WO2022037418A1 - 一种光源装置及投影系统 - Google Patents

一种光源装置及投影系统 Download PDF

Info

Publication number
WO2022037418A1
WO2022037418A1 PCT/CN2021/110775 CN2021110775W WO2022037418A1 WO 2022037418 A1 WO2022037418 A1 WO 2022037418A1 CN 2021110775 W CN2021110775 W CN 2021110775W WO 2022037418 A1 WO2022037418 A1 WO 2022037418A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
light
optical fiber
lasers
projection
Prior art date
Application number
PCT/CN2021/110775
Other languages
English (en)
French (fr)
Inventor
吴超
杨洋
余新
胡飞
李屹
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Publication of WO2022037418A1 publication Critical patent/WO2022037418A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/208Homogenising, shaping of the illumination light
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3138Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using arrays of modulated light sources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3152Modulator illumination systems for shaping the light beam
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3164Modulator illumination systems using multiple light sources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3167Modulator illumination systems for polarizing the light beam

Definitions

  • the present application belongs to the technical field of projection display, and in particular, relates to a light source device and a projection system.
  • the projection display technology of the single-chip spatial light modulator can achieve a contrast ratio of several hundred to one to one or two thousand to one, which is far lower than the brightness resolution of the human eye. Therefore, the brightness of the projected display screen in bright places is not enough. The brightness of bright and dark places cannot be reduced, so that people perceive the picture level to be poor, and a lot of details are lost.
  • the purpose of the high dynamic range (HDR) projection system is to increase the brightness range of the display, so that the bright field and dark field parts of the picture can display rich grayscale information, thereby greatly improving the effect of the picture and the viewing experience of the audience.
  • the main technical problem to be solved by the present application is to provide a light source device to improve the development efficiency of the light source.
  • a technical solution adopted in the present application is to provide a light source device, which includes at least one light source module, an optical fiber socket structure and a light field shaping module, and the light source module includes at least one projection light source and a corresponding optical fiber.
  • the optical fiber is coupled with the projection light source through the coupling lens, and the light emitted by the projection light source enters the optical fiber through the coupling lens, and exits from the light exit end of the optical fiber;
  • the optical fiber socket structure is formed with an array of optical fiber sockets, according to predetermined requirements,
  • the light output end of at least one light source module can be adapted and assembled with the optical fiber socket, so as to form an array light with a specific light distribution on the light exit surface of the optical fiber socket structure;
  • the light field shaping module is correspondingly arranged with the optical fiber socket structure,
  • the array light emitted from the light-emitting surface of the optical fiber socket structural member is shaped to form projection light.
  • the present application also includes a second technical solution, a projection system, wherein the projection system includes the above-mentioned light source device.
  • the light source device of the present application adopts a light source module as the light source of the projection equipment, each light source module is responsible for the illumination of the corresponding area, and the optical fiber of the light source module and the optical fiber socket structural component
  • the optical fiber sockets can be adapted and assembled, and the optical fiber socket structural parts of the embodiments of the present application can be set according to predetermined requirements.
  • the optical fiber socket structural parts can be set to multiple, and the multiple optical fiber sockets can be arranged in an array;
  • the optical fiber exit end in the light source module is adapted and assembled with the optical fiber socket to control the light exit surface of the optical fiber socket structure to form an array light with a specific light distribution.
  • the interface is adapted and assembled to form array lights with different light distributions, which can meet the needs of light distributions of different configurations.
  • the optical fiber of the light source module is adapted to the optical fiber insertion interface, the installation or removal of the light source module is convenient and easy to control, and the number of the light source module can be flexibly increased or decreased.
  • the number of light source modules can be increased and the number of partitions can be expanded, which can effectively improve the effect of high dynamic range projection and achieve higher contrast and color reproduction.
  • the number of additional partitions may need to be expanded due to different resolutions to achieve the same high dynamic range projection effect.
  • FIG. 1 is a schematic structural diagram of an embodiment of a light source device of the present application
  • FIG. 2 is a schematic structural diagram of an embodiment of a light source module of the present application.
  • FIG. 3 is a schematic structural diagram of another embodiment of a light source module of the present application.
  • FIG. 4 is a structural block diagram of an embodiment of a heat dissipation system of the present application.
  • 100 main controller; 200, light source module; 210, sub-controller; 220, first drive circuit; 230, projection light source; 231, red laser; 232, green laser; 233, blue laser; 300, Optical fiber socket structure; 400, control bus; 410, expandable control interface; 500, spatial light modulator; 600, light field shaping module; 700, light; 250, total reflection optical element; 260, filter; 270 , polarizer.
  • the terms “connected”, “fixed” and the like should be understood in a broad sense, for example, “fixed” may be a fixed connection, a detachable connection, or an integrated; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be an internal communication between two elements or an interaction relationship between the two elements, unless otherwise explicitly defined.
  • “fixed” may be a fixed connection, a detachable connection, or an integrated; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be an internal communication between two elements or an interaction relationship between the two elements, unless otherwise explicitly defined.
  • the present application provides a light source device.
  • the light source device includes at least one light source module 200 , an optical fiber socket structure 300 and a light field shaping module 600 , wherein the light source module 200 includes at least one projection light source 230 and a corresponding optical fiber 700 , the optical fiber 700 is coupled with the projection light source 230 through the coupling lens, and the light emitted by the projection light source 230 is incident on the optical fiber 700 through the coupling lens, and exits from the light exit end of the optical fiber 700; Interface, according to predetermined requirements, the light output end of at least one light source module 200 can be adapted and assembled with the optical fiber socket, so as to form an array light with a specific light distribution on the light exit surface of the optical fiber socket structure 300; the light field shaping module The 600 is arranged corresponding to the optical fiber socket structural member 300 to shape the array light emitted from the light exit surface of the optical fiber socket structural member 300 to form projection light.
  • the light source module 200 is used as the light source of the projection equipment. Each light source module 200 is responsible for the illumination of the corresponding area.
  • the optical fiber socket structure 300 of the embodiment of the present application can be set according to predetermined requirements. For example, the optical fiber socket structure 300 can be set to multiple, and the multiple optical fiber sockets can be arranged in an array; The exit end of the optical fiber 700 in 200 is adapted and assembled with the optical fiber socket to control the light exit surface of the optical fiber socket structure 300 to form an array light with a specific light distribution.
  • the exit end of the optical fiber 700 can be controlled to select the optical fiber at different positions
  • the plug-in interface can be adapted and assembled to form an array of light with different light distributions, which can meet the requirements of light distributions of different configurations.
  • the optical fiber 700 of the light source module 200 is adapted to the optical fiber insertion interface, the installation or removal of the light source module 200 is convenient and easy to control, and the number of the light source module 200 can be flexibly increased or decreased.
  • the number of light source modules 200 can be increased and the number of partitions can be expanded, which can effectively improve the effect of high dynamic range projection and achieve higher contrast and color reproduction.
  • the number of additional partitions may need to be expanded due to different resolutions to achieve the same high dynamic range projection effect.
  • each light source module 200 is responsible for the illumination of the corresponding area.
  • the luminous intensity of the light source module 200 is dynamically controlled according to the peak brightness of each area of the screen to achieve high contrast display.
  • the light exit surface of the optical fiber socket structural member 300 is located at the focal plane of the light field shaping module 600 .
  • the light field shaping module 600 includes a collecting lens; the light exit surface of the optical fiber socket structural member 300 is located at the focal plane of the light field shaping module 600, which can maximize the optical fiber coupling efficiency.
  • the light field shaping module 600 sequentially includes a double fly-eye lens, a collecting lens, a collimating lens and a total internal reflection lens along the light transmission direction.
  • the light source device further includes a main controller 100, a control bus 400 and a spatial light modulator 500.
  • the main controller 100 is in electrical signal communication with at least one light source module 200 through the control bus 400, respectively.
  • the input video signal generates the spatial light modulator 500 control signal and the light source module 200 control signal corresponding to the light source module 200 one-to-one.
  • the main controller 100 distributes the light source module 200 control signal to the corresponding light source module through the control bus 400.
  • the group 200 is used to control the corresponding light source module 200 to generate a desired illumination light field brightness
  • the control signal of the spatial light modulator 500 is used to control the spatial light modulator 500 to convert the projection light into image light.
  • the control bus 400 is provided with an extensible control interface 410, each light source module 200 is connected to the control bus 400 through the extensible control interface 410, and is connected to the main controller 100 through the control bus 400.
  • the light source in the embodiment of the present application The module 200 is connected to the main controller 100 through the extensible control interface 410, so that with the change of the display area, the number of the light source modules 200 can be increased or decreased, so that each light source module 200 is responsible for the lighting of a certain area.
  • the installation or removal of the light source module 200 is convenient and easy to control, and the quantity of the light source module 200 can be flexibly increased or decreased according to the size of the spatial light modulator 500 .
  • the main controller 100 can send a spatial light modulator control signal and a light source module control signal, and the sent spatial light modulator control signal can control the spatial light modulator 500 and can be used to control the optical spatial light modulator 500 is turned over, so that the light emitted from the optical fiber insertion port reaches the spatial light modulator 500 and is discharged through the spatial light modulator 500 .
  • the main controller 100 analyzes the video frame content of the playback data, and sends the current value of the projection light source 230 of each partition light source module 200 to the projection light source 230 of the light source module 200, so as to realize the control of the light source.
  • the illumination brightness of the projection light source 230 of the module 200 is regulated, so that the light source module 200 can generate the expected illumination light field brightness.
  • the light source module 200 further includes a first driving circuit 220 and a sub-controller 210, and the sub-controller 210 is connected between the control bus 400 and the first driving circuit 220, The sub-controller 210 drives the projection light source 230 by controlling the first driving circuit 220 .
  • the sub-controller 210 is connected between the scalable control interface 410 and the first driving circuit 220 , and the sub-controller 210 drives the projection light source 230 by controlling the first driving circuit 220 .
  • the sub-controller 210 can be used to exchange information with the main controller 100, so that the first driving circuit 220 drives the projection light source 230 according to the control signal of the light source module 200 sent by the main controller 100, so as to generate the expected illumination light field brightness .
  • the light source module 200 has good independence. By setting the sub-controller 210, the control signal of the light source module 200 can be controlled internally.
  • the coupling degree between the light source module 200 and the main controller 100 is relatively high. When the light source module 200 needs to be added, only one line branch needs to be added on the expandable control interface 410 , so that the addition or reduction of the light source module 200 is more flexible and convenient.
  • the projection light source 230 includes three primary color lasers arranged in an array, and the light emitted by the three primary color lasers is combined by a light combining unit and then incident on the optical fiber 700 through a coupling lens. The light is combined by the light combining unit, and the three primary color lasers are respectively combined to the receiving end face of the optical fiber 700 .
  • the three primary color lasers include a red laser 231 , a green laser 232 and a blue laser 233 .
  • the light combining unit includes at least one of a wavelength light combining element, a polarization light combining element, and a reflective element, so as to perform spectral combining and/or polarization combining on the light emitted by the three-primary laser. Light.
  • the numbers of red lasers 231 , green lasers 232 and blue lasers 233 are equal.
  • the wavelength combining element includes a filter 260 , and the reflective element is total reflection.
  • the optical element 250 the light emitted by the three-primary-color laser passes through the total reflection optical element 250 and the filter 260 to generate spectral combined light.
  • each light source module 200 has M*N red lasers 231 , green lasers 232 , and blue lasers 233 .
  • the red laser 231 corresponds to the total reflection optical element 250
  • the green laser 232 corresponds to the total reflection optical element 250 .
  • Corresponding filters 260 are red-transmitting green, and blue-transmitting yellow-transmitting filters 260 corresponding to blue lasers 233 .
  • the relative positions of the red laser 231 , the green laser 232 , and the blue laser 233 can be changed, and an appropriate filter 260 can be selected accordingly.
  • the light source module 200 when any one or two types of lasers are twice as many as the other type of lasers, the light source module 200 includes a polarization combining element, a wavelength combining element and a reflective element , the polarizing light combining element includes a polarizer 270, and a large number of lasers are polarized and coupled through the polarizer 270 first, and then perform spectral combining with a small number of lasers.
  • the light combining unit includes a total reflection optical element 250, an optical filter 260 and a polarizer 270; wherein, when the number of lasers of a certain color is relatively large, the lasers of this color can pass through p-inverse s-polarization After the positive film is polarized and combined, it is combined with other lasers for spectral combination.
  • the number of red lasers 231 is twice that of green lasers 232 or blue lasers 233 , and the number of blue lasers 233 is equal to the number of green lasers 232 .
  • the number of red lasers 231 is 2*M*N, and the number of green lasers 232 or blue lasers 233 is M*N.
  • the red lasers 231 are divided into two groups of M*N, and one of the red lasers 231 corresponds to total reflection.
  • Optical element 250 another red laser 231 corresponds to the p-inverse s polarizer 270, the filter 260 corresponding to the green laser 232 is red-transmitting and anti-green, and the filter 260 corresponding to the blue laser 233 is anti-blue and yellow-transmitting, so that After the two red lasers 231 are polarized and combined, they are combined with green light and blue light by spectral combining and then coupled into M*N optical fibers 700 .
  • the high-power red laser 231 generally encapsulates two light-emitting chips in the optical fiber 700 with a large light spot, and requires a large core diameter of the optical fiber 700 to be coupled into it.
  • the shape of the light spot at the entrance of the optical fiber 700 is crisscross, and a thin optical fiber 700 can be used.
  • the red laser 231 is welded on the circuit board to form a single-chip red laser 231 group; the green laser 232 and the blue laser 233 are a single-chip green laser 232 group and a blue laser 233 group.
  • the red lasers 231 can be arranged in an array, which can better combine light.
  • a single-chip red laser 231 group protects 16 single-chip red lasers 231, and the red lasers 231 are arranged in a 2*2*4 arrangement, that is, two groups of 2*4 arrangements, and each single-chip red laser 231 group It contains two rows, each row contains four red lasers 231; the single-chip green laser 232 group includes 8 green lasers 232, including 2*4 green lasers 232; the single-chip blue laser 233 group includes 8 blue lasers 233, Contains 2*4 blue lasers 233.
  • the position and angle of the laser and the filter 260 conform to the preset optimal position and angle, or whether the position and angle of the laser and the wavelength combining element, the polarization combining element, and the reflective element Whether the angle conforms to the preset optimal position and angle will affect the fiber coupling efficiency. Due to some errors affecting the coupling efficiency during fiber coupling, for example, the position error of the optical fiber 700 front converging lens and the optical fiber 700 entrance, the tilt angle of the laser, the position and angle errors of the wavelength combining element, the polarization combining element, and the reflective element.
  • the light source device of the embodiment of the present application further includes an adjustment mechanism (not shown in the figure), and the adjustment mechanism can be used to adjust the inclination angle of any one or more of the wavelength combining element, the polarization combining element and the reflective element. and height, so that the light spot for spectral combination falls on the receiving end of the optical fiber 700, thereby improving the coupling efficiency.
  • the wavelength combining element, the polarization combining element and/or the reflective element can be adjusted up and down and/or deflection through the adjusting mechanism, and the optimal position is when the light intensity at the exit of the optical fiber 700 is the strongest.
  • the light source module 200 adopts 233 groups of blue lasers, 232 groups of green lasers, and one single-chip red laser 231 .
  • the single-chip red laser 231 due to the small laser light-emitting area, the imaging spot at the optical fiber coupling is small, so that the optical fiber 700 with a smaller core diameter can be used, and the cost is lower.
  • two red lasers 231 can be connected in series with the same driving voltage as the green laser 232 and the blue laser 233, so that the time-division multiplexing power driving module can be easily designed.
  • the light source module 200 further includes a heat dissipation system 240, and the sub-controller 210 can also control the heat dissipation system 240 independently, so as to dissipate the heat of the three-primary color laser, so that the three-primary color laser can be dissipated.
  • the lasers all work under stable temperature, which improves the stability of the three-primary-color laser.
  • the heat dissipation system 240 of the embodiment of the present application mainly includes the TEC 241 of the red laser 231 and the fan 242 .
  • the heat dissipation system 240 in this embodiment of the present application further includes a heat dissipation management module 243, a current management module 245, and a thermistor of the NTC 244.
  • the heat dissipation management module 243 collects the operating temperature of the laser through the NTC 244, and then adjusts the speed of the fan 242 and the temperature of the TEC 241 by adjusting the speed of the fan 242. power to control the working temperature of the laser within a certain range.
  • the current management module 245 updates the current value of each frame of image according to the current value of the laser sent by the main controller 100, and drives the light source mode Each laser in group 200 is made to produce the desired illumination field brightness. If it is a single-chip projection system, the three primary color lights need to be emitted in time sequence, and the current management module 245 turns on the three primary color lasers in turn under the control of the three primary color synchronization signals.
  • Embodiments of the present application further include a projection system, the projection system includes the above-mentioned light source device, and the projection system using the above-mentioned light source device can improve the development efficiency of a backlight light source with regional dimming, and can be used in engineering projectors and movie response machines.
  • the luminous intensity of the light source module 200 is dynamically controlled according to the peak brightness of each area of the screen, so as to achieve high contrast display, and it is easy to expand, making it suitable for the same resolution.
  • the number of groups 200 and the number of extended partitions can effectively improve the effect of high dynamic range projection and achieve higher contrast and color reproduction.
  • the number of additional partitions may need to be expanded due to different resolutions to achieve the same high dynamic range projection effect.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Projection Apparatus (AREA)

Abstract

本申请属于投影显示技术领域,尤其是涉及一种光源装置及投影系统,所述光源装置包括至少一个光源模组、光纤插口结构件和光场整形模组,光源模组包括至少一个投影光源及对应的光纤,光纤通过耦合透镜与投影光源相耦合,投影光源发出的光经耦合透镜入射至光纤,并自光纤的光出射端出射;光纤插口结构件上形成有阵列分布的光纤插接口,依据预定需求,至少一个光源模组的光出射端可与光纤插接口进行适配组装,以在光纤插口结构件的出光面形成具有特定光分布的阵列光;光场整形模组与光纤插口结构件对应设置,以对自光纤插口结构件的出光面出射的阵列光进行整形,以形成投影光。本申请的光源装置提高光源的开发效率。

Description

一种光源装置及投影系统 技术领域
本申请属于投影显示技术领域,尤其是涉及一种光源装置及投影系统。
背景技术
目前单片空间光调制器的投影显示技术能达到的对比度大致为几百比一到一两千比一,远远低于人眼的亮度分辨力,因此投影显示的画面在明亮处的亮度不够亮,暗处的亮度降不下来,使人们感知到的画面层次较差,大量细节丢失。高动态范围(HDR)的投影系统的目的就是提升显示的亮度范围,使得画面中的亮场和暗场部分都能显示丰富的灰阶信息,从而大大提高画面的效果和观众的观影体验。
发明内容
本申请主要解决的技术问题是提供一种光源装置,实现提高光源的开发效率。
为解决上述技术问题,本申请采用的一个技术方案是:提供一种光源装置,包括至少一个光源模组、光纤插口结构件和光场整形模组,光源模组包括至少一个投影光源及对应的光纤,光纤通过耦合透镜与投影光源相耦合,投影光源发出的光经耦合透镜入射至光纤,并自光纤的光出射端出射;光纤插口结构件上形成有阵列分布的光纤插接口,依据预定需求,至少一个光源模组的光出射端可与光纤插接口进行适配组装,以在光纤插口结构件的出光面形成具有特定光分布的阵列光;光场整形模组与光纤插口结构件对应设置,以对自光纤插口结构件的出光面出射的阵列光进行整形,以形成投影光。
本申请还包括第二个技术方案,一种投影系统,所述投影系统包括上述的光源装置。
本申请的有益效果是:区别于现有技术的情况,本申请的光源装置采用光源模组作为投影设备光源,每个光源模组负责对应区域的照明,光源模组 的光纤与光纤插口结构件的光纤插接口适配组装,本申请实施例的光纤插口结构件可以根据预定需求进行设定,例如,光纤插口结构件可以设定为多个,多个光纤插接口可以阵列排布;通过将光源模组中的光纤出射端与光纤插接口进行适配组装,以控制光纤插口结构件的出光面形成具有特定光分布的阵列光,例如,可以控制光纤出射端选择与不同位置处的光纤插接口进行适配组装,可以形成不同的光分布的阵列光,可以满足不同构型的光分布的需求。本申请实施例中,光源模组的光纤与光纤插接口适配,安装或拆卸光源模组方便,易控制,可以灵活的增减光源模组的数量。一方面,在相同分辨率的情况下,可以增加光源模组的数量,扩展分区的数量,能有效的提高高动态范围投影的效果,实现更高的对比度和色彩还原。另一方面也可以因为分辨率的不同需要额外扩展分区数量,以达到相同的高动态范围投影效果。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本申请光源装置一实施例的结构示意图;
图2为本申请光源模组一实施例的结构示意图;
图3为本申请光源模组另一实施例的结构示意图;
图4为本申请散热系统一实施例的结构框图。
其中,100、主控制器;200、光源模组;210、子控制器;220、第一驱动电路;230、投影光源;231、红色激光器;232、绿色激光器;233、蓝色激光器;300、光纤插口结构件;400、控制总线;410、可扩展控制接口;500、空间光调制器;600、光场整形模组;700、光线;250、全反射光学元件;260、滤光片;270、偏振片。
本申请目的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明,本申请实施例中如涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“连接”、“固定”等应做广义理解,例如,“固定”可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
另外,本申请各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本申请要求的保护范围之内。
本申请提出一种光源装置。
请参照图1,在该实施例中,光源装置包括至少一个光源模组200、光纤插口结构件300和光场整形模组600,其中,光源模组200包括至少一个投影光源230及对应的光纤700,光纤700通过耦合透镜与投影光源230相耦合,投影光源230发出的光经耦合透镜入射至光纤700,并自光纤700的光出射端出射;光纤插口结构件300上形成有阵列分布的光纤插接口,依据预定需求,至少一个光源模组200的光出射端可与光纤插接口进行适配组装,以在光纤插口结构件300的出光面形成具有特定光分布的阵列光;光场整形模组600与光纤插口结构件300对应设置,以对自光纤插口结构 件300的出光面出射的阵列光进行整形,以形成投影光。
以上为本申请实施例的核心内容,采用光源模组200作为投影设备光源,每个光源模组200负责对应区域的照明,光源模组200的光纤700与光纤插口结构件300的光纤插接口适配组装,本申请实施例的光纤插口结构件300可以根据预定需求进行设定,例如,光纤插口结构件300可以设定为多个,多个光纤插接口可以阵列排布;通过将光源模组200中的光纤700出射端与光纤插接口进行适配组装,以控制光纤插口结构件300的出光面形成具有特定光分布的阵列光,例如,可以控制光纤700出射端选择与不同位置处的光纤插接口进行适配组装,可以形成不同的光分布的阵列光,可以满足不同构型的光分布的需求。本申请实施例中,光源模组200的光纤700与光纤插接口适配,安装或拆卸光源模组200方便,易控制,可以灵活的增减光源模组200的数量。一方面,在相同分辨率的情况下,可以增加光源模组200的数量,扩展分区的数量,能有效的提高高动态范围投影的效果,实现更高的对比度和色彩还原。另一方面也可以因为分辨率的不同需要额外扩展分区数量,以达到相同的高动态范围投影效果。
本申请实施例中,每个光源模组200负责对应区域的照明,在投影显示时,根据画面各个区域的峰值亮度来动态控制光源模组200的发光强度,以实现高对比度显示。
本申请实施例中,光纤插口结构件300的出光面位于光场整形模组600的焦平面处。本申请实施例中,光场整形模组600包括收集透镜;光纤插口结构件300的出光面位于光场整形模组600的焦平面处,可以使得光纤偶合效率达到最大。在另一实施例中,光场整形模组600依次包括沿光线传输方向的双复眼透镜、收集透镜、准直透镜和全内反射透镜。
本申请实施例中,光源装置进一步包括主控制器100、控制总线400以及空间光调制器500,主控制器100通过控制总线400分别与至少一个光源模组200电信号连通,主控制器100根据输入的视频信号生成空间光调制器500控制信号以及与光源模组200一一对应的光源模组200控制信号,主控制器100通过控制总线400将光源模组200控制信号分发至对应的光源模组200,以控制对应的光源模组200产生预期的照明光场亮度,空间光调制器500控制信号用于控制空间光调制器500以将投影光转换为 图像光。
本申请实施例中,控制总线400设置可扩展控制接口410,每个光源模组200通过可扩展控制接口410连接至控制总线400,并通过控制总线400连接主控制器100,本申请实施例光源模组200通过可扩展控制接口410连接至主控制器100,使得随着显示面积的变化,可以通过增加或减少光源模组200的数量,以满足每个光源模组200负责某一区域的照明,通过与可扩展控制接口410连接,使得安装或拆卸光源模组200方便,易控制,可以根据空间光调制器500的尺寸大小,灵活的增减光源模组200的数量。
本申请实施例中,主控制器100可以发出空间光调制器控制信号和光源模组控制信号,发出的空间光调制器控制信号可以控制空间光调制器500,可以用于控制光空间光调制器500的翻转,以使得光纤插接口排出的光线经到达空间光调制器500上,并经过空间光调制器500排出。本申请实施例中,主控制器100对播放数据的视频帧内容进行分析,将每个分区光源模组200的投影光源230的电流值发送给光源模组200的投影光源230,以实现对光源模组200的投影光源230的照明亮度进行调控,以使得光源模组200产生预期的照明光场亮度。
具体地,本申请实施例中,如图所示,光源模组200还包括第一驱动电路220和一子控制器210,子控制器210连接于控制总线400与第一驱动电路220之间,子控制器210通过控制第一驱动电路220驱动投影光源230。
本申请实施例中,子控制器210连接于可扩展控制接口410与第一驱动电路220之间,子控制器210通过控制第一驱动电路220驱动投影光源230。子控制器210可以用于与主控制器100进行信息交互,使得第一驱动电路220根据主控制器100发送的光源模组200控制信号,驱动投影光源230,使之产生预期的照明光场亮度。本申请实施例中,光源模组200具有很好的独立性,通过设置子控制器210,可以实现内部对光源模组200控制信号的控制,光源模组200与主控制器100的偶合度较低,使得需要增加光源模组200时,只需要在可扩展控制接口410上增加一个线路分支即可,使得光源模组200的增加或减少更加灵活方便。
本申请实施例中,投影光源230包括阵列排布的三基色激光器,三基色激光器发出的光经过合光单元合光后通过耦合透镜入射至光纤700。通过合光单元合光,将三基色激光器分别发出光合至光纤700的接收端面。具体地,如图2所示,本申请实施例中,三基色激光器包括红色激光器231、绿色激光器232和蓝色激光器233。
具体地,本申请实施例中,合光单元包括波长合光元件、偏振合光元件以及反射元件中的至少一种,以用于对三基色激光器发出的光进行光谱合光和/或偏振合光。
在发明一实施例中,如图2所示,红色激光器231、绿色激光器232和蓝色激光器233的数量相等,本申请实施例中,波长合光元件包括滤光片260,反射元件为全反射光学元件250,三基色激光器发出的光通过全反射光学元件250和滤光片260发生光谱合光。
具体地,如图2所示,每个光源模组200里有红色激光器231、绿色激光器232、蓝色激光器233各M*N个,红色激光器231对应的是全反射光学元件250,绿色激光器232对应的滤光片260为透红反绿,蓝色激光器233对应的滤光片260为反蓝透黄,红绿蓝光通过光谱合光的方式进行合光后偶合进M*N根光纤700。K个光源模组200形成的K*M*N根光纤700,其出射端固定在一个有H*V个光纤插接口的光纤插口结构件300上,一般情况下K*M*N=H*V,从而形成H*V个照明光场的照明光场阵列,作为总阵列光源。当然,红色激光器231、绿色激光器232、蓝色激光器233的相对位置可以改变,相应地选择合适的滤光片260即可。
在另一实施例中,如图3所示,任意一种或两种激光器是另外某一种激光器数量的两倍时,光源模组200包括偏正合光元件、波长合光元件和反射元件,偏正合光元件包括偏振片270,数量较多的激光器先通过偏振片270偏振偶合,再与数量较少的激光器进行光谱合光。本申请实施例中,合光单元包括全反射光学元件250、滤光片260和偏振片270;其中,某中颜色的激光器的数量相对更多时,该颜色的激光器可以通过透p反s偏正片进行偏振合光后,再与其它激光进行光谱合光。
作为优选方案,红色激光器231是绿色激光器232或蓝色激光器233数量的两倍,蓝色激光器233的数量与绿色激光器232的数量相等。红色激光 器231为2*M*N个,绿色激光器232或蓝色激光器233数量各M*N个,其中,红色激光器231分为两组M*N个,其中一路红色激光器231对应的是全反射光学元件250,另一路红色激光器231对应透p反s偏振片270,绿色激光器232对应的滤光片260为透红反绿,蓝色激光器233对应的滤光片260为反蓝透黄,使得两路红色激光器231进行偏振合光后,再与绿光和蓝光通过光谱合光的方式进行合光后偶合进M*N根光纤700。
高功率的红色激光器231一般是里面封装了两个发光芯片成像到光纤700处的光斑大,需要很大芯径的光纤700才能偶合进去。为了减少光纤700的直径,用两个单芯片的激光器用偏振合光后,光纤700入口处的光斑形状呈十字交叉可以用细光纤700,通过偏振合光后可以一定程度消散斑。
作为优选,红色激光器231焊接于电路板上,形成单芯片红色激光器231组;绿色激光器232和蓝色激光器233为单芯片绿色激光器232组和蓝色激光器233组。本申请实施例中,通过将红色激光器231焊接于电路板上,可以使得红色激光器231阵列排布,能够较好的合光。
作为优选方案,单芯片红色激光器231组保护16颗单芯片红色激光器231,红色激光器231是2*2*4的排列方式,即两组2*4的排列方式,每个单芯片红色激光器231组含有两行,每行含有四个红色激光器231;单芯片绿色激光器232组包括8颗绿色激光器232,包含2*4颗绿色激光器232;单芯片蓝色激光器233组包括8颗蓝色激光器233,包含2*4颗蓝色激光器233。
在进行光纤偶合光源模组200光路时,激光器与滤光片260的位置及角度是否符合预设的最佳位置及角度,或激光器与波长合光元件、偏振合光元件、反射元件的位置及角度是否符合预设的最佳位置及角度,将会影响光纤偶合效率。由于光纤偶合时会有一些误差影响偶合效率,例如光纤700前汇聚透镜与光纤700入射口的位置误差,激光器的倾斜角,波长合光元件、偏振合光元件、反射元件的位置和角度误差。为了提高光纤偶合效率,本申请实施例的光源装置还包括调节机构(图未示),调节机构可以用于调节波长合光元件、偏振合光元件、反射元件任意一种或几种的倾斜角度及高度,以使得进行光谱合光的光斑落在光纤700的接收端,进而 提升偶合效率。本申请实施例中波长合光元件、偏振合光元件和/或反射元件均可以通过调节机构进行上下和/或偏转等调节,当光纤700出口光强最强时即为最佳位置。
对于本申请实施例的光源装置应用于单片式投影系统,光源模组200采用颗的蓝色激光器233组、颗的绿色激光器232组和颗单芯片红色激光器231。使用单芯片的红色激光器231,由于激光发光面积小,光纤偶合处的成像光斑较小,从而可以使用芯径更小的光纤700,成本更低。对于子阵列光源的第一驱动电路220,可以将两颗红色激光器231串联,其驱动电压与绿色激光器232、蓝色激光器233等同,从而使时分复用的电源驱动模块易于设计。
作为本申请实施例的一优选方案,如图4所示,光源模组200还包括散热系统240,子控制器210还可以单独控制散热系统240,以对三基色激光器进行散热,以使得三基色激光器均工作在稳定温度下,提高三基色激光器工作的稳定性。
具体地,本申请实施例的散热系统240主要包含红色激光器231的TEC241以及风扇242。本申请实施例散热系统240还包括散热管理模块243、电流管理模块245和NTC 244的热敏电阻,散热管理模块243通过NTC 244收集激光器的工况温度,然后通过调节风扇242速度和TEC 241的功率,将激光器的工况温度控制在一定范围内。
若为本申请的光源装置应用于三片式投影系统,三基色光需要同时出射,则电流管理模块245根据主控制器100发送的激光器的电流值,每帧图像更新电流值,并且驱动光源模组200中的每颗激光器,使之产生预期的照明光场亮度。若为单片式投影系统,三基色光需要时序出射,则电流管理模块245在三基色同步信号的控制下轮流点亮三基色激光器。
本申请实施例还包括一种投影系统,投影系统包括上述的光源装置,采用上述光源装置的投影系统,能够提高区域调光的背光光源的开发效率,可以用于工程投影机和电影反应机中,在投影显示时,根据画面各个区域的峰值亮度来动态控制光源模组200的发光强度,以实现高对比度显示,且易于扩展,使其适用于在相同分辨率的情况下,可以增加光源模组200的数量,扩展分区的数量,能有效的提高高动态范围投影的效果,实现更 高的对比度和色彩还原。另一方面也可以因为分辨率的不同需要额外扩展分区数量,以达到相同的高动态范围投影效果。
以上所述仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是在本申请的构思下,利用本申请说明书及附图内容所作的等效结构变换,或直接间接运用在其他相关的技术领域均包括在本申请的专利保护范围内。

Claims (11)

  1. 一种光源装置,包括:
    至少一个光源模组,所述光源模组包括至少一个投影光源及对应的光纤,所述光纤通过耦合透镜与所述投影光源相耦合,所述投影光源发出的光经所述耦合透镜入射至所述光纤,并自所述光纤的光出射端出射;
    光纤插口结构件,其上形成有阵列分布的光纤插接口,依据预定需求,所述至少一个光源模组的光出射端可与所述光纤插接口进行适配组装,以在所述光纤插口结构件的出光面形成具有特定光分布的阵列光;以及
    光场整形模组,其与所述光纤插口结构件对应设置,以对自所述光纤插口结构件的出光面出射的所述阵列光进行整形,以形成投影光。
  2. 如权利要求1所述的光源装置,其特征在于,所述光纤插口结构件的出光面位于所述光场整形模组的焦平面处。
  3. 如权利要求1所述的光源装置,其特征在于,进一步包括主控制器、控制总线以及空间光调制器,
    所述主控制器通过所述控制总线分别与所述至少一个光源模组电信号连通,所述主控制器根据输入的视频信号生成空间光调制器控制信号以及与所述光源模组一一对应的光源模组控制信号,
    所述主控制器通过所述控制总线将所述光源模组控制信号分发至对应的光源模组,以控制对应的光源模组产生预期的照明光场亮度,
    所述空间光调制器控制信号用于控制所述空间光调制器以将所述投影光转换为图像光。
  4. 如权利要求3所述的光源装置,其特征在于,所述光源模组还包括第一驱动电路和一子控制器,所述子控制器连接于所述控制总线与所述第一驱动电路之间,所述子控制器通过控制所述第一驱动电路驱动所述投影光源。
  5. 如权利要求3所述的光源装置,其特征在于,所述投影光源包括阵列排布的三基色激光器,所述三基色激光器发出的光经过合光单元合光后通过所述耦合透镜入射至所述光纤。
  6. 如权利要求5所述的光源装置,其特征在于,所述合光单元包括波长合光元件、偏振合光元件以及反射元件中的至少一种,以用于对所述三基色 激光器发出的光进行光谱合光和/或偏振合光。
  7. 如权利要求5所述的光源装置,其特征在于,所述三基色激光器包括红色激光器、绿色激光器和蓝色激光器,其中,所述红色激光器是所述绿色激光器或所述蓝色激光器数量的两倍,所述蓝色激光器的数量与所述绿色激光器的数量相等。
  8. 如权利要求7所述的光源装置,其特征在于,所述红色激光器焊接于电路板上,形成单芯片红色激光器组;所述绿色激光器和蓝色激光器为单芯片绿色激光器组和蓝色激光器组。
  9. 如权利要求8所述的光源装置,其特征在于,所述单芯片红色激光器组保护16颗单芯片红色激光器,所述单芯片绿色激光器组包括8颗绿色激光器,所述单芯片蓝色激光器组包括8颗蓝色激光器。
  10. 如权利要求6所述的光源装置,其特征在于,包括调节机构,所述调节机构用于调节所述波长合光元件、偏振合光元件以及反射元件中任意一种或几种的倾斜角度及高度,以使得所述经过合光单元合光后的光斑落在所述光纤的接收端。
  11. 一种投影系统,其特征在于,所述投影系统包括权利要求1-10中任一项所述的光源装置。
PCT/CN2021/110775 2020-08-20 2021-08-05 一种光源装置及投影系统 WO2022037418A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010844098.4A CN114077137A (zh) 2020-08-20 2020-08-20 一种光源装置及投影系统
CN202010844098.4 2020-08-20

Publications (1)

Publication Number Publication Date
WO2022037418A1 true WO2022037418A1 (zh) 2022-02-24

Family

ID=80281966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/110775 WO2022037418A1 (zh) 2020-08-20 2021-08-05 一种光源装置及投影系统

Country Status (2)

Country Link
CN (1) CN114077137A (zh)
WO (1) WO2022037418A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1847898A (zh) * 2005-04-01 2006-10-18 李屹 高效耦合的高亮度固体光源装置及其应用系统
CN101086608A (zh) * 2006-06-05 2007-12-12 中国科学院物理研究所 一种投影显示装置
CN102262843A (zh) * 2011-08-22 2011-11-30 张秋霞 一种点阵显示变换装置
CN208984945U (zh) * 2018-11-13 2019-06-14 深圳创维新世界科技有限公司 三维投影显示装置
CN111338094A (zh) * 2020-04-28 2020-06-26 黎明职业大学 一种基于多元复合消散斑的激光光源

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1847898A (zh) * 2005-04-01 2006-10-18 李屹 高效耦合的高亮度固体光源装置及其应用系统
CN101086608A (zh) * 2006-06-05 2007-12-12 中国科学院物理研究所 一种投影显示装置
CN102262843A (zh) * 2011-08-22 2011-11-30 张秋霞 一种点阵显示变换装置
CN208984945U (zh) * 2018-11-13 2019-06-14 深圳创维新世界科技有限公司 三维投影显示装置
CN111338094A (zh) * 2020-04-28 2020-06-26 黎明职业大学 一种基于多元复合消散斑的激光光源

Also Published As

Publication number Publication date
CN114077137A (zh) 2022-02-22

Similar Documents

Publication Publication Date Title
US10750140B2 (en) Laser display system
KR100709500B1 (ko) 투사 디스플레이를 위한 led 광원을 사용하는 방법 및 시스템
KR100951484B1 (ko) 프로젝터
CN103261964B (zh) 照明光学系统以及包括其的投影显示设备
US20120212707A1 (en) Multi-Segment Imager
JP5518183B2 (ja) 配列された光源を使用するデジタルプロジェクタ
WO2016161934A1 (zh) 一种投影系统及其色域控制方法
CN2881719Y (zh) 在投影系统中用来布置光发射装置的设备
US8905554B2 (en) Illumination unit having a plurality of light sources including a light source emitting two or more different wavelengths
CN103250096B (zh) 照明光学系统以及包括其的投影显示设备
JPH10269802A (ja) 照明装置および映像表示装置
US8976080B2 (en) Multi-segment imager
US20060072316A1 (en) Surface emitting light source and projection display device using the same
JP2012528356A (ja) 光源アレイを備えるビーム整列システム
JP2004533111A (ja) 投影表示装置用のled光源を駆動する方法および装置
US20110222023A1 (en) Illumination device and projection display device
JP2003516558A (ja) 発光ダイオード光源を具えた表示システム
CN201654428U (zh) 一种大屏幕投影系统
CN107357124B (zh) 多基色双dmd激光投影显示装置
US20060098451A1 (en) Illuminator for video display apparatus
JP2020516930A (ja) 表示システム
WO2022037418A1 (zh) 一种光源装置及投影系统
CN108345160A (zh) 一种投影显示系统
JP2006337595A (ja) 照明装置及び投写型映像表示装置
JP4947626B2 (ja) 画像投影装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21857513

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21857513

Country of ref document: EP

Kind code of ref document: A1