补偿单元的第二输出端连接至上述第一组串的一端;上述第一组串的另一端连接至上述第二直流总线。
结合第二方面第一种可能的实现方式,在第二种可能的实现方式中,上述方法还包括:
根据上述电压补偿使能信号,将上述第二组串的一端连接至上述第一直流总线;上述第二组串的另一端连接至上述第二直流总线。
结合第二方面上述任意一种可能的实现方式,在第三种可能的实现方式中,上述切换开关单元包括上述第一电压补偿单元与上述第一组串之间的第一切换子开关,上述第一切换子开关为触点开关或半导体开关;
上述根据电压补偿使能信号将上述第一电压补偿单元接入上述第一支路具体实现为:
根据上述电压补偿使能信号,控制上述第一切换子开关连通上述第一电压补偿单元与上述第一组串。
结合第二方面第三种可能的实现方式,在第四种可能的实现方式中,上述切换开关单元还包括第二切换子开关;上述方法还包括:
根据上述电压补偿使能信号,控制上述第二切换子开关连通上述供电系统中的第一直流总线与上述第二组串。
结合第二方面第三种可能的实现方式,在第五种可能的实现方式中,上述第一切换子开关包括第一半导体开关和第二半导体开关;
上述根据电压补偿使能信号,将上述第一电压补偿单元的第二输出端连接至上述第一组串的一端具体实现为:
根据上述电压补偿使能信号,控制上述第一半导体开关连通上述第一电压补偿单元与上述第一组串,并控制上述第二半导体开关断开上述第一组串与上述第一直流总线。
结合第二方面第三种可能的实现方式,在第六种可能的实现方式中,上述第一切换子开关包括第三半导体开关和二极管;
上述根据电压补偿使能信号,将上述第一电压补偿单元的第二输出端连接至上述第一组串的一端具体实现为:
根据上述电压补偿使能信号,控制上述第三半导体开关连通上述第一电压补偿单元与上述第一组串,并使所述二极管处于反向截止状态,从而断开上述第一组串与上述第一直流总线。
结合第二方面或结合第二方面上述任意一种可能的实现方式,在第七种可能的实现方式中,上述控制器还用于根据上述第一组串的工作状态参数以及上述第二组串的工作状态参数,确定电压补偿参考值,并向上述第一电压补偿单元发送上述电压补偿参考值;上述第一电压补偿单元用于根据上述电压补偿参考值,对上述第一支路的输出电压进行补偿。
结合第二方面或结合第二方面上述任意一种可能的实现方式,在第八种可能的实现方式中,上述供电系统包括N个组串所在的N个支路以及M个电压补偿单元,N和M均为正整数,且M小于N;上述N个支路包括上述第一支路和上述第二支路,上述M个电压补偿单元包括上述第一电压补偿单元;
上述方法还包括:
根据上述电压补偿使能信号,将部分或全部的电压补偿单元分别接入部分支路。
结合第二方面或结合第二方面上述任意一种可能的实现方式,在第九种可能的实现方式中,每个组串包括至少一个直流组件以及与直流组件对应的变换器;
上述控制器,还用于控制该变换器对上述对应直流组件的工作状态进行调节。
附图说明
图1为现有技术提供的一种供电系统;
图2为本申请实施例提供的一种供电系统的结构框图;
图3为本申请实施例提供的一种电压补偿单元的电路原理图;
图4为本申请实施例提供的一种供电系统的系统架构示意图;
图5A-图5C分别为本申请实施例提供的一种切换开关示意图;
图6为本申请实施例提供的另一种供电系统的系统架构示意图;
图7为本申请实施例提供的另一种切换开关示意图;
图8为本申请实施例提供的又一种供电系统的系统架构示意图;
图9为本申请实施例提供的又一种切换开关示意图;
图10为本申请实施例提供的又一种供电系统的系统架构示意图;
图11为本申请实施例提供的又一种供电系统的系统架构示意图;
图12为本申请实施例提供的一种子组串之间的电压功率曲线;
图13为本申请实施例提供的又一种供电系统的系统架构示意图;
图14A-图14B分别为本申请实施例提供的又一种切换开关示意图;
图15A-图15D分别为本申请实施例提供的又一种切换开关示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
由于供电系统中的各个组串之间存在差异,各个组串两端的电压可能不同。而各个组串之间并联,无论组串并联后两端的电压是多少,都无法使得每个组串分别工作在各自的最优状态。于是采用如图1所示的方法,在每个组串的所在支路中接入DC-DC变换器,各 个组串的输出电流都要经过DC-DC变换器,带来系统损耗高的问题。
本申请通过比较各个组串之间工作状态参数的不同,选择将电压补偿单元接入需要进行电压补偿的组串的所在支路,而不需要进行电压补偿的组串的所在支路则不接入电压补偿单元,降低了系统损耗,且降低了系统成本。
在一可选实施例中,本申请的技术方案可以应用于光伏场景,则本申请提供的供电系统中包括的各个组串是光伏组串,每个光伏组串可以包括多个串联和/或并联的光伏组件。供电系统还可以包括光伏逆变控制模块,光伏逆变控制模块将各个光伏组串的输出电压进行逆变输出。供电系统可以将逆变后的电压输向电网,在可选的实施场景中,供电系统还可以应用于不间断供电电源的场景中,即光伏逆变控制模块与电网之间可以设置有储能电池,例如镍镉电池、镍氢电池、锂离子电池、锂聚合物电池等。
控制器获取各个光伏组串的工作状态参数,例如输出电压,在光伏组串的工作状态参数不同的情况下,生成电压补偿使能信号,并向供电系统中的切换开关单元发送该电压补偿使能信号,该切换开关单元基于该电压补偿使能信号,选择将供电系统中的电压补偿单元接入需要进行电压补偿的支路,而不需要进行电压补偿的支路则不接入电压补偿单元,避免电压补偿单元在不需要进行电压补偿的支路中造成不必要的系统损耗,并且电压补偿单元的数量小于组串数量,相对于现有技术中电压补偿单元的数量等于组串数量,可以减少电压补偿单元的数量,降低系统成本。
可选的,控制器可以设于光伏逆变控制模块或各个组串中。
在另一可选实施例中,本申请的技术方案也可以应用于电池充/放电场景,则本申请提供的供电系统中包括的各个组串是储能电池组串,每个储能电池组串可以包括多个串联和/或并联的储能电池。供电系统的输入端与充电设备连接,输出端与用电设备连接。充电设备可以例如是充电桩或电网等,用电设备可以例如是车载系统等。示例性的,供电系统可以通过DC-DC变换器与用电设备连接,DC-DC变换器可以将供电系统的输出电压转换成预设固定电压值输出用电设备。
控制器获取各个储能电池组串的工作状态参数,例如电池电压、充电电流等,在储能电池组串的工作状态参数的情况下,生成电压补偿使能信号,并向供电系统中的切换开关单元发送该电压补偿使能信号,使该切换开关单元基于该电压补偿使能信号,选择将供电系统中的电压补偿单元接入需要进行电压补偿的支路,而不需要进行电压补偿的支路则不接入电压补偿单元,避免电压补偿单元在不需要进行电压补偿的支路中造成不必要的系统损耗,并且电压补偿单元的数量小于组串数量,相对于现有技术中电压补偿单元的数量等于组串数量,可以减少电压补偿单元的数量,降低系统成本。示例性的,以储能电池组串的工作状态参数是电池电压为例,控制器获取到第一储能电池组串的电池电压是6V,第二储能电池组串的电池电压是8V,生成电压补偿使能信号,并向供电系统中的切换开关单元发送该电压补偿使能信号,使该切换开关单元基于该电压补偿使能信号,将电压补偿单元接入第一储能电池组串所在的支路,该电压补偿单元输出的电压是2V,从而使得第一储能电池组串不会过充或过放,而第二储能电池组串又可以充满电或放完电。即可以理解为储能电池组串之间的电池电压达到均衡状态。
可选的,控制器可以设于供电系统、充电设备或用电设备中。
上述只是对本申请提供的供电系统的应用场景进行示例,而非穷举,本申请不对应用场景进行限制。
下面结合附图对本申请提供的供电系统的结构进行详细介绍。
参考图2,图2为本申请实施例提供的一种供电系统的结构框图。如图2所示,该供电系统可以包括:第一组串2011所在的第一支路201、第二组串2022所在的第二支路202、切换开关单元203以及第一电压补偿单元204。其中第一支路201与第二支路202并联,切换开关单元203分别与第一支路201、第二支路202以及第一电压补偿单元204连接。
在本申请实施例中,该切换开关单元203根据从控制器207接收到的电压补偿使能信号,将第一电压补偿单元204接入第一支路201。其中控制器207的输入端与第一组串2011及第二组串2022连接,第一组串2011及第二组串2022连接的输入端可以是同一个端口也可以是不同的端口,此处不作限制。控制器207的输出端与第一电压补偿单元204连接。控制器207可以实时获取第一组串2011及第二组串2022的工作状态参数,并根据第一组串2011的工作状态参数以及第二组串2022的工作状态参数生成上述电压补偿使能信号。第一电压补偿单元204对第一支路201的输出电压进行补偿。
其中,组串的工作状态参数可以是组串的输出电压,和/或输出电流,和/或输出功率等,本申请以输出电压为例进行说明。
控制器207获取第一组串2011与第二组串2022的工作状态参数,根据第一组串2011的工作状态参数以及第二组串2022的工作状态参数生成上述电压补偿使能信号。具体实现中,在第一组串2011与第二组串2022的输出电压不同的情况下,例如第一组串2011的输出电压较小,控制器207可以生成电压补偿使能信号,并向切换开关单元203发送该电压补偿使能信号,切换开关单元203在接收到该电压补偿使能信号的情况下,控制第一电压补偿单元204接入第一支路201。即第一电压补偿单元204只接入需要进行电压补偿的第一支路201,而不需要进行电压补偿的第二支路202则不接入第一电压补偿单元204,避免电压补偿单元在第二支路202中造成不必要的系统损耗,同时可以减少供电系统中电压补偿单元的数量,降低系统成本。
在一可行的实施方式中,该供电系统还包括第一直流总线205和第二直流总线206,第一电压补偿单元204包括第一输出端以及第二输出端,其中第一输出端连接至第一直流总线205。切换开关单元203在接收到上述电压补偿使能信号的情况下,控制第一电压补偿单元204接入第一支路201,可以具体实现为将第一电压补偿单元204的第二输出端连接至第一组串2011的一端。第一组串2011的另一端连接至第二直流总线206。
进而在一可选实施方式中,切换开关单元203在接收到上述电压补偿使能信号的情况下,将第二组串2022的一端连接至第一直流总线205。第二组串2022的另一端连接至第二直流总线206。
需要说明的是,在默认状态下,第一电压补偿单元204是既不接入第一支路201也不接入第二支路202的。
另外,在第一组串2011和第二组串2022的输出电压相同的情况下,控制器207可以根据第一组串2011的工作状态参数以及第二组串2022的工作状态参数不生成上述电压补 偿使能信号或者生成电压补偿默认信号,切换开关单元203在没有接收到该电压补偿使能信号或接收到该电压补偿默认信号时,控制第一电压补偿单元204既不接入第一支路201也不接入第二支路202。
在一可行的实施方式中,该供电系统应用于光伏,第一组串2011与第二组串2022为光伏组串,控制器207可以设于该供电系统中的光伏逆变控制模块。
在另一可行的实施方式中,第一组串2011和第二组串2022分别设置有处理器,各个处理器可以采集对应组串的工作状态参数,并将采集到的工作状态参数汇总至任一处理器中,获取到所有组串工作状态参数的处理器为控制器207。
进一步的,控制器207还可以根据第一组串2011的工作状态参数以及第二组串2022的工作状态参数,确定电压补偿参考值,并向第一电压补偿单元204发送该电压补偿参考值,使第一电压补偿单元204根据该电压补偿参考值对第一支路201的输出电压进行补偿,即第一电压补偿单元204的输出电压等于该电压补偿参考值。示例性的,第一组串2011的输出电压为200V,第二组串2022的输出电压为300V,则电压补偿参考值为100V,即第一电压补偿单元204的输出电压为100V。
在一可选实施方式中,第一电压补偿单元204的输入可以是来自独立于供电系统的直流电压源。在另一可选实施方式中,第一电压补偿单元204的输入可以是第二组串2022。在具体实现中,第一电压补偿单元204还包括第一输入端和第二输入端,第一电压补偿单元204的第一输入端连接至第一直流总线205,第一电压补偿单元204的第二输入端连接至第二直流总线206。当第一直流总线205是负直流总线时,第一电压补偿单元204的第一输入端是负输入端;当第一直流总线205是正直流总线时,第一电压补偿单元204的第一输入端是正输入端。通过将直流总线连接第一电压补偿单元204的输入,实际上是将第二组串2022的输出作为第一电压补偿单元204的电源,避免外接其他电源,可以减少系统电源数量,提高系统的简洁性。
示例性的,第一电压补偿单元204可以包括非隔离型降压式变换电路,参考图3,图3为本申请实施例提供的一种电压补偿单元的电路原理图。如图3所示,该非隔离型降压式变换电路(即BUCK电路)包括开关K1、电感L1、二极管D5以及电容C1,可以理解的是,非隔离型代表着变换电路输入与输出之间是具有电气连接的,区别于隔离型电路中采用变压器等来使变换电路输入与输出之间电气隔离。该开关K1可以是绝缘栅双极型晶体管(Insulated Gate Bipolar Transistor,IGBT)及其反并联二极管,也可以是金属氧化物半导体场效应管(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET)。在图1示出的现有技术中,每个组串均串联有DC-DC变换器,当各个DC-DC变换器的输入均连接至直流总线,各个DC-DC变换器均工作时,实际每个DC-DC变换器的输入电源均包含了其所在支路的组串,即该DC-DC变换器的输入与输出均连接了该组串,因此必须采用隔离型变换器来对变换器的输入与输出进行隔离,否则该变换器无法正常工作,但是隔离型变换器的体积大,效率低。该实施例中两个组串共用一个电压补偿单元,电压补偿单元以其中不需要进行电压补偿的组串作为输入电源,向需要进行电压补偿的组串进行输出,所以可以采用体积小且效率高的非隔离型降压式变换电路,缩小系统体积,提高系统效率。
示例性的,第一电压补偿单元204也可以采用隔离型谐振电路、隔离型移相电路或反 激电路。
下面结合图4至图9对切换开关单元的具体实现方式进行示例性说明。
图4为本申请实施例提供的一种供电系统的系统架构示意图,如图4所示,该实施例中的供电系统可以包括第一组串4011所在的第一支路401、第二组串4022所在的第二支路402、切换开关单元403以及第一电压补偿单元404。
其中,切换开关单元403包括第一电压补偿单元404与第一组串4011之间的第一切换子开关4031,切换开关单元403根据从控制器(图中为未示出)接收到的电压补偿使能信号,控制第一切换子开关4031连通第一电压补偿单元404与第一组串4011。示例性的,该控制器可以位于该实施例供电系统包括的光伏逆变控制模块中。可选的,该控制器生成上述电压补偿使能信号,可以向切换开关单元403发送,或向至少一个处理器发送,由处理器转发至切换开关单元403。
第一切换子开关4031可以为触点开关,包括第一端、第二端以及第三端。第一切换子开关4031的第一端与第一组串4011的一端连接;第一切换子开关4031的第二端与第一电压补偿单元404的第二输出端连接;第一切换子开关4031的第三端与第一电压补偿单元404的第一输出端分别连接第一直流总线405;第一组串4011的另一端与第二组串4022的另一端分别连接第二直流总线406。第一直流总线405可以是正直流总线或负直流总线。切换开关单元403控制第一切换子开关4031连通第一电压补偿单元404与第一组串4011,具体为控制第一切换子开关4031的第一端与第二端连通。
在一种可能的实现方式中,第一切换子开关4031可以包括如图5A所示的单转换触点开关。该单转换触点开关包括两个静触点a2和a3、一个动触点a1以及一个线圈,其中a1与第一切换子开关4031的第一端连接,a2与第一切换子开关4031的第二端连接,a3与第一切换子开关4031的第三端连接。切换开关单元403控制该单转换触点开关的线圈流过电流,使a1与a2接触,即第一切换子开关4031的第一端与第二端连接,从而连通第一电压补偿单元404与第一组串4011。示例性的,该单转换触点开关在默认状态下线圈没有电流流过,a1与a3接触,即第一切换子开关4031的默认状态是第一端与第三端连接,从而连通第一组串4011与第一直流总线405。
在另一种可能的实现方式中,第一切换子开关4031可以包括如图5B所示的两个单常开触点开关。每个单常开触点开关均包括一个静触点、一个动触点和一个线圈,单常开触点开关可以理解为默认状态时静触点与动触点是断开的。两个单常开触点开关的动触点分别是b1和b2,两个单常开触点开关的静触点分别是b3和b4。其中,b1和b2均连接至第一切换子开关4031的第一端,b3和b4可以连接第一切换子开关4031的第二端或第三端中的任意一端。该实施例以b3连接第一切换子开关4031的第二端,b4连接第一切换子开关4031的第三端进行示例,切换开关单元403控制b3所在单常开触点开关的线圈流过电流,使b1和b3接触,即第一切换子开关4031的第一端与第二端连接,从而连通第一电压补偿单元404与第一组串4011。示例性的,在默认状态下,切换开关单元403控制b4所在单常开触点开关的线圈流过电流,b2与b4接触,即第一切换子开关4031的第一端与第三端连接,从而连通第一组串4011与第一直流总线405。
在又一种可能的实现方式中,第一切换子开关4031可以包括如图5C所示的一个单常开触点开关和一个单常闭触点开关,单常开触点开关与单常闭触点开关均包括一个静触点、一个动触点和一个线圈。单常闭触点开关与单常开触点开关不同的是,单常闭触点开关默认状态下静触点与动触点之间是接触的。该单常闭触点开关的动触点是c2,静触点是c4;该单常开触点开关的动触点是c1,静触点是c3。其中,c1和c2均连接至第一切换子开关4031的第一端,c3连接第一切换子开关4031的第二端,c4连接第一切换子开关4031的第三端。切换开关单元403控制c3所在单常开触点开关的线圈流过电流,使c1与c3接触,即第一切换子开关4031的第一端与第二端连接,从而连通第一电压补偿单元404与第一组串4011。由于该单常闭触点开关在默认状态下c2与c4接触,即第一切换子开关4031的第一端与第三端连接,切换开关单元403还需要在连通第一电压补偿单元404与第一组串4011时,进一步地控制c4所在单常闭触点开关的线圈流过电流,使c2与c4不接触,即第一切换子开关4031的第一端与第三端断开,从而断开第一组串4011与第一直流总线405。
进而在一可选实施方式中,切换开关单元403还可以包括第二切换子开关4032,切换开关单元403,根据接收到的电压补偿使能信号,控制第二切换子开关4032连通供电系统中的第一直流总线405与第二组串4022。第二切换子开关4032可以为触点开关,包括第一端、第二端和第三端,第二切换子开关4032的第一端与第二组串4022的一端连接,第二端与第一电压补偿单元404的第二输出端连接,第三端与第一直流总线405连接。区别于第一切换子开关4031连通第一电压补偿单元404与第一组串4011,第二切换子开关4032连通第二组串4022与第一直流总线405,第二切换子开关4032的具体结构可以参考图5A至图5C对第一切换子开关4031的描述,此处不作赘述。可以理解的是,第一切换子开关4031与第二切换子开关4032可以集成到一个开关器件中,也可以单独设置,该实施例不对切换子开关之间的设置位置进行限制。
综上可知,第一切换子开关4031和/或第二切换子开关4032可以实现为图5A至图5C中的任一种,控制第一电压补偿单元404接入第一支路401,不接入第二支路402,达到如图2所描述的有益效果,此处不作赘述。
图6为本申请实施例提供的另一种供电系统的系统架构示意图,如图6所示,该实施例中的供电系统可以包括第一组串6011所在的第一支路601、第二组串6022所在的第二支路602、切换开关单元603以及第一电压补偿单元604。
其中,切换开关单元603包括第一电压补偿单元604与第一组串6011之间的第一切换子开关6031a,切换开关单元603根据从控制器(图中为未示出)接收到的电压补偿使能信号,控制第一切换子开关6031a连通第一电压补偿单元604与第一组串6011。示例性的,该控制器可以位于该实施例的供电系统包括的光伏逆变控制模块中。可选的,该控制器生成上述电压补偿使能信号,可以向切换开关单元603发送,或向至少一个处理器发送,由处理器转发至切换开关单元603。
第一切换子开关6031a可以为半导体开关,包括第一端、第二端和第三端。该第一切换子开关6031a的第一端与第一组串6011的一端连接;该第一切换子开关6031a的第二端与第一电压补偿单元604的第二输出端连接;该第一切换子开关6031a的第三端与第一电 压补偿单元604的第一输出端分别连接第一直流总线605;第一组串6011的另一端与第二组串6022的另一端分别连接第二直流总线606。
当第一直流总线605是负直流总线V-时,在一种可能的实现方式中,该实施例中的第一切换子开关6031a可以包括如图6所示的第一半导体开关和第二半导体开关。该第一半导体开关是Q1,用于连通第一电压补偿单元604与第一组串6011;该第二半导体开关是Q2,用于断开第一组串6011与第一直流总线605。
以第一半导体开关Q1和第二半导体开关Q2均是MOSFET为例。第一半导体开关Q1的源极与第二半导体开关Q2的漏极分别连接第一切换子开关6031a的第一端;第一半导体开关Q1的漏极连接第一切换子开关6031a的第二端,第二半导体开关Q2的源极连接第一切换子开关6031a的第三端。切换开关单元603,根据接收到的电压补偿使能信号,向第一半导体开关Q1输出驱动信号,控制第一半导体开关Q1导通,从而连通第一电压补偿单元604与第一组串6011;并向第二半导体开关Q2停止输出驱动信号,控制第二半导体开关Q2关断,从而断开第一组串6011与第一直流总线605。
通过使用半导体开关作为切换开关单元,相对于触点开关来说,可以缩小供电系统的体积,并且可以在高电压高电流情况下进行导通以及关断操作,提高了系统安全性。
当第一直流总线605是负直流总线V-时,在另一种可能的实现方式中,第一切换子开关6031a可以包括如图7所示的第三半导体开关和二极管。其中该第三半导体开关是Q5,用于连通第一电压补偿单元604与第一组串6011;该二极管是D1,在第三半导体开关Q5连通第一电压补偿单元604与第一组串6011的情况下处于反向截止状态,从而断开第一组串6011与第一直流总线605。第三半导体开关Q5的源极与二极管D1的阴极分别连接第一切换子开关6031a的第一端,第三半导体开关Q5的漏极连接第一切换子开关6031a的第二端,二极管D1的阳极连接第一切换子开关6031a的第三端。切换开关单元603,根据接收到的电压补偿使能信号,向第三半导体开关Q5输出驱动信号,控制第三半导体开关Q5导通,从而连通第一电压补偿单元604与第一组串6011,此时二极管D1处于反向截止状态,具体实现原理是:第三半导体开关Q5处于导通状态,由于第一直流总线605是负直流总线V-,则与第一直流总线605连接的第一电压补偿单元604的第一输出端是负输出端,第二输出端是正输出端,第一电压补偿单元604正输出端输出的正电压经过第三半导体开关Q5施加在第一切换子开关6031a的第一端,即二极管D1的阴极端,而第一电压补偿单元604负输出端输出的负电压施加在该二极管D1的阳极端,使二极管D1反向截止,即第一组串6011与第一直流总线605断开。
通过使用半导体开关和二极管的组合来作为切换开关单元,相对于使用两个半导体开关来说,进一步降低了系统成本。
当第一直流总线605是正直流总线V+时,参考图8,图8为本申请实施例提供的另一种供电系统的系统架构示意图。在一种可能的实现方式中,第一切换子开关6031a替换为如图8所示的第一切换子开关6031b,第一切换子开关6031b包括第四半导体开关和第五半导体开关,该第四半导体开关是Q6,该第五半导体开关是Q7。第四半导体开关Q6的漏极与第五半导体开关Q7的源极分别连接第一切换子开关6031b的第一端,第四半导体开关Q6的源极连接第一切换子开关6031b的第二端,第五半导体开关Q7的漏极连接第一切 换子开关6031b的第三端。切换开关单元603,根据接收到的电压补偿使能信号,向第四半导体开关Q6输出驱动信号,控制第四半导体开关Q6导通,从而连通第一电压补偿单元604与第一组串6011;并向第五半导体开关Q7停止输出驱动信号,控制第五半导体开关Q7关断,从而断开第一组串6011与第一直流总线605。
当第一直流总线605是正直流总线V+时,在另一种可能的实现方式中,第一切换子开关6031b可以包括如图9所示的第六半导体开关和二极管。该第六半导体开关是Q10,该二极管是D2,第六半导体开关Q10的漏极与二极管D2的阳极分别连接第一切换子开关6031b的第一端,第六半导体开关Q10的源极连接第一切换子开关6031b的第二端,该二极管D2的阴极连接第一切换子开关6031b的第三端。切换开关单元603,根据接收到的电压补偿使能信号,向第六半导体开关Q10输出驱动信号,控制第六半导体开关Q10导通,从而连通第一电压补偿单元604与第一组串6011,此时二极管D2处于反向截止状态,具体实现原理是:第六半导体开关Q10处于导通状态,由于第一直流总线605是正直流总线,则与第一直流总线605连接的第一电压补偿单元604的第一输出端是正输出端,第二输出端是负输出端,第一电压补偿单元604负输出端输出的负电压经过该第六半导体开关Q10施加在第一切换子开关6031b的第一端,即二极管D2的阳极端,而第一电压补偿单元604正输出端输出的正电压施加在该二极管D2的阴极端,二极管D2反向截止,即第一组串6011与第一直流总线605断开。
通过改变半导体开关之间的连接关系,即可以适应第一直流总线605是正直流总线或负直流总线的两种情况,提高该供电系统的适用性。
进而在一可选实施方式下,当第一直流总线605是负直流总线V-时,切换开关单元603还可以包括第二切换子开关6032a,切换开关单元603,根据接收到的电压补偿使能信号,控制第二切换子开关6032a连通供电系统中的第一直流总线605与第二组串6022。第二切换子开关6032a可以为半导体开关,包括第一端、第二端和第三端,第二切换子开关6032a的第一端与第二组串的一端连接,第二端与第一电压补偿单元604的第二输出端连接,第三端与第一直流总线605连接。区别于第一切换子开关6031a连通第一电压补偿单元604与第一组串6011,该第二切换子开关6032a连通第二组串6022与第一直流总线605,第二切换子开关6032a的具体结构可以参考图6至图7对第一切换子开关6031a的描述,此处不作赘述。
进而在另一可选实施方式下,当第一直流总线605是正直流总线V+时,切换开关单元603还可以包括第二切换子开关6032b,切换开关单元603,根据接收到的电压补偿使能信号,控制第二切换子开关6032b连通第一直流总线605与第二组串6022。第二切换子开关6032b可以为半导体开关,包括第一端、第二端和第三端,该第二切换子开关6032b的第一端与第二组串的一端连接,第二端与第一电压补偿单元604的第二输出端连接,第三端与第一直流总线605连接。区别于第一切换子开关6031b连通第一电压补偿单元604与第一组串6011,第二切换子开关6032b连通第二组串6022与第一直流总线605,第二切换子开关6032b的具体结构可以参考图8至图9对第一切换子开关6031b的描述,此处不作赘述。
在一可行实施方式中,本申请中的切换开关单元可以包括至少一个触点开关和/或至少 一个半导体开关,即第一切换子开关与第二切换子开关的具体结构可以不一样,例如第一切换子开关是触点开关而第二切换子开关是半导体开关,或者反之。
可以理解的是,半导体开关Q1、Q2、Q3、Q4等可以是MOSFET,或者可以是IGBT及其反并联二极管。前文结合图4至图9中均以MOSFET为例进行说明,若Q1、Q2、Q3、Q4等是IGBT及其反并联二极管,将MOSFET的源极替换为IGBT的发射极,MOSFET的漏极替换为IGBT的集电极,该反并联二极管的阳极与IGBT的发射极连接,阴极与IGBT的集电极连接即可。
参考图10,图10为本申请实施例提供的又一种供电系统的系统架构示意图。该实施例中的每个组串包括至少一个直流组件以及与直流组件对应的变换器,该变换器用于调节对应直流组件的工作状态。如图10所示,直流组件1-1的输出端连接变换器1-1的输入端,直流组件1-2的输出端连接变换器1-2的输入端,直流组件1-a的输出端连接变换器1-a的输入端,各个变换器1-1、1-2……1-a的输出端依次串联连接形成第一组串10011,变换器1-1的第一输出端与第二直流总线1006连接,变换器1-a的第二输出端与切换开关单元1003连接,其中a不小于1;同理的,直流组件2-1的输出端连接变换器2-1的输入端,直流组件2-2的输出端连接变换器2-2的输入端,直流组件2-b的输出端连接变换器2-b的输入端,各个变换器2-1、2-2……2-b的输出端依次串联连接形成第二组串10022,变换器2-1的第一输出端与第二直流总线1006连接,变换器2-b的第二输出端与切换开关单元1003连接,其中b不小于1。可选的,b可以与a相同,也可以与a不同。
上述各个变换器通过升降压将输入电压转换为恒定电压,即通过采用变换器来对组串中的直流组件进行电压调整,从而优化直流组件的工作状态。
可以理解的是,第一直流总线1005可以是负直流总线或者正直流总线。当第一直流总线1005是负直流总线时,变换器的第一输出端为正输出端,第二输出端为负输出端;当第一直流总线1005是正直流总线时,变换器的第一输出端为负输出端,第二输出端为正输出端。
直流组件可以是光伏组件,即太阳能电池组件。本申请还可以应用在储能场景中,即直流组件可以是储能电池,例如镍镉电池、镍氢电池、锂离子电池、锂聚合物电池等。
可以理解的是,该实施例可以应用于本申请任一可行的实施方式中,组串内的直流组件对应设置有变换器,调节对应直流组件的工作状态,从而优化整个供电系统。
参考图11,图11为本申请实施例提供的又一种供电系统的系统架构示意图。图11以第一组串1101包括两个子组串11011和11012进行示例,而非穷举,应当理解为可以包括但不限于两个子组串。即第一组串1101可以包括至少两个子组串。
第一子组串11011和第二子组串11012并联形成第一组串1101,第一子组串11011与第二子组串11012的最大功率点所对应的输出电压区间至少部分重合,示例性的,第一子组串11011的电压功率曲线可以是图12的C曲线,第二子组串11012的电压功率曲线可以是图12的D曲线,第一子组串11011与第二子组串11012各自最大功率点对应的输出电压区间重合在250V至310V之间,此时认为第一子组串11011与第二子组串11012的适配度较高。例如,若第一子组串11011输出电压是280V,第二子组串11012输出电压是300V, 虽然两者输出电压不同,但是可以经过最大功率点跟踪(maximum power point track,MPPT)控制将第一子组串11011的输出电压调整为300V,或者经过MPPT控制将第二子组串11012的输出电压调整为280V,或者经过MPPT控制将第一子组串11011的输出电压调整为290V并将第二子组串11012的输出电压调整为290V等等。MPPT控制可以理解为不断根据目标组串的工作环境(如光照强度、环境温度等)来调整目标组串的输出电压,使该目标组串输出最大功率。上述MPPT控制以调节第一子组串11011和/或第二子组串11012的输出电压为300V、280V或290V进行实例,而非穷举。即可以通过MPPT控制将第一子组串11011和第二子组串11012的输出电压调整至相同,从而共用第一切换子开关11031以及第一电压补偿单元1104。该实施例通过将适配度较高的两个子组串并联,共用一个切换开关单元以及电压补偿单元,可以进一步地降低系统成本。
在一可行的实施方式中,第一子组串11011和/或第二子组串11012可以包括至少一个直流组件以及与直流组件对应的变换器,具体实现可以参考前文结合图10所描述的实施例,此处不作赘述。
在一可选实施方式中,第一直流总线1105可以是负直流总线,第二直流总线1106是正直流总线;或者第一直流总线1105是正直流总线,第二直流总线1106是负直流总线。
在一可行实施方式中,第二组串1102也可以包括至少两个子组串,各个子组串共用第二切换子开关11032和第一电压补偿单元1104。即供电系统中的各个组串可以都包括至少两个子组串,而不仅仅只是其中一个组串可以包括子组串。
可以理解的是,组串中包括的子组串数量取决于子组串之间最大功率点对应的输出电压区间是否重合,若最大功率点对应的输出电压区间重合,则可以并联起来共用一个电压补偿单元和一个切换子开关。
参考图13,图13为本申请实施例提供的又一种供电系统的系统架构示意图。图13以供电系统包括三个组串所在的三个支路和两个电压补偿单元进行示例,而非穷举,应该理解为供电系统可以包括N个组串所在的N个支路以及M个电压补偿单元,N和M均为正整数,且M小于N。如图13所示,该实施例中的供电系统可以包括第一组串13011所在的第一支路1301、第二组串13022所在的第二支路1302、第三组串13033所在的第三支路1303、切换开关单元1304、第一电压补偿单元1305以及第二电压补偿单元1306。切换开关单元1304可以包括第一切换子开关13041、第二切换子开关13042和第三切换子开关13043。各个切换子开关包括第一端、第二端和第三端,其中,第一切换子开关13041的第一端与第一组串13011的一端连接,第一切换子开关13041的第二端与第一电压补偿单元1305的第二输出端连接,第一切换子开关13041的第三端和第一电压补偿单元1305的第一输出端分别与第一直流总线1307连接;第二切换子开关13042的第一端与第二组串13022的一端连接,第二切换子开关13042的第二端与第二电压补偿单元1306的第二输出端连接,第二切换子开关13042的第三端和第二电压补偿单元1306的第一输出端分别与第一直流总线1307连接;第三切换子开关13043的第一端与第三组串13033的一端连接,第三切换子开关13043的第二端与第一电压补偿单元1305的第二输出端连接,第三切换子开关13043的第三端与第二电压补偿单元1306的第二输出端连接,第三切换子开关13043的第四端与第一直流总线1307连接。第一组串13011的另一端、第二组串13022的另一端以及第三组 串13033的另一端分别连接第二直流总线1308。
控制器获取第一组串13011、第二组串13022和第三组串13033的工作状态参数,根据第一组串13011、第二组串13022和第三组串13033的工作状态参数生成电压补偿使能信号。具体实现中,在第一组串13011、第二组串13022和第三组串13033的输出电压不同的情况下,该控制器生成电压补偿使能信号,并向切换开关单元1304发送该电压补偿使能信号。切换开关单元1304根据该电压补偿使能信号,将部分或全部的电压补偿单元分别接入部分支路。例如可以是第一组串13011和第二组串13022的输出电压较小,切换开关单元1304控制第一电压补偿单元1305接入第一支路1301,以及第二电压补偿单元1306接入第二支路1302;或第一组串13011和第三组串13033的输出电压较小,切换开关单元1304控制第一电压补偿单元1305接入第一支路1301,以及第二电压补偿单元1306接入第三支路1303;或第二组串13022和第三组串13033的输出电压较小,切换开关单元1304控制第二电压补偿单元1306接入第二支路1302,以及第一电压补偿单元1305接入第三支路1303;或第一组串13011的输出电压较小,切换开关单元1304控制第一电压补偿单元1305接入第一支路1301,此时第二电压补偿补偿单元1306输出电压可以为零;或第二组串13022的输出电压较小,切换开关单元1304控制第二电压补偿单元1306接入第二支路1302,此时第一电压补偿单元1305的输出电压可以为零;或第三组串13033的输出电压较小,切换开关单元1304控制第一电压补偿单元1305或第二电压补偿单元1306接入第三支路1303,此时不接入第三支路1303的电压补偿单元的输出电压可以为零。
通过将电压补偿单元接入需要进行电压补偿的支路,而不需要进行电压补偿的支路则不接入电压补偿单元,避免电压补偿单元在不需要进行电压补偿的支路中造成不必要的系统损耗,并且电压补偿单元的数量小于组串数量,相对于现有技术中电压补偿单元的数量等于组串数量,可以减少电压补偿单元的数量,降低系统成本。
示例性的,第一支路1301、第二支路1302和第三支路1303在默认状态下可以不接入任一电压补偿单元。
另外,在第一组串13011、第二组串13022和第三组串13033的输出电压相同的情况下,上述控制器可以根据第一组串13011、第二组串13022和第三组串13033的工作状态参数不生成电压补偿使能信号或者生成电压补偿默认信号,切换开关单元1304在没有接收到电压补偿使能信号或接收到电压补偿默认信号时,控制电压补偿单元不接入第一支路1301、第二支路1302和第三支路1303。
在一可选实施方式中,该实施例的控制器可以设于供电系统包括的光伏逆变控制模块中。
进一步的,上述控制器还可以根据第一组串13011、第二组串13022和第三组串13033的工作状态参数,确定至少一个电压补偿参考值,并分别向第一电压补偿单元1305和第二电压补偿单元1306发送对应的电压补偿参考值,使得第一电压补偿单元1305根据接收到的电压补偿参考值对第一支路1301或第三支路1303进行补偿,第二电压补偿单元1306根据接收到的电压补偿参考值对第二支路1302或第三支路1303进行补偿。示例性的,第一组串13011的输出电压值为200V,第二组串13022的输出电压值为300V,第三组串13033的输出电压值为250V,则该控制器向第一电压补偿单元1305发送的电压补偿值为100V, 向第二电压补偿单元1306发送的电压补偿值为50V。
第一切换子开关13041以及第二切换子开关13042的具体结构和具体实现方式可以参考图4至图9所描述的实施例,此处不再赘述。下面结合图14A至图15D对第三切换子开关13043的具体结构和具体实现方式进行示例性说明。
在一可行的实施方式中,第三切换子开关13043可以是触点开关。参考图14A至图14B。
在另一种可能的实现方式中,第三切换子开关13043可以包括如图14A所示的三个单常开触点开关,每个单常开触点开关均包括一个静触点、一个动触点和一个线圈,单常开触点开关可以理解为默认状态时静触点与动触点是断开的。三个单常开触点开关的动触点分别是A1、A2和A3,三个单常开触点开关的静触点分别是A4、A5和A6。A1、A2和A3均连接至第三切换子开关13043的第一端。A4、A5和A6可以连接第三切换子开关13043的第四端、第二端或第三端中的任意一端。切换开关单元1304控制各个单常开触点开关的线圈是否流过电流来控制各个触点是否接触,从而控制第三切换子开关13043的各个端口是否连接。该实施例以A4连接第三切换子开关13043的第四端、A5连接第三切换子开关13043的第二端以及A6连接第三切换子开关13043的第三端进行示例,切换开关单元1304控制A5所在线圈流过电流,使A2和A5接触,即第三切换子开关13043的第一端与第二端连接,从而连通第一电压补偿单元1305与第三组串13033,第一电压补偿单元1305接入第三支路1303;或者切换开关单元1304控制A6所在线圈流过电流,使得A3和A6接触,即第三切换子开关13043的第一端与第三端连接,从而连通第二电压补偿单元1306与第三组串13033,第二电压补偿单元1306接入第三支路1303;或者切换开关单元1304控制A4所在线圈流过电流,使A1和A4接触,即第三切换子开关13043的第一端与第四端连接,从而连通第三组串13033与第一直流总线1307,第三支路1303不接入任一电压补偿单元。
在又一种可能的实现方式中,第三切换子开关13043可以包括如图14B所示的一个单常闭触点开关和两个单常开触点开关。该单常开触点开关与该单常闭触点开关均包括一个静触点、一个动触点和一个线圈。单常闭触点开关与单常开触点开关不同的是,单常闭触点开关默认状态下静触点与动触点之间是接触的。该单常闭触点开关的动触点是B1,静触点是B4;该两个单常开触点开关的动触点分别是B2和B3,静触点分别是B5和B6。其中,B1、B2和B3均连接至第三切换子开关13043的第一端,B4连接第三切换子开关13043的第四端,默认状态下B1和B4接触,即第三切换子开关13043在默认状态下第一端与第四端连接,连通第三组串13033与第一直流总线1307,第三支路1303不接入任一电压补偿单元。B5和B6可以连接第三切换子开关13043的第二端或第三端中的任意一端。切换开关单元1304控制单常闭触点开关和单常开触点开关的线圈是否流过电流来控制触点是否接触,从而控制第三切换子开关13043的端口是否连接,该实施例以B5连接第三切换子开关13043的第二端以及B6连接第三切换子开关13043的第三端进行示例,切换开关单元1304控制B5所在线圈流过电流,使B2和B5接触,即第三切换子开关13043的第一端与第二端连接,从而连通第一电压补偿单元1305与第三组串13033,第一电压补偿单元1305接入第三支路1303,并且切换开关单元1304还控制B4所在线圈流过电流,使B1和B4不接触,即第三切换子开关13043的第一端与第四端断开,从而断开第三组串13033与第 一直流总线1307。或者切换开关单元1304控制B6所在线圈流过电流,使B3和B6接触,即第三切换子开关13043的第一端与第三端连接,从而连通第二电压补偿单元1306与第三组串13033,第二电压补偿单元1306接入第三支路1303,并且切换开关单元1304还控制B4所在线圈流过电流,使B1和B4不接触,即第三切换子开关13043的第一端与第四端断开,从而断开第三组串13033与第一直流总线1307。
在另一可行的实施方式中,第三切换子开关13043可以是半导体开关,参考图15A至图15D。
当第一直流总线1307是负直流总线时,在一种可能的实现方式中,第三切换子开关13043可以包括如图15A所示的第七半导体开关、第八半导体开关以及第九半导体开关。该第七半导体开关是Q11,用于控制第一直流总线1307与第三组串13033之间的通断;该第八半导体开关由Q14与Q15对顶连接而成,用于控制第一电压补偿单元1305与第三组串13033之间的通断;该第九半导体由Q12与Q13对顶连接而成,用于控制第二电压补偿单元1306与第三组串13033之间的通断。其中,Q14的源极与Q15的源极连接,Q12的源极与Q13的源极连接,Q11的漏极、Q12的漏极以及Q14的漏极分别连接第三切换子开关13043的第一端,Q11的源极连接第三切换子开关13043的第四端,Q13的漏极连接第三切换子开关13043的第三端,Q15的漏极连接第三切换子开关13043的第二端。与前文结合图6所描述的第一切换子开关6031a不同的是,第三切换子开关13043的第二端连接第一电压补偿单元1305,而第三端连接第二电压补偿单元1306,由于第一电压补偿单元1305和第二电压补偿单元1306的输出电压大小关系不确定,而MOSFET存在寄生二极管或IGBT存在反向并联二极管,若第一电压补偿单元1305输出电压是10V,同时第二电压补偿单元1306输出电压是20V,当切换开关单元1304控制该第三切换子开关13043连通第三组串13033与第二电压补偿单元1306,此时,第二电压补偿单元1306施加20V的电压在第三切换子开关13043的第一端,而第三切换子开关13043的第二端由第一电压补偿单元1305施加10V的电压,第三切换子开关13043的第一端与第二端之间的电压差可以导通Q15的寄生二极管,从而将第一电压补偿单元1305也连通至第三组串13033。为了避免第三组串13033同时连通第一电压补偿单元1305和第二电压补偿单元1306,该第八半导体开关使用两个MOSFET对顶连接,增加一个反向MOSFET,即Q14。同理的,该第九半导体开关使用两个MOSFET对顶连接,增加一个反向MOSFET,即Q12。切换开关单元1304可以根据电压补偿使能信号,向Q14和Q15输出驱动信号,连通第一电压补偿单元1305与第三组串13033,即第一电压补偿单元1305接入第三支路1303;或者向Q12和Q13输出驱动信号,连通第二电压补偿单元1306与第三组串13033,即第二电压补偿单元1306接入第三支路1303;或者向Q11输出驱动信号,连通第一直流总线1307与第三组串13033,即第三支路1303不接入任一电压补偿单元。
当第一直流总线1307是负直流总线时,在另一种可能的实现方式中,第三切换子开关13043可以包括如图15B所示的第十半导体开关、第十一半导体开关和二极管。该二极管是D3,用于控制第一直流总线1307与第三组串13033之间的通断;该第十半导体开关由Q18和Q19对顶连接而成,用于控制第一电压补偿单元1305与第三组串13033之间的通断;该第十一半导体开关由Q16与Q17对顶连接而成,用于控制第二电压补偿单元1306与第 三组串13033之间的通断,图15B增加反向串联MOSFET Q18和Q16的原因可以参考图15A对Q14和Q12的描述,此处不作赘述。其中,Q18的源极与Q19的源极连接,Q16的源极与Q17的源极连接,二极管D3的阴极、Q16的漏极以及Q18的漏极分别连接第三切换子开关13043的第一端,二极管D3的阳极连接第三切换子开关13043的第四端,Q17的漏极连接第三切换子开关13043的第三端,Q19的漏极连接第三切换子开关13043的第二端。切换开关单元1304可以根据电压补偿使能信号,向Q18和Q19输出驱动信号,连通第一电压补偿单元1305与第三组串13033,即第一电压补偿单元1305接入第三支路1303;或者向Q16和Q17输出驱动信号,连通第二电压补偿单元1306与第三组串13033,即第二电压补偿单元1306接入第三支路1303。二极管D3在第一电压补偿单元1305接入第三支路1303,或第二电压补偿单元1306接入第三支路1303时处于反向截止状态,从而断开第三组串13033与第一直流总线1307,具体实现原理可以参考前文结合图7所描述的实施例,此处不作赘述。
当第一直流总线1307是正直流总线时,在一种可能的实现方式中,第三切换子开关13043可以包括如图15C所示的第十二半导体开关、第十三半导体开关以及第十四半导体开关。该第十二半导体开关是Q20,用于控制第一直流总线1307与第三组串13033之间的通断;该第十三半导体开关由Q23与Q24对顶连接而成,用于控制第一电压补偿单元1305与第三组串13033之间的通断;该第十四半导体由Q21与Q22对顶连接而成,用于控制第二电压补偿单元1306与第三组串13033之间的通断。其中,Q23的源极与Q24的源极连接,Q21的源极与Q22的源极连接,Q20的源极、Q21的漏极以及Q23的漏极分别连接第三切换子开关13043的第一端,Q20的漏极连接第三切换子开关13043的第四端,Q22的漏极连接第三切换子开关13043的第三端,Q24的漏极连接第三切换子开关13043的第二端。切换开关单元1304可以根据电压补偿使能信号,向Q23和Q24输出驱动信号,连通第一电压补偿单元1305与第三组串13033,即第一电压补偿单元1305接入第三支路1303;或者向Q21和Q22输出驱动信号,连通第二电压补偿单元1306与第三组串13033,即第二电压补偿单元1306接入第三支路1303;或者向Q20输出驱动信号,连通第一直流总线1307与第三组串13033,即第三支路1203不接入任一电压补偿单元。
当第一直流总线1307是正直流总线时,在另一种可能的实现方式中,第三切换子开关13043可以包括如图15D所示的第十五半导体开关、第十六半导体开关和二极管。该二极管是D4,用于控制第一直流总线1307与第三组串13033之间的通断;该第十五半导体开关由Q27和Q28对顶连接而成,用于控制第一电压补偿单元1305与第三组串13033之间的通断;该第十六半导体由Q25与Q26对顶连接而成,用于控制第二电压补偿单元1306与第三组串13033之间的通断。其中,Q27的源极和Q28的源极连接,Q25的源极和Q26的源极连接,二极管D4的阳极、Q27的漏极以及Q25的漏极分别连接第三切换子开关13043的第一端,二极管D4的阴极连接第三切换子开关13043的第四端,Q26的漏极连接第三切换子开关13043的第三端,Q28的漏极连接第三切换子开关13043的第二端。切换开关单元1304可以根据电压补偿使能信号,向Q27和Q28输出驱动信号,连通第一电压补偿单元1305与第三组串13033,即第一电压补偿单元1305接入第三支路1303;或者向Q25和Q26输出驱动信号,连通第二电压补偿单元1306与第三组串13033,即第二电压补偿单元 1306接入第三支路1303。二极管D4在第一电压补偿单元1305接入第三支路1303,或第二电压补偿单元1306接入第三支路1303时处于反向截止状态,从而断开第三组串13033与第一直流总线1307,具体实现原理可以参考前文结合图9所描述的实施例,此处不作赘述。
综上可知,切换子开关包括多少端取决于该供电系统中包括有多少电压补偿单元。切换开关单元1304可以包括组串与电压补偿单元之间的N个切换子开关,例如第一切换子开关、第二切换子开关……第N-1切换子开关包括三端,分别用于将第一组串、第二组串……第N-1组串连接至电压补偿单元或直流总线,而第N切换子开关选择性地将第N组串连接至任一电压补偿单元或直流总线,即该第N切换子开关需要包括M+2端,其中M端是用来选择M个电压补偿单元中的任意一个,剩余两端中的一端是用来连接第N组串,另一端是用来连接直流总线。
在一可行的实施方式中,第一组串13011、第二组串13022、第三组串13033可以包括至少一个直流组件以及变换器,具体实现可以参考图10所描述的实施例,此处不作赘述。
进而在一可行实施方式中,第一组串13011、第二组串13022、第三组串13033可以结合前文图11所描述的实施例,至少一个组串中可以包括至少两个子组串。
在一可选实施方式中,本申请中的切换开关单元1304可以包括至少一个触点开关和/或至少一个半导体开关,即第一切换子开关13041、第二切换子开关13042和第三切换子开关13043的具体结构可以不一样,例如第一切换子开关13041是触点开关,第二切换子开关13042是触点开关,而第三切换子开关13043是半导体开关;或者第一切换子开关13041是触点开关,第二切换子开关13042是半导体开关,而第三切换子开关13043是触点开关等等。
可以理解的是,半导体开关中的Q11、Q12、Q13、Q14等可以是MOSFET,或者可以是IGBT及其反并联二极管。前文结合图15A至图15D中均以MOSFET为例进行说明,若Q11、Q12、Q13、Q14等是IGBT及其反并联二极管,将MOSFET的源极替换为IGBT的发射极,MOSFET的漏极替换为IGBT的集电极,该反并联二极管的阳极与IGBT的发射极连接,阴极与IGBT的集电极连接即可。
本申请实施例还提供了一种组串补偿方法,该方法应用于上文所描述的任一供电系统,供电系统包括第一组串所在的第一支路、第二组串所在的第二支路、第一电压补偿单元以及控制器,该方法包括以下步骤:
切换开关单元从该控制器接收电压补偿使能信号,根据该电压补偿使能信号将第一电压补偿单元接入第一支路,该电压补偿使能信号是根据第一组串的工作状态参数以及第二组串的工作状态参数生成的;第一电压补偿单元,用于对该第一支路的输出电压进行补偿。该切换开关单元位于上述供电系统中。
其中,组串的工作状态参数可以是组串的输出电压,和/或是输出电流,和/或输出功率等,本申请以输出电压为例进行说明。
在具体实现中,上述控制器获取上述第一组串与上述第二组串的工作状态参数,根据该第一组串的工作状态参数以及该第二组串的工作状态参数生成电压补偿使能信号。比如在上述第一组串与上述第二组串的输出电压不同的情况下,例如该第一组串的输出电压值 较小,该控制器可以生成电压补偿使能信号,并向切换开关单元发送该电压补偿使能信号,该切换开关单元在接收到该电压补偿使能信号的情况下,控制上述第一电压补偿单元接入上述第一支路。即第一电压补偿单元只接入需要进行电压补偿的第一支路,而不需要进行电压补偿的第二支路则不接入第一电压补偿单元,避免电压补偿单元在第二支路中造成不必要的系统损耗,同时减少供电系统中电压补偿单元的数量,降低系统成本。
进一步的,供电系统还包括第一直流总线和第二直流总线;上述第一电压补偿单元包括第一输出端以及第二输出端,其中第一输出端连接至第一直流总线;切换开关单元根据该电压补偿使能信号将第一电压补偿单元接入第一支路具体实现为:切换开关单元根据上述电压补偿使能信号,将第一电压补偿单元的第二输出端连接至第一组串的一端;该第一组串的另一端连接至第二直流总线。若该第一直流总线是负直流总线,则该第一电压补偿单元的第一输出端是负输出端,第二输出端是正输出端;若该第一直流总线是正直流总线,则该第一电压补偿单元的第一输出端是正输出端,第二输出端是负输出端,切换开关单元以及第一电压补偿单元既可以设置在正直流总线侧,也可以设置在负直流总线侧,可以提高供电系统的适用性。
更进一步的,上述切换开关单元还根据上述电压补偿使能信号,将第二组串的一端连接至第一直流总线;第二组串的另一端连接至第二直流总线。
需要说明的是,在默认状态下,第一电压补偿单元是既不接入第一支路也不接入第二支路的。
另外,在第一组串和第二组串的输出电压相同的情况下,上述控制器可以根据上述第一组串的工作状态参数以及上述第二组串的工作状态参数不生成电压补偿使能信号或者生成电压补偿默认信号,切换开关单元在没有接收到电压补偿使能信号或接收到电压补偿默认信号时,控制第一电压补偿单元既不接入第一支路也不接入第二支路。
在一可选实施方式中,该供电系统应用于光伏,第一组串与第二组串为光伏组串,控制器可以设于该供电系统中的光伏逆变控制模块。
在另一可选实施方式中,供电系统的第一组串和第二组串分别设置有处理器,该处理器可以采集对应组串的工作状态参数,并将采集到的工作状态参数汇总至任一处理器中,获取到所有组串工作状态参数的处理器为上述控制器。
在一种可能的实现方式中,上述控制器还可以根据上述第一组串的工作状态参数以及上述第二组串的工作状态参数,确定电压补偿参考值,并向上述第一电压补偿单元发送该电压补偿参考值,使得该第一电压补偿单元根据该电压补偿参考值对第一支路的输出电压进行补偿,即该电压补偿参考值为该第一电压补偿单元的输出电压值。
在一可行实施方式中,该切换开关单元包括第一电压补偿单元与第一组串之间的第一切换子开关,该第一切换子开关为触点开关或半导体开关。上述切换开关单元根据该电压补偿使能信号将第一电压补偿单元接入第一支路具体实现为:该切换开关单元根据电压补偿使能信号,控制该第一切换子开关连通第一电压补偿单元与第一组串。该切换开关单元的具体结构以及具体实现过程可以参考前文结合图4至图9所描述的实施例,此处不作赘述。例如,该第一切换子开关包括第一半导体开关和第二半导体开关,其中该第一半导体开关用于连通第一电压补偿单元与第一组串,该第二半导体开关用于断开该第一组串与该 供电系统中的第一直流总线。上述切换开关单元根据电压补偿使能信号,控制该第一切换子开关连通第一电压补偿单元与第一组串可以具体实现为:根据该电压补偿使能信号控制该第一半导体开关连通第一电压补偿单元与第一组串,并控制该第二半导体开关断开该第一组串与第一直流总线。通过使用半导体开关作为切换开关单元,相对于触点开关来说,可以缩小供电系统的体积,并且可以在高电压高电流情况下进行导通以及关断操作,提高了系统安全性。又例如,该第一切换子开关包括第三半导体开关和二极管,其中该第三半导体开关用于连通第一电压补偿单元与第一组串,该二极管在第三半导体开关连通第一电压补偿单元与第一组串的情况下处于反向截止状态,从而断开上述第一组串与该供电系统中的第一直流总线。上述切换开关单元根据电压补偿使能信号,控制该第一切换子开关连通第一电压补偿单元与第一组串也可以具体实现为:该切换开关单元根据上述电压补偿使能信号,控制该第三半导体开关连通第一电压补偿单元与第一组串,并使得该第一组串与第一直流总线断开。通过使用半导体开关和二极管的组合来作为切换开关单元,相对于使用两个半导体开关来说,进一步降低了系统成本。
进而在一可选实施方式中,该切换开关单元还包括第二切换子开关;上述切换开关单元还根据电压补偿使能信号,控制该第二切换子开关连通供电系统中的第一直流总线与第二组串。
需要说明的是,上述切换开关单元将上述电压补偿单元接入第一支路后,由于各个组串之间的工作状态参数在不断变化,上述控制器可以根据组串之间的工作状态参数重新确定第一组串,即重新确定了需要进行电压补偿的组串。当切换开关单元中包括触点开关时,为了避免触点开关发生粘连,该控制器在对切换开关单元进行关断之前,可以先控制第一电压补偿单元的输出电压值等于或低于预设阈值,然后再控制该切换开关单元断开,该预设阈值由触点开关的型号确定。
在一种可能的实施例中,该供电系统包括N个组串所在的N个支路以及M个电压补偿单元,N和M均为正整数,且M小于N;该N个支路包括第一支路和第二支路,该M个电压补偿单元包括第一电压补偿单元。上述切换开关单元还根据上述电压补偿使能信号,将部分或全部的电压补偿单元分别接入部分支路。具体实现过程可以参考前文结合图13所描述的实施例,此处不作赘述。
在一可行的实施方式中,每个组串包括至少一个直流组件以及与直流组件对应的变换器;上述控制器控制该变换器对对应直流组件的工作状态进行调节。示例性的,该变换器可以是降压电路或升压电路,该控制器通过控制该变换器的输出电压的大小来对直流组件的工作状态进行调整。
需要说明的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
以上,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (23)

  1. 一种供电系统,其特征在于,包括:第一组串所在的第一支路、第二组串所在的第二支路、切换开关单元、第一电压补偿单元以及控制器;
    所述切换开关单元,用于根据从所述控制器接收到的电压补偿使能信号,将所述第一电压补偿单元接入所述第一支路;所述电压补偿使能信号是所述控制器根据第一组串的工作状态参数以及第二组串的工作状态参数生成的;
    所述第一电压补偿单元,用于对所述第一支路的输出电压进行补偿。
  2. 如权利要求1所述的供电系统,其特征在于,所述供电系统还包括第一直流总线和第二直流总线;所述第一电压补偿单元包括第一输出端以及第二输出端,所述第一电压补偿单元的第一输出端连接至所述第一直流总线;
    所述切换开关单元,用于根据所述电压补偿使能信号,将所述第一电压补偿单元的第二输出端连接至所述第一组串的一端;
    所述第一组串的另一端连接至所述第二直流总线。
  3. 如权利要求2所述的供电系统,其特征在于,所述切换开关单元,还用于根据所述电压补偿使能信号,将所述第二组串的一端连接至所述第一直流总线;
    所述第二组串的另一端连接至所述第二直流总线。
  4. 如权利要求2-3任一项所述的供电系统,其特征在于,所述第一电压补偿单元还包括第一输入端和第二输入端;
    所述第一电压补偿单元的第一输入端连接至所述第一直流总线,所述第一电压补偿单元的第二输入端连接至所述第二直流总线。
  5. 如权利要求1-4任一项所述的供电系统,其特征在于,所述第一组串包括至少两个子组串。
  6. 如权利要求5所述的供电系统,其特征在于,所述第一组串中包括的至少两个子组串各自最大功率点所对应的输出电压区间至少部分重合。
  7. 如权利要求1-6任一项所述的供电系统,其特征在于,所述切换开关单元包括所述第一电压补偿单元与所述第一组串之间的第一切换子开关,所述第一切换子开关为触点开关或半导体开关;
    所述切换开关单元,用于根据所述电压补偿使能信号,控制所述第一切换子开关连通所述第一电压补偿单元与所述第一组串。
  8. 如权利要求7所述的供电系统,其特征在于,所述切换开关单元还包括第二切换子 开关;
    所述切换开关单元,还用于根据所述电压补偿使能信号,控制所述第二切换子开关连通所述供电系统中的第一直流总线与所述第二组串。
  9. 如权利要求7所述的供电系统,其特征在于,所述第一切换子开关包括第一半导体开关和第二半导体开关,其中所述第一半导体开关用于连通所述第一电压补偿单元与所述第一组串,所述第二半导体开关用于断开所述第一组串与所述供电系统中的第一直流总线;
    所述切换开关单元,用于根据所述电压补偿使能信号,控制所述第一半导体开关连通所述第一电压补偿单元与所述第一组串,并控制所述第二半导体开关断开所述第一组串与所述第一直流总线。
  10. 如权利要求7所述的供电系统,其特征在于,所述第一切换子开关包括第三半导体开关和二极管,其中所述第三半导体开关用于连通所述第一电压补偿单元与所述第一组串,所述二极管在所述第三半导体开关连通所述第一电压补偿单元与所述第一组串的情况下处于反向截止状态,从而用于断开所述第一组串与所述供电系统中的第一直流总线;
    所述切换开关单元,用于根据所述电压补偿使能信号,控制所述第三半导体开关连通所述第一电压补偿单元与所述第一组串,并使得所述第一组串与所述第一直流总线断开。
  11. 如权利要求1-10任一项所述的供电系统,其特征在于,所述第一电压补偿单元包括非隔离型降压式变换电路。
  12. 如权利要求1-11任一项所述的供电系统,其特征在于,所述供电系统包括N个组串所在的N个支路以及M个电压补偿单元,N和M均为正整数,且M小于N;所述N个支路包括所述第一支路和所述第二支路,所述M个电压补偿单元包括所述第一电压补偿单元;
    所述切换开关单元,用于根据所述电压补偿使能信号,将部分或全部的电压补偿单元分别接入部分支路。
  13. 如权利要求1-12任一项所述的供电系统,其特征在于,每个组串包括至少一个直流组件以及与直流组件对应的变换器,所述变换器用于调节所述对应直流组件的工作状态。
  14. 如权利要求1-13任一项所述的供电系统,其特征在于,所述第一组串和所述第二组串为光伏组串。
  15. 一种供电方法,应用于供电系统,其特征在于,所述供电系统包括第一组串所在的第一支路、第二组串所在的第二支路、第一电压补偿单元以及控制器,所述方法包括:
    从所述控制器接收电压补偿使能信号,根据所述电压补偿使能信号将所述第一电压补偿单元接入所述第一支路;所述电压补偿使能信号是所述控制器根据第一组串的工作状态 参数以及第二组串的工作状态参数生成的;
    所述第一电压补偿单元,用于对所述第一支路的输出电压进行补偿。
  16. 如权利要求15所述的方法,其特征在于,所述供电系统还包括第一直流总线和第二直流总线;所述第一电压补偿单元包括第一输出端以及第二输出端,所述第一电压补偿单元的第一输出端连接至所述第一直流总线;
    所述根据所述电压补偿使能信号将所述第一电压补偿单元接入所述第一支路包括:
    根据所述电压补偿使能信号,将所述第一电压补偿单元的第二输出端连接至所述第一组串的一端;
    所述第一组串的另一端连接至所述第二直流总线。
  17. 如权利要求16所述的方法,其特征在于,所述方法还包括:
    根据所述电压补偿使能信号,将所述第二组串的一端连接至所述第一直流总线;
    所述第二组串的另一端连接至所述第二直流总线。
  18. 如权利要求15-17任一项所述的方法,其特征在于,所述切换开关单元包括所述第一电压补偿单元与所述第一组串之间的第一切换子开关,所述第一切换子开关为触点开关或半导体开关;
    所述根据所述电压补偿使能信号将所述第一电压补偿单元接入所述第一支路包括:
    根据所述电压补偿使能信号,控制所述第一切换子开关连通所述第一电压补偿单元与所述第一组串。
  19. 如权利要求18所述的方法,其特征在于,所述切换开关单元还包括第二切换子开关;所述方法还包括:
    根据所述电压补偿使能信号,控制所述第二切换子开关连通所述供电系统中的第一直流总线与所述第二组串。
  20. 如权利要求18所述的方法,其特征在于,所述第一切换子开关包括第一半导体开关和第二半导体开关;
    所述根据所述电压补偿使能信号,控制所述第一切换子开关连通所述第一电压补偿单元与所述第一组串包括:
    根据所述电压补偿使能信号,控制所述第一半导体开关连通所述第一电压补偿单元与所述第一组串,并控制所述第二半导体开关断开所述第一组串与所述第一直流总线。
  21. 如权利要求18所述的方法,其特征在于,所述第一切换子开关包括第三半导体开关和二极管;
    所述根据所述电压补偿使能信号,控制所述第一切换子开关连通所述第一电压补偿单元与所述第一组串包括:
    根据所述电压补偿使能信号,控制所述第三半导体开关连通所述第一电压补偿单元与所述第一组串,并使所述二极管处于反向截止状态,从而断开所述第一组串与所述第一直流总线。
  22. 如权利要求15-21任一项所述的方法,其特征在于,所述供电系统包括N个组串所在的N个支路以及M个电压补偿单元,N和M均为正整数,且M小于N;所述N个支路包括所述第一支路和所述第二支路,所述M个电压补偿单元包括所述第一电压补偿单元;
    所述方法还包括:
    根据所述电压补偿使能信号,将部分或全部的电压补偿单元分别接入部分支路。
  23. 如权利要求15-22任一项所述的方法,其特征在于,每个组串包括至少一个直流组件以及与直流组件对应的变换器;
    所述控制器,还用于控制所述变换器对所述对应直流组件的工作状态进行调节。
PCT/CN2021/112746 2020-08-19 2021-08-16 一种供电系统及方法 WO2022037522A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023512106A JP2023539112A (ja) 2020-08-19 2021-08-16 電源システム及び方法
AU2021327804A AU2021327804A1 (en) 2020-08-19 2021-08-16 Power supply system and method
EP21857617.1A EP4187736A4 (en) 2020-08-19 2021-08-16 POWER SUPPLY SYSTEM AND METHOD
US18/170,606 US20230208182A1 (en) 2020-08-19 2023-02-17 Power supply system and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010839416.8 2020-08-19
CN202010839416.8A CN114079283A (zh) 2020-08-19 2020-08-19 一种供电系统及方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/170,606 Continuation US20230208182A1 (en) 2020-08-19 2023-02-17 Power supply system and method

Publications (1)

Publication Number Publication Date
WO2022037522A1 true WO2022037522A1 (zh) 2022-02-24

Family

ID=80281804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/112746 WO2022037522A1 (zh) 2020-08-19 2021-08-16 一种供电系统及方法

Country Status (6)

Country Link
US (1) US20230208182A1 (zh)
EP (1) EP4187736A4 (zh)
JP (1) JP2023539112A (zh)
CN (1) CN114079283A (zh)
AU (1) AU2021327804A1 (zh)
WO (1) WO2022037522A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06296333A (ja) * 1993-04-07 1994-10-21 Mitsubishi Electric Corp 宇宙船の電源装置
CN201947013U (zh) * 2011-01-14 2011-08-24 宁波海锂子新能源有限公司 压差补偿均衡电源管理系统
CN105680794A (zh) * 2016-04-12 2016-06-15 常熟市福莱德连接器科技有限公司 电压补偿法增效型光伏汇流箱

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102655381A (zh) * 2011-03-01 2012-09-05 上海康威特吉能源技术有限公司 一种新型的光伏系统
KR101226628B1 (ko) * 2011-03-25 2013-01-28 주식회사 디케이 태양광 발전시스템의 직렬전압 보상장치
US9368965B2 (en) * 2011-07-28 2016-06-14 Tigo Energy, Inc. Enhanced system and method for string-balancing
GB2498790A (en) * 2012-01-30 2013-07-31 Solaredge Technologies Ltd Maximising power in a photovoltaic distributed power system
KR101221667B1 (ko) * 2012-08-30 2013-01-14 (주)썬전력 태양광 발전기 전류보상용 스위칭 전원장치
EP3433914B1 (en) * 2016-05-09 2022-04-06 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
CN106941263B (zh) * 2017-04-24 2019-04-23 浙江大学 一种可以实现分布式mppt的集中式光伏发电系统
CN107895945B (zh) * 2017-12-28 2024-01-30 辽宁太阳能研究应用有限公司 一种电池板电位差补偿系统
CN207637040U (zh) * 2017-12-28 2018-07-20 辽宁太阳能研究应用有限公司 一种光伏阵列智能电压补偿器
CN107885274B (zh) * 2017-12-28 2023-05-16 辽宁太阳能研究应用有限公司 一种光伏阵列智能电压补偿器
CN111555443B (zh) * 2020-04-20 2022-05-17 南京南瑞继保电气有限公司 模块化串联同步补偿系统及其控制方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06296333A (ja) * 1993-04-07 1994-10-21 Mitsubishi Electric Corp 宇宙船の電源装置
CN201947013U (zh) * 2011-01-14 2011-08-24 宁波海锂子新能源有限公司 压差补偿均衡电源管理系统
CN105680794A (zh) * 2016-04-12 2016-06-15 常熟市福莱德连接器科技有限公司 电压补偿法增效型光伏汇流箱

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4187736A4

Also Published As

Publication number Publication date
JP2023539112A (ja) 2023-09-13
EP4187736A4 (en) 2024-01-24
AU2021327804A1 (en) 2023-03-16
CN114079283A (zh) 2022-02-22
US20230208182A1 (en) 2023-06-29
EP4187736A1 (en) 2023-05-31

Similar Documents

Publication Publication Date Title
US11605967B2 (en) On-board charger
US10097078B2 (en) Multi-mode energy router
US8405349B2 (en) Enhanced battery storage and recovery energy systems
US9831778B2 (en) Power-converting device and power conditioner using the same
CN112970182A (zh) 具有高频中间交流和两个独立输出的交流-直流三电平转换系统
US20140042815A1 (en) Balancing, filtering and/or controlling series-connected cells
US9577441B2 (en) Method for charging the energy storage cells of an energy storage device, and rechargeable energy storage device
US9190921B2 (en) Transformerless cycloconverter
CN110994968B (zh) 一种预充电电路、逆变器以及发电系统
US20150349533A1 (en) Photovoltaic system and method for operating a photovoltaic system
TWI826868B (zh) 光伏儲能系統及其適用的控制方法
US20230208287A1 (en) Dc/dc converter, voltage gain switching method and system
CN110995001B (zh) 多输入功率变换器及其控制方法和包括其的不间断电源
CN115833575A (zh) 一种储能变流器、平衡电路的控制方法以及储能系统
US10581266B2 (en) Energy storage system and method for direct coupling energy storage and power source
CN213027469U (zh) 电池储能系统
WO2022037522A1 (zh) 一种供电系统及方法
US9774256B2 (en) Dual source DC to DC converter
CN207910510U (zh) 用于电动汽车充电的恒压交流电源及储能充电系统
US20220294388A1 (en) Photovoltaic system
EP4391340A1 (en) Power conversion device, control method, and power supply system
US11870346B2 (en) DC-DC converter
US11349336B2 (en) Method for operating power factor correction circuit and method for operating uninterruptible power supply apparatus
WO2021104373A1 (zh) 一种多电池切换控制电路、装置、系统及控制方法
CN116054355B (zh) 一种储能系统及其电网系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21857617

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023512106

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021857617

Country of ref document: EP

Effective date: 20230222

ENP Entry into the national phase

Ref document number: 2021327804

Country of ref document: AU

Date of ref document: 20210816

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE