WO2022036947A1 - 一种真空干燥方法和真空干燥装置 - Google Patents

一种真空干燥方法和真空干燥装置 Download PDF

Info

Publication number
WO2022036947A1
WO2022036947A1 PCT/CN2020/135362 CN2020135362W WO2022036947A1 WO 2022036947 A1 WO2022036947 A1 WO 2022036947A1 CN 2020135362 W CN2020135362 W CN 2020135362W WO 2022036947 A1 WO2022036947 A1 WO 2022036947A1
Authority
WO
WIPO (PCT)
Prior art keywords
drying
drying chamber
vacuum
vacuum drying
chamber
Prior art date
Application number
PCT/CN2020/135362
Other languages
English (en)
French (fr)
Inventor
蒋新
沈宗豪
施利君
宋金林
Original Assignee
苏州晶洲装备科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州晶洲装备科技有限公司 filed Critical 苏州晶洲装备科技有限公司
Publication of WO2022036947A1 publication Critical patent/WO2022036947A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B5/00Drying solid materials or objects by processes not involving the application of heat
    • F26B5/04Drying solid materials or objects by processes not involving the application of heat by evaporation or sublimation of moisture under reduced pressure, e.g. in a vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B1/00Preliminary treatment of solid materials or objects to facilitate drying, e.g. mixing or backmixing the materials to be dried with predominantly dry solids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • F26B21/14Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects using gases or vapours other than air or steam, e.g. inert gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/28Drying solid materials or objects by processes involving the application of heat by radiation, e.g. from the sun
    • F26B3/30Drying solid materials or objects by processes involving the application of heat by radiation, e.g. from the sun from infrared-emitting elements

Definitions

  • the invention relates to the technical field of panel substrate processing, further relates to the technical field of processing masks, glass substrates, silicon wafers, wafers, etc., in particular to a vacuum drying device and method for cleaning panel substrates.
  • DIW deionized water
  • the object to be treated is immersed in a container containing a drying liquid (isopropyl alcohol IPA).
  • a drying liquid isopropyl alcohol IPA
  • the DIW on the surface of the product is peeled off by the surface tension difference between the drying liquid (IPA) and DIW, and then the solvent on the surface of the product is evaporated in the atmosphere by air knife blowing or the like, so as to achieve drying purpose.
  • IPA drying liquid
  • using the existing conventional drying method has the problems of a large amount of drying liquid (IPA), the need for explosion-proof design of the workshop, and high operating costs.
  • non-flammable solvents are also used instead of drying liquids, such as hydrofluoroether (HFE).
  • HFE hydrofluoroether
  • the purpose of the present application is to provide a vacuum drying device and method for cleaning panel substrates, which eliminates the use of drying solvents, reduces operating costs at the end of use, has no risk of deflagration, and has higher drying efficiency and better applicability. powerful.
  • the application provides a vacuum drying method, which includes:
  • the processed product is slowly separated from the pure water and transferred to a drying room;
  • the dried product is transferred out of the drying chamber.
  • the time for preheating the processed product is 300-540 s.
  • the rate at which the treated product is slowly separated from the pure water is 1-10 mm/s.
  • the continuous feeding of hot nitrogen into the drying chamber includes:
  • Hot nitrogen gas with a temperature of 55-60° C. is introduced into the drying chamber, and the introduction time is 60-120 s.
  • the continuous vacuuming of the drying chamber includes:
  • Vacuum the drying chamber to -100Kpa ⁇ -101.3Kpa and then keep it for 120 ⁇ 240s.
  • the continuous vacuuming of the drying chamber includes:
  • the drying chamber is evacuated, the drying chamber is heated by the heating device, so that the drying chamber is kept at 60°C.
  • the continuous introduction of hot nitrogen gas to the drying chamber to eliminate static charges includes:
  • Hot nitrogen gas with a temperature of 55-60° C. is introduced into the drying chamber, and the introduction time is 150s-180s.
  • the present application also provides a vacuum drying device for drying a processed product using the above-mentioned vacuum drying method, which includes a pre-dehydration system and a vacuum drying system, and a transfer transmission is arranged between the pre-dehydration system and the vacuum drying system
  • the transfer device is used for connecting the pre-dehydration system and the vacuum drying system in series and conveying the processed products.
  • the pre-dehydration system includes a water tank, a circulating pump and a heater, and the water tank is connected to the outside through the circulating pump.
  • the heater is connected to the set heater and used to adjust the water temperature in the water tank.
  • the vacuum drying system includes a static charge elimination device, a drying chamber, a nitrogen source, a heating chamber, a condenser, a temperature controller, an infrared heater and a vacuum pump.
  • the nitrogen is heated by the heating chamber and then passed into the static charge elimination device and then into the air inlet of the vacuum pump.
  • the infrared heater is arranged in the drying chamber, and one end of the condenser is connected to the drying chamber.
  • the air outlet of the chamber is connected, the other end of the condenser is connected to the vacuum pump, and the infrared heater and the condenser are both connected to the temperature controller for adjusting the room temperature of the drying chamber.
  • the pre-dehydration system further includes a heating water tank, the heater is arranged in the heating water tank, the heating water tank is provided with a water outlet and a water inlet, and one end of the heating water tank is connected to the The water outlet, the other end is connected with one end of the circulating pump, and the other end of the circulating pump is connected with the water inlet.
  • the temperature in the water tank is 55-95°C; the temperature of the heating chamber is 55-60°C.
  • the vacuum drying method and the vacuum drying device of the present application use the Maragoni effect to reduce the surface tension of the processed product by pre-dehydrating the processed product at a specific temperature, so as to take away most of the water and moisture on the surface of the processed product.
  • the residual impurities after cleaning are then dried in vacuum, and the process of diffusion of water vapor molecules on the treated product is used to increase the power of water migration to the outside, and the drying speed is increased.
  • FIG. 1 is a schematic diagram of a workflow of a vacuum drying method according to an embodiment of the present application.
  • Figure 2 is a graph showing the relationship between pure water tension and temperature on the product surface.
  • This embodiment describes a vacuum drying method, and specifically describes the vacuum drying method by taking the example of vacuum drying the cleaned panel substrate as a processed product.
  • Step S1 immersing the processed product in pure water at 55-95 °C to wash and preheat the processed product;
  • Step S2 slowly separating the processed product from the pure water, and transferring it to a drying chamber;
  • Step S3 continuously feed hot nitrogen into the drying chamber to preliminarily dry the processed product
  • Step S4 stop feeding hot nitrogen into the drying chamber, and continue to vacuumize the drying chamber to further dry the processed product;
  • Step S5 continue to pass into the hot nitrogen that eliminates static charge to the drying chamber, make the drying chamber break the vacuum, and completely dry the processed product;
  • Step S6 moving the dried product out of the drying chamber.
  • step S1 the product to be treated can be transferred and immersed in pure water at 55-95° C. for 300-540 s, so as to fully clean and preheat the product to be treated.
  • step S2 the selected product is slowly separated from the product to be processed and pure water at a speed of 1-10 mm/s, and the product to be processed after completely separated from the pure water is transferred to a drying chamber.
  • step S3 hot nitrogen gas at 55-60° C. may optionally be introduced into the drying chamber, and the introduction time is controlled to be 60-120 s.
  • step S4 the drying chamber can be heated by a heating device, so that the temperature in the drying chamber is kept at about 60°C, and the drying chamber is evacuated to -100Kpa ⁇ -101.3Kpa and then kept for 120 ⁇ 240s.
  • step S5 the hot nitrogen gas at 55-60°C can be optionally introduced into the drying chamber to break the vacuum after the static charge has been eliminated, and the introduction time of the hot nitrogen gas is kept at 150s-180s.
  • the surface tension of the processed product also decreases as the temperature increases.
  • the Maragoni effect is used to slowly separate the processed product from the pure Water, because the surface tension of hot water is small, it will form a surface tension gradient difference on the surface of the slope-shaped water flow, and the water molecules on the surface of the product will continue to pull down from top to bottom, thereby taking away most of the water on the surface of the product and a small amount of impurities remaining after cleaning. .
  • the moisture on the processed product exists in the form of droplets or liquid films.
  • the drying process in the drying chamber is the process of water vapor molecules diffusing from the processed product to the surrounding space.
  • the main driving force for the migration of moisture to the outside is the water vapor partial pressure difference ⁇ P between the product to be treated and the surrounding space.
  • the drying chamber is heated by blowing hot nitrogen gas first, and at the same time, the fine dust or impurities in the air are expelled, and then the vacuum is applied, which can reduce the pressure around the processed product, so that it can be removed better.
  • the moisture on the surface of the product increases the drying speed.
  • This embodiment describes a vacuum drying device using the above vacuum drying method, which includes a pre-dehydration system and a vacuum drying system.
  • a pre-dehydration system and a vacuum drying system are used to transport the processed products.
  • the pre-dehydration system includes a water tank, a circulating pump and a heater.
  • the water tank is connected to a peripheral heater through the circulating pump to adjust the water temperature in the water tank.
  • the vacuum drying system includes a static charge elimination device, a drying chamber, a nitrogen source, a heating chamber, a condenser, a temperature controller, an infrared heater and a vacuum pump, and the nitrogen source is heated through the heating chamber and then flows into the
  • the static charge elimination device is then sent into the air inlet of the vacuum pump, the infrared heater is arranged in the drying chamber, one end of the condenser is connected to the air outlet of the drying chamber, and the other end of the condenser is connected to the air outlet of the drying chamber.
  • the infrared heater and the condenser are both connected to the temperature controller for adjusting the room temperature of the drying chamber.
  • the pre-dehydration system further includes a heating water tank, the heater is arranged in the heating water tank, the heating water tank is provided with a water outlet and a water inlet, and one end of the heating water tank is connected to the water heater through a pipeline.
  • the water outlet, the other end is connected with one end of the circulating pump, and the other end of the circulating pump is connected with the water inlet.
  • the temperature in the water tank is 55-95°C.
  • the temperature of the heating chamber is 55-60°C.
  • the vacuum drying device and method of the present application reduce the tension on the surface of the panel substrate by pre-dehydrating the panel substrate at a specific temperature, thereby taking away most of the moisture on the surface of the product and a little residual after cleaning. Impurities, and then through vacuum drying, use the process of water vapor molecules to diffuse on the treated product to increase the power of water to migrate to the outside, improve the drying speed, and the lower the boiling point of water in a vacuum environment, the easier it is to remove, further ensuring Drying effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Microbiology (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Drying Of Solid Materials (AREA)

Abstract

一种真空干燥装置和真空干燥方法,方法包括:将被处理产品浸没于55~95℃的纯水中进行清洗并预热;将被处理产品缓慢脱离于所述纯水,并移载至干燥室;持续向干燥室通入热氮气以初步干燥;停止通入热氮气并持续抽真空,以进一步干燥被处理产品;持续通入消除静止电荷的热氮气,使所述干燥室破真空,并完全干燥被处理产品;将产品移载出所述干燥室。该方法取消了使用干燥溶剂,可降低使用终端运营成本,无爆燃风险,并且干燥效率更高,适用性也更强。

Description

一种真空干燥方法和真空干燥装置 技术领域
发明涉及面板基材处理技术领域,进一步涉及掩膜板、玻璃基板、硅片、晶圆等处理技术领域,具体涉及一种用于面板基材清洗后的真空干燥装置和方法。
背景技术
面板领域中,玻璃基板、掩膜板或者半导体晶圆等面板基材通过药液清洗后,都需要通过DIW(去离子水)浸泡或通过喷洒进行漂洗,但漂洗后在产品表面就会存在过量的DIW,形成水渍的问题,因此需对其进行清洗。
根据现有常规的干燥方式,将待处理对象浸没于盛有干燥液体(异丙醇IPA)中容器中。将处理产品从容器中向上取出时,通过干燥液体(IPA)和DIW的表面张力差,剥离产品表面的DIW,再经过空气刀吹扫或类似物使产品表面的溶剂在大气中蒸发,从而达到干燥的目的。但是,使用现有常规的干燥方式,存在干燥液体(IPA)使用量大、需要厂房防爆设计、运营成本高昂的问题。
在某些情况下,也有使用非易燃溶剂代替干燥液体的,例如氢氟醚(HFE),然而缺点也很明显,在于其价格高于醇类干燥溶剂,后期处理成本高昂,此外,HFE无法与水进行混溶,且易产生结晶,不适用于水基清洗的处理。
发明内容
本申请目的是要提供一种用于面板基材清洗后的真空干燥装置和方法,其取消了使用干燥溶剂,可降低使用终端运营成本,无爆燃风险,并且干燥效率更高,适用性也更强。
为达到上述目的,本申请采用的技术方案是:
本申请提供了一种真空干燥方法,其包括:
将被处理产品浸没于55~95℃的纯水中,以清洗并预热被处理产品;
将被处理产品缓慢脱离于所述纯水,并移载至干燥室;
持续向所述干燥室内通入热氮气,以初步干燥被处理产品;
停止向所述干燥室通入热氮气,并持续对所述干燥室抽真空处理,以进一步干燥被处理产品;
持续向所述干燥室通入消除静止电荷的热氮气,使所述干燥室破真空,并完全干燥被处理产品;
将干燥完成的产品移载出所述干燥室。
作为可选,对被处理产品进行预热的时间为300~540s。
作为可选,被处理产品缓慢脱离于所述纯水的脱离速率为1~10mm/s。
作为可选,所述持续向所述干燥室内通入热氮气包括:
向所述干燥室内通入温度为55~60℃的热氮气,通入时间为60~120s。
作为可选,所述持续对所述干燥室抽真空处理包括:
对干燥室进行抽真空至-100Kpa~-101.3Kpa然后保持120~240s。
作为可选,所述持续对所述干燥室抽真空处理包括:
对干燥室进行抽真空的同时,通过加热装置对干燥室内进行加热,使得干燥室内保温在60℃。
作为可选,所述持续向所述干燥室通入消除静止电荷的热氮气包括:
向所述干燥室中通入温度为55~60℃的热氮气,通入时间为150s~180s。
为达到上述目的,本申请还采用以下技术方案:
本申请还提供了一种采用如上所述的真空干燥方法干燥被处理产品的真空 干燥装置,其包括预脱水系统和真空干燥系统,所述预脱水系统和真空干燥系统之间设置有移载传送装置,所述移载传送装置用于串联所述预脱水系统和真空干燥系统并输送被处理产品,所述预脱水系统包括水槽、循环泵浦和加热器,所述水槽通过循环泵浦与外设的加热器相连,用于调节水槽中的水温,所述真空干燥系统包括静止电荷消除装置、干燥室、氮气源、加热腔、冷凝器、控温器、红外加热器和真空泵,所述氮气源经所述加热腔进行加热后通入所述静止电荷消除装置再送入所述真空泵的进气口,所述红外加热器设置在所述干燥室中,所述冷凝器的一端与所述干燥室的出气口相连,所述冷凝器的另一端与所述真空泵相连,所述红外加热器与所述冷凝器均与所述控温器相连,用于对干燥室的室温进行调节。
作为可选,所述预脱水系统还包括加热水箱,所述加热器设置在所述加热水箱中,所述加热水箱上设置有出水口和进水口,所述加热水箱的一端通过管路连接所述出水口,另一端与所述循环泵浦的一端相连,所述循环泵浦的另一端与所述进水口相连。
作为可选,所述水槽中的温度为55~95℃;所述加热腔的温度为55~60℃。
由于上述技术方案运用,本申请与现有技术相比具有下列优点:
本申请的真空干燥方法和真空干燥装置,通过对被处理产品进行特定温度下的预脱水,利用马拉高尼效应降低被处理产品表面的张力,从而带走被处理产品表面大部分的水分及清洗后残余的少许杂质,然后再通过真空干燥,利用水蒸气分子在被处理产品上扩散的过程来提升水分向外部周围迁移的动力,提升干燥速度,且真空环境下水的沸点也越低,更容易去除,进一步保证干燥效果。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本申请的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本申请一个实施例的真空干燥方法的工作流程示意图;
图2是产品表面的纯水张力与温度的对应关系图。
具体实施方式
下面将结合附图对本申请的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。
此外,下面所描述的本申请不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
实施例1:
本实施例描述了一种真空干燥方法,并具体以对清洗后的面板基材作为被处理产品进行真空干燥为例详细说明该真空干燥方法。
如图1所示,包括如下操作步骤:
步骤S1、将被处理产品浸没于55~95℃的纯水中,以清洗并预热被处理产品;
步骤S2、将被处理产品缓慢脱离于所述纯水,并移载至干燥室;
步骤S3、持续向所述干燥室内通入热氮气,以初步干燥被处理产品;
步骤S4、停止向所述干燥室通入热氮气,并持续对所述干燥室抽真空处理,以进一步干燥被处理产品;
步骤S5、持续向所述干燥室通入消除静止电荷的热氮气,使所述干燥室破 真空,并完全干燥被处理产品;
步骤S6、将干燥完成的产品移载出所述干燥室。
具体地,步骤S1可选为将被处理产品移载浸没至55~95℃的纯水中,浸泡300~540s,实现对被处理产品的充分清洗并预热。步骤S2可选为以1~10mm/s的速度缓慢脱离所述被处理产品与纯水,完全脱离纯水后的所述被处理产品移载至干燥室。步骤S3可选为向所述干燥室内通入55~60℃的热氮气,且控制通入时间为60~120s。步骤S4可选为通过加热装置对干燥室内进行加热,使得干燥室内保温在60℃左右,同时对干燥室进行抽真空至-100Kpa~-101.3Kpa然后保持120~240s。步骤S5可选为将55~60℃的热氮气经消除静止电荷后通入所述干燥室使其破真空,并保持热氮气的通入时间为150s~180s。
本实施例通过对面板基板进行特定温度下的预脱水,随着温度提升被处理产品的表面张力也随之下降,如图2所示,利用马拉高尼效应,缓慢脱离被处理产品与纯水,由于热水的表面张力小,所以会在坡状水流表层形成表面张力梯度差,产品表面的水分子不断从上往下拉,从而带走产品表面大部分的水分及清洗后残余的少许杂质。
进入干燥室时的被处理产品上水分以液滴或者液膜的形式存在,在干燥室中的干燥过程就是水蒸气分子从被处理产品上往周围空间扩散的过程。驱使水分向外部迁移的动力主要是被处理产品和周围空间的水蒸气分压差ΔP,水蒸气分压差ΔP越大,干燥速度则越快。而增加ΔP途径有两种,提一是高被处理产品温度,即对被处理产品进行加热;二是降低周围压力。在本实施例中,先对干燥室进行热氮气的吹送实现加热,同时排挤出空气中的微尘或杂质,然后再抽真空,可以降低被处理产品周围的压力,如此就能够更好地去除产品表面的 水分,提升干燥速度。
实施例2:
本实施例描述了一种采用上述真空干燥方法的真空干燥装置,其包括预脱水系统和真空干燥系统,所述预脱水系统和真空干燥系统之间设置有移载传送装置,用于串联所述预脱水系统和真空干燥系统并输送被处理产品,所述预脱水系统包括水槽、循环泵浦和加热器,所述水槽通过循环泵浦与外设的加热器相连,用于调节水槽中的水温,所述真空干燥系统包括静止电荷消除装置、干燥室、氮气源、加热腔、冷凝器、控温器、红外加热器和真空泵,所述氮气源经所述加热腔进行加热后通入所述静止电荷消除装置再送入所述真空泵的进气口,所述红外加热器设置在所述干燥室中,所述冷凝器的一端与所述干燥室的出气口相连,所述冷凝器的另一端与所述真空泵相连,所述红外加热器与所述冷凝器均与所述控温器相连,用于对干燥室的室温进行调节。
可选地,所述预脱水系统还包括加热水箱,所述加热器设置在所述加热水箱中,所述加热水箱上设置有出水口和进水口,所述加热水箱的一端通过管路连接所述出水口,另一端与所述循环泵浦的一端相连,所述循环泵浦的另一端与所述进水口相连。
可选地,所述水槽中的温度为55~95℃。
可选地,所述加热腔的温度为55~60℃。
本申请的真空干燥装置和方法,通过对面板基板进行特定温度下的预脱水,利用马拉高尼效应降低面板基材表面的张力,从而带走产品表面大部分的水分及清洗后残余的少许杂质,然后再通过真空干燥,利用水蒸气分子在被处理产品上扩散的过程来提升水分向外部周围迁移的动力,提升干燥速度,且真空环 境下水的沸点也越低,更容易去除,进一步保证干燥效果。
上述实施例只为说明本申请的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本申请的内容并据以实施,并不能以此限制本申请的保护范围。

Claims (10)

  1. 一种真空干燥方法,其中,所述真空干燥方法包括:
    将被处理产品浸没于55~95℃的纯水中,以清洗并预热被处理产品;
    将被处理产品缓慢脱离于所述纯水,并移载至干燥室;
    持续向所述干燥室内通入热氮气,以初步干燥被处理产品;
    停止向所述干燥室通入热氮气,并持续对所述干燥室抽真空处理,以进一步干燥被处理产品;
    持续向所述干燥室通入消除静止电荷的热氮气,使所述干燥室破真空,并完全干燥被处理产品;
    将干燥完成的产品移载出所述干燥室。
  2. 根据权利要求1所述的真空干燥方法,其中,对被处理产品进行预热的时间为300~540s。
  3. 根据权利要求1所述的真空干燥方法,其中,被处理产品缓慢脱离于所述纯水的脱离速率为1~10mm/s。
  4. 根据权利要求1所述的真空干燥方法,其中,所述持续向所述干燥室内通入热氮气包括:
    向所述干燥室内通入温度为55~60℃的热氮气,通入时间为60~120s。
  5. 根据权利要求1所述的真空干燥方法,其中,所述持续对所述干燥室抽真空处理包括:
    对干燥室进行抽真空至-100Kpa~-101.3Kpa然后保持120~240s。
  6. 根据权利要求5所述的真空干燥方法,其中,所述持续对所述干燥室抽真空处理包括:
    对干燥室进行抽真空的同时,通过加热装置对干燥室内进行加热,使得干 燥室内保温在60℃。
  7. 根据权利要求1所述的真空干燥方法,其中,所述持续向所述干燥室通入消除静止电荷的热氮气包括:
    向所述干燥室中通入温度为55~60℃的热氮气,通入时间为150s~180s。
  8. 一种采用如权利要求1-7任意一项所述的真空干燥方法干燥被处理产品的真空干燥装置,其中,所述真空干燥装置包括预脱水系统和真空干燥系统,所述预脱水系统和真空干燥系统之间设置有移载传送装置,所述移载传送装置用于串联所述预脱水系统和真空干燥系统并输送被处理产品,所述预脱水系统包括水槽、循环泵浦和加热器,所述水槽通过循环泵浦与外设的加热器相连,用于调节水槽中的水温,所述真空干燥系统包括静止电荷消除装置、干燥室、氮气源、加热腔、冷凝器、控温器、红外加热器和真空泵,所述氮气源经所述加热腔进行加热后通入所述静止电荷消除装置再送入所述真空泵的进气口,所述红外加热器设置在所述干燥室中,所述冷凝器的一端与所述干燥室的出气口相连,所述冷凝器的另一端与所述真空泵相连,所述红外加热器与所述冷凝器均与所述控温器相连,用于对干燥室的室温进行调节。
  9. 根据权利要求8所述的真空干燥装置,其中,所述预脱水系统还包括加热水箱,所述加热器设置在所述加热水箱中,所述加热水箱上设置有出水口和进水口,所述加热水箱的一端通过管路连接所述出水口,另一端与所述循环泵浦的一端相连,所述循环泵浦的另一端与所述进水口相连。
  10. 根据权利要求8所述的真空干燥装置,其中,所述水槽中的温度为55~95℃;所述加热腔的温度为55~60℃。
PCT/CN2020/135362 2020-08-19 2020-12-10 一种真空干燥方法和真空干燥装置 WO2022036947A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010836477.9A CN112066649A (zh) 2020-08-19 2020-08-19 一种用于面板基材清洗后的真空干燥装置和方法
CN202010836477.9 2020-08-19

Publications (1)

Publication Number Publication Date
WO2022036947A1 true WO2022036947A1 (zh) 2022-02-24

Family

ID=73662205

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2020/135362 WO2022036947A1 (zh) 2020-08-19 2020-12-10 一种真空干燥方法和真空干燥装置
PCT/CN2020/135181 WO2022036946A1 (zh) 2020-08-19 2020-12-10 用于面板基材清洗后的真空干燥装置和方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/135181 WO2022036946A1 (zh) 2020-08-19 2020-12-10 用于面板基材清洗后的真空干燥装置和方法

Country Status (2)

Country Link
CN (1) CN112066649A (zh)
WO (2) WO2022036947A1 (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002050600A (ja) * 2000-05-15 2002-02-15 Tokyo Electron Ltd 基板処理方法及び基板処理装置
JP2006060010A (ja) * 2004-08-20 2006-03-02 Tamura Seisakusho Co Ltd ウエハ乾燥方法
CN101718487A (zh) * 2009-12-04 2010-06-02 北京有色金属研究总院 一种硅片清洗后的快速干燥方法和装置
CN102148133A (zh) * 2010-12-06 2011-08-10 北京七星华创电子股份有限公司 单晶圆干燥装置及方法
CN102496590A (zh) * 2011-12-22 2012-06-13 浙江金瑞泓科技股份有限公司 带超声或兆声振子的异丙醇干燥机
CN104613732A (zh) * 2013-11-05 2015-05-13 有研新材料股份有限公司 一种外延前抛光片清洗后的快速干燥方法
CN105826221A (zh) * 2016-03-22 2016-08-03 耿彪 一种基板干燥方法和实现该方法的装置
CN206819975U (zh) * 2017-05-25 2017-12-29 北京华林嘉业科技有限公司 单片基板湿法制程中腐蚀清洗干燥装置
CN108831849A (zh) * 2018-06-25 2018-11-16 清华大学 基于热马兰哥尼效应的晶圆干燥装置和干燥方法
CN110828343A (zh) * 2019-10-30 2020-02-21 苏州晶洲装备科技有限公司 一种基板干燥装置和方法
CN111261495A (zh) * 2018-11-30 2020-06-09 有研半导体材料有限公司 一种抛光硅片清洗干燥工艺

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100589107B1 (ko) * 2005-01-19 2006-06-12 삼성전자주식회사 기판 상의 막을 베이크하는 방법 및 이를 수행하기 위한장치
KR100870838B1 (ko) * 2008-03-04 2008-11-28 한국철강 주식회사 투명전극이 코팅된 기판의 수분 제거방법
CN202120879U (zh) * 2011-07-04 2012-01-18 常州天合光能有限公司 一种用于硅片清洗干燥的热水加热装置
CN210663662U (zh) * 2019-10-15 2020-06-02 苏州冠博控制科技有限公司 一种晶圆氮气干燥装置
CN111312627B (zh) * 2020-02-27 2022-09-13 至微半导体(上海)有限公司 一种用于晶圆干燥的提升氮气移除水分子的能力的方法
CN111554593A (zh) * 2020-04-29 2020-08-18 常州比太科技有限公司 一种槽式清洗制绒后硅片烘干的方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002050600A (ja) * 2000-05-15 2002-02-15 Tokyo Electron Ltd 基板処理方法及び基板処理装置
JP2006060010A (ja) * 2004-08-20 2006-03-02 Tamura Seisakusho Co Ltd ウエハ乾燥方法
CN101718487A (zh) * 2009-12-04 2010-06-02 北京有色金属研究总院 一种硅片清洗后的快速干燥方法和装置
CN102148133A (zh) * 2010-12-06 2011-08-10 北京七星华创电子股份有限公司 单晶圆干燥装置及方法
CN102496590A (zh) * 2011-12-22 2012-06-13 浙江金瑞泓科技股份有限公司 带超声或兆声振子的异丙醇干燥机
CN104613732A (zh) * 2013-11-05 2015-05-13 有研新材料股份有限公司 一种外延前抛光片清洗后的快速干燥方法
CN105826221A (zh) * 2016-03-22 2016-08-03 耿彪 一种基板干燥方法和实现该方法的装置
CN206819975U (zh) * 2017-05-25 2017-12-29 北京华林嘉业科技有限公司 单片基板湿法制程中腐蚀清洗干燥装置
CN108831849A (zh) * 2018-06-25 2018-11-16 清华大学 基于热马兰哥尼效应的晶圆干燥装置和干燥方法
CN111261495A (zh) * 2018-11-30 2020-06-09 有研半导体材料有限公司 一种抛光硅片清洗干燥工艺
CN110828343A (zh) * 2019-10-30 2020-02-21 苏州晶洲装备科技有限公司 一种基板干燥装置和方法

Also Published As

Publication number Publication date
WO2022036946A1 (zh) 2022-02-24
CN112066649A (zh) 2020-12-11

Similar Documents

Publication Publication Date Title
US5520744A (en) Device for rinsing and drying substrate
US5951779A (en) Treatment method of semiconductor wafers and the like and treatment system for the same
US20120103371A1 (en) Method and apparatus for drying a semiconductor wafer
US20070105392A1 (en) Batch photoresist dry strip and ash system and process
CN110416066B (zh) 清洗方法和清洗设备
US20150273535A1 (en) Substrate processing apparatus and substrate processing method
JPH1183316A (ja) 乾燥処理装置及び乾燥処理方法
JP2009517854A (ja) 連続方法における平面状薄型基板の湿式化学処理のための装置及び方法
JP2018108579A (ja) 超臨界状態洗浄システムおよび方法
TWI623968B (zh) 使用液態二氧化碳以使半導體基板乾燥的方法及設備
TWI649779B (zh) 基板處理方法及基板處理裝置
KR20200016805A (ko) 기판 처리 장치의 파티클 제거 방법 및 기판 처리 장치
WO2022036947A1 (zh) 一种真空干燥方法和真空干燥装置
JPH11176798A (ja) 基板洗浄・乾燥装置及び方法
WO2008038610A1 (fr) Appareil de déshydratation/séchage et procédé de déshydratation/séchage
JP2002050600A (ja) 基板処理方法及び基板処理装置
KR102515859B1 (ko) 기판 처리 방법, 기판 처리 장치 및 기억 매체
JPH1022257A (ja) 乾燥処理装置
KR20050040381A (ko) 전자 소자 기판의 표면 처리 장치 및 이를 이용한 표면처리 방법
JP3954464B2 (ja) 基板処理装置
JP2003115519A (ja) 半導体装置の製造方法、半導体製造装置、ロードロック室、基板収納ケース、ストッカ
JP2006310681A (ja) 基板処理方法および装置
JP2006212563A (ja) 被洗浄物の洗浄方法、洗浄システム、及び乾燥装置
TW202125678A (zh) 基板處理裝置及基板處理方法
JP2002231688A (ja) 基板の乾燥方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20950148

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20950148

Country of ref document: EP

Kind code of ref document: A1