CN105162139B - 电网电压跌落故障下风电系统无功功率综合优化控制方法 - Google Patents

电网电压跌落故障下风电系统无功功率综合优化控制方法 Download PDF

Info

Publication number
CN105162139B
CN105162139B CN201510585763.1A CN201510585763A CN105162139B CN 105162139 B CN105162139 B CN 105162139B CN 201510585763 A CN201510585763 A CN 201510585763A CN 105162139 B CN105162139 B CN 105162139B
Authority
CN
China
Prior art keywords
voltage
grid
line voltage
beta
reactive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510585763.1A
Other languages
English (en)
Other versions
CN105162139A (zh
Inventor
高剑
黄守道
李慧敏
罗德荣
王家堡
彭婧
吕铭晟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan University
Original Assignee
Hunan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan University filed Critical Hunan University
Priority to CN201510585763.1A priority Critical patent/CN105162139B/zh
Publication of CN105162139A publication Critical patent/CN105162139A/zh
Application granted granted Critical
Publication of CN105162139B publication Critical patent/CN105162139B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/10Flexible AC transmission systems [FACTS]

Abstract

本发明公开了一种电网电压跌落故障下风电系统无功功率综合优化控制方法,步骤包括:实时读取电网电压实时监控设备提供的电网电压数据;判断风电机组自身是否有无功电流需求,如果有无功电流需求,则通过静止同步补偿器为电网系统提供无功补偿,然后计算电网电压Upcc与预设的参考电压Upccref之间的电压偏差值△U,判断电压偏差值△U大于第一预设阈值Uref1是否成立,如果成立则启动网侧变流器的静态无功补偿模式,使得网侧变流器和静止同步补偿器同步为电网系统提供无功补偿。本发明能够稳定并网公共连接点电压、增强风力发电系统低电压穿越能力。

Description

电网电压跌落故障下风电系统无功功率综合优化控制方法
技术领域
本发明涉及风电系统无功功率综合优化技术,具体涉及一种电网电压跌落故障下风电系统无功功率综合优化控制方法。
背景技术
风电场并网点电压跌落时,风电场低电压穿越能力指标要求风电机组在不脱网安全运行的同时需向并网点提供无功支撑以恢复其电压。传统的控制方法采用不同的电容器组和静态功率转换装置(例如SVC装置,TSC装置,静止同步补偿器),或者利用电机自身的无功补偿特性(例如双馈型感应电机)来实现无功补偿,但是上述方式所能提供的无功功率有限,且成本高;采用在直流侧增加卸荷电路只适用于短时的电压跌落不能满足在电网电压跌落深度较大持续时间较长时的低电压穿越要求;增加网侧附加无功补偿控制装置响应速度慢难以满足在深度跌落时电网运行要求。
发明内容
本发明要解决的技术问题:针对现有技术的上述问题,提供一种电网电压跌落故障下可采用网侧逆变器静止无功补偿模式和静止同步补偿器共同提供无功补偿,能够稳定并网公共连接点电压、增强风力发电系统低电压穿越能力、响应速度快的电网电压跌落故障下风电系统无功功率综合优化控制方法。
为了解决上述技术问题,本发明采用的技术方案为:
一种电网电压跌落故障下风电系统无功功率综合优化控制方法,步骤包括:
1)实时读取电网电压实时监控设备提供的电网电压数据;
2)判断风电机组自身是否有无功电流需求,如果有无功电流需求则跳转执行步骤3),否则跳转执行步骤1);
3)通过静止同步补偿器为电网系统提供无功补偿;
4)计算电网电压Upcc与预设的参考电压Upccref之间的电压偏差值ΔU,判断电压偏差值ΔU大于第一预设阈值Uref1是否成立,如果成立则启动网侧变流器的静态无功补偿模式,使得网侧变流器和静止同步补偿器同步为电网系统提供无功补偿。
优选地,所述步骤3)的详细步骤包括:
3.1)判断电压偏差值ΔU小于第二预设阈值Uref2是否成立,如果成立,则跳转执行步骤3.2),否则跳转执行步骤3.3);
3.2)通过静止同步补偿器为电网系统提供轻度无功补偿,退出;
3.3)通过静止同步补偿器为电网系统提供重度无功补偿。
优选地,所述步骤3.2)通过静止同步补偿器为电网系统提供轻度无功补偿的步骤包括:
3.2.1)将风力发电机并网点后的电网线电流ia、ib、ic经过坐标变换由三相变为旋转坐标系下的两相值,得到旋转坐标系下的电网线电流α轴分量i、电网线电流β轴分量i;将风力发电机并网点后的电网线电压Ua、Ub、Uc经过坐标变换由三相变为旋转坐标系下的两相值,得到旋转坐标系下的电网线电压α轴分量e、电网线电压β轴分量e;将旋转坐标系下的电网线电压α轴分量e、电网线电压β轴分量e;通过滤波器进行正负序分解得到旋转坐标系下的负序电网电压α轴分量和负序电网电压β轴分量根据旋转坐标系下的电网线电流α轴分量i、电网线电流β轴分量i、电网线电压α轴分量e、电网线电压β轴分量e、负序电网电压α轴分量和负序电网电压β轴分量计算有功功率参考值Pgaref、电网无功功率Qg和电网有功功率Pg;将有功功率参考值Pgaref和电网有功功率Pg之间的差值进行PI调节,得到q轴电压参考值vgq
3.2.2)将电压偏差值ΔU通过设定的非线性目标值K进行放大,将放大后的电压偏差值进行PI调节,得到无功功率参考值Qgref;将无功功率参考值Qgref和电网无功功率Qg之间的差值进行PI调节,得到d轴电压参考值vgd
3.2.3)将风力发电机并网点后的电网线电压经过坐标变换由三相变为旋转坐标系下的两相值,得到旋转坐标系下的电网线电压,将旋转坐标系下的电网线电压经滤波器进行正负序坐标分解得到正序电网电压,将正序电网电压经过锁相环得到正序坐标分量下网侧变流器的交流侧电压与接入点电压相角差
3.2.4)根据得到的电压相角差d轴电压参考值vgd、q轴电压参考值vgq计算旋转的直轴电压v和旋转的交轴电压v
3.2.5)根据旋转的直轴电压v和旋转的交轴电压v生成SVPWM调制信号,通过SVPWM调制信号控制静止同步补偿器中的逆变器为电网系统提供轻度无功补偿。
优选地,所述步骤3.2.2)中设定的非线性目标值K的取值区间为[1,10]。
优选地,所述步骤3.3)通过静止同步补偿器为电网系统提供重度无功补偿的步骤包括:
3.3.1)将风力发电机并网点后的电网线电流ia、ib、ic经过坐标变换由三相变为旋转坐标系下的两相值,得到旋转坐标系下的电网线电流α轴分量i、电网线电流β轴分量i;将风力发电机并网点后的电网线电压Ua、Ub、Uc经过坐标变换由三相变为旋转坐标系下的两相值,得到旋转坐标系下的电网线电压α轴分量e、电网线电压β轴分量e;将旋转坐标系下的电网线电压α轴分量e、电网线电压β轴分量e;通过滤波器进行正负序分解得到旋转坐标系下的负序电网电压α轴分量和负序电网电压β轴分量根据旋转坐标系下的电网线电流α轴分量i、电网线电流β轴分量i、电网线电压α轴分量e、电网线电压β轴分量e、负序电网电压α轴分量和负序电网电压β轴分量计算有功功率参考值Pgaref、电网无功功率Qg和电网有功功率Pg;将有功功率参考值Pgaref和电网有功功率Pg之间的差值进行PI调节,得到q轴电压参考值vgq
3.3.2)将有功功率参考值Pgaref和电网有功功率Pg之间的差值输入比例积分谐振控制器,得到q轴电压参考值vgq
3.3.3)将无功功率参考值Qgdref和电网无功功率Qg之间的差值输入比例积分谐振控制器,得到d轴电压参考值vgd
3.3.4)将风力发电机并网点后的电网线电压经过坐标变换由三相变为旋转坐标系下的两相值,得到旋转坐标系下的电网线电压,将旋转坐标系下的电网线电压经滤波器进行正负序坐标分解得到正序电网电压,将正序电网电压经过锁相环得到正序坐标分量下网侧变流器的交流侧电压与接入点电压相角差
3.3.5)根据得到的电压相角差d轴电压参考值vgd、q轴电压参考值vgq计算旋转的直轴电压v和旋转的交轴电压v
3.3.6)根据旋转的直轴电压v和旋转的交轴电压v生成SVPWM调制信号,通过SVPWM调制信号控制静止同步补偿器中的逆变器为电网系统提供轻度无功补偿。
优选地,所述比例积分谐振控制器的传递函数的函数表达式如式(4)所示;
式(4)中,Y(s)为比例积分谐振控制器的输出,s为比例积分谐振控制器的输入,Kp为比例积分谐振控制器的放大系数,ωc为截止频率,ω为同步旋转坐标系下角速度,ki和kii分别为积分器积分系数。
优选地,所述计算有功功率参考值Pgaref的函数表达式如式(5)所示;
式(5)中,Pgaref为有功功率参考值,i为旋转坐标系下的电网线电流α轴分量,i为旋转坐标系下的电网线电流β轴分量,为旋转坐标系下的负序电网电压α轴分量,为旋转坐标系下的负序电网电压β轴分量。
优选地,所述计算电网无功功率Qg和电网有功功率Pg的函数表达式如式(6)所示;
式(6)中,Qg为电网无功功率,Pg为电网有功功率,i为旋转坐标系下的电网线电流α轴分量,i为旋转坐标系下的电网线电流β轴分量,e为旋转坐标系下的电网线电压α轴分量,e为旋转坐标系下的电网线电压β轴分量;
优选地,所述计算旋转的直轴电压v和旋转的交轴电压v的函数表达式如式(7)所示;
式(7)中,v为旋转的直轴电压,v为旋转的交轴电压,为电压相角差,vgd为d轴电压参考值、vgq为q轴电压参考值。
优选地,所述步骤2)的详细步骤包括:
2.1)判断电网是否有无功电流需求,如果有无功电流需求,则将电网电压Upcc与预设的参考电压Upccref之间的差值作为调节变量ΔU,并跳转执行步骤2.2),否则跳转执行步骤1);
2.2)将调节变量ΔU经过PI调节后得到q轴电流参考值iqref
2.3)根据式(3)计算d轴电流参考值上限id2ref和下限id3ref
式(3)中,id2ref为d轴电流参考值上限,id3ref为d轴电流参考值下限,iqref为q轴电流参考值,imax为d轴电流最大值,imin为d轴电流最小值;
2.4)将参考电压Uref经过PI调节后得到参考电流id1;判断参考电流id1位于d轴电流参考值上限id2ref和下限id3ref之间成否成立,如果成立则判定风电机组自身满足并网无功功率需求,跳转执行步骤1);否则,跳转执行步骤3)。
本发明电网电压跌落故障下风电系统无功功率综合优化控制方法具有下述优点:本发明根据电网电压数据判断风电机组自身是否有无功电流需求,如果有无功电流需求则通过静止同步补偿器为电网系统提供无功补偿,同时将电网电压Upcc与预设的参考电压Upccref之间的电压偏差值ΔU,判断电压偏差值ΔU大于第一预设阈值Uref1是否成立,如果成立则启动网侧变流器的静态无功补偿模式,使得网侧变流器和静止同步补偿器同步为电网系统提供无功补偿,电网电压跌落故障下可采用网侧逆变器静止无功补偿模式和静止同步补偿器共同提供无功补偿,具有能够稳定并网公共连接点电压、增强风力发电系统低电压穿越能力、响应速度快的优点。
附图说明
图1为本发明实施例方法的基本流程示意图。
图2为应用本发明实施例方法的风电系统拓扑结构示意图。
图3为当并网点电压跌落时网侧变流器的并网等值电路图。
图4为本发明实施例方法步骤2)的详细流程示意图。
图5为本发明实施例通过静止同步补偿器为电网系统提供无功补偿的流程示意图。
具体实施方式
如图1所示,本实施例风电系统无功功率综合优化控制方法的步骤包括:
1)实时采集电网电压实时监控设备提供的电网电压数据;
2)根据电网电压数据判断风电机组自身是否有无功电流需求,如果有无功电流需求则跳转执行步骤3),否则跳转执行步骤1);
3)通过静止同步补偿器为电网系统提供无功补偿;
4)将电网电压Upcc与预设的参考电压Upccref之间的电压偏差值ΔU,判断电压偏差值ΔU大于第一预设阈值Uref1是否成立,如果成立则启动网侧变流器的静态无功补偿模式,使得网侧变流器和静止同步补偿器同步为电网系统提供无功补偿。
如图2所示,含静止同步补偿器(STATCOM)的直驱永磁风力发电系统主要由机组群(风力机、发电机,机侧变流器、直流母线、网侧变流器)、静止同步补偿器、并网母线及变压器组成,N台机组以交流汇集的方式于风电场并网母线汇集形成机组群,静止同步补偿器则安装在风电场并网母线。电压正常时,机侧变流器控制风力发电机的有功输出;网侧变流器控制直流母线电压稳定(网侧变流器输出的有功)及其无功;静止同步补偿器在并网点电压跌落时,实现对并网点的无功调节。当并网点电压跌落时,网侧变流器的并网等值电路如图3所示。图3中,UGi为网侧变流器输出的电压大小;Upcc为风力发电场并网点电压大小,θi为网侧变流器交流侧电压与接入点电压相角差,Xi为网侧变流器交流侧电感;Pi和Qi分别为风机网侧变流器输出的有功功率和无功功率,可知功率方程如式(1)和(2)所示。
式(1)和(2)中,UGi为网侧变流器输出的电压大小;Upcc为风力发电场并网点电压大小,θi为网侧变流器交流侧电压与接入点电压相角差,Xi为网侧变流器交流侧电感;Pi和Qi分别为风机网侧变流器输出的有功功率和无功功率。因此,有功功率自动调节模式中机侧变流器的有功输出给定按式(1)整定。
如图4所示,步骤2)的详细步骤包括:
2.1)判断电网是否有无功电流需求,如果有无功电流需求,则将电网电压Upcc与预设的参考电压Upccref之间的差值作为调节变量ΔU,并跳转执行步骤2.2),否则跳转执行步骤1);
2.2)将调节变量ΔU经过PI调节后得到q轴电流参考值iqref
2.3)根据式(3)计算d轴电流参考值上限id2ref和下限id3ref
式(3)中,id2ref为d轴电流参考值上限,id3ref为d轴电流参考值下限,iqref为q轴电流参考值,imax为d轴电流最大值,imin为d轴电流最小值;
2.4)将参考电压Upccref经过PI调节后得到参考电流id1;判断参考电流id1位于d轴电流参考值上限id2ref和下限id3ref之间成否成立,如果成立则判定风电机组自身满足并网无功功率需求,跳转执行步骤1);否则,跳转执行步骤3)。
本实施例中,步骤3)的详细步骤包括:
3.1)判断电压偏差值ΔU小于第二预设阈值Uref2是否成立,如果成立,则跳转执行步骤3.2),否则跳转执行步骤3.3);
3.2)通过静止同步补偿器为电网系统提供轻度无功补偿,退出;
3.3)通过静止同步补偿器为电网系统提供重度无功补偿。
本实施例通过判断电压偏差值ΔU小于第二预设阈值Uref2是否成立,来判断电网电压的跌落情况,进而根据需要实现通过静止同步补偿器为电网系统提供无功补偿的方式,从而能够确保系统能按并网点电压跌落的程度进行无功补偿。
如图5所示,步骤3.2)通过静止同步补偿器为电网系统提供轻度无功补偿的步骤包括:
3.2.1)将风力发电机并网点后的电网线电流ia、ib、ic经过坐标变换由三相变为旋转坐标系下的两相值,得到旋转坐标系下的电网线电流α轴分量i、电网线电流β轴分量i;将风力发电机并网点后的电网线电压Ua、Ub、Uc经过坐标变换由三相变为旋转坐标系下的两相值,得到旋转坐标系下的电网线电压α轴分量e、电网线电压β轴分量e;将旋转坐标系下的电网线电压α轴分量e、电网线电压β轴分量e;通过滤波器进行正负序分解得到旋转坐标系下的负序电网电压α轴分量和负序电网电压β轴分量根据旋转坐标系下的电网线电流α轴分量i、电网线电流β轴分量i、电网线电压α轴分量e、电网线电压β轴分量e、负序电网电压α轴分量和负序电网电压β轴分量计算有功功率参考值Pgaref、电网无功功率Qg和电网有功功率Pg;将有功功率参考值Pgaref和电网有功功率Pg之间的差值进行PI调节,得到q轴电压参考值vgq
3.2.2)将电压偏差值ΔU通过设定的非线性目标值K进行放大,将放大后的电压偏差值进行PI调节,得到无功功率参考值Qgref;将无功功率参考值Qgref和电网无功功率Qg之间的差值进行PI调节,得到d轴电压参考值vgd;本实施例中,步骤3.2.2)中设定的非线性目标值K的取值区间为[1,10];
3.2.3)将风力发电机并网点后的电网线电压经过坐标变换由三相变为旋转坐标系下的两相值,得到旋转坐标系下的电网线电压,将旋转坐标系下的电网线电压经滤波器进行正负序坐标分解得到正序电网电压,将正序电网电压经过锁相环(PLL)得到正序坐标分量下网侧变流器的交流侧电压与接入点电压相角差
3.2.4)根据得到的电压相角差d轴电压参考值vgd、q轴电压参考值vgq计算旋转的直轴电压v和旋转的交轴电压v
3.2.5)根据旋转的直轴电压v和旋转的交轴电压v生成SVPWM调制信号,通过SVPWM调制信号控制静止同步补偿器中的逆变器为电网系统提供轻度无功补偿。
如图5所示,步骤3.3)通过静止同步补偿器为电网系统提供重度无功补偿的步骤包括:
3.3.1)将风力发电机并网点后的电网线电流ia、ib、ic经过坐标变换由三相变为旋转坐标系下的两相值,得到旋转坐标系下的电网线电流α轴分量i、电网线电流β轴分量i;将风力发电机并网点后的电网线电压Ua、Ub、Uc经过坐标变换由三相变为旋转坐标系下的两相值,得到旋转坐标系下的电网线电压α轴分量e、电网线电压β轴分量e;将旋转坐标系下的电网线电压α轴分量e、电网线电压β轴分量e;通过滤波器进行正负序分解得到旋转坐标系下的负序电网电压α轴分量和负序电网电压β轴分量根据旋转坐标系下的电网线电流α轴分量i、电网线电流β轴分量i、电网线电压α轴分量e、电网线电压β轴分量e、负序电网电压α轴分量和负序电网电压β轴分量计算有功功率参考值Pgaref、电网无功功率Qg和电网有功功率Pg;将有功功率参考值Pgaref和电网有功功率Pg之间的差值进行PI调节,得到q轴电压参考值vgq
3.3.2)将有功功率参考值Pgaref和电网有功功率Pg之间的差值输入比例积分谐振控制器PI-RES,得到q轴电压参考值vgq
3.3.3)将无功功率参考值Qgdref和电网无功功率Qg之间的差值输入比例积分谐振控制器PI-RES,得到d轴电压参考值vgd
3.3.4)将风力发电机并网点后的电网线电压经过坐标变换由三相变为旋转坐标系下的两相值,得到旋转坐标系下的电网线电压,将旋转坐标系下的电网线电压经滤波器进行正负序坐标分解得到正序电网电压,将正序电网电压经过锁相环得到正序坐标分量下网侧变流器的交流侧电压与接入点电压相角差
3.3.5)根据得到的电压相角差d轴电压参考值vgd、q轴电压参考值vgq计算旋转的直轴电压v和旋转的交轴电压v
3.3.6)根据旋转的直轴电压v和旋转的交轴电压v生成SVPWM调制信号,通过SVPWM调制信号控制静止同步补偿器中的逆变器为电网系统提供轻度无功补偿。
本实施例中将非理想谐振控制器与PI调节器相结合就获得了在静止或者旋转坐标系下既可控制直流信号又可控制定频交流信号的比例积分谐振控制器,比例积分谐振控制器的传递函数的函数表达式如式(4)所示;
式(4)中,Y(s)为比例积分谐振控制器的输出,s为比例积分谐振控制器的输入,Kp为比例积分谐振控制器的放大系数,ωc为截止频率,ω为同步旋转坐标系下角速度,ki和kii分别为积分器积分系数。通过设定合适的截止频率ωc来扩大比例积分谐振控制器的带宽,能够减少理想谐振控制器对于信号频率变化的敏感度,提高控制系统的稳定性。
本实施例中,计算有功功率参考值Pgaref的函数表达式如式(5)所示;
式(5)中,Pgaref为有功功率参考值,i为旋转坐标系下的电网线电流α轴分量,i为旋转坐标系下的电网线电流β轴分量,为旋转坐标系下的负序电网电压α轴分量,为旋转坐标系下的负序电网电压β轴分量。
本实施例中,计算电网无功功率Qg和电网有功功率Pg的函数表达式如式(6)所示;
式(6)中,Qg为电网无功功率,Pg为电网有功功率,i为旋转坐标系下的电网线电流α轴分量,i为旋转坐标系下的电网线电流β轴分量,e为旋转坐标系下的电网线电压α轴分量,e为旋转坐标系下的电网线电压β轴分量;
本实施例中,计算旋转的直轴电压v和旋转的交轴电压v的函数表达式如式(7)所示;
式(7)中,v为旋转的直轴电压,v为旋转的交轴电压,为电压相角差,vgd为d轴电压参考值、vgq为q轴电压参考值。
以上所述仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例,凡属于本发明思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (8)

1.一种电网电压跌落故障下风电系统无功功率综合优化控制方法,其特征为步骤包括:
1)实时读取电网电压实时监控设备提供的电网电压数据;
2)判断风电机组自身是否有无功电流需求,如果有无功电流需求则跳转执行步骤3),否则跳转执行步骤1);
3)通过静止同步补偿器为电网系统提供无功补偿;
4)计算电网电压Upcc与预设的参考电压Upccref之间的电压偏差值ΔU,判断电压偏差值ΔU大于第一预设阈值Uref1是否成立,如果成立则启动网侧变流器的静态无功补偿模式,使得网侧变流器和静止同步补偿器同步为电网系统提供无功补偿;
所述步骤3)的详细步骤包括:
3.1)判断电压偏差值ΔU小于第二预设阈值Uref2是否成立,如果成立,则跳转执行步骤3.2),否则跳转执行步骤3.3);
3.2)通过静止同步补偿器为电网系统提供轻度无功补偿,退出;
3.3)通过静止同步补偿器为电网系统提供重度无功补偿;
所述步骤3.2)通过静止同步补偿器为电网系统提供轻度无功补偿的步骤包括:
3.2.1)将风力发电机并网点后的电网线电流ia、ib、ic经过坐标变换由三相变为旋转坐标系下的两相值,得到旋转坐标系下的电网线电流α轴分量i、电网线电流β轴分量i;将风力发电机并网点后的电网线电压Ua、Ub、Uc经过坐标变换由三相变为旋转坐标系下的两相值,得到旋转坐标系下的电网线电压α轴分量e、电网线电压β轴分量e;将旋转坐标系下的电网线电压α轴分量e、电网线电压β轴分量e;通过滤波器进行正负序分解得到旋转坐标系下的负序电网电压α轴分量和负序电网电压β轴分量根据旋转坐标系下的电网线电流α轴分量i、电网线电流β轴分量i、电网线电压α轴分量e、电网线电压β轴分量e、负序电网电压α轴分量和负序电网电压β轴分量计算有功功率参考值Pgaref、电网无功功率Qg和电网有功功率Pg;将有功功率参考值Pgaref和电网有功功率Pg之间的差值进行PI调节,得到q轴电压参考值vgq
3.2.2)将电压偏差值ΔU通过设定的非线性目标值K进行放大,将放大后的电压偏差值进行PI调节,得到无功功率参考值Qgref;将无功功率参考值Qgref和电网无功功率Qg之间的差值进行PI调节,得到d轴电压参考值vgd
3.2.3)将风力发电机并网点后的电网线电压经过坐标变换由三相变为旋转坐标系下的两相值,得到旋转坐标系下的电网线电压,将旋转坐标系下的电网线电压经滤波器进行正负序坐标分解得到正序电网电压,将正序电网电压经过锁相环得到正序坐标分量下网侧变流器的交流侧电压与接入点电压相角差
3.2.4)根据得到的电压相角差d轴电压参考值vgd、q轴电压参考值vgq计算旋转的直轴电压v和旋转的交轴电压v
3.2.5)根据旋转的直轴电压v和旋转的交轴电压v生成SVPWM调制信号,通过SVPWM调制信号控制静止同步补偿器中的逆变器为电网系统提供轻度无功补偿。
2.根据权利要求1所述的电网电压跌落故障下风电系统无功功率综合优化控制方法,其特征为,所述步骤3.2.2)中设定的非线性目标值K的取值区间为[1,10]。
3.根据权利要求2所述的电网电压跌落故障下风电系统无功功率综合优化控制方法,其特征为,所述步骤3.3)通过静止同步补偿器为电网系统提供重度无功补偿的步骤包括:
3.3.1)将风力发电机并网点后的电网线电流ia、ib、ic经过坐标变换由三相变为旋转坐标系下的两相值,得到旋转坐标系下的电网线电流α轴分量i、电网线电流β轴分量i;将风力发电机并网点后的电网线电压Ua、Ub、Uc经过坐标变换由三相变为旋转坐标系下的两相值,得到旋转坐标系下的电网线电压α轴分量e、电网线电压β轴分量e;将旋转坐标系下的电网线电压α轴分量e、电网线电压β轴分量e;通过滤波器进行正负序分解得到旋转坐标系下的负序电网电压α轴分量和负序电网电压β轴分量根据旋转坐标系下的电网线电流α轴分量i、电网线电流β轴分量i、电网线电压α轴分量e、电网线电压β轴分量e、负序电网电压α轴分量和负序电网电压β轴分量计算有功功率参考值Pgaref、电网无功功率Qg和电网有功功率Pg;将有功功率参考值Pgaref和电网有功功率Pg之间的差值进行PI调节,得到q轴电压参考值vgq
3.3.2)将有功功率参考值Pgaref和电网有功功率Pg之间的差值输入比例积分谐振控制器,得到q轴电压参考值vgq
3.3.3)将无功功率参考值Qgdref和电网无功功率Qg之间的差值输入比例积分谐振控制器,得到d轴电压参考值vgd
3.3.4)将风力发电机并网点后的电网线电压经过坐标变换由三相变为旋转坐标系下的两相值,得到旋转坐标系下的电网线电压,将旋转坐标系下的电网线电压经滤波器进行正负序坐标分解得到正序电网电压,将正序电网电压经过锁相环得到正序坐标分量下网侧变流器的交流侧电压与接入点电压相角差
3.3.5)根据得到的电压相角差d轴电压参考值vgd、q轴电压参考值vgq计算旋转的直轴电压v和旋转的交轴电压v
3.3.6)根据旋转的直轴电压v和旋转的交轴电压v生成SVPWM调制信号,通过SVPWM调制信号控制静止同步补偿器中的逆变器为电网系统提供轻度无功补偿。
4.根据权利要求3所述的电网电压跌落故障下风电系统无功功率综合优化控制方法,其特征为,所述比例积分谐振控制器的传递函数的函数表达式如式(4)所示;
Y ( s ) = K p ( s 3 + 2 ω c s 2 + ( 4 ω 2 - k i · k i i ) s ) s 3 + ( 2 ω c - k i ) s 2 + ( 4 ω 2 - k i · k i i - k i · 2 ω c ) s - 4 ω 2 - - - ( 4 )
式(4)中,Y(s)为比例积分谐振控制器的输出,s为比例积分谐振控制器的输入,Kp为比例积分谐振控制器的放大系数,ωc为截止频率,ω为同步旋转坐标系下角速度,ki和kii分别为积分器积分系数。
5.根据权利要求1~4中任意一项所述的电网电压跌落故障下风电系统无功功率综合优化控制方法,其特征为,所述计算有功功率参考值Pgaref的函数表达式如式(5)所示;
P g a r e f = 3 2 ( e g β N i g α + e g α N i g β ) - - - ( 5 )
式(5)中,Pgaref为有功功率参考值,i为旋转坐标系下的电网线电流α轴分量,i为旋转坐标系下的电网线电流β轴分量,为旋转坐标系下的负序电网电压α轴分量,为旋转坐标系下的负序电网电压β轴分量。
6.根据权利要求1~4中任意一项所述的电网电压跌落故障下风电系统无功功率综合优化控制方法,其特征为,所述计算电网无功功率Qg和电网有功功率Pg的函数表达式如式(6)所示;
Q g = 3 2 ( e g β i g α - e g α i g β ) P g = 3 2 ( e g α i g α + e g β i g β ) - - - ( 6 )
式(6)中,Qg为电网无功功率,Pg为电网有功功率,i为旋转坐标系下的电网线电流α轴分量,i为旋转坐标系下的电网线电流β轴分量,e为旋转坐标系下的电网线电压α轴分量,e为旋转坐标系下的电网线电压β轴分量;
7.根据权利要求1~4中任意一项所述的电网电压跌落故障下风电系统无功功率综合优化控制方法,其特征为,所述计算旋转的直轴电压v和旋转的交轴电压v的函数表达式如式(7)所示;
v g α v g β = cosθ g P sinθ g P - sinθ g P cosθ g P v g d v g q - - - ( 7 )
式(7)中,v为旋转的直轴电压,v为旋转的交轴电压,为电压相角差,vgd为d轴电压参考值、vgq为q轴电压参考值。
8.根据权利要求1~4中任意一项所述的电网电压跌落故障下风电系统无功功率综合优化控制方法,其特征为,所述步骤2)的详细步骤包括:
2.1)判断电网是否有无功电流需求,如果有无功电流需求,则将电网电压Upcc与预设的参考电压Upccref之间的差值作为调节变量ΔU,并跳转执行步骤2.2),否则跳转执行步骤1);
2.2)将调节变量ΔU经过PI调节后得到q轴电流参考值iqref
2.3)根据式(3)计算d轴电流参考值上限id2ref和下限id3ref
id 2 r e f = i max 2 - iq r e f 2 id 3 r e f = i m i n 2 - iq r e f 2 - - - ( 3 )
式(3)中,id2ref为d轴电流参考值上限,id3ref为d轴电流参考值下限,iqref为q轴电流参考值,imax为d轴电流最大值,imin为d轴电流最小值;
2.4)将参考电压Uref经过PI调节后得到参考电流id1;判断参考电流id1位于d轴电流参考值上限id2ref和下限id3ref之间成否成立,如果成立则判定风电机组自身满足并网无功功率需求,跳转执行步骤1);否则,跳转执行步骤3)。
CN201510585763.1A 2015-09-15 2015-09-15 电网电压跌落故障下风电系统无功功率综合优化控制方法 Active CN105162139B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510585763.1A CN105162139B (zh) 2015-09-15 2015-09-15 电网电压跌落故障下风电系统无功功率综合优化控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510585763.1A CN105162139B (zh) 2015-09-15 2015-09-15 电网电压跌落故障下风电系统无功功率综合优化控制方法

Publications (2)

Publication Number Publication Date
CN105162139A CN105162139A (zh) 2015-12-16
CN105162139B true CN105162139B (zh) 2017-03-22

Family

ID=54802934

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510585763.1A Active CN105162139B (zh) 2015-09-15 2015-09-15 电网电压跌落故障下风电系统无功功率综合优化控制方法

Country Status (1)

Country Link
CN (1) CN105162139B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108879716A (zh) * 2018-07-16 2018-11-23 内蒙古工业大学 直驱永磁风机的无功协调控制方法及系统

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106374503B (zh) * 2016-09-12 2018-12-07 珠海格力电器股份有限公司 电压跌落、电气设备并网处理方法、装置及系统
CN106230031B (zh) * 2016-09-30 2018-10-09 重庆大学 电网电压不平衡下含永磁直驱风电场和异步风电场的混合风电场群的控制方法
CN108933443B (zh) * 2017-05-26 2021-04-30 中国电力科学研究院有限公司 一种风电场功率协调控制方法及系统
CN107681692B (zh) * 2017-10-12 2020-02-28 许昌学院 一种交流励磁电源故障穿越控制系统
CN107994607A (zh) * 2017-11-29 2018-05-04 中国电力科学研究院有限公司 一种风电场无功补偿装置的容量优化配置方法及系统
EP4184740A1 (en) * 2021-11-23 2023-05-24 General Electric Technology GmbH Electrical assembly for reactive power compensation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005269744A (ja) * 2004-03-17 2005-09-29 National Institute Of Advanced Industrial & Technology 配電系統情報監視システムおよび系統情報監視システム
CN102361324A (zh) * 2011-10-17 2012-02-22 国电联合动力技术有限公司 双馈风电机组无功支撑的机端电压调节方法及其系统
CN103441515A (zh) * 2013-09-17 2013-12-11 东南大学 一种无功补偿装置
CN104201694A (zh) * 2014-09-04 2014-12-10 江苏方程电力科技有公司 一种新型智能动态混成无功补偿系统及其控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005269744A (ja) * 2004-03-17 2005-09-29 National Institute Of Advanced Industrial & Technology 配電系統情報監視システムおよび系統情報監視システム
CN102361324A (zh) * 2011-10-17 2012-02-22 国电联合动力技术有限公司 双馈风电机组无功支撑的机端电压调节方法及其系统
CN103441515A (zh) * 2013-09-17 2013-12-11 东南大学 一种无功补偿装置
CN104201694A (zh) * 2014-09-04 2014-12-10 江苏方程电力科技有公司 一种新型智能动态混成无功补偿系统及其控制方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108879716A (zh) * 2018-07-16 2018-11-23 内蒙古工业大学 直驱永磁风机的无功协调控制方法及系统
CN108879716B (zh) * 2018-07-16 2022-11-22 内蒙古工业大学 直驱永磁风机的无功协调控制方法及系统

Also Published As

Publication number Publication date
CN105162139A (zh) 2015-12-16

Similar Documents

Publication Publication Date Title
CN105162139B (zh) 电网电压跌落故障下风电系统无功功率综合优化控制方法
CN108683198B (zh) 双馈风力发电机组的电压控制型虚拟同步方法
CN104836258B (zh) 一种兼具电压不平衡补偿和谐波抑制的微电网多逆变器控制方法
CN109066770B (zh) 一种风电接入柔性直流输电系统的控制方法和装置
CN110277797B (zh) 基于共直流母线的光伏虚拟同步发电机协调控制方法
CN107248756A (zh) 一种提高微电网中多逆变器并联功率分配精度的控制方法
CN109217335A (zh) 一种海上风电vsc-hvdc输出系统的低频振荡阻尼控制方法
CN112217239A (zh) 一种基于虚拟同步发电机技术的储能机电暂态建模方法
CN108306337A (zh) 一种基于下垂系数自适应调节的虚拟同步发电机控制方法
CN104808147B (zh) 一种三相短路下双馈发电机仿真方法及其系统
CN105226720A (zh) 永磁同步发电机组网侧变换器改进下垂控制方法
CN110112792A (zh) 一种快速无功支撑的虚拟同步机低电压穿越控制策略
CN109921421A (zh) 基于谐波电流传递函数的双馈风电机组输出谐波电流模型建立方法
CN105098833A (zh) 用于微电网的异步恒速风电机组系统及其工作方法
CN107147144A (zh) 电网不对称故障下混合风电场群协调控制方法
CN108321844A (zh) 谐波电网电压下永磁直驱风力发电系统的控制方法
CN102355000B (zh) 网压非对称条件下双馈风电系统的综合控制方法
CN113824146A (zh) 一种基于风储一体化的风电机组暂态特性提升方法
CN109066735A (zh) 一种不平衡电网电压下的双馈风力发电系统及其控制方法
CN110417059B (zh) 一种可再生能源发电基地暂态稳定控制方法
CN104993756B (zh) 双馈风力发电机定转子磁链弱磁控制的故障运行方法
CN106410844A (zh) 一种改进的双馈感应发电机低电压穿越控制方法
CN104795842B (zh) 一种含双馈风电场和永磁直驱风电场的混合风电场群的对称故障穿越控制方法
Nosratabadi et al. Power system harmonic reduction and voltage control using DFIG converters as an active filter
CN106385050A (zh) 双馈感应发电机低电压穿越控制系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant