CN108879716B - 直驱永磁风机的无功协调控制方法及系统 - Google Patents

直驱永磁风机的无功协调控制方法及系统 Download PDF

Info

Publication number
CN108879716B
CN108879716B CN201810778801.9A CN201810778801A CN108879716B CN 108879716 B CN108879716 B CN 108879716B CN 201810778801 A CN201810778801 A CN 201810778801A CN 108879716 B CN108879716 B CN 108879716B
Authority
CN
China
Prior art keywords
grid
value
voltage
connected point
reactive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810778801.9A
Other languages
English (en)
Other versions
CN108879716A (zh
Inventor
任永峰
纪蔚涛
云平平
薛宇
廉茂航
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inner Mongolia University of Technology
Original Assignee
Inner Mongolia University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inner Mongolia University of Technology filed Critical Inner Mongolia University of Technology
Priority to CN201810778801.9A priority Critical patent/CN108879716B/zh
Publication of CN108879716A publication Critical patent/CN108879716A/zh
Application granted granted Critical
Publication of CN108879716B publication Critical patent/CN108879716B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • H02J3/1821Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/16Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by adjustment of reactive power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/10Flexible AC transmission systems [FACTS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electrical Variables (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

本发明公开了一种直驱永磁风机的无功协调控制方法及系统,该方法包括:接收检测得到的公共并网点的电压值;比较所述公共并网点的电压值与预设的并网点电压参考值;若所述公共并网点的电压值与预设的并网点电压参考值之间的差值位于预设范围内,则启用静止同步补偿器进行无功控制,同时网侧变流器继续工作在恒功率因数模式;若所述公共并网点的电压值与预设的并网点电压参考值之间的差值超出所述预设范围,切换直驱永磁风机网侧变流器工作状态,与静止同步补偿器联合进行无功控制。实施本发明能在并网点电压跌落/骤升时,直驱永磁风机向电网提供稳定的无功支撑,提升直驱式风电场的无功裕度和并网点电压的稳定性。

Description

直驱永磁风机的无功协调控制方法及系统
技术领域
本发明涉及风力发电机领域,特别涉及一种直驱永磁风机的无功协调控制方法及系统。
背景技术
风电渗透率的不断增加给电网的安全稳定运行和调度带来了不利影响。在电网发生故障时,风电场的故障穿越能力以及对公共并网点(point of common coupling,PCC)的电压支撑、无功补偿等问题受到了风电行业的广泛关注。目前变速恒频风电机组在风电装机总容量中占据主导地位,其所配备的变流器能够实现有功、无功的解耦控制,因此可作为风电场重要的无功源参与无功调节。我国现行的《风电场接入电力系统技术规定》中明确要求电网故障时要充分利用风电机组的无功容量及其调节能力对并网点进行无功支撑。国内外学者针对以双馈、直驱永磁风机为代表的变速恒频风机参与无功调节进行了大量研究。
各种研究报告中分析了双馈风机定子侧和网侧变流器无功调节的机理,根据两者无功调节能力制定其无功控制策略,当无功需求大于无功出力极限时,通过减小有功出力来扩大无功出力范围。此外,研究还指出直驱永磁风机由于配备了全功率变流器,无功调节能力较双馈风机更强,但其提出的网侧变流器控制策略受风电并网导则要求的无功电流的限制,无法在各种工况下充分利用直驱永磁风机的无功调节能力。其中,图1为配备了直流卸荷电路的直驱永磁风机拓扑结构。双PWM背靠背全功率变流器将发电机与电网隔离开来,使发电机转速摆脱了电网频率的约束,同时防止电网侧故障影响传递到发电机侧。机侧变流器将永磁同步发电机发出的幅值和频率变化的交流电整流成直流电,同时实现在不同风况下的最大功率跟踪;网侧变流器则将直流母线上的直流电逆变成与电网同频的三相交流电,同时稳定直流母线电压、调节向电网输出的有功和无功功率。直流卸荷电路由IGBT控制,当电网发生故障导致直流母线电压越限时投入直流卸荷电路,消耗掉在直流侧堆积的能量。
由于风机的无功调节能力受有功输出影响,因此仅靠风机的无功容量无法满足系统调节需求,还需在风电场集中配备补偿单元(详见论文“风电场中级联STATCOM(StaticSynchronous Compensator,简称静止同步补偿器)直流侧电压控制方法”)。现有相关文献大多针对双馈风机与补偿单元的协调控制,对直驱永磁风机涉及较少且研究内容不够详尽。直驱永磁风机因具有高运行效率、低维护成本、故障穿越能力强等优势,在大功率风电市场前景广阔,因此研究直驱永磁风机与补偿单元的无功协调控制具有重要意义。
发明内容
有鉴于此,本发明旨在提供一种直驱永磁风机的无功协调控制方法及系统,以实现在并网点电压跌落/骤升时,直驱永磁风机向电网提供稳定的无功支撑,提升直驱式风电场的无功裕度和并网点电压的稳定性。
具体而言,本发明提供一种直驱永磁风机的无功协调控制方法,包括步骤:
接收检测得到的公共并网点的电压值;
比较所述公共并网点的电压值与预设的并网点电压参考值;
若所述公共并网点的电压值与预设的并网点电压参考值之间的差值位于预设范围内,则启用静止同步补偿器进行无功控制,同时网侧变流器继续工作在恒功率因数模式;
若所述公共并网点的电压值与预设的并网点电压参考值之间的差值超出所述预设范围,切换直驱永磁风机网侧变流器工作状态,与静止同步补偿器联合进行无功控制。
进一步地,所述启用静止同步补偿器进行无功控制包括:
将公共并网点的电压值与预设的并网点电压参考值之间的差值经PI调节器得到静止同步补偿器的第一无功参考电流
Figure BDA0001732054750000021
将直流母线电压的实际值与直流母线电压的参考值之间的差值经PI调节器得到静止同步补偿器的有功参考电流
Figure BDA0001732054750000031
根据所述静止同步补偿器的第一无功参考电流
Figure BDA0001732054750000032
以及所述静止同步补偿器的有功参考电流
Figure BDA0001732054750000033
计算并生成第一SVPWM调制信号,进而由静止同步补偿器根据第一SVPWM调制信号进行无功控制。
进一步地,所述网侧变流器继续工作在恒功率因数模式,包括:
将直流母线电压的实际值与直流母线电压的参考值之间的差值经PI调节器得到网侧变流器的第一有功参考电流
Figure BDA0001732054750000034
所述第一有功参考电流
Figure BDA0001732054750000035
限幅于网侧变流器最大允许电流imax
网侧变流器的第一无功参考电流最大值为零;
所述网侧变流器根据继续所述第一有功参考电流
Figure BDA0001732054750000036
以及网侧变流器的第一无功参考电流
Figure BDA00017320547500000317
工作在恒功率因数模式。
进一步地,所述切换直驱永磁风机网侧变流器工作状态,包括:
根据
Figure BDA0001732054750000037
计算得到第一值,并根据
Figure BDA0001732054750000038
计算得到第二值,将第一值及第二值中的较大者作为网侧变流器的第二无功参考电流
Figure BDA0001732054750000039
其中,IN表示风机额定电流,up表示检测得到的公共并网点的电压标幺值,imax表示网侧变流器最大允许电流,
Figure BDA00017320547500000310
为网侧变流器的第二有功参考电流;
若所述第一值为所述较大者,则根据
Figure BDA00017320547500000311
计算得到网侧变流器的第二有功参考电流
Figure BDA00017320547500000312
若所述第二值为所述较大值,则将直流母线电压的实际值与直流母线电压的参考值之间的差值经PI调节器得到网侧变流器的第二有功参考电流
Figure BDA00017320547500000313
所述第二有功参考电流
Figure BDA00017320547500000314
限幅于网侧变流器最大允许电流imax
根据所述网侧变流器的第二有功参考电流
Figure BDA00017320547500000315
以及所述网侧变流器的第二无功参考电流
Figure BDA00017320547500000316
计算并生成第二SVPWM调制信号,进而由网侧变流器根据第二SVPWM调制信号进行无功控制。
进一步地,所述静止同步补偿器通过以下步骤与直驱永磁风机网侧变流器联合进行无功控制,具体包括:
将公共并网点的电压值与预设的并网点电压参考值之间的差值经PI调节器得到总的无功需求Qall
计算风电场内的所有直驱永磁风机的网侧变流器的无功可调总容量QGall_max
根据QS=Qall-kQGall_max计算静止同步补偿器的无功指令,其中,k为直驱永磁风机的无功功率折算到并网点的总损耗系数;
根据所述无功指令,利用
Figure BDA0001732054750000041
计算得到静止同步补偿器的第二无功参考电流
Figure BDA0001732054750000042
将直流母线电压的实际值与直流母线电压的参考值之间的差值经PI调节器得到静止同步补偿器的有功参考电流
Figure BDA0001732054750000043
所述静止同步补偿器根据其第二无功参考电流
Figure BDA0001732054750000044
以及有功参考电流
Figure BDA0001732054750000045
计算并生成第三SVPWM调制信号,进而根据第三SVPWM调制信号进行无功控制。
另一方面,本发明提供一种直驱永磁风机的无功协调控制系统,包括:无功协调控制装置、网侧变流器以及静止同步补偿器,所述无功协调控制装置分别与所述网侧变流器以及静止同步补偿器连接,其中:
所述无功协调控制装置,用于接收检测得到的公共并网点的电压值;比较所述公共并网点的电压值与预设的并网点电压参考值;若所述公共并网点的电压值与预设的并网点电压参考值之间的差值位于预设范围内,则启用所述静止同步补偿器进行无功控制,同时所述网侧变流器继续工作在恒功率因数模式;若所述公共并网点的电压值与预设的并网点电压参考值之间的差值超出所述预设范围,切换直驱永磁风机网侧变流器工作状态,与静止同步补偿器联合进行无功控制。
进一步地,所述静止同步补偿器包括:
第一无功计算单元,用于在所述公共并网点的电压值与预设的并网点电压参考值之间的差值位于预设范围内时,将公共并网点的电压值与预设的并网点电压参考值之间的差值经PI调节器得到静止同步补偿器的第一无功参考电流
Figure BDA0001732054750000051
第一有功计算单元,用于在所述公共并网点的电压值与预设的并网点电压参考值之间的差值位于预设范围内时,将直流母线电压的实际值与直流母线电压的参考值之间的差值经PI调节器得到静止同步补偿器的有功参考电流
Figure BDA0001732054750000052
第一功率调节单元,用于根据所述静止同步补偿器的第一无功参考电流
Figure BDA0001732054750000053
以及所述静止同步补偿器的有功参考电流
Figure BDA0001732054750000054
计算并生成第一SVPWM调制信号,进而由静止同步补偿器根据第一SVPWM调制信号进行无功控制。
进一步地,所述网侧变流器包括:
第二有功计算单元,用于在所述公共并网点的电压值与预设的并网点电压参考值之间的差值位于预设范围内时,将直流母线电压的实际值与直流母线电压的参考值之间的差值经PI调节器得到网侧变流器的第一有功参考电流
Figure BDA0001732054750000055
所述第一有功参考电流
Figure BDA0001732054750000056
限幅于网侧变流器最大允许电流imax
第二无功计算单元,用于在所述公共并网点的电压值与预设的并网点电压参考值之间的差值位于预设范围内时,网侧变流器的第一无功参考电流
Figure BDA0001732054750000057
为零;
第二功率调节单元,用于根据继续所述第一有功参考电流
Figure BDA0001732054750000058
以及网侧变流器的第一无功参考电流最大值
Figure BDA0001732054750000059
工作在恒功率因数模式。
进一步地,所述网侧变流器还包括:
第三无功计算单元,用于在所述公共并网点的电压值与预设的并网点电压参考值之间的差值超出所述预设范围时,根据
Figure BDA00017320547500000510
第一值,并根据
Figure BDA00017320547500000511
计算得到第二值,将第一值及第二值中的较大者作为网侧变流器的第二无功参考电流
Figure BDA0001732054750000061
其中,IN表示风机额定电流,up表示检测得到的公共并网点的电压标幺值,imax表示网侧变流器最大允许电流,
Figure BDA0001732054750000062
为网侧变流器的第二有功参考电流;
第三有功计算单元,用于在所述公共并网点的电压值与预设的并网点电压参考值之间的差值超出所述预设范围时,若所述第一值为所述较大者,则根据
Figure BDA0001732054750000063
计算得到网侧变流器的第二有功参考电流
Figure BDA0001732054750000064
若所述第二值为所述较大值,则将直流母线电压的实际值与直流母线电压的参考值之间的差值经PI调节器得到网侧变流器的第二有功参考电流
Figure BDA0001732054750000065
所述第二有功参考电流
Figure BDA0001732054750000066
限幅于网侧变流器最大允许电流imax
第三功率调节单元,用于根据所述网侧变流器的第二有功参考电流
Figure BDA0001732054750000067
以及所述网侧变流器的第二无功参考电流
Figure BDA0001732054750000068
计算并生成第二SVPWM调制信号,进而由网侧变流器根据第二SVPWM调制信号进行无功控制。
进一步地,所述静止同步补偿器还包括:
第四无功计算单元,用于在所述公共并网点的电压值与预设的并网点电压参考值之间的差值超出所述预设范围时,将公共并网点的电压值与预设的并网点电压参考值之间的差值经PI调节器得到总的无功需求Qall;计算风电场内的所有直驱永磁风机的网侧变流器的无功可调总容量QGall_max;根据QS=Qall-kQGall_max计算静止同步补偿器的无功指令,其中,k为直驱永磁风机的无功功率折算到并网点的总损耗系数;根据所述无功指令,利用
Figure BDA0001732054750000069
计算得到静止同步补偿器的第二无功参考电流
Figure BDA00017320547500000610
第四有功计算单元,用于在所述公共并网点的电压值与预设的并网点电压参考值之间的差值超出所述预设范围时,将直流母线电压的实际值与直流母线电压的参考值之间的差值经PI调节器得到静止同步补偿器的有功参考电流
Figure BDA00017320547500000611
第四功率调节单元,用于根据所述静止同步补偿器的第二无功参考电流
Figure BDA00017320547500000612
以及所述静止同步补偿器的有功参考电流
Figure BDA00017320547500000613
计算并生成第三SVPWM调制信号,进而根据第三SVPWM调制信号进行无功控制。
本发明的直驱永磁风机的无功协调控制方法及系统,在电网发生故障时检测并网点电压,根据电压值的大小划分为两种工作模式:当公共并网点的电压值与预设的并网点电压参考值之间的差值位于预设范围内(即并网点电压变化幅度小于设定阈值时),仅启用STATCOM进行无功支撑,风机工作在恒功率因数模式;当公共并网点的电压值与预设的并网点电压参考值之间的差值超出所述预设范围(即并网点电压变化幅度大于设定阈值)时则切换风机的工作状态,进行快速无功支撑,提升了直驱式风电场的无功裕度和并网点电压的稳定性。
附图说明
并入到说明书中并且构成说明书的一部分的附图示出了本发明的实施例,并且与描述一起用于解释本发明的原理。在这些附图中,类似的附图标记用于表示类似的要素。下面描述中的附图是本发明的一些实施例,而不是全部实施例。对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,可以根据这些附图获得其他的附图。
图1为现有直驱永磁风机拓扑结构图;
图2为直驱永磁风机PQ输出极限曲线图;
图3为STATCOM主电路拓扑图;
图4为本发明实施例提供的一种直驱永磁风机的无功协调控制方法的流程图;
图5为本发明实施例提供的另一种直驱永磁风机的无功协调控制方法的流程图;
图6为本发明实施例提供的一种直驱永磁风机的无功协调控制系统的控制框图;
图7为本发明实施例提供的另一种直驱永磁风机的无功协调控制系统的控制框图;
图8为本发明实施例提供的一种直驱永磁风机的无功协调控制系统的仿真模型拓扑结构;
图9为本发明实施例提供的STATCOM无功功率的波形示意图;
图10为本发明实施例提供的PCC电压的波形示意图;
图11为本发明实施例提供的直驱永磁风机的无功协调控制系统在无协调控制时系统仿真波形图;
图12为本发明实施例提供的直驱永磁风机的无功协调控制系统在有协调控制时系统仿真波形图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
在解释本申请各个实施例之前,发明人对本申请的相关技术进行了深入的研究,具体详述如下:
(1)网侧变流器在dq坐标系下的数学模型
选择电网电压作为矢量控制系统的定向矢量,将电网电压矢量eg定在两相同步旋转dq坐标系的d轴上,逆时针转90°即为q轴,它垂直于矢量eg,则有ed=Eg、eq=0,其中Eg为电网电压矢量eg的幅值。则基于电网电压定向的网侧变流器在dq坐标系下的数学模型为:
Figure BDA0001732054750000081
此时网侧变流器输出到电网的有功功率和无功功率可表示为:
Figure BDA0001732054750000091
由公式(2)可看出基于电网电压定向,能够实现有功电流与无功电流的解耦控制。通过控制d轴电流来控制有功功率,控制q轴电流即控制无功功率。Pg为正说明网侧变流器工作在整流模式,从电网吸收有功;Pg为负说明网侧变流器工作在逆变模式,向电网输送有功。Qg为正说明变流器向电网发出感性无功;Qg为负则向电网发出容性无功;Qg等于0则说明风机工作在单位功率因数模式。
(2)直驱永磁风机无功调节能力
电网正常情况下风机运行在恒功率因数模式,无功电流参考值
Figure BDA0001732054750000094
取为0;在电网发生故障时直流卸荷电路将直流母线电压限制于最大值(本申请取为1.1pu),网侧变流器有功电流参考值
Figure BDA0001732054750000092
通过直流电压外环PI调节器得到并限幅于网侧变流器最大允许电流imax(本申请取为1.1pu),而无功参考电流最大值通过公式(3)得到。
Figure BDA0001732054750000093
从公式(3)可以看出,此时网侧变流器的无功调节能力随着有功出力的大小而发生变化,由此可得直驱永磁风机的PQ输出极限曲线如图2所示。该曲线是一个以(0,0)为圆心、以1.5Egimax(额定电网电压下)为半径的半圆。曲线在第一象限的部分为有功-感性无功可调区,第二象限的部分为有功-容性无功可调区;点A/B分别为感性/容性无功的理论可调极限点。风电系统在通过合理的控制有功电流以及直流卸荷电路的保护下,始终处在安全范围内,同时最大限度地利用永磁直驱风机的无功调节能力来满足电网对于无功的需求。当无功电流小于并网导则要求时,则以并网导则作为无功参考。
STATCOM是当今无功补偿领域最新技术的代表,其主电路拓扑如图3所示。三相全控电压源型变流电路采用PWM控制,可输出电压大小、频率及相位均可控的三相交流电压,经电感L接至电网。控制六个开关器件使变流器交流侧输出电压的频率等于电网电压频率,当调控输出电压与交流电网电压同相时,变流器向电网输出的电流与电网电压相差90°,变流器只输出无功电流,相当于一个无功发生器。当输出电压高于电网电压时,变流器输出的无功电流滞后90°并向电网输出感性无功;反之则向电网输出容性无功。理想条件下STATCOM不从电网吸收有功,但在实际运行中STATCOM存在有功损耗,这将导致图3中直流电压持续降低。为维持直流电压稳定,适当的调节输出电压滞后于电网电压的相位角δ,使电网向STATCOM输入正的有功电流。其在dq坐标系下的数学模型与直驱永磁风机网侧变流器具有高度一致性。
下面结合附图详细说明本发明实施涉及的直驱永磁风机的无功协调控制方法及系统。
参见图4所示,本发明实施例提供的一种直驱永磁风机的无功协调控制方法包括步骤:
步骤401:接收检测得到的公共并网点的电压值;
步骤403:比较所述公共并网点的电压值与预设的并网点电压参考值,得到二者之间的差值;
步骤405:判断该差值是否位于预设范围内?
步骤407:若所述公共并网点的电压值与预设的并网点电压参考值之间的差值位于预设范围内,则启用静止同步补偿器进行无功控制,同时网侧变流器继续工作在恒功率因数模式;
步骤409:若所述公共并网点的电压值与预设的并网点电压参考值之间的差值超出所述预设范围,切换直驱永磁风机网侧变流器工作状态,与静止同步补偿器联合进行无功控制。
具体地,所述启用静止同步补偿器进行无功控制包括:
将公共并网点的电压值与预设的并网点电压参考值之间的差值经PI调节器得到静止同步补偿器的第一无功参考电流
Figure BDA0001732054750000101
将直流母线电压的实际值与直流母线电压的参考值之间的差值经PI调节器得到静止同步补偿器的有功参考电流
Figure BDA0001732054750000111
根据所述静止同步补偿器的第一无功参考电流
Figure BDA0001732054750000112
以及所述静止同步补偿器的有功参考电流
Figure BDA0001732054750000113
计算并生成第一SVPWM调制信号,进而由静止同步补偿器根据第一SVPWM调制信号进行无功控制。
具体地,所述网侧变流器继续工作在恒功率因数模式,包括:
将直流母线电压的实际值与直流母线电压的参考值之间的差值经PI调节器得到网侧变流器的第一有功参考电流
Figure BDA0001732054750000114
所述第一有功参考电流
Figure BDA0001732054750000115
限幅于网侧变流器最大允许电流imax
网侧变流器的第一无功参考电流
Figure BDA0001732054750000116
为零;
所述网侧变流器根据继续所述第一有功参考电流
Figure BDA0001732054750000117
以及网侧变流器的第一无功参考电流
Figure BDA0001732054750000118
工作在恒功率因数模式。
具体地,所述切换直驱永磁风机网侧变流器工作状态,包括:
根据
Figure BDA0001732054750000119
计算得到第一值,并根据
Figure BDA00017320547500001110
计算得到第二值,将第一值及第二值中的较大者作为网侧变流器的第二无功参考电流
Figure BDA00017320547500001111
其中,IN表示风机额定电流,up表示检测得到的公共并网点的电压标幺值,即为PCC实测电压标幺值,imax表示网侧变流器最大允许电流,
Figure BDA00017320547500001112
为网侧变流器的第二有功参考电流;
若所述第一值为所述较大者,则根据
Figure BDA00017320547500001113
计算得到网侧变流器的第二有功参考电流
Figure BDA00017320547500001114
若所述第二值为所述较大值,则将直流母线电压的实际值与直流母线电压的参考值之间的差值经PI调节器得到网侧变流器的第二有功参考电流
Figure BDA00017320547500001115
所述第二有功参考电流
Figure BDA00017320547500001116
限幅于网侧变流器最大允许电流imax
根据所述网侧变流器的第二有功参考电流
Figure BDA00017320547500001117
以及所述网侧变流器的第二无功参考电流
Figure BDA00017320547500001118
计算并生成第二SVPWM调制信号,进而由网侧变流器根据第二SVPWM调制信号进行无功控制。
具体地,所述静止同步补偿器通过以下步骤与直驱永磁风机网侧变流器联合进行无功控制,具体包括:
将公共并网点的电压值与预设的并网点电压参考值之间的差值经PI调节器得到总的无功需求Qall
计算风电场内的所有直驱永磁风机的网侧变流器的无功可调总容量QGall_max
根据QS=Qall-kQGall_max计算静止同步补偿器的无功指令,其中,k为直驱永磁风机的无功功率折算到并网点的总损耗系数;
根据所述无功指令,利用
Figure BDA0001732054750000121
计算得到静止同步补偿器的第二无功参考电流
Figure BDA0001732054750000122
将直流母线电压的实际值与直流母线电压的参考值之间的差值经PI调节器得到静止同步补偿器的有功参考电流
Figure BDA0001732054750000123
所述静止同步补偿器根据其第二无功参考电流
Figure BDA0001732054750000124
以及有功参考电流
Figure BDA0001732054750000125
计算并生成第三SVPWM调制信号,进而根据第三SVPWM调制信号进行无功控制。
本实施例提出一种带有直流卸荷电路的直驱永磁风机与STATCOM双模式无功协调控制策略,其在电网发生故障时检测并网点电压水平,整定风电场无功需求,协调直驱永磁风机和STATCOM分模式共同对并网点进行无功支撑。充分利用直驱永磁风机的无功调节能力,提升并网点电压稳定性和风电场无功裕度。
在改进的直驱永磁风机网侧变流器控制策略下,风电场装设的STATCOM和直驱永磁风机共同作为风电场的无功源对PCC进行无功支撑。二者的无功协调控制策略主要遵循以下几个原则:
(1)以风电场公共并网点电压水平为控制目标,提升PCC电压的稳定性以及风电场无功裕度。
(2))对网侧变流器的工作模式切换设定一个阈值,当PCC电压变化幅度在阈值以内时,不切换网侧变流器的工作状态,仅启用STATCOM进行无功支撑;当电压变化幅度超过阈值,则立即切换网侧变流器进入无功补偿模式,联合STATCOM进行无功支撑。应优先利用风机的无功调节能力,以STATCOM作为补充。
综合考虑以上原则,提出的二者无功协调控制策略流程图如图5所示,图5为本发明实施例提供的另一种直驱永磁风机的无功协调控制方法的流程图;图5是图4所示方法的一种优选方式,如图5所示,其包括:
(1)在协调控制系统中,首先将PCC实测电压标幺值up(即PCC实测电压经过标幺处理后的值)与参考值
Figure BDA0001732054750000133
(具体可以理解参考值经过标幺处理的值,如为1)进行比较并进入模式判断环节,即
Figure BDA0001732054750000131
(可以理解为Δu为
Figure BDA0001732054750000132
乘以100%的百分数);
(2)根据我国现行的风电并网规定要求,正常运行方式下并网点电压正负偏差绝对值之和不超过标称值的10%,所以若此时的Δu小于5%,则选择下通道(图7中协调控制装置的下通道);若Δu大于5%,则选择上通道(图7中协调控制装置的上通道)。
(3)在下通道中,仅启用STATCOM进行无功支撑,将所得差值Δu经PI调节器F1得到STATCOM的无功参考电流
Figure BDA0001732054750000134
进而由STATCOM根据无功参考电流
Figure BDA0001732054750000135
进行控制执行;风机继续工作在恒功率因数模式;
(4)在上通道中,将所得差值Δu经PI调节器F2得到总的无功需求Qall并进入无功分配环节。
(5)在无功分配环节,直驱永磁风机将切换到无功补偿模式,首先计算所有风机网侧变流器的无功可调总容量QGall_max。由于风机发出的无功功率在箱式变压器、送出线路以及区域性负载上均有所损耗,因此设损耗系数为k,则STATCOM的无功指令为:
QS=Qall-kQGall_max (4)
下面分别分析在下通道中风机网侧变流器与STATCOM各自的控制策略。
(1)风机网侧变流器控制策略:
如图5所示,风机有功电流参考值
Figure BDA0001732054750000141
分为上下两通道:在上通道中,
Figure BDA0001732054750000142
通过直流电压外环PI调节器得到并限幅于变流器最大允许值(1.1pu);在下通道中
Figure BDA0001732054750000143
通过公式(5)计算得到。
Figure BDA0001732054750000144
而无功电流参考值
Figure BDA0001732054750000145
分为上中下三个通道:电网正常情况下网侧变流器
Figure BDA0001732054750000146
为0,对应无功上通道;电网故障情况下,若直流电压外环尚能控制住直流母线电压,且此时通过公式(3)计算得到的无功电流参考值满足并网导则的要求,则选择无功中间通道;若直流电压外环已无法控制住直流母线电压,
Figure BDA0001732054750000147
被调节到最大允许值,风机已没有无功调节余量,则
Figure BDA0001732054750000148
按并网导则由公式(6)得到并选择无功下通道,此时对应
Figure BDA0001732054750000149
选择有功下通道(参考图7)的情况,无功优先,有功受限。
Figure BDA00017320547500001410
Figure BDA00017320547500001411
和idg
Figure BDA00017320547500001412
和iqg的差值经过PI调节器得到Ldidg/dt、Ldiqg/dt,输出端电压指令
Figure BDA00017320547500001413
由公式(1)计算得到并最终生成SVPWM调制信号。
(2)STATCOM控制策略:
如图7所示,STATCOM有功电流参考值
Figure BDA00017320547500001414
通过直流电压外环PI调节器得到。在电网电压出现小幅波动时,STATCOM接收协调控制系统的无功参考电流
Figure BDA00017320547500001415
当处于电网故障模式时,STATCOM接收风电场无功协调控制系统的无功指令,则此时的
Figure BDA00017320547500001416
由公式(7)得到,其中Eg为电网相电压幅值。
Figure BDA00017320547500001417
Figure BDA00017320547500001418
和ids
Figure BDA00017320547500001419
和iqs的差值经PI调节器得到Ldids/dt、Ldiqs/dt,STATCOM的输出端电压指令
Figure BDA00017320547500001420
以及幅值、功角指令
Figure BDA00017320547500001421
δ*,根据dq坐标系下的数学模型由公式(8)、(9)计算得到并最终生成SVPWM调制信号。
Figure BDA0001732054750000151
Figure BDA0001732054750000152
本申请为验证方案的实际效果,还进行了协调控制仿真分析,具体如下:
(1)仿真建模
在matlab/simulink环境下搭建了整体仿真模型,其拓扑结构如图8所示。直驱式风电场由两组风机组成,额定容量为20MW,每组含5台直驱永磁风机。单台风机额定功率为2MW,额定风速为13m/s,直流母线额定电压为1.2kV。考虑风机分布位置不同造成的风速差异影响,在1.2秒的仿真时间内,设定2组风机分别工作在13m/s以及11m/s的恒定风速下。风机出口额定电压为690V,每台风机配备一台箱式变压器升压至35kV,经线路l1、l2以及升压变压器T4接入220kV电网。35kV母线上连接有区域性负荷,STATCOM配置在公共并网点,结合风电场容量及实际需求,其额定容量为6Mvar。
(2)仿真分析
首先设置电网在0.2秒和0.7秒分别发生幅度为-/+4%的电压波动,持续时间均为200ms。根据本文所提出的无功协调控制策略,风机网侧变流器检测到的PCC电压变化没有超出阈值,控制风机继续工作在恒功率因数模式下。此时仅由STATCOM对PCC电压进行快速的无功支撑,STATCOM的无功动态响应与PCC电压的变化情况分别如图9及图10所示。
从图9及图10中可以看出,STATCOM在电压波动期间能够进行快速的无功响应,响应时间约为15ms,分别发出5.4Mvar的容性无功与5.4var的感性无功以支撑PCC电压;在STATCOM的无功支撑下,PCC电压快速恢复了稳定。
随后设置电网在0.2秒和0.7秒分别发生故障导致PCC三相电压对称跌落40%/骤升30%,故障持续时间均为200ms,在无/有协调控制条件下分别对系统进行仿真分析。图11和图12分别为无/有协调控制时系统仿真波形。
在无协调控制的情况下:当0.2秒PCC三相电压对称跌落40%,由图11可以看出由于此时风机工作在恒功率因数模式下没有参与无功调节。所有无功需求都由STATCOM来承担,而STATCOM由于最大电流限制达到了无功调节上限,输出约3.9Mvar的容性无功,此时PCC电压被迅速抬升到0.64pu。当0.7秒PCC电压对称骤升30%,STATCOM同样由于最大电流限制达到了无功调节的上限,稳定输出约7.5MVA的感性无功,而此时PCC点电压被迅速降低到1.26pu。
在有协调控制的情况下,当0.2秒PCC三相电压对称跌落40%。此时网侧变流器检测到PCC电压的跌落幅度超过了阈值,立即切换到低电压补偿模式。从图12中可以看出,两组风机由于工作在不同风速下,导致其运行状态和无功输出不同:第一组风机工作在13m/s额定风速下,其网侧有功电流在正常运行时就已达到额定值,因此电压跌落时直流电压闭环会迅速将有功电流参考值调至1.1pu,无功电流可调量为0,此时无法满足并网导则的要求,因此网侧变流器切换到有功受限,无功优先模式,以公式(6)发出约1.8Mvar的容性无功。有功电流参考值则按公式(5)计算,有功输出受限导致直流电压迅速越限,此时风机的直流卸荷电路导通,从图12中可以看出直流电压被维持在1.32kV(1.1pu)的最大允许值;第二组风机工作在11m/s风速下,其直流电压闭环有功电流可调余量较大,此时按公式(3)得到无功电流大于并网导则的要求,发出约4.4Mvar的容性无功,而经调节直流电压逐渐下降。整个风电场乘以折损系数后联合STATCOM向PCC提供约9.9Mvar的无功支撑,此时PCC电压被抬升到0.7pu,对比图11比无协调控制时提高了0.06pu。当0.7秒PCC电压对称骤升30%,此时风机立即切换到高电压补偿模式。由于电压骤升状态下风机有功电流会减小,因此两组风机都可按公式(3)输出最大感性无功电流,分别约为8.4Mvar和11.1Mvar。整个风电场乘以折损系数后联合STATCOM共同向PCC提供约21.1Mvar的无功支撑。除电网电压骤升和恢复瞬间风机直流电压出现波动外,都基本稳定在额定值附近。对比图11可以看出STATCOM比无协调控制时输出减少到2.8Mvar,而PCC电压下降到1.18pu,比无协调控制时降低了0.08pu。
综上仿真结果可以得出如下结论:
(1)直流卸荷电路将风机直流母线电压限制在最大允许值,有功电流参考值通过直流电压闭环得到并限幅于网侧变流器最大输出电流;当风电机组运行在不同工况下时,其对应的无功电流计算公式也不同。
(2)通过改进直驱永磁风机网侧全功率变流器的控制策略,可使其在并网点电压跌落/骤升时由恒功率因数模式迅速切换到相应的无功补偿模式,向电网提供稳定的无功支撑。
(3)所提出的协调控制策略通过电网故障时在STATCOM与直驱永磁风机间分配无功需求,能够充分利用直驱永磁风机的无功调节能力,有助于提升风电场的无功裕度和并网点电压稳定性,节省补偿单元配置。
图6为本发明实施例提供的一种直驱永磁风机的无功协调控制系统的控制框图;图1-图5以及图7-图12所示实施例的解释说明均可以应用于本实施例。如图6所示,一种直驱永磁风机的无功协调控制系统,包括:无功协调控制装置62、网侧变流器60以及静止同步补偿器64,所述无功协调控制装置62分别与所述网侧变流器60以及静止同步补偿器64连接,其中,
所述无功协调控制装置62,用于接收检测得到的公共并网点的电压值;比较所述公共并网点的电压值与预设的并网点电压参考值;若所述公共并网点的电压值与预设的并网点电压参考值之间的差值位于预设范围内,则启用所述静止同步补偿器进行无功控制,同时所述网侧变流器继续工作在恒功率因数模式;若所述公共并网点的电压值与预设的并网点电压参考值之间的差值超出所述预设范围,切换直驱永磁风机网侧变流器工作状态,与静止同步补偿器联合进行无功控制。
具体地,所述静止同步补偿器64包括:
第一无功计算单元645,用于在所述公共并网点的电压值与预设的并网点电压参考值之间的差值位于预设范围内时,将公共并网点的电压值与预设的并网点电压参考值之间的差值经PI调节器得到静止同步补偿器的第一无功参考电流
Figure BDA0001732054750000181
第一有功计算单元641,用于在所述公共并网点的电压值与预设的并网点电压参考值之间的差值位于预设范围内时,将直流母线电压的实际值与直流母线电压的参考值之间的差值经PI调节器得到静止同步补偿器的有功参考电流
Figure BDA0001732054750000182
第一功率调节单元643,用于根据所述静止同步补偿器的第一无功参考电流
Figure BDA0001732054750000183
以及所述静止同步补偿器的有功参考电流
Figure BDA0001732054750000184
计算并生成第一SVPWM调制信号,进而由静止同步补偿器根据第一SVPWM调制信号进行无功控制。
进一步地,所述网侧变流器60包括:
第二有功计算单元601,用于在所述公共并网点的电压值与预设的并网点电压参考值之间的差值位于预设范围内时,将直流母线电压的实际值与直流母线电压的参考值之间的差值经PI调节器得到网侧变流器的第一有功参考电流
Figure BDA0001732054750000185
所述第一有功参考电流
Figure BDA0001732054750000186
限幅于网侧变流器最大允许电流imax
第二无功计算单元605,用于在所述公共并网点的电压值与预设的并网点电压参考值之间的差值位于预设范围内时,网侧变流器的第一无功参考电流
Figure BDA0001732054750000187
为零;
第二功率调节单元603,用于根据继续所述第一有功参考电流
Figure BDA00017320547500001811
以及网侧变流器的第一无功参考电流,工作在恒功率因数模式。
进一步地,所述网侧变流器60包括:
第三无功计算单元602,用于在所述公共并网点的电压值与预设的并网点电压参考值之间的差值超出所述预设范围时,根据
Figure BDA0001732054750000188
第一值,并根据
Figure BDA0001732054750000189
计算得到第二值,将第一值及第二值中的较大者作为网侧变流器的第二无功参考电流
Figure BDA00017320547500001810
第三有功计算单元606,用于在所述公共并网点的电压值与预设的并网点电压参考值之间的差值超出所述预设范围时,若所述第一值为所述较大者,根据
Figure BDA0001732054750000191
计算得到网侧变流器的第二有功参考电流
Figure BDA0001732054750000192
若所述第二值为所述较大值,则将直流母线电压的实际值与直流母线电压的参考值之间的差值经PI调节器得到网侧变流器的第二有功参考电流
Figure BDA0001732054750000193
所述第二有功参考电流
Figure BDA0001732054750000194
限幅于网侧变流器最大允许电流imax;;
第三功率调节单元604,用于根据所述网侧变流器的第二有功参考电流
Figure BDA0001732054750000195
以及所述网侧变流器的第二无功参考电流
Figure BDA0001732054750000196
计算并生成第二SVPWM调制信号,进而由网侧变流器根据第二SVPWM调制信号进行无功控制。
进一步地,所述静止同步补偿器64包括:
第四无功计算单元642,用于在所述公共并网点的电压值与预设的并网点电压参考值之间的差值超出所述预设范围时,将公共并网点的电压值与预设的并网点电压参考值之间的差值经PI调节器得到总的无功需求Qall;计算风电场内的所有直驱永磁风机的网侧变流器的无功可调总容量QGall_max;根据QS=Qall-kQGall_max计算静止同步补偿器的无功指令,其中,k为直驱永磁风机折算到并网点的无功功率的总损耗系数;根据所述无功指令,利用
Figure BDA0001732054750000197
计算得到静止同步补偿器的第二无功参考电流
Figure BDA0001732054750000198
第四有功计算单元646,用于在所述公共并网点的电压值与预设的并网点电压参考值之间的差值超出所述预设范围时,将直流母线电压的实际值与直流母线电压的参考值之间的差值经PI调节器得到静止同步补偿器的有功参考电流
Figure BDA0001732054750000199
第四功率调节单元644,用于根据所述静止同步补偿器的第二无功参考电流
Figure BDA00017320547500001910
以及所述静止同步补偿器的有功参考电流
Figure BDA00017320547500001911
计算并生成第三SVPWM调制信号,进而根据第三SVPWM调制信号进行无功控制。
本实施例提出一种STATCOM与直驱永磁风机间的无功协调控制策系统,其划分为两种工作模式:当并网点电压变化幅度小于设定阈值时,仅启用STATCOM进行无功支撑,风机工作在恒功率因数模式;当并网点电压变化幅度大于设定阈值时则切换风机的工作状态,并将无功需求在二者之间进行协调分配且优先利用风机的无功调节能力,进行快速无功支撑,提升了直驱式风电场的无功裕度和并网点电压的稳定性,节省了补偿单元配置。并对多种工况进行仿真,仿真结果验证了该协调控制策略的有效性。
本领域普通技术人员可以理解,实现上述实施例的全部或者部分步骤/单元/模块可以通过程序指令相关的硬件来完成,前述程序可以存储于计算机可读取存储介质中,该程序在执行时,执行包括上述实施例各单元中对应的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光碟等各种可以存储程序代码的介质。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (2)

1.一种直驱永磁风机的无功协调控制方法,其特征在于,所述方法包括步骤:
接收检测得到的公共并网点的电压值;
比较所述公共并网点的电压值与预设的并网点电压参考值;
若所述公共并网点的电压值与预设的并网点电压参考值之间的差值位于预设范围内,则启用静止同步补偿器进行无功控制,同时网侧变流器继续工作在恒功率因数模式;
若所述公共并网点的电压值与预设的并网点电压参考值之间的差值超出所述预设范围,切换直驱永磁风机网侧变流器工作状态,与静止同步补偿器联合进行无功控制,
所述启用静止同步补偿器进行无功控制包括:
将公共并网点的电压值与预设的并网点电压参考值之间的差值经PI调节器得到静止同步补偿器的第一无功参考电流
Figure FDA0003800076470000011
将直流母线电压的实际值与直流母线电压的参考值之间的差值经PI调节器得到静止同步补偿器的有功参考电流
Figure FDA0003800076470000012
根据所述静止同步补偿器的第一无功参考电流
Figure FDA0003800076470000013
以及所述静止同步补偿器的有功参考电流
Figure FDA0003800076470000014
计算并生成第一SVPWM调制信号,进而由静止同步补偿器根据第一SVPWM调制信号进行无功控制,
所述网侧变流器继续工作在恒功率因数模式,包括:
将直流母线电压的实际值与直流母线电压的参考值之间的差值经PI调节器得到网侧变流器的第一有功参考电流
Figure FDA0003800076470000015
所述第一有功参考电流
Figure FDA0003800076470000016
限幅于网侧变流器最大允许电流imax
网侧变流器的第一无功参考电流
Figure FDA0003800076470000017
为零;
所述网侧变流器根据继续所述第一有功参考电流
Figure FDA0003800076470000018
以及网侧变流器的第一无功参考电流
Figure FDA0003800076470000019
工作在恒功率因数模式,
所述切换直驱永磁风机网侧变流器工作状态,包括:
根据
Figure FDA0003800076470000021
计算得到第一值,并根据
Figure FDA0003800076470000022
计算得到第二值,将第一值及第二值中的较大者作为网侧变流器的第二无功参考电流
Figure FDA0003800076470000023
其中,IN表示风机额定电流,up表示检测得到的公共并网点的电压标幺值,imax表示网侧变流器最大允许电流,
Figure FDA0003800076470000024
为网侧变流器的第二有功参考电流;
若所述第一值为所述较大者,则根据
Figure FDA0003800076470000025
计算得到网侧变流器的第二有功参考电流
Figure FDA0003800076470000026
若所述第二值为所述较大值,则将直流母线电压的实际值与直流母线电压的参考值之间的差值经PI调节器得到网侧变流器的第二有功参考电流
Figure FDA0003800076470000027
所述第二有功参考电流
Figure FDA0003800076470000028
限幅于网侧变流器最大允许电流imax
根据所述网侧变流器的第二有功参考电流
Figure FDA0003800076470000029
以及所述网侧变流器的第二无功参考电流
Figure FDA00038000764700000210
计算并生成第二SVPWM调制信号,进而由网侧变流器根据第二SVPWM调制信号进行无功控制,
所述静止同步补偿器通过以下步骤与直驱永磁风机网侧变流器联合进行无功控制,具体包括:
将公共并网点的电压值与预设的并网点电压参考值之间的差值经PI调节器得到总的无功需求Qall
计算风电场内的所有直驱永磁风机的网侧变流器的无功可调总容量QGall_max
根据QS=Qall-kQGall_max计算静止同步补偿器的无功指令,其中,k为直驱永磁风机的无功功率折算到并网点的的总损耗系数;
根据所述无功指令,利用
Figure FDA00038000764700000211
计算得到静止同步补偿器的第二无功参考电流
Figure FDA00038000764700000212
其中,Eg为电网电压矢量的幅值;
将直流母线电压的实际值与直流母线电压的参考值之间的差值经PI调节器得到静止同步补偿器的有功参考电流
Figure FDA0003800076470000031
所述静止同步补偿器根据其第二无功参考电流
Figure FDA0003800076470000032
以及有功参考电流
Figure FDA0003800076470000033
计算并生成第三SVPWM调制信号,进而根据第三SVPWM调制信号进行无功控制。
2.一种直驱永磁风机的无功协调控制系统,其特征在于,包括:无功协调控制装置、网侧变流器以及静止同步补偿器,所述无功协调控制装置分别与所述网侧变流器以及静止同步补偿器连接,其中:
所述无功协调控制装置,用于接收检测得到的公共并网点的电压值;比较所述公共并网点的电压值与预设的并网点电压参考值;若所述公共并网点的电压值与预设的并网点电压参考值之间的差值位于预设范围内,则启用所述静止同步补偿器进行无功控制,同时所述网侧变流器继续工作在恒功率因数模式;若所述公共并网点的电压值与预设的并网点电压参考值之间的差值超出所述预设范围,切换直驱永磁风机网侧变流器工作状态,与静止同步补偿器联合进行无功控制,
所述静止同步补偿器包括:
第一无功计算单元,用于在所述公共并网点的电压值与预设的并网点电压参考值之间的差值位于预设范围内时,将公共并网点的电压值与预设的并网点电压参考值之间的差值经PI调节器得到静止同步补偿器的第一无功参考电流
Figure FDA0003800076470000034
第一有功计算单元,用于在所述公共并网点的电压值与预设的并网点电压参考值之间的差值位于预设范围内时,将直流母线电压的实际值与直流母线电压的参考值之间的差值经PI调节器得到静止同步补偿器的有功参考电流
Figure FDA0003800076470000035
第一功率调节单元,用于根据所述静止同步补偿器的第一无功参考电流
Figure FDA0003800076470000036
以及所述静止同步补偿器的有功参考电流
Figure FDA0003800076470000037
计算并生成第一SVPWM调制信号,进而由静止同步补偿器根据第一SVPWM调制信号进行无功控制,
所述网侧变流器包括:
第二有功计算单元,用于在所述公共并网点的电压值与预设的并网点电压参考值之间的差值位于预设范围内时,将直流母线电压的实际值与直流母线电压的参考值之间的差值经PI调节器得到网侧变流器的第一有功参考电流
Figure FDA0003800076470000041
所述第一有功参考电流
Figure FDA0003800076470000042
限幅于网侧变流器最大允许电流imax
第二无功计算单元,用于在所述公共并网点的电压值与预设的并网点电压参考值之间的差值位于预设范围内时,网侧变流器的第一无功参考电流
Figure FDA0003800076470000043
为零;
第二功率调节单元,用于根据继续所述第一有功参考电流
Figure FDA0003800076470000044
以及网侧变流器的第一无功参考电流
Figure FDA0003800076470000045
工作在恒功率因数模式,
所述网侧变流器还包括:
第三无功计算单元,用于在所述公共并网点的电压值与预设的并网点电压参考值之间的差值超出所述预设范围时,根据
Figure FDA0003800076470000046
计算得到第一值,并根据
Figure FDA0003800076470000047
计算得到第二值,将第一值及第二值中的较大者作为网侧变流器的第二无功参考电流
Figure FDA0003800076470000048
其中,IN表示风机额定电流,up表示检测得到的公共并网点的电压标幺值,imax表示网侧变流器最大允许电流,
Figure FDA0003800076470000049
为网侧变流器的第二有功参考电流;
第三有功计算单元,用于在所述公共并网点的电压值与预设的并网点电压参考值之间的差值超出所述预设范围时,若所述第一值为所述较大者,则根据
Figure FDA00038000764700000410
计算得到网侧变流器的第二有功参考电流
Figure FDA00038000764700000411
若所述第二值为所述较大值,则将直流母线电压的实际值与直流母线电压的参考值之间的差值经PI调节器得到网侧变流器的第二有功参考电流
Figure FDA00038000764700000412
所述第二有功参考电流
Figure FDA00038000764700000413
限幅于网侧变流器最大允许电流imax;第三功率调节单元,用于根据所述网侧变流器的第二有功参考电流
Figure FDA00038000764700000414
以及所述网侧变流器的第二无功参考电流
Figure FDA00038000764700000415
计算并生成第二SVPWM调制信号,进而由网侧变流器根据第二SVPWM调制信号进行无功控制,
所述静止同步补偿器还包括:
第四无功计算单元,用于在所述公共并网点的电压值与预设的并网点电压参考值之间的差值超出所述预设范围时,将公共并网点的电压值与预设的并网点电压参考值之间的差值经PI调节器得到总的无功需求Qall;计算风电场内的所有直驱永磁风机的网侧变流器的无功可调总容量QGall_max;根据QS=Qall-kQGall_max计算静止同步补偿器的无功指令,其中,k为直驱永磁风机的无功功率折算到并网点的总损耗系数;根据所述无功指令,利用
Figure FDA0003800076470000051
计算得到静止同步补偿器的第二无功参考电流
Figure FDA0003800076470000052
其中,Eg为电网电压矢量的幅值;
第四有功计算单元,用于在所述公共并网点的电压值与预设的并网点电压参考值之间的差值超出所述预设范围时,将直流母线电压的实际值与直流母线电压的参考值之间的差值经PI调节器得到静止同步补偿器的有功参考电流
Figure FDA0003800076470000053
第四功率调节单元,用于根据所述静止同步补偿器的第二无功参考电流
Figure FDA0003800076470000054
以及所述静止同步补偿器的有功参考电流
Figure FDA0003800076470000055
计算并生成第三SVPWM调制信号,进而根据第三SVPWM调制信号进行无功控制。
CN201810778801.9A 2018-07-16 2018-07-16 直驱永磁风机的无功协调控制方法及系统 Active CN108879716B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810778801.9A CN108879716B (zh) 2018-07-16 2018-07-16 直驱永磁风机的无功协调控制方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810778801.9A CN108879716B (zh) 2018-07-16 2018-07-16 直驱永磁风机的无功协调控制方法及系统

Publications (2)

Publication Number Publication Date
CN108879716A CN108879716A (zh) 2018-11-23
CN108879716B true CN108879716B (zh) 2022-11-22

Family

ID=64302513

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810778801.9A Active CN108879716B (zh) 2018-07-16 2018-07-16 直驱永磁风机的无功协调控制方法及系统

Country Status (1)

Country Link
CN (1) CN108879716B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110311407B (zh) * 2019-06-12 2022-09-27 合肥工业大学 基于电压闭环的级联型逆变器双模式无缝切换控制方法
CN111431217B (zh) * 2020-03-24 2023-09-01 云南电网有限责任公司电力科学研究院 一种应用于控制母线电压的无功补偿方法、装置及系统
CN112260596B (zh) * 2020-10-29 2022-05-06 广东电网有限责任公司电力科学研究院 一种发电机定子电流过流控制方法及相关装置
CN113410830B (zh) * 2021-05-08 2023-08-08 新天绿色能源股份有限公司 一种直流并网风电机组变流器及其控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3075051A1 (en) * 2013-11-28 2016-10-05 Vestas Wind Systems A/S Control of reactive power in a wind power plant
CN105162139B (zh) * 2015-09-15 2017-03-22 湖南大学 电网电压跌落故障下风电系统无功功率综合优化控制方法
CN106786765A (zh) * 2017-01-16 2017-05-31 国网新疆电力公司经济技术研究院 一种基于vrdc和drcc的pmsg自适应低电压穿越实现方法
CN107124008A (zh) * 2017-04-10 2017-09-01 大唐(赤峰)新能源有限公司 一种风电场内风电机组与svg设备的无功协同控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3075051A1 (en) * 2013-11-28 2016-10-05 Vestas Wind Systems A/S Control of reactive power in a wind power plant
CN105162139B (zh) * 2015-09-15 2017-03-22 湖南大学 电网电压跌落故障下风电系统无功功率综合优化控制方法
CN106786765A (zh) * 2017-01-16 2017-05-31 国网新疆电力公司经济技术研究院 一种基于vrdc和drcc的pmsg自适应低电压穿越实现方法
CN107124008A (zh) * 2017-04-10 2017-09-01 大唐(赤峰)新能源有限公司 一种风电场内风电机组与svg设备的无功协同控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
三电平DSTATCOM平衡控制策略研究;王子恺;《中国优秀硕士学位论文全文数据库工程科技II辑》;20140615;正文第39-40页,图4.10 *

Also Published As

Publication number Publication date
CN108879716A (zh) 2018-11-23

Similar Documents

Publication Publication Date Title
CN108879716B (zh) 直驱永磁风机的无功协调控制方法及系统
US8183704B2 (en) Connection and disconnection sequence for variable speed wind turbine having an exciter machine and a power converter not connected to the grid
US8264094B2 (en) High voltage direct current link transmission system for variable speed wind turbine
CN102738829B (zh) 一种变频控制风力发电系统的拓扑结构
CN105226720A (zh) 永磁同步发电机组网侧变换器改进下垂控制方法
CN105098833A (zh) 用于微电网的异步恒速风电机组系统及其工作方法
Errami et al. Control of grid connected PMSG based variable speed wind energy conversion system
Tan et al. Research on primary frequency regulation of wind turbine based on new nonlinear droop control
Cortajarena et al. DFIG wind turbine grid connected for frequency and amplitude control in a smart grid
CN202737481U (zh) 一种变频控制风力发电系统的拓扑结构
CN113193587B (zh) 孤岛双馈风电场经高压直流输电外送协同控制方法及系统
CN106786765A (zh) 一种基于vrdc和drcc的pmsg自适应低电压穿越实现方法
CN103414214B (zh) 异步风电机组的低电压穿越和无功控制系统及方法
Yan et al. A novel converter system for DFIG based on DC transmission
Jacomini et al. Direct power control strategy to enhance the dynamic behavior of DFIG during voltage sag
CN107706937A (zh) 一种储能型双馈风电机组的协调控制方法
CN113517719B (zh) 一种全功率变流的风电机组高电压穿越控制方法
CN105162168A (zh) 风力发电系统并网控制方法
CN114784847A (zh) 储能型双馈风电机与svg的无功电压联动控制系统及方法
Alaboudy et al. Controller performance of variable speed wind driven doubly-fed induction generator
Wang et al. Research on Reactive Power Control of the Grid-Side Converter of DFIG Based Wind Farm
Ming et al. Impacts of doubly-fed wind turbine generator operation mode on system voltage stability
CN114156952B (zh) 一种基于协同控制的独立电力系统频率控制方法及系统
Qu et al. VSG-based PMSG multi-machine parallel with DC droop control strategy
Huang et al. Generator side converters coordinated control Strategy based on VSC-HVDC DD-PMSG wind turbine series-parallel connection

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant