WO2022037499A1 - 一种用于造球机的控制系统及控制方法 - Google Patents

一种用于造球机的控制系统及控制方法 Download PDF

Info

Publication number
WO2022037499A1
WO2022037499A1 PCT/CN2021/112553 CN2021112553W WO2022037499A1 WO 2022037499 A1 WO2022037499 A1 WO 2022037499A1 CN 2021112553 W CN2021112553 W CN 2021112553W WO 2022037499 A1 WO2022037499 A1 WO 2022037499A1
Authority
WO
WIPO (PCT)
Prior art keywords
pelletizing
pelletizing machine
mixture
proportion
green
Prior art date
Application number
PCT/CN2021/112553
Other languages
English (en)
French (fr)
Inventor
邱立运
朱佼佼
袁立新
吴勇
丁勇
周斌
Original Assignee
中冶长天国际工程有限责任公司
中冶长天(长沙)智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中冶长天国际工程有限责任公司, 中冶长天(长沙)智能科技有限公司 filed Critical 中冶长天国际工程有限责任公司
Priority to BR112022023793A priority Critical patent/BR112022023793A2/pt
Publication of WO2022037499A1 publication Critical patent/WO2022037499A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D27/00Simultaneous control of variables covered by two or more of main groups G05D1/00 - G05D25/00
    • G05D27/02Simultaneous control of variables covered by two or more of main groups G05D1/00 - G05D25/00 characterised by the use of electric means
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/2406Binding; Briquetting ; Granulating pelletizing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/044Recurrent networks, e.g. Hopfield networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/084Backpropagation, e.g. using gradient descent
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing
    • G06T1/0014Image feed-back for automatic industrial control, e.g. robot with camera
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/13Edge detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • G06T7/62Analysis of geometric attributes of area, perimeter, diameter or volume
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30136Metal

Definitions

  • the present application relates to the technical field of iron and steel smelting, and in particular, to a control system and a control method for a pelletizing machine.
  • pellet making is a commonly used technology for iron ore extraction today.
  • the pelletizing process is an important process in the production line of iron ore pellets, and the stability and improvement of the output and quality of green pellets mainly depend on the pelletizing process.
  • the pelletizing machine mainly includes the disc pelletizing machine and the cylindrical pelletizing machine.
  • the cylindrical pelletizing machine is generally used in the large-scale high-yield production line. However, due to the current small and medium-scale pelletizing production line dominant, so disc pelletizers are more common.
  • the materials move along different tracks in the pelletizing machine to form green balls with different diameters. After the green balls reach a certain condition, they are discharged from the pelletizing machine and fall into the subsequent green balls to take over. in the device.
  • the pelletizing size of the pelletizing machine is the key parameter of the pelletizing process. The higher the pass rate of the green pellets, the higher the output of the pelletizing machine.
  • the influencing factors of ball formation mainly include the rotation speed of the ball machine, the inclination angle of the ball machine, the amount of material entering the ball machine, the amount of water added to the material of the ball machine, and the original moisture content of the material entering the ball machine. Wait.
  • the on-site pelletizing operators usually pre-set reasonable pelletizer rotational speed, pelletizer inclination, feeding amount of the feeding belt, and water supply of the water adding device according to the raw material conditions of the aforementioned ore blending process and the actual situation of pelletizing production.
  • the production adjustment of the pelletizing machine is carried out according to the parameters such as quantity, so that the expected output and quality of the green pellets can meet the production requirements, and even the optimal pellets can be produced.
  • the pelletizing machine may face many uncertain factors in the process of pelletizing, such as aging equipment, unsatisfactory raw material conditions, unstable raw material ratio and moisture rate.
  • the output of green pellets cannot meet the process requirements, which affects the output and quality of the pellet production line, and increases the energy consumption and operating costs of the process.
  • the present application provides a control system and control method for a pelletizing machine, which can be used to solve the technical problem in the prior art that the actual pass rate of green pellets cannot reach a preset standard, thereby reducing the pelletizing quality of the pelletizing machine .
  • an embodiment of the present application provides a control system for a pelletizing machine, the system includes a pelletizing machine, a water supply device and a feeding belt scale, and the water outlet of the water supply device is set at the inlet of the pelletizing machine.
  • the material point and the ball rising area in the pelletizing machine are used to provide water to the pelletizing machine;
  • the feeding belt scale is used to provide the mixing material to the pelletizing machine, and the blanking point of the feeding belt scale is:
  • the system also includes a speed controller connected with the pelletizing machine, an inclination controller connected with the pelletizing machine, a water controller connected with the water supply device, and a material connected with the feeding belt scale A controller and a central processing unit respectively connected with the speed controller, the inclination controller, the water controller and the material controller;
  • the central processing unit is configured to perform the following steps:
  • the rotating speed of the pelletizing machine the inclination angle of the pelletizing disc of the pelletizing machine, the amount of water supplied, the types and proportions of the components of the mixture, the feeding amount of the mixture, the viscosity of the mixture
  • the proportion of the binder and the original moisture content of the mixture, the proportion of each particle size range of the green ball is predicted, and the predicted value of the green ball pass rate for multiple prediction periods is obtained;
  • the deviation value of the green ball qualification rate in each prediction period is calculated
  • the rotational speed controller to adjust the rotational speed of the pelletizing machine in the pelletizing machine to the rotational speed of the pelletizing machine to be adjusted
  • drive the inclination controller to adjust the inclination angle of the pelletizing disc in the pelletizing machine to the rotational speed of the pelletizing machine to be adjusted.
  • the inclination angle of the pelletizing disc of the pelletizing machine, and driving the material controller to adjust the feeding amount provided to the pelletizing machine to the to-be-adjusted feeding amount, and driving the water controller to provide the pelletizing machine.
  • the water supply amount is adjusted to the water supply amount to be adjusted;
  • the multiple prediction periods include the current period and the period after the current period; the rolling optimization model is used for the types and proportions of each component of the mixture and the proportion of the binder in the mixture Under the condition that the original moisture content of the mixture and the mixture remain unchanged, when the variance of the deviation value of the qualified rate of green balls for multiple prediction periods is calculated to be the smallest, the corresponding rotation speed of the pelletizing machine, the inclination angle of the pelletizing disc of the pelletizing machine, the feeding feed and water supply.
  • the pass rate of green balls is determined according to the predicted value of the proportion of green balls of different specifications, and the predicted value of the proportion of green balls of different specifications includes the proportion of qualified large balls.
  • the green ball qualification rate deviation value of each prediction period is obtained by the following methods:
  • k+j) ⁇ (r 1 (j)-y 1 (k
  • k+j) is the deviation value of the proportion of various types of green balls and the reference value in the jth step of the kth prediction period; ri ( j ) is the jth step of the ith specification The target value of the percentage of raw balls; y i (k
  • the variance of the green ball qualification rate deviation values of the multiple prediction periods is obtained in the following manner:
  • k+j) is the mean square error of the deviation between the proportion of various types of green balls and the reference value in the jth step of the kth prediction period
  • ri ( j ) is the jth prediction step of the jth
  • the rotational speed of the pelletizing machine the inclination angle of the pelletizing disc of the pelletizing machine, the water supply amount, the types of the components of the mixture and The ratio, the amount of the mixture, the proportion of the binder in the mixture, and the original moisture content of the mixture, the proportion of each particle size range of the green balls is predicted, and the results of multiple prediction periods are obtained.
  • the predicted value of the pass rate of green balls, the specific steps are as follows:
  • the quantified rotational speed of the pelletizing machine According to the quantified rotational speed of the pelletizing machine, the quantified inclination angle of the pelletizing disc of the pelletizing machine, the quantified water supply amount, the quantified feed amount, the types and proportions of each component in the mixture, the The ratio of the binder in the mixture and the original moisture content of the mixture are obtained to obtain the characteristic vector that affects the pelletizing;
  • the proportion prediction model includes the ratio of the feature vector affecting ball making and the proportion of green balls of different specifications Mapping relationship between predicted values.
  • the shrinkage ratio corresponding to the rotational speed of the pelletizing machine is the maximum rotational speed of the pelletizing machine
  • the shrinkage ratio corresponding to the water supply volume is the maximum water supply volume of the water supply pipeline in the water supply system
  • the shrinkage ratio corresponding to the feeding amount is the maximum feeding amount of the feeding belt
  • the shrinkage ratio corresponding to the inclination angle of the pelletizing disc of the pelletizing machine is the maximum inclination angle of the pelletizing machine.
  • the proportion prediction model is obtained in the following manner:
  • the sample data in N historical prediction periods include the historical rotational speed of the pelletizing machine, the historical inclination angle of the pelletizing disc of the pelletizing machine, the historical amount of water added, and the amount of raw pellets produced by the pelletizing machine.
  • Historical raw material information and the measured value of the proportion of sample green balls of different specifications includes the historical feeding amount, the type and proportion of each component in the historical mixture, the proportion of the binder in the historical mixture and The original moisture content of the mixture in the historical mixture; the measured value of the proportion of the sample green balls of different specifications is obtained by using the machine vision method to collect images of the sample green balls in each historical forecast period and analyze and calculate after processing;
  • the quantified historical pelletizing disc inclination angle of the quantified pelletizing machine the quantified historical water supply amount, the quantified feed amount, the types and proportions of each component of the historical mixture, The proportion of the binder in the historical mixture and the original moisture content of the mixture in the historical mixture, obtain the characteristic vector of N samples that affect the pelletizing;
  • the proportion prediction model If the difference between the predicted value of the proportion of green balls in samples of different specifications and the actual value of the proportion of green balls of different specifications by the proportion prediction model reaches the preset tolerance range, or if the proportion prediction model passes iteratively When the set maximum number of iterations is reached during the operation, the training ends, and the last updated weight parameters, bias parameters and learning factors are saved.
  • the proportion prediction model is established based on a long short-term memory neural network prediction model LSTM.
  • the system further includes an image acquisition device and an image processing device, the image acquisition device is disposed at the discharge port of the pelletizing machine, and is connected with the image processing device. device connection, the image processing device is connected with the central processing unit;
  • the image acquisition device is configured to perform the following steps: collect image information of the ball outlet of the ball machine, and send the image information of the ball outlet to the image processing device;
  • the image processing apparatus is configured to perform the following steps:
  • the image information of the sample green ball and the background image information determine the outline of the sample green ball
  • the measured value of the qualified rate of the sample green ball is determined, and the measured value of the qualified rate of the sample green ball is sent to the central processing unit.
  • the rotational speed controller is configured to perform the following steps:
  • the tilt controller is configured to perform the following steps:
  • the water controller is configured to perform the following steps:
  • the material controller is configured to perform the following steps:
  • the types and proportions of components in the mixture, the feeding amount of the mixture, the proportion of the binder in the mixture, and the original moisture content of the mixture are sent to the central processing unit.
  • an embodiment of the present application provides a control method for a pelletizing machine, the method comprising:
  • the rotation speed of the pelletizing machine the inclination angle of the pelletizing disc of the pelletizing machine, the amount of water supply, the types and proportions of each component of the mixture, the amount of the mixture to be fed, the proportion of the binder in the mixture and the original moisture content of the mixture, Predict the proportion of each particle size range of green balls, and obtain the predicted value of green ball pass rate for multiple prediction periods;
  • the deviation value of the green ball qualification rate in each prediction period is calculated
  • the rotational speed controller to adjust the rotational speed of the pelletizing machine in the pelletizing machine to the rotational speed of the pelletizing machine to be adjusted
  • drive the inclination controller to adjust the inclination angle of the pelletizing disc in the pelletizing machine to the rotational speed of the pelletizing machine to be adjusted.
  • the inclination angle of the pelletizing disc, and the driving material controller adjusts the feeding amount provided to the pelletizing machine to the to-be-adjusted feeding amount
  • the driving water controller adjusts the feeding water amount provided to the pelletizing machine to the to-be-adjusted amount water supply;
  • the multiple prediction periods include the current period and the period after the current period; the rolling optimization model is used for the types and proportions of each component of the mixture and the proportion of the binder in the mixture Under the condition that the original moisture content of the mixture and the mixture remain unchanged, when the variance of the deviation value of the qualified rate of green balls for multiple prediction periods is calculated to be the smallest, the corresponding rotation speed of the pelletizing machine, the inclination angle of the pelletizing disc of the pelletizing machine, the feeding feed and water supply.
  • the pass rate of green balls is determined according to the predicted value of the proportion of green balls of different specifications, and the predicted value of the proportion of green balls of different specifications includes the proportion of qualified large balls.
  • the green ball qualification rate deviation value of each prediction period is obtained by the following methods:
  • k+j) ⁇ (r 1 (j)-y 1 (k
  • k+j) is the deviation value of the proportion of various types of green balls and the reference value in the jth step of the kth prediction period; ri ( j ) is the jth step of the ith specification The target value of the percentage of raw balls; y i (k
  • the variance of the green ball pass rate deviation values of the multiple prediction periods is obtained in the following manner:
  • k+j) is the mean square error of the deviation between the proportion of various types of green balls and the reference value in the jth step of the kth prediction period
  • ri ( j ) is the jth prediction step of the jth
  • the rotational speed of the pelletizing machine the inclination angle of the pelletizing disc of the pelletizing machine, the water supply amount, the types of the various components of the mixture and The ratio, the amount of the mixture, the proportion of the binder in the mixture, and the original moisture content of the mixture, the proportion of each particle size range of the green balls is predicted, and the results of multiple prediction periods are obtained.
  • the predicted value of the pass rate of green balls, the specific steps are as follows:
  • the quantified rotational speed of the pelletizing machine According to the quantified rotational speed of the pelletizing machine, the quantified inclination angle of the pelletizing disc of the pelletizing machine, the quantified water supply amount, the quantified feed amount, the types and proportions of each component in the mixture, the The ratio of the binder in the mixture and the original moisture content of the mixture are obtained to obtain the characteristic vector that affects the pelletizing;
  • the proportion prediction model includes the ratio of the feature vector affecting ball making and the proportion of green balls of different specifications Mapping relationship between predicted values.
  • the shrinkage ratio corresponding to the rotational speed of the pelletizing machine is the maximum rotational speed of the pelletizing machine
  • the shrinkage ratio corresponding to the water supply volume is the maximum water supply volume of the water supply pipeline in the water supply system
  • the shrinkage ratio corresponding to the feeding amount is the maximum feeding amount of the feeding belt
  • the shrinkage ratio corresponding to the inclination angle of the pelletizing disc of the pelletizing machine is the maximum inclination angle of the pelletizing machine.
  • the proportion prediction model is obtained in the following manner:
  • the sample data in N historical prediction periods include the historical rotational speed of the pelletizing machine, the historical inclination angle of the pelletizing disc of the pelletizing machine, the historical amount of water added, and the amount of raw pellets produced by the pelletizing machine.
  • Historical raw material information and the measured value of the proportion of sample green balls of different specifications includes the historical feeding amount, the type and proportion of each component in the historical mixture, the proportion of the binder in the historical mixture and The original moisture content of the mixture in the historical mixture; the measured value of the proportion of the sample green balls of different specifications is obtained by using the machine vision method to collect images of the sample green balls in each historical forecast period and analyze and calculate after processing;
  • the quantified historical pelletizing disc inclination angle of the quantified pelletizing machine the quantified historical water supply amount, the quantified feed amount, the types and proportions of each component of the historical mixture, The proportion of the binder in the historical mixture and the original moisture content of the mixture in the historical mixture, obtain the characteristic vector of N samples that affect the pelletizing;
  • the proportion prediction model If the difference between the predicted value of the proportion of green balls in samples of different specifications and the actual value of the proportion of green balls of different specifications by the proportion prediction model reaches the preset tolerance range, or if the proportion prediction model passes iteratively When the set maximum number of iterations is reached during the operation, the training ends, and the last updated weight parameters, bias parameters and learning factors are saved.
  • the proportion prediction model is established based on a long short-term memory neural network prediction model LSTM.
  • the system further includes an image acquisition device and an image processing device, the image acquisition device is disposed at the discharge port of the pelletizing machine, and is connected with the image processing device. device connection, the image processing device is connected with the central processing unit;
  • the image acquisition device is configured to perform the following steps: collect image information of the ball outlet of the ball machine, and send the image information of the ball outlet to the image processing device;
  • the image processing apparatus is configured to perform the following steps:
  • the image information of the sample green ball and the background image information determine the outline of the sample green ball
  • the measured value of the qualified rate of the sample green ball is determined, and the measured value of the qualified rate of the sample green ball is sent to the central processing unit.
  • the rotational speed controller is configured to perform the following steps:
  • the tilt controller is configured to perform the following steps:
  • the water controller is configured to perform the following steps:
  • the material controller is configured to perform the following steps:
  • the types and proportions of components in the mixture, the feeding amount of the mixture, the proportion of the binder in the mixture, and the original moisture content of the mixture are sent to the central processing unit.
  • the rotating speed of the pelletizing machine the inclination angle of the pelletizing disc of the pelletizing machine, the amount of feed, the amount of water, the types and proportions of each component in the mixture, the proportion and mixing of the binder in the mixture
  • the original moisture rate of the raw material is used to predict the green ball qualification rate, and the predicted value of the green ball qualification rate for multiple prediction periods is obtained; the green ball qualification rate prediction value of each prediction period is combined with the preset green ball qualification rate of each prediction period.
  • the rolling optimization model is used to optimize the rotating speed of the pelletizing machine, the inclination angle of the pelletizing disc of the pelletizing machine, the feeding amount and the water supply amount, so as to realize the real-time control of the rotating speed of the pelletizing machine and the manufacturing rate of the pelletizing machine in the pelletizing machine.
  • the inclination angle of the ball disc, the amount of material supplied to the pelletizing machine and the amount of water supplied to the pelletizing machine enable the actual pass rate of the green balls to reach the preset standard, which in turn can improve the pelletizing quality of the pelletizing machine.
  • Fig. 1 is the structural representation of a kind of pelletizing process in the prior art
  • FIG. 2 is a schematic structural diagram of a control system for a pelletizing machine provided by an embodiment of the application;
  • FIG. 3 is a schematic diagram of the workflow of a control system for a pelletizing machine provided by an embodiment of the application;
  • FIG. 4 is a schematic flowchart corresponding to a method for predicting the pass rate of green balls provided by an embodiment of the present application
  • FIG. 5 is a schematic flowchart corresponding to a method for generating a proportion prediction model provided by an embodiment of the present application
  • FIG. 6 is a schematic diagram of a particle size analysis workflow of a control system for a pelletizer provided by an embodiment of the application;
  • FIG. 7 exemplarily shows a schematic flowchart corresponding to a control method for a pelletizing machine provided by an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a pelletizing process in the prior art.
  • the pelletizing process includes a disc pelletizing machine 11 , a water supply device 21 and a feeding belt scale 31 .
  • the disc pelletizer 11 includes a motor 111, a central shaft 112, a base 113, a disc 114, a scraper frame 115, a scraper 116 and a raw ball belt 117;
  • the water supply device 21 includes a water valve 211, a water pipe 212 and a water outlet 213;
  • the feeding belt scale 31 includes a material valve 311 , a silo 312 and a feeding belt 313 .
  • the central axis 112 can adjust the inclination of the disc 114, and the adjustment of the rotational speed of the motor 111 can change the rotational speed of the disc 114; Movement and prevention of adhesions.
  • the mixed material in the silo 312 is conveyed to the disc 114 through the feeding belt 313 , and the flow (ie, the feeding amount) of the mixed material can be adjusted through the material valve 311 .
  • the water in the water pipe 212 can drop through the water outlet 213 to the position where the mixture falls into the disc 114, or can drop through the water outlet 213 to the area where the balls grow in the disc 114, and the amount of water can be passed through the water valve. 211 for adjustment; the green balls fall into the green ball belt 117 after coming out of the disc 114 , and the position of the green ball belt 117 can be regarded as the ball out area of the disc ball machine 11 .
  • disc pelletizing machine shown in FIG. 1 can be replaced with a cylindrical pelletizing machine, which is not limited in this application.
  • FIG. 2 is a schematic structural diagram of a control system for a pelletizing machine according to an embodiment of the present application.
  • the system mainly includes a pelletizer 11 , a rotational speed controller 12 , an inclination controller 13 , a water supply device 21 , a water controller 22 , a feeding belt scale 31 , a material controller 32 and a central processing unit 5 .
  • the rotational speed controller 12 and the inclination controller are respectively connected with the pelletizing machine 11
  • the water controller 22 is connected with the water supply device 21
  • the material controller 32 is connected with the feeding belt scale 31 .
  • the central processing unit 5 is respectively connected with the rotational speed controller 12 , the inclination controller 13 , the water controller 22 and the material controller 32 .
  • the water outlet point of the water supply device 21 can be set at the feed point of the pelletizing machine 11 and the ball raising area in the pelletizing machine, so as to provide water to the pelletizing machine 11 .
  • the feeding belt scale 31 is used for supplying the mixture to the pelletizing machine, and the blanking point of the feeding belt scale 31 is the feeding point of the pelletizing machine 11, and is used for providing the compounding material to the pelletizing machine 11.
  • FIG. 3 exemplarily shows a schematic working flow of a control system for a pelletizing machine provided by an embodiment of the present application.
  • the rotational speed controller 12 may be configured to perform the following steps S301 and S302:
  • step S301 the rotational speed of the pelletizing machine in the pelletizing machine in the current cycle is obtained.
  • the speed in the stable state will be saved and used as the subsequent detection data; if the detected speed changes, the saved speed will be updated in real time.
  • the rotational speed of the pelletizing machine may be measured by a measurement method such as a light reflection method, a magnetoelectric method, a grating method, or a Hall switch detection method.
  • step S302 the rotational speed of the pelletizing machine is sent to the central processing unit.
  • the tilt controller 12 may be configured to perform the following steps S303 and S304:
  • Step S303 acquiring the inclination angle of the pelletizing disc in the pelletizing machine in the current cycle.
  • the inclination angle adjustment of the pelletizing disc of the pelletizing machine is usually equipped with a hydraulic inclination angle adjustment device, and the inclination angle is detected directly by an inclination sensor.
  • Step S304 sending the inclination of the pelletizing disc to the central processing unit.
  • the water controller 22 may be configured to perform the following steps S305 and S306:
  • Step S305 acquiring the water supply amount provided by the water supply device to the pelletizing machine in the current cycle.
  • Step S306 sending the water supply amount to the central processing unit.
  • the material controller 32 may be configured to perform the following steps S307 and S308:
  • Step S307 Obtain the types and proportions of components in the mixture provided by the feeding belt scale to the pelletizer in the current cycle, the feeding amount of the mixture, the proportion of the binder in the mixture, and the original moisture content of the mixture.
  • Another possible acquisition method is to acquire various parameters of the mixture in real time, and judge the rate of change of each parameter of the mixture respectively. If the rate of change is large and exceeds the preset error range, the newly obtained parameters of the mixture will be used to update the parameters of the mixture obtained before.
  • the parameters of the mixture mentioned here are It is the type and proportion of each component, the feeding amount of the mixture, the proportion of the binder in the mixture and the original moisture content of the mixture.
  • step S308 the types and proportions of the components of the mixture, the feeding amount of the mixture, the proportion of the binder in the mixture, and the original moisture content of the mixture are sent to the central processing unit.
  • the central processing unit 5 may be configured to perform the following steps S309 to S312:
  • Step S309 receive the rotating speed of the pelletizing machine sent by the rotational speed controller, and the inclination angle of the pelletizing disc sent by the inclination controller, as well as the water supply amount sent by the water controller, and the types and types of each component of the mixture sent by the material controller. Proportion, feed amount of the mixture, the proportion of binder in the mixture and the original moisture content of the mixture.
  • Step S310 according to the rotating speed of the pelletizing machine, the inclination angle of the pelletizing disc, the amount of water supply, the types and proportions of each component of the mixture, the amount of the mixture to be fed, the proportion of the binder in the mixture, and the original moisture content of the mixture,
  • the green ball qualification rate is predicted, and the predicted value of the green ball qualification rate for multiple prediction periods is obtained.
  • predicting the pass rate of green balls has the same meaning as predicting the proportion of each particle size range of green balls.
  • the proportion prediction model can be used to predict the pass rate of green balls.
  • FIG. 4 it exemplarily shows a schematic flowchart corresponding to a method for predicting the pass rate of green balls provided by the embodiment of the present application, which specifically includes the following steps:
  • Step S401 quantify the rotating speed of the pelletizing machine, the inclination angle of the pelletizing disc of the pelletizing machine, the water supply amount and the feed amount of the mixture into the same interval according to their respective shrinkage ratios to obtain the feature vector that affects the pelletizing.
  • the rotational speed of the pelletizing machine in the pelletizing machine mentioned in this application the rotational speed of the pelletizing machine of the pelletizing machine, the rotational speed of the pelletizing machine, and the rotational speed of the pelletizing machine in the pelletizing machine have the same meaning, and the referring All are the rotating speed of the pelletizing machine; in the pelletizing machine mentioned in this application, the inclination angle of the pelletizing disc and the pelletizing disc inclination angle of the pelletizing machine have the same meaning, and all refer to the inclination angle of the pelletizing disc; The amount of material and the amount of mixed material have the same meaning, and both refer to the amount of mixed material.
  • the proportion of each component, the proportion of the binder is a percentage and the original moisture content of the mixture, that is, the value is in the interval of (0,1), therefore, the current
  • the rotation speed, water supply and mixture feeding amount are also quantified into the interval of (0,1), so that the proportion of each component, the proportion of the binder, the original moisture content of the mixture, the amount of feeding, the amount of water,
  • the data quantity of the ball machine speed and the inclination angle of the ball machine is calculated.
  • the corresponding shrinkage ratio can be the maximum rotational speed of the pelletizing machine (or the maximum inclination angle of the pelletizing disc), that is, calculating the pelletizing machine
  • the ratio of the rotational speed to the maximum rotational speed of the pelletizer can refer to formula (1):
  • Norm(n) represents the quantized pelletizer rotational speed
  • n represents the pelletizer rotational speed
  • Norm(n) represents the inclination angle of the pelletizing disc of the quantized pelletizing machine
  • n represents the inclination angle of the pelletizing disc of the pelletizing machine, Indicates the maximum inclination angle of the pelletizer.
  • the corresponding shrinkage ratio can be the maximum water supply of the water supply pipeline in the water supply device, that is, to calculate the ratio of the water supply to the maximum water supply, please refer to formula (2):
  • Norm(n) represents the quantified water supply
  • s represents the water supply
  • smax represents the maximum water supply
  • the corresponding shrinkage ratio is the maximum feeding amount of the feeding belt scale, that is, to calculate the ratio of the feeding amount of the mixture to the maximum feeding amount of the silo, please refer to formula (3):
  • Norm (m) represents the quantified mixture feeding amount
  • m represents the mixture feeding amount
  • mmmax represents the maximum feeding amount of the feeding belt scale.
  • feeding belt and the feeding belt mentioned in this application have the same meaning, and both refer to the feeding belt.
  • X(k) represents the feature vector used to affect the key factors of ball making
  • x1(k), x2(k), x3(k), x4(k), x5(k), x6(k), x7( k) are respectively the rotating speed of the quantified pelletizer, the inclination angle of the pelletizing disc of the quantized pelletizer, the quantified water supply, the quantified feed amount of the mixture, the distribution ratio of each component in the mixture, the The proportion of binder and the original moisture content of the mixture
  • N represents the number of components in the mixture
  • x5(k) contains the information on the types and proportions of each component. The components are numbered, and in x5(k), the number of the components corresponds to the ratio of the components.
  • the eigenvectors of the key factors that affect ball formation can be as follows:
  • the first 3 indicates that the mixture has three other components besides the binder
  • x1(k) indicates the current rotational speed of the quantized pelletizer
  • x2(k) indicates the quantified water supply
  • x3 (k) represents the quantified compound feed amount
  • x4(k) represents the quantified compound feed amount
  • x6(k) represents the proportion of the binder in the mixture
  • x7(k) represents the original moisture content of the mixture.
  • Step S402 Input the feature vector that affects ball production into the proportion prediction model, and obtain the predicted values of the pass rate of green balls for multiple prediction periods according to the mapping relationship preset in the proportion prediction model.
  • the preset mapping relationship is the mapping relationship between the feature vector that affects the ball production and the predicted value of the ball production pass rate in multiple prediction periods.
  • the pass rate of green balls may be determined according to the predicted value of the proportion of green balls of different specifications.
  • mapping relationship can also be a mapping relationship between the feature vector that affects ball production and the predicted value of the proportion of balls of different sizes.
  • the mapping relationship includes the predicted value of the proportion of green balls under different steps in the same cycle.
  • the entire ball making process of the ball making machine can be divided into multiple steps, such as one step If it is ten seconds, the proportion prediction model can obtain the proportion prediction values of the following multiple steps according to the mapping relationship:
  • j is the prediction step size
  • k is the specific moment of the prediction.
  • the predicted value of the proportion of green balls of different specifications includes the predicted value of the proportion of qualified large balls, the predicted value of the proportion of unqualified large balls, the predicted value of the proportion of qualified medium balls, and the proportion of qualified small balls.
  • the raw balls can be divided into five specifications: qualified large balls, unqualified large balls, qualified medium balls, qualified small balls and unqualified small balls.
  • qualified large balls unqualified large balls
  • qualified medium balls qualified small balls
  • unqualified small balls unqualified small balls.
  • Table 1 it is a set of examples of the proportion range of green balls with different specifications that meet the requirements of the ball making process.
  • the green ball when the diameter of the green ball (represented by d in Table 1) is greater than or equal to 5mm and less than 8mm, the green ball is an unqualified ball; when the diameter of the green ball is greater than or equal to 8mm and less than 11mm, the green ball is a qualified ball; When the diameter of the ball is greater than or equal to 11mm and less than 14mm, the green ball is a qualified medium ball; when the diameter of the green ball is greater than or equal to 14mm and less than 16mm, the green ball is a qualified large ball; when the diameter of the green ball is greater than or equal to 16mm, the green ball is not. Qualified big ball.
  • the setting range of the proportion of unqualified balls is less than or equal to 7%; the setting range of the proportion of qualified balls is less than or equal to 30%; the setting range of the proportion of qualified balls is less than or equal to 55%;
  • the setting range of the proportion of big balls is less than or equal to 20%; the setting range of the proportion of unqualified large balls is less than or equal to 15%.
  • Table 1 An example of green balls of different sizes
  • the proportion prediction model may be established based on the long short-term memory neural network prediction model LSTM.
  • LSTM long short-term memory neural network prediction model
  • Step S501 obtaining sample data in N historical periods.
  • the sample data in each historical prediction period includes the historical rotational speed of the pelletizing machine, the historical pelletizing disc inclination angle of the pelletizing machine, the historical water supply, the historical raw material information of the pelletizing machine for producing the sample pellets, and the sample pellets of different specifications.
  • the measured value of the proportion of balls; the historical raw material information includes the historical feeding amount, the type and proportion of each component in the historical mixture, the proportion of the binder in the historical mixture, and the original moisture content of the mixture in the historical mixture; different
  • the measured value of the proportion of the sample green balls of the specifications is calculated by using the particle size analysis method to collect images and analyze the sample green balls in each historical forecast period.
  • the measured value of the pass rate of the sample green balls may be the measured value of the proportion of the sample green balls of different specifications.
  • particle size analysis can be performed by manual screening, and, for example, particle size analysis can also be performed by machine vision.
  • control system may further include an image acquisition device 41 and an image processing device 42 .
  • the image acquisition device 41 is arranged at the discharge port of the pelletizing machine, and is connected with the image processing device 42, and the image processing device 42 is connected with the central processing unit 5.
  • FIG. 6 exemplarily shows a schematic diagram of a particle size analysis workflow of a control system for a pelletizer provided by an embodiment of the present application.
  • the image acquisition device 41 may be configured to perform the following steps S601 and S602:
  • Step S601 collecting image information of the ball outlet of the ball machine.
  • Step S602 sending the image information of the ball outlet to the image processing device.
  • the image processing apparatus 42 may be configured to perform the following steps S603 to S610:
  • step S603 image preprocessing is performed on the image information of the ball outlet, and the image information and background image information of the sample green ball are separated.
  • Step S604 Acquire the center bright spot of the sample green ball according to the image information of the sample green ball.
  • Step S605 Determine the outline of the sample green ball according to the image information of the sample green ball and the background image information.
  • Step S606 according to the central bright spot of the green sample ball and the outline of the green sample ball, obtain the particle size of the green sample ball.
  • Step S607 according to the particle size of the sample green balls and the corresponding relationship between the preset particle size range and the green ball specifications, determine the specifications of the sample green balls.
  • Step S608 count the total number of sample green balls in the historical period and the number of sample green balls of different specifications.
  • Step S609 according to the total number of sample green balls in the historical period and the number of sample green balls of different specifications, determine the measured value of the pass rate of the sample green balls.
  • Step S610 sending the measured value of the pass rate of the sample green ball to the central processing unit.
  • Step S502 quantify the historical rotational speed of the pelletizing machine, the historical pelletizing disc inclination angle of the pelletizing machine, the historical water supply amount and the historical mixture feed amount into the same interval according to their respective shrinkage ratios.
  • the historical rotation speed of the motor, the historical water supply amount and the historical mixture feeding amount described in S502 in the accompanying drawing of the description are calculated according to their respective shrinkage ratios.
  • the inclination angle of the pelletizing disc, the historical water supply and the historical mixture feed amount are quantified to the same interval according to their respective shrinkage ratios, and are quantified to the same interval according to their respective shrinkage ratios.
  • the historical pelletizing disc inclination angle, historical water supply amount and historical mixture feeding amount of the pelletizing machine are quantified to the same interval according to their respective shrinkage ratios, and have the same meaning.
  • Step S503 according to the historical rotational speed of the quantized pelletizing machine, the historical pelletizing disc inclination angle of the quantized pelletizing machine, the quantified historical water supply, the quantified historical mixture feeding amount, and each component in the historical mixture.
  • the type and proportion, the proportion of binder in the historical mixture and the original moisture content of the mixture in the historical mixture are used to obtain the eigenvectors of N samples that affect ball formation.
  • Step S504 take the feature vector of the N samples that affect the ball production as the input of the prediction model, and take the actual value of the proportion of the sample balls of different specifications in the N historical prediction periods as the output of the prediction model, using the time backpropagation method. Train a proportion prediction model.
  • the proportion prediction training module uses the input of the training sample and the output of the training sample to train the LSTM neural network model by the time backpropagation method; Excitation propagation and weight update are repeated in a loop to guide the response (output) of the multi-layer neuron network to the input until it reaches a predetermined target range.
  • Step S505 the weight parameters, bias parameters and learning factors of the proportion prediction model are continuously updated through iterative training.
  • Step S506 if the difference between the predicted value of the proportion of the sample green balls of different specifications by the proportion prediction model and the actual value of the proportion of the sample green balls of different specifications reaches the preset tolerance range, or the proportion predicted When the model reaches the set maximum number of iterations through the iterative operation, the training ends, and the last updated weight parameters, bias parameters, and learning factors are saved.
  • the forward signal flow at time k (that is, the output of LSTM at time k) is expressed as follows:
  • Y k-1 is the output at time k-1
  • X k is the input vector at time k
  • is the Sigmoid function
  • W f and b f are the weight vector and bias term of the forget gate
  • Wi and b i are the input
  • the weight vector and bias term of the gate, W c and b c are the weight vector and bias term of the unit state, W o and bo are the weight vector and bias term of the output gate
  • c k is the immediate state
  • c k- 1 is the state at the previous moment.
  • the eigenvectors that affect ball making are considered in the actual process, the wear of equipment, the migration of working conditions, and the change of detection points, etc., may cause the proportion prediction model to be inapplicable.
  • the embodiment of the present application also provides a method for online updating of the proportion prediction model.
  • the granularity index of the model is mainly used to determine whether the model needs to be corrected and how to correct it.
  • the mean square error of the predicted value and the measured value can be used as the granularity index, and then according to the statistical distribution law of the granularity index, the statistical confidence limit is preset to determine whether to trigger the update and the required update method.
  • the model recursion method is selected, and the moving window recursion method is used to update the prediction model.
  • the steps are as follows:
  • a new measurement value [X m , Y m ] is obtained, it is added to the sample set, and the oldest sample is eliminated, the new sample set is:
  • the real-time learning method is selected, and the data samples in the sample data in the historical period that are similar to the current measurement state are selected to reconstruct the prediction model.
  • Step S311 according to the predicted value of the green pass rate in each prediction period and the preset target value of the green ball pass rate in each prediction period, calculate the deviation value of the green ball pass rate in each prediction period.
  • the calculation results of the different step lengths in the cycle are calculated.
  • the deviation of the proportion of green balls from the reference value is calculated.
  • k+j) is the deviation value of the proportion of various types of green balls and the reference value in the jth step of the kth prediction period; ri ( j ) is the jth step The target value of the proportion of raw balls of the i-th specification; y i (k
  • Step S312 input the deviation value of the qualified rate of green balls in multiple prediction cycles into the rolling optimization model, and obtain the rotating speed of the ball making machine to be adjusted, the inclination angle of the ball making plate of the ball making machine to be adjusted, the feeding amount to be adjusted and the amount to be adjusted. the water supply amount, drive the rotational speed controller to adjust the rotational speed of the pelletizing machine in the pelletizing machine to the rotational speed of the pelletizing machine to be adjusted, and drive the inclination controller to adjust the inclination angle of the pelletizing disc in the pelletizing machine to the rotational speed of the pelletizing machine to be adjusted.
  • the inclination angle of the pelletizing disc of the pelletizing machine, and the driving material controller to adjust the feeding amount provided to the pelletizing machine to the to-be-adjusted feeding amount, and driving the water controller to adjust the water supply amount provided to the pelletizing machine to The water supply to be adjusted.
  • feeding amount to be adjusted and the feeding amount to be adjusted mentioned in this application have the same meaning, and both refer to the feeding amount to be adjusted.
  • the deviation values of the proportions of various types of green balls and the reference value in multiple steps in a prediction period are input into the rolling optimization model to obtain the rotating speed of the ball machine to be adjusted, the inclination angle of the ball making plate of the ball machine to be adjusted, The amount of feed to be adjusted and the amount of water to be adjusted, drive the rotational speed controller to adjust the rotational speed of the pelletizing machine in the pelletizing machine to the rotational speed of the pelletizing machine to be adjusted, and drive the inclination controller to adjust the pelletizing disc in the pelletizing machine.
  • the inclination angle is adjusted to the inclination angle of the pelletizing disc of the pelletizing machine to be adjusted, and the driving material controller will adjust the feeding amount provided to the pelletizing machine to the feeding amount to be adjusted, and the driving water controller will provide the pelletizing machine.
  • the water supply volume is adjusted to the water supply volume to be adjusted.
  • the rolling optimization model is used to calculate the proportion of various types of green balls in a single forecast period and reference When the variance of the deviation value of the value is the smallest, the corresponding rotation speed of the pelletizing machine, the inclination angle of the pelletizing disc of the pelletizing machine, the amount of feed and the amount of water.
  • k+j is the mean square error of the deviation between the proportion of green balls of each type and the reference value at the jth step of the kth prediction period
  • ri ( j ) is the jth prediction step of the ith type
  • the target value of the proportion of standard balls y i (k
  • the rotating speed of the pelletizing machine the inclination angle of the pelletizing disc of the pelletizing machine, the amount of water supply, the amount of the mixture, the types and proportions of the components of the mixture, the proportion of the binder in the mixture and
  • the original moisture content of the mixture is used to predict the green ball qualification rate to obtain the predicted value of the green ball qualification rate for multiple prediction periods;
  • the target value of the pass rate, the rolling optimization model is used to optimize the rotating speed of the pelletizing machine, the inclination angle of the pelletizing disc, the feeding amount and the water supply amount, so as to realize the real-time control of the rotating speed of the pelletizing machine, the inclination angle of the pelletizing disc, the direction of the pelletizing machine
  • the amount of feeding material provided by the pelletizing machine and the amount of water supplied to the pelletizing machine enable the actual pass rate of the green pellets to reach the preset standard, thereby improving the pelletizing quality of the pelletizing machine.
  • FIG. 7 exemplarily shows a schematic flowchart corresponding to a control method for a pelletizing machine provided by an embodiment of the present application. As shown in Figure 7, the method may include the following steps:
  • Step S701 according to the rotating speed of the pelletizing machine, the inclination angle of the pelletizing disc of the pelletizing machine, the water supply amount, the types and proportions of each component of the mixture, the amount of the mixture material, the mixing According to the proportion of binder in the material and the original moisture content of the mixture, the proportion of each particle size range of the green ball is predicted, and the predicted value of the green ball pass rate for multiple prediction periods is obtained.
  • Step S702 according to the predicted value of the green pass rate in each prediction period and the preset target value of the green ball pass rate in each prediction period, calculate the deviation value of the green ball pass rate in each prediction period.
  • Step S703 input the deviation value of the qualified rate of green balls of multiple prediction cycles into the rolling optimization model, and obtain the rotating speed of the ball making machine to be adjusted, the inclination angle of the ball making plate of the ball making machine to be adjusted, the feeding amount to be adjusted and the amount to be adjusted. of water supply.
  • the rotational speed controller to adjust the rotational speed of the pelletizing machine in the pelletizing machine to the rotational speed of the pelletizing machine to be adjusted
  • drive the inclination controller to adjust the inclination angle of the pelletizing disc in the pelletizing machine to the rotational speed of the pelletizing machine to be adjusted.
  • the inclination angle of the pelletizing disc of the pelletizing machine, and driving the material controller to adjust the feeding amount provided to the pelletizing machine to the to-be-adjusted feeding amount, and driving the water controller to provide the pelletizing machine.
  • the water supply amount is adjusted to the water supply amount to be adjusted.
  • the multiple prediction periods include the current period and the period after the current period; the rolling optimization model is used for the types and proportions of each component of the mixture and the proportion of the binder in the mixture Under the condition that the original moisture content of the mixture and the mixture remain unchanged, when the variance of the deviation value of the qualified rate of green balls for multiple prediction periods is calculated to be the smallest, the corresponding rotation speed of the pelletizing machine, the inclination angle of the pelletizing disc of the pelletizing machine, the feeding feed and water supply.
  • the green ball pass rate is determined according to the predicted value of the proportion of raw balls of different specifications, and the predicted value of the proportion of green balls of different specifications includes the predicted value of the proportion of qualified big balls and the proportion of unqualified big balls.
  • the green ball qualification rate deviation value of each prediction period is obtained by the following methods:
  • k+j) ⁇ (r 1 (j)-y 1 (k
  • k+j) is the deviation value of the proportion of various types of green balls and the reference value in the jth step of the kth prediction period; ri ( j ) is the jth step of the ith specification The target value of the percentage of raw balls; y i (k
  • the variance of the green ball pass rate deviation values of the multiple prediction periods is obtained in the following manner:
  • k+j) is the mean square error of the deviation between the proportion of various types of green balls and the reference value in the jth step of the kth prediction period
  • ri ( j ) is the jth prediction step of the jth
  • the rotating speed of the pelletizing machine the inclination angle of the pelletizing disc of the pelletizing machine, the water supply amount, the types and proportions of each component of the mixture, the amount of the mixture material, the The proportion of the binder in the mixture and the original moisture content of the mixture, the proportion of each particle size range of the green ball is predicted, and the predicted value of the green ball pass rate for multiple prediction periods is obtained, and the following steps are specifically performed:
  • the quantified rotational speed of the pelletizing machine According to the quantified rotational speed of the pelletizing machine, the quantified inclination angle of the pelletizing disc of the pelletizing machine, the quantified water supply amount, the quantified feed amount, the types and proportions of each component in the mixture, the The ratio of the binder in the mixture and the original moisture content of the mixture are obtained to obtain the characteristic vector that affects the pelletizing;
  • the proportion prediction model includes the ratio of the feature vector affecting ball making and the proportion of green balls of different specifications Mapping relationship between predicted values.
  • the shrinkage ratio corresponding to the rotational speed of the pelletizing machine is the maximum rotational speed of the pelletizing machine
  • the shrinkage ratio corresponding to the water supply volume is the maximum water supply volume of the water supply pipeline in the water supply system
  • the shrinkage ratio corresponding to the feeding amount is the maximum feeding amount of the feeding belt
  • the shrinkage ratio corresponding to the inclination angle of the pelletizing disc of the pelletizing machine is the maximum inclination angle of the pelletizing machine.
  • the proportion prediction model is obtained in the following manner:
  • the sample data in N historical prediction periods include the historical rotational speed of the pelletizing machine, the historical inclination angle of the pelletizing disc of the pelletizing machine, the historical amount of water added, and the amount of raw pellets produced by the pelletizing machine.
  • Historical raw material information and the measured value of the proportion of sample green balls of different specifications includes the historical feeding amount, the type and proportion of each component in the historical mixture, the proportion of the binder in the historical mixture and The original moisture content of the mixture in the historical mixture; the measured value of the proportion of the sample green balls of different specifications is obtained by using the machine vision method to collect images of the sample green balls in each historical forecast period and analyze and calculate after processing;
  • the quantified historical pelletizing disc inclination angle of the quantified pelletizing machine the quantified historical water supply amount, the quantified feed amount, the types and proportions of each component of the historical mixture, The proportion of the binder in the historical mixture and the original moisture content of the mixture in the historical mixture, obtain the characteristic vector of N samples that affect the pelletizing;
  • the proportion prediction model passes iterative When the set maximum number of iterations is reached during the operation, the training ends, and the last updated weight parameters, bias parameters and learning factors are saved.
  • the proportion prediction model is established based on a long short-term memory neural network prediction model LSTM.
  • the system further includes an image acquisition device and an image processing device, the image acquisition device is arranged at the discharge port of the pelletizing machine, connected to the image processing device, and the image processing device is connected to the central processing unit. device connection;
  • the image acquisition device is configured to perform the following steps: collect image information of the ball outlet of the ball machine, and send the image information of the ball outlet to the image processing device;
  • the image processing apparatus is configured to perform the following steps:
  • the image information of the sample green ball and the background image information determine the outline of the sample green ball
  • the measured value of the qualified rate of the sample green ball is determined, and the measured value of the qualified rate of the sample green ball is sent to the central processing unit.
  • the rotational speed controller is configured to perform the following steps:
  • the tilt controller is configured to perform the following steps:
  • the water controller is configured to perform the following steps:
  • the material controller is configured to perform the following steps:
  • the types and proportions of components in the mixture, the feeding amount of the mixture, the proportion of the binder in the mixture, and the original moisture content of the mixture are sent to the central processing unit.
  • the rolling optimization model is used to optimize the rotating speed of the pelletizing machine, the inclination angle of the pelletizing disc of the pelletizing machine, the feeding amount and the water supply amount, so as to realize real-time control of the rotating speed of the pelletizing machine, the pelletizing machine in the pelletizing machine
  • the inclination angle of the pelletizing disc, the amount of material supplied to the pelletizing machine and the amount of water supplied to the pelletizing machine can make the actual pass rate of the green pellets reach the preset standard, thereby improving the pelletizing quality of the pelletizing machine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Software Systems (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Mathematical Physics (AREA)
  • Artificial Intelligence (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Geology (AREA)
  • Geometry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Quality & Reliability (AREA)
  • Robotics (AREA)
  • Automation & Control Theory (AREA)
  • Glanulating (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

一种用于造球机(11)的控制系统及控制方法。系统包括造球机(11)、供水装置(21)、供料皮带秤(31)、转速控制器(12)、倾角控制器(13)、水控制器(22)、物料控制(32)器和中央处理器(5),中央处理器(5)被配置为执行以下步骤:根据造球机(11)转速、造球机(11)的造球盘倾角、给料量、给水量、混合料中各组分种类和配比、混合料中粘结剂的占比和混合料原始水分率,对生球合格率进行预测,得到多个预测周期的生球合格率预测值;结合每个预测周期的生球合格率预测值与预设的每个预测周期的生球合格率目标值,采用滚动优化模型对造球机(11)转速、造球机(11)的造球盘倾角、给料量和给水量进行优化,从而实现实时控制造球机(11)中造球机(11)转速、造球机(11)的造球盘倾角、向造球机(11)提供的给料量和向造球机(11)提供的给水量,使生球的实际合格率能够达到预设标准,进而可以提高造球机(11)的成球质量。

Description

一种用于造球机的控制系统及控制方法 技术领域
本申请涉及钢铁冶炼技术领域,特别涉及一种用于造球机的控制系统及控制方法。
背景技术
在钢铁工业中,球团矿制造是当前常用的铁矿石提炼的技术。其中,造球工序是铁矿石球团生产线的重要工序,生球产量与质量的稳定和提高主要依赖于造球工序。造球机作为造球工序中的核心设备,主要包括圆盘造球机和圆筒造球机,在大规模高产量生产线中一般采用圆筒造球机,但是,由于目前中小规模球团生产线占主导地位,因此圆盘造球机更为普遍。
造球机工作时,物料在造球机中分别沿各自不同的轨道运动,形成直径大小不一的生球,生球在达到一定条件后,从造球机中排出,落入后续生球承接装置中。造球机的成球粒度是造球工序的关键参数,生球的合格率越高,说明造球机的产量越高。
在原料条件确定时,成球的影响因素主要包括造球机转速、造球机倾角、进入造球机的物料量、向造球机物料中添加的水量、进入造球机的物料原始含水率等。现场的造球操作人员通常是根据前述配矿环节的原料条件,结合造球生产实际情况,通过预先设置合理的造球机转速、造球机倾角、供料皮带给料量、加水装置的供水量等参数进行造球机的生产调节,以期望造出的生球产量与质量均能满足生产要求,甚至制造出最优的球团矿。
但是,造球机在造球工作过程中可能面临很多不确定因素,如设备老化、原料条件不理想、原料配比与水分率不稳定,这些因素都可能导致生球的成球粒度尤其是合格生球产量无法满足工艺要求,进而影响了球团生产线的产量与质量,增加了工序能耗与运营成本。
发明内容
本申请提供了一种用于造球机的控制系统及控制方法,可用于解决在现有技术中生球的实际合格率无法达到预设标准,进而降低造球机的成球质量的技术问题。
第一方面,本申请实施例提供一种用于造球机的控制系统,所述系统包括造球机、供水装置和供料皮带秤,所述供水装置的出水点设置于造球机的进料点及所述造球机内的涨球区域,用于向造球机提供水;所述供料皮带秤用于向造球机提供混合料,所述供料皮带秤的落料点为造球机的进料点;所述系统还包括与造球机连接的转速控制器、与造球机连接的倾角控制器、与供水装置连接的水控制器、与供料皮带秤连接的物料控制器以及分别与转速控制器、倾角控制器、水控制器和物料控制器连接的中央处理器;其中:
所述中央处理器被配置为执行以下步骤:
接收所述转速控制器发送的造球机转速、倾角控制器发送的造球机的造球盘倾角,以及接收所述水控制器发送的给水量,以及接收所述物料控制器发送的各组分种类和配比、混合料给料量、混合料中粘结剂的占比和混合料原始水分率;
根据所述造球机转速、所述造球机的造球盘倾角、所述给水量、所述混合料各组分种类和配比、所述混合料给料量、所述混合料中粘结剂的占比和所述混合料原始水分率,对 生球各粒径范围的占比进行预测,得到多个预测周期的生球合格率预测值;
根据每个预测周期的生球合格率预测值和预设的每个预测周期的生球合格率目标值,计算得到每个预测周期的生球合格率偏差值;
将多个预测周期的生球合格率偏差值输入滚动优化模型,得到待调整的造球机转速、待调整的造球机的造球盘倾角、待调整的给料量和待调整的给水量;
驱动所述转速控制器将造球机中造球机转速调整为所述待调整的造球机转速,以及驱动所述倾角控制器将造球机中造球盘倾角调整为所述待调整的造球机的造球盘倾角,以及驱动所述物料控制器将向造球机提供的给料量调整为所述待调整给料量,以及驱动所述水控制器将向造球机提供的给水量调整为所述待调整的给水量;
其中,所述多个预测周期包括当前周期和在当前周期之后的周期;所述滚动优化模型用于在所述混合料各组分种类和配比、所述混合料中粘结剂的占比和所述混合料原始水分率均不变的条件下,计算出多个预测周期的生球合格率偏差值的方差最小时,对应的造球机转速、造球机的造球盘倾角、给料量和给水量。
结合第一方面,在第一方面的一种可实现方式中,生球合格率根据不同规格的生球占比预测值确定,所述不同规格的生球占比预测值包括合格大球的占比预测值、不合格大球的占比预测值、合格中球的占比预测值、合格小球的占比预测值和不合格小球的占比预测值;
所述每个预测周期的生球合格率偏差值通过以下方式得到:
E(k|k+j)={(r 1(j)-y 1(k|k+j)),r 2(j)-y 2(k|k+j),...,r i(j)-y i(k|k+j)}
其中,E(k|k+j)是第k个预测周期第j个步长的各型生球占比与参考值的偏差值;r i(j)是第j个步长第i种规格的生球占比目标值;y i(k|k+j)是第k个预测周期中第j个步长第i种规格的生球占比预测值;i=1,2,……,d,d是大于或等于1的整数;j=1,2,……,m,m是大于或等于1的整数。
结合第一方面,在第一方面的一种可实现方式中,所述多个预测周期的生球合格率偏差值的方差通过以下方式得到:
Figure PCTCN2021112553-appb-000001
其中,σ(k|k+j)是第k个预测周期第j个步长的各型生球占比与参考值的偏差值均方差,r i(j)是第j个预测步长第i种规格小球占比目标值;y i(k|k+j)是第k个预测周期第j个步长第i种规格小球占比预测值;i=1,2,……,d,d是大于或等于1的整数;j=0,1,2,……,m,m是大于或等于0的整数,k=1,2,……,n,n是大于或等于1的整数。
结合第一方面,在第一方面的一种可实现方式中,根据所述造球机转速、所述造球机的造球盘倾角、所述给水量、所述混合料各组分种类和配比、所述混合料给料量、所述混合料中粘结剂的占比和所述混合料原始水分率,对生球各粒径范围的占比进行预测,得到多个预测周期的生球合格率预测值,具体执行以下步骤:
将所述造球机的转速、所述造球机的造球盘倾角、所述给水量和所述给料量,按照各自的收缩比例量化到同一区间;
根据量化后的造球机的转速、量化后的造球机的造球盘倾角、量化后的给水量、量化后的给料量、所述混合料中各组分的种类和占比、所述混合料中粘结剂的占比和所述混合 料原始水分率,得到影响造球的特征向量;
将所述影响造球的特征向量输入到占比预测模型中,得到不同规格的生球的占比预测值,所述占比预测模型包括影响造球的特征向量与不同规格生球的占比预测值之间的映射关系。
结合第一方面,在第一方面的一种可实现方式中,造球机的转速对应的收缩比例是造球机的最大转速;
所述给水量对应的收缩比例是给水系统中加水管道的最大给水量;
所述给料量对应的收缩比例是给料皮带的最大给料量;
所述造球机的造球盘倾角对应的收缩比例是所述造球机的最大倾角。
结合第一方面,在第一方面的一种可实现方式中,所述占比预测模型通过以下方式得到:
获取N个历史预测周期内的样本数据;每个历史预测周期内的样本数据包括造球机的历史转速、造球机的历史造球盘倾角、历史加水量、造球机制造样本生球的历史原料信息以及不同规格的样本生球的占比实测值;所述历史原料信息包括历史给料量、历史混合料中各组分种类和占比、历史混合料中粘结剂的占比和历史混合料中混合料原始水分率;所述不同规格的样本生球的占比实测值是采用机器视觉法对每个历史预测周期内的样本生球进行图像采集及处理后分析计算得到的;
将所述造球机的历史转速、所述造球机的历史造球盘倾角、所述历史给水量和所述历史给料量,按照各自的收缩比例量化到同一区间;
根据量化后的造球机的历史转速、量化后的造球机的历史造球盘倾角、量化后的历史给水量、量化后给料量、所述历史混合料各组分种类和占比、所述历史混合料中粘结剂的占比和所述历史混合料中混合料原始水分率,得到N个样本影响造球的特征向量;
将所述N个样本影响造球的特征向量作为预测模型的输入,以及将N个历史预测周期内不同规格的样本生球的占比实际值作为预测模型的输出,采用时间反向传播法训练占比预测模型;
通过迭代训练不断更新占比预测模型的权重参数、偏置参数以及学习因子;
如果占比预测模型对不同规格的样本生球的占比预测值,与不同规格的样本生球的占比实际值之间的差值达到预设的允差范围,或占比预测模型通过迭代运算时达到设定的最大迭代次数,则训练结束,并保存最后更新的权重参数、偏置参数以及学习因子。
结合第一方面,在第一方面的一种可实现方式中,所述占比预测模型是基于长短期记忆神经网络预测模型LSTM建立的。
结合第一方面,在第一方面的一种可实现方式中,所述系统还包括图像采集装置和图像处理装置,所述图像采集装置设置于造球机的出料口,与所述图像处理装置连接,所述图像处理装置与所述中央处理器连接;
所述图像采集装置被配置为执行以下步骤:采集造球机出球口的图像信息,以及将所述出球口的图像信息发送给所述图像处理装置;
所述图像处理装置被配置为执行以下步骤:
对所述出球口的图像信息进行图像预处理,分离出样本生球的图像信息与背景图像信息;
根据所述样本生球的图像信息,获取样本生球的中心亮点;
根据所述样本生球的图像信息与所述背景图像信息,确定样本生球的轮廓;
根据所述样本生球的中心亮点与所述样本生球的轮廓,获取样本生球的粒径;
根据所述样本生球的粒径,以及预设的粒径范围与生球规格的对应关系,确定样本生球的规格;
统计历史周期内样本生球的总数量,以及不同规格的样本生球的数量;
根据所述历史周期内样本生球的总数量和所述不同规格的样本生球的数量,确定所述样本生球的合格率实测值,以及将所述样本生球的合格率实测值发送给所述中央处理器。
结合第一方面,在第一方面的一种可实现方式中,所述转速控制器被配置为执行以下步骤:
获取当前周期内造球机中造球机转速,以及将所述造球机转速发送至所述中央处理器;
所述倾角控制器被配置为执行以下步骤:
获取当前周期内造球机中造球盘倾角,以及将所述造球盘倾角发送至所述中央处理器;
所述水控制器被配置为执行以下步骤:
获取当前周期内所述供水装置向造球机提供的给水量,以及将所述给水量发送至所述中央处理器;
所述物料控制器被配置为执行以下步骤:
获取当前周期内供料皮带秤向造球机提供的混合料中各组分种类和配比、混合料给料量、混合料中粘结剂的占比和混合料原始水分率,以及将所述混合料中各组分种类和配比、所述混合料给料量、所述混合料中粘结剂的占比和所述混合料原始水分率发送至所述中央处理器。
第二方面,本申请实施例提供一种用于造球机的控制方法,所述方法包括:
根据造球机转速、造球机的造球盘倾角、给水量、混合料各组分种类和配比、混合料给料量、混合料中粘结剂的占比和混合料原始水分率,对生球各粒径范围的占比进行预测,得到多个预测周期的生球合格率预测值;
根据每个预测周期的生球合格率预测值和预设的每个预测周期的生球合格率目标值,计算得到每个预测周期的生球合格率偏差值;
将多个预测周期的生球合格率偏差值输入滚动优化模型,得到待调整的造球机转速、待调整的造球机的造球盘倾角、待调整的给料量和待调整的给水量;
驱动转速控制器将造球机中造球机转速调整为所述待调整的造球机转速,以及驱动倾角控制器将造球机中造球盘倾角调整为所述待调整的造球机的造球盘倾角,以及驱动物料控制器将向造球机提供的给料量调整为所述待调整给料量,以及驱动水控制器将向造球机提供的给水量调整为所述待调整的给水量;
其中,所述多个预测周期包括当前周期和在当前周期之后的周期;所述滚动优化模型用于在所述混合料各组分种类和配比、所述混合料中粘结剂的占比和所述混合料原始水分率均不变的条件下,计算出多个预测周期的生球合格率偏差值的方差最小时,对应的造球机转速、造球机的造球盘倾角、给料量和给水量。
结合第二方面,在第二方面的一种可实现方式中,生球合格率根据不同规格的生球占比预测值确定,所述不同规格的生球占比预测值包括合格大球的占比预测值、不合格大球 的占比预测值、合格中球的占比预测值、合格小球的占比预测值和不合格小球的占比预测值;
所述每个预测周期的生球合格率偏差值通过以下方式得到:
E(k|k+j)={(r 1(j)-y 1(k|k+j)),r 2(j)-y 2(k|k+j),...,r i(j)-y i(k|k+j)}
其中,E(k|k+j)是第k个预测周期第j个步长的各型生球占比与参考值的偏差值;r i(j)是第j个步长第i种规格的生球占比目标值;y i(k|k+j)是第k个预测周期中第j个步长第i种规格的生球占比预测值;i=1,2,……,d,d是大于或等于1的整数;j=1,2,……,m,m是大于或等于1的整数。
结合第二方面,在第二方面的一种可实现方式中,所述多个预测周期的生球合格率偏差值的方差通过以下方式得到:
Figure PCTCN2021112553-appb-000002
其中,σ(k|k+j)是第k个预测周期第j个步长的各型生球占比与参考值的偏差值均方差,r i(j)是第j个预测步长第i种规格小球占比目标值;y i(k|k+j)是第k个预测周期第j个步长第i种规格小球占比预测值;i=1,2,……,d,d是大于或等于1的整数;j=0,1,2,……,m,m是大于或等于0的整数,k=1,2,……,n,n是大于或等于1的整数。
结合第二方面,在第二方面的一种可实现方式中,根据所述造球机转速、所述造球机的造球盘倾角、所述给水量、所述混合料各组分种类和配比、所述混合料给料量、所述混合料中粘结剂的占比和所述混合料原始水分率,对生球各粒径范围的占比进行预测,得到多个预测周期的生球合格率预测值,具体执行以下步骤:
将所述造球机的转速、所述造球机的造球盘倾角、所述给水量和所述给料量,按照各自的收缩比例量化到同一区间;
根据量化后的造球机的转速、量化后的造球机的造球盘倾角、量化后的给水量、量化后的给料量、所述混合料中各组分的种类和占比、所述混合料中粘结剂的占比和所述混合料原始水分率,得到影响造球的特征向量;
将所述影响造球的特征向量输入到占比预测模型中,得到不同规格的生球的占比预测值,所述占比预测模型包括影响造球的特征向量与不同规格生球的占比预测值之间的映射关系。
结合第二方面,在第二方面的一种可实现方式中,造球机的转速对应的收缩比例是造球机的最大转速;
所述给水量对应的收缩比例是给水系统中加水管道的最大给水量;
所述给料量对应的收缩比例是给料皮带的最大给料量;
所述造球机的造球盘倾角对应的收缩比例是所述造球机的最大倾角。
结合第二方面,在第二方面的一种可实现方式中,所述占比预测模型通过以下方式得到:
获取N个历史预测周期内的样本数据;每个历史预测周期内的样本数据包括造球机的历史转速、造球机的历史造球盘倾角、历史加水量、造球机制造样本生球的历史原料信息以及不同规格的样本生球的占比实测值;所述历史原料信息包括历史给料量、历史混合料中各组分种类和占比、历史混合料中粘结剂的占比和历史混合料中混合料原始水分率;所 述不同规格的样本生球的占比实测值是采用机器视觉法对每个历史预测周期内的样本生球进行图像采集及处理后分析计算得到的;
将所述造球机的历史转速、所述造球机的历史造球盘倾角、所述历史给水量和所述历史给料量,按照各自的收缩比例量化到同一区间;
根据量化后的造球机的历史转速、量化后的造球机的历史造球盘倾角、量化后的历史给水量、量化后给料量、所述历史混合料各组分种类和占比、所述历史混合料中粘结剂的占比和所述历史混合料中混合料原始水分率,得到N个样本影响造球的特征向量;
将所述N个样本影响造球的特征向量作为预测模型的输入,以及将N个历史预测周期内不同规格的样本生球的占比实际值作为预测模型的输出,采用时间反向传播法训练占比预测模型;
通过迭代训练不断更新占比预测模型的权重参数、偏置参数以及学习因子;
如果占比预测模型对不同规格的样本生球的占比预测值,与不同规格的样本生球的占比实际值之间的差值达到预设的允差范围,或占比预测模型通过迭代运算时达到设定的最大迭代次数,则训练结束,并保存最后更新的权重参数、偏置参数以及学习因子。
结合第二方面,在第二方面的一种可实现方式中,所述占比预测模型是基于长短期记忆神经网络预测模型LSTM建立的。
结合第二方面,在第二方面的一种可实现方式中,所述系统还包括图像采集装置和图像处理装置,所述图像采集装置设置于造球机的出料口,与所述图像处理装置连接,所述图像处理装置与所述中央处理器连接;
所述图像采集装置被配置为执行以下步骤:采集造球机出球口的图像信息,以及将所述出球口的图像信息发送给所述图像处理装置;
所述图像处理装置被配置为执行以下步骤:
对所述出球口的图像信息进行图像预处理,分离出样本生球的图像信息与背景图像信息;
根据所述样本生球的图像信息,获取样本生球的中心亮点;
根据所述样本生球的图像信息与所述背景图像信息,确定样本生球的轮廓;
根据所述样本生球的中心亮点与所述样本生球的轮廓,获取样本生球的粒径;
根据所述样本生球的粒径,以及预设的粒径范围与生球规格的对应关系,确定样本生球的规格;
统计历史周期内样本生球的总数量,以及不同规格的样本生球的数量;
根据所述历史周期内样本生球的总数量和所述不同规格的样本生球的数量,确定所述样本生球的合格率实测值,以及将所述样本生球的合格率实测值发送给所述中央处理器。
结合第二方面,在第二方面的一种可实现方式中,所述转速控制器被配置为执行以下步骤:
获取当前周期内造球机中造球机转速,以及将所述造球机转速发送至所述中央处理器;
所述倾角控制器被配置为执行以下步骤:
获取当前周期内造球机中造球盘倾角,以及将所述造球盘倾角发送至所述中央处理器;
所述水控制器被配置为执行以下步骤:
获取当前周期内所述供水装置向造球机提供的给水量,以及将所述给水量发送至所述 中央处理器;
所述物料控制器被配置为执行以下步骤:
获取当前周期内供料皮带秤向造球机提供的混合料中各组分种类和配比、混合料给料量、混合料中粘结剂的占比和混合料原始水分率,以及将所述混合料中各组分种类和配比、所述混合料给料量、所述混合料中粘结剂的占比和所述混合料原始水分率发送至所述中央处理器。
本申请实施例中,根据造球机转速、造球机的造球盘倾角、给料量、给水量、混合料中各组分种类和配比、混合料中粘结剂的占比和混合料原始水分率,对生球合格率进行预测,得到多个预测周期的生球合格率预测值;结合每个预测周期的生球合格率预测值与预设的每个预测周期的生球合格率目标值,采用滚动优化模型对造球机转速、造球机的造球盘倾角、给料量和给水量进行优化,从而实现实时控制造球机中造球机转速、造球机的造球盘倾角、向造球机提供的给料量和向造球机提供的给水量,使生球的实际合格率能够达到预设标准,进而可以提高造球机的成球质量。
附图说明
图1为现有技术中一种造球工序的结构示意图;
图2为本申请实施例提供的一种用于造球机的控制系统的结构示意图;
图3为本申请实施例提供的一种用于造球机的控制系统的工作流程示意图;
图4为本申请实施例提供的一种预测生球合格率的方法所对应的流程示意图;
图5为本申请实施例提供的一种生成占比预测模型的方法所对应的流程示意图;
图6为本申请实施例提供的一种用于造球机的控制系统的粒径分析工作流程示意图;
图7示例性示出了本申请实施例提供的一种用于造球机的控制方法所对应的流程示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
请参考图1,图1为现有技术中一种造球工序的结构示意图。
如图1所示,该造球工序包括圆盘造球机11、供水装置21和供料皮带秤31。其中,圆盘造球机11包括电动机111、中心轴112、底座113、圆盘114、刮刀架115、刮刀116和生球皮带117;供水装置21包括水阀门211、水管212和出水口213;供料皮带秤31包括物料阀门311、料仓312和供料皮带313。
在上述结构中,中心轴112可调节圆盘114的倾角,电动机111转速的调节可改变圆盘114的转速;刮刀架115支撑于圆盘114上,刮刀116用于推动圆盘114中混合料运动及防止粘连。
料仓312中的混合料经过供料皮带313输送至圆盘114,混合料的流量(即给料量)大小可通过物料阀门311进行调节。
水管212中的水可以经出水口213滴落在混合料落入圆盘114的位置,或可以经出水口213滴落在圆盘114中生球长大的区域,水量的大小可以通过水阀门211进行调节;生球从圆盘114出来后落入生球皮带117,该生球皮带117所在的位置可以看作是圆盘造球 机11的出球区域。
需要说明的是,图1示出的圆盘造球机可以替换为圆筒造球机,本申请对此不进行限制。
在图1的基础上,本申请实施例提供了一种造球机控制系统。图2为本申请实施例提供的一种用于造球机的控制系统的结构示意图。如图2所示,该系统主要包括造球机11、转速控制器12、倾角控制器13、供水装置21、水控制器22、供料皮带秤31、物料控制器32和中央处理器5。其中,转速控制器12和倾角控制器分别与造球机11连接的,水控制器22与供水装置21连接,物料控制器32与供料皮带秤31连接。中央处理器5分别与转速控制器12、倾角控制器13、水控制器22和物料控制器32连接。
具体地,供水装置21的出水点可以设置于造球机11的进料点及所述造球机内的涨球区域,用于向造球机11提供水。
供料皮带秤31用于向造球机提供混合料,供料皮带秤31的落料点为造球机11的进料点,用于向造球机11提供混合料。
该控制系统运行过程中,各设备之间相互协作,实现对造球机的控制。具体请参考图3,其示例性示出了本申请实施例提供的一种用于造球机的控制系统的工作流程示意图。
转速控制器12可以被配置为执行以下步骤S301和步骤S302:
步骤S301,获取当前周期内造球机中造球机转速。
在造球机转速的检测过程中,如果检测的转速处于稳定状态下,将稳定状态下的转速保存,并作为后续的检测数据使用;如果检测到的转速出现变化,则实时更新保存的转速。
本申请实施例中,造球机的转速可以采用光反射法、磁电法、光栅法或霍尔开关检测法等测量方法进行测量。
步骤S302,将造球机转速发送至中央处理器。
倾角控制器12可以被配置为执行以下步骤S303和步骤S304:
步骤S303,获取当前周期内造球机中造球盘倾角。
造球机的造球盘倾角调节通常设有液压倾角调节装置,倾角检测采用倾角传感器直接测量。
步骤S304,将造球盘倾角发送至中央处理器。
水控制器22可以被配置为执行以下步骤S305和步骤S306:
步骤S305,获取当前周期内所述供水装置向造球机提供的给水量。
步骤S306,将给水量发送至所述中央处理器。
物料控制器32可以被配置为执行以下步骤S307和步骤S308:
步骤S307,获取当前周期内供料皮带秤向造球机提供的混合料中各组分种类和配比、混合料给料量、混合料中粘结剂的占比和混合料原始水分率。
获取混合料中各组分种类和配比、混合料给料量、混合料中粘结剂的占比和混合料原始水分率的方式有多种,一种可能的获取方式是,按照预定的时间间隔获取一次各组分种类和配比、混合料给料量、混合料中粘结剂的占比和混合料原始水分率,并用新获取的混合料各项参数更新之前获取的混合料各项参数。
此处需要说明的是,本申请中提及的各组分种类和配比、混合料各组分种类和配比、混合料中各组分种类和配比,这三个名词的含义指代的均是混合料中各组分种类和配比。
另一种可能的获取方式是,实时获取混合料各项参数,并分别判断混合料各项参数的变化率,若变化率较小,处于预设的误差范围,则沿用之前获取的混合料各项参数,若变化率较大,超出预设的误差范围,则用新获取的混合料各项参数更新之前获取的混合料各项参数,需要说明的是,这里所说的混合料各项参数为各组分种类和配比、混合料给料量、混合料中粘结剂的占比和混合料原始水分率。
步骤S308,将混合料各组分种类和配比、混合料给料量、混合料中粘结剂的占比和混合料原始水分率发送至中央处理器。
中央处理器5可以被配置为执行以下步骤S309至步骤S312:
步骤S309,接收转速控制器发送的造球机转速,以及接收倾角控制器发送的造球盘倾角,以及接收水控制器发送的给水量,以及接收物料控制器发送的混合料各组分种类和配比、混合料给料量、混合料中粘结剂的占比和混合料原始水分率。
步骤S310,根据造球机转速、造球盘倾角、给水量、混合料各组分种类和配比、混合料给料量、混合料中粘结剂的占比和混合料原始水分率,对生球合格率进行预测,得到多个预测周期的生球合格率预测值。
需要说明的是,对生球合格率进行预测,与对生球各粒径范围的占比进行预测,含义相同。
具体实施过程中,可以采用占比预测模型预测生球合格率。可参考图4,其示例性示出了本申请实施例提供的一种预测生球合格率的方法所对应的流程示意图,具体包括如下步骤:
步骤S401,将造球机转速、造球机的造球盘倾角、给水量和混合料给料量,按照各自的收缩比例量化到同一区间,得到影响造球的特征向量。
需要说明的是,本申请中提及的造球机中造球机转速、造球机的造球机转速、造球机的转速、造球机中的造球机转速含义相同,指代的均是造球机转速;本申请中提及的造球机中造球盘倾角、造球机的造球盘倾角含义相同,指代的均是造球盘倾角;本申请中提及的给料量、混合料给料量含义相同,指代的均是混合料给料量。
由于同一时刻的给料量、混合料各组分配比、粘结剂的占比、混合料原始水分率、给水量、造球机转速和造球盘倾角的数据量及数据类型不同,无法直接对这些数据量进行运算。在本申请实施例中,考虑到各组分配比、粘结剂的占比是百分数和混合料原始水分率,即数值位于(0,1)这个区间内,因此,可以将造球机的当前转速、给水量和混合料给料量也量化到(0,1)这个区间内,从而能够对各组分配比、粘接剂的占比、混合料原始水分率、给料量、给水量、造球机转速和造球盘倾角这些数据量进行运算。
具体地,对造球机转速(或造球机的造球盘倾角)进行量化时,对应的收缩比例可以是造球机的最大转速(或造球盘的最大倾角),即计算造球机转速与造球机的最大转速的比值,可参考公式(1):
Figure PCTCN2021112553-appb-000003
其中,Norm(n)表示量化后的造球机转速,n表示造球机转速,
Figure PCTCN2021112553-appb-000004
表示造球机的最大转速;或者,Norm(n)表示量化后的造球机的造球盘倾角,n表示造球机的造球盘倾角,
Figure PCTCN2021112553-appb-000005
表示造球机的最大倾角。
对给水量进行量化时,对应的收缩比例可以是供水装置中加水管道的最大给水量,即 计算给水量与最大给水量的比值,可参考公式(2):
Figure PCTCN2021112553-appb-000006
其中,Norm(n)表示量化后的给水量,s表示给水量,smax表示最大给水量。
需要说明的是,本申请中提及的给水系统、供水装置含义相同,指代的均是供水装置。
对混合料给料量进行量化时,对应的收缩比例是供料皮带秤的最大给料量,即计算混合料给料量与料仓最大给料量的比值,可参考公式(3):
Figure PCTCN2021112553-appb-000007
其中,Norm(m)表示量化后的混合物给料量,m表示混合物给料量,mmax表示供料皮带秤的最大给料量。
需要说明的是,本申请中提及的供料皮带、给料皮带含义相同,指代的均是供料皮带。
经过量化后,影响造球关键因素的特征向量如下:
X(k)=(N,x 1(k),x 2(k),x 3(k),x 4(k),x 5(k),x 6(k),x 7(k))=Norm(n,s,m,w,r,p,q)
其中,X(k)表示用于影响造球关键因素的特征向量,x1(k)、x2(k)、x3(k)、x4(k)、x5(k)、x6(k)、x7(k)分别为量化后的造球机的转速、量化后的造球机的造球盘倾角、量化后的给水量、量化后的混合物给料量、混合料中各组分配比、混合料中粘结剂的占比和混合料原始水分率,N表示混合物中组分种类的数量;其中,x5(k)包含了各组分种类和配比信息,在实际应用中,可以用数字对各组分进行编号,在x5(k)中将组分的编号与组分的配比对应。
举个例子,混合料中包括编号分别为1、2、3的三种组分,那么,影响造球关键因素的特征向量可以如下所示:
Figure PCTCN2021112553-appb-000008
其中,第一位的3表示混合料除粘结剂之外具有其他三种组分,x1(k)表示量化后的造球机的当前转速,x2(k)表示量化后的给水量,x3(k)表示量化后的混合料给料量,x4(k)表示量化后的混合料给料量,
Figure PCTCN2021112553-appb-000009
表示混合料中编号为1的组分的配比,
Figure PCTCN2021112553-appb-000010
表示混合料中编号为2的组分的配比,
Figure PCTCN2021112553-appb-000011
表示混合料中编号为3的组分的配比,x6(k)表示混合料中粘结剂的占比,x7(k)表示为混合料原始水分率。
步骤S402,将影响造球的特征向量输入到占比预测模型中,根据占比预测模型中预先设置的映射关系,得到多个预测周期的生球合格率预测值。
其中,预先设置的映射关系是影响造球的特征向量与多个预测周期的生球合格率预测值之间的映射关系。
本申请实施例中,生球合格率可以是根据不同规格的生球占比预测值确定的,不同规格的生球占比预测值包括合格大球的占比预测值、不合格大球的占比预测值、合格中球的占比预测值、合格小球的占比预测值和不合格小球的占比预测值。也就是说,本申请实施例中,可以通过预测不同规格的生球占比,来对生球合格率进行预测。
如此,该映射关系也可以是影响造球的特征向量与不同规格生球的占比预测值之间的映射关系。
具体地,该映射关系中包含了同一周期不同步长下的生球的占比预测值,可以根据实际工程需要,将造球机的整个造球过程分为多个步长,例如一个步长为十秒,则占比预测模型根据映射关系可以得到以下多个步长的占比预测值:
y(k|k),y(k|k+1),y(k|k+2),…,y(k|k+j)
其中,j为预测步长,k为预测的具体时刻。
本申请实施例中,不同规格的生球的占比预测值包括合格大球的占比预测值、不合格大球的占比预测值、合格中球的占比预测值、合格小球的占比预测值和不合格小球的占比预测值。
根据生球的直径,可以将生球分为合格大球、不合格大球、合格中球、合格小球和不合格小球这五种规格。如表1所示,为一组满足造球工艺要求的不同规格生球占比范围的示例。其中,生球直径(表1中用d表示)大于或等于5mm且小于8mm时,生球属于不合格小球;生球直径大于或等于8mm且小于11mm时,生球属于合格小球;生球直径大于或等于11mm且小于14mm时,生球属于合格中球;生球直径大于或等于14mm且小于16mm时,生球属于合格大球;生球直径大于或等于16mm时,生球属于不合格大球。
不合格小球的占比设定范围为小于或等于7%;合格小球的占比设定范围为小于或等于30%;合格中球的占比设定范围为小于或等于55%;合格大球的占比设定范围为小于或等于20%;不合格大球的占比设定范围为小于或等于15%。
表1:不同规格生球的一种示例
Figure PCTCN2021112553-appb-000012
当各种不同规格的生球的占比满足上述表1设定范围,且总占比之和为100%,可以认为生球质量较佳,相反,则可以认为生球质量不合格。
本申请实施例中,占比预测模型可以是基于长短期记忆神经网络预测模型LSTM建立的。如图5所示,为本申请实施例提供的一种生成占比预测模型的方法所对应的流程示意图,具体包括如下步骤:
步骤S501,获取N个历史周期内的样本数据。
其中,每个历史预测周期内的样本数据包括造球机的历史转速、造球机的历史造球盘倾角、历史给水量、造球机制造样本生球的历史原料信息以及不同规格的样本生球的占比实测值;历史原料信息包括历史给料量、历史混合料中各组分种类和占比、历史混合料中粘结剂的占比和历史混合料中混合料原始水分率;不同规格的样本生球的占比实测值是采用粒径分析法对每个历史预测周期内的样本生球进行采集图像及分析后计算得到的。
具体来说,样本生球的合格率实测值可以是不同规格的样本生球的占比实测值,采用粒径分析法得到不同规格的样本生球的占比实测值的方法有多种,比如,可以通过人工筛选的方法进行粒径分析,又比如,还可以通过机器视觉的方法进行粒径分析。
下面具体描述通过机器视觉的方法进行粒径分析的内容。
如图2所示,该控制系统还可以包括图像采集装置41和图像处理装置42。图像采集装置41设置于造球机的出料口,与图像处理装置42连接,图像处理装置42与中央处理 器5连接。
该控制系统在粒径分析的过程中,图像采集装置41和图像处理装置42之间相互协作,得到不同规格的样本生球的占比实测值。具体请参考图6,其示例性示出了本申请实施例提供的一种用于造球机的控制系统的粒径分析工作流程示意图。
图像采集装置41可以被配置为执行以下步骤S601和步骤S602:
步骤S601,采集造球机出球口的图像信息。
需要说明的是,本申请提及的造球机的出料口、造球机出球口含义相同,指代的均是造球机的出球口。
步骤S602,将出球口的图像信息发送给图像处理装置。
图像处理装置42可以被配置为执行以下步骤S603至步骤S610:
步骤S603,对出球口的图像信息进行图像预处理,分离出样本生球的图像信息与背景图像信息。
步骤S604,根据样本生球的图像信息,获取样本生球的中心亮点。
步骤S605,根据样本生球的图像信息与所述背景图像信息,确定样本生球的轮廓。
步骤S606,根据样本生球的中心亮点与样本生球的轮廓,获取样本生球的粒径。
步骤S607,根据样本生球的粒径,以及预设的粒径范围与生球规格的对应关系,确定样本生球的规格。
步骤S608,统计历史周期内样本生球的总数量,以及不同规格的样本生球的数量。
步骤S609,根据历史周期内样本生球的总数量和不同规格的样本生球的数量,确定样本生球的合格率实测值。
步骤S610,将样本生球的合格率实测值发送给中央处理器。
步骤S502,将造球机的历史转速、造球机的历史造球盘倾角、历史给水量和历史混合料给料量,按照各自的收缩比例量化到同一区间。
需要说明的是,说明书附图图5中S502所述的将电机的历史转速、历史给水量和历史混合料给料量,按照各自的收缩比将造球机的历史转速、造球机的历史造球盘倾角、历史给水量和历史混合料给料量,按照各自的收缩比例量化到同一区间比例量化到同一区间,与说明书具体实施方式中步骤S502所述的将造球机的历史转速、造球机的历史造球盘倾角、历史给水量和历史混合料给料量,按照各自的收缩比例量化到同一区间,含义相同。
需要说明的是,具体量化的方法可以参考上文描述,此处不再赘述。
步骤S503,根据量化后的造球机的历史转速、量化后的造球机的历史造球盘倾角、量化后的历史给水量、量化后的历史混合物给料量、历史混合料中各组分种类和占比、历史混合料中粘结剂的占比和历史混合料中混合料原始水分率,得到N个样本影响造球的特征向量。
需要说明的是,具体量化的方法可以参考上文描述,此处不再赘述。
步骤S504,将N个样本影响造球的特征向量作为预测模型的输入,以及将N个历史预测周期内不同规格的样本生球的占比实际值作为预测模型的输出,采用时间反向传播法训练占比预测模型。
占比预测训练模块利用训练样本的输入以及训练样本的输出,采用时间反向传播法训练LSTM神经网络模型;其中,时间反向传播法是一种适用于多层神经元网络的学习算法, 通过激励传播和权重更新反复循环迭代,指导多层神经元网络对输入的响应(输出)达到预定的目标范围为止。
步骤S505,通过迭代训练不断更新占比预测模型的权重参数、偏置参数以及学习因子。
步骤S506,如果占比预测模型对不同规格的样本生球的占比预测值,与不同规格的样本生球的占比实际值之间的差值达到预设的允差范围,或占比预测模型通过迭代运算时达到设定的最大迭代次数,则训练结束,并保存最后更新的权重参数、偏置参数以及学习因子。获得基于LSTM神经网络模型的影响造球的特征向量与不同规格生球的占比预测值的动态映射关系/动态预测模型。
该流程中,k时刻前向信号流(即k时刻LSTM的输出)表达如下:
Figure PCTCN2021112553-appb-000013
其中,Y k-1为k-1时刻的输出,X k为k时刻输入向量,σ表示Sigmoid函数,W f和b f为遗忘门的权重向量和偏置项,W i和b i为输入门的权重向量和偏置项,W c和b c为单元状态的权重向量和偏置项,W o和b o为输出门的权重向量和偏置项,c k为即时状态,c k-1为上一时刻状态。
影响造球的特征向量考虑到在实际的工艺过程中,设备的磨损、工况的迁移以及检测点的变化等情况,可能会导致占比预测模型不适用,为了提高预测模型的适用范围和精确度,本申请实施例中还提供一种在线更新占比预测模型的方法。
具体来说,就是根据训练模型在线应用预测过程中的偏差,适当调整模型参数。
影响造球的特征向量在本申请实施例中,模型的粒度指标主要用于判断模型是否需要校正以及需要如何校正。通常可采用预测值与测量值的均方差作为粒度指标,然后根据粒度指标的统计分布规律,预设统计置信限,判断是否需要触发更新以及需要的更新方法。
如果根据指标分析结果判断过程特征属于渐变,则选择模型递推法,利用移动窗递推法来更新预测模型,步骤如下:
设原预测模型的样本集为S={[X 1,Y 1],...,[X t,Y t]},t为总的样本数。当获取新测量值[X m,Y m],则将其加入样本集,并淘汰最陈旧的样本,则新的样本集为:
S={[X 2,Y 2],...,[X t,Y t],[X m,Y m]}
然后利用新的样本训练学习算法,获得新的预测模型。
如果根据指标分析结果判断过程特征属于突变,则选择即时学习法,选择历史周期内的样本数据中与当前测量状态相似的数据样本,重构预测模型。
步骤S311,根据每个预测周期的生球合格率预测值和预设的每个预测周期的生球合格率目标值,计算得到每个预测周期的生球合格率偏差值。
具体地,根据每个预测周期不同预测步长各型生球占比预测值和预设的单周期内不同步长各型生球占比参考(目标)值,计算得到该周期不同步长各型生球占比与参考值的偏差值。
每个预测周期不同步长各型生球占比与参考值的偏差值可以通过公式(4)得到:
E(k|k+j)={(r 1(j)-y 1(k|k+j)),r 2(j)-y 2(k|k+j),...,r i(j)-y i(k|k+j)}     公式(4)
公式(4)中,E(k|k+j)是第k个预测周期第j个步长的各型生球占比与参考值的偏差值;r i(j)是第j个步长第i种规格的生球占比目标值;y i(k|k+j)是第k个预测周期中 第j个步长第i种规格的生球占比预测值;i=1,2,……,d,d是大于或等于1的整数;j=1,2,……,m,m是大于或等于1的整数。
步骤S312,将多个预测周期的生球合格率偏差值输入滚动优化模型,得到待调整的造球机转速、待调整的造球机的造球盘倾角、待调整的给料量和待调整的给水量,驱动所述转速控制器将造球机中造球机转速调整为所述待调整的造球机转速,以及驱动倾角控制器将造球机中造球盘倾角调整为待调整的造球机的造球盘倾角,以及驱动物料控制器将向造球机提供的给料量调整为待调整给料量,以及驱动所述水控制器将向造球机提供的给水量调整为所述待调整的给水量。
需要说明的是,本申请中提及的待调整的给料量、待调整给料量含义相同,指代的均是待调整给料量。
具体地,将一个预测周期多个步长的各型生球占比与参考值的偏差值输入滚动优化模型,得到待调整的造球机转速、待调整的造球机的造球盘倾角、待调整的给料量和待调整的给水量,驱动转速控制器将造球机中造球机的转速调整为待调整的造球机转速,以及驱动倾角控制器将造球机中造球盘倾角调整为待调整的造球机的造球盘倾角,以及驱动物料控制器将向造球机提供的给料量调整为待调整给料量,以及驱动水控制器将向造球机提供的给水量调整为待调整的给水量。
滚动优化模型用于在混合料中组分种类和配比、粘结剂的占比和和混合料原始水分率均不变的条件下,计算出单个预测周期的各型生球占比与参考值的偏差值的方差最小时,对应的造球机转速、造球机的造球盘倾角、给料量和给水量。
第k个预测周期第j个步长的各型生球占比与参考值的偏差值均方差可以通过公式(5)得到:
Figure PCTCN2021112553-appb-000014
其中,σk|k+j)是第k个预测周期第j个步长的各型生球占比与参考值的偏差值均方差,r i(j)是第j个预测步长第i种规格小球占比目标值;y i(k|k+j)是第k个预测周期第j个步长第i种规格小球占比预测值;i=1,2,……,d,d是大于或等于1的整数;j=0,1,2,……,m,m是大于或等于0的整数,k=1,2,……,n,n是大于或等于1的整数。
需要说明的是,上述实施例仅是以圆盘造球机为例,当然,本申请实施例提供的生球质量预测系统,同样适用于圆筒造球机。
本申请实施例中,根据造球机转速、造球机的造球盘倾角、给水量、混合料给料量、混合料各组分种类和配比、混合料中粘结剂的占比和混合料原始水分率,对生球合格率进行预测,得到多个预测周期的生球合格率预测值;结合每个预测周期的生球合格率预测值与预设的每个预测周期的生球合格率目标值,采用滚动优化模型对造球机的转速、造球盘倾角、给料量和给水量进行优化,从而实现实时控制造球机中造球机的转速、造球盘倾角、向造球机提供的给料量和向造球机提供的给水量,使生球的实际合格率能够达到预设标准,进而可以提高造球机的成球质量。
下述为本申请方法实施例,对于本申请方法实施例中未披露的细节,请参照本申请系统实施例。
图7示例性示出了本申请实施例提供的一种用于造球机的控制方法所对应的流程示意图。如图7所示,该方法可以包括如下步骤:
步骤S701,根据所述造球机转速、所述造球机的造球盘倾角、所述给水量、所述混合料各组分种类和配比、所述混合料给料量、所述混合料中粘结剂的占比和所述混合料原始水分率,对生球各粒径范围的占比进行预测,得到多个预测周期的生球合格率预测值。
步骤S702,根据每个预测周期的生球合格率预测值和预设的每个预测周期的生球合格率目标值,计算得到每个预测周期的生球合格率偏差值。
步骤S703,将多个预测周期的生球合格率偏差值输入滚动优化模型,得到待调整的造球机转速、待调整的造球机的造球盘倾角、待调整的给料量和待调整的给水量。
驱动所述转速控制器将造球机中造球机转速调整为所述待调整的造球机转速,以及驱动所述倾角控制器将造球机中造球盘倾角调整为所述待调整的造球机的造球盘倾角,以及驱动所述物料控制器将向造球机提供的给料量调整为所述待调整给料量,以及驱动所述水控制器将向造球机提供的给水量调整为所述待调整的给水量。
其中,所述多个预测周期包括当前周期和在当前周期之后的周期;所述滚动优化模型用于在所述混合料各组分种类和配比、所述混合料中粘结剂的占比和所述混合料原始水分率均不变的条件下,计算出多个预测周期的生球合格率偏差值的方差最小时,对应的造球机转速、造球机的造球盘倾角、给料量和给水量。
可选地,所述生球合格率根据不同规格的生球占比预测值确定,所述不同规格的生球占比预测值包括合格大球的占比预测值、不合格大球的占比预测值、合格中球的占比预测值、合格小球的占比预测值和不合格小球的占比预测值;
所述每个预测周期的生球合格率偏差值通过以下方式得到:
E(k|k+j)={(r 1(j)-y 1(k|k+j)),r 2(j)-y 2(k|k+j),...,r i(j)-y i(k|k+j)}
其中,E(k|k+j)是第k个预测周期第j个步长的各型生球占比与参考值的偏差值;r i(j)是第j个步长第i种规格的生球占比目标值;y i(k|k+j)是第k个预测周期中第j个步长第i种规格的生球占比预测值;i=1,2,……,d,d是大于或等于1的整数;j=1,2,……,m,m是大于或等于1的整数。
可选地,所述多个预测周期的生球合格率偏差值的方差通过以下方式得到:
Figure PCTCN2021112553-appb-000015
其中,σ(k|k+j)是第k个预测周期第j个步长的各型生球占比与参考值的偏差值均方差,r i(j)是第j个预测步长第i种规格小球占比目标值;y i(k|k+j)是第k个预测周期第j个步长第i种规格小球占比预测值;i=1,2,……,d,d是大于或等于1的整数;j=0,1,2,……,m,m是大于或等于0的整数,k=1,2,……,n,n是大于或等于1的整数。
可选地,根据所述造球机转速、所述造球机的造球盘倾角、所述给水量、所述混合料各组分种类和配比、所述混合料给料量、所述混合料中粘结剂的占比和所述混合料原始水分率,对生球各粒径范围的占比进行预测,得到多个预测周期的生球合格率预测值,具体执行以下步骤:
将所述造球机的转速、所述造球机的造球盘倾角、所述给水量和所述给料量,按照各自的收缩比例量化到同一区间;
根据量化后的造球机的转速、量化后的造球机的造球盘倾角、量化后的给水量、量化后的给料量、所述混合料中各组分的种类和占比、所述混合料中粘结剂的占比和所述混合料原始水分率,得到影响造球的特征向量;
将所述影响造球的特征向量输入到占比预测模型中,得到不同规格的生球的占比预测值,所述占比预测模型包括影响造球的特征向量与不同规格生球的占比预测值之间的映射关系。
可选地,造球机的转速对应的收缩比例是造球机的最大转速;
所述给水量对应的收缩比例是所述给水系统中加水管道的最大给水量;
所述给料量对应的收缩比例是给料皮带的最大给料量;
所述造球机的造球盘倾角对应的收缩比例是所述造球机的最大倾角。
可选地,所述占比预测模型通过以下方式得到:
获取N个历史预测周期内的样本数据;每个历史预测周期内的样本数据包括造球机的历史转速、造球机的历史造球盘倾角、历史加水量、造球机制造样本生球的历史原料信息以及不同规格的样本生球的占比实测值;所述历史原料信息包括历史给料量、历史混合料中各组分种类和占比、历史混合料中粘结剂的占比和历史混合料中混合料原始水分率;所述不同规格的样本生球的占比实测值是采用机器视觉法对每个历史预测周期内的样本生球进行图像采集及处理后分析计算得到的;
将所述造球机的历史转速、所述造球机的历史造球盘倾角、所述历史给水量和所述历史给料量,按照各自的收缩比例量化到同一区间;
根据量化后的造球机的历史转速、量化后的造球机的历史造球盘倾角、量化后的历史给水量、量化后给料量、所述历史混合料各组分种类和占比、所述历史混合料中粘结剂的占比和所述历史混合料中混合料原始水分率,得到N个样本影响造球的特征向量;
将所述N个样本影响造球的特征向量作为预测模型的输入,以及将N个历史预测周期内不同规格的样本生球的占比实际值作为预测模型的输出,采用时间反向传播法训练占比预测模型;
通过迭代训练不断更新占比预测模型的权重参数、偏置参数以及学习因子;
如果占比预测模型对不同规格的样本生球的占比预测值,与不同规格的样本生球的占比实际值之间的差值达到预设的允差范围,或占比预测模型通过迭代运算时达到设定的最大迭代次数,则训练结束,并保存最后更新的权重参数、偏置参数以及学习因子。
可选地,所述占比预测模型是基于长短期记忆神经网络预测模型LSTM建立的。
可选地,所述系统还包括图像采集装置和图像处理装置,所述图像采集装置设置于造球机的出料口,与所述图像处理装置连接,所述图像处理装置与所述中央处理器连接;
所述图像采集装置被配置为执行以下步骤:采集造球机出球口的图像信息,以及将所述出球口的图像信息发送给所述图像处理装置;
所述图像处理装置被配置为执行以下步骤:
对所述出球口的图像信息进行图像预处理,分离出样本生球的图像信息与背景图像信息;
根据所述样本生球的图像信息,获取样本生球的中心亮点;
根据所述样本生球的图像信息与所述背景图像信息,确定样本生球的轮廓;
根据所述样本生球的中心亮点与所述样本生球的轮廓,获取样本生球的粒径;
根据所述样本生球的粒径,以及预设的粒径范围与生球规格的对应关系,确定样本生球的规格;
统计历史周期内样本生球的总数量,以及不同规格的样本生球的数量;
根据所述历史周期内样本生球的总数量和所述不同规格的样本生球的数量,确定所述样本生球的合格率实测值,以及将所述样本生球的合格率实测值发送给所述中央处理器。
可选地,所述转速控制器被配置为执行以下步骤:
获取当前周期内造球机中造球机转速,以及将所述造球机转速发送至所述中央处理器;
所述倾角控制器被配置为执行以下步骤:
获取当前周期内造球机中造球盘倾角,以及将所述造球盘倾角发送至所述中央处理器;
所述水控制器被配置为执行以下步骤:
获取当前周期内所述供水装置向造球机提供的给水量,以及将所述给水量发送至所述中央处理器;
所述物料控制器被配置为执行以下步骤:
获取当前周期内供料皮带秤向造球机提供的混合料中各组分种类和配比、混合料给料量、混合料中粘结剂的占比和混合料原始水分率,以及将所述混合料中各组分种类和配比、所述混合料给料量、所述混合料中粘结剂的占比和所述混合料原始水分率发送至所述中央处理器。
本申请实施例中,采用滚动优化模型对造球机转速、造球机的造球盘倾角、给料量和给水量进行优化,从而实现实时控制造球机中造球机转速、造球机的造球盘倾角、向造球机提供的给料量和向造球机提供的给水量,使生球的实际合格率能够达到预设标准,进而可以提高造球机的成球质量。
本申请提供的实施例之间的相似部分相互参见即可,以上提供的具体实施方式只是本申请总的构思下的几个示例,并不构成本申请保护范围的限定。对于本领域的技术人员而言,在不付出创造性劳动的前提下依据本申请方案所扩展出的任何其他实施方式都属于本申请的保护范围。

Claims (10)

  1. 一种用于造球机的控制系统,所述系统包括造球机、供水装置和供料皮带秤,所述供水装置的出水点设置于造球机的进料点及所述造球机内的涨球区域,用于向造球机提供水;所述供料皮带秤用于向造球机提供混合料,所述供料皮带秤的落料点为造球机的进料点;其特征在于,所述系统还包括与造球机连接的转速控制器、与造球机连接的倾角控制器、与供水装置连接的水控制器、与供料皮带秤连接的物料控制器以及分别与转速控制器、倾角控制器、水控制器和物料控制器连接的中央处理器;其中:
    所述中央处理器被配置为执行以下步骤:
    接收所述转速控制器发送的造球机转速、倾角控制器发送的造球机的造球盘倾角,以及接收所述水控制器发送的给水量,以及接收所述物料控制器发送的各组分种类和配比、混合料给料量、混合料中粘结剂的占比和混合料原始水分率;
    根据所述造球机转速、所述造球机的造球盘倾角、所述给水量、所述混合料各组分种类和配比、所述混合料给料量、所述混合料中粘结剂的占比和所述混合料原始水分率,对生球各粒径范围的占比进行预测,得到多个预测周期的生球合格率预测值;
    根据每个预测周期的生球合格率预测值和预设的每个预测周期的生球合格率目标值,计算得到每个预测周期的生球合格率偏差值;
    将多个预测周期的生球合格率偏差值输入滚动优化模型,得到待调整的造球机转速、待调整的造球机的造球盘倾角、待调整的给料量和待调整的给水量,驱动所述转速控制器将造球机中造球机转速调整为所述待调整的造球机转速,以及驱动所述倾角控制器将造球机中造球盘倾角调整为所述待调整的造球机的造球盘倾角,以及驱动所述物料控制器将向造球机提供的给料量调整为所述待调整给料量,以及驱动所述水控制器将向造球机提供的给水量调整为所述待调整的给水量;
    其中,所述多个预测周期包括当前周期和在当前周期之后的周期;所述滚动优化模型用于在所述混合料各组分种类和配比、所述混合料中粘结剂的占比和所述混合料原始水分率均不变的条件下,计算出多个预测周期的生球合格率偏差值的方差最小时,对应的造球机转速、造球机的造球盘倾角、给料量和给水量。
  2. 根据权利要求1所述的控制系统,其特征在于,生球合格率根据不同规格的生球占比预测值确定,所述不同规格的生球占比预测值包括合格大球的占比预测值、不合格大球的占比预测值、合格中球的占比预测值、合格小球的占比预测值和不合格小球的占比预测值;
    所述每个预测周期的生球合格率偏差值通过以下方式得到:
    E(k|k+j)={(r 1(j)-y 1(k|k+j)),r 2(j)-y 2(k|k+j),...,r i(j)-y i(k|k+j)}
    其中,E(k|k+j)是第k个预测周期第j个步长的各型生球占比与参考值的偏差值;r i(j)是第j个步长第i种规格的生球占比目标值;y i(k|k+j)是第k个预测周期中第j个步长第i种规格的生球占比预测值;i=1,2,……,d,d是大于或等于1的整数;j=1,2,……,m,m是大于或等于1的整数。
  3. 根据权利要求2所述的控制系统,其特征在于,所述多个预测周期的生球合格率偏差值的方差通过以下方式得到:
    Figure PCTCN2021112553-appb-100001
    其中,σ(k|k+j)是第k个预测周期第j个步长的各型生球占比与参考值的偏差值均方差,r i(j)是第j个预测步长第i种规格小球占比目标值;y i(k|k+j)是第k个预测周期第j个步长第i种规格小球占比预测值;i=1,2,……,d,d是大于或等于1的整数;j=0,1,2,……,m,m是大于或等于0的整数,k=1,2,……,n,n是大于或等于1的整数。
  4. 根据权利要求1所述的控制系统,其特征在于,根据所述造球机转速、所述造球机的造球盘倾角、所述给水量、所述混合料各组分种类和配比、所述混合料给料量、所述混合料中粘结剂的占比和所述混合料原始水分率,对生球各粒径范围的占比进行预测,得到多个预测周期的生球合格率预测值,具体执行以下步骤:
    将所述造球机的转速、所述造球机的造球盘倾角、所述给水量和所述给料量,按照各自的收缩比例量化到同一区间;
    根据量化后的造球机的转速、量化后的造球机的造球盘倾角、量化后的给水量、量化后的给料量、所述混合料中各组分的种类和占比、所述混合料中粘结剂的占比和所述混合料原始水分率,得到影响造球的特征向量;
    将所述影响造球的特征向量输入到占比预测模型中,得到不同规格的生球的占比预测值,所述占比预测模型包括影响造球的特征向量与不同规格生球的占比预测值之间的映射关系。
  5. 根据权利要求4所述的控制系统,其特征在于,造球机的转速对应的收缩比例是造球机的最大转速;
    所述给水量对应的收缩比例是给水系统中加水管道的最大给水量;
    所述给料量对应的收缩比例是给料皮带的最大给料量;
    所述造球机的造球盘倾角对应的收缩比例是所述造球机的最大倾角。
  6. 根据权利要求4所述的控制系统,其特征在于,所述占比预测模型通过以下方式得到:
    获取N个历史预测周期内的样本数据;每个历史预测周期内的样本数据包括造球机的历史转速、造球机的历史造球盘倾角、历史加水量、造球机制造样本生球的历史原料信息以及不同规格的样本生球的占比实测值;所述历史原料信息包括历史给料量、历史混合料中各组分种类和占比、历史混合料中粘结剂的占比和历史混合料中混合料原始水分率;所述不同规格的样本生球的占比实测值是采用机器视觉法对每个历史预测周期内的样本生球进行图像采集及处理后分析计算得到的;
    将所述造球机的历史转速、所述造球机的历史造球盘倾角、所述历史给水量和所 述历史给料量,按照各自的收缩比例量化到同一区间;
    根据量化后的造球机的历史转速、量化后的造球机的历史造球盘倾角、量化后的历史给水量、量化后给料量、所述历史混合料各组分种类和占比、所述历史混合料中粘结剂的占比和所述历史混合料中混合料原始水分率,得到N个样本影响造球的特征向量;
    将所述N个样本影响造球的特征向量作为预测模型的输入,以及将N个历史预测周期内不同规格的样本生球的占比实际值作为预测模型的输出,采用时间反向传播法训练占比预测模型;
    通过迭代训练不断更新占比预测模型的权重参数、偏置参数以及学习因子;
    如果占比预测模型对不同规格的样本生球的占比预测值,与不同规格的样本生球的占比实际值之间的差值达到预设的允差范围,或占比预测模型通过迭代运算时达到设定的最大迭代次数,则训练结束,并保存最后更新的权重参数、偏置参数以及学习因子。
  7. 根据权利要求6所述的控制系统,其特征在于,所述占比预测模型是基于长短期记忆神经网络预测模型LSTM建立的。
  8. 根据权利要求6所述的控制系统,其特征在于,所述系统还包括图像采集装置和图像处理装置,所述图像采集装置设置于造球机的出料口,与所述图像处理装置连接,所述图像处理装置与所述中央处理器连接;
    所述图像采集装置被配置为执行以下步骤:采集造球机出球口的图像信息,以及将所述出球口的图像信息发送给所述图像处理装置;
    所述图像处理装置被配置为执行以下步骤:
    对所述出球口的图像信息进行图像预处理,分离出样本生球的图像信息与背景图像信息;
    根据所述样本生球的图像信息,获取样本生球的中心亮点;
    根据所述样本生球的图像信息与所述背景图像信息,确定样本生球的轮廓;
    根据所述样本生球的中心亮点与所述样本生球的轮廓,获取样本生球的粒径;
    根据所述样本生球的粒径,以及预设的粒径范围与生球规格的对应关系,确定样本生球的规格;
    统计历史周期内样本生球的总数量,以及不同规格的样本生球的数量;
    根据所述历史周期内样本生球的总数量和所述不同规格的样本生球的数量,确定所述样本生球的合格率实测值,以及将所述样本生球的合格率实测值发送给所述中央处理器。
  9. 根据权利要求1至8中任一项所述的控制系统,其特征在于,所述转速控制器被配置为执行以下步骤:
    获取当前周期内造球机中造球机转速,以及将所述造球机转速发送至所述中央处理器;
    所述倾角控制器被配置为执行以下步骤:
    获取当前周期内造球机中造球盘倾角,以及将所述造球盘倾角发送至所述中央处理器;
    所述水控制器被配置为执行以下步骤:
    获取当前周期内所述供水装置向造球机提供的给水量,以及将所述给水量发送至所述中央处理器;
    所述物料控制器被配置为执行以下步骤:
    获取当前周期内供料皮带秤向造球机提供的混合料中各组分种类和配比、混合料给料量、混合料中粘结剂的占比和混合料原始水分率,以及将所述混合料中各组分种类和配比、所述混合料给料量、所述混合料中粘结剂的占比和所述混合料原始水分率发送至所述中央处理器。
  10. 一种用于造球机的控制方法,其特征在于,所述方法包括:
    根据造球机转速、造球机的造球盘倾角、给水量、混合料各组分种类和配比、混合料给料量、混合料中粘结剂的占比和混合料原始水分率,对生球各粒径范围的占比进行预测,得到多个预测周期的生球合格率预测值;
    根据每个预测周期的生球合格率预测值和预设的每个预测周期的生球合格率目标值,计算得到每个预测周期的生球合格率偏差值;
    将多个预测周期的生球合格率偏差值输入滚动优化模型,得到待调整的造球机转速、待调整的造球机的造球盘倾角、待调整的给料量和待调整的给水量,驱动转速控制器将造球机中造球机转速调整为所述待调整的造球机转速,以及驱动倾角控制器将造球机中造球盘倾角调整为所述待调整的造球机的造球盘倾角,以及驱动物料控制器将向造球机提供的给料量调整为所述待调整给料量,以及驱动水控制器将向造球机提供的给水量调整为所述待调整的给水量;
    其中,所述多个预测周期包括当前周期和在当前周期之后的周期;所述滚动优化模型用于在所述混合料各组分种类和配比、所述混合料中粘结剂的占比和所述混合料原始水分率均不变的条件下,计算出多个预测周期的生球合格率偏差值的方差最小时,对应的造球机转速、造球机的造球盘倾角、给料量和给水量。
PCT/CN2021/112553 2020-08-20 2021-08-13 一种用于造球机的控制系统及控制方法 WO2022037499A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
BR112022023793A BR112022023793A2 (pt) 2020-08-20 2021-08-13 Sistema de controle e método de controle para peletizador

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010844830.8A CN113296561B (zh) 2020-08-20 2020-08-20 一种用于造球机的控制系统及控制方法
CN202010844830.8 2020-08-20

Publications (1)

Publication Number Publication Date
WO2022037499A1 true WO2022037499A1 (zh) 2022-02-24

Family

ID=77318320

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/112553 WO2022037499A1 (zh) 2020-08-20 2021-08-13 一种用于造球机的控制系统及控制方法

Country Status (3)

Country Link
CN (1) CN113296561B (zh)
BR (1) BR112022023793A2 (zh)
WO (1) WO2022037499A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116000290A (zh) * 2023-03-27 2023-04-25 青岛贝诺磁电科技有限公司 冶金供料过程中自动加料控制方法和系统
CN117244804A (zh) * 2023-11-13 2023-12-19 济南鑫鑫体育用品有限公司 一种球类质量检测仪

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114442710B (zh) * 2022-01-24 2023-02-28 中冶长天国际工程有限责任公司 一种混料与造球工艺的给水控制系统及方法、存储介质
CN114967610A (zh) * 2022-04-27 2022-08-30 合肥视展光电科技有限公司 一种球团粒度识别控制方法及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004307956A (ja) * 2003-04-08 2004-11-04 Kobe Steel Ltd 焼結機における焼結時間予測方法及び操業方法
CN105087910A (zh) * 2015-08-12 2015-11-25 中冶长天国际工程有限责任公司 一种球团造球控制方法及装置
CN106647663A (zh) * 2016-12-23 2017-05-10 天津市三特电子有限公司 圆盘造球智能化生产控制系统及其控制方法
CN107506862A (zh) * 2017-08-28 2017-12-22 东北大学 一种基于物联网的磨矿粒度在线实时预测系统及方法
CN109988909A (zh) * 2019-04-28 2019-07-09 中冶长天国际工程有限责任公司 一种用于造球机的物料调节方法及装置
CN210314420U (zh) * 2019-08-20 2020-04-14 湘潭瑞通球团有限公司 一种氧化球团用造球系统
CN111041194A (zh) * 2019-10-29 2020-04-21 江苏省沙钢钢铁研究院有限公司 一种提高矿粉球团矿生球质量的制备装置及其使用方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4131668A (en) * 1974-03-15 1978-12-26 Nippon Steel Corporation Iron ore pellet process control
JPH11130484A (ja) * 1997-10-22 1999-05-18 Mitsubishi Heavy Ind Ltd セメント原料調合制御方法及び装置
DE102005026363A1 (de) * 2005-06-07 2006-12-14 Siemens Ag Verfahren zur Steuerung der Leistung von der Röstmaschine zum Brennen der Eisenerzpellets
CN101078049A (zh) * 2006-05-22 2007-11-28 中南大学 实验型铁精矿连续造球装置及方法
CN201400707Y (zh) * 2009-05-08 2010-02-10 朱强龙 直径为7500mm的圆盘造球机
CN102053595A (zh) * 2009-10-30 2011-05-11 中国石油化工股份有限公司 一种乙烯装置中控制裂解炉裂解深度的方法
CN109726844A (zh) * 2017-10-31 2019-05-07 中国石油化工股份有限公司 加氢裂化装置的产品收率自动调控方法、系统和存储设备
CN109988906B (zh) * 2019-04-28 2021-03-30 湖南长天自控工程有限公司 一种用于造球机的加水量调节方法及装置
CN109988907B (zh) * 2019-04-28 2021-04-20 中冶长天国际工程有限责任公司 一种用于造球机的加水量调节方法及装置
CN110055408B (zh) * 2019-04-28 2021-06-01 湖南长天自控工程有限公司 一种用于造球机的物料调节方法及装置
CN110055407B (zh) * 2019-04-28 2021-04-20 中冶长天国际工程有限责任公司 一种用于造球机的转速调节方法及装置
CN111179236A (zh) * 2019-12-23 2020-05-19 湖南长天自控工程有限公司 一种用于造球机的生球粒度分析方法及装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004307956A (ja) * 2003-04-08 2004-11-04 Kobe Steel Ltd 焼結機における焼結時間予測方法及び操業方法
CN105087910A (zh) * 2015-08-12 2015-11-25 中冶长天国际工程有限责任公司 一种球团造球控制方法及装置
CN106647663A (zh) * 2016-12-23 2017-05-10 天津市三特电子有限公司 圆盘造球智能化生产控制系统及其控制方法
CN107506862A (zh) * 2017-08-28 2017-12-22 东北大学 一种基于物联网的磨矿粒度在线实时预测系统及方法
CN109988909A (zh) * 2019-04-28 2019-07-09 中冶长天国际工程有限责任公司 一种用于造球机的物料调节方法及装置
CN210314420U (zh) * 2019-08-20 2020-04-14 湘潭瑞通球团有限公司 一种氧化球团用造球系统
CN111041194A (zh) * 2019-10-29 2020-04-21 江苏省沙钢钢铁研究院有限公司 一种提高矿粉球团矿生球质量的制备装置及其使用方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116000290A (zh) * 2023-03-27 2023-04-25 青岛贝诺磁电科技有限公司 冶金供料过程中自动加料控制方法和系统
CN116000290B (zh) * 2023-03-27 2023-06-09 青岛贝诺磁电科技有限公司 冶金供料过程中自动加料控制方法和系统
CN117244804A (zh) * 2023-11-13 2023-12-19 济南鑫鑫体育用品有限公司 一种球类质量检测仪
CN117244804B (zh) * 2023-11-13 2024-03-22 济南鑫鑫体育用品有限公司 一种球类质量检测仪

Also Published As

Publication number Publication date
BR112022023793A2 (pt) 2023-03-28
CN113296561B (zh) 2022-06-14
CN113296561A (zh) 2021-08-24

Similar Documents

Publication Publication Date Title
WO2022037499A1 (zh) 一种用于造球机的控制系统及控制方法
CN113295000B (zh) 一种基于料层厚度预测的布料控制系统及方法
CN115993807B (zh) 一种碳化硅的生产监测优化控制方法及系统
CN109190226B (zh) 一种磨矿系统溢流粒度指标软测量方法
CN110322014A (zh) 一种基于bp神经网络的水泥成品比表面积预测方法
US6796432B2 (en) Method for reblending sand
CN103344530A (zh) 一种球磨机水泥生料粉磨粒度软测量方法
DE102006019417A1 (de) Verfahren zum Betrieb eines Mühlensystems
CN109342279B (zh) 基于粉磨机理和神经网络的混合软测量方法
CN110706757B (zh) 预测选矿回水中残留絮凝剂浓度的方法
CN113289541B (zh) 一种基于混匀度预测的混合机控制系统及方法
CN110202697B (zh) 混凝土搅拌装置及其控制方法
CN113299352B (zh) 一种烧结台车的料层厚度动态预测系统及方法
CN110222825B (zh) 一种水泥成品比表面积预测方法及系统
CN113299353B (zh) 一种混合机的混匀度预测方法及系统
CN109507971A (zh) 一种机制砂质量智能监控系统及监控方法
US6311847B1 (en) Method and means for sand reblending
RU2813252C1 (ru) Система управления и способ управления окомкователем
CN113289542B (zh) 一种基于混合能效比最优的混合机控制系统及方法
CN114563300B (zh) 一种圆筒混合机制粒效果在线检测方法
CN109142167B (zh) 一种磨矿粒度的在线鲁棒正则软测量模型的建立方法
CN113813814B (zh) 一种强力混合机的犁头角度调节方法及系统
CN113935243A (zh) 一种烧结混合料粒度实时优化控制方法及系统
RU2812444C1 (ru) Система и способ управления распределением материала на основе прогнозирования толщины слоя материала
CN112999959B (zh) 一种立式混合机填充率自动控制方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21857594

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022023793

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112022023793

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20221122

122 Ep: pct application non-entry in european phase

Ref document number: 21857594

Country of ref document: EP

Kind code of ref document: A1