WO2022036786A1 - 一种提高光伏一次调频下垂控制性能的方法 - Google Patents

一种提高光伏一次调频下垂控制性能的方法 Download PDF

Info

Publication number
WO2022036786A1
WO2022036786A1 PCT/CN2020/115474 CN2020115474W WO2022036786A1 WO 2022036786 A1 WO2022036786 A1 WO 2022036786A1 CN 2020115474 W CN2020115474 W CN 2020115474W WO 2022036786 A1 WO2022036786 A1 WO 2022036786A1
Authority
WO
WIPO (PCT)
Prior art keywords
droop control
droop
photovoltaic
frequency modulation
primary frequency
Prior art date
Application number
PCT/CN2020/115474
Other languages
English (en)
French (fr)
Inventor
冯仰敏
谭光道
吴忠伟
杨沛豪
常洋涛
杨洋
赵文超
仵欣
Original Assignee
西安热工研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安热工研究院有限公司 filed Critical 西安热工研究院有限公司
Publication of WO2022036786A1 publication Critical patent/WO2022036786A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/48Controlling the sharing of the in-phase component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks
    • H02J3/241The oscillation concerning frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the invention relates to a method for improving the droop control performance of photovoltaic primary frequency modulation, which reduces the power distribution error in the primary frequency modulation process and avoids power oscillation in the adjustment process.
  • the generator set needs to participate in the frequency regulation of the power grid system.
  • Traditional thermal power and hydropower units are composed of mechanical devices with rotational inertia, and the conversion of primary energy into electrical energy needs to go through a series of complex processes, so the response speed to frequency is slow.
  • photovoltaic power stations can quickly adjust the active power output and change the frequency of the grid, so as to achieve the ability to participate in the rapid adjustment of the grid frequency at the grid connection point, which has received extensive attention in the industry in recent years.
  • the corresponding power control system, stand-alone or independent control device is used to complete the droop characteristic control in the photovoltaic power station.
  • traditional droop control will have large power distribution errors and power oscillation problems during the primary frequency modulation process.
  • the purpose of the present invention is to provide a method for improving the droop control performance of photovoltaic primary frequency modulation, which reduces the power distribution error in the primary frequency modulation process and avoids power oscillation in the adjustment process.
  • the method is to improve the droop coefficient, automatically adjust the active power droop coefficient according to the output power, and achieve the purpose of improving the primary frequency regulation performance of the photovoltaic power station.
  • the present invention adopts the following technical solutions to realize:
  • a method for improving the control performance of photovoltaic primary frequency modulation droop comprising the following steps:
  • step 5) Apply the adaptive droop coefficient obtained in step 4) to the primary frequency modulation droop control of the grid-connected inverter of the photovoltaic power station with the dead zone in step 2), and obtain the primary frequency modulation auto-frequency of the grid-connected inverter of the photovoltaic power station.
  • step 1) establishes a photovoltaic grid-connected inverter droop control equation that imitates the droop characteristics of the synchronous generator in the conventional generator set as:
  • f is the output frequency of droop control
  • U is the output voltage of droop control
  • f 0 is the rated frequency of the controlled system
  • U 0 is the rated voltage of the controlled system
  • m is the droop control coefficient corresponding to active power
  • n is the droop coefficient corresponding to reactive power
  • P is the output active power of the controlled system
  • Q is the output reactive power of the controlled system
  • P 0 is the rated active power of the controlled system
  • Q 0 is the rated reactive power of the controlled system.
  • step 2 is: setting the threshold value of the primary frequency modulation response action of the photovoltaic power station, and setting the frequency response during the primary frequency modulation process of the photovoltaic power station due to the existence of the dead zone of the inverter device.
  • a further improvement of the present invention lies in that the specific implementation method of step 3) is as follows: the threshold value of the primary frequency modulation response action of the photovoltaic power station set in step 2) is brought into the droop control equation of the photovoltaic grid-connected inverter in step 1), and the result is obtained
  • the primary frequency modulation droop control expression of the grid-connected inverter of the photovoltaic power station with dead zone is:
  • step 4 establish an adaptive function with the droop control coefficient m, the output active power and the target frequency, and obtain the expression of the adaptive droop coefficient as:
  • the primary frequency modulation droop control coefficient m of the photovoltaic power station grid-connected inverter is replaced by m i1 ; when the grid-side required frequency is 50.06 ⁇ f ⁇ 50.2, the photovoltaic power station grid-connected inverter
  • the first frequency modulation droop control coefficient of the droop control coefficient m is replaced by m i2 .
  • step 5 is: applying the adaptive droop coefficient obtained in step 4) to the primary frequency modulation droop control of the grid-connected inverter of the photovoltaic power station with dead zone in step 2).
  • the primary frequency modulation adaptive droop control expression of the grid-connected inverter of the photovoltaic power plant station is obtained as: The purpose of improving the droop control performance of photovoltaic primary frequency modulation is achieved by adjusting the droop coefficient in real time.
  • the present invention has the following beneficial effects:
  • the present invention adopts adaptive droop control in the photovoltaic primary frequency modulation droop control, which can realize real-time adjustment of the droop coefficient according to the target frequency.
  • the present invention establishes an adaptive primary frequency modulation droop control curve, reduces the power distribution error in the primary frequency modulation process, and avoids power oscillation in the adjustment process.
  • Figure 1 is a graph showing the active power-frequency droop characteristic curve of grid-connected inverters of photovoltaic power plants
  • Figure 2 is the primary frequency modulation droop control curve of the grid-connected inverter of the photovoltaic power station
  • FIG. 3 is a graph of the self-adaptive primary frequency modulation droop control curve of the grid-connected inverter of the photovoltaic power station proposed by the present invention
  • Figure 4 is the structure diagram of the grid-connected inverter of the photovoltaic power station and the self-adaptive primary frequency modulation droop control system;
  • Figure 5 is the dynamic simulation waveform of primary frequency modulation power of photovoltaic power station using traditional droop control
  • FIG. 6 is a dynamic simulation waveform of the primary frequency modulation power of the photovoltaic power station using the adaptive droop control proposed by the present invention.
  • a layer/element when referred to as being "on" another layer/element, it can be directly on the other layer/element or intervening layers/elements may be present therebetween. element.
  • a layer/element when a layer/element is “on” another layer/element in one orientation, then when the orientation is reversed, the layer/element can be "under” the other layer/element.
  • the droop control is the way to control the inverter by imitating the droop characteristics of the synchronous generator in the conventional generator set. Its sag formula is:
  • the output active power of the photovoltaic power station is inversely proportional to the output frequency of the system. As the active power continues to increase and is higher than the rated active power, the output frequency will continue to drop until it is lower than the rated frequency. Therefore, when the system re-enters a stable state, The frequency of the system will be lower than the normal value; on the contrary, when the output active power of the photovoltaic power station decreases, the frequency of the system will be higher than the rated value.
  • This process of controlling the output frequency by increasing or decreasing the active output is the "primary frequency modulation" in the conventional sense.
  • the primary frequency modulation droop control expression of grid-connected inverter of photovoltaic power station with dead zone can be obtained as:
  • the present invention proposes a novel adaptive droop control scheme, which responds to the primary frequency modulation of photovoltaic power plants by adaptively adjusting the droop coefficient, wherein the droop control coefficient m and the output active power and the target frequency establish an adaptive function, and the adaptive droop
  • the coefficients can be expressed as:
  • the primary frequency modulation droop control coefficient m of the photovoltaic power station grid-connected inverter is replaced by m i1 ; when the grid-side required frequency is 50.06 ⁇ f ⁇ 50.2, the photovoltaic power station grid-connected inverter
  • the first frequency modulation droop control coefficient of the droop control coefficient m is replaced by m i2 .
  • the primary frequency modulation adaptive droop control expression of the grid-connected inverter of the photovoltaic power station can be obtained as:
  • the simulation model of the adaptive primary frequency modulation droop control system of the photovoltaic power station grid-connected inverter is built under Matlab/Simulink, and the control system adopts the power and current double closed-loop control.
  • the outer loop of the control system is a power PI closed loop, and the inner loop is a current PI closed loop.
  • the effect of adding PI control is to make the steady state error between the reference and measured power equal to zero.
  • the power PI control output is the reference current, and this current is the input of the current PI control.
  • the internal controller regulates the output current of the photovoltaic inverter through PI control to ensure the safe operation of the power electronic switch.
  • the simulation parameters of the photovoltaic inverter are: the rated power is 15kW, the DC bus voltage is 380V, the switching frequency is equal to the sampling frequency of 10kHz, the inverter filter inductance is 4.7mH, the series equivalent resistance is 20 ⁇ , the DC side capacitance is 3.3mF, and the droop control parameters is: m is 1.5 ⁇ 10 -5 , n is 1.2 ⁇ 10 -5
  • the initial frequency of the inverter output is set to 50HZ, the target frequency is adjusted to 49.9HZ at 4s, and the target frequency is adjusted to 50.1HZ at 10s.
  • the output power of the photovoltaic inverter with traditional droop control is increased to 11.9kW due to the frequency adjustment to 49.9HZ at 4s; at 14s, the output active power is reduced to 10.2kW due to the frequency adjustment to 50.1HZ.
  • the initial frequency of the inverter output is set to 50HZ, the target frequency is adjusted to 49.9HZ at 4s, and the target frequency is adjusted to 50.1HZ at 10s.
  • the output power of the photovoltaic inverter using the adaptive droop control proposed in the present invention is 4s, the output active power increases to 11.5kW due to the frequency adjustment to 49.9HZ; in 10s, the output active power decreases due to the frequency adjustment to 50.1HZ to 10.6kW.
  • the output power waveform of the photovoltaic inverter using adaptive droop control is much smoother and can be kept stable after dynamic adjustment. Faced with the same frequency response conditions, the output power of adaptive droop control is much less than that of traditional droop control, and the power distribution error is controlled, which is more suitable for the primary frequency regulation of photovoltaic power plants.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Inverter Devices (AREA)

Abstract

一种提高光伏一次调频下垂控制性能的方法,包括步骤:1)建立模仿常规发电机组里同步发电机下垂外特性的光伏并网逆变器下垂控制方程;2)设置光伏发电场站一次调频响应动作门槛值;3)结合步骤1)和2),得到带死区的光伏发电场站并网逆变器一次调频下垂控制表达式;4)将下垂控制系数m与输出有功功率与目标频率建立自适应函数,得到自适应下垂系数表达式;5)结合步骤4)和2),得到光伏发电场站并网逆变器一次调频自适应下垂控制表达式,通过实时调节下垂系数达到提高光伏一次调频下垂控制性能的目的。采用自适应下垂控制在光伏一次调频下垂控制中,可以实现下垂系数根据目标频率实时调节。

Description

一种提高光伏一次调频下垂控制性能的方法 【技术领域】
本发明涉及一种提高光伏一次调频下垂控制性能的方法,该方法减少一次调频过程中功率分配误差,避免调节过程中的功率震荡。
【背景技术】
随着电网容量不断增加,区域电网结构变的复杂,为了提升电网频率的安全水平,发电机组需参与到电网系统频率调节工作中。传统火电、水电机组由具有旋转惯性的机械器件组成,并且将一次能源转换为电能需要经历一系列复杂过程,所以对频率响应速度较慢。相较于传统火电、水电机组,光伏发电场站因为可以快速调节有功出力进而改变上网频率,从而实现在并网点具备参与电网频率快速调整能力,近年来受到业内的广泛关注。
为了使光伏发电场站具备频率调节能力,在光伏发电场站利用相应的功率控制系统、单机或加装独立控制装置完成下垂特性控制。但是由于线路阻抗和电网频率波动的影响,传统下垂控制在一次调频过程中会存在较大的功率分配误差和功率震荡问题。
【发明内容】
本发明的目的在于提供一种提高光伏一次调频下垂控制性能的方法,该方法减少一次调频过程中功率分配误差,避免调节过程中的功率震荡。该方法是对下垂系数进行改进,根据输出功率自动调节有功功率下垂系数,实现提高光伏发电场站一次调频性能的目的。
为达到上述目的,本发明采用以下技术方案予以实现:
一种提高光伏一次调频下垂控制性能的方法,包括以下步骤:
1)建立模仿常规发电机组里同步发电机下垂外特性的光伏并网逆变器下垂控制方程;
2)设置光伏发电场站一次调频响应动作门槛值;
3)将步骤2)在设置的光伏发电场站一次调频响应动作门槛值带入步骤1)光伏并网逆变器下垂控制方程中,得到带死区的光伏发电场站并网逆变器一次调频下垂控制表达式;
4)将下垂控制系数m与输出有功功率与目标频率建立自适应函数,得到自适应下垂系数表达式;
5)将步骤4)得到的自适应下垂系数应用于步骤2)中带死区的光伏发电场站并网逆变器一次调频下垂控制中,得到光伏发电场站并网逆变器一次调频自适应下垂控制表达式,通过实时调节下垂系数达到提高光伏一次调频下垂控制性能的目的。
本发明进一步的改进在于,步骤1)建立模仿常规发电机组里同步发电机下垂外特性的光伏并网逆变器下垂控制方程为:
Figure PCTCN2020115474-appb-000001
其中:f是下垂控制输出频率;U下垂控制输出电压;f 0是被控系统额定频率;U 0是被控系统额定电压;m是有功功率对应下垂控制系数;n是无功功率对应下垂系数;P是被控系统输出有功功率;Q是被控系统输出无功功率;P 0是被控系统额定有功功率;Q 0是被控系统额定无功功率。
本发明进一步的改进在于,步骤2)的具体实现方法为:设置光伏发电场站一次调频响应动作门槛值,在光伏发电场站一次调频过程中因为逆变装置器死区的存在,设置频率响应动作门槛值f d1、f d2,通常f d1=49.94Hz、f d2=50.06Hz,当 下垂控制输出频率49.94Hz≤f≤50.06Hz时,下垂控制系统不动作。
本发明进一步的改进在于,步骤3)的具体实现方法为:将步骤2)在设置的光伏发电场站一次调频响应动作门槛值带入步骤1)光伏并网逆变器下垂控制方程中,得到带死区的光伏发电场站并网逆变器一次调频下垂控制表达式为:
Figure PCTCN2020115474-appb-000002
本发明进一步的改进在于,步骤4)的具体实现方法为:将下垂控制系数m与输出有功功率与目标频率建立自适应函数,得到自适应下垂系数表达式为:
Figure PCTCN2020115474-appb-000003
当网侧要求频率49.8≤f<49.94,光伏发电场站并网逆变器一次调频下垂控制系数m用m i1代替;当网侧要求频率50.06≤f<50.2,光伏发电场站并网逆变器一次调频下垂控制系数下垂控制系数m用m i2代替。
本发明进一步的改进在于,步骤5)的具体实现方法为:将步骤4)得到的自适应下垂系数应用于步骤2)中带死区的光伏发电场站并网逆变器一次调频下垂控制中,得到光伏发电场站并网逆变器一次调频自适应下垂控制表达式为:
Figure PCTCN2020115474-appb-000004
通过实时调节下垂系数达到提高光伏一次调频下垂控制性能的目的。
与现有技术相比,本发明具有以下有益效果:
1.本发明采用自适应下垂控制在光伏一次调频下垂控制中,可以实现下垂系数根据目标频率实时调节。
2.本发明建立自适应一次调频下垂控制曲线,减少一次调频过程中的功率分配误差,避免调节过程中的功率震荡。
【附图说明】
图1为光伏发电场站并网逆变器有功功率-频率下垂特性曲线图;
图2为光伏发电场站并网逆变器一次调频下垂控制曲线图;
图3为本发明所提光伏发电场站并网逆变器自适应一次调频下垂控制曲线图;
图4为光伏发电场站并网逆变器自适应一次调频下垂控制系统结构图;
图5为采用传统下垂控制的光伏发电场站一次调频功率动态仿真波形;
图6为采用本发明所提自适应下垂控制的光伏发电场站一次调频功率动态仿真波形。
【具体实施方式】
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,不是全部的实施例,而并非要限制本发明公开的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要的混淆本发明公开的概念。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
在附图中示出了根据本发明公开实施例的各种结构示意图。这些图并非是按 比例绘制的,其中为了清楚表达的目的,放大了某些细节,并且可能省略了某些细节。图中所示出的各种区域、层的形状及它们之间的相对大小、位置关系仅是示例性的,实际中可能由于制造公差或技术限制而有所偏差,并且本领域技术人员根据实际所需可以另外设计具有不同形状、大小、相对位置的区域/层。
本发明公开的上下文中,当将一层/元件称作位于另一层/元件“上”时,该层/元件可以直接位于该另一层/元件上,或者它们之间可以存在居中层/元件。另外,如果在一种朝向中一层/元件位于另一层/元件“上”,那么当调转朝向时,该层/元件可以位于该另一层/元件“下”。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
下面结合附图对本发明做进一步详细描述:
如图1所示在光伏发电场站中,通过模仿常规发电机组里同步发电机下垂外特性来对逆变器进行控制的方式就是下垂控制。其下垂公式为:
Figure PCTCN2020115474-appb-000005
式(1)中:f是下垂控制输出频率;U下垂控制输出电压;f 0是被控系统额定频率;U 0是被控系统额定电压;m是有功功率对应下垂控制系数;n是无功功率对应下垂系数;P是被控系统输出有功功率;Q是被控系统输出无功功率;P 0是被控系统额定有功功率;Q 0是被控系统额定无功功率。
光伏发电场站输出有功功率与系统输出频率成反比,随着有功功率不断增大以至于高出额定有功功率时,输出频率将不断下降直至低于额定频率,因此当系统重新进入平稳状态时,系统的频率将比正常值低;相反,光伏发电场站输出有功功率下降时,系统的频率将比额定值高。这种通过增加或减少有功输出达到控制输出频率的过程就是常规意义上的“一次调频”。
如图2所示,在光伏发电场站一次调频过程中因为逆变装置器死区的存在,需要设置频率响应动作门槛值f d1、f d2,通常f d1=49.94Hz、f d2=50.06Hz,当下垂控制输出频率49.94Hz≤f≤50.06Hz时,下垂控制系统不动作。根据逆变器的输出特性,在调频过程中光伏发电场站输出有功功率调节范围为:(1±10%)P 0,对应输出频率范围为49.8Hz-50.2Hz。
依据图2和公式(1)可以得到带死区的光伏发电场站并网逆变器一次调频下垂控制表达式为:
Figure PCTCN2020115474-appb-000006
如图3所示,在采用传统下垂控制的光伏发电场站一次调频过程中,网侧要求调节频率非固定值,且常常处于频繁调节状态下,但是由于传统下垂控制中下垂系数为恒定值,当输出频率发生波动时,难以实现较好的功率分配,常存在功 率分配误差,所以需要采用自适应调节下垂系数来减少功率匹配不准的问题。
基于此,本发明提出一种新型自适应下垂控制方案,通过自适应调节下垂系数来响应光伏发电场站一次调频,其中下垂控制系数m与输出有功功率与目标频率建立自适应函数,自适应下垂系数可以表示为:
Figure PCTCN2020115474-appb-000007
当网侧要求频率49.8≤f<49.94,光伏发电场站并网逆变器一次调频下垂控制系数m用m i1代替;当网侧要求频率50.06≤f<50.2,光伏发电场站并网逆变器一次调频下垂控制系数下垂控制系数m用m i2代替。
将式(3)计算得到的自适应系数带入式(2)中,可以得到光伏发电场站并网逆变器一次调频自适应下垂控制表达式为:
Figure PCTCN2020115474-appb-000008
如图4所示,在Matlab/Simulink下搭建光伏发电场站并网逆变器自适应一次调频下垂控制系统仿真模型,控制系统采用功率、电流双闭环控制。控制系统外环为功率PI闭环,内环为电流PI闭环。加入PI控制的作用是将参考和测量功率之间的稳态误差等于零。功率PI控制输出为参考电流,此电流是电流PI控制的输入。内部控制器通过PI控制调节光伏逆变器的输出电流,确保电力电子开关的安全运行。光伏逆变器仿真参数为:额定功率为15kW、直流母线电压为380V、开关频率等于采样频率为10kHz、逆变器滤波电感4.7mH、串联等效电阻20Ω、 直流侧电容3.3mF,下垂控制参数为:m为1.5×10 -5,n为1.2×10 -5
如图5所示,模仿光伏发电场站响应频率调节指令过程,设定逆变器输出初始频率为50HZ,在4s时调整目标频率为49.9HZ,在10s时调整目标频率为50.1HZ。采用传统下垂控制的光伏逆变器输出功率在4s时,由于频率调节至49.9HZ,输出有功功率增加至11.9kW;在14s时,由于频率调剂至50.1HZ,输出有功功率减少至10.2kW。采用传统下垂控制的光伏逆变器输出功率波形存在较多毛刺,这是由于模仿同步发电机特性,在起动阶段功率变化较大,传统控制系统无法对功率震荡进行抑制。
如图6所示,模仿光伏发电场站响应频率调节指令过程,设定逆变器输出初始频率为50HZ,在4s时调整目标频率为49.9HZ,在10s时调整目标频率为50.1HZ。采用本发明所提自适应下垂控制的光伏逆变器输出功率在4s时,由于频率调节至49.9HZ,输出有功功率增加至11.5kW;在10s时,由于频率调节至50.1HZ,输出有功功率减少至10.6kW。对比传统下垂控制输出功率波形,采用自适应下垂控制的光伏逆变器输出功率波形平滑许多,在动态调节后可以保持稳定。面对相同频率响应工况,自适应下垂控制的输出功率比传统下垂控制的输出功率调节量减少许多,功率分配误差得到控制,更适合于光伏发电场站一次调频工况中。
以上内容仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明权利要求书的保护范围之内。

Claims (6)

  1. 一种提高光伏一次调频下垂控制性能的方法,其特征在于,包括以下步骤:
    1)建立模仿常规发电机组里同步发电机下垂外特性的光伏并网逆变器下垂控制方程;
    2)设置光伏发电场站一次调频响应动作门槛值;
    3)将步骤2)在设置的光伏发电场站一次调频响应动作门槛值带入步骤1)光伏并网逆变器下垂控制方程中,得到带死区的光伏发电场站并网逆变器一次调频下垂控制表达式;
    4)将下垂控制系数m与输出有功功率与目标频率建立自适应函数,得到自适应下垂系数表达式;
    5)将步骤4)得到的自适应下垂系数应用于步骤2)中带死区的光伏发电场站并网逆变器一次调频下垂控制中,得到光伏发电场站并网逆变器一次调频自适应下垂控制表达式,通过实时调节下垂系数达到提高光伏一次调频下垂控制性能的目的。
  2. 根据权利要求1所述的一种提高光伏一次调频下垂控制性能的方法,其特征在于,步骤1)建立模仿常规发电机组里同步发电机下垂外特性的光伏并网逆变器下垂控制方程为:
    Figure PCTCN2020115474-appb-100001
    其中:f是下垂控制输出频率;U下垂控制输出电压;f 0是被控系统额定频率;U 0是被控系统额定电压;m是有功功率对应下垂控制系数;n是无功功率对应下垂系数;P是被控系统输出有功功率;Q是被控系统输出无功功率;P 0是被控系统额定有功功率;Q 0是被控系统额定无功功率。
  3. 根据权利要求2所述的一种提高光伏一次调频下垂控制性能的方法,其 特征在于,步骤2)的具体实现方法为:设置光伏发电场站一次调频响应动作门槛值,在光伏发电场站一次调频过程中因为逆变装置器死区的存在,设置频率响应动作门槛值f d1、f d2,通常f d1=49.94Hz、f d2=50.06Hz,当下垂控制输出频率49.94Hz≤f≤50.06Hz时,下垂控制系统不动作。
  4. 根据权利要求3所述的一种提高光伏一次调频下垂控制性能的方法,其特征在于,步骤3)的具体实现方法为:将步骤2)在设置的光伏发电场站一次调频响应动作门槛值带入步骤1)光伏并网逆变器下垂控制方程中,得到带死区的光伏发电场站并网逆变器一次调频下垂控制表达式为:
    Figure PCTCN2020115474-appb-100002
  5. 根据权利要求4所述的一种提高光伏一次调频下垂控制性能的方法,其特征在于,步骤4)的具体实现方法为:将下垂控制系数m与输出有功功率与目标频率建立自适应函数,得到自适应下垂系数表达式为:
    Figure PCTCN2020115474-appb-100003
    当网侧要求频率49.8≤f<49.94,光伏发电场站并网逆变器一次调频下垂控制系数m用m i1代替;当网侧要求频率50.06≤f<50.2,光伏发电场站并网逆变器一次调频下垂控制系数下垂控制系数m用m i2代替。
  6. 根据权利要求5所述的一种提高光伏一次调频下垂控制性能的方法,其特征在于,步骤5)的具体实现方法为:将步骤4)得到的自适应下垂系数应用于步骤2)中带死区的光伏发电场站并网逆变器一次调频下垂控制中,得到光伏 发电场站并网逆变器一次调频自适应下垂控制表达式为:
    Figure PCTCN2020115474-appb-100004
    通过实时调节下垂系数达到提高光伏一次调频下垂控制性能的目的。
PCT/CN2020/115474 2020-08-21 2020-09-16 一种提高光伏一次调频下垂控制性能的方法 WO2022036786A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010851169.3 2020-08-21
CN202010851169.3A CN112003333A (zh) 2020-08-21 2020-08-21 一种提高光伏一次调频下垂控制性能的方法

Publications (1)

Publication Number Publication Date
WO2022036786A1 true WO2022036786A1 (zh) 2022-02-24

Family

ID=73473158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/115474 WO2022036786A1 (zh) 2020-08-21 2020-09-16 一种提高光伏一次调频下垂控制性能的方法

Country Status (2)

Country Link
CN (1) CN112003333A (zh)
WO (1) WO2022036786A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116470531A (zh) * 2023-04-26 2023-07-21 东方电子股份有限公司 一种应用于光伏场站的频率主动支撑控制方法及装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112994038B (zh) * 2021-02-18 2023-06-16 国网陕西省电力公司电力科学研究院 一种新能源一次调频控制方法、系统和装置
CN113872221A (zh) * 2021-11-04 2021-12-31 许昌许继软件技术有限公司 一种新能源场站一次调频优化控制方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105226715A (zh) * 2015-11-05 2016-01-06 国家电网公司 一种改善频率动态响应的单级式光伏并网控制系统
CN107968417A (zh) * 2017-12-20 2018-04-27 长沙理工大学 一种三相两级式光伏系统参与电网频率调节的协调控制方法
CN109494762A (zh) * 2018-10-15 2019-03-19 国网陕西省电力公司电力科学研究院 基于多主站协调控制的光伏电站一次调频控制方法及系统
CN109755961A (zh) * 2019-01-25 2019-05-14 中国电力科学研究院有限公司 基于光伏电站秒级功率扰动的主动控制参数整定方法
CN110838728A (zh) * 2019-11-01 2020-02-25 国网山东省电力公司济宁供电公司 基于v2g变换器的配电网调频调压系统及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105226715A (zh) * 2015-11-05 2016-01-06 国家电网公司 一种改善频率动态响应的单级式光伏并网控制系统
CN107968417A (zh) * 2017-12-20 2018-04-27 长沙理工大学 一种三相两级式光伏系统参与电网频率调节的协调控制方法
CN109494762A (zh) * 2018-10-15 2019-03-19 国网陕西省电力公司电力科学研究院 基于多主站协调控制的光伏电站一次调频控制方法及系统
CN109755961A (zh) * 2019-01-25 2019-05-14 中国电力科学研究院有限公司 基于光伏电站秒级功率扰动的主动控制参数整定方法
CN110838728A (zh) * 2019-11-01 2020-02-25 国网山东省电力公司济宁供电公司 基于v2g变换器的配电网调频调压系统及方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NGUYEN HIEU XUAN; TSUJI TAKAO: "Voltage Violation Mitigation by Adaptive Droop Control of PV Inverter in Medium-Voltage Network", 2018 IEEE PES INNOVATIVE SMART GRID TECHNOLOGIES CONFERENCE EUROPE (ISGT-EUROPE), IEEE, 21 October 2018 (2018-10-21), pages 1 - 6, XP033472009, DOI: 10.1109/ISGTEurope.2018.8571743 *
SUN GANGHU: "Fast Response Scheme of Photovoltaic Frequency Based on Self-Adaptive Transient Droop Control", THERMAL POWER GENERATION, CN, vol. 48, no. 8, 31 August 2019 (2019-08-31), CN, pages 94 - 100, XP055902035, ISSN: 1002-3364, DOI: 10.19666/j.rlfd.201903037 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116470531A (zh) * 2023-04-26 2023-07-21 东方电子股份有限公司 一种应用于光伏场站的频率主动支撑控制方法及装置
CN116470531B (zh) * 2023-04-26 2024-02-06 东方电子股份有限公司 一种应用于光伏场站的频率主动支撑控制方法及装置

Also Published As

Publication number Publication date
CN112003333A (zh) 2020-11-27

Similar Documents

Publication Publication Date Title
WO2022036787A1 (zh) 一种利用自适应虚拟参数提高风电并网一次调频性能的方法
WO2022036786A1 (zh) 一种提高光伏一次调频下垂控制性能的方法
WO2022027717A1 (zh) 一种提高光伏发电低电压穿越能力的方法
CN107769257B (zh) 一种基于lcl滤波的光伏并网逆变器的变频控制方法
CN108306337B (zh) 一种基于下垂系数自适应调节的虚拟同步发电机控制方法
CN102904282B (zh) 一种基于储能单元中逆变器的微电网并网控制方法
CN106356884A (zh) 一种基于虚拟同步机的光伏并网控制方法、装置及系统
CN106253337B (zh) 一种用于镇定多台逆变器并网系统的阻抗适配器
CN109638881B (zh) 电网强度自适应优化的储能逆变器虚拟同步方法及系统
CN112886847B (zh) 一种基于阻抗分析法的三相lcl型并网逆变器设计方法
CN107681688B (zh) 具备vsg特征的并网变流器及其孤岛判别方法与装置
CN109873458A (zh) 一种无功电流参考值和有功电流参考值的调整方法及装置
CN116845924B (zh) 基于相角自生成策略的构网型风电场电压源控制方法
CN105162139A (zh) 电网电压跌落故障下风电系统无功功率综合优化控制方法
CN109842150A (zh) 基于虚拟同步机低电压穿越的控制方法
CN108879716B (zh) 直驱永磁风机的无功协调控制方法及系统
CN112350381A (zh) 一种pmsg风机mppt运行时的分时协调控制方法及系统
Tan et al. Research on primary frequency regulation of wind turbine based on new nonlinear droop control
CN106816889B (zh) 并网逆变器功率解耦方法及装置
CN108736517A (zh) 一种基于vsg的逆变型分布式电源自适应阻尼控制策略
CN112350382A (zh) 一种具有角频率补偿模块的储能有功调节方法
CN110460098B (zh) 基于虚拟质量块的风力机双质块轴系稳定控制方法
CN112701727A (zh) 一种基于半周期重复控制的模拟电池并网电流控制策略
CN116780615A (zh) 一种低惯量电网构网型vsg预同步控制系统及方法
CN107994603B (zh) 一种基于虚拟同步发电机故障穿越控制方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20949990

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20949990

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20949990

Country of ref document: EP

Kind code of ref document: A1