WO2022036934A1 - 一种车辆以及环境感知装置 - Google Patents

一种车辆以及环境感知装置 Download PDF

Info

Publication number
WO2022036934A1
WO2022036934A1 PCT/CN2020/134027 CN2020134027W WO2022036934A1 WO 2022036934 A1 WO2022036934 A1 WO 2022036934A1 CN 2020134027 W CN2020134027 W CN 2020134027W WO 2022036934 A1 WO2022036934 A1 WO 2022036934A1
Authority
WO
WIPO (PCT)
Prior art keywords
environment
lidar
detection
laser radar
laser
Prior art date
Application number
PCT/CN2020/134027
Other languages
English (en)
French (fr)
Inventor
黄祎伦
黄永结
张永生
李红山
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN202080070968.5A priority Critical patent/CN114556156A/zh
Publication of WO2022036934A1 publication Critical patent/WO2022036934A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements

Definitions

  • the present application generally relates to the technical field of vehicles, and more particularly, to a vehicle and an environment perception device.
  • Self-driving cars can perceive the surrounding environment in a large range or even 360 degrees through environmental perception devices (multi-sensors, such as cameras, lidar, millimeter-wave radar, etc.), and carry out autonomous control and navigation, so as to lead passengers to their destinations.
  • environmental perception devices multi-sensors, such as cameras, lidar, millimeter-wave radar, etc.
  • the detection distance of autonomous driving lidar is short, generally within 200m, and it is difficult to take into account the detection field of view and detection distance; and the price is expensive, which has become a key bottleneck for lidar to be applied to autonomous vehicles;
  • the autonomous driving positioning and perception scheme based on lidar sensors is complex and has many components, which makes it difficult to achieve efficient functional testing and verification in the early stage, and it is difficult to maintain.
  • an environment perception device including a laser detection component and a control component integrated in the environment perception device;
  • the laser detection assembly includes a first laser radar and a second laser radar, and is configured to acquire detection data of the surrounding environment, wherein the first laser radar has a first field of view angle and a first detection distance, and the second laser radar has a first field of view angle and a first detection distance.
  • the lidar has a second field of view angle and a second detection distance, wherein the first field of view angle is greater than the second field of view angle, and the first detection distance is smaller than the second detection distance;
  • the control component electrically connected to the laser detection component, is configured to receive detection data of the surrounding environment, thereby obtaining environmental perception information.
  • the included angle between the detection orientations of the first lidar and the second lidar is not greater than 30°.
  • control assembly includes an arithmetic unit and a communication unit that are connected to each other;
  • the communication unit is connected with the laser detection component, and is configured to transmit the detection data of the surrounding environment acquired by the laser detection component to the computing unit;
  • the computing unit is configured to receive detection data of the surrounding environment, and obtain environment perception information by calculating the detection data of the surrounding environment.
  • control assembly includes a first connection port, a first end of the first connection port is connected with the first lidar, and a second end of the first connection port is connected with the first adapter board.
  • the communication units are connected, and an external communication interface is provided on the first adapter board, and the external communication interface is connected with an external communication device.
  • control assembly includes a second connection port, a first end of the second connection port is connected to the second lidar, and a second end of the second connection port is connected through a second adapter board Connect to an external power supply.
  • the communication unit includes a router and a router fixing plate for fixing the router.
  • first lidar and the second lidar are arranged side by side, and the control assembly is fixedly arranged in the space above the tops of the first lidar and the second lidar.
  • control assembly includes a base, a casing and a top cover to form a space for accommodating the computing unit and the communication unit.
  • a fixing hole is arranged on the top of the first lidar and/or the second lidar, and through holes corresponding to the upper and lower sides of the fixing hole are arranged on the base, and the control assembly and The laser detection components are fixedly connected by screws or rivets penetrating the fixing holes and the through holes.
  • a cooling air duct is provided on the casing and/or the top cover.
  • the environment perception device further includes a fixed base plate, and the first laser radar and the second laser radar are arranged on the fixed base plate.
  • heat dissipation holes are provided on the fixed base plate.
  • the fixing base plate is provided with a mounting hole, which is configured to install and fix the environment sensing device.
  • the first angle of view and the second angle of view partially overlap.
  • Another aspect of the present application provides a vehicle, characterized in that the aforementioned environment perception device is installed on the vehicle.
  • the environment perception device of the present application integrates the first laser radar, the second laser radar and the control components, has a compact structure, small volume, and is easy to carry and disassemble; it does not require complex system adaptation of an autonomous vehicle; because of its portability, it is also It can be used to complete static display of different scenarios; it can reduce costs and improve efficiency for the pre-validation of autonomous vehicles; the environment perception device includes a first lidar and a second lidar with different field of view and detection distance, which can meet the The requirement of wide field of view and long detection distance improves the overall perception performance of the lidar module, and the cost is low.
  • FIG. 1 shows a schematic top view of the overall structure of the environment sensing device in an embodiment of the present application
  • FIG. 2 shows a schematic structural diagram of a fixed bottom plate of the environment sensing device in an embodiment of the present application
  • FIG. 3 shows a schematic structural diagram of the first laser radar, the second laser radar, and a fixed base plate in the environment perception device in an embodiment of the present application;
  • FIG. 4 shows a schematic structural diagram of the casing in the environment sensing device in an embodiment of the present application
  • FIG. 5 shows a schematic structural diagram of the control component in the environment sensing device in an embodiment of the present application
  • FIG. 6 shows a schematic diagram of the frame structure of the environment sensing device in an embodiment of the present application.
  • Self-driving cars can perceive the surrounding environment in a large range or even 360 degrees through environmental perception devices (multi-sensors, such as cameras, lidar, millimeter-wave radar, etc.), and carry out autonomous control and navigation, so as to lead passengers to their destinations. Since the perception of the surrounding environment by autonomous vehicles relies on more complex algorithms, traditional automotive processors cannot run such algorithms, so in-vehicle sensors such as lidar, cameras, and millimeter-wave radars collect environmental information data around the vehicle, and then Need to input a dedicated control component for unified fusion and processing.
  • multi-sensors such as cameras, lidar, millimeter-wave radar, etc.
  • the detection distance of autonomous driving lidar is short, generally within 200m, and it is difficult to take into account the detection field of view and detection distance; and the price is expensive, which has become a key bottleneck for lidar to be applied to autonomous vehicles; most of them are based on lidar sensors.
  • the self-driving positioning perception scheme of the company is complex and has many components, which makes it difficult to achieve efficient functional testing and verification in the early stage, and it is difficult to maintain.
  • the present application provides an environment perception device, including a laser detection component and a control component integrated in the environment perception device;
  • the laser detection assembly includes a first laser radar and a second laser radar, and is configured to acquire detection data of the surrounding environment, wherein the first laser radar has a first field of view angle and a first detection distance, and the second laser radar has a first field of view angle and a first detection distance.
  • the lidar has a second field of view angle and a second detection distance, wherein the first field of view angle is greater than the second field of view angle, and the first detection distance is smaller than the second detection distance;
  • the control component electrically connected to the laser detection component, is configured to receive detection data of the surrounding environment, thereby obtaining environmental perception information.
  • the environment perception device of the present application integrates the first laser radar, the second laser radar and the control components, has a compact structure, small volume, and is easy to carry and disassemble; it does not require complex system adaptation of an autonomous vehicle; because of its portability, it is also It can be used to complete static display of different scenarios; it can reduce costs and improve efficiency for the pre-validation of autonomous vehicles; the environment perception device includes a first lidar and a second lidar with different field of view and detection distance, which can meet the The requirement of wide field of view and long detection distance improves the overall perception performance of the lidar module, and the cost is low.
  • the environment perception device of the present application can be installed in a vehicle, so that the vehicle can take into account both the detection field angle and the detection distance, which is beneficial to improve the safety of automatic driving/assisted driving.
  • the environment perception device integrates laser detection components (the first lidar 3 and the second lidar 2 ), the arithmetic unit 8 , the communication unit 11 , the power module, the connecting line, etc. , to realize the vehicle environment perception solution based on computing unit and laser detection components.
  • the environment perception device can be used alone, for example, it can complete the debugging and static display of basic functions other than motion estimation, and can complete the basic function debugging of a complete set of dual lidar-based vehicle environment perception solutions in the laboratory;
  • it can also be installed on an autonomous vehicle, it can estimate its own motion posture through the fusion of lidar, IMU, wheel speed and other information, and detect information such as vehicles, pedestrians, static obstacles, lane lines, and the ground. Dynamic objects such as pedestrians are tracked, and the perception information of the environment can assist the automatic driving system to make better decisions.
  • the laser detection component is used as an environmental sensor, which can integrate information such as vehicle speed and IMU to cooperate with the computing unit to realize a set of positioning and perception solutions based on lidar.
  • the laser assembly integrates a first laser radar 3 and a second laser radar 2, and is configured to obtain detection data of the surrounding environment, and the field of view angles of the first and second laser radars different from the detection distance.
  • the first lidar 3 has a first field of view angle and a first detection distance
  • the second lidar 2 has a second field of view angle and a second detection distance, wherein the first field of view angle is greater than all
  • the first detection distance is smaller than the second detection distance, so as to meet the requirements of a wide field of view angle and a long detection distance.
  • the horizontal field of view of the first lidar 3 ranges from 60° to 100°, for example, 80°, and the first detection distance ranges from 150m to 260m, for example, 200m.
  • the horizontal field of view angle of the second lidar 2 is 10°-20°, such as 15°, and the second detection distance can reach 450m-650m, such as 500m, wherein the first field of view angle and the second field of view The field angles are partially overlapped.
  • first lidar and the second lidar are arranged side by side, and the detection directions of the first lidar 3 and the second lidar 2 may be approximately the same, for example, the first lidar 3 and all
  • the included angle of the detection direction of the second laser radar 2 is not greater than 30°, and the first laser radar 3 and the second laser radar 2 can detect the same direction or the same object through the above setting, so that the first laser radar 3 and the second laser radar 2 can detect the same object.
  • the first laser radar 3 and the second laser radar 2 complement each other and exert their respective advantages to meet the requirements of wide field of view and long detection distance, thereby improving the overall perception performance of the laser radar module.
  • the included angle between the detection orientations of the first lidar 3 and the second lidar 2 is 10°.
  • the environment perception device further includes a fixed bottom plate 1, which is arranged at the bottom of the environment perception device, and is used for arranging the first laser radar and the second laser radar at the bottom of the environment perception device. on the fixed base plate.
  • control component is electrically connected with the laser detection component to receive the perception information of the environment such as the first laser radar 3, the second laser radar 2, the IMU, the wheel speed, etc., and then assist the automatic driving system to update good decisions etc.
  • the control assembly includes an arithmetic unit 8 and a communication unit 11 that are connected to each other; wherein, the communication unit 11 is connected to the laser detection assembly, and is configured to connect the laser detection assembly
  • the acquired parameters of the surrounding environment are transmitted to the computing unit; the computing unit 8 is configured to receive the parameters of the surrounding environment, and obtain environment perception information by calculating the parameters of the surrounding environment.
  • the information and parameters obtained by the laser detection component can be transmitted to the computing unit in time, and the information of other sensors can be combined with the computing to obtain more accurate environmental perception information, and then the Assist automated driving systems to make better decisions.
  • the module is divided into upper and lower layers, as shown in FIG. 1 , wherein the laser detection component is arranged on the lower layer of the module, and the control component is arranged on the upper layer of the module.
  • control assembly is arranged in the space above the first lidar 3 and the second lidar 2, and is integrally connected with the first lidar 3 and the second lidar 2 .
  • the laser detection component and the control component are integrated into one module, the overall structure is compact, and the portable type is strong, which can meet the test and verification requirements of various scenarios, and can quickly disassemble and maintain the whole set of modules.
  • control assembly further includes a network cable extender 7 , and the communication connection of the communication unit can be realized through the interface of the network cable extender 7 .
  • the communication unit 11 includes a router, which may be a Gigabit router, and the control component further includes a plurality of network cables to connect the router and the computing unit 8 to each other.
  • a router which may be a Gigabit router
  • the control component further includes a plurality of network cables to connect the router and the computing unit 8 to each other.
  • the communication unit 11 includes a router fixing plate 9 for fixing the router.
  • the router fixing plate 9 includes a base and a support plane on the base, wherein the router is fixed on the support plane. By arranging the router fixing plate 9, the router can be fixed, so as to increase the stability and reliability of the communication unit and the environment sensing device.
  • the control assembly has a casing, and the computing unit 8 and the communication unit 11 are arranged inside the casing.
  • the housing includes a base, a housing 5 and a top cover 14 to form a space for accommodating the computing unit and the communication unit, and form protection for the accommodating computing unit and the communication unit.
  • the casing can be made of metal material.
  • the casing can be made of aluminum alloy, which is not only light in weight, but also can dissipate heat quickly. It should be noted that other materials can also be selected for the shell, which can be selected according to actual needs.
  • the shape of the housing can be designed according to the shape and installation position of the control assembly, and is not limited to any one.
  • the shape of the housing is a square box, such as a cube or Box in the shape of a cuboid.
  • the base 4 is integrally connected with the first laser radar 3 and the second laser radar 2 to realize the integration of the laser detection component and the control component.
  • a fixing hole is provided on the top of the first lidar 3 and/or the second lidar 2, and a through hole is provided on the base 4, wherein the fixing hole and the through hole Correspondingly up and down, the control assembly and the laser detection assembly are fixedly connected through the fixing hole and the through hole.
  • the fixing hole and the through hole are provided with screws or rivets penetrating the fixing hole and the through hole, so as to integrate the control component and the laser detection component together become one.
  • the connection is not limited to screws or rivets, and other types of connection structures may also be used.
  • the bottom of the first laser radar 3 and the second laser radar 2 are fixed by the fixed bottom plate 1, and the top is fixed by the base 4, so as to realize the first laser radar 3 and the second laser radar 2, the side walls of the first lidar 3 and the second lidar 2 are no longer provided with casings to ensure that the laser energy of the first lidar 3 and the second lidar 2 can be fully emitted .
  • the fixed base plate can more stably fix and integrate the first laser radar 3 and the second laser radar 2 to further save space, while also protecting the first laser radar 3 and the second laser radar. Bottom of Radar 2.
  • the communication connection mode of the laser detection assembly and the control assembly is shown in Fig. 3-Fig. 6, the arithmetic unit 8, the communication unit 11, the adapter board 6 and the network cable are fixed to the electronic control unit (Electronic Control Unit, ECU). ) module, and expose the power cable, network port interface and lidar connection port to the outside.
  • ECU Electronic Control Unit
  • control assembly includes a first connection port, a first end of the first connection port is connected with the laser detection assembly, and a second end of the first connection port is connected with the communication unit.
  • the adapter board 6 includes a first adapter board and a second adapter board.
  • the first end of the first connection port is connected to the first lidar 3
  • the first The second end of a connection port is connected with the communication unit through the first adapter board.
  • an external communication interface 14 is provided on the first adapter board, and the external communication interface is connected to an external communication device.
  • control assembly includes a second connection port, a first end of the second connection port is connected to the laser detection assembly, and a second end of the second connection port is connected to an external power supply connected.
  • first end of the second connection port is connected to the second lidar 2
  • second end of the second connection port is connected to an external power supply via a second adapter board.
  • a power interface 12 is provided on the second adapter board, and the power interface is connected to the external power supply.
  • connection between the first adapter plate and the second adapter plate, the first connection port and the second connection port can make the connection between the laser detection assembly and the control assembly more convenient and more convenient. Easy to disassemble and assemble to suit different usage scenarios.
  • control assembly further includes an adapter plate fixing frame 10, which is used to support and fix the adapter plate 6, such as the first adapter plate and the second adapter plate.
  • an adapter plate fixing frame 10 which is used to support and fix the adapter plate 6, such as the first adapter plate and the second adapter plate.
  • One is arranged below the adapter plate fixing frame 10 , and the other is arranged above the adapter plate fixing frame 10 .
  • Two adapter plate fixing frames 10 may also be provided, and the first adapter plate and the second adapter plate are both arranged on the adapter plate fixing frame 10 .
  • a cooling air duct is arranged on the casing 5 to dissipate the heat generated by each device in the control assembly in time to reduce the temperature, so as to ensure that the control assembly can operate at a lower temperature. normal and efficient operation at high temperatures.
  • the heat dissipation air duct may be a heat dissipation port, for example, a plurality of elongated openings arranged in parallel on the casing 5 .
  • the number and shape of the heat dissipation ports are not limited to a certain one, and can be set according to actual needs, and will not be listed one by one here.
  • a cooling air duct is provided on the top cover 14 to enhance the cooling effect of the control assembly.
  • the cooling air ducts may be cooling vents, such as a plurality of elongated openings arranged in parallel on the top cover 14 .
  • heat dissipation holes 15 may also be provided on the fixed base plate 1 to dissipate the heat generated by the first laser radar 3 and the second laser radar 2 in time to reduce the temperature to ensure the first laser The radar 3 and the second lidar 2 can operate normally and efficiently at a lower temperature.
  • the heat dissipation holes 15 may be a plurality of regularly or irregularly arranged circular holes, square holes and holes with irregular patterns.
  • the fixing base plate 1 is further provided with a mounting hole, which is configured to install and fix the environment sensing device, so as to improve the portability of the whole device, so that the environment sensing device can be installed and used in more scenarios.
  • a mounting hole which is configured to install and fix the environment sensing device, so as to improve the portability of the whole device, so that the environment sensing device can be installed and used in more scenarios.
  • a tripod interface is also reserved on the external power supply fixing structure to which the environment sensing device is combined, so as to better match and connect with the environment sensing device.
  • the environment perception device of the embodiments of the present application can be applied to a vehicle, and the environment perception device can be installed on the platform body of the vehicle.
  • the present application also provides a vehicle equipped with the aforementioned environment perception device.
  • the vehicle described in this application may further include sensors other than lidar, including visible light cameras, ultrasonic sensors, wheel odometers, IMU and GPS, etc., to realize 360-degree perception of the surrounding environment without dead ends, and to provide Reliable and stable environmental perception data; can easily and quickly perform sensor calibration, and can meet the needs of real-time calibration result verification.
  • different sensors form a set of independent sensor modules to cover a specific detection area and range. Combining the information of all sensors, the data of the surrounding environment can be obtained in real time, and the drivable road surface, as well as other pedestrians and vehicles can be detected, and then the control system can guide the vehicle (such as a vehicle) to drive automatically.
  • the power generation system of the vehicle is connected to the power interface of the environment sensing device, and is configured to supply power to the environment sensing device.
  • the vehicle further includes:
  • Wheel speed sensors configured to obtain wheel speed information of the vehicle
  • a location information sensor configured to obtain location information of the vehicle; and or an inertial measurement unit.
  • the computing unit of the environment perception device is configured to obtain the following environment perception information:
  • the vehicle also includes an output unit:
  • the output unit is connected to the environment perception device, and is used for outputting the environment perception information.
  • IMU inertial measurement unit Through the fusion of the lidar component, IMU inertial measurement unit, wheel speed and other information, it can estimate its own motion posture, and detect vehicles, pedestrians, static obstacles, lane lines, ground and other information, and conduct dynamic objects such as vehicles and pedestrians. Tracking, perception information about the environment can assist autonomous driving systems in making better decisions.
  • the vehicle described in this application is equipped with the aforementioned environment perception device, and also has the advantages of the environment perception device, such as compact structure, high integration, more beautiful appearance, and improved portability; Integrate and complement each other, improve the overall perception of the surrounding environment, and operate more efficiently; various mechanical interfaces are left on the device, which is convenient for debugging in different scenarios, function display, etc.
  • the structure design is reasonable, disassembly and assembly Convenient, easy to maintain and debug; the overall structure is highly integrated, the lidar, computing unit, communication unit, etc. are fixed in one module, and only the network cable and power interface are left externally; the application has a reasonable structure layout, efficient heat dissipation, and beautiful appearance.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or May be integrated into another device, or some features may be omitted, or not implemented.
  • Various component embodiments of the present application may be implemented in hardware, or in software modules running on one or more processors, or in a combination thereof.
  • a microprocessor or a digital signal processor (DSP) may be used in practice to implement some or all functions of some modules according to the embodiments of the present application.
  • DSP digital signal processor
  • the present application can also be implemented as a program of apparatus (eg, computer programs and computer program products) for performing part or all of the methods described herein.
  • Such a program implementing the present application may be stored on a computer-readable medium, or may be in the form of one or more signals. Such signals may be downloaded from Internet sites, or provided on carrier signals, or in any other form.

Abstract

一种车辆以及环境感知装置,环境感知装置包括集成于所述环境感知装置内的激光探测组件和控制组件;所述激光探测组件包括第一激光雷达(3)和第二激光雷达(2),被配置为获取周围环境的探测数据,其中,所述第一激光雷达(3)具有第一视场角和第一探测距离,第二激光雷达(2)具有第二视场角和第二探测距离,其中第一视场角大于第二视场角,第一探测距离小于第二探测距离;控制组件,与激光探测组件连接,被配置为接收周围环境的探测数据,进而得到环境感知信息。环境感知装置结构紧凑,体积小,携带拆装方便;无需自动驾驶车辆的复杂系统适配。

Description

一种车辆以及环境感知装置 技术领域
本申请总地涉及车辆技术领域,更具体地涉及一种车辆以及环境感知装置。
背景技术
自动驾驶汽车可通过环境感知装置(多传感器,例如相机、激光雷达、毫米波雷达等)实现大范围甚至360度地感知周围环境,进行自主控制与导航,从而带领乘客到达目的地。
然而,传统技术中自动驾驶激光雷达探测距离较短,一般都在200m以内,且难以兼顾探测视场角和探测距离;并且价格昂贵,成为激光雷达应用于自动驾驶车辆的关键瓶颈;现大多数基于激光雷达传感器的自动驾驶定位感知方案复杂,部件繁多,难以实现前期高效的功能测试验证,维护困难。
发明内容
为了解决上述问题中的至少一个而提出了本申请。具体地,本申请一方面提供了一种环境感知装置,包括集成于所述环境感知装置内的激光探测组件和控制组件;
所述激光探测组件包括第一激光雷达和第二激光雷达,被配置为获取周围环境的探测数据,其中,所述第一激光雷达具有第一视场角和第一探测距离,所述第二激光雷达具有第二视场角和第二探测距离,其中所述第一视场角大于所述第二视场角,所述第一探测距离小于所述第二探测距离;
所述控制组件,与所述激光探测组件电连接,被配置为接收所述周围环境的探测数据,进而得到环境感知信息。
可选地,所述第一激光雷达和所述第二激光雷达的探测朝向夹角不大于30°。
可选地,所述控制组件包括相互连接的运算单元和通讯单元;
其中,所述通讯单元与所述激光探测组件相连接,被配置为将所述激光探测组件获取的所述周围环境的探测数据传输至所述运算单元;
所述运算单元,被配置为接收所述周围环境的探测数据,通过计算所述周围环境的探测数据得到环境感知信息。
可选地,所述控制组件包括第一连接口,所述第一连接口的第一端与所述第一激光雷达连接,所述第一连接口的第二端经第一转接板与所述通讯单元相连接,所述第一转接板上设置有外接通讯接口,所述外接通讯接口与外部通讯装置连接。
可选地,所述控制组件包括第二连接口,所述第二连接口的第一端与所述第二激光雷达相连接,所述第二连接口的第二端经第二转接板与外置电源相连接。
可选地,所述通讯单元包括路由器和用于固定所述路由器的路由器固定板。
可选地,所述第一激光雷达和所述第二激光雷达并列设置,所述控制组件固定设置于所述第一激光雷达和所述第二激光雷达顶部上方的空间内。
可选地,所述控制组件包括底座、外壳和顶盖,以形成容纳运算单元和通讯单元的空间。
可选地,在所述第一激光雷达和/或所述第二激光雷达的顶部设置有固定孔,在所述底座上设置有与所述固定孔上下对应的通孔,所述控制组件和所述激光探测组件通过贯穿所述固定孔和所述通孔的螺钉或铆钉固定连接。
可选地,在所述外壳和/或所述顶盖上设置有散热风道。
可选地,所述环境感知装置还包括固定底板,所述第一激光雷达和所述第二激光雷达设置于所述固定底板上。
可选地,所述固定底板上设置有散热孔。
可选地,所述固定底板上设置有安装孔,被配置为安装固定所述环境感知装置。
可选地,所述第一视场角和所述第二视场角部分重叠。
本申请的另一方面提供了一种车辆,其特征在于,所述车辆上安装有前文所述的环境感知装置。
本申请的环境感知装置将第一激光雷达、第二激光雷达以及控制组件集成于一体,结构紧凑,体积小,携带拆装方便;无需自动驾驶车辆的复 杂系统适配;因其便携性,也可用于完成不同场景的静态展示;为适配自动驾驶车辆的前期验证降低成本,提升效率;所述环境感知装置包括视场角和探测距离不同的第一激光雷达和第二激光雷达,可以满足宽视场角和探测距离远的需求,提升了激光雷达模块整体的感知性能,且成本较低。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1示出了本申请一个实施例中的所述环境感知装置的整体结构的俯视示意图;
图2示出了本申请一个实施例中的所述环境感知装置的固定底板的结构示意图;
图3示出了本申请一个实施例中的所述环境感知装置中所述第一激光雷达、第二激光雷达以及固定底板的结构示意图;
图4示出了本申请一个实施例中的所述环境感知装置中所述壳体的结构示意图;
图5示出了本申请一个实施例中的所述环境感知装置中所述控制组件的结构示意图;
图6示出了本申请一个实施例中的所述环境感知装置的框架结构示意图。
附图标识
1、固定底板
2、第二激光雷达
3、第一激光雷达
4、底座
5、外壳
6、转接板
7、网线延长器
8、运算单元
9、路由器固定板
10、转接板固定架
11、通讯单元
12、电源接口
13、外接通讯接口
14、顶盖
15、散热孔
16、三角架
具体实施方式
为了使得本申请的目的、技术方案和优点更为明显,下面将参照附图详细描述根据本申请的示例实施例。显然,所描述的实施例仅仅是本申请的一部分实施例,而不是本申请的全部实施例,应理解,本申请不受这里描述的示例实施例的限制。基于本申请中描述的本申请实施例,本领域技术人员在没有付出创造性劳动的情况下所得到的所有其它实施例都应落入本申请的保护范围之内。
在下文的描述中,给出了大量具体的细节以便提供对本申请更为彻底的理解。然而,对于本领域技术人员而言显而易见的是,本申请可以无需一个或多个这些细节而得以实施。在其他的例子中,为了避免与本申请发生混淆,对于本领域公知的一些技术特征未进行描述。
应当理解的是,本申请能够以不同形式实施,而不应当解释为局限于这里提出的实施例。相反地,提供这些实施例将使公开彻底和完全,并且将本申请的范围完全地传递给本领域技术人员。
在此使用的术语的目的仅在于描述具体实施例并且不作为本申请的限制。在此使用时,单数形式的“一”、“一个”和“所述/该”也意图包括复数形式,除非上下文清楚指出另外的方式。还应明白术语“组成”和/或“包括”,当在该说明书中使用时,确定所述特征、整数、步骤、操作、元件和/或部件的存在,但不排除一个或更多其它的特征、整数、步骤、操作、元件、部件和/或组的存在或添加。在此使用时,术语“和/或”包括相关所列项目的任何及所有组合。
为了彻底理解本申请,将在下列的描述中提出详细的结构,以便阐释 本申请提出的技术方案。本申请的可选实施例详细描述如下,然而除了这些详细描述外,本申请还可以具有其他实施方式。
自动驾驶汽车可通过环境感知装置(多传感器,例如相机、激光雷达、毫米波雷达等)实现大范围甚至360度地感知周围环境,进行自主控制与导航,从而带领乘客到达目的地。由于自动驾驶汽车对周围环境的感知依赖于更为复杂的算法,传统的汽车处理器已无法运行这类算法,从而激光雷达、相机、毫米波雷达等车载传感器采集车辆周围的环境信息数据,然后需要输入专用的控制组件做统一的融合和处理。
目前自动驾驶激光雷达探测距离较短,一般都在200m以内,且难以兼顾探测视场角和探测距离;并且价格昂贵,成为激光雷达应用于自动驾驶车辆的关键瓶颈;现大多数基于激光雷达传感器的自动驾驶定位感知方案复杂,部件繁多,难以实现前期高效的功能测试验证,维护困难。
为了解决上述问题,本申请提供了一种环境感知装置,包括集成于所述环境感知装置内的激光探测组件和控制组件;
所述激光探测组件包括第一激光雷达和第二激光雷达,被配置为获取周围环境的探测数据,其中,所述第一激光雷达具有第一视场角和第一探测距离,所述第二激光雷达具有第二视场角和第二探测距离,其中所述第一视场角大于所述第二视场角,所述第一探测距离小于所述第二探测距离;
所述控制组件,与所述激光探测组件电连接,被配置为接收所述周围环境的探测数据,进而得到环境感知信息。
本申请的环境感知装置将第一激光雷达、第二激光雷达以及控制组件集成于一体,结构紧凑,体积小,携带拆装方便;无需自动驾驶车辆的复杂系统适配;因其便携性,也可用于完成不同场景的静态展示;为适配自动驾驶车辆的前期验证降低成本,提升效率;所述环境感知装置包括视场角和探测距离不同的第一激光雷达和第二激光雷达,可以满足宽视场角和探测距离远的需求,提升了激光雷达模块整体的感知性能,且成本较低。
本申请的环境感知装置可安装于车辆中,从而车辆兼顾探测视场角和探测距离,有利于提高自动驾驶/辅助驾驶的安全性。
所述环境感知装置,如图1所示,所述环境感知装置集成了激光探测组件(第一激光雷达3和第二激光雷达2)、运算单元8、通讯单元11、电 源模块、连接线等,实现了基于运算单元和激光探测组件的车辆环境感知解决方案。
在本申请中,所述环境感知装置可以单独使用,例如可完成除运动估计外的基本功能的调试和静态展示,可在实验室完成整套基于双激光雷达的车辆环境感知方案的基本功能调试;还可以安装在自动驾驶车辆上时,可以通过激光雷达和IMU、轮速等信息的融合可以估计自身的运动姿态,并检测出车辆、行人、静态障碍物、车道线、地面等信息,对车辆行人等动态物体进行跟踪,对环境的感知信息可以辅助自动驾驶系统进行更好的决策等。
下面结合附图1-图6,对本申请的环境感知装置进行详细说明。在不冲突的情况下,下述的实施例及实施方式中的特征可以相互组合。
在本申请的实施例中,所述激光探测组件作为一种环境传感器,其可以融合车速、IMU等信息配合运算单元实现一套基于激光雷达的定位和感知方案。
如图1所示,所述激光组件集成了第一激光雷达3和第二激光雷达2,被配置为获取周围环境的探测数据,并且所述第一激光雷达和第二激光雷达的视场角和探测距离不同。
其中,所述第一激光雷达3具有第一视场角和第一探测距离,所述第二激光雷达2具有第二视场角和第二探测距离,其中所述第一视场角大于所述第二视场角,所述第一探测距离小于所述第二探测距离,以满足宽视场角和探测距离远的需求。
在本申请的实施例中,所述第一激光雷达3的水平视场角范围为60°-100°,例如80°,所述第一探测距离的范围150m-260m,例如200m,所述第二激光雷达2的水平视场角为10°-20°,如15°,所述第二探测距离可达450m-650m,例如500m,其中,所述第一视场角和所述第二视场角部分重叠,通过设置不同特点的激光雷达,可以同时满足宽视场角和探测距离远的需求,以解决单一激光雷达不能同时满足两种性能的矛盾,提升了激光雷达模块整体的感知性能且成本较低。
其中,所述第一激光雷达和所述第二激光雷达并列设置,所述第一激光雷达3和所述第二激光雷达2的探测朝向可以大致相同,例如所述第一 激光雷达3和所述第二激光雷达2的探测朝向夹角不大于30°,通过所述设置可以使所述第一激光雷达3和所述第二激光雷达2对同一方向或同一物体进行探测,使所述第一激光雷达3和所述第二激光雷达2相互补充,发挥各自的优点,以满足宽视场角和探测距离远的需求,进而提升了激光雷达模块整体的感知性能。
在本申请的一实施例中,所述第一激光雷达3和所述第二激光雷达2的探测朝向夹角为10°。
可选地,如图3所示,所述环境感知装置还包括固定底板1,设置于所述环境感知装置最底部,用于将所述第一激光雷达和所述第二激光雷达设置于所述固定底板上。
其中,所述控制组件,与所述激光探测组件电连接,以接收所述第一激光雷达3、第二激光雷达2、IMU、轮速等对环境的感知信息,进而辅助自动驾驶系统进行更好的决策等。
可选地,如图1所示,所述控制组件包括相互连接的运算单元8和通讯单元11;其中,所述通讯单元11与所述激光探测组件相连接,配置为将所述激光探测组件获取的所述周围环境的参数传输至所述运算单元;所述运算单元8,配置为接收所述周围环境的参数,通过计算所述周围环境的参数得到环境感知信息。通过设置所述运算单元8和通讯单元11可以将所述激光探测组件获得的信息和参数及时传输至所述运算单元,通过运算结合其他传感器的信息,以获得更加准确的环境感知信息,进而可以辅助自动驾驶系统进行更好的决策。
在所述模块中分为上下两层,如图1所示,其中,所述激光探测组件设置于所述模块的下层,所述控制组件设置于所述模块的上层。
可选地,所述控制组件设置于所述第一激光雷达3和所述第二激光雷达2上方的空间内,并且与所述第一激光雷达3和所述第二激光雷达2连接为一体。其中,所述激光探测组件和所述控制组件集成于一个模块中,整体结构紧凑,便携型强,可以满足各种场景测试验证需求,并且可以对整套模块进行快速拆装维护。
进一步,如图5所示,所述控制组件该进一步包括网线延长器7,通过所述网线延长器7的接口可以实现通讯单元的通讯连接。
进一步,如图5所示,所述通讯单元11包括路由器,所述路由器可以为千兆路由器,所述控制组件还包括多个网线,以将所述路由器与所述运算单元8相互连接。
所述通讯单元11包括还路由器固定板9,以用于固定所述路由器。其中,所述路由器固定板9包括一个基座和位于基座上的支撑平面,其中所述路由器固定于所述支撑平面上。通过设置所述路由器固定板9可以实现对所述路由器的固定,以增加所述通讯单元和所述环境感知装置的稳固性和可靠性。
具体地,在一实施例中,所述控制组件具有壳体,所述运算单元8和通讯单元11设置于所述壳体内部。例如,如图4和图5所示,所述壳体包括4底座、外壳5和顶盖14,以形成容纳运算单元和通讯单元的空间,并对所述容纳运算单元和通讯单元形成保护。
在本申请中,所述壳体可以选用金属材料,在一具体实施例中,所述壳体可以选用铝合金,铝合金不仅质量较轻,还能快速散热。需要说明的是,壳体还可以选用其他材料,可以根据实际需要进行选择。
其中,所述壳体的形状可以根据控制组件的形状以及安装位置进行设计,并不局限于某一种,在本申请的一实施例中,所述壳体的形状呈方形盒,例如正方体或长方体形状的盒。
其中,所述底座4与所述第一激光雷达3和所述第二激光雷达2连接为一体,以实现所述激光探测组件和所述控制组件的集成。
具体地,在所述第一激光雷达3和/或所述第二激光雷达2的顶部设置有固定孔,在所述底座4上设置有通孔,其中,所述固定孔与所述通孔上下对应,所述控制组件和所述激光探测组件通过所述固定孔和所述通孔固定连接。
在本申请的一实施例中,在所述固定孔与所述通孔上设置有贯穿所述固定孔和所述通孔的螺钉或铆钉,以将所述控制组件和所述激光探测组件集成为一体。需要说明的是,所述连接并不局限于螺钉或铆钉,还可以使用其他类型的连接结构。通过所述连接方式可以更加简便高效的实现所述激光探测组件和所述控制组件的集成,以更加节省空间,同时可以对整套模块进行快速拆装维护。
其中,所述第一激光雷达3和所述第二激光雷达2的底部通过固定底板1固定,顶部通过所述底座4加以固定,以实现所述第一激光雷达3和所述第二激光雷达2的集成,所述第一激光雷达3和所述第二激光雷达2的侧壁不再设置外壳,以保证所述第一激光雷达3和所述第二激光雷达2的激光能充分的出射。所述固定底板可以更加稳固的对所述第一激光雷达3和所述第二激光雷达2固定和集成,以进一步节省空间,同时还能保护所述第一激光雷达3和所述第二激光雷达2的底部。
其中,所述激光探测组件和所述控制组件的通讯连接方式如图3-图6所示,运算单元8、通讯单元11、转接板6和网线固定到电子控制单元(Electronic Control Unit,ECU)模块中,并且对外暴露电源线、网口接口和激光雷达连接口。
具体地,所述控制组件包括第一连接口,所述第一连接口的第一端与所述激光探测组件相连接,所述第一连接口的第二端与所述通讯单元相连接。
其中,所述转接板6包括第一转接板和第二转接板,在一实施例中,所述第一连接口的第一端与所述第一激光雷达3连接,所述第一连接口的第二端经第一转接板与所述通讯单元相连接。可选地,所述第一转接板上设置有外接通讯接口14,所述外接通讯接口与外部通讯装置连接。
在另一实施例中,所述控制组件包括第二连接口,所述第二连接口的第一端与所述激光探测组件相连接,所述第二连接口的第二端与外置电源相连接。具体地,所述第二连接口的第一端与所述第二激光雷达2相连接,所述第二连接口的第二端经第二转接板与外置电源相连接。所述第二转接板上设置有电源接口12,所述电源接口与所述外置电源相连接。
在本申请中,通过第一转接板和第二转接板、第一连接口和第二连接口的连接方式,可以使所述激光探测组件和所述控制组件的连接方式更加便捷,更加容易拆卸和组装,以适应不同的使用场景。
可选地,所述控制组件还进一步包括转接板固定架10,其中,以用于支撑和固定所述转接板6,例如所述第一转接板和所述第二转接板中的一个设置于所述转接板固定架10的下方,另一个设置于所述转接板固定架10的上方。还可以设置两个转接板固定架10,所述第一转接板和所述第二转接板均设置于所述转接板固定架10上。
其中,如图4所示,在所述外壳5上设置有散热风道,以将所述控制组件中的各个器件产生的热量及时散出,降低温度,以保证所述控制组件能在较低的温度下正常高效的运行。其中,所述散热风道可以为散热口,例如设置于所述外壳5上多个并列设置的长条形开口。其中所述散热口的数目和形状并不局限于某一种,可以根据实际需要进行设置,在此不再一一列举。
进一步,如图5所示,在所述顶盖14上设置有散热风道,以加强所述控制组件的散热效果。其中,所述散热风道可以为散热口,例如设置于所述顶盖14上多个并列设置的长条形开口。
进一步,所述固定底板1上还可以设置有散热孔15,以将所述第一激光雷达3和所述第二激光雷达2产生的热及时散出,降低温度,以保证所述第一激光雷达3和所述第二激光雷达2能在较低的温度下正常高效的运行。其中所述散热孔15可以为多个规则或不规则设置的圆形孔,方形孔以及不规则图形的孔。
可选地,所述固定底板1上还设置有安装孔,配置为安装固定所述环境感知装置,以提高整个装置的便携性,使得所述环境感知装置能够在更多的场景中安装和使用。在一具体实施例中,例如为了将所述环境感知装置便于安装在三脚架16上,在所述固定底板1上有1/4英制螺纹孔。
进一步,在所述环境感知装置向结合的外部电源固定结构上同样留有三脚架的接口,以便更好的与所述环境感知装置匹配连接。
具体地,本申请实施方式的环境感知装置可应用于车辆,所述环境感知装置可安装在车辆的平台本体。
本申请还提供了一种车辆,所述车辆安装有前文所述的环境感知装置。本申请中所述车辆还可以进一步包括激光雷达之外的传感器,包括可见光相机、超声波传感器、车轮里程计、IMU和GPS等,实现360度无死角感知周围环境,以较少的冗余,提供可靠和稳定的环境感知数据;可以方便、快速的进行传感器标定,以及可满足实时标定结果验证的需求。另外,不同的传感器组成一套独立的传感器模块,从而覆盖特定的检测区域和范围。综合所有传感器的信息,可以实时得到周围环境的数据,检测出可行驶路面,以及其他的行人和车辆,再交由所述控制系统引导车辆(例如车辆)自动驾驶。
进一步,所述车辆的发电系统与所述环境感知装置的电源接口连接,配置为对所述环境感知装置供电。
可选地,所述车辆还进一步包括:
轮速传感器,配置为获取车辆的轮速信息;和/或
位置信息传感器,配置为获取车辆的位置信息;和或惯性测量单元。
所述环境感知装置的运算单元,配置为获取以下环境感知信息:
检测所述车辆周围的其他车辆、行人、静态障碍物、车道线和地面信息中的至少一种;和/或对动态物体进行跟踪。
进一步,所述车辆还包括输出单元:
所述输出单元与所述环境感知装置连接,用于输出所述环境感知信息。
通过所述激光雷达组件和IMU惯性测量单元、轮速等信息的融合可以估计自身的运动姿态,并检测出车辆、行人、静态障碍物、车道线、地面等信息,对车辆行人等动态物体进行跟踪,对环境的感知信息可以辅助自动驾驶系统进行更好的决策。
本申请所述车辆装载了前文所述的环境感知装置,也具有所述环境感知装置的优点,例如结构紧凑、集成度高,外观更美观,且提高了便携性;两个不同的激光雷达的融合,实现互补,提升了整体对周围环境的感知能力,运行更高效;在所述装置上留有各种机械接口,便于用于不同场景调试,功能展示等;此外,结构设计合理,拆装方便,便于维护调试;整体结构集成度高,激光雷达、运算单元、通讯单元等固定于一个模块中,对外仅留有网线和电源接口;本申请结构布局合理,散热高效,外观美观。
尽管这里已经参考附图描述了示例实施例,应理解上述示例实施例仅仅是示例性的,并且不意图将本申请的范围限制于此。本领域普通技术人员可以在其中进行各种改变和修改,而不偏离本申请的范围和精神。所有这些改变和修改意在被包括在所附权利要求所要求的本申请的范围之内。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。例如,以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个设备,或一些特征可以忽略,或不执行。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本申请的实施例可以在没有这些具体细节的情况下实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
类似地,应当理解,为了精简本申请并帮助理解各个发明方面中的一个或多个,在对本申请的示例性实施例的描述中,本申请的各个特征有时被一起分组到单个实施例、图、或者对其的描述中。然而,并不应将该本申请的方法解释成反映如下意图:即所要求保护的本申请要求比在每个权利要求中所明确记载的特征更多的特征。更确切地说,如相应的权利要求书所反映的那样,其发明点在于可以用少于某个公开的单个实施例的所有特征的特征来解决相应的技术问题。因此,遵循具体实施方式的权利要求书由此明确地并入该具体实施方式,其中每个权利要求本身都作为本申请的单独实施例。
本领域的技术人员可以理解,除了特征之间相互排斥之外,可以采用任何组合对本说明书(包括伴随的权利要求、摘要和附图)中公开的所有特征以及如此公开的任何方法或者设备的所有过程或单元进行组合。除非另外明确陈述,本说明书(包括伴随的权利要求、摘要和附图)中公开的每个特征可以由提供相同、等同或相似目的替代特征来代替。
此外,本领域的技术人员能够理解,尽管在此所述的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本申请的范围之内并且形成不同的实施例。例如,在权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。
本申请的各个部件实施例可以以硬件实现,或者以在一个或者多个处理器上运行的软件模块实现,或者以它们的组合实现。本领域的技术人员应当理解,可以在实践中使用微处理器或者数字信号处理器(DSP)来实现根据本申请实施例的一些模块的一些或者全部功能。本申请还可以实现为用于执行这里所描述的方法的一部分或者全部的装置程序(例如,计算 机程序和计算机程序产品)。这样的实现本申请的程序可以存储在计算机可读介质上,或者可以具有一个或者多个信号的形式。这样的信号可以从因特网网站上下载得到,或者在载体信号上提供,或者以任何其他形式提供。
应该注意的是上述实施例对本申请进行说明而不是对本申请进行限制,并且本领域技术人员在不脱离所附权利要求的范围的情况下可设计出替换实施例。在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。本申请可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。

Claims (15)

  1. 一种环境感知装置,其特征在于,包括集成于所述环境感知装置内的激光探测组件和控制组件;
    所述激光探测组件包括第一激光雷达和第二激光雷达,被配置为获取周围环境的探测数据,其中,所述第一激光雷达具有第一视场角和第一探测距离,所述第二激光雷达具有第二视场角和第二探测距离,其中所述第一视场角大于所述第二视场角,所述第一探测距离小于所述第二探测距离;
    所述控制组件,与所述激光探测组件电连接,被配置为接收所述周围环境的探测数据,进而得到环境感知信息。
  2. 根据权利要求1所述的环境感知装置,其特征在于,所述第一激光雷达和所述第二激光雷达的探测朝向夹角不大于30°。
  3. 根据权利要求1所述的环境感知装置,其特征在于,所述控制组件包括相互连接的运算单元和通讯单元;
    其中,所述通讯单元与所述激光探测组件相连接,被配置为将所述激光探测组件获取的所述周围环境的探测数据传输至所述运算单元;
    所述运算单元,被配置为接收所述周围环境的探测数据,通过计算所述周围环境的探测数据得到环境感知信息。
  4. 根据权利要求3所述的环境感知装置,其特征在于,所述控制组件包括第一连接口,所述第一连接口的第一端与所述第一激光雷达连接,所述第一连接口的第二端经第一转接板与所述通讯单元相连接,所述第一转接板上设置有外接通讯接口,所述外接通讯接口与外部通讯装置连接。
  5. 根据权利要求4所述的环境感知装置,其特征在于,所述控制组件包括第二连接口,所述第二连接口的第一端与所述第二激光雷达相连接,所述第二连接口的第二端经第二转接板与外置电源相连接。
  6. 根据权利要求3所述的环境感知装置,其特征在于,所述通讯单元包括路由器和用于固定所述路由器的路由器固定板。
  7. 根据权利要求1至6之一所述的环境感知装置,其特征在于,所述第一激光雷达和所述第二激光雷达并列设置,所述控制组件固定设置于所述第一激光雷达和所述第二激光雷达顶部上方的空间内。
  8. 根据权利要求7所述的环境感知装置,其特征在于,所述控制组 件包括底座、外壳和顶盖,以形成容纳运算单元和通讯单元的空间。
  9. 根据权利要求8所述的环境感知装置,其特征在于,在所述第一激光雷达和/或所述第二激光雷达的顶部设置有固定孔,在所述底座上设置有与所述固定孔上下对应的通孔,所述控制组件和所述激光探测组件通过贯穿所述固定孔和所述通孔的螺钉或铆钉固定连接。
  10. 根据权利要求8所述的环境感知装置,其特征在于,在所述外壳和/或所述顶盖上设置有散热风道。
  11. 根据权利要求7所述的环境感知装置,其特征在于,所述环境感知装置还包括固定底板,所述第一激光雷达和所述第二激光雷达设置于所述固定底板上。
  12. 根据权利要求11所述的环境感知装置,其特征在于,所述固定底板上设置有散热孔。
  13. 根据权利要求11所述的环境感知装置,其特征在于,所述固定底板上设置有安装孔,被配置为安装固定所述环境感知装置。
  14. 根据权利要求1所述的环境感知装置,其特征在于,所述第一视场角和所述第二视场角部分重叠。
  15. 一种车辆,其特征在于,所述车辆上安装有权利要求1至14之一所述的环境感知装置。
PCT/CN2020/134027 2020-08-18 2020-12-04 一种车辆以及环境感知装置 WO2022036934A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080070968.5A CN114556156A (zh) 2020-08-18 2020-12-04 一种车辆以及环境感知装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202021746261.5 2020-08-18
CN202021746261.5U CN214122468U (zh) 2020-08-18 2020-08-18 一种车辆以及环境感知装置

Publications (1)

Publication Number Publication Date
WO2022036934A1 true WO2022036934A1 (zh) 2022-02-24

Family

ID=77484083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/134027 WO2022036934A1 (zh) 2020-08-18 2020-12-04 一种车辆以及环境感知装置

Country Status (2)

Country Link
CN (2) CN214122468U (zh)
WO (1) WO2022036934A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103204121A (zh) * 2012-01-16 2013-07-17 福特全球技术公司 基于雷达的多功能安全系统
CN205601869U (zh) * 2016-05-18 2016-09-28 苏州华兴致远电子科技有限公司 车载运行环境安全监测系统
CN109143243A (zh) * 2018-10-08 2019-01-04 河北锋彩科技有限公司 一种应用于中远距离探测的77GHz车载防撞雷达天线阵列
CN110632618A (zh) * 2019-11-22 2019-12-31 深圳市速腾聚创科技有限公司 激光雷达及其控制方法以及自动驾驶装置
CN110799853A (zh) * 2018-10-26 2020-02-14 深圳市大疆创新科技有限公司 一种环境感知系统及移动平台
US20200116854A1 (en) * 2018-10-10 2020-04-16 Mando Corporation Apparatus and method for complementing automotive radar

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103204121A (zh) * 2012-01-16 2013-07-17 福特全球技术公司 基于雷达的多功能安全系统
CN205601869U (zh) * 2016-05-18 2016-09-28 苏州华兴致远电子科技有限公司 车载运行环境安全监测系统
CN109143243A (zh) * 2018-10-08 2019-01-04 河北锋彩科技有限公司 一种应用于中远距离探测的77GHz车载防撞雷达天线阵列
US20200116854A1 (en) * 2018-10-10 2020-04-16 Mando Corporation Apparatus and method for complementing automotive radar
CN110799853A (zh) * 2018-10-26 2020-02-14 深圳市大疆创新科技有限公司 一种环境感知系统及移动平台
CN110632618A (zh) * 2019-11-22 2019-12-31 深圳市速腾聚创科技有限公司 激光雷达及其控制方法以及自动驾驶装置

Also Published As

Publication number Publication date
CN214122468U (zh) 2021-09-03
CN114556156A (zh) 2022-05-27

Similar Documents

Publication Publication Date Title
KR101883475B1 (ko) 소형통합제어장치
US20210304607A1 (en) Collaborative perception for autonomous vehicles
CN111225831A (zh) 应用于车辆的传感器支架、传感器模块和车辆
Liu et al. A common wireless remote control system for mobile robots in laboratory
CN109002057A (zh) 一种电缆隧道的智能巡检无人机系统
JP2006208075A (ja) 異常診断装置および方法ならびにプログラム
WO2022036934A1 (zh) 一种车辆以及环境感知装置
JP2020140726A (ja) 無人飛行体のフライト管理サーバ及びフライト管理システム
KR20200109116A (ko) 다중 모듈 기반의 그래프 구조를 이용한 무인체 위치 추정 시스템 및 그 방법
KR20200023600A (ko) 센서 간의 데이터 전송을 위한 데이터 전송 로직과 자율 주행 차량의 계획 및 제어
CN209955874U (zh) 一种车辆以及用于安装于车辆的侧后视镜
CN108108783A (zh) 一种基于物流溯源系统的车载终端及其物流溯源方法
CN209485371U (zh) 一种姿态检测装置
CN202218341U (zh) 带有超声波测距雷达的倒车轨迹视像装置
CN216883950U (zh) 一种模块化四驱移动机器人
WO2022264413A1 (ja) 移動体の移動経路生成方法及びプログラム、管理サーバ、管理システム
CN208881721U (zh) 车载adas装置
CN211493939U (zh) 无人驾驶车辆及其车头模块
JP2023010229A (ja) ウェイポイント高さ座標設定方法及び管理サーバ、情報処理システム、プログラム
CN218584189U (zh) 一种无人机机载声学成像定位仪
CN219799766U (zh) 激光雷达
JP2021002345A (ja) 無人飛行体のフライト管理サーバ及びフライト管理システム
CN219265350U (zh) 转接平台及联合数据采集组件
US20210405159A1 (en) Vehicle and side-rearview mirror for mounting at vehicle
CN118033705A (zh) 机器人定位导航实验平台及其工作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20950137

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20950137

Country of ref document: EP

Kind code of ref document: A1