WO2022036738A1 - 流体处理方法及流体处理装置 - Google Patents

流体处理方法及流体处理装置 Download PDF

Info

Publication number
WO2022036738A1
WO2022036738A1 PCT/CN2020/111881 CN2020111881W WO2022036738A1 WO 2022036738 A1 WO2022036738 A1 WO 2022036738A1 CN 2020111881 W CN2020111881 W CN 2020111881W WO 2022036738 A1 WO2022036738 A1 WO 2022036738A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
separation
enrichment
pipeline
membrane
Prior art date
Application number
PCT/CN2020/111881
Other languages
English (en)
French (fr)
Inventor
李祥海
Original Assignee
上海心光生物医药有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海心光生物医药有限责任公司 filed Critical 上海心光生物医药有限责任公司
Priority to CN202080101880.5A priority Critical patent/CN115697430B/zh
Priority to EP20949945.8A priority patent/EP4183432A1/en
Publication of WO2022036738A1 publication Critical patent/WO2022036738A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/34Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration
    • A61M1/3472Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration with treatment of the filtrate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/34Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration
    • A61M1/342Adding solutions to the blood, e.g. substitution solutions
    • A61M1/3424Substitution fluid path
    • A61M1/3437Substitution fluid path downstream of the filter, e.g. post-dilution with filtrate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/34Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration
    • A61M1/342Adding solutions to the blood, e.g. substitution solutions
    • A61M1/3455Substitution fluids
    • A61M1/3468Substitution fluids using treated filtrate as substitution fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/34Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration
    • A61M1/3472Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration with treatment of the filtrate
    • A61M1/3479Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration with treatment of the filtrate by dialysing the filtrate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/34Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration
    • A61M1/3472Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration with treatment of the filtrate
    • A61M1/3482Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration with treatment of the filtrate by filtrating the filtrate using another cross-flow filter, e.g. a membrane filter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/145Ultrafiltration
    • B01D61/146Ultrafiltration comprising multiple ultrafiltration steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/22Controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/04Specific process operations in the feed stream; Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/08Specific process operations in the concentrate stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/16Flow or flux control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/25Recirculation, recycling or bypass, e.g. recirculation of concentrate into the feed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2315/00Details relating to the membrane module operation
    • B01D2315/10Cross-flow filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2317/00Membrane module arrangements within a plant or an apparatus
    • B01D2317/02Elements in series

Definitions

  • the present application relates to the technical field of fluid processing, and in particular, to a fluid processing method, a fluid processing device, a circulating separation device, a circulating processing system, medical equipment, and a computer-readable storage medium.
  • the common way is to achieve by the method of membrane separation.
  • membrane separation In the separation of substances, the common way is to achieve by the method of membrane separation.
  • the filtration or concentration change of a specific component in various human tissue fluids such as blood and plasma is based on membrane separation.
  • membrane separation In water treatment, membrane separation is used. Separation realizes purification, and the mixed gas is purified by membrane separation.
  • the membrane separation technology especially the application in the medical field as an example, usually when filtering a specific component that needs to be separated, removed or changed in concentration, waste liquid that needs to be discarded is inevitably generated.
  • the membrane often contains other beneficial components, that is, the existing membrane separation technology is difficult to achieve directional or selective separation of specific components. Since the membrane separation process is accompanied by the loss of beneficial components such as glucose, amino acids, albumin, vitamins, hormones, electrolytes, etc., in order to avoid a large loss of beneficial components, the separation technology has many limitations in clinical application.
  • the purpose of the present application is to provide a fluid processing device, a circulating separation device and a fluid processing method, so as to solve the problem of poor selectivity in membrane separation existing in the prior art, doping with beneficial components and leading to beneficial effects. Continued loss of ingredients, lack of sustainability, etc.
  • the present application discloses a fluid processing method in a first aspect, comprising the following steps: introducing a fluid into an enrichment pipeline; wherein the enrichment pipeline includes a first section and a second Two stages, the inlet of the first stage is connected to at least one first inlet, and the outlet of the second stage is connected to the first stage; the target substance in the fluid is intercepted based on at least one first separation module; wherein , the first separation module has a first side and a second side separated by a first separation component, the opposite ends of the first side are respectively connected to the first section and the second section, and the second side is connected to at least one a first discharge port; based on at least one first driving device driving the fluid to circulate and flow in the enrichment pipeline at a preset flow rate to enrich the target substance, wherein the at least one first driving device is arranged in the first and control the dynamic balance of the total amount of fluid in the enrichment pipeline.
  • the present application also discloses a fluid processing method, comprising the following steps: introducing fluid into a separation pipeline based on at least one second separation module; wherein the separation pipeline has an inlet and an outlet; the second separation module The separation module has a first side and a second side separated by a second separation component, and opposite ends of the first side of the second separation module are respectively connected to at least one second inlet and at least one second outlet, and the second separation The opposite ends of the second side of the module are respectively connected to the inlet and the outlet of the separation pipe; based on at least one second driving device, the fluid in the separation pipe is driven to flow from the inlet to the outlet at a preset flow rate, so as to control the separation pipe The total amount of fluid in the circuit is dynamically balanced.
  • the present application also discloses a fluid processing device in a third aspect, comprising at least one circulation enrichment module, wherein the circulation enrichment module includes: an enrichment pipeline, including a first section and a second section; wherein, the The inlet of the first section communicates with at least one first inlet, and the outlet of the second section communicates with the first section; at least one first separation module includes a first separation component to separate the first separation module A first side and a second side are formed, wherein the opposite ends of the first side are respectively connected to the first section and the second section; the second side is connected to at least one first discharge port; at least one first driving device is set in the first section, and is used to drive the fluid circulation flow of the enrichment pipeline to control the dynamic balance of the total amount of fluid in the enrichment pipeline, so that the first separation module is in the enrichment cycle.
  • the target substance was enriched in the mode.
  • the present application further discloses a circulation separation device for fluid processing, the circulation separation device includes at least one circulation separation module, wherein the circulation separation module includes: a separation pipeline with an inlet and an outlet a second separation module, comprising a second separation assembly to separate the second separation module to form a first side and a second side, wherein the opposite ends of the first side of the second separation module are respectively connected to at least one second inflow port and at least one second discharge port, the opposite ends of the second side of the second separation module are respectively connected to the inlet and the outlet of the separation pipeline; at least one second driving device is arranged in the separation pipeline for The fluid in the separation line is driven to flow from the inlet to the outlet at a preset flow rate, so as to dynamically balance the total amount of fluid in the separation line in the circulating separation mode.
  • the circulation separation module includes: a separation pipeline with an inlet and an outlet a second separation module, comprising a second separation assembly to separate the second separation module to form a first side and a second side, wherein the opposite ends of
  • a fifth aspect of the present application further discloses a circulation treatment system, comprising at least one fluid treatment device according to any one of the embodiments provided in the third aspect of the present application or/and at least one of the fluid treatment devices provided in the fourth aspect of the present application
  • the circulating separation device described in the embodiment the pipeline system, including the fluid outlet pipeline and the fluid return pipeline.
  • the present application further discloses a medical device, comprising the circulatory processing system according to any one of the embodiments provided in the fifth aspect of the present application.
  • a computer-readable storage medium which stores at least one program, and when the at least one program is executed by a processor, implements any one of the embodiments provided in the first aspect of the present application.
  • the fluid processing method described above, or the fluid processing method described in any one of the embodiments provided in the second aspect of the present application is implemented.
  • the fluid processing method, fluid processing device, circulating separation device, circulating processing system and medical equipment of the present application have the following beneficial effects: intercepting the target substance in the fluid through the enrichment pipeline and the first separation module and making all the The target substance is cyclically enriched in the enrichment pipeline.
  • the fluid in the enrichment pipeline flows at a preset flow rate according to the drive of the first driving device, thereby ensuring that the fluid in the enrichment pipeline flows.
  • the total amount is dynamically balanced, so that the fluid treatment method of the present application is sustainable in the treatment, and can realize the collection or treatment of some components in the fluid, that is, the target substance, and the duration can be flexibly controlled.
  • the fluid drawn from the first discharge port can be connected to the processing module or storage space, avoiding the continuous loss of beneficial components during the separation or exchange of components in the fluid.
  • the processing device is connected to any pipeline that transports the fluid to be treated. To collect/remove the target substance while maintaining proper flow pattern and airtightness, the processing device is connected to any container storing the fluid to be treated, and to enrich/remove the target substance while maintaining the balance of the total amount of fluid.
  • FIG. 1 shows a schematic flowchart of the fluid processing method of the present application in an embodiment.
  • FIG. 2 shows a simplified schematic diagram of the circulating enrichment module of the present application in one embodiment.
  • Figure 3a shows a simplified schematic diagram of the circulating enrichment module of the present application in one embodiment.
  • Figure 3b shows a simplified schematic diagram of the circulating enrichment module of the present application in one embodiment.
  • Figure 4 shows a simplified schematic diagram of the circulating enrichment module of the present application in one embodiment.
  • Figure 5 shows a simplified schematic diagram of the circulating enrichment module of the present application in one embodiment.
  • 6a-6c are simplified schematic diagrams showing different working states of the circulating enrichment module of the present application in an embodiment.
  • FIGS. 7a-7b are simplified schematic diagrams showing different working states of the circulating enrichment module of the present application in an embodiment.
  • Figure 8 shows a simplified schematic diagram of the circulating enrichment module of the present application in one embodiment.
  • Figure 9 shows a simplified schematic diagram of the cascaded loop enrichment modules of the present application in one embodiment.
  • FIG. 10 shows a flowchart included in an embodiment of the fluid processing method of the present application.
  • Figure 11 shows a simplified schematic diagram of the cascaded cycle enrichment module and cycle separation module of the present application in one embodiment.
  • Figure 12 shows a simplified schematic diagram of the cycle separation module of the present application in one embodiment.
  • FIG. 13 shows a schematic flowchart of the fluid processing method of the present application in an embodiment.
  • Figure 14 shows a simplified schematic diagram of the cascaded loop separation modules of the present application in one embodiment.
  • Figure 15a shows a simplified schematic diagram of the cascaded cycle separation module and cycle enrichment module of the present application in one embodiment.
  • Figure 15b shows a simplified schematic diagram of the cascaded cycle separation module and cycle enrichment module of the present application in another embodiment.
  • FIG. 16 shows a flowchart included in an embodiment of the fluid processing method of the present application.
  • Figure 17 shows a simplified schematic diagram of the cascaded loop separation module and loop enrichment module of the present application in one embodiment.
  • FIG. 18 shows a simplified schematic diagram of the cyclic processing system of the present application in one embodiment.
  • FIG. 19 shows a simplified schematic diagram of the cyclic processing system of the present application in one embodiment.
  • FIG. 20 shows a simplified schematic diagram of the cyclic processing system of the present application in one embodiment.
  • first, second, etc. are used herein to describe various elements or parameters, these elements or parameters should not be limited by these terms. These terms are only used to distinguish one element or parameter from another element or parameter.
  • a first separation module could be referred to as a second separation module, and similarly, a second separation module could be referred to as a first separation module without departing from the scope of the various described embodiments.
  • the first separation module and the second separation module are both describing a separation module, but unless the context clearly indicates otherwise, they are not the same separation module.
  • a similar situation also includes a first separation assembly and a second separation assembly, or a first side and a second side.
  • A, B or C or “A, B and/or C” means “any of the following: A; B; C; A and B; A and C; B and C; A, B and C” . Exceptions to this definition arise only when combinations of elements, functions, steps, or operations are inherently mutually exclusive in some way.
  • Membrane separation is a process of separating, purifying and concentrating different components of a mixture by selective separation of membranes. It is an efficient, energy-saving and environmentally friendly separation method.
  • the filtering operation modes include vertical filtering (Normal Flow Filtration, NFF, also known as dead-end filtering), and tangential flow filtering (Tangential/Cross Flow Filtration, TFF).
  • NFF Normal Flow Filtration
  • TFF Tangential/Cross Flow Filtration
  • the liquid moves parallel (tangential to) the membrane surface, and the transmembrane pressure generated by the liquid drives part of the solution and small molecules across the filtration membrane, and retains part of the solution and larger molecules.
  • the liquid continuously flows on the surface of the filter membrane at a certain speed, and the surface of the filter membrane is washed and the particles deposited on the surface of the membrane are taken out of the TFF module.
  • the waste liquid in medical applications may contain glucose. , amino acids, albumin, vitamins, hormones, electrolytes, etc. Therefore, the consumption of beneficial components in filtration is a problem in many membrane separation technology application scenarios.
  • membrane separation based on steric hindrance effect as an example, it is essentially a process of retaining larger molecular weight or particle size components in the mixture and filtering out smaller molecular weight or particle size components, which is the directionality in the separation process.
  • the present application divides the application scenarios of membrane separation in terms of purpose, which can basically be summarized as the following two modes:
  • Mode A Large molecules are beneficial and small molecules are harmful, that is, small molecules are the components that need to be filtered out;
  • Mode B Large molecules are harmful and small molecules are beneficial, that is, large molecules are the components that need to be filtered out.
  • the B mode is more common, and it is also the use that was eventually developed, such as the process of filtration and sterilization, and the process of water treatment and purification.
  • the B mode is generally realized by dead-end filtration, but when the content of large molecular weight molecules is high, dead-end filtration is easy to block, so that the membrane cannot be used continuously or the upper limit of the liquid that can be processed is limited.
  • pretreatment by precipitation, distillation or other physical methods is generally required. If pretreatment cannot be performed, dead-end filtration cannot be used, such as when the mixture is blood, plasma, etc.
  • Mode A is more common in biological applications, such as the concentration and purification of recombinant proteins, as well as hemodialysis and plasma exchange, which are all processes to remove harmful or worthless small molecules in the system.
  • Traditional plasma exchange technology is a typical Problems in A mode. Because macromolecules are beneficial, tangential flow is generally used to facilitate the return of the trapped molecules to the original system, and to avoid the deposition of these components on the surface of the membrane, which affects the continuity of the treatment process.
  • beneficial components such as sugars, amino acids, vitamins, etc. The loss of a large amount of beneficial components makes the treatment process unsustainable.
  • plasma exchange equipment can be used in clinical scenarios such as renal diseases, cryoglobulinemia, and hyperacute or acute antibody-mediated rejection after kidney transplantation.
  • the sustainability of plasma is not high, and the clearance efficiency of pathogenic factors is also limited; in other scenarios, especially in traditional plasma exchange technology, by using plasma separation and delivering plasma substitutes to patients to achieve Blood is renewed, but the replacement fluid of plasma substitutes may cause allergic problems in the human body, which limits the feasible use scenarios.
  • DFPP double filtration plasmapheresis, double plasmapheresis technology
  • the plasma is usually filtered twice in the corresponding filtration system, and the plasma separation technology (that is, the separation of plasma, red blood cells, Platelets and leukocytes) and plasma component separation technology (ie, separation of specific components in plasma) two-stage filtration superposition, in plasma component separation, macromolecular pathogenic factors such as autoantibodies, immunoglobulins, immune complexes, inflammatory molecules Therefore, DFPP is usually used for severe diseases such as myasthenia gravis, Guillain-Barré syndrome, systemic lupus erythematosus (SLE), rheumatoid arthritis where the causative factor is macromolecular substances. , hyperlipidemia, severe acute pancreatitis, sepsis, but it is not suitable for clearing small and medium molecular pathogenic substances bound to albumin, and it is not suitable for clearing free medium
  • DFPP implements is the process of A+B mode.
  • the molecules that are intercepted between the two filtrations corresponding to the membrane pore size or molecular interception amount are the target molecules to be removed.
  • the tangential flow filtration technology can deal with the problems encountered in the B mode, which can effectively avoid the clogging problem caused by dead-end filtration.
  • the pulp rejection rate is generally a pulp rejection rate of 10% to 30%, and the pulp rejection rate is the ratio of the transport rate of the pulp rejection pump to the plasma separation pump; more specifically, in the double plasma exchange process, the pulp rejection flow rate is usually 2.5%.
  • Another example is the adsorption filtration purification system disclosed in the patent CN103263704A, in which a certain amount of plasma is obtained by separating human blood plasma, and the plasma is introduced into the purification unit to perform multiple adsorption processes to regenerate part of the waste plasma and reduce the amount of plasma required in plasma exchange.
  • waste liquid ie filtrate
  • waste liquid is generated at the high-flux filter used in the purification unit, so a certain percentage of regenerated plasma is obtained during the regeneration of waste plasma, while still Waste liquid is generated, so the problem of waste liquid in this application and the problem of continuous loss of beneficial components that may be extended from waste liquid still exist.
  • the replacement liquid is used to supplement the filtrate.
  • the exogenous substances in the aforementioned DFPP bring The risk of allergy still exists; at the same time, the high-pass filter in the adsorption filtration purification system is only suitable for the treatment of small-molecule plasma toxins, and the filtering effect of small-molecule toxins can be improved through multiple filtrations, and the effect achieved is to discard the toxins. A certain proportion of plasma in the plasma is regenerated; in addition, the adsorption filtration purification system cannot remove the pathogenic factors with large molecular weight in the blood, and the usage scenarios are limited, and it is difficult to collect or remove different components in the blood.
  • this application provides a solution for how to remove harmful macromolecules or components while avoiding the continuous loss of beneficial small molecules or components in the B application mode.
  • the present application provides a fluid treatment method, a fluid treatment device, and a separation and circulation device, which can be used to treat various fluids including medical scenarios, so as to enrich or remove (or change the concentration) directionally based on a preset treatment target.
  • the fluid treatment method and fluid treatment device of the present application can be used to perform a sustainable separation process, achieve a controllable removal effect, and effectively avoid or reduce the continuous loss of beneficial components.
  • large and small are relative concepts.
  • the determination of large and small can be based on the size of the molecules or substances themselves, such as particle size or weight, such as lipoproteins compared to amino acids, the former is a large molecule and the latter is a small molecule.
  • the large and small can be due to the molecular size or molecular weight relative to the molecular cut-off or pore size of the membrane, for example, for a separation module with a 0.5 ⁇ m pore size, cells and platelets are large molecules, while plasma proteins are small molecules; and for a 10kD porous membrane, lipoprotein, albumin and cells are macromolecules, while glucose, amino acids, etc. are small molecules, that is, the macromolecules, macromolecular components, small molecules, and small molecules described in this application Components, etc., can be relative concepts that describe molecules that are retained and filtered based on membranes.
  • the present application provides a fluid processing method, comprising the following steps: introducing a fluid into an enrichment pipeline; wherein the enrichment pipeline includes a first section and a second section, and the first section has a The inlet is communicated with at least one first inlet; based on at least one first separation module, the target substance in the fluid is intercepted; wherein, the first separation module has a first side and a second side separated by the first separation component, The opposite ends of the first side are respectively connected to the first section and the second section, and the second side is connected to at least one first discharge port; the fluid is driven in the enrichment pipeline based on at least one first driving device Circulating flow at a preset flow rate to enrich the target substance, wherein the at least one first driving device is arranged in the first section and controls the dynamic balance of the total amount of fluid in the enrichment pipeline.
  • the target substance is determined based on a preset target for fluid processing, and the target substances enriched and circulated in different enrichment pipelines may be of the same type or the same substance component Or molecules, which can also be different substances, and the specific composition of the target substance can be changed based on the fluid composition and the predetermined separation purpose.
  • the target substance is, for example, cells, bacteria, microorganisms, proteins, lipoproteins, antibodies, DNA, etc.; in the fluid processing method, the target substance is the substance trapped in the pipeline , that is, when the fluid is processed by the fluid treatment method provided in this application, any substance that is trapped and enriched in the enrichment pipeline can be regarded as the target substance; in practical applications, the target substance can be collected
  • the target substance can be collected
  • the type and use of the target substance are not limited in this application.
  • FIG. 1 shows a schematic flowchart of an embodiment of the fluid processing method of the present application.
  • step S10 the fluid is introduced into an enrichment pipeline; wherein, the enrichment pipeline includes a first section and a second section, the inlet of the first section is connected to at least one first inlet, and the first section The outlet of the second section communicates with the first section.
  • the communication refers to a mechanical structure capable of circulating fluid, and in some occasions, the communication is often referred to as communication or connection.
  • FIG. 2 shows a simplified schematic diagram of the enrichment pipeline of the fluid processing method in one embodiment.
  • the fluid contains the target substance, and in certain embodiments, the fluid includes but is not limited to blood, plasma, serum, body fluid, tissue fluid, washing fluid, dialysate, recombinant protein solution, cell culture fluid, microbial culture fluid, pharmaceutical and a mixture of one or more of medical water, medicinal liquid, fluid food, animal and plant extracts, natural water, industrial wastewater, reclaimed water, light oil, methane, and liquefied gas; in some examples, the The fluid can also be a material component obtained by processing, eg, filtering, a fluid such as blood, plasma, etc.; in other examples, the fluid can also be a gas mixture, such as a gas mixture including methane.
  • the fluid treatment method of the present application can be applied to the treatment of different types of fluids.
  • the fluid has different material components, such as the fluid has a difference in selective permeation when it is transported in a separation membrane.
  • the components and certain fluidity are sufficient to enable the separation process, such as the above-mentioned liquid mixture or gas mixture, and the fluid may be other solid-liquid mixed phase fluid or colloid, which is not limited in this application.
  • the first section 111 and the second section 112 of the enrichment pipeline 11 can be based on a certain connection relationship, so that the direction of the liquid flow in the enrichment pipeline 11 can form a cycle, and the outlet of the second section 112 is communicated
  • the first section 111 after the fluid enters the first section 111 from the first inlet, it can pass through the first separation module 12 , and then flow to the second section 112 and flow from the outlet of the second section 112 .
  • a flow cycle can be formed.
  • the path graph constituting the cycle can be determined based on the first segment 111 and the second segment 112, for example, in the example shown in FIG. 2, it is a rectangle.
  • the path graph can include multiple polylines such as "Convex" shape, or include arcs, such as arcs, in actual scenarios, the first segment 111 and the second segment 112 communicate and transmit fluids.
  • the first segment The pipe diameter, material, and path of 111 and the second section 112 can be adjusted accordingly, so the method described in this application does not limit the shape and model of the pipe path.
  • the pipeline materials of the first and second sections can be set to special materials corresponding to fluids.
  • the first and second sections or a section or part of them can be set to blood Special pipelines, special pipelines for peristaltic pumps, special pipelines for corrosive liquids, high biocompatibility pipelines, etc.; taking the application of the fluid processing method in medical scenarios as an example, the first and second sections are
  • pipeline materials include but are not limited to soft polyvinyl chloride plastics, high-performance polyolefin thermoplastic elastomers (TPE), nano-biomedical materials, and resin materials.
  • the inlet of the first section is connected to at least one first inlet, and the first inlet is used as the inlet for conveying fluid to the enrichment pipeline, and the first inlet can be set to at least one
  • the introduction of the fluid into the enrichment pipeline is not limited in this application.
  • the multiple first inlets can respectively introduce fluids with different substance components into the enrichment pipeline, for example, from a first inlet
  • the immunoglobulin-filtered plasma is introduced, and the rheumatoid factor-filtered plasma is introduced in another first inlet.
  • step S11 the target substance in the fluid is intercepted based on at least one first separation module; wherein, the first separation module has a first side and a second side separated by a first separation module, and the first side The opposite ends of the duct are respectively communicated with the first section and the second section, and the second side communicates with at least one first outlet.
  • the first separation module 12 can be used to connect the enrichment pipeline 11 and contact the fluid, so as to realize the separation of specific components in the fluid.
  • the retained target substance may be a fluid component that needs to be retained, or a component that needs to be removed from the fluid. That is, the enrichment pipeline 11 can be used to enrich beneficial components in the fluid, and can also be used to enrich the components to be removed in the fluid.
  • the first separation module 12 is a relatively closed cavity structure, that is, the two ends of the first side of the first separation module 12 are respectively connected to the first section 111 and the second section 112.
  • a closed cavity is formed on the first side of the first separation module 12;
  • the first outlet that communicates with the two sides is closed, and the second side of the first separation module 12 also forms a closed cavity.
  • the relatively closed structure It can form a sterile environment or reduce bacterial, microbial, viral and other infections.
  • the fluid processing method of the present application reduces the disturbance of the external environment when the fluid circulates in the enrichment pipeline 11 and is processed by forming a relatively closed circulation environment, so that the reliability of the processing process is increased.
  • the first separation module 12 has a first separation component, the first separation component can contact the fluid and selectively permeate specific material components in the fluid; the first separation component separates the first separation module 12 to The fluid passing through the first separation component and the intercepted fluid may be located on two sides formed by the separation of the first separation component, respectively.
  • the fluid in the enrichment pipeline 11 can flow from the first section 111 to the second section 112 via the first separation module 12 , and return to the first section from the outlet of the second section 112 At the same time, the components other than the target substance in the fluid pass through the first separation module in the first separation module 12 and reach the second side of the first separation module 12, thereby The enrichment pipeline 11 can be left through the first discharge port, that is, the separation effect of the target substance in the fluid is achieved.
  • the separation effect is formed after the fluid passes through the first separation module and is trapped on the first side of the first separation module and the fluid on the second side of the first separation module
  • At least one component (eg a filterable component) in the fluid leaving the circulation creates a concentration difference rather than an absolute separation or scavenging effect, eg components in the fluid on the second side of the first separation module may also be present
  • a very small amount of the target substance may also leave the circulation and flow to the second side of the first separation module, but there is at least one component in the second side of the first separation module. Concentrations are different on both sides of a separation module.
  • the first side of the first separation module 12 and the second side of the first separation module 12 are used to distinguish the fluid components passing through the first separation component from the positions of the intercepted fluid, and the first side is different from the position of the intercepted fluid.
  • the positional relationship of the second side is determined by the cavity structure of the first separation module 12 and the structure of the first separation assembly. For example, when the first separation component is a planar structure and is laterally arranged in the first separation module 12, the first side and the second side are the upper side and the lower side respectively; or when the first separation component The planar structure is vertically arranged in the first separation module 12, and the first side and the second side are the left side and the right side, respectively.
  • the first separation component is a hollow fiber structure and is placed in the first separation module 12, and the first side and the second side are the inner side and the outer side of the hollow fiber, respectively.
  • the second side may share a cavity.
  • the cavity in the first separation module that communicates with the first section and the second section of the enrichment pipeline is the first side, and the cavity in the first separation module is the first side.
  • the other cavity is the second side; in an example, when the first separation module includes a plurality of cavities, for example, the first separation module has a plurality of first separation components in the form of plate membranes to separate the The first separation module is divided into a plurality of cavities, the plurality of cavities connecting the first section and the second section is the first side, and the rest of the cavities are the second sides.
  • the first separation component is a structure or material with selective permeability to some components in the fluid, such as a filter, a filter membrane, a porous material, and the like.
  • the first separation component may be configured as a porous membrane, a reverse osmosis membrane, or a gas separation membrane.
  • the first separation component is a porous membrane, wherein the porous membrane comprises a microfiltration membrane, an ultrafiltration membrane, or a nanofiltration membrane.
  • the average pore diameter or molecular weight cutoff (MWCO for short) of the porous membrane or reverse osmosis membrane is related to the target substance.
  • MWCO molecular weight cutoff
  • a porous membrane suitable for retaining the target substance is selected. For example, when the target substance to be retained in the fluid has a particle size of 10 nm (ie, 0.01 ⁇ m), Then the corresponding separation membrane can use nanofiltration membrane or reverse osmosis membrane to achieve the interception of target substances.
  • the specific type of the separation membrane can be determined based on the difference in physical and chemical properties of each component of the fluid and the target substance, such as: reverse osmosis membrane (average pore size: 0.0001-0.001 ⁇ m), nanofiltration membrane (average pore size: 0.001-0.01 ⁇ m) ⁇ m), ultrafiltration membrane (average pore size 0.01-0.1 ⁇ m), microfiltration membrane (average pore size 0.1-10 ⁇ m), electrodialysis membrane, permeation gasification membrane, liquid membrane, gas separation membrane, electrode membrane, etc.
  • reverse osmosis membrane average pore size: 0.0001-0.001 ⁇ m
  • nanofiltration membrane average pore size: 0.001-0.01 ⁇ m) ⁇ m
  • ultrafiltration membrane average pore size 0.01-0.1 ⁇ m
  • microfiltration membrane average pore size 0.1-10 ⁇ m
  • electrodialysis membrane permeation gasification membrane, liquid membrane, gas separation membrane, electrode membrane, etc.
  • the separation membrane is a high-purity polymer, chemically inactive, and has good hemocompatibility and histocompatibility.
  • the separation membrane achieves the retention, filtration or exchange of target species through steric hindrance effect, Donan effect or electrostatic effect, adsorption, diffusion, charge repulsion effect, pore effect, or dissolution.
  • the substance components selectively permeated by the separation membrane are related to the type of the separation membrane and the composition of the target substance.
  • a corresponding separation membrane can be set based on the predetermined target substance composition to process the fluid.
  • the separation membrane is, for example, a porous membrane with an average pore size smaller than the particle size of the pathogenic factor molecule, so as to separate the macromolecular pathogenic factor from the macromolecular pathogenic factor.
  • the first A separation component can be set as a nanofiltration membrane to realize filtration; for another example, when the fluid is a gas mixture, the corresponding first separation component can be set as a gas separation membrane to allow a specific gas in the fluid to pass through the gas separation membrane, So as to realize the separation and retention of different gas components.
  • the treatment of the target substance may be determined as retention based on the fluid composition and the target substance composition, and the average pore size or retention of the separation membrane suitable for retaining or filtering the target substance is determined based on the molecular size of the target substance.
  • the molecular weight is used to set the separation membrane used in the actual scene; in other examples, when determining the specific type of the separation membrane, the Daunan effect, adsorption, dissolution, etc. Set the membrane to achieve a preset separation effect in .
  • the pore size and type of the corresponding separation membrane can be determined on the basis that the first separation component can intercept more than 90% of the target substance, or the first separation component can be adjusted to the target based on higher separation effect requirements.
  • the rejection rate of substances is set to be above 95% or even above 99% to determine the corresponding pore size and type of separation membrane.
  • the separation membrane may include, for example, a symmetric membrane, an asymmetric membrane, a composite membrane, a multi-layer composite membrane, and the like.
  • the first separation component can also be configured as separation membranes with different geometric shapes to adapt to different fluids or achieve different filtering effects.
  • the first separation module includes one or more of flat membranes, tubular membranes, rolled membranes, spiral membranes, and hollow fiber membranes.
  • the flow angle of the fluid relative to the separation membrane can be set to different angles, such as 0° to 90°.
  • the flow angle of the fluid relative to the separation membrane is 0°, that is, the fluid flows parallel to the surface of the separation membrane. , such as common tangential flow filtration; when the flow angle of the fluid relative to the separation membrane is 90°, that is, the fluid flows in a direction perpendicular to the membrane surface, such as conventional dead-end filtration (also called vertical filtration).
  • the flow channels in the first separation module can be arranged in a folded and reciprocating form, for example, by folding a flat membrane to increase the contact surface area between the fluid and the flat membrane, correspondingly the flow channels are arranged It is folded and reciprocated to match the structure of the separation membrane, so as to ensure that the separation membrane separates the first separation module to form a first side and a second side.
  • the first separation module is a Tangential/Cross Flow Filtration Module (TFFM for short).
  • TFFM Tangential/Cross Flow Filtration Module
  • tubular membranes or hollow fiber membranes may be used in the tangential flow filtration module to achieve filtration, In this setting, increasing the surface area of the fluid in contact with the separation membrane can increase the filtration efficiency.
  • the tangential flow filtration module can use existing tangential flow filtration membrane packages, such as the Pellicon cartridge ultrafiltration membrane package of MERCK company, the leukocyte removal filter, virus removal filter of Asahi Kasei company, LEOCEED dialyzer, membrane type plasma separator, BRAUN plasma separator, etc. It should be noted that, on the one hand, the tangential flow filtration module can be used in different fields to achieve different separation effects, for example, it can be used to achieve material Collection (retaining materials in the enrichment pipeline and circulating collection), industrial wastewater treatment, etc.
  • the tangential flow filtration module is based on the The corresponding membrane pore size or molecular weight cut-off and the membrane geometry are determined for the purpose of filtration or retention of target substances in the fluid, and are not limited to the foregoing examples.
  • one or more first separation modules may be arranged in the enrichment pipeline, wherein the opposite ends of the first side of each first separation module are respectively connected to the enrichment pipeline, The target substance retained by the first separation component can then be circulated in the enrichment pipeline.
  • the number of the first separation modules may be comprehensively determined based on factors such as the diameter of the enrichment pipeline, the length of the enrichment pipeline, the separation efficiency of the first separation module, and the economic cost.
  • step S12 based on at least one first driving device, the fluid is driven to circulate and flow in the enrichment pipeline at a preset flow rate to enrich the target substance, wherein the at least one first driving device is provided in the first section and control the dynamic balance of the total amount of fluid in the enrichment pipeline.
  • the first driving device 13 includes but is not limited to a peristaltic pump, a pressure pump, an electric field, a heater, a hydraulic pump, or a vacuum pump, and is used to provide power to the fluid in the enrichment pipeline 11 to make the fluid conform to the preset It flows in the same flow direction, that is, flows from the first section 111 through the first separation module 12 and then enters the second section 112, and flows from the outlet of the second section 112 to the first section 111 to form a dynamic cycle.
  • the driving device should not directly contact the liquid, but only applies pressure to the pipeline and drives the liquid to flow, and the driving device can be configured as a peristaltic pump.
  • the preset flow rate may be jointly determined based on the safety of the application scenario, the separation effect of the separation by the first separation module 12, the economy of the equipment, and other factors. For example, in a treatment involving blood, when the fluid at the first inlet is human blood, the flow rate of the fluid drained at the first inlet needs to be controlled within a preset range to ensure patient safety.
  • the enrichment of the target substance can be achieved when the fluid circulates in the enrichment pipeline 11 at a preset flow rate.
  • the enrichment pipeline 11 when the enrichment pipeline 11 processes the fluid in the cyclic enrichment mode, the total amount of fluid in the enrichment pipeline 11 is dynamically balanced; in the cyclic enrichment mode , the first inlet keeps introducing the fluid to be treated into the enrichment pipeline 11, and the fluid flows in the enrichment pipeline 11 according to the preset flow direction and intercepts the target substance through the first separation module 12 during the circulating flow process, At the same time, the fluid from which the target substance has been filtered out through the first separation component is drawn out from the first discharge port.
  • the fluid in the enrichment pipeline can be realized based on the power provided by the first driving device 13 . 11, and at the same time, the enrichment pipeline 11 continuously introduces fluid from the first inlet to gradually increase the retained target substance, thereby realizing the enrichment of a specific component, ie, the target substance.
  • the at least one first driving device 13 is arranged in the first section 111 and controls the dynamic balance of the total amount of fluid in the enrichment pipeline 11 .
  • the first section 111 is the upstream of the first separation module 12 according to the direction of fluid circulation in the enrichment pipeline 11 .
  • the first driving device 13 can be used to control the flow rate of the fluid passing through the first separation module 12 . It should be understood that the first driving device 13 can drive the fluid in the pipeline at different positions in the enrichment pipeline 11 , and the flow rate of the first driving device 13 may be caused by factors such as pipeline resistance, temperature, and pressure in accordance with the flow direction of the fluid. The fluid velocity changes.
  • the first driving device 13 is provided at the first section 111 , that is, upstream of the first separation module 12 , and can be used to control the flow rate at the first separation module 12 .
  • the fluid flow rate taking the embodiment in which the first separation component is a separation membrane as an example, the flow direction angle of the fluid relative to the separation membrane can be set to different angles, such as 0° to 90°, and the fluid relative to the separation membrane
  • the flow rate of 1 is related to the separation effect, and the fluid treatment method of the present application can control the separation effect by setting the position of the first driving device 13 .
  • the separation effect includes but is not limited to membrane flux, separation rate, scavenging effect (scavenging rate) of small molecular substances, and retention rate of macromolecular substances.
  • the upstream is used to indicate the flow direction of the fluid between the first section 111 and the first separation module 12, that is, when the first section 111 is located in the first separation Upstream of the module 12 , the fluid flow direction is from the first section 111 to the first separation module 12 .
  • the at least one first driving device 13 controls the flow rate of the first section 111 to be above a preset threshold, so that the target substance flows from the outlet of the first section 111 to the second section Entrance to 112.
  • the flow direction of the fluid is parallel to the separation membrane in the TFFM.
  • a pressure difference perpendicular to the membrane surface is generated on both sides of the membrane to
  • the small molecules in the driving fluid pass through the separation membrane and reach the second side of the first separation module 12.
  • the small molecules passing through the separation membrane can be led out of the enrichment pipeline 11 through the first discharge port, and are trapped at the same time.
  • the macromolecules are washed away from the membrane surface by the fluid momentum and continue to circulate in the enrichment pipeline 11 .
  • the pressure difference between the two sides of the membrane in the TFFM is related to the preset threshold.
  • the at least one first driving device 13 controls the flow rate of the first section 111 to be above a preset threshold, that is, it can be used to control the pressure difference on both sides of the separation membrane to achieve the separation effect, and can be used to prevent polymerization to ensure the Sustainability of circulation in enrichment line 11 .
  • the preset threshold is related to at least one of fluid composition, fluid temperature, membrane structure, membrane material, cavity structure of the first separation module 12 , and the diameter of the enrichment pipeline 11 .
  • the fluid flow rate at the first separation module 12 is related to different parameters, for example, based on the properties of different fluids such as fluid density and viscosity, and the boundary layer shape of the fluid at the first separation module 12 such as the surface shape of the separation membrane ( That is, the membrane structure) and the cavity structure of the first separation module 12, the interaction force between the fluid and the separation membrane, such as the membrane surface roughness determined by the membrane material, and the attractive force between the fluid, are determined by the cavity of the first separation module 12.
  • the flow rate relationship between the first separation module 12 and the enrichment pipeline 11 determined by the body structure and the diameter of the enrichment pipeline 11, the fluid flow rate at the first separation module 12 may change; here, the preset The threshold is used to determine the fluid flow rate to the first separation module 12, and the preset threshold can be used as the initial flow rate at the first separation module 12, based on the initial flow rate and the aforementioned fluid flow rate at the first separation module 12 can determine the flow rate of the fluid in the first separation module 12 based on the control of the preset threshold to generate a pressure difference to achieve separation and prevent the trapped macromolecular substances, that is, the target substances from being blocked on the membrane surface, thereby , the target substance flows from the outlet of the first section 111 to the inlet of the second section 112 .
  • the preset The threshold is used to determine the fluid flow rate to the first separation module 12, and the preset threshold can be used as the initial flow rate at the first separation module 12, based on the initial flow rate and the aforementioned fluid flow rate at the first separation module 12 can determine the
  • the second segment is further provided with the first drive means.
  • the first driving device provided in the first section can be used to control the fluid flow rate at the first separation module
  • the second section is also provided with the first driving device device
  • a plurality of first driving devices in the enrichment pipeline can cooperatively control the fluid flow rate in the enrichment pipeline to determine the flow rate at different positions in the enrichment pipeline; in this example, the first drive devices
  • Both the segment and the second segment are provided with a first drive device.
  • the pipeline connecting the first inlet and the first separation module can be regarded as the first segment.
  • the first inlet can be connected to the first section and the second section at the same time or the first section and the second section are respectively connected to a first inlet, that is, as shown in FIG.
  • the second section 112 can be determined based on the fluid circulation direction in the circulating enrichment mode, that is, the first section 111 is located upstream of the first separation module 12, and the enrichment pipeline is controlled by the first driving device 13 After the circulation direction in 11 is changed, the positions of the first segment 111 and the second segment 112 are also changed accordingly.
  • the fluid processing method of the present application is such that the total volume or total velocity of fluid introduced into the enrichment line from the first inlet and the enrichment drawn from the first outlet The total volume or total velocity of the fluid in the pipeline is equal, cyclically enriching the target substance in a sustainable manner.
  • the total volume or total velocity of the fluid introduced into the enrichment pipeline by the first inlet is equal to the total volume or total velocity of the fluid drawn out of the enrichment pipeline from the first discharge opening, the The total amount of fluid in the enrichment pipeline is in dynamic equilibrium.
  • the total volume of fluid can also be used as volume flow, the total velocity can also be used as average velocity, or the first inflow can be controlled
  • the fluid mass flow at the port is equal to that of the first discharge port.
  • the enrichment cycle when the enrichment cycle is operated alone, while the liquid is filtered out through the first separation module, a negative pressure will be formed inside the enrichment cycle, which will drive the inflow of the liquid at the first inlet, and this driving force will It varies with the filtration efficiency of the first separation module, which means that if the fluid to be treated flowing into the first inlet is not a constant flow rate, but a dynamic flow rate or a non-dynamic liquid, the enrichment cycle can be filtered according to its own. This means that if the filtration efficiency of the first separation module decreases due to the excessive concentration of target molecules in the enrichment cycle, the inflow of the liquid to be treated will also decrease, so as to passively maintain the above dynamic equilibrium.
  • the fluid flow rate is controlled by the first driving device to ensure the dynamic balance of the total amount of fluid in the enrichment pipeline, and the pressure in the enrichment pipeline in the cyclic enrichment mode can maintain a constant value or a fluctuation range determined by the constant value , the problems of pipeline rupture, negative pressure suction, and fluid component destruction, such as rupture of red blood cells in blood, caused by changes in the pressure in the pipeline can be avoided, and the circulating enrichment mode is thus sustainable.
  • the pressure in the enrichment pipeline is related to the total amount of fluid in the pipeline. For example, when the fluid in the enrichment pipeline continues to decrease, negative pressure is easily formed in the relatively closed structure of the enrichment pipeline. If the fluid in the manifold continues to increase, the pressure in the enrichment pipeline will increase. The negative pressure or excessive pressure will have a negative impact on the separation effect of the fluid treatment and the safety of the enrichment pipeline. Taking medical applications as an example, when the The fluid is blood, and if the pressure in the enrichment pipeline is too high, the pipeline ruptures or the first separation component is damaged, which may lead to treatment failure and even endanger the health of the patient.
  • the first driving device can also ensure that the pressure in the enrichment pipeline is in a preset state, or adjust the pressure in the enrichment pipeline to a preset state while providing the power for fluid circulation.
  • the first section is provided with at least one first driving device, and on this basis, any pipeline and position in the enrichment pipeline can also be set
  • the first driving device is used to coordinately control the fluid flow rate of each position in the enrichment pipeline and the overall balance state;
  • the number and position of the first driving devices are determined by setting the flow rate and the like.
  • the fluid circulation in the enrichment pipeline is controlled and the dynamic balance of the total amount of fluid is maintained, and the corresponding first separation is determined based on the fluid components and the target substance.
  • the fluid treatment method can realize the continuous collection of target substances in the enrichment pipeline, that is, it can be used to realize the solution of how to continuously treat the harmful macromolecules with huge content in the aforementioned B mode.
  • the enrichment pipeline can be used not only for circulating fluid, but also as a container for enriching target substances, and in practical scenarios such as medical applications, it can be used to effectively simplify the equipment structure or reduce equipment space for executing the fluid processing method of the present application , correspondingly, a simple device that is easy to use or carry or wear can be formed; in addition, the cycle enrichment time can be determined based on the preset processing goals of the fluid, such as the separation effect, the collection amount of the target substance, etc., that is, enrichment The number or duration of cycles in the circuit can be controlled based on preset treatment goals.
  • the separation efficiency is adjusted by controlling the ratio of the amount of fluid introduced into the enrichment pipeline per unit time to the total amount of fluid in the enrichment pipeline.
  • the amount of fluid introduced into the circulation per unit time is the flow rate of the fluid to be treated at the inlet of the circulation.
  • the enrichment line In an equilibrium state, the enrichment line remains full, and the total volume of the total amount of fluid in the corresponding enrichment line remains relatively constant.
  • the average residence time of the fluid to be treated in the enrichment pipeline can be determined, and correspondingly, the residence time of the fluid to be treated in the enrichment pipeline can be determined. cycle time in .
  • the accommodating space of the enrichment pipeline in the cycle is a relatively certain value, when the enrichment pipeline is fed to the enrichment pipeline.
  • the first aspect of the present application further includes the step of pre-processing or re-processing the fluid by at least one processing module, wherein the pre-processing or re-processing includes filtration, adsorption, heating, catalysis, At least one of enrichment, concentration, chemical treatment, optical treatment, and electrical treatment.
  • the processing modules are, for example, an adsorption device, an extraction device, an ion exchange processing device, a centrifugal device, a filtering device, a heating device, and the like.
  • the processing module pretreats the fluid, ie, processes the initially obtained fluid, so as to introduce the processed fluid into the enrichment pipeline through the first inlet.
  • the fluid processed by the processing module is connected to the first inlet of the enrichment pipeline, and the processing module is to perform pretreatment.
  • the reprocessing of the fluid by the processing module is processing the target substance in the enrichment pipeline; or the processing of the fluid on the second side of the first separation module by the processing module is reprocessing.
  • the type of preprocessing or reprocessing performed by the processing module may be determined based on processing needs. For example, when the target substance retained in the enrichment pipeline is a fluid component that needs to be filtered out, In order to meet the needs of purification of beneficial components, the processing module can concentrate the fluid drawn from the first discharge outlet.
  • FIG. 3a a simplified schematic diagram of the enrichment circuit in one embodiment is shown. Please refer to FIG. 3a and FIG. 3b in combination.
  • FIG. 3b is a simplified schematic diagram of the enrichment pipeline in an embodiment in which the processing module of FIG. 3a is a separation device.
  • the processing module 30 is a separation device, through which the fluid is pretreated, and the separation fluid containing the target substance passing through the separation device is introduced into the enrichment pipeline 11 Reprocess.
  • the separation device for example, pretreats the fluid by means of precipitation, centrifugal separation, ion exchange, membrane separation, etc. to achieve impurity removal.
  • the enrichment line 11 processes the fluid to enrich the target substance in the separation fluid.
  • the initially obtained whole blood is separated by the separation device to obtain plasma and cell components, and the target substance in the plasma is enriched based on the enrichment pipeline 11 .
  • the target substance is a pathogenic factor
  • the filtered plasma on the second side of the first separation module and the cell components obtained by the separation of the processing module are pooled to flow back to the human body, and the human blood circulation can be changed during this cycle enrichment process.
  • the separation device is a porous membrane
  • the pore size or molecular cut-off of the separation device and the separation membrane of the first separation module 12 is determined based on the particle size or molecular weight of the target substance, that is, the porous membrane through which the target molecule can be filtered into the rich
  • the collection cycle can be retained by the porous membrane of the first separation module 12 and enriched in the enrichment cycle.
  • the selection of the membrane pore size is similar to that of the DFPP process.
  • the first inlet and the first outlet are connected to the same storage part, wherein the storage part includes a fluid storage part device, container, or human body.
  • FIG. 4 is a simplified schematic diagram of the enrichment pipeline in one embodiment.
  • the storage part 16 is only used to realize the storage or communication function of the fluid introduced by the first inlet port and the fluid drawn out from the first discharge port. Therefore, the storage part 16 may be a container Or storage space, in a specific application scenario, it can also be the blood circulation of the human body, which is not limited in this application.
  • the first inlet and the first outlet are connected to the same storage device or container, where the first drive means controls the flow of water in the enrichment pipeline.
  • the dynamic balance of the total amount of fluid correspondingly, the dynamic balance of the total amount of fluid in the storage device or container; in the circulating enrichment mode, the fluid is introduced into the enrichment pipeline from the storage device or container and is enriched
  • the target substance is enriched in the pipeline, and the fluid separated from the target substance component is returned to the storage device or container through the second side of the first separation module, and the enrichment is continuously circulated, then the target substance is contained in the fluid in the storage device or container.
  • the substance is gradually reduced while the total amount of fluid remains unchanged, the collection of specific target substance components is achieved without generating waste liquid, and the total amount of fluid in the storage device or container remains unchanged, the cyclic enrichment process can continue.
  • the fluid when the storage part is a human body, can be blood, plasma, serum, tissue fluid or other body fluids of the human body.
  • the first inlet and the first row The connection relationship between the flow port and the human body can be a direct connection or an indirect connection.
  • the direct connection is that the fluids in the first inlet and the first discharge port can be connected to the circulatory system of the human body, and the indirect connection is the first inflow.
  • the port or/and the first outflow port are connected to a processing module, and the processing module is connected to the human circulatory system. The port is then connected to the plasma obtained from the separation.
  • the pathogenic factors to be filtered out such as low-density lipoprotein
  • the beneficial components in the plasma can be continuously separated to On the second side of the first separation module, waste plasma can be avoided in the process of enriching the target substance, which effectively solves the problem of continuous loss of beneficial components.
  • the enrichment pipeline further includes an exhaust gas inlet, which is provided in the first section or/and the second section, and is used to adjust the enrichment pipeline Air pressure inside the road.
  • the exhaust gas port can be used to connect the enrichment pipeline to external atmospheric pressure or to a gas storage device, and the internal air pressure of the enrichment pipeline can be adjusted by performing gas exchange through the exhaust gas inlet.
  • the exhaust gas inlet can be selectively opened or closed.
  • the exhaust gas inlet when the fluid is in a circulating enrichment mode in the enrichment pipeline, the exhaust gas inlet can be set to a closed state to Keep the inside of the pipeline in a relatively airtight state; in another example, the first inlet is closed, and the enrichment pipeline performs the concentration and circulation treatment of the fluid, and the total amount of fluid in the enrichment pipeline is reduced.
  • the exhaust gas inlet can be set to an open state to keep the air pressure in the enrichment pipeline equal to the external atmospheric pressure to avoid the formation of negative vacuum pressure; in another example, in the circulating enrichment mode, all The exhaust gas inlet can be set to open to connect to the gas storage device, which can be used in practical scenarios to prevent the fluid in the enrichment pipeline from being infected, polluted, or reacting with gas components in the air during the enrichment process. In medical applications, a sterile environment can be ensured in the enrichment pipeline by controlling the gas composition stored in the gas storage device.
  • a sterile filter membrane is provided at the exhaust gas inlet, and the enrichment pipeline performs gas exchange with external gas such as air through the sterile filter membrane, thereby increasing the pressure inside the enrichment pipeline.
  • the enrichment pipeline performs gas exchange with external gas such as air through the sterile filter membrane, thereby increasing the pressure inside the enrichment pipeline.
  • the first section or/and the second section are further provided with a flow channel adjustment device, which is used to adjust the flow direction of the fluid in the enrichment pipeline.
  • the flow channel adjustment device can be used to switch the working mode of the enrichment pipeline, for example, to switch the enrichment pipeline from the circulation enrichment mode to the concentration circulation mode or the cleaning mode.
  • the flow channel adjustment device can adjust the flow direction of the fluid in the enrichment pipeline by at least one of the following ways:
  • Adjust the fluid flow direction by adjusting the opening state of the first inlet or/and the first outlet;
  • the fluid flow direction is adjusted by adjusting the open state of at least one adjustment pipe connected to the enrichment pipe.
  • the flow channel adjustment device includes a device provided on the first inlet or/or and the pipeline switch of the first outlet, in an implementation manner, the first inlet is provided with a pipeline switch, which is used to switch the fluid in the enrichment pipeline to concentrate in a closed state cycle mode.
  • the pipeline switch can be configured as, for example, a pipeline clamp, an on-off valve, a water flow switch provided with a sensor, etc., which is not limited in this application.
  • the pipeline switch is used to control the opening or closing of the first inlet.
  • the enrichment pipeline continuously replenishes fluid and discharges the fluid separated by the first separation module.
  • the target substance can be enriched in the enrichment pipeline; when the pipeline switch controls the first inlet to close, the first driving device controls the fluid in the enrichment pipeline to continue to circulate, and the first separation module first
  • the fluid after separation is drawn out from the two sides. In this state, the total amount of fluid in the enrichment pipeline decreases, and the corresponding concentration of the target substance increases, that is, the fluid is switched to the enrichment cycle mode in the enrichment pipeline.
  • a high concentration of the target substance can be obtained by processing the fluid based on the concentrated circulation mode.
  • the target substance is platelets
  • the enrichment cycle is used to concentrate the platelets without going through the separation process in vitro, which can avoid repeated processing in vitro and waste of blood.
  • the platelets obtained through the concentration cycle can be used for cardiac surgery, wound treatment and other applications .
  • the fluid flow direction is adjusted by adjusting the open state of at least one adjustment pipe connected to the enrichment pipeline.
  • the flow path adjustment device includes at least one adjustment pipe and a pipe corresponding to the adjustment pipe switch, thereby forming a cleaning liquid inlet and a waste liquid outlet.
  • FIGS. 6 a to 6 c are simplified schematic diagrams of the enrichment pipeline 11 and the flow channel adjustment device 14 in different circulation modes in an embodiment.
  • the flow channel adjusting device 14 may be configured as a regulating pipeline and a pipeline switch matched with the enrichment pipeline 11 , wherein the regulating pipelines are respectively provided in the enrichment pipeline Road 11, the pipeline switch is arranged on each regulating pipeline and the enrichment pipeline 11 between the regulating pipelines.
  • the enrichment pipeline is switched between a concentration circulation mode and a dilution mode to adjust the separation efficiency of the first separation module.
  • FIG. 2 shown is a simplified schematic diagram of an enrichment line and a first separation module that can be used to perform the fluid processing method of the present application, in one embodiment.
  • the first separation module is TFFM.
  • the enrichment pipeline 11 can be set as a replaceable consumable part, and when the filtration efficiency drops to a certain degree, the enrichment pipeline 11 can be replaced by In other embodiments, as shown in FIG.
  • the flow direction of the fluid in the enrichment pipeline 11 is adjusted by the flow channel adjustment device 14 to realize the enrichment pipeline Sustainable use of Road 11.
  • the fluid flow direction includes the flow direction and flow channel of the fluid in the enrichment pipeline 11 .
  • the flow channel adjusting device 14 is provided in the first section, in an actual scenario, the flow channel adjusting device 14 may also be provided in the second section, or in the One section and the second section are provided with the flow channel adjusting device 14 at the same time, which is not limited in this application.
  • FIGS. 6 a to 6 c in conjunction with, by controlling the pipeline switch in the flow channel adjusting device 14 , the fluid circulation direction and the flow channel in the enrichment pipeline 11 can be changed.
  • the pipeline switch on the regulating pipeline is turned off and the pipeline switch on the enrichment pipeline 11 is turned on, and the fluid in the enrichment pipeline 11 follows the flow channel of the enrichment pipeline 11 .
  • which can be used for cyclic enrichment to collect the target substance in the state shown in FIG.
  • the first inflow can be made
  • the pipeline switch at the port is closed, so that the fluid in the enrichment pipeline 11 is switched to the concentration cycle mode.
  • the step of enriching the target substance obtained by enrichment is optional.
  • the pipeline switch on the regulating pipeline is turned on and the pipeline switch on the enrichment pipeline 11 is closed, and the The pipeline switch of the first inlet is closed, one end of the two regulating pipelines is connected to the enrichment pipeline 11, and the other end can be used as the inlet and outlet of the enrichment pipeline 11 respectively.
  • the two regulating pipelines cooperate with the enrichment pipeline 11.
  • the pipeline 11 forms a new flow channel, and through the inlet and outlet, the fluid obtained by circulating enrichment or concentration cycle treatment in the enrichment pipeline 11 can be led out of the enrichment pipeline 11, and can also be directed to the enrichment pipeline 11.
  • the cleaning liquid is introduced into the channel 11 to adjust the enrichment pipeline 11 to the cleaning mode, the cleaning solution can enter the enrichment pipeline 11 and the first separation module 12 based on the inlet, and flow to the outlet to clean the The wall of the enrichment pipeline 11 and the first separation module 12, after the cleaning is completed, the target substances trapped in the enrichment pipeline 11 and the first separation module 12 are removed, and can continue to be used for cyclic enrichment of the target substances in the fluid , correspondingly, the flow channel adjusting device 14 can be set to the state shown in FIG. 6a to repeat the fluid treatment.
  • the cleaning solution is a solution that does not contain a target substance, and is intended to remove the target substance in the enrichment pipeline 11 and the first separation module 12 .
  • the cleaning solution may contain surfactants or disinfectants; in medical applications, the cleaning solution is, for example, a physiological buffer that can participate in human blood circulation, such as physiological saline, phosphoric acid Phosphate Buffered Saline (PBS for short), etc.
  • the flow channel adjustment device 14 is a four-way valve.
  • the four-way valve can also be configured as a four-way rotary valve.
  • FIGS. 7a-7b are simplified schematic diagrams of the enrichment pipeline 11 and the flow channel adjusting device 14 in different circulation modes in another embodiment.
  • the enrichment pipeline 11 is provided with a four-way valve, and the fluid flow direction in the enrichment pipeline 11 can be controlled by changing the communication state of different pipelines in the four-way valve.
  • the adjustment process performed by the four-way valve is similar to that in the embodiment shown in FIGS. 6 a to 6 c , and details are not repeated here.
  • the four-way valve can also be rotated to realize adjustment or switching of different working modes in the enrichment pipeline 11 .
  • the four-way valve can determine its structural parameters based on the pipeline parameters of the enrichment pipeline 11 and the position set in the enrichment pipeline 11.
  • the four-way valve can be set as the illustrated embodiment
  • the corners of the intermediate enrichment pipeline 11 can also be set in a straight pipeline, and the corresponding internal structure of the four-way valve is changed accordingly; in some implementations, the four-way valve can be obtained by 3D printing.
  • the cleaning solution inlet in the flow channel adjustment device 14 is opened, and the physiological saline or PBS is inhaled, and enters the circulation.
  • the concentrate is diluted, then the cleaning fluid inlet is closed and the concentration cycle is repeated.
  • most of the small molecule components remaining in the target substance concentrate can be removed.
  • the red blood cells in the blood of blood donors are directly enriched in the circulation through the enrichment cycle, and most of the protein and small molecular components are removed through the above-mentioned multiple concentration and dilution processes to reduce the impact of this part of the loss on the blood donor.
  • the influence of allergic and pathogenic factors in the blood of blood donors on the patient can be effectively reduced, and the cleaned red blood cells can be directly input into the patient's body through the flow channel adjustment device 14 to avoid contact with the outside world.
  • the enrichment pipeline further includes at least one collecting device, which is arranged in the first section or/and the second section, for adjusting the total volume of the enrichment pipeline, collecting air bubbles and Collect more of the target substance.
  • FIG. 8 shows a simplified schematic diagram of the enrichment pipeline 11 in an embodiment of the fluid processing method of the present application.
  • the enrichment pipeline 11 also enriches the target substance in the circulating enrichment mode while circulating the fluid. Therefore, the inner cavity of the enrichment pipeline 11 can be At the same time, it serves as the accommodating space for the target substance; in some examples, the collection device 15 is optionally provided in the enrichment pipeline 11 to expand the internal volume of the enrichment pipeline 11 for collecting the target substance,
  • the collection device 15 can be a container or storage space for expanding the volume of the enrichment pipeline 11, such as the collection cylinder shown in FIG. This application is not limited.
  • the position of the collection device 15 provided in the enrichment pipeline 11 is related to the position of the first separation module 12 ; for example, in the embodiment shown in FIG. 8 , the collection device 15 is provided in the first separation module 12 Upstream, in the concentration cycle mode, the fluid in the collection device 15 has a tendency to flow in accordance with the direction of the cycle based on the action of gravity when the enrichment pipeline 11 is placed naturally. Generally, in the concentration cycle mode, the intake air is discharged.
  • the port is in an open state, so that the design can avoid or reduce the generation of air bubbles in the circulation; in another embodiment, the position of the collecting device 15 can be determined based on the position of the outlet of the regulating pipe in the pipe adjusting device, for example, the The collection device 15 is arranged above the outlet of the adjustment pipe, so that when the enrichment pipe 11 is placed naturally, the fluid in the collection device 15 has a tendency to flow to the outlet to be emptied naturally.
  • the collection device 15 may also be used to provide the exhaust air inlet.
  • the exhaust gas inlet is provided at the upper part of the collecting device 15 to communicate the space in the collecting device 15 that is not filled with fluid and the outside atmosphere or the space of the gas storage device.
  • the collecting device 15 can also be used to set the inlet and outlet of the regulating pipeline in the pipeline regulating device; here, the flow channel regulating device can be integrated into the collecting device 15 to form a module.
  • the enrichment pipeline may further include a control device, a storage device, a pressure detection device, a temperature detection device, a temperature control device, a bubble detection and removal device, an alarm device, and a concentration detection device at least one of them.
  • control device can be used to control the first drive device to determine the fluid flow rate in the enrichment pipeline, or to control the switch of the first inlet pipeline to determine the flow rate of the fluid in the enrichment pipeline.
  • the control device controls the temperature control device to perform heating or cooling based on the temperature information detected by the temperature monitoring device.
  • the temperature control device may also be a constant temperature device.
  • the storage device can be used to store the fluid in the enrichment pipeline on the second side of the first separation module after separation and processing, and in some examples, the storage device can also be connected to one of the processing modules.
  • the air bubble detection device can be used to obtain a control signal. For example, during the concentration cycle, the air bubble detection can reflect that the collection device is close to emptying, and can dilute or discharge the concentrated target substance. Alternatively, the air bubble detection device can be used to obtain an early warning signal, indicating that the equipment is not in a normal working state, including but not limited to, the liquid in the circulation is excessively emptied, the collection device is not properly placed, the liquid to be treated contains air bubbles or leaks. Wait.
  • the control device determines the internal state of the enrichment pipeline based on the detection parameter to control the control signal to the alarm device.
  • the control signals are multiple and correspond to different alarm types.
  • the control signal a is triggered to make the alarm device issue an alarm corresponding to the abnormal pressure;
  • the control device judges based on the detection value of the concentration detection device
  • the concentration inside the enrichment pipeline reaches the preset value so that the cyclic enrichment cannot continue or the concentration is abnormal
  • the control signal b is triggered, so that the alarm device sends out an alarm corresponding to the abnormal concentration.
  • the enrichment pipeline further includes a flow rate detection device for detecting the dynamic state inside the enrichment pipeline, so as to form adjustment information for the internal working state of the enrichment pipeline.
  • the flow velocity detection device is, for example, used to detect at least one of the flow velocity of the inlet port, the flow velocity of the outlet port, and the flow velocity of the fluid at the separation module, so as to determine the dynamic state inside the pipeline.
  • it is determined by the flow rate detection device whether the fluid inside the pipeline is in a weak dynamic state for example, the flow rate in the fluid is lower than a preset range or the flow rate of the fluid filtered at the discharge port is significantly decreased etc.
  • the working state of the first separation module can be judged, for example, whether the first separation component has molecular inhibition, blockage, etc., and the flow rate detection device can thus form adjustment information for the internal working state of the pipeline.
  • the adjustment information is, for example, the working mode switching information for adjusting the enrichment pipeline to the concentration circulation mode or the cleaning mode, or the adjustment information for the flow rates of different regions in the enrichment pipeline.
  • the adjustment information may be formed by the control device after receiving the flow velocity signal, and the control device controls the flow channel adjustment device, the drive device, etc. in the pipeline based on the adjustment information to adjust the internal working state of the pipeline.
  • the adjustment information formed by the control device is formed based on at least one of the flow rate detection device, the pressure detection device, and the concentration detection device, for example, the control device receives the management flow rate information, pressure At least one of the information and the fluid concentration information is then integrated to form adjustment information to control the flow channel adjustment device, the drive device, and the like in the pipeline.
  • the fluid processing method further comprises: communicating the fluid drawn from the first discharge port corresponding to the preceding enrichment pipeline to the subsequent enrichment The first inlet port corresponding to the pipeline, so that the fluid circulates in N cascaded enrichment pipelines to enrich the target substance, wherein N is a positive integer of 2 or more (N ⁇ 2).
  • FIG. 9 a simplified schematic diagram of two enrichment circuits in a phase cascade is shown in one embodiment.
  • the preceding enrichment pipeline and the succeeding enrichment pipeline are used to describe any two adjacent enrichment pipelines among the cascaded N enrichment pipelines. That is, the connection order, which is differentiated based on the flow direction of the fluid in the enrichment line, i.e., the fluid always flows from the previous enrichment line after being processed into the later enrichment line for reprocessing, therefore, the fluid Always go from the first outlet of the preceding enrichment line to the first inlet of the succeeding enrichment line.
  • the fluid follows the connection sequence of the enrichment pipelines for N cycles of processing.
  • the first inlet in the cycle enrichment mode It is equal to the fluid flow rate or flow rate at the first discharge outlet, therefore, continuous enrichment of the target substance can be performed in each of the enrichment pipelines, and the N cascaded enrichment pipelines are in The cyclic enrichment mode is in dynamic equilibrium, so the enrichment process is sustainable.
  • the fluids are sequentially retained in the cascaded enrichment pipelines to retain the target substances. Therefore, the fluid components introduced at the first inlet of each enrichment pipeline are different, and the corresponding , the target substances enriched in different enrichment pipelines can be different.
  • the different components of the fluid include: different types of substances in the fluid or/and different concentrations or total amounts of at least one substance in the fluid.
  • the present application provides an example of processing fluids by employing N cascaded enrichment lines, which can be used to treat molecules of different particle sizes or molecular weights, components of different chemical properties, or molecules of different charge properties in the fluid. Enrichment is carried out separately. By setting the corresponding first separation module in the enrichment pipeline, based on the selective permeability of the different first separation modules to the components in the fluid, the difference in fine-grained classification can be realized. enrichment of components.
  • the fluid obtained by circulating and enriching in each enrichment pipeline of the N cascaded enrichment pipelines may be led out of the enrichment pipeline based on the outlet of the adjustment pipeline of the flow channel adjustment device, or based on The processing module leads out the enrichment pipeline, so that the fine-grained target substance can be directionally extracted or processed, thereby realizing the change of the concentration of the target substance under the fine-grained classification in the fluid.
  • the molecular weight of each component in the fluid ranges from 200 to 2000 Dalton
  • the corresponding target substance to be extracted or processed has a molecular weight of 1000 to 1100 Dalton.
  • the front enrichment pipeline 11 correspond to the components above 1100 Daltons in the intercepted fluid of the first separation module 12, and make the first separation module 12 intercept 1000 Daltons in the fluid leading out of the enrichment pipeline in the latter enrichment pipeline 11
  • the following components can be enriched in the post-enrichment pipeline 11 with a target substance of 1000-1100 Dalton.
  • the number of the N cascaded enrichment pipelines is any positive integer greater than 2 (N ⁇ 2).
  • the components are enriched, extracted or processed separately; here, the classification segment may be a classification segment obtained by dividing based on at least one of the chemical properties, molecular weight or molecular particle size, and charge properties of the components, it should be understood that,
  • the classification section has a variety of classification standards, and it is sufficient to have a corresponding first separation component so that the material in the classification section can be enriched.
  • the first separation component as a separation membrane as an example, different types of separation membranes have With different permeabilities, by setting N groups of separation membranes, the fluid components can be classified or intercepted N times.
  • compliance with the connection order can enrich macromolecular components based on molecular weight in the first enrichment circuit and in the second enrichment circuit
  • the non-permeable components corresponding to the first separation module of the enrichment circuit can be enriched based on the chemical properties of the fluid, and the charged components can be enriched in the third enrichment circuit based on the charge properties of the fluid components ion.
  • the N cascaded enrichment pipelines can be used, for example, to enrich antibiotics, amino acids, enzymes, and other proteins in the fluid.
  • the types of components in the fluid are limited.
  • the connection order so that the first separation module corresponding to each enrichment pipeline only intercepts one component in the fluid it can also be understood that because only one fluid component is contained in one of the classification sections, the N cascaded enrichment pipelines can enrich any component in the fluid, and can also remove any component in the fluid. Or change the concentration of any component, or perform reprocessing such as filtration, adsorption, heating, catalysis, enrichment, concentration, chemical treatment, optical treatment, electrical treatment, etc. on any component.
  • the molecular particle size, molecular weight, or component particle size of the N cascaded enrichment pipelines corresponding to the enriched target substance decreases step by step in accordance with the connection order.
  • the components in the fluid are classified according to molecular particle size or molecular weight, and the selective permeability of the first separation module corresponding to the N cascaded enrichment pipelines to the fluid components can be based on the component particle size diameter or molecular weight design, for example, the average pore size of the separation membranes in the first separation modules of the N groups corresponding to the N cascaded enrichment pipelines can be gradually reduced or the molecular weight cut-off can be gradually reduced, then the order of connection is followed.
  • the molecular size or molecular weight corresponding to the target substance obtained by circulating enrichment in the header pipe gradually decreases.
  • the enrichment of any component in the fluid can be achieved by controlling the difference in particle size or molecular weight cut-off between the separation membranes corresponding to the previous enrichment pipeline and the subsequent enrichment pipeline.
  • the smaller the difference in particle size or molecular weight cut-off between the separation membranes the more conducive to reducing the enrichment of interfering molecules, but there is a possibility of reducing the enrichment efficiency of target substances.
  • Factors such as fluid components, target substances, interfering molecules, and enrichment efficiency can also be integrated when the first separation module corresponding to the connected enrichment pipeline is connected.
  • the fluid processing method is exemplified by a practical application scenario.
  • the N cascaded enrichment tubes The different components in the plasma can be divided into finer particle sizes based on particle size or molecular weight, and the components of different particle size categories or molecular weight categories can be enriched in different enrichment pipelines.
  • Targeted collection of fractions, the corresponding disease types can be expanded in clinical use, for example, small molecule pathogenic factors or multiple pathogenic factors can be enriched and processed; at the same time, the N cascades of enrichment
  • the collecting pipeline is sustainable and does not generate waste liquid during the treatment process.
  • the problem of continuous loss of beneficial components during separation can be effectively solved, and the problem of continuous loss of beneficial components in the separation can be effectively reduced.
  • Continued loss of beneficial components, while the duration of the cycle can be determined based on predetermined therapeutic goals such as reducing the concentration of a particular component such as a pathogenic factor below a preset value, i.e., the fluid treatment method can control the impact on pathogenic factors.
  • the removal effect of the factor can be used to determine the processing time, which solves the problem of difficult to control the removal rate.
  • FIG. 10 shows a schematic flowchart of the fluid processing method of the present application in an embodiment.
  • the fluid treatment method further comprises the following steps:
  • step S20 the fluid drawn from the first discharge port corresponding to an enrichment pipeline is introduced into a separation pipeline based on at least one second separation module; wherein, the separation pipeline has an inlet and an outlet; so
  • the second separation module has a first side and a second side separated by the second separation component, and opposite ends of the first side of the second separation module are respectively connected to at least one second inlet port and at least one second outlet port, The opposite ends of the second side of the second separation module are respectively connected to the inlet and the outlet of the separation pipeline;
  • step S21 the fluid is driven to flow from the inlet to the outlet at a preset flow rate in the separation pipeline based on at least one second driving device, so as to control the dynamic balance of the total amount of fluid in the separation pipeline.
  • the first aspect of the present application also provides an embodiment of cascading the enrichment pipeline and the separation pipeline.
  • the embodiment of cascading the enrichment pipeline and the separation pipeline provided in the first aspect of the present application includes the following situation: the fluid is led out from the first discharge port of one enrichment pipeline to the other The second inlet corresponding to the separation pipeline; or, the fluid is processed in the enrichment pipelines with more than N phases cascaded, and the first outlet of the last enrichment pipeline is connected to the connection sequence according to the connection sequence.
  • N is a positive integer of 2 or more (N ⁇ 2).
  • FIG. 11 shows a simplified schematic diagram of an enrichment line and a separation line in a phase cascade in one embodiment.
  • the fluid in the separation pipeline 21 is the separated fluid passing through the second separation module 22 , and the inlet and the outlet of the separation pipeline 21 are connected to opposite ends of the second side of the second separation module 22 , namely, A reversible cyclic separation can be formed.
  • the reversible cyclic separation that is, the separation fluid in the separation pipeline 21 can return to the first side of the second separation module 22 according to the circulation direction.
  • the target substance can be quantitatively collected based on the separation pipeline 21, for example, the active ingredients of traditional Chinese medicine are extracted from the medicinal liquid, and the collected target substance circulates in the separation pipeline 21; At the same time, the target substance exceeding the predetermined collection or processing amount may be separated back to the first side of the second separation module 22 based on the reversible cycle.
  • the fluid treatment method can be used to realize the treatment of specific components in the fluid, for example, the fluid including components a, b, c is introduced into the enrichment pipe
  • the enrichment component a is circulated in the enrichment pipeline 11, and the fluid components b and c drawn from the first discharge port are connected to the second separation module 22 corresponding to the separation pipeline 21, and the component b is
  • the second separation component of the second separation module 22 is intercepted on the first side of the second separation module 22, the fluid in the separation pipeline 21 is the fluid containing only component c, and the processing module 24 can By separating the fluid in the pipeline 21 for treatment, only the specific component c in the fluid can be treated.
  • the fluid drawn from the first discharge port can be intercepted at the second separation module 22 to retain some components, so as to separate the circulating flow in the separation pipeline 21
  • the fluid only contains certain components; the total amount of fluid in the separation pipeline 21 is dynamically balanced, so that the cyclic separation can be continuously performed.
  • the separation pipeline and the second separation module may form different circulation paths, such as rectangles in the example shown in FIG. 11 , of course, in other ways, the circulation paths may include multiple polylines such as “convex” Fonts, or arcs such as arcs.
  • the separation pipeline circulates and transmits fluid. Based on the needs of equipment in different scenarios, the diameter, material, and path of the separation pipeline can be used. Adjust accordingly.
  • the pipeline material of the separation pipeline can be set to a special material corresponding to the fluid, for example, it can be set to a special pipeline for blood, a special pipeline for a peristaltic pump, a special pipeline for corrosive liquids, and a high biocompatibility Pipelines, etc.; taking the application of the fluid processing method in medical scenarios as an example, the separation pipeline is, for example, a blood delivery pipeline or a liquid medicine delivery pipeline, and the pipeline materials include but are not limited to soft polyvinyl chloride plastic, high Performance Polyolefin thermoplastic elastomer (TPE), nano-biomedical materials, resin materials.
  • TPE High Performance Polyolefin thermoplastic elastomer
  • the second separation module 22 has a first side and a second side separated by a second separation component, and opposite ends of the first side of the second separation module are respectively connected to at least one second inlet and at least one second outlet.
  • the second separation module can be used to separate specific components of the fluid drawn from the first discharge port corresponding to the enrichment pipeline 11 .
  • the separated specific component is the separation fluid that reaches the second side of the second separation module, and the separated fluid may be a fluid component that needs to be retained or a component that needs to be removed from the fluid.
  • the second separation module is a relatively closed cavity structure, that is, two ends of the first side of the second separation module are respectively connected to the second inlet and the second outlet.
  • a closed cavity is formed on the first side of the second separation module; in other embodiments, when the second separation module is first
  • the inlet and outlet of the separation pipeline communicated on the two sides are closed, and the second side of the second separation module also forms a closed cavity.
  • the fluid is connected from the first discharge port to the corresponding second inlet port of the second separation module and enters the separation pipeline, in this process, the contact with the external space can be avoided, in some special cases, such as In blood delivery in medical scenarios, the relatively closed structure can form a sterile environment or reduce infections such as bacteria, microorganisms, and viruses.
  • the second separation module has a second separation component, the second separation component can contact the fluid and selectively permeate specific material components in the fluid; the second separation component separates the second separation module and allows the passage of The fluid of the second separation assembly communicates to the second side of the second separation module.
  • the fluid drawn from the first discharge port of the enrichment line 11 can flow from the separation line inlet connected to the second side of the second separation module to the separation line outlet, thereby forming cycle.
  • the first side of the second separation module and the second side of the second separation module are used to distinguish the positions of the separated fluid passing through the second separation component and the intercepted fluid, and the first side and the second side
  • the positional relationship of the sides is determined by the cavity structure of the second separation module and the structure of the second separation assembly.
  • the second separation component is a planar structure and is laterally arranged in the second separation module
  • the first side and the second side are the upper side and the lower side respectively
  • the second separation component is The planar structure is vertically arranged in the second separation module, and the first side and the second side are respectively the left side and the right side.
  • the second separation component is a structure or material having selective permeability to some components in the fluid drawn from the first discharge port of the enrichment pipeline, such as a filter, a filter membrane, and a porous metal material.
  • the second separation component is a separation membrane
  • the specific type of the separation membrane can be determined based on the difference in physical and chemical properties between each component of the fluid and the target substance, for example, including: a reverse osmosis membrane, Nanofiltration membrane, ultrafiltration membrane, microfiltration membrane, electrodialysis membrane, pervaporation membrane, liquid membrane, gas separation membrane, electrode membrane, etc.
  • the separation membrane is a high-purity polymer, chemically inactive, and has good hemocompatibility and histocompatibility.
  • the second separation component may be configured as a porous membrane, a reverse osmosis membrane, or a gas separation membrane.
  • the average pore size or molecular weight cut-off (MWCO) of the porous membrane or reverse osmosis membrane is related to the target substance, wherein the porous membrane includes a microfiltration membrane, an ultrafiltration membrane, or a nanofiltration membrane.
  • a membrane that is suitable for retaining the target substance or filtering the target substance is selected.
  • the corresponding separation membrane can be a nanofiltration membrane or a reverse osmosis membrane to achieve the retention of the target substance.
  • the separation membrane achieves the retention, filtration or exchange of target species through steric hindrance effect, Donan effect or electrostatic effect, adsorption, diffusion, charge repulsion effect, pore effect, or dissolution.
  • the substance components selectively permeated by the separation membrane are related to the type of the separation membrane and the composition of the target substance.
  • a corresponding separation membrane can be set based on the predetermined target substance composition to process the fluid.
  • the separation membrane is, for example, a porous membrane with an average pore size smaller than the molecular diameter of the pathogenic factor, so that the macromolecule is pathogenic
  • the factor is retained on the first side of the second separation module; for another example, when the target substance is a charged ion in a neutral electrolyte liquid, based on the characteristics of the nanofiltration membrane that usually selectively transfers ions according to the charge repulsion effect and the pore effect, so
  • the second separation component can be set as a nanofiltration membrane to realize filtration; for another example, when the fluid is a gas mixture, the corresponding second separation component can be set as a gas separation membrane to separate a specific gas in the fluid through gas separation membrane to achieve the separation of different gas components.
  • the treatment of the target substance may be determined as retention or filtration based on the composition of the fluid and the target substance, thereby determining the average pore size of the separation membrane suitable for retention or filtration of the target substance based on the molecular size of the target substance or molecular weight cut-off to set the separation membrane used in the actual scene; in other examples, when determining the specific type of the separation membrane, reference may also be made to the Daunan effect, adsorption, dissolution, etc. A membrane that can achieve a preset separation effect is set in the separation module.
  • the pore size and type of the corresponding separation membrane can be determined on the basis that the second separation component can intercept more than 90% of the target substance, or the second separation component can be used for the target based on higher separation effect requirements.
  • the rejection rate of substances is set to be above 95% or even above 99% to determine the corresponding pore size and type of separation membrane.
  • the separation membrane may include, for example, a symmetric membrane, an asymmetric membrane, a composite membrane, a multi-layer composite membrane, and the like.
  • the second separation component can also be configured as separation membranes with different geometric shapes to adapt to different fluids or achieve different filtering effects.
  • the second separation module includes one or more of flat membranes, tubular membranes, rolled membranes, spiral membranes, and hollow fiber membranes.
  • the positional relationship between the first side and the second side of the corresponding second separation module may be different based on the different geometrical separation membranes set by the second separation module; for example, when the second separation module is Planar membrane, the first side of the second separation module and the second side of the second separation module are opposite sides of the planar structure barrier; for another example, when the second separation module is a hollow fiber membrane, the first The first side of the two separation modules is the inner side of each fiber membrane tube wall, and the second side of the second separation module is the outer side of each fiber membrane tube wall.
  • the flow angle of the fluid relative to the separation membrane can be set to different angles, such as 0° to 90°.
  • the flow angle of the fluid relative to the separation membrane is 0°, that is, the fluid flows parallel to the surface of the separation membrane. , such as common tangential flow filtration; when the flow angle of the fluid relative to the separation membrane is 90°, that is, the fluid flows in a direction perpendicular to the membrane surface, such as conventional dead-end filtration (also called vertical filtration).
  • the flow channels in the second separation module can be arranged in a folded and reciprocating form, for example, by folding a flat membrane to increase the contact surface area between the fluid and the flat membrane, correspondingly, the flow channels are arranged It is folded and reciprocated to match the structure of the separation membrane, so as to ensure that the separation membrane separates the second separation module to form a first side and a second side.
  • the second separation module is a tangential flow filtration module.
  • step S21 the fluid is driven to flow from the inlet to the outlet at a preset flow rate in the separation pipeline based on at least one second driving device, so as to control the dynamic balance of the total amount of fluid in the separation pipeline.
  • the second driving device 23 includes but is not limited to a peristaltic pump, a pressure pump, an electric field, a heater, a hydraulic pump or a vacuum pump, and is used to provide power to the fluid in the enrichment pipeline to make the fluid
  • the flow follows the preset flow direction, that is, flows from the inlet to the outlet of the separation pipeline 21 to form a dynamic circulation.
  • the total amount of fluid in the separation pipeline 21 is dynamically balanced; in the circulating separation mode, the second feed
  • the flow port keeps the fluid introduced into the second separation module 22, and the specific components in the fluid that pass through the second separation assembly flow into the separation line 21 connected to the second side of the second separation module 22, and the specific components from the separation line
  • the inlet of 21 flows to the second side of the second separation module 22 connected to the outlet of the separation pipeline 21 to form a circulation, and at the same time, the second discharge port on the first side of the second separation module 22 leads the fluid out of the second separation module 22;
  • the total amount of fluid in the separation pipeline 21 is balanced, by controlling the second inlet port to introduce fluid to the first side of the second separation module 22 and the second outlet port to the first side.
  • the flow rates of the fluids drawn from the first side of the two separation modules 22 are equalized.
  • the second driving device 23 can drive the fluid in the pipeline at different positions in the separation pipeline 21 , and the flow rate of the second driving device 23 may be caused by factors such as pipeline resistance, temperature, and pressure due to the flow direction of the fluid. The speed changes.
  • a plurality of second driving devices 23 may be provided in the separation pipeline 21 to control the flow velocity at different positions in the separation pipeline 21 to be preset values.
  • the separation line can also be connected to a processing module 24 to reprocess the separation fluid in the separation line or the fluid drawn from the second outlet; here,
  • the composition of the separation fluid can be controlled based on the second separation module, ie the fluid is thus connected to the second separation module after the target substance has been trapped in the enrichment pipeline via the first separation module, through the second separation module
  • the module allows a specific component to enter the separation pipeline, and through the separation pipeline, it can be used to change the concentration of the specific component in the fluid after the target substance is trapped by the first separation module, or to allow the processing module to adjust the concentration of the specific component.
  • Certain components are reprocessed. Wherein, the reprocessing includes but is not limited to at least one of filtration, adsorption, heating, catalysis, enrichment, concentration, chemical treatment, optical treatment, and electrical treatment.
  • the processing module 24 may be disposed in the separation pipeline to adjust the flow direction or flow path of the separation fluid, that is, the processing module 24 also For the flow channel adjustment device.
  • the flow channel adjustment device can be configured as an adjustment pipeline and a pipeline switch matched with the separation pipeline, wherein the adjustment pipeline is respectively provided in the separate pipeline, and the pipeline switch is provided in each adjustment pipeline. Separation lines on pipes and between conditioning pipes.
  • the fluid circulation direction and the flow channel in the separation pipeline can be changed.
  • the pipeline switch on the regulating pipeline is turned off and the pipeline switch on the separation pipeline is turned on, and the fluid in the separation pipeline flows in accordance with the flow channel of the separation pipeline, which can be used for cyclic separation;
  • the separation pipeline needs to be cleaned, in the cleaning mode, one end of the two adjustment pipelines is connected to the separation pipeline, and the other end can be used as the inlet and outlet of the separation pipeline respectively.
  • the two adjustment pipelines cooperate with each other.
  • the separation line forms a new flow channel, that is, the separation fluid circulated and separated in the separation line can be led out of the separation line from the outlet, and cleaning liquid can also be introduced into the separation line to separate the separation line.
  • the circuit is adjusted to the cleaning mode, the cleaning liquid can enter the separation pipeline and the second separation module based on the inlet, and flow to the outlet to clean the wall of the separation pipeline and the second separation module.
  • the separation tube The target substance in the path and the second separation module is removed.
  • the flow channel adjustment device corresponding to the separation pipeline is a four-way valve.
  • the four-way valve can also be rotated to achieve adjustment or switching of different working modes in the separation pipeline.
  • the four-way valve can determine its structural parameters based on the pipeline parameters of the separation pipeline and the position set in the separation pipeline.
  • the four-way valve can be set at the corner of the separation pipeline, or can be In a straight pipeline, the internal structure of the corresponding four-way valve can be changed accordingly; in some implementations, the four-way valve can be obtained by 3D printing.
  • the processing module 24 is a collection device. It should be understood that in the fluid processing method of the present application, the separation pipeline 21 collects a certain volume of separation fluid in a circulating separation mode while circulating fluid.
  • the target substance therefore, the inner cavity of the separation pipeline 21 can also serve as the accommodating space for the target substance, and the collection device can be a container or storage space for expanding the volume of the separation pipeline 21 .
  • the separation pipeline is further provided with at least one of a control device, a storage device, a pressure detection device, a temperature detection device, a temperature control device, a bubble detection and removal device, an alarm device, and a concentration detection device kind.
  • control device is arranged in the enrichment pipeline or the control device is arranged in the separation pipeline, which does not limit the position of the control device.
  • the device can be electrically connected to each driving device, detection device, or sensor in the enrichment pipeline or separation pipeline, so the control device can of course be located outside the pipeline; the control device is used to obtain the enrichment pipeline. Or the working state information in the separation pipeline, and realize the control of the working state in the enrichment pipeline or the separation pipeline.
  • the second inlet port corresponding to the separation pipeline is communicated with the first outlet port of the enrichment pipeline.
  • the control device is a control device.
  • the central system of the cascaded enrichment pipeline and the separation pipeline, here, the control device connects the enrichment pipeline and the separation pipeline at the same time; in other examples, the enrichment pipeline
  • the circuit and separation line can also be connected to different control devices.
  • step S10, step S11, and step S12 in the fluid processing method is not necessarily limited.
  • step S12 may be executed first, and then executed Step S10; here, the step S10, step S11, and step S12 can be regarded as necessary conditions for the execution of the fluid processing method of the present application, and the fluid processing method of the present application can be implemented if each condition is satisfied.
  • the order of occurrence is not limited, and the implementation manner from step S10 to step S11 to step S12 is only a description manner selected for easy understanding.
  • the fluid treatment method is used in the treatment of diseases, for example, the enrichment and selective removal of target molecules can be achieved by an extracorporeal circulation removal system that can perform the fluid treatment method of the present application
  • target molecules are often pathogenic factors or results in the development of diseases, or are critical to the development of diseases or maintenance of health, and the removal of target molecules is beneficial to the treatment of diseases or the reduction of complications
  • the said Diseases include but are not limited to familial hypercholesterolemia, hyperlipoproteinemia, systemic lupus erythematosus, autoimmune disease, myasthenia gravis, rapidly progressive glomerulonephritis, fatty liver, cirrhosis, acute liver failure, hyperthyroidism
  • the types of diseases that the fluid handling method is adapted to treat are not limited to the foregoing examples, only if The fluid
  • the treatment includes preventative (ie, prophylactic), blocking, curative, or palliative treatments that result in the desired physiological effect.
  • the term “treating” is used herein to mean partially or fully ameliorating, delaying the onset, inhibiting progression, lessening the severity, and/or reducing the appearance of one or more symptoms of a particular disease, abnormality and/or medical condition the purpose of probability.
  • the target substance in blood or interstitial fluid can be subjected to sustainable and Highly selective enrichment and clearance, thereby altering the concentration of pathogenic factors in patients.
  • a corresponding separation module is selected or designed to determine pathogenic factors in blood or tissue fluid for a specific disease type, that is, to enrich or remove specific pathogenic factors in the pipeline.
  • the blood or interstitial fluid drawn from the patient can also be pretreated by the processing module, and then the target substances in the plasma or interstitial fluid obtained by the pretreatment can be enriched or eliminated, and can be controlled based on a preset clearance target. processing time.
  • the target substance enriched by the enrichment circuit circulation or the separation fluid separated by circulation in the separation circuit can also be connected to a processing module for reprocessing, which can treat the target Substances or separated fluids are decomposed, catalyzed, heated, concentrated, etc.
  • the target substance in the fluid is intercepted through the enrichment pipeline and the first separation module, and the target substance is cyclically enriched in the enrichment pipeline, where the cyclic enrichment is carried out.
  • the fluid in the enrichment pipeline flows at a preset flow rate according to the first driving device, so as to ensure the dynamic balance of the total amount of fluid in the enrichment pipeline, so the fluid treatment method of the present application has the advantages of It is sustainable, and can realize the collection or treatment of some components in the fluid, that is, the target substance, and the fluid drawn from the first outlet of the enrichment pipeline can be connected to the processing module or storage space; here, the The fluid treatment method is sustainable, so that a controllable separation effect can be achieved.
  • the total amount of fluid in the enrichment pipeline is balanced during the cyclic enrichment process, which can avoid the separation effect from being greatly reduced with the separation.
  • the target in the fluid Substances can be circulated through the first separation module to be retained, avoiding continuous loss of beneficial components during component separation or exchange of the fluid.
  • the fluid treatment method can realize the treatment of target components in the fluid under fine-grained classification based on cascaded enrichment pipelines or phase cascaded enrichment pipelines and separation pipelines,
  • the collection or processing of any component in the fluid can be realized, which can eliminate or reduce application limitations in different fields.
  • different components in human body fluids including blood
  • the present application also provides a fluid processing method in a second aspect, comprising the steps of: introducing fluid into a separation pipeline based on at least one second separation module; wherein the separation pipeline has an inlet and an outlet; the second The separation module has a first side and a second side separated by a second separation component, and opposite ends of the first side of the second separation module are respectively connected to at least one second inlet and at least one second outlet, and the second separation The opposite ends of the second side of the module are respectively connected to the inlet and the outlet of the separation pipe; based on at least one second driving device, the fluid in the separation pipe is driven to flow from the inlet to the outlet at a preset flow rate, so as to control the separation pipe The total amount of fluid in the circuit is dynamically balanced.
  • the fluid contains the target substance, and in certain embodiments, the fluid includes but is not limited to blood, plasma, serum, body fluid, tissue fluid, washing fluid, dialysate, recombinant protein solution, cell culture fluid, microbial culture fluid, pharmaceutical and a mixture of one or more of medical water, medicinal liquid, fluid food, animal and plant extracts, natural water, industrial wastewater, reclaimed water, light oil, methane, and liquefied gas; in some examples, the The fluid can also be a material component obtained after processing, eg, filtration, of a fluid such as blood, plasma, etc.; in other examples, the fluid can also be a gas mixture, such as a gas mixture including methane.
  • the fluid treatment method of the present application can be applied to the treatment of different types of fluids.
  • the fluid has different material components, such as the fluid has a difference in selective permeation when it is transported in a separation membrane.
  • the components and certain fluidity are sufficient to enable the separation process, such as the above-mentioned liquid mixture or gas mixture, and the fluid may be other solid-liquid mixed phase fluid or colloid, which is not limited in this application.
  • FIG. 13 shows a schematic flowchart of an embodiment of the fluid processing method according to the second aspect of the present application.
  • step S30 the fluid is introduced into a separation pipeline based on at least one second separation module, wherein the separation pipeline has an inlet and an outlet; the second separation module has a first side formed by the separation of the second separation component and On the second side, opposite ends of the first side of the second separation module are respectively connected to at least one second inlet and at least one second outlet, and opposite ends of the second side of the second separation module are respectively connected to the separation pipe Road entrances and exits.
  • step S31 the fluid is driven to flow from the inlet to the outlet at a preset flow rate in the separation pipeline based on at least one second driving device, so as to control the dynamic balance of the total amount of fluid in the separation pipeline.
  • the second separation component is a porous membrane, a reverse osmosis membrane or a gas separation membrane.
  • the average pore size or molecular cut-off of the porous membrane or reverse osmosis membrane is related to the fluid composition, wherein the porous membrane includes microfiltration membranes, ultrafiltration membranes, and nanofiltration membranes.
  • the second separation module includes one or more of sheet membranes, tubular membranes, rolled membranes, spiral membranes, and hollow fiber membranes.
  • the separation pipeline is further provided with a control device, a fluid storage device, a pressure detection device, a temperature detection device, a temperature control device, an oxygen detection device, a bubble detection and removal device, an alarm device, and a concentration detection device at least one of the devices.
  • the optional form of the second separation component is related to the preset processing target of the target substance in the fluid.
  • the fluid in the preceding separation line is communicated to the corresponding second inlet port of the latter separation line, so that the fluid flows through the N cascaded separation lines Circulating flow in the road, wherein, N is a positive integer of 2 or more (N ⁇ 2).
  • FIG. 14 is a simplified schematic diagram of N cascaded separation pipelines in one embodiment.
  • the preceding separation pipeline and the succeeding separation pipeline are used to describe any two adjacent separation pipelines in the cascaded N separation pipelines, and the preceding and succeeding order is the connection order,
  • the connection sequence is differentiated based on the flow direction of the fluid in the separation line, i.e. the fluid always flows from the preceding separation line after being processed into the latter separation line for reprocessing, and therefore the fluid always flows from the preceding separation line.
  • the inlet of the pipeline enters the second inlet connected to the second separation module of the latter separation pipeline, and correspondingly, the second outlet connected to the second separation module of the latter separation pipeline is connected to the preceding separation pipeline. road exit.
  • the fluid follows the connection sequence of the separation pipelines to perform N separation cycles.
  • the second inlet and the second row of The fluid velocity or flow at the orifice is equal, that is, the N cascaded separation pipelines are all in dynamic equilibrium, and therefore, continuous cyclic separation can be performed in each of the separation pipelines.
  • the fluids are sequentially trapped in the first side of the second separation module corresponding to the cascaded separation pipelines. Therefore, the fluid introduced at the second inlet of each separation pipeline is The components are different, correspondingly, the fluid components in different separation pipelines are different.
  • the different components of the fluid include: different types of substances in the fluid or/and different concentrations or total amounts of at least one substance in the fluid.
  • the present application provides an embodiment of processing fluid by adopting N cascaded separation pipelines, which can be used to separate different particle sizes or molecular weights, components of different chemical properties, or molecules of different charge properties in the fluid.
  • N cascaded separation pipelines which can be used to separate different particle sizes or molecular weights, components of different chemical properties, or molecules of different charge properties in the fluid.
  • the separation of different components under fine-grained classification can be realized. Cycle separation.
  • the fluid in the separation pipeline of the present application is reversible in the circulation separation mode, and based on the interception effect of the second separation module, the separation pipeline connected to the second side of the second separation module can be realized.
  • the fluid of the second separation module only contains a specific component, and the fluid on the first side of the second separation module may include the specific component and the intercepted component at the same time. Connection sequence, the fluid component categories in the separation line are gradually reduced.
  • the reversible circulation in the separation goes back to the upstream, for example, in the embodiment shown in Figure 14, when the fluid includes components a, b, c, d, in the separation process, following the connection order, the first separation tube
  • the fluid components in the channel 21 are b, c, and d, wherein the component a is trapped on the first side of the second separation module 22a corresponding to the first separation pipeline 21a; the fluid components in the second separation pipeline 21b
  • component b is retained on the first side of the second separation module 22b corresponding to the second separation line 21b and can flow to the first separation line 21a from there, and at the same time, component b can be based on the
  • the reversible cyclic separation is returned to the first side of the second separation module 22
  • the separation fluid in the separation pipeline may be led out of the separation pipeline based on the adjustment pipeline outlet of the flow channel adjustment device, or led out of the separation pipeline based on the processing module.
  • the pipeline can extract or process the fine-grained target substance directionally, thereby realizing the change of the concentration of the target substance in the fluid under the fine-grained classification. For example, when the molecular weight of each component in the fluid ranges from 200 to 2000 Dalton, taking N as 2 as an example, following the connection sequence, the preceding separation pipeline corresponds to the components above 1100 Dalton in the intercepted fluid of the second separation module.
  • the separation fluid component in the front separation pipeline is 200-1100 Dalton, so that the second separation module corresponding to the rear separation pipeline retains more than 800 Dalton components, and the separation fluid component in the rear separation pipeline is 200 ⁇ 1100 Dalton. 800 Dalton's components.
  • the number of the N cascaded separation pipelines is any positive integer greater than 2.
  • various components in the fluid or components in multiple classification sections can be collected separately. , extraction or processing; here, the classification segment may be a classification segment obtained by dividing based on at least one of the chemical properties of components, molecular weight or molecular particle size, and charge properties, and it should be understood that the classification segment has a variety of The division standard is to have a corresponding second separation component so that the substances in the classification section can be trapped on the first side of the second separation module.
  • the second separation component as a separation membrane as an example, different types of separation membranes have With different permeabilities, by setting N groups of separation membranes, the fluid components can be classified or intercepted N times.
  • the compliance connection order may, based on molecular weight, intercept macromolecular components on the first side of the second separation module corresponding to the first separation line, and at the second The second separation module corresponding to the separation pipeline can intercept the components that do not have selective permeability in the second separation module corresponding to the separation pipeline based on the chemical properties of the fluid, and the third separation pipeline is based on the fluid components
  • the charge properties trap charged ions.
  • the N cascaded separation pipelines can be used, for example, to separate antibiotics, amino acids, enzymes, and other proteins in the fluid.
  • the molecular particle size, molecular weight, or component particle size of the target substance corresponding to the N cascaded separation pipelines decreases step by step according to the connection order.
  • the components in the fluid are classified according to molecular particle size or molecular weight, and the selective permeability of the second separation module corresponding to the N cascaded separation pipelines to the fluid components may be based on the particle size of the components Or molecular weight design, for example, the average pore size of the separation membrane in the second separation module of the N groups corresponding to the N cascaded separation pipelines can be gradually reduced or the molecular weight cut-off can be gradually reduced.
  • the molecular particle size or molecular weight corresponding to the target substance retained on the first side of the corresponding second separation module in the corresponding second separation module gradually decreases.
  • the second separation module corresponding to each separation pipeline can retain part of the components in the fluid on the first side of the second separation module, so the second side of the second separation module can only contain specific components in the fluid.
  • the corresponding separation pipeline can be selected based on the needs, that is, only specific components in the fluid can be processed.
  • the following step is further included: introducing the fluid from a separation pipeline into an enrichment pipeline, wherein the enrichment pipeline includes a first section and a second section segment, the inlet of the first segment is connected to at least one first inlet, and the outlet of the second segment is connected to the first segment; at least one first separation module intercepts the target substance in the fluid; wherein, the The first separation module has a first side and a second side separated by the first separation component, opposite ends of the first side are respectively connected to the first section and the second section, and the second side is connected to at least one first row a flow port; based on at least one first driving device, the fluid is driven to circulate and flow in the enrichment pipeline at a preset flow rate to enrich the target substance, wherein the at least one first driving device is arranged in the first section and controls all the The total amount of fluid in the enrichment pipeline is dynamically balanced.
  • the second aspect of the present application also provides an embodiment of cascading the separation line and the enrichment line.
  • FIG. 15a and FIG. 15b are simplified structural diagrams of cascaded separation pipelines and enrichment pipelines in different embodiments.
  • the fluid is drawn out from one separation pipeline to the corresponding enrichment pipeline.
  • the first inlet is shown in Figure 15a, for example; or, the fluid will be processed in a cascaded separation pipeline of more than N phases, and the fluid in the last separation pipeline will be connected to the enrichment tube according to the connection sequence.
  • the fluid flows from the inlet of the separation pipeline 21 to the first inlet corresponding to the enrichment pipeline 11, and in the enrichment pipeline 11 flows to the first discharge port through the first separation module 12, and the fluid drawn from the first discharge port flows to the outlet of the separation pipeline 21 to form a separation cycle; that is, in this example, the rich
  • the header line 11 can be regarded as a sub-cycle device in the separation cycle.
  • FIG. 16 shows a flowchart of steps included in an embodiment of the fluid processing method of the second aspect of the present application.
  • step S40 the fluid from a separation pipeline is introduced into an enrichment pipeline, wherein the enrichment pipeline includes a first section and a second section, and the inlet of the first section is connected to at least one first section. an inlet, the outlet of the second section communicates with the first section;
  • step S41 the target substance in the fluid is intercepted based on at least one first separation module; wherein, the first separation module has a first side and a second side separated by the first separation module, and the first side is opposite to The two ends are respectively connected to the first section and the second section, and the second side is connected to at least one first discharge port;
  • step S42 the at least one first driving device drives the fluid to circulate and flow in the enrichment pipeline at a preset flow rate to enrich the target substance, wherein the at least one first driving device is arranged in the first section and The dynamic balance of the total amount of fluid in the enrichment line is controlled.
  • the first separation component is a porous membrane, a reverse osmosis membrane, or a gas separation membrane.
  • the average pore size or molecular cut-off of the porous membrane or reverse osmosis membrane is related to the target substance, wherein the porous membrane includes a microfiltration membrane, an ultrafiltration membrane, or nanofiltration membranes.
  • the first separation module comprises one or more of flat membranes, tubular membranes, rolled membranes, spiral membranes, and hollow fiber membranes.
  • the first separation module is a tangential flow filtration module.
  • the at least one first driving device controls the flow rate of the first section to be above a preset threshold, so that the target substance in the first separation module is removed from the The outlet of the first section flows to the inlet of the second section.
  • the preset threshold value is related to at least one of fluid composition, fluid temperature, membrane structure, membrane material, cavity structure of the first separation module, and enrichment pipeline diameter related.
  • the second segment is further provided with the first driving device.
  • the total volume or total velocity of fluid introduced into the enrichment line from the first inlet is equal to the total volume or velocity of fluid drawn out of the enrichment from the first outlet
  • the total volume or total velocity of fluid in the lines is equalized to cyclically enrich the target species.
  • the enrichment efficiency is adjusted by controlling the ratio of the total amount of fluid introduced into the enrichment pipeline per unit time to the total amount of fluid in the enrichment pipeline.
  • the enrichment pipeline is further provided with a flow channel adjustment device for adjusting the flow direction of the fluid in the enrichment pipeline; wherein, the flow channel adjustment device
  • the fluid flow direction in the enrichment pipeline can be adjusted in at least one of the following ways:
  • Adjust the fluid flow direction by adjusting the opening state of the first inlet or/and the first outlet;
  • the fluid flow direction is adjusted by adjusting the open state of at least one adjustment pipe connected to the enrichment pipe.
  • the flow channel adjustment device includes a pipeline switch provided at the first inlet for controlling the opening state of the first inlet to adjust the The processing state of the fluid in the enrichment line is switched to the enrichment circulation mode or the cleaning mode.
  • the flow channel adjustment device further includes at least one adjustment pipeline and a pipeline switch, so that a cleaning liquid inlet and a waste liquid outlet are formed in the enrichment pipeline.
  • the flow channel adjustment device is a four-way valve.
  • the enrichment pipeline is switched between a concentration circulation mode and a dilution mode to adjust the separation efficiency of the first separation module.
  • the enrichment pipeline further includes an exhaust gas inlet, which is provided in the first section or/and the second section, and is used for adjusting the enrichment pipeline The gas state or air pressure state inside the road.
  • the enrichment pipeline further includes at least one collecting device, which is arranged in the first section or/and the second section, and is used to adjust the enrichment pipeline volume to collect target substances, or to collect air bubbles.
  • the enrichment pipeline further comprises a control device, a fluid storage device, a pressure detection device, a temperature detection device, a temperature control device, an oxygen detection device, a bubble detection and removal device, At least one of an alarm device, a flow rate detection device, and a concentration detection device.
  • control device forms adjustment information for the inner working state of the enrichment pipeline based on at least one of a flow rate detection device, a pressure detection device, and a concentration detection device.
  • the specific structures of the enrichment pipeline and the first separation module, the different structures configured in the enrichment pipeline or the connection between modules, the positional relationship, and the first drive device are used to control the enrichment pipeline.
  • the way of removing the fluid, and the structure of the flow channel adjustment device, the collecting device and other equipment configured in the enrichment pipeline and the way of coordinating with each structure to realize different fluid processing functions can be referred to the first aspect of this application.
  • the enrichment pipeline, the first drive device, and the first separation module described in the embodiments of the second aspect of the present application may be the enrichment described in any one of the embodiments shown in FIG. 1 to FIG. 9 .
  • the second aspect of the present application further includes the step of pre-processing or re-processing the fluid by at least one processing module, wherein the pre-processing or re-processing includes filtration, adsorption, heating, catalysis , at least one of enrichment, concentration, chemical treatment, optical treatment, and electrical treatment.
  • the processing modules are, for example, an adsorption device, an extraction device, an ion exchange processing device, a centrifugal device, a filtering device, a heating device, and the like.
  • the processing module pretreats the fluid, ie, processes the initially obtained fluid, so as to introduce the processed fluid into the second separation module through the second inlet.
  • the fluid processed by the processing module is connected to the second inlet corresponding to the separation pipeline, and the processing module performs preprocessing.
  • the processing module reprocesses the fluid, that is, processes the separation fluid in the separation pipeline, so as to process the target substance obtained from the circulating separation.
  • the The separation fluid contains only specific components, and the specific components can be reprocessed in combination with the processing module, such as concentration collection, chemical decomposition, etc.;
  • the processing of the fluid drawn from the second row of flow outlets is reprocessing; alternatively, the reprocessing is that the processing module processes the target substances that are circulated and enriched in the enrichment pipeline, or the first row corresponding to the enrichment pipeline is processed.
  • the fluid drawn from the orifice is processed.
  • the type of preprocessing or reprocessing performed by the processing module may be determined based on processing needs. For example, when the component retained at the first side of the second separation module is a fluid component that needs to be filtered out, the separation pipeline
  • the separation fluid in the separation pipeline is the beneficial component that needs to be purified, and the processing module can perform concentration processing of the fluid in the separation pipeline; for another example, the target substance in the enrichment pipeline is the component that needs to be filtered out , the treatment module can remove the target substance by chemical decomposition.
  • the second inlet port corresponding to the second separation module is connected to the first
  • the two flow ports are connected to the same storage portion, wherein the storage portion includes a fluid storage device, a container, or a human body.
  • the storage part is only used to realize the storage or communication function of the fluid introduced into the second inlet and the fluid drawn out from the second outlet. Therefore, the storage part can be a kind of container or storage
  • the space can also be the blood circulation of the human body in a specific application scenario, which is not limited in this application.
  • FIG. 17 shows a simplified schematic diagram of the cascaded separation pipeline and enrichment pipeline in one embodiment of the present application.
  • the second inlet and the second outlet are connected to the same storage part 26, which is, for example, a storage device or a container.
  • the second The driving device 23 controls the dynamic balance of the total amount of fluid in the separation pipeline 21 to perform cyclic separation
  • the first driving device 13 controls the dynamic balance of the total fluid in the enrichment pipeline 11 to perform cyclic enrichment.
  • the total amount of fluid in the storage unit 26 is dynamically balanced.
  • the fluid in the storage part 26 is separated into specific components at the second separation module 22, that is, the separation fluid, and the separated fluid is introduced into the enrichment pipeline 11, and the enrichment pipeline 11 is enriched in the circulation
  • the separation fluid is enriched with the target substance in the enrichment pipeline 11, and the fluid separated from the target substance components is returned to the outlet of the separation pipeline 21 through the second side of the first separation module, and based on the
  • the reversible cyclic separation in the separation pipeline 21 returns to the storage part 26, and the cyclic separation and cyclic enrichment are continued, and the target substance in the fluid in the storage part 26 gradually decreases while the total amount of fluid remains unchanged.
  • the components are collected, no waste liquid is generated, and the total amount of fluid in the storage part 26 remains unchanged, so the process of cyclic separation and cyclic enrichment can continue.
  • the fluid when the storage part is a human body, can be human blood, plasma, serum, tissue fluid or other body fluids.
  • the second inlet and the first row The connection relationship between the flow port and the human body can be a direct connection or an indirect connection.
  • the first outlet is connected to a processing module, the processing module is connected to the human circulatory system, for example, the processing module is used to separate human whole blood into plasma, and the second inlet is connected to the separation obtained of blood plasma.
  • waste plasma is not generated when the pathogenic factors that need to be filtered out in the plasma are trapped in the enrichment pipeline, and based on the continuous separation treatment of the plasma in the human body, namely It can change the concentration of the target substance in the plasma of the human body and avoid the problem of continuous loss of beneficial components.
  • the separation pipeline or the enrichment pipeline can be used as a separation module. It is easy to understand that both the separation pipeline and the enrichment pipeline can achieve the separation effect based on the corresponding separation module. Therefore, , the separation pipeline and the enrichment pipeline can be used as a separation device or a filter device.
  • the second inlet of the separation pipeline is connected to the human blood circulation system, and the cell components in the blood are trapped on the first side of the second separation module based on the second separation module, and the second separation module passes through the second separation module.
  • the plasma of the separation component circulates in the separation pipeline, and at the same time, the plasma in the separation pipeline is connected to the first inlet of the enrichment pipeline, so that the target substance in the plasma can be enriched.
  • the fluid drawn from the first discharge port of the enrichment pipeline is the purified plasma, which is returned to the separation pipeline after purification and can be based on the reversible circulating separation flow of the separation pipeline. to the first side of the second separation module, whereby the purified plasma can be mixed with cellular components and returned to the human blood circulation system.
  • the removal process of pathogenic factors in plasma is sustainable, and no waste liquid is generated during the plasma purification process; at the same time, other components other than pathogenic factors in plasma can be separated back to the upstream tube based on reversible circulation.
  • the pipeline can be returned to the human body, and the construction method of the pipeline system in practical applications is also simplified.
  • control device is arranged in the enrichment pipeline or the control device is arranged in the separation pipeline, which does not limit the position of the control device, only when all the
  • the control device can be electrically connected with each driving device, detection device or sensor in the enrichment pipeline or separation pipeline, so the control device can of course be located outside the pipeline; the control device is used to obtain the enrichment pipeline.
  • the working state information in the pipeline or the separation pipeline is realized, and the control of the working state in the enrichment pipeline or the separation pipeline is realized.
  • the separation fluid in the separation line is communicated to the first inlet of the enrichment line, and in some examples, the control device is to control the A central system of cascaded separation pipelines and enrichment pipelines, where the control device simultaneously connects the separation pipelines and the enrichment pipelines; in other examples, the separation pipelines and the enrichment pipelines
  • the headers can also be connected to different controls.
  • step S30 and step S31 in the fluid processing method is not necessarily limited.
  • steps S30 and S31 can be regarded as necessary conditions for the execution of the fluid processing method provided in the second aspect of the present application, and the fluid processing method can be implemented if each condition is satisfied.
  • the sequence of occurrences between the two There is no restriction on the sequence of occurrences between the two, and the implementation manner from step S30 to step S31 here is only a description manner selected for ease of understanding.
  • step S40 , step S41 and step S42 can also be used as processing conditions in the enrichment pipeline, and the corresponding actual execution sequence can also be changed accordingly, which will not be repeated here.
  • the fluid treatment method is used in the treatment of diseases, for example, the enrichment and selective removal of target molecules can be achieved by an extracorporeal circulation removal system that can perform the fluid treatment method of the present application
  • target molecules are often pathogenic factors or results in the development of diseases, or are critical to the development of diseases or maintenance of health, and the removal of target molecules is beneficial to the treatment of diseases or the reduction of complications
  • the said Diseases include but are not limited to familial hypercholesterolemia, hyperlipoproteinemia, systemic lupus erythematosus, autoimmune disease, myasthenia gravis, rapidly progressive glomerulonephritis, fatty liver, cirrhosis, acute liver failure, hyperthyroidism
  • the type of disease that the fluid handling method is adapted to treat is not limited to the foregoing examples, only if the type of disease that the fluid handling method is adapted to treat is not limited to the foregoing examples, only if the type of disease that the fluid handling method is adapted to treat is not limited to the fore
  • the target substance in the blood or tissue fluid can be continuously circulated by determining the patient's lesions such as pathogenic factors in blood or other pathogenic factors in tissue fluid separation, thereby changing the concentration of pathogenic factors in the patient's body.
  • a corresponding separation module is selected or designed to determine the pathogenic factor in the blood or tissue fluid for a specific disease type, that is, the specific pathogenic factor is circulated in the separation pipeline, and the pathogenic factor can be combined with the processing module. to be processed.
  • the blood or tissue fluid drawn from the patient can also be pretreated by the processing module, and then the target substance in the blood or tissue fluid obtained by the pretreatment can be enriched or removed, and the control can be based on a preset removal target. processing time.
  • the target substance enriched by the enrichment circuit circulation or the separation fluid separated by circulation in the separation circuit can also be connected to a processing module for reprocessing, which can treat the target Substances or separated fluids are decomposed, reacted, heated, concentrated, etc.
  • the components in the fluid are intercepted by the second separation module and the specific components in the fluid are circulated and separated in the separation pipeline.
  • the separation pipeline The fluid in the fluid flows at a preset flow rate according to the second driving device, so as to ensure the dynamic balance of the total amount of fluid in the separation pipeline, so that the fluid treatment method of the present application is sustainable in the treatment, and can achieve the target of the fluid medium.
  • the collection of substances or the change of the concentration of fluid components can be realized, and the fluid or separated fluid drawn from the second discharge port of the separation pipeline can be connected to the processing module or storage space, which avoids the separation or exchange of components during the process of fluid component separation or exchange. Continued loss of beneficial ingredients.
  • the fluid processing method can be based on cascaded separation pipelines or phase cascaded separation pipelines and enrichment pipelines to achieve the processing of target components in the fluid under fine-grained classification, and at the same time , based on the reversible circulation characteristics of the separation pipeline, the target molecules or the preset specific components that need to be removed or treated can be trapped in different cycles, and other fluid components that do not need to be treated can flow to Upstream pipelines, thereby enabling targeted and selective enrichment, removal, collection or other processing of specific components, while avoiding the problem of the separation effect decreasing over time.
  • the fluid treatment method can be used to achieve the collection or treatment of any component in the fluid, which can eliminate or reduce application limitations in different fields, such as in medical applications, can be used for human body fluids (including blood) Different components in the water are collected or processed, different active ingredients are enriched in the pharmaceutical process, and different solutes are enriched, separated, and processed in the water treatment.
  • the present application further provides a fluid processing device in a third aspect, comprising at least one circulation enrichment module, wherein the circulation enrichment module includes: an enrichment pipeline, including a first section and a second section; wherein, the The inlet of the first section communicates with the first inlet, and the outlet of the second section communicates with the first section; at least one first separation module includes a first separation component to separate the first separation module to form a second separation module.
  • One side and the second side wherein the opposite ends of the first side are respectively connected to the first section and the second section; the second side is connected to at least one first discharge port; at least one first driving device is provided.
  • the first section for driving the fluid circulation flow of the enrichment pipeline to control the dynamic balance of the total amount of fluid in the enrichment pipeline, so that the first separation module is in the enrichment cycle mode
  • the target substance is enriched.
  • the circulation enrichment module includes: an enrichment pipeline 11, including a first section 111 and a second section 112; wherein the inlet of the first section 111 is connected to the first inlet, and the outlet of the second section 112 Connect the first segment.
  • the first section 111 and the second section 112 of the enrichment pipeline 11 can be based on a certain connection relationship, so that the direction of the liquid flow in the enrichment pipeline 11 can form a cycle, and the outlet of the second section 112 is communicated In the first section 111 , after the fluid enters the first section 111 from the first inlet, it can flow to the second section 112 and from the outlet of the second section 112 to the first section 111 . form a flow cycle.
  • the at least one first separation module 12 includes a first separation component to separate the first separation module 12 to form a first side and a second side, wherein the first side communicates with the outlet of the first section 111 and the second side.
  • the inlet of the second section 112; the second side communicates with at least one first discharge port.
  • the fluid comprises a target substance
  • the fluid includes blood, plasma, serum, body fluid, tissue fluid, washing fluid, dialysate, recombinant protein solution, cell culture fluid, microbial culture fluid Liquid, pharmaceutical and medical water, liquid medicine, fluid food, animal and plant extract, natural water, industrial wastewater, reclaimed water, methane, light oil, and a mixture of one or more of liquefied gas.
  • the first separation component is a porous membrane, a reverse osmosis membrane, or a gas separation membrane.
  • the average pore size or molecular cut-off of the porous membrane or reverse osmosis membrane is related to the target substance, wherein the porous membrane includes a microfiltration membrane, an ultrafiltration membrane, and nanofiltration membranes.
  • the first separation module comprises one or more of flat membranes, tubular membranes, rolled membranes, spiral membranes, and hollow fiber membranes.
  • the first separation module is a tangential flow filtration module.
  • the at least one first driving device controls the flow rate of the first section to be greater than a preset threshold, so that the target substance in the first separation module is removed from the The outlet of the first section flows to the inlet of the second section.
  • the preset threshold is related to at least one of fluid composition, fluid temperature, membrane structure, membrane material, cavity structure of the first separation module, and enrichment pipeline diameter related.
  • the second section of the circulation enrichment module is further provided with the first driving device.
  • the total volume or total velocity of the fluid introduced into the enrichment pipeline from the first inlet is the same as the total volume or velocity of the fluid introduced into the enrichment pipeline from the first exhaust.
  • the total volume or total rate of fluid exiting the enrichment line is equal.
  • the circulating enrichment module adjusts the ratio of the total amount of fluid introduced into the enrichment pipeline per unit time to the total amount of fluid in the enrichment pipeline. enrichment efficiency.
  • the enrichment pipeline is further provided with a flow channel adjustment device for adjusting the flow direction of the fluid in the enrichment pipeline; wherein, the flow channel adjustment device
  • the flow direction of the fluid in the enrichment pipeline can be adjusted in at least one of the following ways: by adjusting the opening state of the first inlet or/and the first outlet to adjust the flow direction of the fluid; by adjusting the connection to the enrichment pipe At least one of the channels adjusts the open state of the conduit to adjust the flow direction of the fluid.
  • the flow channel adjustment device includes a pipeline switch provided at the first inlet, for controlling the opening state of the first inlet to adjust the The processing state of the fluid in the enrichment line is switched to the enrichment circulation mode or the cleaning mode.
  • the flow channel adjustment device further includes at least one adjustment pipe and a pipe switch, so that a cleaning liquid inlet and a waste liquid outlet are formed in the enrichment pipe.
  • the flow channel adjustment device is a four-way valve.
  • the circulation enrichment module is switched between a concentration circulation mode and a dilution mode based on the flow channel adjustment device, so as to adjust the separation efficiency of the first separation module.
  • the circulation enrichment module further comprises an exhaust gas inlet, which is arranged in the first section or/and the second section, and is used for adjusting the enrichment pipe The gas state or air pressure state inside the road.
  • the circulation enrichment module further comprises at least one collecting device, which is arranged in the first section or/and the second section, and is used for adjusting the enrichment pipe volume to collect target substances, or to collect air bubbles.
  • the circulation enrichment module further includes a control device, a fluid storage device, a flow rate detection device, a pressure detection device, a temperature detection device, a temperature control device, an oxygen detection device, and a bubble detection device. And at least one of the exclusion device, the alarm device, and the concentration detection device.
  • control device forms adjustment information for the inner working state of the enrichment pipeline based on at least one of a flow rate detection device, a pressure detection device, and a concentration detection device.
  • the first inlet and the first outlet are connected to the same storage portion, wherein the storage portion includes a fluid storage device, a container, and a human body.
  • the circulation enrichment module may be a hardware device for implementing the fluid processing methods described in some embodiments provided in the first aspect of the present application, for example, a An apparatus for forming an enrichment cycle in the fluid treatment method described in any one of the embodiments of 1 to 12 .
  • the fluid treatment device includes N phase-cascaded circulating enrichment modules, where N is a positive integer of 2 or more;
  • N is a positive integer of 2 or more;
  • the first flow outlet of the former circulation enrichment module is connected to the first inlet of the latter circulation enrichment module.
  • connection method between different circulation enrichment modules in the fluid processing device, the processing method for the fluid, and the processing effect can refer to the embodiment provided in the first aspect of the present application.
  • FIG. 9 can be shown as a phase cascade Simplified schematic diagram of the Cyclic enrichment module.
  • the molecular particle size, molecular weight, or component particle size of the N cascaded cyclic enrichment modules corresponding to the enriched target substances decreases step by step according to the connection order.
  • the phase cascaded circulation enrichment module may be a device for implementing the fluid processing method of cascading multiple enrichment pipelines in the embodiment provided in the first aspect of the present application. For specific implementation and processing effects, refer to the first aspect. The provided embodiments are not repeated here.
  • the fluid treatment device further includes at least one circulation separation module, wherein the circulation separation module includes: a separation pipeline having an inlet and an outlet; a second separation module including The second separation component separates the second separation module to form a first side and a second side, wherein opposite ends of the first side of the second separation module are respectively connected to at least one second inlet and at least one second row an outlet, the opposite ends of the second side of the second separation module are respectively connected to the inlet and outlet of the separation pipeline; the second inlet is connected to the first outlet of the circulating enrichment module; at least one The second driving device is arranged in the separation pipeline, and is used for driving the fluid in the separation pipeline to flow from the inlet to the outlet at a preset flow rate, so as to dynamically balance the total amount of fluid in the separation pipeline in the circulation separation mode .
  • the circulation separation module includes: a separation pipeline having an inlet and an outlet; a second separation module including The second separation component separates the second separation module to form a first side and a second side, wherein opposite ends
  • connection method and positional relationship between the separation pipeline, the second separation module and the second drive device in the circulation separation module can refer to the embodiments shown in FIGS. 11 to 12 , and the circulation separation module can be formed in FIGS.
  • the separation cycle (also referred to as cycle separation) in any of the embodiments shown.
  • the fluid introduced from the second inlet can enter the separation pipeline 21 through the separation fluid of the second separation component to form a circulation, and the second outlet is connected to the second outlet.
  • a reversible cycle separation is formed in the cycle separation module.
  • the second separation component is a porous membrane, a reverse osmosis membrane or a gas separation membrane.
  • the average pore size or molecular cut-off of the porous membrane or reverse osmosis membrane is related to the fluid composition, wherein the porous membrane comprises a microfiltration membrane, an ultrafiltration membrane, and nanofiltration membranes.
  • the second separation module comprises one or more of sheet membranes, tubular membranes, rolled membranes, spiral membranes, and hollow fiber membranes.
  • the second separation module is a tangential flow filtration module.
  • the circulation separation module further includes a control device, a fluid storage device, a pressure detection device, a temperature detection device, a temperature control device, an oxygen detection device, a bubble detection and removal device, an alarm at least one of a device and a concentration detection device.
  • the circulation separation module may be a device for forming a separation cycle in the fluid processing method in the embodiments provided in the first aspect of the present application, so as to be used in the circulation separation mode described in the first aspect of the present application Handling fluids.
  • a third aspect of the present application provides an embodiment of a fluid treatment device having a cascade of circulating enrichment modules and circulating separation modules.
  • the fluid is led out from the first discharge port of one circulation enrichment module to the corresponding second inlet port of the circulation separation module; or, the fluid is cascaded in more than N phases Processed in the circulating enrichment module of the above, and conforming to the connection sequence, the first flow outlet of the last circulating enrichment module is connected to the second inlet corresponding to the circulating separation module, wherein, N is a positive integer of 2 or more.
  • the fluid treatment device further comprises at least one treatment module for pre-processing or re-processing the fluid in the fluid-processing device, wherein the pre-processing or re-processing Treatment includes at least one of filtration, adsorption, heating, catalysis, enrichment, concentration, chemical treatment, optical treatment, and electrical treatment.
  • the processing module pretreats the fluid, that is, processes the initially obtained fluid, and introduces the processed fluid into the circulation enrichment module through the first inlet, and the processing module performs the preprocessing. processing; the processing module reprocesses the fluid, that is, processing the fluid or the target substance in the circulating enrichment module or processing the fluid drawn from the first discharge outlet; or, the processing module separates the circulating
  • the processing of the fluid at the second inlet in the module, the processing of the fluid in the separation pipeline, or the processing of the fluid drawn from the second outlet in the circulating separation module can be regarded as reprocessing.
  • the fluid processing device is an extracorporeal circulation device, wherein the extracorporeal circulation device includes but is not limited to hemodialysis equipment, plasma exchange equipment, extracorporeal peritoneal dialysis equipment, or extracorporeal peritoneal dialysis equipment Membrane oxygenation equipment.
  • the extracorporeal circulation device is used alone as a medical device or a treatment device, and can also be integrated into a medical device or device involving extracorporeal treatment of blood or other body fluids to form a new device.
  • the extracorporeal circulation device can be used as a device for selectively processing various tissue fluids, blood, plasma and their specific components from the human body. Based on the characteristics of the fluid treatment device being sustainable and not producing waste fluid and losing beneficial small molecules, the extracorporeal circulation device can collect specific components or change the concentration of specific components during the treatment of human tissue fluid or blood. , or remove specific components, and make other components back into the human body to form tissue fluid or form extracorporeal circulation treatment of blood.
  • the fluid treatment device is used for disease treatment.
  • the manner in which the fluid treatment device realizes disease treatment and the corresponding feasible treatment types may refer to the embodiments provided in the first aspect of the present application, which will not be repeated here.
  • the fluid treatment device provided in the third aspect of the present application may be a device for performing the fluid treatment method described in any one of the embodiments provided in the first aspect of the present application.
  • the specific structure, connection method, connection method with the processing module, and the fluid processing effect achieved by the circulating enrichment module and the circulating separation module in the fluid processing device can all refer to the implementation provided in the second aspect of this application. example.
  • the recycle enrichment module or the recycle separation module in the fluid treatment device can be used as a separate sales unit; here, the fluid treatment device can be represented as a connected device or as available
  • An independent component of the connection relationship that is, an independent circulation enrichment module or a circulation separation module
  • the connection relationship can be one or more, for example, the fluid treatment device includes a plurality of circulation enrichment modules and circulation separation modules , the cycle enrichment module and the cycle separation module can be connected in different connection relationships to suit different processing requirements, or, to suit the needs of scenarios, and optionally only some of the components among the multiple components to connect.
  • the present application further provides a circulation separation device for fluid processing, the circulation separation device includes at least one circulation separation module, wherein the circulation separation module includes: a separation pipeline with an inlet and an outlet a second separation module, comprising a second separation component to separate the second separation module to form a first side and a second side, wherein the opposite ends of the first side of the second separation module are respectively connected to at least one second inflow port and at least one second discharge port, the opposite ends of the second side of the second separation module are respectively connected to the inlet and outlet of the separation pipeline; at least one second driving device is provided in the separation pipeline for The fluid in the separation line is driven to flow from the inlet to the outlet at a preset flow rate, so as to dynamically balance the total amount of fluid in the separation line in the circulating separation mode.
  • the circulation separation module includes: a separation pipeline with an inlet and an outlet a second separation module, comprising a second separation component to separate the second separation module to form a first side and a second side, wherein the opposite ends of the first side
  • FIG. 12 is a simplified schematic diagram of the cycle separation module in one embodiment.
  • the fluid introduced from the second inlet can enter the separation pipeline 21 through the separation fluid of the second separation component to form a circulation, and the second outlet is connected to the second outlet.
  • a reversible cycle separation is formed in the cycle separation module.
  • the fluid comprises a target substance
  • the fluid includes blood, plasma, serum, body fluid, tissue fluid, washing fluid, dialysate, recombinant protein solution, cell culture fluid, microbial culture fluid Liquid, pharmaceutical and medical water, liquid medicine, fluid food, animal and plant extract, natural water, industrial wastewater, reclaimed water, methane, light oil, and a mixture of one or more of liquefied gas.
  • the second separation component is a porous membrane, a reverse osmosis membrane or a gas separation membrane.
  • the average pore size or molecular cut-off of the porous membrane or reverse osmosis membrane is related to the fluid composition, wherein the porous membrane includes a microfiltration membrane, an ultrafiltration membrane, and nanofiltration membranes.
  • the second separation module includes one or more of sheet membranes, tubular membranes, rolled membranes, spiral membranes, and hollow fiber membranes.
  • the second separation module is a tangential flow filter module.
  • the circulation separation module further includes a control device, a fluid storage device, a pressure detection device, a temperature detection device, a temperature control device, a bubble detection and removal device, an alarm device, and a concentration At least one of detection devices.
  • the circulating separation device further comprises at least one processing module, for performing a step of pre-processing or re-processing on the fluid, wherein the pre-processing or re-processing comprises filtering , at least one of adsorption, heating, catalysis, enrichment, concentration, chemical treatment, optical treatment, and electrical treatment.
  • the processing modules are, for example, an adsorption device, an extraction device, an ion exchange processing device, a centrifugal device, a filtering device, a heating device, and the like.
  • the processing module may be disposed in the separation pipeline to adjust the flow direction or flow channel of the separation fluid, that is, the processing module may also be Flow path adjustment device.
  • the processing module in the recycle separation module may also be a collection device.
  • the cycle separation module in the cycle separation device provided in the fourth aspect of the present application may be an execution device or an execution module for forming the separation cycle in any of the embodiments provided in the second aspect of the present application.
  • the processing effect in the embodiment provided by the second aspect of the application is applied.
  • the circulatory separation device includes N phase cascaded circulatory separation modules, and N is a positive integer greater than or equal to 2;
  • the separation pipeline of the preceding circulation separation module is connected to the second inlet and the second outlet of the latter circulation separation module.
  • the molecular particle size, molecular weight, or component particle size of the target substance corresponding to the N phase cascaded cyclic separation modules decreases step by step according to the connection order.
  • the structure and connection method of the circulating separation modules cascaded with N phases, as well as the processing method of the fluid may refer to this application
  • the second aspect provides an embodiment of cascading a plurality of separation pipelines, for example, any implementation manner of the embodiments shown in FIG. 14 .
  • the circulating separation device further includes at least one circulating enrichment module, wherein the circulating enrichment module includes: an enrichment pipeline, including a first section and a second section ; wherein, the inlet of the first section is connected to the first inlet, and the outlet of the second section is connected to the first section; at least one first separation module is connected to the outlet of the first section, including the first a separation assembly to separate the first separation module to form a first side and a second side, wherein the first side communicates with the inlet of the second section; the second side communicates with at least one first discharge port;
  • the first inlet is connected to the separation pipeline of the circulating separation module; at least one first driving device is arranged in the first section, and is used to drive the fluid circulating flow of the enrichment pipeline to control all the The total amount of fluid in the enrichment pipeline is dynamically balanced, so that the first separation module can enrich the target substance in the enrichment cycle mode.
  • the circulation enrichment module includes: an enrichment pipeline 11, including a first section 111 and a second section 112; wherein the inlet of the first section 111 is connected to the first inlet, and the outlet of the second section 112 Connect the first segment.
  • the first section 111 and the second section 112 of the enrichment pipeline 11 can be based on a certain connection relationship, so that the direction of the liquid flow in the enrichment pipeline 11 can form a cycle, and the outlet of the second section 112 is communicated In the first section 111 , after the fluid enters the first section 111 from the first inlet, it can flow to the second section 112 and from the outlet of the second section 112 to the first section 111 . form a flow cycle.
  • the at least one first separation module 12 includes a first separation component to separate the first separation module 12 to form a first side and a second side, wherein the first side communicates with the outlet of the first section 111 and the second side.
  • the inlet of the second section 112; the second side communicates with at least one first discharge port.
  • the fourth aspect of the present application also provides an embodiment of a recycle separation device in which a recycle separation module and a recycle enrichment module are cascaded.
  • the circulation separation device includes a cascaded circulation separation module and a circulation enrichment module
  • the structure and connection method of the circulation separation module and the circulation enrichment module, as well as the processing method of the fluid can refer to this chapter.
  • the second aspect of the application provides the embodiment of cascading the separation pipeline and the enrichment pipeline, for example, any one of the implementations in the embodiments shown in FIGS. 15 a and 15 b .
  • the first separation component is a porous membrane, a reverse osmosis membrane, or a gas separation membrane.
  • the average pore size or molecular cut-off of the porous membrane or reverse osmosis membrane is related to the target substance, and the porous membrane includes microfiltration membranes, ultrafiltration membranes, and nanofiltration membranes. filter membrane.
  • the first separation module comprises one or more of flat membranes, tubular membranes, rolled membranes, spiral membranes, and hollow fiber membranes.
  • the first separation module is a tangential flow filtration module.
  • the at least one first driving device controls the flow rate of the first section to be above a preset threshold, so that the target substance in the first separation module is removed from the The outlet of the first section flows to the inlet of the second section.
  • the preset threshold value is associated with at least one of fluid composition, fluid temperature, membrane structure, membrane material, cavity structure of the first separation module, and enrichment pipeline diameter related.
  • the second segment is further provided with the first driving device.
  • the total volume or total velocity of the fluid introduced into the enrichment pipeline from the first inlet is equal to The total volume or total velocity of the fluid drawn out of the enrichment pipeline from the first outflow port is equal.
  • the circulating enrichment module adjusts the ratio of the total amount of fluid introduced into the enrichment pipeline per unit time to the total amount of fluid in the enrichment pipeline. enrichment efficiency.
  • the circulation enrichment module further includes a flow channel adjustment device, which is arranged in the first section or/and the second section, and is used for adjusting the enrichment pipe
  • the flow direction of the fluid in the pipeline wherein the flow channel adjustment device can adjust the flow direction of the fluid in the enrichment pipeline in at least one of the following ways: by adjusting the open state of the first inlet or/and the first outlet To adjust the fluid flow direction; adjust the fluid flow direction by adjusting the open state of at least one adjustment pipe connected to the enrichment pipeline.
  • the flow channel adjustment device includes a pipeline switch provided at the first inlet, for controlling the opening state of the first inlet to adjust the The fluid in the enrichment line is switched to the enrichment cycle mode or to the purge mode.
  • the flow channel adjustment device further includes at least one adjustment pipe and a pipe switch, so that a cleaning liquid inlet and a waste liquid outlet are formed in the enrichment pipe.
  • the flow channel adjustment device is a four-way valve.
  • the enrichment pipeline is switched between a concentration circulation mode and a dilution mode based on the flow channel adjustment device, so as to adjust the separation efficiency of the first separation module.
  • the circulation enrichment module further comprises an exhaust gas inlet, which is arranged in the first section or/and the second section, and is used for adjusting the enrichment pipe The gas state or air pressure state inside the road.
  • the circulation enrichment module further comprises at least one collecting device, which is arranged in the first section or/and the second section, and is used to adjust the enrichment pipe volume to collect target substances, or to collect air bubbles.
  • the circulation enrichment module further includes a control device, a fluid storage device, a pressure detection device, a temperature detection device, a temperature control device, a bubble detection and removal device, an alarm device, and At least one of the concentration detection devices.
  • the circulation enrichment module further includes a flow rate detection device, which is used to detect the dynamic state inside the enrichment pipeline, so as to form an internal working condition of the enrichment pipeline. Status adjustment information.
  • the cycle enrichment module in the cycle separation device provided in the fourth aspect of the present application may be an execution device or an execution module for forming the enrichment cycle in any of the embodiments provided in the second aspect of the present application.
  • the processing effects in the embodiments provided in the second aspect of the present application will not be repeated here.
  • the separation cycle device further includes at least one treatment module for pre-processing or re-treatment of the fluid in the cycle separation device, wherein the pre-treatment or Reprocessing includes at least one of filtration, adsorption, heating, catalysis, enrichment, concentration, chemical treatment, optical treatment, and electrical treatment.
  • the processing modules are, for example, an adsorption device, an extraction device, an ion exchange processing device, a centrifugal device, a filtering device, a heating device, and the like.
  • the processing module pre-processes the fluid that is initially obtained, and introduces the processed fluid into the circulation separation module through the second inlet, and the processing module performs pre-processing ;
  • the processing module reprocesses the fluid, that is, the separation flow in the circulating separation module is processed or the fluid drawn from the second discharge outlet is processed;
  • the treatment of the fluid at an inlet, the treatment of the fluid in the enrichment pipeline, or the treatment of the fluid drawn from the first outlet in the circulation enrichment module can be regarded as reprocessing.
  • the circulation separation device is an extracorporeal circulation device, wherein the extracorporeal circulation device is hemodialysis equipment, plasma exchange equipment, extracorporeal peritoneal dialysis equipment, or extracorporeal membrane oxygenation equipment. It should be understood that the types of devices that can be formed by the extracorporeal circulation device are not limited thereto.
  • the circulatory separation device is used alone as a medical device or a treatment device, and can also be integrated into a medical device or device involving extracorporeal treatment of blood or other body fluids to form a new device.
  • the circulation separation device is used in the treatment of diseases, such as achieving therapeutic effects through enrichment and selective removal of target molecules, and the circulation separation device achieves disease treatment methods and
  • diseases such as achieving therapeutic effects through enrichment and selective removal of target molecules
  • the circulation separation device achieves disease treatment methods and
  • the circulating separation device provided in the fourth aspect of the present application may be a device for performing the fluid processing method described in any one of the embodiments provided in the second aspect of the present application.
  • the specific structure, connection method, connection method with the processing module, and fluid treatment effect of the circulating separation module and the circulating enrichment module in the circulating separation device can all refer to the implementation provided in the second aspect of this application. example.
  • the recycle separation module or the recycle enrichment module in the recycle separation device can be used as an independent sales unit; here, the recycle separation device can be represented as a connected device or as available
  • An independent component of the connection relationship that is, an independent circulation enrichment module or a circulation separation module
  • the connection relationship can be one or more, for example, the fluid treatment device includes a plurality of circulation enrichment modules and circulation separation modules , the cycle enrichment module and the cycle separation module can be connected in different connection relationships to suit different processing requirements, or, to suit the needs of scenarios, and optionally only some of the components among the multiple components to connect.
  • a circulation treatment system including at least one fluid treatment device according to any one of the embodiments provided in the third aspect of the present application or/and at least one of the fourth aspect of the present application.
  • Aspect provides the circulation separation device according to any one of the embodiments; and a pipeline system, the pipeline system includes a fluid outlet pipeline and a fluid return pipeline.
  • composition of the circulation processing system includes any one of the following:
  • Example B1 consists of one of the circulating separation devices and pipeline system;
  • Example B2 consists of two or more of the circulating separation devices and pipeline systems;
  • Embodiment C is composed of at least one of the fluid processing devices, at least one of the circulation separation devices, and a pipeline system.
  • connection between the fluid treatment devices or/and the circulation separation devices can be connected in series or in parallel; wherein, the serial connection is a connection including a sequence relationship, for example, In two fluid treatment devices connected in series, the fluid is circulated from one fluid treatment device to the next fluid treatment device after being subjected to circulatory treatment; the inflow ports of the different devices or devices connected in parallel can be connected to the same pipe
  • the same pipeline, the same container, or the same module, or, the fluids processed by different fluid treatment devices or circulating separation devices can be connected to the same pipeline, the same container, or the same module.
  • the parallel connection of the fluid treatment devices such as electrical components The parallel form between.
  • the fluid treatment device and the circulation separation device can be used to collect or process specific components in the fluid, whereby the content or concentration of the specific components in the fluid is changed, by changing the fluid treatment device or/and the circulation
  • the connection between the separation devices can achieve different effects of changing the fluid components.
  • the pipeline system further includes an anticoagulation system, a fluid storage device, a control device, a flow rate detection device, a pressure detection device, a temperature detection device, a temperature control device, and an oxygen detection device , at least one of a bubble detection and removal device, an alarm device, and a concentration detection device.
  • FIG. 18 shows a simplified schematic diagram of the circulation processing system of the present application in one embodiment.
  • the pipeline system can optionally include the above-mentioned device.
  • the pipeline system is mainly used for pulling fluids, and the above-mentioned device can be set in the pipeline system according to actual needs in different application scenarios, for example,
  • a bubble detection and removal device 31 and an air capture device can usually be provided in the pipeline system. 32.
  • the anticoagulation system 34 and the tubing system are coupled systems, for example, when the tubing system is used for blood delivery, by adding heparin, tissue fibrinolysis to the tubing system A zymogen activator, an antithrombin, and other components that inhibit coagulation, and the components that inhibit coagulation flow with the fluid in the pipeline system, that is, the pipeline system is an anticoagulant system.
  • the air bubble detection and removal device 31 can be used to ensure that the fluid is removed from air bubbles before entering the fluid processing device or the circulating separation device, or to remove air bubbles when the treated fluid is drawn out of the fluid processing device or the circulating separation device,
  • the fluid such as blood
  • the fluid needs to be freed of air bubbles after being processed before being introduced back into the human blood circulation.
  • FIG. 19 shows a simplified schematic diagram of the circulation processing system of the present application in another embodiment.
  • the circulation processing system includes a pipeline system and a fluid processing device, and the pipeline system includes a fluid outlet pipeline and a fluid return pipeline.
  • the fluid treatment device is also a circulating enrichment module.
  • the fluid outlet pipeline is connected to a processing module, which can also be a separation device, such as a tangential flow filter module or a centrifugal device, and the part of the fluid separated from the separation device is connected to the In the fluid treatment device, the fluid drawn from the first discharge outlet after being processed by the fluid treatment device is connected to the downstream of the separation device, that is, it can be merged with the retained fluid at the separation device and connected to the fluid return pipeline.
  • the fluid extraction pipeline can be used for example to extract whole blood from the human body, and the corresponding separation device separates the whole blood into cell components and whole blood.
  • a plasma component, the cellular component can be connected to a fluid return line as a retentate, the plasma component is communicated to the first inlet of the fluid treatment device, whereby the plasma component can be Certain components such as low-density lipoproteins are enriched in the fluid treatment device, and the filtrate of the plasma fraction treated by the fluid treatment device can be connected to the fluid return line, whereby the treated plasma and cells are Confluence of components achieves targeted removal (enrichment) of low-density lipoproteins in human blood whole blood; in some implementations, the cellular components and the plasma component filtrate at the fluid processing device are optional Connected to a collection device connected to the fluid return line.
  • the separation device can effectively filter out target molecules in plasma, and the fluid processing device can effectively enrich target molecules, resulting in the enrich
  • a collection device is optionally provided in the pipeline system, and an anticoagulation system 34, a pressure detection system 33, a control device, a driving device, a bubble detection and Exclusion device 31 and the like.
  • FIG. 20 shows a simplified schematic diagram of the circulation processing system of the present application in yet another embodiment.
  • the circulation processing system includes a pipeline system and a fluid processing device, and the pipeline system includes a fluid outlet pipeline and a fluid return pipeline.
  • the fluid treatment device is also a circulating enrichment module.
  • the fluid outlet pipeline is connected to a processing module, such as a filtering device or a separation device, for separating the fluid processed by the processing module into a retention fluid and a filtering fluid, which are filtered out from the processing module Or the separated filtered fluid is connected to the first inlet of the circulating enrichment module, and the fluid processed through the circulating enrichment module is drawn out from the first discharge outlet and connected to the upstream of the processing module That is, the fluid processed by the circulating enrichment module is connected to the processing module again for processing, and the retained fluid at the processing module is connected to the pipeline return pipeline.
  • a processing module such as a filtering device or a separation device
  • the circulatory treatment system is, for example, an extracorporeal circulation treatment system.
  • the blood processed by the device is returned to the human body.
  • the processing module is, for example, a filtration module, used for separating partial components such as plasma components from the whole blood drawn from the human body, and the plasma components are drawn to the first inlet of the fluid processing device through the pipeline.
  • the filtered plasma passes through the filter module again After processing, the retained tributary obtained from the filter module is, for example, renewed whole blood, and the renewed whole blood is connected to a fluid return line for delivery to the human body. That is, in this embodiment, the plasma components can be circulated through the fluid processing device, and at the same time, by setting the connection between the fluid processing device and the processing module, the filtration module can also be used to realize the circulating filtration of plasma .
  • a collection device is optionally provided in the pipeline system, and an anticoagulation system 34, a pressure detection system 33, a control device, a driving device, a bubble detection and Exclusion device 31 and the like.
  • the control device (not shown in the figure) can be used to control the temperature control device, bubble detection and elimination device, alarm device, etc. in the pipeline system, and can also be used to receive detection information such as temperature information, oxygen information in the pipeline, pressure information, etc., so as to control the working status of each device in the pipeline system, such as on or off, operating mode, operating power, etc., based on the detection information.
  • the piping system includes a fluid outlet line and a fluid return line; in certain embodiments, the fluid outlet line and the fluid return line may be connected to the same container or storage space or human body, for example, the The fluid outlet line draws blood from the human body to the fluid treatment device or the circulatory separation device, and the fluid return line returns the treated blood to the human body.
  • the tubing material in the tubing system may be set to a special material corresponding to the fluid, for example, the tubing system may be configured as a dedicated blood tubing, a dedicated tubing for a peristaltic pump, a single-use blood tubing Blood tubing for dialysis, autoclaved silicone tubing, tubing dedicated to corrosive liquids, tubing with high biocompatibility, etc.
  • the tubing system For blood delivery pipelines or liquid medicine delivery pipelines, pipeline materials include but are not limited to soft polyvinyl chloride plastics, high-performance polyolefin thermoplastic elastomers (TPE), nano-biomedical materials, and resin materials.
  • the circulatory treatment system is an extracorporeal circulation clearance system, an extracorporeal enrichment and clearance equipment, a hemodialysis equipment, a plasma exchange equipment, an extracorporeal peritoneal dialysis equipment, or an extracorporeal membrane lung oxygenation equipment
  • the circulatory treatment system can also be used as a component to be grafted into other extracorporeal circulation equipment, such as artificial liver, artificial kidney, hemodialysis equipment, peritoneal dialysis equipment, plasma exchange equipment, plasma purification equipment , blood lipid purification equipment, molecular adsorption recycling system, extracorporeal membrane oxygenation equipment, leukocyte removal equipment, extracorporeal circulation life support system, etc.
  • the circulatory treatment system alone forms a medical device or treatment device, and can also be integrated into a medical device or device involving extracorporeal treatment of blood or other body fluids to form a new device.
  • the circulating treatment system is used for at least one of cell collection, microorganism collection, and material collection.
  • both the fluid treatment device and the separation and circulation device in the circulation treatment system can collect specific components, and in specific scenarios, the specific components may be cells, microorganisms or other materials.
  • each of the fluid treatment devices or circulation separation devices can be used as an independent sales unit; by associating the fluid treatment devices with the circulation separation devices in different connection relationships, different effects on fluid treatment can be formed.
  • the circulation processing system formed by determining the connection relationship can also be used as a sales unit, and correspondingly, the circulation processing system can be expressed as a system that has been connected, or can be expressed as each independent component that can obtain a connection relationship
  • the connected system may further include an integrated housing or a module shape, for example, an interface corresponding to the pipeline system is reserved outside the housing to process the outflow.
  • the device and the circulating separation device are integrated inside the casing; or a casing that can be opened and closed is formed to introduce fluid into the circulating treatment system when the casing is opened.
  • the present application further provides a medical device, the medical device comprising the circulatory processing system according to the embodiments provided in the fifth aspect of the present application.
  • the medical equipment can be used for medical purposes, and can be instruments, equipment, appliances, materials or other items used in the human body alone or in combination, and can also include required software; Treatment, monitoring, relief, compensation.
  • the medical equipment is, for example, an extracorporeal circulation clearing system, extracorporeal enrichment clearing equipment, hemodialysis equipment, plasma exchange equipment, extracorporeal peritoneal dialysis equipment, or extracorporeal membrane oxygenation equipment;
  • the medical equipment can also be a component grafted into other extracorporeal circulation equipment, such as artificial liver, artificial kidney, hemodialysis equipment, peritoneal dialysis equipment, plasma exchange equipment, plasma purification equipment, blood lipid purification equipment. , molecular adsorption recycling system, extracorporeal membrane oxygenation equipment, leukocyte removal equipment, extracorporeal circulation life support system, etc.
  • the medical device is used alone as a medical device or therapeutic device, and can also be integrated into a medical device or device involving extracorporeal treatment of blood or other body fluids to form a new device.
  • the circulatory treatment system provided in the fifth aspect of the present application when used for medical purposes, it can be used as a medical device.
  • the medical use includes the treatment of fluids obtained based on the human body, and also includes the use of medicines in the treatment process, pharmaceutical water, medical water, etc.
  • the circulating treatment system can be used to treat tap water to obtain Dilution water for concentrated dialysate.
  • the medical device is used for disease treatment by selectively changing the concentration of specific molecules or molecular combinations, and these specific molecules or molecular combinations (also referred to as target molecules) are often It is a pathogenic factor or result in the process of disease development, or is critical to the development of disease or maintenance of health, and the control of target molecule concentration is beneficial to the treatment of disease or the control of complications, wherein the disease includes but Not limited to familial hypercholesterolemia, hyperlipoproteinemia, systemic lupus erythematosus, autoimmune disease, myasthenia gravis, rapidly progressive glomerulonephritis, fatty liver, cirrhosis, acute liver failure, hyperlipidemia At least one of severe acute pancreatitis, sepsis, Guillain-Barré syndrome, and obesity.
  • the treatment includes preventative (ie, prophylactic), curative, or palliative treatments that result in the desired physiological effect.
  • treating is used herein to mean partially or fully ameliorating, delaying the onset, inhibiting progression, lessening the severity, and/or reducing the appearance of one or more symptoms of a particular disease, abnormality and/or medical condition the purpose of probability.
  • the medical device of the present application can be used to change the concentration of a specific molecule or molecular combination in a patient, but for different disease types, the medical intervention required by the patient may include other means, for example, kidney function.
  • the medical device of this application can help to achieve the removal of pathogenic factors or metabolic wastes accumulated in the patient's body, but at the same time, complications or complications that may be accompanied by renal insufficiency may include anemia, pyelonephritis, urinary tract disease etc.
  • the medical device of the present application can be used for disease treatment by combining medicines and other treatment means such as surgery, dietary care, etc.
  • the medical device is used in combination with a drug for the treatment of a disease.
  • concentration of a specific molecule or a combination of molecules in a patient can be changed through the medical device of the present application, such as: reducing the concentration of a specific molecule or generating a specific molecule, and at the same time, when the patient performs disease treatment based on the medical device, the combination of drug therapy is used.
  • the drugs are drugs for disease complications, anticoagulants for plasma exchange technology, vasoactive drugs for the disease itself, anti-infective drugs and other drugs related to disease treatment, as long as the treatment equipment and drugs described in this application can be treated independently
  • the disease may be beneficial to health, or the combination of the two can achieve or be able to achieve a better therapeutic effect.
  • the present application also provides a computer-readable storage medium storing at least one program.
  • the at least one program is executed when called by the processor and implements the fluid processing method according to any one of the embodiments provided in the first aspect or the second aspect of the present application.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution, and the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the computer readable and writable storage medium may include read-only memory, random access memory, EEPROM, CD-ROM or other optical disk storage devices, magnetic disk storage devices or other magnetic storage devices, flash memory, A USB stick, a removable hard disk, or any other medium that can be used to store the desired program code in the form of instructions or data structures and that can be accessed by a computer. Also, any connection is properly termed a computer-readable medium.
  • the instructions are sent from a website, server, or other remote source using coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave
  • coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave
  • computer-readable storage media and data storage media do not include connections, carrier waves, signals, or other transitory media, but are instead intended to be non-transitory, tangible storage media.
  • Disk and disc includes compact disc (CD), laser disc, optical disc, digital versatile disc (DVD), floppy disk, and blu-ray disc, where disks usually reproduce data magnetically, while discs use lasers to optically reproduce data replicate the data.
  • the functions described in the computer program of the fluid processing method described in the first or second aspect of the present application may be implemented in hardware, software, firmware or any combination thereof.
  • the functions When implemented in software, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium.
  • the steps of the methods or algorithms disclosed herein may be embodied in processor-executable software modules, where the processor-executable software modules may reside on a tangible, non-transitory computer readable and writable storage medium.
  • Tangible, non-transitory computer-readable storage media can be any available media that can be accessed by a computer.
  • each block in the flowchart or block diagrams may represent a module, segment, or portion of code that contains one or more logical functions for implementing the specified functions executable instructions.
  • the functions noted in the blocks may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved.
  • each block of the block diagrams and/or flowchart illustrations, and combinations of blocks in the block diagrams and/or flowchart illustrations can be implemented by dedicated hardware-based systems that perform the specified functions or operations , or can be implemented by a combination of dedicated hardware and computer instructions.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Water Supply & Treatment (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Vascular Medicine (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Urology & Nephrology (AREA)
  • Nanotechnology (AREA)
  • Emergency Medicine (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • External Artificial Organs (AREA)

Abstract

本申请公开一种流体处理方法、流体处理装置、循环分离装置、循环处理系统、医疗设备、以及计算机可读存储介质;其中,所述流体处理方法通过富集管路与第一分离模块截留流体中的目标物质并使所述目标物质在富集管路中循环富集,在此循环富集模式下,所述富集管路中进流口与排流口处流体流速相等以使富集管路中流体总量动态平衡,由此本申请的流体处理方法在处理中具有可持续性,且可实现对流体中部分组分即目标物质的收集,由富集管路的第一排流口引出的流体可接入至处理模块或返回原系统当中,本方法在流体通过膜分离进行组分分离或交换的过程中,有效避免了分离有害成分时,有益成分的持续损失。

Description

流体处理方法及流体处理装置 技术领域
本申请涉及流体处理技术领域,尤其涉及一种流体处理方法、流体处理装置、循环分离装置、循环处理系统、医疗设备、以及计算机可读存储介质。
背景技术
在物质分离中,常见的方式是通过膜分离的方法实现,例如在医疗领域基于膜分离对人体各类组织液如血液、血浆中某一特定组分的滤除或浓度改变,水处理中通过膜分离实现净化、以及混合气通过膜分离提纯等。
但在已有的膜分离技术中,尤其以医疗领域的应用为例,通常在过滤所需分离、去除或改变浓度的特定组分时,不可避免的会产生需丢弃的废液,该废液中除前述特定组分外往往包含其他有益成分,即已有的膜分离技术难以实现对特定组分的定向或选择性分离。由于膜分离过程伴随有益成分例如葡萄糖、氨基酸、白蛋白、维生素、激素、电解质等的损失,为避免大量损失有益成分,分离技术在临床应用中存在诸多限制。分离过程的时间受限,且膜分离的清除效果或清除率例如对特定组分的浓度控制也难以保证;同时,废液的持续产生不仅对患者造成损伤,同时也带来感染和病原微生物传播的风险。
发明内容
鉴于以上所述相关技术的缺点,本申请的目的在于提供一种流体处理装置、循环分离装置及流体处理方法,以解决现有技术中存在的膜分离中选择性差,掺杂有益成分并导致有益成分持续损失,可持续性不足等问题。
为实现上述目的及其他相关目的,本申请在第一方面公开了一种流体处理方法,包括以下步骤:将流体引入一富集管路;其中,所述富集管路包括第一段及第二段,所述第一段的入口连通至少一第一进流口,所述第二段的出口连通所述第一段;基于至少一第一分离模块截留所述流体中的目标物质;其中,所述第一分离模块具有第一分离组件分隔形成的第一侧及第二侧,所述第一侧的相对两端分别连通第一段及第二段,所述第二侧连通至少一第一排流口;基于至少一第一驱动装置驱动所述流体于富集管路中以预设流速循环流动以富集目标物质,其中,所述至少一第一驱动装置设于所述第一段并控制所述富集管路中流体总量动态平衡。
本申请在第二方面还公开了一种流体处理方法,包括以下步骤:基于至少一第二分离模 块将流体引入一分离管路;其中,所述分离管路具有入口及出口;所述第二分离模块具有第二分离组件分隔形成的第一侧及第二侧,第二分离模块第一侧的相对两端分别连通至少一第二进流口以及至少一第二排流口,第二分离模块第二侧的相对两端分别连通所述分离管路的入口及出口;基于至少一第二驱动装置驱动分离管路中的流体以预设流速从入口流动至出口,以控制所述分离管路中的流体总量动态平衡。
本申请在第三方面还公开了一种流体处理装置,包括至少一循环富集模块,其中,所述循环富集模块包括:富集管路,包括第一段及第二段;其中,所述第一段的入口连通至少一第一进流口,所述第二段的出口连通所述第一段;至少一第一分离模块,包括第一分离组件以将所述第一分离模块分隔形成第一侧与第二侧,其中,所述第一侧的相对两端分别连通第一段及第二段;所述第二侧连通至少一第一排流口;至少一第一驱动装置,设于所述第一段,用于驱动所述富集管路的流体循环流动以控制所述富集管路中的流体总量动态平衡,以使所述第一分离模块在富集循环模式下富集出目标物质。
本申请在第四方面还公开了一种循环分离装置,用于进行流体处理,所述循环分离装置包括至少一循环分离模块,其中,所述循环分离模块包括:分离管路,具有入口及出口;第二分离模块,包括第二分离组件以将所述第二分离模块分隔形成第一侧与第二侧,其中,第二分离模块第一侧的相对两端分别连通至少一第二进流口以及至少一第二排流口,第二分离模块第二侧的相对两端分别连通所述分离管路的入口及出口;至少一第二驱动装置,设于所述分离管路,用于驱动分离管路中的流体以预设流速从入口流动至出口,以使循环分离模式下所述分离管路中的流体总量动态平衡。
本申请在第五方面还公开了一种循环处理系统,包括至少一个如本申请第三方面提供的实施例中任一项所述的流体处理装置或/及至少一个本申请第四方面提供的实施例中所述的循环分离装置;管路系统,包括流体引出管路及流体输回管路。
本申请在第六方面还公开了一种医疗设备,包括如本申请第五方面提供的实施例中任一项所述的循环处理系统。
本申请在第七方面还公开了一种计算机可读存储介质,存储至少一种程序,所述至少一种程序被处理器执行时实现如本申请第一方面提供的实施例中任一项所述的流体处理方法、或者实现如本申请第二方面提供的实施例中任一项所述的流体处理方法。
综上所述,本申请的流体处理方法、流体处理装置、循环分离装置、循环处理系统及医疗设备具有如下有益效果:通过富集管路与第一分离模块截留流体中的目标物质并使所述目标物质在富集管路中循环富集,在此循环富集模式下,所述富集管路中的流体依据第一驱动 装置驱动以预设流速流动,从而确保富集管路中流体总量动态平衡,由此本申请的流体处理方法在处理中具有可持续性,且可实现对流体中部分组分即目标物质的收集或处理并可灵活控制持续时间,由富集管路的第一排流口引出的流体可接入至处理模块或存储空间,在流体进行组分分离或交换过程中避免了有益成分持续损失,处理装置接入运输待处理流体的任意管道当中,在富集/清除目标物质的同时保持适当的流动型和密闭性,处理装置接入储存待处理流体的任意容器中,并在富集/清除目标物质的同时,保持流体总量的平衡。
附图说明
本申请所涉及的发明的具体特征如所附权利要求书所显示。通过参考下文中详细描述的示例性实施方式和附图能够更好地理解本申请所涉及发明的特点和优势。对附图简要说明书如下:
图1显示为本申请的流体处理方法在一实施例中的流程示意图。
图2显示为本申请的循环富集模块在一实施例中的简化示意图。
图3a显示为本申请的循环富集模块在一实施例中的简化示意图。
图3b显示为本申请的循环富集模块在一实施例中的简化示意图。
图4显示为本申请的循环富集模块在一实施例中的简化示意图。
图5显示为本申请的循环富集模块在一实施例中的简化示意图。
图6a-图6c显示为本申请的循环富集模块在一实施例中不同工作状态的简化示意图。
图7a-图7b显示为本申请的循环富集模块在一实施例中不同工作状态的简化示意图。
图8显示为本申请的循环富集模块在一实施例中的简化示意图。
图9显示为本申请的级联的循环富集模块在一实施例中的简化示意图。
图10显示为本申请的流体处理方法在一实施例中包括的流程图。
图11显示为本申请的级联的循环富集模块和循环分离模块在一实施例中的简化示意图。
图12显示为本申请的循环分离模块在一实施例中的简化示意图。
图13显示为本申请的流体处理方法在一实施例中的流程示意图。
图14显示为本申请的级联的循环分离模块在一实施例中的简化示意图。
图15a显示为本申请的级联的循环分离模块和循环富集模块在一实施例中的简化示意图。
图15b显示为本申请的级联的循环分离模块和循环富集模块在另一实施例中的简化示意图。
图16显示为本申请的流体处理方法在一实施例中包括的流程图。
图17显示为本申请的级联的循环分离模块和循环富集模块在一实施例中的简化示意图。
图18显示为本申请的循环处理系统在一实施例中的简化示意图。
图19显示为本申请的循环处理系统在一实施例中的简化示意图。
图20显示为本申请的循环处理系统在一实施例中的简化示意图。
具体实施方式
以下由特定的具体实施例说明本申请的实施方式,熟悉此技术的人士可由本说明书所揭露的内容轻易地了解本申请的其他优点及功效。
在下述描述中,参考附图,附图描述了本申请的若干实施例。应当理解,还可使用其他实施例,并且可以在不背离本公开的精神和范围的情况下进行机械组成、结构、电气以及操作上的改变。下面的详细描述不应该被认为是限制性的,并且本申请的实施例的范围仅由公布的专利的权利要求书所限定。这里使用的术语仅是为了描述特定实施例,而并非旨在限制本申请。空间相关的术语,例如“上”、“下”、“左”、“右”、“下面”、“下方”、“下部”、“上方”、“上部”等,可在文中使用以便于说明图中所示的一个元件或特征与另一元件或特征的关系。
虽然在一些实例中术语第一、第二等在本文中用来描述各种元件或参数,但是这些元件或参数不应当被这些术语限制。这些术语仅用来将一个元件或参数与另一个元件或参数进行区分。例如,第一分离模块可以被称作第二分离模块,并且类似地,第二分离模块可以被称作第一分离模块,而不脱离各种所描述的实施例的范围。第一分离模块和第二分离模块均是在描述一个分离模块,但是除非上下文以其他方式明确指出,否则它们不是同一个分离模块。相似的情况还包括第一分离组件与第二分离组件,或者第一侧与第二侧。
再者,如同在本文中所使用的,单数形式“一”、“一个”和“该”旨在也包括复数形式,除非上下文中有相反的指示。应当进一步理解,术语“包含”、“包括”表明存在所述的特征、步骤、操作、元件、组件、项目、种类、和/或组,但不排除一个或多个其他特征、步骤、操作、元件、组件、项目、种类、和/或组的存在、出现或添加。此处使用的术语“或”和“和/或”被解释为包括性的,或意味着任一个或任何组合。因此,“A、B或C”或者“A、B和/或C”意味着“以下任一个:A;B;C;A和B;A和C;B和C;A、B和C”。仅当元件、功能、步骤或操作的组合在某些方式下内在地互相排斥时,才会出现该定义的例外。
膜分离是利用膜的选择性分离实现混合物的不同组分的分离、纯化、浓缩的过程,是一种高效、节能、环保的分离手段。其中过滤的操作方式有垂直过滤(Normal Flow Filtration,NFF, 又称死端过滤),和切向流过滤(Tangential/Cross Flow Filtration,TFF)。NFF操作时液体垂直通过滤膜,直接滤过出分子,但是被截留分子易在膜表面形成高浓度凝胶和颗粒层,流速和通量急剧下降。在TFF中,液体的运动方向平行于(切向于)膜表面,液体产生的跨膜压力驱动部分溶液和小分子跨过滤膜,并截留部分溶液和分子量较大的分子。整个过程中液体以一定速度连续流过滤膜表面,对滤膜表面进行了冲刷并使沉积在膜表面的颗粒带出TFF模块。
诚如背景技术所述,在膜分离技术中,在对特定成分或分子进行过滤分离以去除时,难以避免产生废液,而废液中通常存在有益成分例如医疗应用中废液中可能包含葡萄糖、氨基酸、白蛋白、维生素、激素、电解质等,因此,过滤中伴随有益成分的消耗是许多膜分离技术应用场景中存在的问题。
以基于位阻效应的膜分离为例,本质上是截留混合物中较大分子量或粒径成分而滤出较小分子量或粒径成分的过程,这就是分离过程当中的方向性。为便于对本申请提供的方法及装置、系统进行说明,本申请将膜分离的应用场景从目的上划分,基本可以概况为以下两种模式:
模式A:大分子为有益,小分子有害,即小分子为需要滤除的组分;
模式B:大分子有害,小分子有益,即大分子为需要滤除的组分。
在实际应用中,B模式较为常见,也是最终发展起来的用途,比如过滤除菌的过程,水处理和纯化的过程等。B模式一般采用死端过滤的方式实现,但是当大分子量的分子含量较高时,死端过滤容易堵死,使得膜不能持续使用或能够处理的液体上限是有限制的。在这种情况下,一般需要通过沉淀,蒸馏或者其他物理的方法预处理,如果无法进行预处理,则无法用到死端过滤,比如当所述混合物为血液、血浆等。
A模式在生物用途当中更为常见,比如重组蛋白的浓缩和纯化,又比如血液透析和血浆置换,都是去除体系当中有害或无价值小分子的过程,传统的血浆置换技术即为一个典型的A模式下的问题。由于大分子有益,因此一般采用切向流的方式,以方便被截留的分子回到原体系当中,也可以避免这些成分在膜表面沉积,影响处理过程的连续性。但是在实际应用当中,由于缺乏强选择性,A模式中被清除的小分子往往害含有有益成分,比如糖类,氨基酸,维生素等等,这使得采用物理的膜分离方法处理血液的时候,会造成大量有益成分的损失,使得治疗过程不可持续。
以医学领域的应用为例,如血浆置换设备可基于膜分离实现的血浆置换在肾脏类疾病、冷球蛋白血症、肾移植后超急性或急性抗体介导的排异反应等临床场景中应用,将血液中的大分子致病物质、免疫复合物等滤除,而丢弃的废液中除了致病因子外,往往存在有益成分, 因此治疗过程伴随血液中有益成分的损耗,使得血浆置换过程的可持续性不高,对致病因子的清除效率也由此受限;在另一些场景中,尤其在传统的血浆置换技术中,通过采用血浆分离并对患者输送血浆代用品的方式以实现血液更新,但血浆代用品的置换液在人体中可能带来过敏问题使得可行的使用场景收到限制,通常只用于急性的适应症如家族性高胆固醇血症,高脂蛋白血症,系统性红斑狼疮(SLE)、重症肌无力,急进性肾小球肾炎、以及自免疫性疾病等,同时,将血浆分离提取以进行置换使,也存在除血浆外的有益成分如血小板被提取的问题,因此,依然存在有益成分的损耗使得该方法的可持续性不高。
以现有的DFPP(double filtration plasmapheresis,双重血浆置换技术,简称DFPP)为例,通常在对应的过滤系统中令血浆经历两次过滤,采用了血浆分离技术(即在血液中分离血浆、红细胞、血小板和白细胞)与血浆成分分离技术(即在血浆中分离特定组分)两级过滤叠加,在血浆成分分离中将大分子的致病因子如自身抗体、免疫球蛋白、免疫复合物、炎症分子或低密度脂蛋白等去除,因此,DFPP通常用于致病因子为大分子物质的重症病症如重症肌无力、吉兰-巴雷综合征、系统性红斑狼疮(SLE)、类风湿性关节炎、高脂血症重症急性胰腺炎、脓毒症,但不适用于清除与白蛋白结合的中小分子致病物质,更不适合清除游离的中小分子溶质。
DFPP实现的即为A+B模式的过程,通常在两次过滤对应的膜孔径或分子截留量之间截留下来的分子,就是被清除的目标分子。DFPP中可以切向流过滤技术处理B模式当中遇到的问题,能够有效避免死端过滤带来的堵塞问题,但是在实际应用中,在清除有害大分子时,必定还掺杂着有益的小分子。分离中一般具有10%~30%的弃浆率,所述弃浆率为弃浆泵与血浆分离泵的转运速率之比;更具体的,在双重血浆置换过程当中,通常弃浆流速在2.5-6ml/min,也就意味着,即使采用双重置换术,患者在接受2h的治疗后,会损失掉超过300-720mL的血浆。也即,采用DFPP对患者进行血浆置换,在一段时间后必然产生一定体积的予以弃除的血浆也即废液,而实际中所述废液中含有人体内有益成分,若采用置换液如外源性血浆、进行填充,则可能引发人体内过敏反应。现有的DFPP技术中持续的有益成分的持续损失,使得这种治疗方法存在重大的缺陷和风险,只能被用于一些急症和ICU当中。因此,DFPP在临床治疗中存在必然的时间限制(一般需限制在2~5h以内)与应用场景限制,DFPP因治疗时间限制还使得清除效果存在一定限制。
再如专利CN103263704A中所公开的吸附过滤净化系统,其中,将人体血液血浆分离获得一定量的血浆,将血浆引入净化单元执行多次吸附过程以使得部分废弃血浆再生,减少血 浆置换中所需的新鲜血浆量;但在血浆再生的吸附过程中,在净化单元中采用的高通量滤过器处产生废液即滤出液,因此废弃血浆再生过程获得了一定比例的再生血浆,同时仍在生成废液,因此该申请中废液问题以及由废液延伸的可能产生有益成分持续损失的问题依然存在,其中采用了置换液以补充滤出液的方式,则前述DFPP中外源性物质带来的过敏风险依然存在;同时,该吸附过滤净化系统中高通滤过器仅适用于对小分子血浆毒素的处理,通过多次过滤以提高对小分子毒素的滤除效果,所实现的效果在于废弃血浆中一定比例的血浆再生;再者,该吸附过滤净化系统对于血液中大分子量的致病因子则不能清除,使用场景有限,难以用于对血液中的不同组分收集或清除。
在此,本申请提供了在B应用模式下,如何在清除有害大分子或成分的同时,尽可能避免有益小分子或成分持续损失的解决方案。本申请提供了一种流体处理方法及流体处理装置、分离循环设备,可用于对包括医疗场景在内的各种流体进行处理,以基于预设的处理目标定向富集或清除(或改变浓度)流体中特定的分子或组分,本申请的流体处理方法及流体处理装置可用于执行可持续性的分离过程,实现可控的清除效果,有效避免或降低有益成分持续损失。
应当说明的是,在本申请提供的各实施例中,大和小为相对概念。例如相对于两个分子或物质而言,所述大和小的判定可基于分子或物质本身的尺寸如粒径或重量区分,如脂蛋白相对于氨基酸,前者为大分子而后者为小分子。又或所述大和小可因分子粒径或分子量相对于膜的分子截留量或孔径而言,例如,针对0.5μm孔径的分离组件,细胞和血小板是大分子,而血浆蛋白是小分子;而对于10kD的多孔膜而言,脂蛋白、白蛋白和细胞都是大分子,而葡萄糖,氨基酸等则是小分子,即,本申请所述的大分子、大分子组分、小分子、小分子组分等,可以是基于膜而描述被截留和滤过的分子的相对概念。
本申请在第一方面提供了一种流体处理方法,包括以下步骤:将流体引入一富集管路;其中,所述富集管路包括第一段及第二段,所述第一段的入口连通至少一第一进流口;基于至少一第一分离模块截留所述流体中的目标物质;其中,所述第一分离模块具有第一分离组件分隔形成的第一侧及第二侧,所述第一侧的相对两端分别连通第一段及第二段,所述第二侧连通至少一第一排流口;基于至少一第一驱动装置驱动所述流体于富集管路中以预设流速循环流动以富集目标物质,其中,所述至少一第一驱动装置设于所述第一段并控制所述富集管路中流体总量动态平衡。
应当说明,在本申请提供的实施例中,所述目标物质基于对流体处理的预设目标确定, 在不同的富集管路中所富集循环的目标物质可以为同一类或同一物质组分或分子,也可为不同物质,所述目标物质的具体成分可基于流体成分、以及预设的分离目的而变更。以医疗用途为例,所述目标物质例如为细胞、细菌、微生物、蛋白质、脂蛋白、抗体、DNA等;在所述流体处理方法中,所述目标物质即为被截留于管路中的物质,即,采用本申请提供的流体处理方法对流体进行处理,所述富集管路中被截留以富集的任意物质均可视为目标物质;实际应用中,所述目标物质可以为需收集的组分或需从流体的原体系中清除的组分,对所述目标物质类型及用途,本申请不做限制。
请参阅图1,显示为本申请的流体处理方法在一实施例中的流程示意图。
在步骤S10中,将流体引入一富集管路;其中,所述富集管路包括第一段及第二段,所述第一段的入口连通至少一第一进流口,所述第二段的出口连通所述第一段。在本申请中,所述连通是指能够流通流体的机械结构,在一些场合下,所述连通也常被称为联通或连接。
请结合参阅图1和图2,其中,图2显示为所述流体处理方法的富集管路在一实施例中的简化示意图。
所述流体包含目标物质,在某些实施方式中,所述流体包括但不限于血液、血浆、血清、体液、组织液、清洗液、透析液、重组蛋白溶液、细胞培养液、微生物培养液、制药及医疗用水、药液、流体食品、动植物提取液、天然水、工业废水、再生水、轻质油、甲烷、以及液化气中的一种或多种的混合物;在某些示例中,所述流体也可为如血液、血浆等流体经过处理例如过滤后获得的物质组分;在另一些示例中,所述流体还可为气体混合物,例如包含甲烷的气体混合物。
本申请的流体处理方法可适用于对不同类别的流体处理,通常来说,仅当所述流体中具有不同的物质组分例如所述流体在分离膜中传递时具有选择性透过差异的不同组分、以及具有一定的流动性以使得分离过程可实现即可,例如上述的液态混合物或气体混合物,所述流体又或可以为其他固液混合相流体或胶体,本申请不做限制。
在此,所述富集管路11的第一段111与第二段112可基于一定的连接关系使得富集管路11中液体流动的方向可构成循环,所述第二段112的出口连通所述第一段111,流体从所述第一进流口进入所述第一段111后,可经过第一分离模块12后,流动至第二段112并从所述第二段112出口流至第一段111,即可构成流动循环。
构成循环的路径图形可基于所述第一段111与第二段112确定,例如在图2所示的示例中为矩形,当然,在其他方式中,所述路径图形中可包括多条折线如“凸”字型,又或包括 弧线,比如圆弧,在实际场景中,所述第一段111与第二段112流通并传输流体,基于不同场景中的设备需要,所述第一段111与第二段112的管径、材料、以及路径均可进行相应调整,因此本申请所述方法对管路路径的形态和模型不做限制。
在实际场景中,所述第一段与第二段的管路材料可设置为流体对应的特殊材质,例如,所述第一段与第二段或它们中的一段或一部分,可设置为血液专用管路、蠕动泵专用管路、腐蚀性液体专用管路、高生物相容性管路等;以所述流体处理方法在医疗场景中应用为例,所述第一段与第二段例如为血液输送管路或药液输送管路,管路材料包括但不限于软聚氯乙烯塑料、高性能聚烯烃热塑弹性体(TPE)、纳米生物医用材料、树脂材料。
所述第一段的入口连通至少一第一进流口,所述第一进流口即作为向所述富集管路输送流体的入口,所述第一进流口设为至少一个即可实现将流体引入富集管路,本申请不做限制。在某些场景中,当所述第一进流口为多个,多个第一进流口可分别向富集管路引入具有不同物质组分的流体,例如,从一第一进流口中引入被滤除了免疫球蛋白的血浆,在另一第一进流口引入被滤除了类风湿因子的血浆。
在步骤S11中,基于至少一第一分离模块截留所述流体中的目标物质;其中,所述第一分离模块具有第一分离组件分隔形成的第一侧及第二侧,所述第一侧的相对两端分别连通第一段及第二段,所述第二侧连通至少一第一排流口。
在此,所述第一分离模块12即可用于对连通富集管路11并接触流体,以实现对流体中特定组分的分离。在此,被截留的所述目标物质可为需要保留的流体组分,也可为需要从流体中清除的组分。即,所述富集管路11可用于富集流体中有益组分,也可用于富集流体中需清除的组分。
在本申请的某些实施方式中,所述第一分离模块12为一相对封闭的腔体结构,即,所述第一分离模块12第一侧两端分别连通第一段111及第二段112,当所述第一段111及第二段112选择性关闭,第一分离模块12第一侧即形成一封闭的腔体;在又一些实施方式中,当所述第一分离模块12第二侧连通的第一排流口关闭,第一分离模块12第二侧也形成封闭的腔体。在此,流体从所述第一进流口进入所述富集管路11后可避免接触外界空间,在某些特定情形中如医疗场景的血脂清除或抗体提取中,所述相对封闭的结构可形成无菌环境或减少细菌、微生物、病毒等感染。在此示例中,本申请的流体处理方法通过形成相对封闭的循环环境,流体在富集管路11中流通并被处理时减小了外界环境的干扰,使得处理过程的可靠性增加。
所述第一分离模块12中具有第一分离组件,所述第一分离组件可接触流体并选择性透过流体中特定的物质组分;所述第一分离组件分隔第一分离模块12,以使通过所述第一分离组件的流体与被截留的流体可分别位于第一分离组件分隔形成的两侧。
基于所述第一分离模块12,富集管路11中的流体可从所述第一段111经由第一分离模块12流动至第二段112,并从所述第二段112出口回复第一段111,由此形成流动循环;同时,所述流体中的目标物质以外的组分在所述第一分离模块12中通过所述第一分离组件到达第一分离模块12第二侧,由此可通过所述第一排流口离开富集管路11,也即实现了对流体中目标物质的分离效果。
应当理解,在本申请提供的实施例中,所述分离效果即流体在经由第一分离模块后所形成的被截留于第一分离模块第一侧的流体与位于第一分离模块第二侧的离开循环的流体中至少一种组分(例如可滤过组分)形成浓度差,而并非为绝对的分离或清除效果,例如,第一分离模块第二侧的流体中的组分也可存在于第一分离模块第一侧的富集管路中,同样的,所述目标物质也可能存在极少量离开循环流动至所述第一分离模块第二侧,但存在至少一种组分在第一分离模块两侧的浓度不同。
在此,所述第一分离模块12第一侧与第一分离模块12第二侧在于将经过第一分离组件的流体组分与截留的流体所处的位置进行区分,所述第一侧与第二侧的位置关系由所述第一分离模块12腔体结构与第一分离组件结构确定。例如,当所述第一分离组件为面状结构并横向设置在第一分离模块12中,所述第一侧与第二侧分别为上侧与下侧;又或当所述第一分离组件为面状结构垂向设置在第一分离模块12中,所述第一侧与第二侧分别为左侧与右侧。又比如所述第一分离组件为中空纤维结构并置于第一分离模块12中,所述第一侧与第二侧分别为中空纤维的内侧和外侧。同时当多个分离组件构成分离模块时,所述第二侧可以共有一个腔体。
应理解的,在本申请提供的实施例中,所述第一分离模块中与所述富集管路的第一段及第二段连通的腔体即为第一侧,第一分离模块中其他腔体即为第二侧;在一种示例中,当所述第一分离模块中包括多个腔体,例如第一分离模块中通过具有为板膜形式的多个第一分离组件以将第一分离模块分隔为多个腔体,所述多个腔体中连通所述第一段及第二段的即为第一侧,其余腔体均为第二侧。
所述第一分离组件为对流体中部分组分具有选择透过性的结构或材料,如过滤器、过滤膜、多孔材料等。
在一实施例中,所述第一分离组件可设置为多孔膜、反渗透膜、或气体分离膜。
在某些实施方式中,所述第一分离组件为多孔膜,其中,所述多孔膜包括微滤膜、超滤膜、或纳滤膜。在此,所述多孔膜或反渗透膜的平均孔径或截留分子量(molecular weight cutoff,简称MWCO)与所述目标物质相关。在实际场景中,基于所述流体组分以及所确定的目标物质,选择可适宜于截留目标物质的多孔膜,例如,当流体中需截留的目标物质为粒径为10nm(即0.01μm),则对应的分离膜可采用纳滤膜或反渗透膜以实现对目标物质的截留。在此,所述分离膜的具体类型可基于流体各组分与目标物质的物理化学性质差异确定,例如包括:反渗透膜(平均孔径0.0001~0.001μm)、纳滤膜(平均孔径0.001~0.01μm)、超滤膜(平均孔径0.01~0.1μm)、微滤膜(平均孔径0.1~10μm)、电渗析膜、渗透气化膜、液体膜、气体分离膜、电极膜等。
在一些实施方式中,尤其在医疗应用中,所述分离膜为高纯度聚合物,且化学性质不活泼,具有良好的血液相容性与组织相容性。
在某些实施方式中,所述分离膜通过空间位阻效应、道南效应或静电效应、吸附、扩散、电荷排斥效应、细孔效应、或溶解作用实现对目标物质的截留、过滤或交换。所述分离膜选择性透过的物质组分与分离膜的类型及目标物质成分相关,在实际场景中,可基于预先确定的目标物质组分设置对应的分离膜以对所述流体进行处理,例如,当所述目标物质血液或血浆中的需清除的大分子致病因子时,所述分离膜例如为平均孔径小于致病因子分子粒径的多孔膜,以将所述大分子致病因子有效截留于富集管路中;又如,当所述目标物质为中性电解质液体中的带电离子,基于纳滤膜通常依电荷排斥效应与细孔效应选择性传递离子的特点,所述第一分离组件可设置为纳滤膜以实现过滤;再如,当所述流体为气体混合物,对应的所述第一分离组件可设置为气体分离膜以使流体中特定气体透过气体分离膜,从而实现对不同气体组分的分离和截留富集。
在某些示例中,可先基于流体组分与目标物质组分确定对目标物质的处理为截留,由此基于目标物质分子粒径确定适宜于截留或过滤目标物质的分离膜的平均孔径或截留分子量以设置实际场景中采用的分离膜;在另一些示例中,在确定所述分离膜的具体类型时还可结合参考前述分离膜的道南效应、吸附、溶解作用等以在第一分离模块中设置可实现预设分离效果的膜。
在一些实际应用场景中,可将第一分离组件可实现截留90%以上目标物质为基础确定对应的分离膜孔径及类型,又或可基于更高的分离效果需求,将第一分离组件对目标物质的截 留率设置为95%以上甚而99%以上以确定对应的分离膜孔径及类型。
在微观结构上,所述分离膜例如可包括对称膜、不对称膜、复合膜、多层复合膜等。
所述第一分离组件还可设置为不同几何形态的分离膜,以适应于不同的流体或达到不同过滤效果。
在某些实施方式中,所述第一分离组件包括平面膜、管式膜、卷式膜、螺旋膜、以及中空纤维膜中的一种或多种。
所述流体相对于所述分离膜的流向角度可设置为不同角度例如0°~90°,在此,当所述流体相对于分离膜的流向角度为0°,即流体平行于分离膜表面流动,例如常见的切向流过滤;当所述流体相对于分离膜的流向角度为90°,即流体以垂直朝向膜表面的方向流动,例如常规的死端过滤(也称作垂直过滤)。
在某些实施方式中,所述第一分离模块中流道可设置为折叠往返形式,例如通过将平面膜进行折叠以增加所述流体与平面膜之间的接触面面积,对应的将流道设置为折叠往返形式以配合所述分离膜的结构形态,以确保所述分离膜将第一分离模块分隔形成第一侧与第二侧。
在某些实施方式中,所述第一分离模块为切向流过滤模块(Tangential/Cross Flow Filtration Module,简称TFFM)。
应理解的,基于切向流过滤中通过膜两侧的跨膜压力差驱动实现分离的方式,在一些示例中,所述切向流过滤模块中可采用管式膜或中空纤维膜实现过滤,在此设置下增大流体与分离膜接触的表面积,即可增加滤除效率。
在某些示例中,所述切向流过滤模块可采用现有的切向流过滤膜包,例如MERCK公司的Pellicon盒式超滤膜包,旭化成公司的除白血球过滤器、除病毒过滤器、LEOCEED透析器、膜型血浆成分分离器,BRAUN公司的血浆分离器等;应当说明的是,在一方面,所述切向流过滤模块可用于不同领域实现不同的分离效果,例如可用于实现物料收集(将物料截留于所述富集管路中并循环收集)、工业废水处理等而不限于前述产品的应用场景;在另一方面,于实际场景中,所述切向流过滤模块基于对流体中目标物质的过滤或截留目的而确定对应的膜孔径或截留分子量、以及膜的几何形态,而不以前述举例为限。
在此,在步骤S11中,所述富集管路中可设置一个或多个所述第一分离模块,其中,每一第一分离模块第一侧的相对两端分别连通富集管路,即可实现第一分离组件截留的目标物质在富集管路中的流通。在实际场景中,所述第一分离模块的数量可基于富集管路管径、富集管路的长度、第一分离模块的分离效率、经济成本等因素综合确定。
在步骤S12中,基于至少一第一驱动装置驱动所述流体于富集管路中以预设流速循环流动以富集目标物质,其中,所述至少一第一驱动装置设于所述第一段并控制所述富集管路中流体总量动态平衡。
在此,所述第一驱动装置13包括但不限于蠕动泵、压力泵、电场、加热器、液压泵、或真空泵,用于对富集管路11中的流体提供动力,使流体顺应预设的流动方向流动,即从第一段111流动经由第一分离模块12后进入第二段112,并从第二段112出口流至第一段111以形成动态循环。在一些以医疗为目的的应用场景中,所述驱动装置不应直接接触所述液体,而只对管路施压压力并驱动液体流动,所述驱动装置的可设置为蠕动泵。
所述预设流速可基于应用场景的安全性、第一分离模块12分离的分离效果、设备的经济性等因素共同确定。例如,在涉及血液的治疗中当所述第一进流口处的流体为人体血液,则需控制第一进流口处引流的流体流速在预设范围内以保证患者安全。
当所述流体在富集管路11内以预设流速循环流动即可实现对目标物质的富集。
在本申请提供的各实施例中,在所述富集管路11以循环富集模式处理所述流体时,富集管路11中的流体总量动态平衡;在所述循环富集模式下,所述第一进流口保持向富集管路11引入待处理流体,流体在富集管路11中依预设流动方向流动并在循环流动过程中经由第一分离模块12截留目标物质,同时在所述第一排流口处引出通过第一分离组件的已滤除目标物质的流体,在此过程中,基于所述第一驱动装置13提供的动力即可实现流体在富集管路11中的循环流动,同时,所述富集管路11中从第一进流口处不断引入流体使得截留的目标物质逐渐增加因而实现对特定组分即目标物质的富集。
在此,所述至少一第一驱动装置13设于所述第一段111并控制所述富集管路11中流体总量动态平衡。
顺应所述富集管路11中流体循环流动的方向,所述第一段111即为第一分离模块12的上游。所述第一驱动装置13可用于控制流体经过所述第一分离模块12的流速。应当理解,所述第一驱动装置13在所述富集管路11中不同位置均可实现对管路中流体的驱动作用,顺应流体流动方向其流速可能因管道阻力、温度、压力等因素使得流体速度发生改变,在本申请提供的实施例中,所述第一驱动装置13设于所述第一段111即第一分离模块12上游,即可用于控制所述第一分离模块12处的流体流速,以所述第一分离组件为分离膜的实施方式为例,所述流体相对于所述分离膜的流向角度可设置为不同角度例如0°~90°,所述流体相对于分离膜的流速与分离效果相关,本申请的流体处理方法通过设定第一驱动装置13的位置可实 现对分离效果的控制。其中,所述分离效果包括但不限于膜通量、分离速率、小分子物质的清除效果(清除率)、大分子物质的截留率。应当说明的是,在此示例中所述上游用于指示流体在所述第一段111与所述第一分离模块12之间的流动方向,即,当所述第一段111位于第一分离模块12上游,流体流动方向为从所述第一段111流动至所述第一分离模块12。
在某些实施方式中,所述至少一第一驱动装置13控制所述第一段111的流速在预设阈值以上,以使目标物质从所述第一段111的出口流向所述第二段112的入口。
例如,当所述第一分离模块12为TFFM,所述流体的流向平行于TFFM中的分离膜,在此,流体经过TFFM中的分离膜时在膜两侧产生垂直于膜表面的压力差以驱动流体中的小分子透过所述分离膜并到达所述第一分离模块12第二侧,透过分离膜的小分子可由所述第一排流口引出富集管路11,同时被截留的大分子在流体动量带动下被冲刷离开膜表面在所述富集管路11中继续循环。所述TFFM中膜两侧的压力差与所述预设阈值相关,同时,被截留的目标物质继续循环需要一定的动量克服大分子组分之间或与大分子组分与膜之间的阻聚。所述至少一第一驱动装置13控制所述第一段111的流速在预设阈值以上,即可用于控制分离膜两侧的压力差以实现分离效果,并可用于防止阻聚以确保所述富集管路11中循环的可持续性。
在某些实施方式中,所述预设阈值与流体成分、流体温度、膜结构、膜材料、第一分离模块12腔体结构、以及富集管路11管径中的至少一者相关。
所述第一分离模块12处的流体流速与不同参数相关,例如基于不同的流体的特性如流体密度、粘性,流体在所述第一分离模块12处的边界层形状如分离膜的表面形状(即膜结构)与第一分离模块12腔体结构,流体与分离膜间的相互作用力如膜材料确定的膜表面粗糙度、与流体之间的吸引力,由所述第一分离模块12腔体结构与富集管路11管径确定的第一分离模块12与富集管路11间的流速关系,所述第一分离模块12处的流体流速可能发生改变;在此,所述预设阈值用于确定流向所述第一分离模块12的流体流速,所述预设阈值即可作为第一分离模块12处的初始流速,基于所述初始流速与前述第一分离模块12处的流体流速的影响参数,即可基于控制所述预设阈值确定所述第一分离模块12中的流体流速产生实现分离的压力差并防止被截留的大分子物质即目标物质阻聚在膜表面,由此,目标物质从所述第一段111的出口流向所述第二段112的入口。
在某些实施方式中,所述第二段还设有所述第一驱动装置。
在前述实施例中,设于所述第一段的第一驱动装置可用于控制第一分离模块处的流体流速,在另一些实施方式中,所述第二段也设置有所述第一驱动装置,所述富集管路中的多个 第一驱动装置可协同控制富集管路中的流体流速,以确定富集管路中的不同位置的流速;在此示例中,所述第一段与第二段均设有第一驱动装置,应理解的,可将连通所述第一进流口与第一分离模块的管路视作第一段,在某些示例中,当所述第一进流口可同时连通所述第一段与第二段或第一段与第二段分别连通一第一进流口,即,如图2所示,所述第一段111与第二段112可基于循环富集模式下的流体循环方向确定,即,位于所述第一分离模块12上游的为所述第一段111,当通过所述第一驱动装置13控制富集管路11中的循环方向更变后,所述第一段111与第二段112的位置也相应变更。
在某些实施方式中,本申请的流体处理方法令从所述第一进流口引入所述富集管路的流体总体积或总速率与由所述第一排流口引出所述富集管路的流体总体积或总速率相等,以可持续的方式循环富集所述目标物质。
应当理解,当所述第一进流口引入富集管路的流体总体积或总速率与由所述第一排流口引出所述富集管路的流体总体积或总速率相等,所述富集管路中流体总量即处于动态平衡,在某些示例中,所述流体总体积也可作体积流量,所述总速率也可作平均速度,又或可控制所述第一进流口与第一排流口处的流体质量流量相等。
应当理解,在单独运作富集循环时,经过第一分离模块滤出液体的同时,富集循环内部会形成负压,这会驱动第一进流口的液体流入,并且这种驱动力,会随着第一分离模块滤出效率而变化,这意味着,如果第一进流口流入的待处理流体,不是恒定流速,而是动态流速或非动力液体时,富集循环能够根据自身的滤出效果,吸取待处理液体,这意味着,如果由于富集循环当中的目标分子浓度过大,使得第一分离模块的滤出效率下降时,待处理液体的流入也会减少,以被动维持上述动态平衡。
由所述第一驱动装置控制流体流速以确保富集管路中流体总量动态平衡,循环富集模式下所述富集管路中的压强可保持一恒定值或由恒定值确定的波动范围,即可避免管路内压强变化带来的管道破裂、负压抽吸、流体组分被破坏例如血液中的红细胞破裂等问题,所述循环富集模式因而具有可持续性。
所述富集管路内的压强与管路内部流体的总量相关,例如,当富集管路内流体持续减少,在富集管路相对密闭的结构中容易形成负压,反之,当富集管路中流体持续增加,则富集管路内压强增加,负压或压强过大对流体处理的分离效果及富集管路的安全性存在负面影响,以医疗应用为例,当所述流体为血液,富集管路中压强过大导致管道破裂或第一分离组件破坏则可能导致治疗失败甚而危害患者健康。在此,所述第一驱动装置在提供流体循环的动力 的同时,还可确保富集管路中的压力处于预设状态,又或,将富集管路中的压力调节至预设状态。
应当理解,在本申请第一方面提供的实施例中,所述第一段设有至少一第一驱动装置,在此基础上,所述富集管路中任意管路及位置均还可设置所述第一驱动装置以协同控制所述富集管路中各位置的流体流速及整体的平衡状态;实际场景中,可基于富集管路形状、流体总量、第一驱动装置功率、预设流速等确定第一驱动装置的数量及位置。
在此,本申请的流体处理方法中基于所述第一驱动装置控制富集管路中的流体循环流动并保持流体总量动态平衡,基于所述流体组分与目标物质确定对应的第一分离模块的具体形式,所述流体处理方法即可在富集管路中实现对目标物质的持续性收集,即,可用于实现前述B模式下如何持续性处理含量巨大的有害大分子的解决方案。其中,所述富集管路既可用于流通流体,又可作为富集目标物质的容器,在实际场景中如医疗应用中可用于有效化简执行本申请流体处理方法的设备结构或缩减设备空间,对应的可形成易于使用或携带或穿戴式的简易设备;再者,可基于预设的对流体的处理目标如:分离效果、对目标物质的收集量等确定循环富集时间,即富集管路中的循环次数或持续时长可基于预设处理目标控制。
在本申请第一方面的某些实施方式中,通过控制单位时间内引入所述富集管路的流体量与所述富集管路中流体总量的比例以调节分离效率。在此,单位时间内引入所述循环的流体量即为所述循环的进流口处待处理流体的流速。
在平衡状态下,所述富集管路保持充满状态,对应的富集管路中流体总量的总体积保持相对恒定。通过控制向所述富集管路引入待处理流体的流速,即可确定待处理流体在所述富集管路中的停留的平均时间,对应的可确定所述待处理流体在富集管路中的循环时间。举例来说,对于用于执行本申请的流体处理方法的富集管路及对应的第一分离模块,循环中富集管路的容纳空间为一相对确定的值,当向所述富集管路引入待处理流体的流速越小,待处理在所述富集管路中循环时间越长,由此可实现对第一分离模块分离效果或效率的调节。
在本申请第一方面的某些实施方式中,还包括通过至少一处理模块对所述流体预处理或再处理的步骤,其中,所述预处理或再处理包括过滤、吸附、加热、催化、富集、浓缩、化学处理、光学处理、以及电学处理中的至少一种。对应于实际应用,所述处理模块例如吸附装置、萃取装置、离子交换处理装置、离心装置、过滤装置、加热装置等。
所述处理模块对所述流体预处理即对初始获得的流体进行处理,以将处理后的流体通过第一进流口引入所述富集管路。令所述处理模块处理后的流体连通至所述富集管路的第一进 流口,所述处理模块即为执行预处理。
所述处理模块对流体进行再处理即对富集管路中的目标物质进行处理;或,所述处理模块对所述第一分离模块第二侧的流体进行处理即为再处理。
在此,所述处理模块所执行的预处理或再处理类型可基于处理需要确定,例如,当所述富集管路中截留的目标物质为需要滤除的流体组分,基于对所述流体中有益成分提纯的需要,所述处理模块可将第一排流口引出的流体浓缩处理。
在一种示例中,如图3a所示,显示为所述富集管路在一实施例中的简化示意图。请结合参阅图3a、图3b,图3b显示为图3a所述处理模块为分离装置的一实施例中所述富集管路的简化示意图。
如图3b所示实施例中,所述处理模块30为分离装置,通过所述分离装置对流体预处理,将经过所述分离装置的含目标物质的分离流体引入所述富集管路11中再处理。所述分离装置例如为通过沉淀、离心分离、离子交换、膜分离等方法对流体预处理以实现除杂。在此示例下,所述富集管路11对流体进行处理,以富集分离流体中的目标物质。在实际场景中,例如可对应于血浆置换场景,通过所述分离装置对初始获得的血液全血进行分离获得血浆与细胞成分,基于所述富集管路11富集血浆中的目标物质,当所述目标物质为致病因子,将所述第一分离模块第二侧的滤出血浆与处理模块分离获得的细胞成分汇集以回流至人体,在此循环富集过程中即可改变人体血液循环系统中血浆的致病因子浓度。当所述分离装置为多孔膜时,分离装置和第一分离模块12的分离膜的孔径或分子截留量,基于目标物质的粒径或分子量确定,即目标分子能够通过的多孔膜滤过进入富集循环,又能够通过第一分离模块12的多孔膜被截留,并在富集循环当中富集,其膜孔径的选择与DFPP过程类似。
在某些示例中,在本申请第一方面提供的流体处理方法中,令所述第一进流口与所述第一排流口连接至同一存储部,其中,所述存储部包括流体存储装置、容器、或人体。
请参阅图4,显示为所述富集管路在一实施例中的简化示意图。在此,所述存储部16仅用于实现对第一进流口引入的流体与第一排流口引出的流体的存储或连通功能即可,因此,所述存储部16可以为一种容器或存储空间,在特定的应用场景中也可为人体的血液循环,本申请不做限制。
举例来说,在一种情形中,所述第一进流口与第一排流口连接至同一存储装置或容器中,在此,所述第一驱动装置控制所述富集管路中的流体总量动态平衡,对应的,所述存储装置或容器中的流体总量动态平衡;在循环富集模式下,所述流体从存储装置或容器中被引入富 集管路中并在富集管路中富集目标物质,被分离出目标物质组分的流体经由所述第一分离模块第二侧回到存储装置或容器,持续循环富集,则所述存储装置或容器内流体中目标物质逐渐减小而流体总量不变,在实现对特定目标物质组分收集的同时不产生废液,存储装置或容器内流体总量不变则循环富集过程可持续进行。
在另一情形中,当所述存储部为人体,所述流体可为人体的血液、血浆、血清、组织液或其它体液,在此示例下,所述第一进流口与所述第一排流口与人体的连接关系可为直接连接或间接连接,所述直接连接即第一进流口与第一排流口的流体可连接至人体的循环系统,所述间接连接即第一进流口或/及第一排流口连接至一处理模块,所述处理模块连接至人体循环系统,例如前述实施例中所述处理模块用于将人体全血分离出血浆,所述第一进流口即连接至分离获得的血浆。由此,基于本申请的流体处理方法,通过将血浆引入所述富集管路中循环富集需滤除的致病因子,如低密度脂蛋白,同时血浆中的有益成分可持续被分离至第一分离模块第二侧,在实现对目标物质富集的过程中可避免产生废弃血浆,有效解决了有益成分持续损失的问题。
在本申请第一方面的某些实施方式中,所述富集管路还包括排进气口,设于所述第一段或/及所述第二段,用于调节所述富集管路内部气压状态。
所述排进气口可用于将所述富集管路连通至外部大气压或连通至气体存储装置,通过所述排进气口执行气体交换即可实现对富集管路内部气压调节。在此,所述排进气口可选择性开启或关闭,在一种示例中,当所述流体在富集管路中处于循环富集模式,所述排进气口可设置为关闭状态以保持管路内处于相对密闭状态;在另一示例中,所述第一进流口关闭,富集管路中执行对流体的浓缩循环处理,所述富集管路中流体总量减少,在此状态下所述排进气口可设置为开启状态以保持富集管路中的气压与外界大气压相等以避免形成真空负压;在又一示例中,在所述循环富集模式下,所述排进气口可设置为开启状态以连通至气体存储装置,在实际场景中可用于防止浓缩过程中富集管路内流体被感染、污染、或与空气中气体成分发生反应等,例如在医疗应用中可通过控制所述气体存储装置内存储的气体成分确保所述富集管路内为无菌环境。
在另一些示例中,所述排进气口处设置有无菌滤膜,所述富集管路与外界气体如空气通过无菌滤膜进行气体交换,由此在对富集管路内部压强调节过程中确保富集管路内部为无菌环境。
在本申请第一方面的某些实施方式中,所述第一段或/及所述第二段还设有流道调节装置, 用于调节所述富集管路中的流体流向。所述流道调节装置可用于实现对富集管路中工作模式的切换,例如将富集管路从循环富集模式切换为浓缩循环模式或清洗模式。
所述流道调节装置可通过以下至少一种方式调节富集管路中流体流向:
通过调节所述第一进流口或/及第一排流口的开放状态以调节流体流向;
通过调节连接至所述富集管路的至少一调节管道的开放状态以调节流体流向。
在所述通过调节所述第一进流口或/及第一排流口的开放状态以调节流体流向的实施方式中,所述流道调节装置包括设于所述第一进流口或/及第一排流口的管路开关,在一种实现方式中,所述第一进流口设有管路开关,用于在关闭状态下将所述流体在富集管路中切换至浓缩循环模式。在此,所述管路开关例如可设置为管路夹、开关阀、设有传感器的水流开关等,本申请不做限制。
所述管路开关用于控制第一进流口的开启或关闭,当所述第一进流口开启,所述富集管路中不断补充流体并排出经由第一分离模块分离出的流体,即可在富集管路中富集目标物质;当所述管路开关控制第一进流口关闭,所述第一驱动装置控制富集管路中的流体继续循环流动,第一分离模块第二侧引出分离处理后的流体,在此状态下,富集管路中的流体总量减小,对应的目标物质浓度增加,即为将流体在富集管路中切换至浓缩循环模式。在实际场景中,当所述目标物质为需要收集的物质组分,基于所述浓缩循环模式对流体进行处理可获得高浓度的目标物质,例如,当所述目标物质为血小板时,即可通过富集循环完成血小板富集后,采用浓缩循环浓缩血小板,而无需通过体外的分离过程,这样可以避免体外的反复处理和血液的浪费,通过浓缩循环获得的血小板可用于心脏手术、伤口治疗等应用。
在某些实施方式中,通过调节连接至所述富集管路的至少一调节管道的开放状态以调节流体流向,在此,所述流道调节装置包括至少一调节管道及调节管道对应的管道开关,由此可形成清洗液入口及废液出口。
请结合图5、图6a~图6c,其中,图6a~图6c显示为所述富集管路11与流道调节装置14在一实施例中不同循环模式中的简化示意图。在另一实现方式中,如图所示,所述流道调节装置14可设置为与所述富集管路11配合的调节管道与管道开关,其中,所述调节管道分别设于富集管路11,所述管道开关设于每一调节管道上及调节管道之间的富集管路11。
在某些实施方式中,令所述富集管路切换于浓缩循环模式与稀释模式,以调节所述第一分离模块的分离效率。
请参阅图2,显示为可用于执行本申请的流体处理方法的富集管路及第一分离模块在一 实施例中的简化示意图。在实际场景中,当所述富集管路11持续处于循环富集模式以截留目标物质,富集管路11内部目标物质浓度升高则可能导致第一分离模块分离效率降低,例如当所述第一分离模块为TFFM,在一些可选的实施方式中,所述富集管路11可设置为可替换式的消耗性部件,当过滤效率下降至一定程度时可通过替换富集管路11以执行本申请的流体处理方法;在另一些实施方式中,如图5所示实施例,通过所述流道调节装置14调节所述富集管路11中流体流向以实现所述富集管路11的可持续性使用。其中,所述流体流向包括流体在富集管路11中的流动方向与流道。应当理解,图5所示的示例中所述流道调节装置14设于所述第一段,在实际场景中,所述流道调节装置14也可设于第二段,或在所述第一段与第二段同时设置流道调节装置14,本申请不做限制。
请结合参阅图6a~图6c,通过控制所述流道调节装置14中的管道开关,可实现富集管路11中流体循环方向及流道的改变。例如图6a所示状态下,令所述调节管道上的管道开关关闭以及富集管路11上的管道开关开启,所述富集管路11中的流体顺应富集管路11的流道流动,即可用于进行循环富集以收集目标物质;在图6b所示状态下,当所述富集管路11中截留的目标物质量已达到预设目标后,可令所述第一进流口的管路开关关闭,以使所述富集管路11中流体切换至浓缩循环模式,应当说明的是,在实际场景中,对富集获得的目标物质进行浓缩循环的步骤为一可选的实施步骤,当所述流体中分子浓度已达到预设值或富集管路11中小分子物质的分离效果已达到预设目标,则可选择省略这一步骤;在图6c所示状态下,当所述富集管路11中的分子浓度达到预设值或影响过滤效果后,令所述调节管道上的管道开关开启以及将富集管路11上的管道开关关闭,以及,令所述第一进流口的管路开关关闭,两个调节管道一端连通至富集管路11,另一端即可分别作为富集管路11中的入口及出口,所述两个调节管道配合富集管路11形成新的流道,通过所述入口及出口可将所述富集管路11中循环富集或浓缩循环处理获得的流体引出富集管路11,还可向所述富集管路11中引入清洗液以将所述富集管路11调节为清洗模式,所述清洗液可基于入口进入富集管路11与第一分离模块12,并流动至所述出口以清洗所述富集管路11管壁与第一分离模块12,当清洗完成后富集管路11与第一分离模块12中截留的目标物质被清除,即可继续用于对流体中目标物质循环富集,对应的,所述流道调节装置14可设置为图6a所示状态,以重复进行流体处理。
其中,所述清洗液为不含目标物质的溶液,旨在排除富集管路11及第一分离模块12中的目标物质。在一些应用领域如工业废水处理中,所述清洗液中可包含表面活性剂或消毒剂;在医疗应用中,所述清洗液例如为可参与人体血液循环的生理缓冲液,例如生理盐水,磷酸 盐缓冲溶液(Phosphate Buffered Saline,简称PBS)等。
在某些实施方式中,所述流道调节装置14为四通阀。在具体实现方式中,所述四通阀还可设置为四通旋转阀。
请参阅图7a~图7b,显示为所述富集管路11与流道调节装置14在另一实施例中不同循环模式中的简化示意图。如图所示,所述富集管路11中设有四通阀,可通过改变四通阀中不同管道的连通状态控制富集管路11中流体流向。所述四通阀执行的调节过程与图6a~图6c所述实施例类似,在此不再赘述。在一些示例中,所述四通阀还可通过旋转以实现对富集管路11中不同工作模式的调节或切换。
在实际应用中,所述四通阀可基于富集管路11的管道参数、设置于富集管路11中的位置确定其结构参数,例如,所述四通阀可设置为图示实施例中富集管路11折角处,也可设置为平直管路中,对应的四通阀内部结构相应改变;在一些实现方式中,所述四通阀可通过3D打印获得。
在医疗用途当中,为了最大限度地降低浓缩后的目标物质中掺杂的小分子成分,在完成浓缩以后,打开流道调节装置14中的清洗液入口,吸入生理盐水或PBS,进入循环,对浓缩液进行稀释,然后关闭清洗液入口,再次进行浓缩循环。多次重复上述步骤后能够去除目标物质浓缩液当中残留的大部分小分子成分。比如,通过富集循环直接将献血者的血液中的红细胞富集在循环当中,并通过上述多次浓缩和稀释过程,去除大部分蛋白质和小分子成分,减少这部分损失对于献血者的影响,同时也可有效减少献血者血液当中的过敏和致病因子对患者的影响,完成清洗后的红细胞可以通过流道调节装置14直接输入患者体内,而避免与外界接触。
在某些示例中,所述富集管路中还包括至少一收集装置,设于所述第一段或/及第二段,用于调节所述富集管路的总体积,收集气泡和收集更多所述目标物质。
请参阅图8,显示执行为本申请的流体处理方法的富集管路11在一实施例中的简化示意图。
应当理解,在本申请的流体处理方法中,所述富集管路11在流通流体的同时也在循环富集模式下富集目标物质,因此,所述富集管路11管壁内腔可同时作为目标物质的容置空间;在某些示例中,所述富集管路11中可选的设置所述收集装置15以扩充富集管路11内部容积,用于收集所述目标物质,所述收集装置15可以为扩充富集管路11体积的容器或存储空间,例如图8所示的收集筒,当然,所述收集装置15的数量、位置、容器结构均可基于收集 需要确定,本申请不做限制。
在一种实施方式中,所述收集装置15设于富集管路11的位置与第一分离模块12位置相关;例如图8所示实施例,将所述收集装置15设于第一分离模块12上游,在浓缩循环模式下,令所述富集管路11在自然置放时收集装置15中的流体基于重力作用具有顺应循环方向流动的趋势,通常,所述浓缩循环模式下排进气口处于开启状态,由此设计可避免或减小循环中气泡产生;在另一实施方式中,所述收集装置15的位置可基于所述管道调节装置中调节管道出口位置确定,例如将所述收集装置15设于调节管道出口上方以令所述富集管路11自然置放时收集装置15中流体具有流向所述出口自然排空的趋势。
在某些示例中,所述收集装置15还可用于设置所述排进气口。例如,将所述排进气口设置于收集装置15上部以连通收集装置15中未填充流体的空间与外部大气或气体存储装置的空间。在某些示例中,所述收集装置15还可用于设置所述管道调节装置中调节管道的入口及出口;在此,可将所述流道调节装置整合至收集装置15中形成一模块。
在本申请的某些实施方式中,所述富集管路还可以包括控制装置、存储装置、压力检测装置、温度检测装置、控温装置、气泡检测及排除装置、报警装置、以及浓度检测装置中的至少一种。
在此,所述控制装置可用于控制所述第一驱动装置以确定富集管路中流体流速,又或控制所述第一进流口管路开关以确定富集管路中对流体处理的循环模式,再或控制所述流道调节装置以确定流体流向;再者,所述控制装置还可用于接收所述流体在富集管路中于不同循环模式下的检测参数信息以用于调节控制参数,由此,所述富集管路与第一分离模块可形成负反馈系统。例如,所述控制装置基于温度监测装置检测的温度信息控制所述控温装置执行加热或制冷,在某些示例中,所述控温装置也可为恒温装置。
所述存储装置可用于存储富集管路中分离处理后的第一分离模块第二侧的流体,在某些示例中,所述存储装置还可连接至一所述处理模块。
所述气泡检测装置可以用于获得控制信号,比如在浓缩循环时,气泡检测可以反应收集装置接近排空,可以进行稀释或者排出浓缩后的目标物质。又或,所述气泡检测装置可用于获得预警信号,表明设备没有处于正常的工作状态,包括但不限于,循环内的液体过度排空,收集装置没有正确放置,待处理液体含有气泡或者漏液等。
在一示例中,所述控制装置基于检测参数确定富集管路内部状态控制对报警装置的控制信号,在一些实现方式中,所述控制信号为多个且对应不同报警类型,例如,当所述控制装 置基于压力检测装置的检测值判断富集管路内部压强异常时,触发控制信号a以令所述报警装置发出对应于压强异常的报警;当所述控制装置基于浓度检测装置检测值判断富集管路内部浓度达到预设值以使得循环富集不能继续或浓度异常,则触发控制信号b,以令所述报警装置发出对应于浓度异常的报警。
在某些实施方式中,所述富集管路中还包括流速检测装置,用于检测所述富集管路内部的动力状态,以形成对所述富集管路内部工作状态的调整信息。
所述流速检测装置例如用于检测进流口流速、排流口流速以及分离模块处流体流速中的至少一者,以此确定管路内部的动力状态。在一种情形中,通过所述流速检测装置确定管路内部流体是否处于弱动力状态,所述弱动力状态例如为流体中流速低于预设范围或排流口处滤出的流体流速明显下降等,由此可判断所述第一分离模块的工作状态例如第一分离组件是否存在分子阻聚、堵塞等,所述流速检测装置由此可形成对管路内部工作状态的调整信息。
所述调整信息例如为将富集管路调整为浓缩循环模式或清洗模式的工作模式切换信息,又如为对富集管路中不同区域的流速的调整信息。
在实际场景中,所述调整信息可以由控制装置在接收流速信号后形成,所述控制装置基于调整信息控制管路中流道调节装置、驱动装置等以调整管路内部工作状态。
在某些场景中,由控制装置形成的所述调整信息基于所述流速检测装置、压力检测装置与浓度检测装置中的至少一者形成,例如,所述控制装置在接收管理内流速信息、压力信息、流体浓度信息中的至少一者后综合形成调整信息以控制管路中的流道调节装置、驱动装置等。
在本申请第一方面的某些实施方式中,所述流体处理方法还包括:令所述流体从在前富集管路对应的所述第一排流口引出的流体连通至在后富集管路对应的第一进流口,以使所述流体在N个级联的富集管路中循环流动以富集目标物质,其中,N为2以上的正整数(N≥2)。
请参阅图9,显示为相级联的两个富集管路在一实施例中的简化示意图。
在此,所述在前富集管路与在后富集管路用于说明级联的N个富集管路中相邻的任意两个富集管路,所述在前与在后顺序即连接次序,所述连接次序基于流体在富集管路中的流动方向区分,即,流体总是从在前富集管路中经过处理后流入在后富集管路再处理,因此,流体总是从在前富集管路的第一排流口进入在后富集管路的第一进流口。
通过将N个所述富集管路级联,流体顺应富集管路连接次序进行N次循环处理,在每一富集管路对应的循环处理中,循环富集模式下第一进流口与第一排流口处的流体流速或流量 相等,因此,每一所述富集管路中均可进行持续性的对目标物质的富集,所述N个级联的富集管路在循环富集模式下均处于动态平衡,因此所述富集过程具有可持续性。应当说明的是,顺应所述连接次序,流体在级联的富集管路中被依次截留目标物质,因此,每一富集管路第一进流口处引入的流体组分不同,对应的,不同富集管路中富集的目标物质可不同。
在此,在本申请提供的各示例中,所述流体组分不同包括:流体中物质类别不同或/及流体中至少一种物质的浓度或总量不同。
在此,本申请提供了通过采用N个级联的富集管路对流体进行处理的实施例,可用于对流体中不同粒径或分子量、不同化学性质的组分、或不同电荷性质的分子分别进行富集,通过在富集管路中设置对应的第一分离模块,基于不同的所述第一分离模块对流体中组分的选择透过性,即可实现对细粒度分类下的不同组分的富集。
在一些示例中,所述N个级联的富集管路中每一富集管路中循环富集获得的流体可基于所述流道调节装置的调节管道出口引出富集管路,或基于所述处理模块引出富集管路,即可对细粒度的目标物质定向提取或处理,由此实现对流体中细粒度分类下目标物质的浓度改变。例如,当所述流体中各组分的分子量范围为200~2000Dalton,对应的需要提取或处理的目标物质分子量为1000~1100Dalton,以N为2为例,参照图9所示实施例,顺应连接次序,令在前富集管路11对应第一分离模块12截留流体中1100Dalton以上的组分,令在后富集管路11中第一分离模块12截留引出富集管路的流体中的1000Dalton以下的组分,即可在后富集管路11中富集1000~1100Dalton的目标物质。
当然,在实际场景中,所述N个级联的富集管路的数量为2以上的任意正整数(N≥2),对应的,可对流体中多种组分或对多个分类段内的组分分别富集、提取或处理;在此,所述分类段可为基于组分化学性质、分子量或分子粒径、电荷性质中的至少一种进行划分获得的分类段,应当理解,所述分类段具有多种划分标准,具有对应的第一分离组件使得对分类段内的物质进行富集可实现即可,以所述第一分离组件为分离膜为例,不同类型分离膜具有不同的选择透过性,通过设置N组分离膜,即可将流体组分进行N次分类或截留。
例如,在基于N个级联的富集管路对流体进行处理时,顺应连接次序可在第一个富集管路中基于分子量富集大分子组分,在第二个富集管路中可基于流体的化学性质富集对应于该富集管路的第一分离模块不具有选择透过性的组分,在第三个富集管路中基于流体组分的电荷性质富集带电荷离子。在实际场景中,以医疗应用为例,所述N个级联的富集管路例如可用于富集流体中的抗生素、氨基酸、酶制剂及其他蛋白质等。
应理解的,通常,所述流体中的组分类别有限,通过确定所述连接次序以使得每一富集管路对应的所述第一分离模块仅截留流体中一种组分,也可理解为,在一个所述分类段内仅含有一种流体组分,所述N个级联的富集管路即可实现对流体中任意组分的富集,还可以此去除流体中任意组分或使得任意组分浓度改变,又或对任意组分执行过滤、吸附、加热、催化、富集、浓缩、化学处理、光学处理、电学处理等再处理。
在某些实施方式中,所述N个级联的富集管路对应富集的目标物质的分子粒径、分子量、或组分粒径顺应连接次序逐级递减。在此示例下,将流体中组分依分子粒径或分子量进行分类,所述N个级联的富集管路对应的第一分离模块对流体组分的选择透过性可基于组分粒径或分子量设计,例如,可令所述N个级联的富集管路对应的N组第一分离模块中分离膜平均孔径逐渐减小或截留分子量逐渐减小,则顺应连接次序,各富集管路中循环富集获得的目标物质对应的分子粒径或分子量逐渐减小。在此分类下,通常,通过控制在前富集管路与在后富集管路对应的分离膜间的粒径差或截留分子量差即可实现对流体中任意组分的富集,在实际场景中,所述分离膜间的粒径差或截留分子量差越小越有利于减小干扰分子的富集,但存在降低目标物质富集效率的可能性,在确定或选择所述N个级联的富集管路对应的第一分离模块时还可综合流体成分、目标物质、干扰分子、以及富集效率等因素。
以实际应用的场景举例说明所述流体处理方法,例如医疗应用中,对比于现有的DFPP技术仅用于对血浆中大分子致病因子进行滤除,所述N个级联的富集管路可对血浆中不同组分基于粒径或分子量进行更细粒度的划分并分别将不同粒径类别或分子量类别的组分富集于不同富集管路中,因此,即可实现对不同组分的定向收集,在临床使用中对应的疾病类型即可被扩展,例如,对小分子致病因子或多种致病因子均可实现富集并处理;同时,所述N个级联的富集管路具有可持续性且在处理过程中不产生废液,仅对血浆中致病因子定向提取并处理,在此处理过程中可有效解决分离中有益成分持续损失的问题,可有效减小有益成分持续损失,同时可基于预定的治疗目标如将某一特定组分如致病因子的浓度降低至预设值之下以确定循环的持续时间,即所述流体处理方法可控制对致病因子的清除效果并可以此确定处理时间,解决了难以控制清除率的问题。
请结合参阅图1和图10,其中,图10显示为本申请的流体处理方法在一实施例中包括的流程示意图。在本申请第一方面的某些实施方式中,所述流体处理方法还包括以下步骤:
在步骤S20中,基于至少一第二分离模块将从一富集管路对应的所述第一排流口引出的流体引入一分离管路;其中,所述分离管路具有入口及出口;所述第二分离模块具有第二分 离组件分隔形成的第一侧与第二侧,第二分离模块第一侧的相对两端分别连通至少一第二进流口以及至少一第二排流口,第二分离模块第二侧的相对两端分别连通所述分离管路的入口及出口;
在步骤S21中,基于至少一第二驱动装置驱动流体于分离管路中以预设流速流动从入口流动至出口,以控制所述分离管路中流体总量动态平衡。
即,本申请第一方面还提供了将富集管路与分离管路级联的实施例。
在此,本申请第一方面提供的所述的将富集管路与分离管路级联的实施例中,包括以下情形:将流体由一个富集管路的第一排流口引出至所述分离管路对应的第二进流口;或,将令流体在N个以上相级联的富集管路中处理,并顺应连接次序令最后一个富集管路的第一排流口连接至所述分离管路对应的第二进流口,其中,N为2以上正整数(N≥2)。
请参阅图11,显示为相级联的富集管路与分离管路在一实施例中的简化示意图。
在此,所述分离管路21中的流体为经过第二分离模块22的分离流体,所述分离管路21的入口及出口连接至所述第二分离模块22第二侧相对两端,即可形成可逆的循环分离。所述可逆的循环分离即分离管路21中的分离流体顺应循环方向可回到第二分离模块22第一侧。当所述分离流体即为目标物质,基于所述分离管路21可定量收集目标物质,例如药液中对中药有效成分进行提取,被收集的所述目标物质在分离管路21中循环流动;同时,超出预定收集量或处理量的目标物质可基于所述可逆的循环分离回到第二分离模块22第一侧。
通过所述分离管路21形成的可逆的循环分离,所述流体处理方法可用于实现对流体中特定组分的处理,例如,将包括组分a、b、c的流体引入所述富集管路11并在富集管路11中循环富集组分a,从第一排流口引出的流体组分b、c连通至分离管路21对应的第二分离模块22,组分b被所述第二分离模块22的第二分离组件截留于第二分离模块22第一侧,所述分离管路21中的流体即为仅含组分c的流体,所述处理模块24可对所述分离管路21中的流体进行处理,即可实现仅对流体中特定组分c进行处理。
基于所述第二分离模块22与分离管路21,从所述第一排流口引出的流体可在第二分离模块22处被截留部分组分,以使分离管路21中循环流动的分离流体中仅含有特定组分;所述分离管路21中流体总量动态平衡,即可持续进行循环分离。
所述分离管路与第二分离模块可形成不同的循环路径,例如在图11所示的示例中为矩形,当然,在其他方式中,所述循环路径中可包括多条折线如“凸”字型,又或包括弧线如圆弧,在实际场景中,所述分离管路流通并传输流体,基于不同场景中的设备需要,所述分 离管路的管径、材料、以及路径均可进行相应调整。
在实际场景中,所述分离管路的管路材料可设置为流体对应的特殊材质,例如可设置为血液专用管路、蠕动泵专用管路、腐蚀性液体专用管路、高生物相容性管路等;以所述流体处理方法在医疗场景中应用为例,所述分离管路例如为血液输送管路或药液输送管路,管路材料包括但不限于软聚氯乙烯塑料、高性能聚烯烃热塑弹性体(TPE)、纳米生物医用材料、树脂材料。
所述第二分离模块22具有第二分离组件分隔形成的第一侧与第二侧,第二分离模块第一侧的相对两端分别连通至少一第二进流口以及至少一第二排流口;在此,所述第二分离模块即可用于对富集管路11对应的第一排流口引出的流体进行特定组分的分离。被分离的所述特定组分即达到所述第二分离模块第二侧的分离流体,所述分离流体可为需要保留的流体组分,也可为需要从流体中清除的组分。
在本申请的某些实施方式中,所述第二分离模块为一相对封闭的腔体结构,即,所述第二分离模块第一侧两端分别连通第二进流口以及第二排流口,当所述第二进流口以及第二排流口选择性关闭,第二分离模块第一侧即形成一封闭的腔体;在又一些实施方式中,当所述第二分离模块第二侧连通的分离管路入口及出口关闭,第二分离模块第二侧也形成封闭的腔体。在此,流体从所述第一排流口连接至第二分离模块对应的第二进流口并进入所述分离管路,在此过程中可避免接触外界空间,在某些特定情形中如医疗场景的血液输送中,所述相对封闭的结构可形成无菌环境或减少细菌、微生物、病毒等感染。
所述第二分离模块中具有第二分离组件,所述第二分离组件可接触流体并选择性透过流体中特定的物质组分;所述第二分离组件分隔第二分离模块,并使通过所述第二分离组件的流体流通至第二分离模块第二侧。
基于所述第二分离模块22,从富集管路11的第一排流口引出的流体可从连接至第二分离模块第二侧的分离管路入口流动至分离管路出口,由此形成循环。
在此,所述第二分离模块第一侧与第二分离模块第二侧在于将经过第二分离组件的分离流体与被截留的流体所处的位置进行区分,所述第一侧与第二侧的位置关系由所述第二分离模块腔体结构与第二分离组件结构确定。例如,当所述第二分离组件为面状结构并横向设置在第二分离模块中,所述第一侧与第二侧分别为上侧与下侧;又或当所述第二分离组件为面状结构垂向设置在第二分离模块中,所述第一侧与第二侧分别为左侧与右侧。
所述第二分离组件为对从所述富集管路第一排流口引出的流体中部分组分具有选择透过 性的结构或材料,如过滤器、过滤膜、多孔金属材料。
在某些实施方式中,所述第二分离组件为分离膜,在此,所述分离膜的具体类型可基于流体各组分与目标物质的物理化学性质差异确定,例如包括:反渗透膜,纳滤膜、超滤膜、微滤膜、电渗析膜、渗透气化膜、液体膜、气体分离膜、电极膜等。
在一些实施方式中,尤其在医疗应用中,所述分离膜为高纯度聚合物,且化学性质不活泼,具有良好的血液相容性与组织相容性。
在一实施例中,所述第二分离组件可设置为多孔膜、反渗透膜、或气体分离膜。
在此,所述多孔膜或反渗透膜的平均孔径或截留分子量(MWCO)与所述目标物质相关,其中,所述多孔膜包括微滤膜、超滤膜、或纳滤膜。在实际场景中,基于所述流体组分以及所确定的目标物质,选择可适宜于截留目标物质或可将目标物质滤过的膜,例如,当流体中需截留的目标物质为粒径为10nm(即0.01μm),则对应的分离膜可采用纳滤膜或反渗透膜以实现对目标物质的截留。
在某些实施方式中,所述分离膜通过空间位阻效应、道南效应或静电效应、吸附、扩散、电荷排斥效应、细孔效应、或溶解作用实现对目标物质的截留、过滤或交换。所述分离膜选择性透过的物质组分与分离膜的类型及目标物质成分相关,在实际场景中,可基于预先确定的目标物质组分设置对应的分离膜以对所述流体进行处理,例如,当所述目标物质血液或血浆中的需截留的大分子致病因子,由此确定所述分离膜例如为平均孔径小于致病因子分子粒径的多孔膜以将所述大分子致病因子截留于第二分离模块第一侧;又如,当所述目标物质为中性电解质液体中的带电离子,基于纳滤膜通常依电荷排斥效应与细孔效应选择性传递离子的特点,所述第二分离组件可设置为纳滤膜以实现过滤;再如,当所述流体为气体混合物,对应的所述第二分离组件可设置为气体分离膜以使流体中特定气体透过气体分离膜,从而实现对不同气体组分的分离。
在某些示例中,可先基于流体组分与目标物质组分确定对目标物质的处理为截留或过滤,由此基于目标物质分子粒径确定适宜于截留或过滤目标物质的分离膜的平均孔径或截留分子量以设置实际场景中采用的分离膜;在另一些示例中,在确定所述分离膜的具体类型时还可结合参考前述分离膜的道南效应、吸附、溶解作用等以在第二分离模块中设置可实现预设分离效果的膜。
在一些实际应用场景中,可将第二分离组件可实现截留90%以上目标物质为基础确定对应的分离膜孔径及类型,又或可基于更高的分离效果需求,将第二分离组件对目标物质的截 留率设置为95%以上甚而99%以上以确定对应的分离膜孔径及类型。
在微观结构上,所述分离膜例如可包括对称膜、不对称膜、复合膜、多层复合膜等。
所述第二分离组件还可设置为不同几何形态的分离膜,以适应于不同的流体或达到不同过滤效果。
在某些实施方式中,所述第二分离组件包括平面膜、管式膜、卷式膜、螺旋膜、以及中空纤维膜中的一种或多种。
应当说明的是,基于所述第二分离组件设置的不同几何形态的分离膜,对应的第二分离模块第一侧与第二侧的位置关系可能不同;例如,当所述第二分离组件为平面膜,所述第二分离模块第一侧与第二分离模块第二侧之间为面状结构阻隔的相对两侧;又如,当所述第二分离组件为中空纤维膜,所述第二分离模块第一侧为每一纤维膜管壁内侧,所述第二分离模块第二侧为每一纤维膜管壁外侧。
所述流体相对于所述分离膜的流向角度可设置为不同角度例如0°~90°,在此,当所述流体相对于分离膜的流向角度为0°,即流体平行于分离膜表面流动,例如常见的切向流过滤;当所述流体相对于分离膜的流向角度为90°,即流体以垂直朝向膜表面的方向流动,例如常规的死端过滤(也称作垂直过滤)。
在某些实施方式中,所述第二分离模块中流道可设置为折叠往返形式,例如通过将平面膜进行折叠以增加所述流体与平面膜之间的接触面面积,对应的将流道设置为折叠往返形式以配合所述分离膜的结构形态,以确保所述分离膜将第二分离模块分隔形成第一侧与第二侧。
在某些实施方式中,所述第二分离模块为切向流过滤模块。
在此,切向流过滤模块实现分离的原理及所述分离管路中可配置的切向流过滤模块类型可参照前述实施例,即将第一分离模块设置为切向流过滤模块的实施例,此处不再赘述。
在步骤S21中,基于至少一第二驱动装置驱动流体于分离管路中以预设流速流动从入口流动至出口,以控制所述分离管路中流体总量动态平衡。
结合参阅图11,在此,所述第二驱动装置23包括但不限于蠕动泵、压力泵、电场、加热器、液压泵或真空泵,用于对富集管路中的流体提供动力,使流体顺应预设的流动方向流动,即从分离管路21入口流动至出口以形成动态循环。
在本申请提供的各实施例中,所述分离管路21以循环分离模式处理所述流体时,分离管路21中的流体总量动态平衡;所述循环分离模式即,所述第二进流口保持向第二分离模块22引入流体,流体中通过第二分离组件的特定组分流动至第二分离模块22第二侧连通的分离管 路21中,所述特定组分从分离管路21入口流动至分离管路21出口连接的第二分离模块22第二侧以形成循环,同时,所述第二分离模块22第一侧的第二排流口将流体引出第二分离模块22;在一具体实现方式中,所述分离管路21中流体总量平衡,由通过控制所述第二进流口向第二分离模块22第一侧引入流体与所述第二排流口向第二分离模块22第一侧引出流体流速相等实现。
应当理解,所述第二驱动装置23在所述分离管路21中不同位置均可实现对管路中流体的驱动作用,顺应流体流动方向其流速可能因管道阻力、温度、压力等因素使得流体速度发生改变,在某些示例中,所述分离管路21中可设置多个第二驱动装置23以控制分离管路21中不同位置的流速为预设值。
请参阅图12,显示为本申请的分离管路在一实施例中的简化示意图。在一些示例中,所述分离管路还可连接至一所述处理模块24,以对所述分离管路中的分离流体或对所述第二排流口引出的流体再处理;在此,基于所述第二分离模块可控制所述分离流体的组分,即由此所述流体在富集管路中经由第一分离模块被截留目标物质后连接至第二分离模块,通过第二分离模块使得特定组分进入所述分离管路,通过所述分离管路,既可用于改变由第一分离模块被截留目标物质后的流体中特定组分的浓度,又或令所述处理模块对特定组分进行再处理。其中,所述再处理包括但不限于过滤、吸附、加热、催化、富集、浓缩、化学处理、光学处理、以及电学处理中的至少一种。
在本申请的第一方面的某些实施方式中,所述处理模块24可设置于所述分离管路中以对所述分离流体的流向或流道进行调节,即,所述处理模块24也为一流道调节装置。
在一示例中,所述流道调节装置可设置为与所述分离管路配合的调节管道与管道开关,其中,所述调节管道分别设于分离管路,所述管道开关设于每一调节管道上及调节管道之间的分离管路。
通过控制所述流道调节装置中的管道开关,可实现分离管路中流体循环方向及流道的改变。例如,循环分离模式下,令所述调节管道上的管道开关关闭以及分离管路上的管道开关开启,所述分离管路中的流体顺应分离管路的流道流动,即可用于进行循环分离;例如当需要对所述分离管路清洗时,在清洗模式下,两个调节管道一端连通至分离管路,另一端即可分别作为分离管路中的入口及出口,所述两个调节管道配合分离管路形成新的流道,即可将所述分离管路中循环分离的分离流体从所述出口引出分离管路,还可向所述分离管路中引入清洗液以将所述分离管路调节为清洗模式,所述清洗液可基于入口进入分离管路与第二分离 模块,并流动至所述出口以清洗所述分离管路管壁与第二分离模块,当清洗完成后分离管路与第二分离模块中的目标物质被清除。
在某些实施方式中,所述分离管路对应的流道调节装置为四通阀。
所述四通阀执行调节实现的效果与前述调节管道所述实施例类似,在此不再赘述。在一些示例中,所述四通阀还可通过旋转以实现对分离管路中不同工作模式的调节或切换。
在实际应用中,所述四通阀可基于分离管路的管道参数、设置于分离管路中的位置确定其结构参数,例如,所述四通阀可设置为分离管路折角处,也可设置为平直管路中,对应的四通阀内部结构可相应改变;在一些实现方式中,所述四通阀可通过3D打印获得。
在某些示例中,所述处理模块24为收集装置,应当理解,在本申请的流体处理方法中,所述分离管路21在流通流体的同时也在循环分离模式下收集一定体积的分离流体如目标物质,因此,所述分离管路21管壁内腔可同时作为目标物质的容置空间,所述收集装置可以为扩充分离管路21体积的容器或存储空间。
在某些示例中,所述分离管路中还设有控制装置、存储装置、压力检测装置、温度检测装置、控温装置、气泡检测及排除装置、报警装置、以及浓度检测装置中的至少一种。
应当说明的是,在本申请提供的实施例中,所述的控制装置设于富集管路或控制装置设于分离管路,并不在于限制所述控制装置的位置,仅当所述控制装置与富集管路或分离管路中各驱动装置、检测装置、或传感器等电性连接即可,因此所述控制装置当然可位于管路外部;所述控制装置用以获得富集管路或分离管路中的工作状态信息,并实现对所述富集管路或分离管路中工作状态的控制。
在本申请第一方面的实施例中,所述分离管路对应的第二进流口连通至所述富集管路的第一排流口,在某些示例中,所述控制装置为控制所述级联的富集管路与分离管路的中枢系统,在此,所述控制装置同时连接所述富集管路与所述分离管路;在另一些示例中,所述富集管路与分离管路也可连接至不同控制装置。
应当说明的是,在本申请提供的各示例中,所述流体处理方法中步骤S10、步骤S11、以及步骤S12的执行顺序无必然限制,例如,实际场景中也可先执行步骤S12,而后执行步骤S10;在此,所述步骤S10、步骤S11、以及步骤S12可看作为本申请的流体处理方法执行的必要条件,而满足各条件即可实施本申请的流体处理方法,本申请对各条件之间的发生顺序不做限制,在此以从步骤S10至步骤S11至步骤S12的实现方式仅为一种为便于理解选用的描述方式。
类似的,将流体引入所述分离管路处理的步骤S20及步骤S21之间的执行顺序也可相应变更,此处不再赘述。
在本申请第一方面的某些实施方式中,所述流体处理方法用于疾病治疗当中,例如通过可执行本申请流体处理方法的体外循环清除系统来实现目标分子的富集和选择性清除,这些目标分子往往是疾病发展过程当中的致病因子或结果、或对疾病的发展或健康的维持至关重要,对目标分子的清除,有利于疾病的治疗或者并发症的减少,其中,所述疾病包括但不限于家族性高胆固醇血症、高脂蛋白血症、系统性红斑狼疮、自免疫性疾病、重症肌无力、急进性肾小球肾炎、脂肪肝、肝硬化、急性肝衰竭、高脂血症重症急性胰腺炎、脓毒症、吉兰-巴雷综合征、以及肥胖中的至少一种;当然,所述流体处理方法适应治疗的疾病类型不以前述例举为限,仅当实现了本申请提供的流体处理方法或基于设备或装置重现了所述流体处理方法的过程,由此实现了对体内任意一种或多种分子的富集和清除,并实现对于患者的健康或疾病的治疗效果。
在本申请提供的实施例中,所述治疗包括可导致预期的生理效果的防止性(即,预防性)、阻断性、治愈性或缓和性处置。此外,“治疗”一词在此是指基于可部分或完全减轻、延迟发生、抑制进程、减轻严重性、和/或减少一种特定疾病、异常和/或医疗状况之一或多个病征出现机率的目的。
在依本申请的流体处理方法用于疾病治疗的实施例中,通过确定患者病灶如血液中的致病因子或其他组织液中致病因子,即可对血液或组织液中目标物质进行可持续性和高选择性地富集和清除,从而改变患者体内致病因子浓度。在实际场景中,针对特定疾病类型确定血液或组织液中的致病因子而选择或设计对应的分离模块,即将特定的致病因子富集于管路中或将其清除。
在一实现方式中,从患者体内引出的血液或组织液还可先经由处理模块预处理,再而对预处理获得的血浆或组织液中目标物质富集或清除,并可基于预设的清除目标控制处理时间。
在又一实现方式中,由所述富集管路循环富集的目标物质或由在所述分离管路中循环分离的分离流体还可连接至处理模块再处理,所述处理模块可对目标物质或分离流体进行分解、催化反应、加热、浓缩等处理。
在此,本申请第一方面提供的流体处理方法,通过富集管路与第一分离模块截留流体中的目标物质并使所述目标物质在富集管路中循环富集,在此循环富集模式下,所述富集管路中的流体依据第一驱动装置驱动以预设流速流动,从而确保富集管路中流体总量动态平衡, 由此本申请的流体处理方法在处理中具有可持续性,且可实现对流体中部分组分即目标物质的收集或处理,由富集管路的第一排流口引出的流体可接入至处理模块或存储空间;在此,所述流体处理方法具有可持续性,由此可实现可控的分离效果,同时,在循环富集过程中富集管路中流体总量平衡,可避免分离效果随分离进行大幅下降,流体中的目标物质可循环流经第一分离模块以被截留,在流体进行组分分离或交换过程中避免了有益成分持续损失。
再者,在一些实施方式中,所述流体处理方法可基于级联的富集管路或相级联的富集管路与分离管路实现对流体中细粒度分类下的目标组分处理,在一些场景中,可实现对流体中任意组分的收集或处理,在不同领域中的可消除或减小应用限制,例如在医疗应用中可对人体体液(包括血液)中不同组分进行收集或处理,在制药工艺中对不同有效成分分别富集,在水处理中对不同溶质分别富集等,以及水油分离、食品加工、药物纯化、医疗、生物制品、环保、化工、冶金、物料分离、石油处理、水处理等领域。
本申请在第二方面还提供了一种流体处理方法,包括以下步骤:基于至少一第二分离模块将流体引入一分离管路;其中,所述分离管路具有入口及出口;所述第二分离模块具有第二分离组件分隔形成的第一侧及第二侧,第二分离模块第一侧的相对两端分别连通至少一第二进流口以及至少一第二排流口,第二分离模块第二侧的相对两端分别连通所述分离管路的入口及出口;基于至少一第二驱动装置驱动分离管路中的流体以预设流速从入口流动至出口,以控制所述分离管路中的流体总量动态平衡。
所述流体包含目标物质,在某些实施方式中,所述流体包括但不限于血液、血浆、血清、体液、组织液、清洗液、透析液、重组蛋白溶液、细胞培养液、微生物培养液、制药及医疗用水、药液、流体食品、动植物提取液、天然水、工业废水、再生水、轻质油、甲烷、以及液化气中的一种或多种的混合物;在某些示例中,所述流体也可为如血液、血浆等流体经过处理例如过滤后获得的物质组分;在另一些示例中,所述流体还可为气体混合物例如包含甲烷的气体混合物。
本申请的流体处理方法可适用于对不同类别的流体处理,通常来说,仅当所述流体中具有不同的物质组分例如所述流体在分离膜中传递时具有选择性透过差异的不同组分、以及具有一定的流动性以使得分离过程可实现即可,例如上述的液态混合物或气体混合物,所述流体又或可以为其他固液混合相流体或胶体,本申请不做限制。
请参阅图13,显示为本申请第二方面的流体处理方法在一实施例中的流程示意图。
在步骤S30中,基于至少一第二分离模块将流体引入一分离管路,其中,所述分离管路 具有入口及出口;所述第二分离模块具有第二分离组件分隔形成的第一侧及第二侧,第二分离模块第一侧的相对两端分别连通至少一第二进流口以及至少一第二排流口,第二分离模块第二侧的相对两端分别连通所述分离管路的入口及出口。
在步骤S31中,基于至少一第二驱动装置驱动流体于分离管路中以预设流速流动从入口流动至出口,以控制所述分离管路中流体总量动态平衡。
在某些实施方式中,所述第二分离组件为多孔膜、反渗透膜或气体分离膜。
在某些实施方式中,所述多孔膜或反渗透膜的平均孔径或分子截留量与所述流体成分相关,其中,所述多孔膜包括微滤膜、超滤膜、以及纳滤膜。
在某些实施方式中,所述第二分离组件包括板膜、管式膜、卷式膜、螺旋膜、以及中空纤维膜中的一种或多种。
在某些实施方式中,所述分离管路还设有控制装置、流体存储装置、压力检测装置、温度检测装置、控温装置、氧气检测装置、气泡检测及排除装置、报警装置、以及浓度检测装置中的至少一种。
在此,所述第二分离组件可选的形式与预设的对流体中目标物质的处理目标相关,第二分离模块与分离管路的结构、不同组成的连接方式、对所述分离管路可配置的其他结构或模块如处理模块、以及第二驱动装置对分离管路中流体的控制方式所对应的实现方式可参照本申请第一方面的提供的实施例,例如图11~图12的任一实现方式中所述的分离管路及第二分离模块;对应的结构、结构间连接方式及控制方式、以及所实现的流体处理效果类似,在此不再赘述。
在本申请第二方面的某些实施方式中,令在前分离管路中的流体连通至在后分离管路对应的第二进流口,以使所述流体在N个级联的分离管路中循环流动,其中,N为2以上的正整数(N≥2)。
请参阅图14,显示为一实施例中所述N个级联的分离管路的简化示意图。
在此,所述在前分离管路与在后分离管路用于说明级联的N个分离管路中相邻的任意两个分离管路,所述在前与在后顺序即连接次序,所述连接次序基于流体在分离管路中的流动方向区分,即,流体总是从在前分离管路中经过处理后流入在后分离管路再处理,因此,流体总是从在前分离管路的入口进入在后分离管路的第二分离模块连接的第二进流口,对应的,所述在后分离管路的第二分离模块连接的第二排流口连接至在前分离管路的出口。
通过将N个所述分离管路级联,流体顺应分离管路连接次序进行N次分离循环,在每一 分离管路对应的循环处理中,循环分离模式下第二进流口与第二排流口处的流体流速或流量相等即所述N个级联的分离管路均处于动态平衡,因此,每一所述分离管路中均可进行持续性的循环分离。应当说明的是,顺应所述连接次序,流体在级联的分离管路对应的第二分离模块第一侧被依次截留目标物质,因此,每一分离管路第二进流口处引入的流体组分不同,对应的,不同分离管路中的流体组分不同。
在此,在本申请提供的各示例中,所述流体组分不同包括:流体中物质类别不同或/及流体中至少一种物质的浓度或总量不同。
在此,本申请提供了通过采用N个级联的分离管路对流体进行处理的实施例,可用于对流体中不同粒径或分子量、不同化学性质的组分、或不同电荷性质的分子分别进行截留,通过在分离管路中设置对应的第二分离模块,基于不同的所述第二分离模块对流体中组分的选择透过性,即可实现对细粒度分类下的不同组分的循环分离。
应当理解,本申请的分离管路中流体在循环分离模式下为可逆的循环,基于所述第二分离模块的截留作用,可实现连接至第二分离模块第二侧的所述分离管路中的流体仅含有特定组分,而所述第二分离模块第一侧的流体中可同时包括所述特定组分与被截留的组分,由此,在所述级联的分离管路中顺应连接次序,分离管路中的流体组分类别逐渐减少。
在此示例下,基于所述级联的分离管路,对流体进行处理时可即仅对流体中部分组分如分离流体进行处理,而不需处理的物质组分可基于所述分离管路中的可逆的循环分离回到上游,例如,如图14所示实施例,当所述流体中包括组分a、b、c、d,在分离过程中,顺应连接次序,第一个分离管路21中流体组分为b、c、d,其中,组分a被截留于第一个分离管路21a对应的第二分离模块22a第一侧;第二个分离管路21b中流体组分为c、d,组分b被截留于第二个分离管路21b对应的第二分离模块22b第一侧并可由此流至第一个分离管路21a中,同时,组分b可基于所述可逆的循环分离回到第一个分离管路21a对应的第二分离模块22a第一侧;第三个分离管路21c中流体组分为d,组分c被截留于第三个分离管路21c对应的第二分离模块22c第一侧并可由此流至第二个分离管路21b中,同时,组分c可基于所述可逆的循环分离回到第一个分离管路21a中;在实际场景中,当所述组分d为需要再处理的组分,即可对第三个分离管路21c中分离流体进行再处理,流体中其他组分如a、b、c可回流至上游管路中,即可用于实现对流体中特定组分的处理。在本申请第二方面提供的各实施例中,对任一所述分离管路与其相对应的第二分离模块,所述第二分离模块第一侧连接的管路为上游管路,所述分离管路即为下游管路。
在一些示例中,在所述N个级联的分离管路中,分离管路中的分离流体可基于所述流道调节装置的调节管道出口引出分离管路,或基于所述处理模块引出分离管路,即可对细粒度的目标物质定向提取或处理,由此实现对流体中细粒度分类下目标物质的浓度改变。例如,当所述流体中各组分的分子量范围为200~2000Dalton,以N为2为例,顺应连接次序,令在前分离管路对应第二分离模块截留流体中1100Dalton以上的组分,在前分离管路中的分离流体组分即为200~1100Dalton,令在后分离管路对应的第二分离模块截留800Dalton以上的组分,在后分离管路中的分离流体组分即为200~800Dalton的组分。
当然,在实际场景中,所述N个级联的分离管路的数量为2以上的任意正整数,对应的,可对流体中多种组分或对多个分类段内的组分分别收集、提取或处理;在此,所述分类段可为基于组分化学性质、分子量或分子粒径、电荷性质中的至少一种进行划分获得的分类段,应当理解,所述分类段具有多种划分标准,具有对应的第二分离组件使得对分类段内的物质被截留于第二分离模块第一侧可实现即可,以所述第二分离组件为分离膜为例,不同类型分离膜具有不同的选择透过性,通过设置N组分离膜,即可将流体组分进行N次分类或截留。
例如,在基于N个级联的分离管路对流体进行处理时,顺应连接次序可基于分子量在第一个分离管路对应的第二分离模块第一侧截留大分子组分,在第二个分离管路对应的第二分离模块中可基于流体的化学性质截留对应于该分离管路的第二分离组件不具有选择透过性的组分,在第三个分离管路中基于流体组分的电荷性质截留带电荷离子。在实际场景中,以医疗应用为例,所述N个级联的分离管路例如可用于分离流体中的抗生素、氨基酸、酶制剂及其他蛋白质等。
本申请第二方面的某些实施方式中,所述N个级联的分离管路对应的目标物质的分子粒径、分子量、或组分粒径顺应连接次序逐级递减。
在此示例下,将流体中组分依分子粒径或分子量进行分类,所述N个级联的分离管路对应的第二分离模块对流体组分的选择透过性可基于组分粒径或分子量设计,例如,可令所述N个级联的分离管路对应的N组第二分离模块中分离膜平均孔径逐渐减小或截留分子量逐渐减小,则顺应连接次序,各分离管路中对应的第二分离模块第一侧截留的目标物质对应的分子粒径或分子量逐渐减小。
每一分离管路对应的第二分离模块可将流体中的部分组分截留于第二分离模块第一侧,因此第二分离模块第二侧可仅含有流体中特定组分,在此,对流体进行处理时可基于需要选择对应的分离管路,即可仅对流体中的特定组分进行处理。
在本申请第二方面的某些实施方式中,还包括以下步骤:将从一分离管路内的流体引入至一富集管路,其中,所述富集管路包括第一段及第二段,所述第一段的入口连通至少一第一进流口,所述第二段的出口连通所述第一段;基于至少一第一分离模块截留流体中的目标物质;其中,所述第一分离模块具有第一分离组件分隔形成的第一侧及第二侧,所述第一侧的相对两端分别连通第一段及第二段,所述第二侧连通至少一第一排流口;基于至少一第一驱动装置驱动流体于富集管路中以预设流速循环流动以富集目标物质,其中,所述至少一第一驱动装置设于所述第一段并控制所述富集管路中流体总量动态平衡。
即,本申请第二方面还提供了将分离管路与富集管路级联的实施例。
请参阅图15a、图15b,显示为不同实施例中分离管路与富集管路级联的简化结构示意图。
在此,本申请第二方面提供的所述的将分离管路与富集管路级联的实施例中,包括以下情形:将流体由一个分离管路中引出至所述富集管路对应的第一进流口例如图15a所示;或,将令流体在N个以上相级联的分离管路中处理,并顺应连接次序令最后一个分离管路中的流体连接至所述富集管路对应的第一进流口,其中,N为2以上正整数,例如图15b所示实施例。
举例来说,在相邻的分离管路21与富集管路11中,流体从分离管路21的入口流至所述富集管路11对应的第一进流口,在富集管路11中通过第一分离模块12流动至第一排流口,从第一排流口引出的流体流动至所述分离管路21的出口以形成分离循环;即,在此示例下,所述富集管路11可视为分离循环中的子循环装置。
请参阅图16,显示为本申请第二方面的流体处理方法在一实施例中包括的步骤的流程图。
在步骤S40中,将从一分离管路内的流体引入至一富集管路,其中,所述富集管路包括第一段及第二段,所述第一段的入口连通至少一第一进流口,所述第二段的出口连通所述第一段;
在步骤S41中,基于至少一第一分离模块截留流体中的目标物质;其中,所述第一分离模块具有第一分离组件分隔形成的第一侧及第二侧,所述第一侧的相对两端分别连通第一段及第二段,所述第二侧连通至少一第一排流口;
在步骤S42中,基于至少一第一驱动装置驱动流体于富集管路中以预设流速循环流动以富集目标物质,其中,所述至少一第一驱动装置设于所述第一段并控制所述富集管路中流体总量动态平衡。
在本申请第二方面的某些实施方式中,所述第一分离组件为多孔膜、反渗透膜、或气体 分离膜。
在本申请第二方面的某些实施方式中,所述多孔膜或反渗透膜的平均孔径或分子截留量与所述目标物质相关,其中,所述多孔膜包括微滤膜、超滤膜、或纳滤膜。
在本申请第二方面的某些实施方式中,所述第一分离组件包括平面膜、管式膜、卷式膜、螺旋膜、以及中空纤维膜中的一种或多种。
在本申请第二方面的某些实施方式中,所述第一分离模块为切向流过滤模块。
在本申请第二方面的某些实施方式中,所述至少一第一驱动装置控制所述第一段的流速在预设阈值以上,以使所述第一分离模块中的目标物质从所述第一段的出口流向所述第二段的入口。
在本申请第二方面的某些实施方式中,所述预设阈值与流体成分、流体温度、膜结构、膜材料、第一分离模块腔体结构、以及富集管路管径中的至少一者相关。
在本申请第二方面的某些实施方式中,所述第二段还设有所述第一驱动装置。
在本申请第二方面的某些实施方式中,令从所述第一进流口引入所述富集管路的流体总体积或总速率与由所述第一排流口引出所述富集管路的流体总体积或总速率相等,以循环富集所述目标物质。
在本申请第二方面的某些实施方式中,通过控制单位时间内引入所述富集管路的流体总量与所述富集管路中流体总量的比例以调节富集效率。
在本申请第二方面的某些实施方式中,所述富集管路中还设有流道调节装置,用于调节所述富集管路中的流体流向;其中,所述流道调节装置可通过以下至少一种方式调节富集管路中流体流向:
通过调节所述第一进流口或/及第一排流口的开放状态以调节流体流向;
通过调节连接至所述富集管路的至少一调节管道的开放状态以调节流体流向。
在本申请第二方面的某些实施方式中,所述流道调节装置包括设于所述第一进流口的管路开关,用于控制所述第一进流口开放状态以将所述流体在富集管路中的处理状态切换至浓缩循环模式或清洗模式。
在本申请第二方面的某些实施方式中,所述流道调节装置还包括至少一调节管道以及管道开关,以令所述富集管路中形成清洗液入口及废液出口。
在本申请第二方面的某些实施方式中,所述流道调节装置为四通阀。
在本申请第二方面的某些实施方式中,令所述富集管路切换于浓缩循环模式与稀释模式, 以调节所述第一分离模块的分离效率。
在本申请第二方面的某些实施方式中,所述富集管路还包括排进气口,设于所述第一段或/及所述第二段,用于调节所述富集管路内部气体状态或气压状态。
在本申请第二方面的某些实施方式中,所述富集管路还包括至少一收集装置,设于所述第一段或/及所述第二段,用于调节所述富集管路容积以收集目标物质,或用于收集气泡。
在本申请第二方面的某些实施方式中,所述富集管路还包括控制装置、流体存储装置、压力检测装置、温度检测装置、控温装置、氧气检测装置、气泡检测及排除装置、报警装置、流速检测装置、以及浓度检测装置中的至少一种。
在本申请第二方面的某些实施方式中,所述控制装置基于流速检测装置、压力检测装置、以及浓度检测装置中的至少一者形成对所述富集管路内部工作状态的调整信息。
在此,所述富集管路及第一分离模块的具体结构、富集管路中配置的不同结构或模块间的连接方式、位置关系以及所述第一驱动装置用于控制富集管路中流体的方式、以及富集管路中配置的流道调节装置、收集装置等设备的结构与各结构共同协调用于实现不同的流体处理功能的方式,可参照本申请第一方面的提供的实施例,例如本申请第二方面的实施例所述的富集管路、第一驱动装置、第一分离模块可以为图1~图9所示实施例中任一实施方式所述的富集管路及富集管路中配置的第一驱动装置、第一分离模块。
在本申请第二方面的某些实施例中,还包括通过至少一处理模块对所述流体进行预处理或再处理的步骤,其中,所述预处理或再处理包括过滤、吸附、加热、催化、富集、浓缩、化学处理、光学处理、以及电学处理中的至少一种。对应于实际应用,所述处理模块例如吸附装置、萃取装置、离子交换处理装置、离心装置、过滤装置、加热装置等。
所述处理模块对所述流体预处理即对初始获得的流体进行处理,以将处理后的流体通过第二进流口引入所述第二分离模块。令所述处理模块处理后的流体连通至所述分离管路对应的第二进流口,所述处理模块即为执行预处理。
所述处理模块对流体进行再处理即对分离管路中的分离流体进行处理,以对循环分离所得的目标物质进行处理,基于第二分离组件对流体组分的选择性透过作用,所述分离流体中仅含有特定组分,结合所述处理模块即可实现对特定组分再处理如浓缩收集、化学分解等;又或,所述处理模块对所述第二分离模块第二侧的第二排流口引出的流体进行处理即为再处理;再或,所述再处理为处理模块对富集管路中循环富集的目标物质进行处理,或对富集管路对应的第一排流口引出的流体进行处理。
在此,所述处理模块所执行的预处理或再处理类型可基于处理需要确定,例如,当所述第二分离模块第一侧截留的组分为需要滤除的流体组分,分离管路中的分离流体为需要提纯的有益组分,所述处理模块可执行将所述分离管路中的流体浓缩处理;又如,所述富集管路中的目标物质为需要滤除的组分,所述处理模块可通过化学分解清除所述目标物质。
在某些示例中,在本申请第二方面提供的流体处理方法中,在相级联的分离管路与富集管路中,令所述第二分离模块对应的第二进流口与第二排流口连接至同一存储部,其中,所述存储部包括流体存储装置、容器、或人体。在此,所述存储部仅用于实现对引入第二进流口的流体与第二排流口引出的流体的存储或连通功能即可,因此,所述存储部可以为一种容器或存储空间,在特定的应用场景中也可为人体的血液循环,本申请不做限制。
请参阅图17,显示为本申请的级联的分离管路与富集管路在一实施例中的简化示意图。举例来说,在一种情形中,所述第二进流口与第二排流口连接至同一存储部26,所述存储部26例如为存储装置或容器中,在此,所述第二驱动装置23控制所述分离管路21中流体总量动态平衡即执行循环分离,同时,所述第一驱动装置13控制所述富集管路11中的流体总量动态平衡即执行循环富集,对应的,所述存储部26中的流体总量动态平衡。
在此情形中,所述存储部26中的流体在第二分离模块22处被分离出特定组分即分离流体并将分离流体引入富集管路11中,富集管路11在循环富集模式下,所述分离流体在富集管路11中富集目标物质,被分离出目标物质组分的流体经由所述第一分离模块第二侧回到分离管路21出口,并基于所述分离管路21中可逆的循环分离回流至存储部26,持续循环分离与循环富集,则所述存储部26内流体中目标物质逐渐减小而流体总量不变,在实现对特定目标物质组分收集的同时不产生废液,存储部26内流体总量不变则循环分离与循环富集过程可持续进行。
在另一情形中,当所述存储部为人体,所述流体可为人体的血液、血浆、血清、组织液或其它体液,在此示例下,所述第二进流口与所述第一排流口与人体的连接关系可为直接连接或间接连接,所述直接连接即第二进流口与第一排流口可连接至人体的循环系统,所述间接连接即第二进流口或/及第一排流口连接至一处理模块,所述处理模块连接至人体循环系统,例如所述处理模块用于将人体全血分离出血浆,所述第二进流口即连接至分离获得的血浆。由此,基于本申请的流体处理方法,在将血浆中需滤除的致病因子截留在所述富集管路中时不产生废弃血浆,基于对人体中的血浆进行持续性的分离处理即可改变人体内血浆中目标物质的浓度,避免了有益成分持续损失的问题。
在某些示例中,所述分离管路或所述富集管路即可作为一分离模块,容易理解,所述分离管路与富集管路均可基于对应的分离模块实现分离效果,因此,所述分离管路与富集管路均可作为一分离装置或过滤装置。例如,在一实际场景中,所述分离管路的第二进流口连接至人体血液循环系统,基于第二分离组件将血液中细胞组分截留于第二分离模块第一侧,通过第二分离组件的血浆流通于分离管路中,同时,所述分离管路中的血浆连接至富集管路的第一进流口,由此可富集血浆中的目标物质,当所述目标物质为需要清除的致病因子,从富集管路第一排流口引出的流体即为净化后血浆,所述净化后回到分离管路中并可基于所述分离管路可逆的循环分离流至所述第二分离模块第一侧,由此,净化后血浆可与细胞组分混合并回输至人体血液循环系统中。在此实际场景中,对血浆中致病因子的清除过程可持续,在血浆净化过程中无废液产生;同时,血浆中致病因子以外的其他组分可基于可逆的循环分离回到上游管路即可回输至人体,实际应用中管路系统的搭建方式也被化简。
应当说明的是,在本申请第二方面提供的实施例中,所述控制装置设于富集管路或控制装置设于分离管路,并不在于限制所述控制装置的位置,仅当所述控制装置与富集管路或分离管路中各驱动装置、检测装置或传感器等电性连接即可,因此所述控制装置当然可位于管路外部;所述控制装置用以获得富集管路或分离管路中的工作状态信息,并实现对所述富集管路或分离管路中工作状态的控制。
在本申请第二方面的一些实施例中,所述分离管路中的分离流体连通至所述富集管路的第一进流口,在某些示例中,所述控制装置为控制所述级联的分离管路与富集管路的中枢系统,在此,所述控制装置同时连接所述分离管路与所述富集管路;在另一些示例中,所述分离管路与富集管路也可连接至不同控制装置。
应当说明的是,在本申请第二方面提供的各示例中,所述流体处理方法中步骤S30、步骤S31的执行顺序无必然限制,例如,实际场景中也可先执行步骤S31,而后执行步骤S30;在此,所述步骤S30、步骤S31可看作为本申请的第二方面提供的流体处理方法执行的必要条件,而满足各条件即可实施所述流体处理方法,本申请对各条件之间的发生顺序不做限制,在此以从步骤S30至步骤S31的实现方式仅为一种为便于理解选用的描述方式。
类似的,步骤S40、步骤S41及步骤S42也可作为富集管路中的处理条件,对应的实际执行顺序也可相应变更,此处不再赘述。
在本申请第二方面的某些实施方式中,所述流体处理方法用于疾病治疗当中,例如通过可执行本申请流体处理方法的体外循环清除系统来实现目标分子的富集和选择性清除,这些 目标分子往往是疾病发展过程当中的致病因子或结果、或对疾病的发展或健康的维持至关重要,对目标分子的清除,有利于疾病的治疗或者并发症的减少,其中,所述疾病包括但不限于家族性高胆固醇血症、高脂蛋白血症、系统性红斑狼疮、自免疫性疾病、重症肌无力、急进性肾小球肾炎、脂肪肝、肝硬化、急性肝衰竭、高脂血症重症急性胰腺炎、脓毒症、吉兰-巴雷综合征、以及肥胖中的至少一种;当然,所述流体处理方法适应治疗的疾病类型不以前述举例为限,仅当实现了本申请提供的流体处理方法或基于设备或装置重现了所述流体处理方法的过程,由此实现了对体内任意一种或多种分子的富集和清除,并实现对于患者的健康或疾病的治疗效果。
在依本申请的流体处理方法用于疾病治疗的实施例中,通过确定患者病灶如血液中的致病因子或其他组织液中致病因子,即可对血液或组织液中目标物质进行可持续性循环分离,从而改变患者体内致病因子浓度。在实际场景中,针对特定疾病类型确定血液或组织液中的致病因子而选择或设计对应的分离模块,即将特定的致病因子流通于分离管路中,即可由此结合处理模块对致病因子进行处理。
在一实现方式中,从患者体内引出的血液或组织液还可先经由处理模块预处理,再而对预处理获得的血液或组织液中目标物质富集或清除,并可基于预设的清除目标控制处理时间。
在又一实现方式中,由所述富集管路循环富集的目标物质或由在所述分离管路中循环分离的分离流体还可连接至处理模块再处理,所述处理模块可对目标物质或分离流体进行分解、反应、加热、浓缩等处理。
在此,本申请第二方面提供的流体处理方法,通过第二分离模块截留流体中的组分并使流体中特定组分在分离管路中循环分离,在此循环分离模式下,分离管路中的流体依据第二驱动装置驱动以预设流速流动,从而确保分离管路中流体总量动态平衡,由此本申请的流体处理方法在处理中具有可持续性,且可实现对流体中目标物质的收集或实现流体组分的浓度改变,由分离管路的第二排流口引出的流体或分离流体可接入至处理模块或存储空间,在流体进行组分分离或交换过程中避免了有益成分持续损失。
再者,在一些实施方式中,所述流体处理方法可基于级联的分离管路或相级联的分离管路与富集管路实现对流体中细粒度分类下的目标组分处理,同时,基于所述分离管路可逆的循环特点,可将目标分子、或预设的需清除或处理的特定组分截留于不同循环中,不需处理的其他流体组分可基于可逆式循环流动至上游管路,由此可实现对特定组分的定向和选择性的富集、清除、收集或其他处理,同时避免了分离效果随时间下降的问题。在一些场景中, 所述流体处理方法可用于实现对流体中任意组分的收集或处理,在不同领域中的可消除或减小应用限制,例如在医疗应用中可对人体体液(包括血液)中不同组分进行收集或处理,在制药工艺中对不同有效成分分别富集,在水处理中对不同溶质分别富集、分离、处理等。
本申请在第三方面还提供了一种流体处理装置,包括至少一循环富集模块,其中,所述循环富集模块包括:富集管路,包括第一段及第二段;其中,所述第一段的入口连通第一进流口,所述第二段的出口连通所述第一段;至少一第一分离模块,包括第一分离组件以将所述第一分离模块分隔形成第一侧与第二侧,其中,所述第一侧的相对两端分别连通第一段及第二段;所述第二侧连通至少一第一排流口;至少一第一驱动装置,设于所述第一段,用于驱动所述富集管路的流体循环流动以控制所述富集管路中的流体总量动态平衡,以使所述第一分离模块在富集循环模式下富集出目标物质。
例如,请继续参阅图2,可显示为所述循环富集模块在一实施例中的简化示意图。所述循环富集模块包括:富集管路11,包括第一段111及第二段112;其中,所述第一段111的入口连通第一进流口,所述第二段112的出口连通所述第一段。
在此,所述富集管路11的第一段111与第二段112可基于一定的连接关系使得富集管路11中液体流动的方向可构成循环,所述第二段112的出口连通所述第一段111,流体从所述第一进流口进入所述第一段111后,可流动至第二段112并从所述第二段112出口流至第一段111,即可构成流动循环。
所述至少一第一分离模块12包括第一分离组件以将所述第一分离模块12分隔形成第一侧与第二侧,其中,所述第一侧连通所述第一段111的出口及第二段112的入口;所述第二侧连通至少一第一排流口。
在本申请第三方面的某些实施方式中,所述流体包含目标物质,所述流体包括血液、血浆、血清、体液、组织液、清洗液、透析液、重组蛋白溶液、细胞培养液、微生物培养液、制药及医疗用水、药液、流体食品、动植物提取液、天然水、工业废水、再生水、甲烷、轻质油、以及液化气中的一种或多种的混合物。
在本申请第三方面的某些实施方式中,所述第一分离组件为多孔膜、反渗透膜、或气体分离膜。
在本申请第三方面的某些实施方式中,所述多孔膜或反渗透膜的平均孔径或分子截留量与所述目标物质相关,其中,所述多孔膜包括微滤膜、超滤膜、以及纳滤膜。
在本申请第三方面的某些实施方式中,所述第一分离组件包括平面膜、管式膜、卷式膜、 螺旋膜、以及中空纤维膜中的一种或多种。
在本申请第三方面的某些实施方式中,所述第一分离模块为切向流过滤模块。
在本申请第三方面的某些实施方式中,所述至少一第一驱动装置控制所述第一段的流速大于一预设阈值,以使所述第一分离模块中的目标物质从所述第一段的出口流向所述第二段的入口。
在本申请第三方面的某些实施方式中,所述预设阈值与流体成分、流体温度、膜结构、膜材料、第一分离模块腔体结构、以及富集管路管径中的至少一者相关。
在本申请第三方面的某些实施方式中,所述循环富集模块中所述第二段还设有所述第一驱动装置。
在本申请第三方面的某些实施方式中,在富集循环模式下,由所述第一进流口引入所述富集管路的流体总体积或总速率与由所述第一排流口引出所述富集管路的流体总体积或总速率相等。
在本申请第三方面的某些实施方式中,所述循环富集模块通过控制单位时间内引入所述富集管路的流体总量与所述富集管路中流体总量的比例以调节富集效率。
在本申请第三方面的某些实施方式中,所述富集管路中还设有流道调节装置,用于调节所述富集管路中的流体流向;其中,所述流道调节装置可通过以下至少一种方式调节富集管路中流体流向:通过调节所述第一进流口或/及第一排流口的开放状态以调节流体流向;通过调节连接至所述富集管路的至少一调节管道的开放状态以调节流体流向。
在本申请第三方面的某些实施方式中,所述流道调节装置包括设于所述第一进流口的管路开关,用于控制所述第一进流口开放状态以将所述流体在富集管路中的处理状态切换至浓缩循环模式或清洗模式。
在本申请第三方面的某些实施方式中,所述流道调节装置还包括至少一调节管道以及管道开关,以令所述富集管路中形成清洗液入口及废液出口。
在本申请第三方面的某些实施方式中,所述流道调节装置为四通阀。
在本申请第三方面的某些实施方式中,所述循环富集模块基于所述流道调节装置切换于浓缩循环模式与稀释模式,以调节所述第一分离模块的分离效率。
在本申请第三方面的某些实施方式中,所述循环富集模块还包括排进气口,设于所述第一段或/及所述第二段,用于调节所述富集管路内部气体状态或气压状态。
在本申请第三方面的某些实施方式中,所述循环富集模块还包括至少一收集装置,设于 所述第一段或/及所述第二段,用于调节所述富集管路容积以收集目标物质,或用于收集气泡。
在本申请第三方面的某些实施方式中,所述循环富集模块还包括控制装置、流体存储装置、流速检测装置、压力检测装置、温度检测装置、控温装置、氧气检测装置、气泡检测及排除装置、报警装置、以及浓度检测装置中的至少一种。
在本申请第三方面的某些实施方式中,所述控制装置基于流速检测装置、压力检测装置、以及浓度检测装置中的至少一者形成对所述富集管路内部工作状态的调整信息。
在本申请第三方面的某些实施方式中,所述第一进流口与所述第一排流口连接至同一存储部,其中,所述存储部包括流体存储装置、容器、以及人体。
在此,本申请第三方面提供的实施例中,所述循环富集模块可为用于实现如本申请第一方面提供的一些实施例中所述的流体处理方法的硬件设备,例如是图1~图12实施例的任一实施方式所述的流体处理方法中的用于形成富集循环的设备。
在本申请第三方面的某些实施方式中,所述流体处理装置包括N个相级联的所述循环富集模块,N为2以上的正整数;其中,在任意两个相邻的所述循环富集模块中,在前循环富集模块的第一排流口连接至在后循环富集模块的第一进流口。
在此示例下,所述流体处理装置中不同循环富集模块间的连接方式及对流体的处理方式、处理效果可参照本申请第一方面提供的实施例,例如图9可显示为相级联的循环富集模块的简化示意图。
在某些实施方式中,所述N个级联的循环富集模块对应富集的目标物质的分子粒径、分子量、或组分粒径顺应连接次序逐级递减。
所述相级联的循环富集模块可以是实现本申请第一方面提供的实施例中将多个富集管路级联的流体处理方法的设备,具体实施方式与处理效果可参照第一方面提供的实施例,此处不再赘述。
在本申请第三方面的某些实施方式中,所述流体处理装置还包括至少一个循环分离模块,其中,所述循环分离模块包括:分离管路,具有入口及出口;第二分离模块,包括第二分离组件以将所述第二分离模块分隔形成第一侧与第二侧,其中,第二分离模块第一侧的相对两端分别连通至少一第二进流口以及至少一第二排流口,第二分离模块第二侧的相对两端分别连通所述分离管路的入口及出口;所述第二进流口连接至所述循环富集模块的第一排流口;至少一第二驱动装置,设于所述分离管路,用于驱动分离管路中的流体以预设流速从入口流动至出口,以使循环分离模式下所述分离管路中的流体总量动态平衡。
所述循环分离模块中分离管路、第二分离模块与第二驱动装置间的连接方式及位置关系可参照图11~图12所示实施例,所述循环分离模块可形成图11~图12所示实施例中任一实施方式中的分离循环(也可称循环分离)。所述循环分离模块中,从第二进流口引入的流体中可通过所述第二分离组件的分离流体即进入所述分离管路21以形成循环,所述第二排流口连接至第二分离模块22第一侧,所述循环分离模块中即形成可逆的循环分离。
在本申请第三方面的某些实施方式中,所述第二分离组件为多孔膜、反渗透膜或气体分离膜。
在本申请第三方面的某些实施方式中,所述多孔膜或反渗透膜的平均孔径或分子截留量与所述流体成分相关,其中,所述多孔膜包括微滤膜、超滤膜、以及纳滤膜。
在本申请第三方面的某些实施方式中,所述第二分离组件包括板膜、管式膜、卷式膜、螺旋膜、以及中空纤维膜中的一种或多种。
在本申请第三方面的某些实施方式中,所述第二分离模块为切向流过滤模块。
在本申请第三方面的某些实施方式中,所述循环分离模块还包括控制装置、流体存储装置、压力检测装置、温度检测装置、控温装置、氧气检测装置、气泡检测及排除装置、报警装置、以及浓度检测装置中的至少一种。
在此,所述循环分离模块可以是本申请第一方面提供的实施例中所述流体处理方法中用于形成分离循环的设备,以用于在本申请第一方面所述的循环分离模式下处理流体。
同时,本申请第三方面提供了具有级联的循环富集模块与循环分离模块的流体处理装置的实施例。在此实施例中,包括以下情形:将流体由一个循环富集模块的第一排流口引出至所述循环分离模块对应的第二进流口;或,将令流体在N个以上相级联的循环富集模块中处理,并顺应连接次序令最后一个循环富集模块的第一排流口连接至所述循环分离模块对应的第二进流口,其中,N为2以上正整数。
在此,所述级联的循环富集模块与循环分离模块的结构、连接方式及可实现的流体处理效果可参照本申请第一方面提供的流体处理方法中将富集管路与分离管路级联的实施例,例如图11所示实施例对应的任一实现方式,此处不再赘述。
在本申请第三方面的某些实施方式中,所述流体处理装置还包括至少一处理模块,用于对所述流体处理装置中的流体预处理或再处理,其中,所述预处理或再处理包括过滤、吸附、加热、催化、富集、浓缩、化学处理、光学处理、以及电学处理中的至少一种。
在此,所述处理模块对所述流体预处理即对初始获得的流体进行处理,并将处理后的流 体通过第一进流口引入所述循环富集模块,所述处理模块即为执行预处理;所述处理模块对流体进行再处理即对循环富集模块中的流体或目标物质进行处理或对第一排流口引出的流体进行处理;又或,所述处理模块对所述循环分离模块中第二进流口处的流体进行处理、对分离管路内的流体进行处理、或对循环分离模块中第二排流口引出的流体进行处理均可视为再处理。
在本申请第三方面的某些实施方式中,所述流体处理装置为体外循环设备,其中,所述体外循环设备包括但不限于为血液透析设备、血浆置换设备、体外腹膜透析设备、或体外膜肺氧合设备。
在某些实施方式中,所述体外循环设备单独作为一种医疗器械或治疗设备,也可整合至涉及血液或其他体液体外处理的医疗设备或器械中以形成新的设备。
在此,所述体外循环设备即可用于来自于对人体的各种组织液、血液、血浆及其特定成分进行选择性处理的设备。基于所述流体处理装置的可持续性且不产生废液和损失有益小分子的特点,所述体外循环设备在对人体组织液或血液处理的过程中可收集特定组分,或改变特定组分浓度,或清除特定组分,并使得其他组分回输至人体当中,以形成组织液或对血液形成体外的循环处理。
在本申请第三方面的某些实施方式中,所述流体处理装置用于疾病治疗。所述流体处理装置实现疾病治疗的方式及对应可行的治疗类型可参照本申请第一方面提供的实施例,在此不再赘述。
应当理解,本申请第三方面提供的流体处理装置可以是用于执行本申请第一方面提供实施例中任一实施方式所述的流体处理方法的设备。对应的,所述流体处理装置中循环富集模块与循环分离模块的具体结构、连接方式、与处理模块的联用方式、及所实现的流体处理效果均可参照本申请第二方面提供的实施例。
在一些场景中,所述流体处理装置中的循环富集模块或循环分离模块可作为独立的销售单元;在此,所述流体处理装置可表现为已形成连接的装置,也可表现为可获得连接关系的独立的组件,即独立的循环富集模块或循环分离模块,所述连接关系可以为一种或多种,例如,所述流体处理装置中包括多个循环富集模块及循环分离模块,所述循环富集模块与循环分离模块之间可以不同的连接关系连接以适用于不同处理需求,又或,适应于场景需求,还可在多个组件中可选的仅将对其中部分组件进行连接。
本申请在第四方面还提供了一种循环分离装置,用于进行流体处理,所述循环分离装置 包括至少一循环分离模块,其中,所述循环分离模块包括:分离管路,具有入口及出口;第二分离模块,包括第二分离组件以将所述第二分离模块分隔形成第一侧与第二侧,其中,第二分离模块第一侧的相对两端分别连通至少一第二进流口以及至少一第二排流口,第二分离模块第二侧的相对两端分别连通所述分离管路的入口及出口;至少一第二驱动装置,设于所述分离管路,用于驱动分离管路中的流体以预设流速从入口流动至出口,以使循环分离模式下所述分离管路中的流体总量动态平衡。
请继续参阅图12,可显示为所述循环分离模块在一实施例中的简化示意图。所述循环分离模块中,从第二进流口引入的流体中可通过所述第二分离组件的分离流体即进入所述分离管路21以形成循环,所述第二排流口连接至第二分离模块22第一侧,所述循环分离模块中即形成可逆的循环分离。
在本申请第四方面的某些实施例中,所述流体包含目标物质,所述流体包括血液、血浆、血清、体液、组织液、清洗液、透析液、重组蛋白溶液、细胞培养液、微生物培养液、制药及医疗用水、药液、流体食品、动植物提取液、天然水、工业废水、再生水、甲烷、轻质油、以及液化气中的一种或多种的混合物。
在本申请第四方面的某些实施例中,所述第二分离组件为多孔膜、反渗透膜或气体分离膜。
在本申请第四方面的某些实施例中,所述多孔膜或反渗透膜的平均孔径或分子截留量与所述流体成分相关,其中,所述多孔膜包括微滤膜、超滤膜、以及纳滤膜。
在本申请第四方面的某些实施例中,所述第二分离组件包括板膜、管式膜、卷式膜、螺旋膜、以及中空纤维膜中的一种或多种。
在本申请第四方面的某些实施例中,所述第二分离模块为切向流过滤模块。
在本申请第四方面的某些实施例中,所述循环分离模块还包括控制装置、流体存储装置、压力检测装置、温度检测装置、控温装置、气泡检测及排除装置、报警装置、以及浓度检测装置中的至少一种。
在本申请第四方面的某些实施例中,所述循环分离装置还包括至少一处理模块,以对所述流体进行预处理或再处理的步骤,其中,所述预处理或再处理包括过滤、吸附、加热、催化、富集、浓缩、化学处理、光学处理、以及电学处理中的至少一种。对应于实际应用,所述处理模块例如吸附装置、萃取装置、离子交换处理装置、离心装置、过滤装置、加热装置等。
在本申请的第四方面的某些实施方式中,所述处理模块可设置于所述分离管路中以对所 述分离流体的流向或流道进行调节,即,所述处理模块也可为一流道调节装置。在某些示例中,所述循环分离模块中的所述处理模块也可为收集装置。
所述循环分离模块中分离管路、第二分离模块及第二驱动装置的具体结构及不同部件间连接方式,所述循环分离模块可配置的其他模块或硬件例如处理模块,可参照本申请第二方面提供的实施例,此处不再赘述。
本申请第四方面提供的循环分离装置中的循环分离模块可以是用于形成本申请第二方面提供的实施例中任一实施方式中的分离循环的执行设备或执行模块,对应可实现如本申请第二方面提供的实施例中的处理效果。
在本申请第四方面的某些实施方式中,所述循环分离装置包括N个相级联的所述循环分离模块,N为2以上的正整数;其中,在任意两个相邻的所述循环分离模块中,在前循环分离模块的分离管路连接至在后循环分离模块的第二进流口及第二排流口。
在本申请第四方面的某些实施方式中,所述N个相级联的所述循环分离模块对应的目标物质的分子粒径、分子量、或组分粒径顺应连接次序逐级递减。
在所述循环分离装置包括N个相级联的所述循环分离模块的实施例中,N个相级联的所述循环分离模块的结构及连接方式、以及对流体的处理方式可参照本申请第二方面提供的将多个分离管路级联的实施例,例如图14所示实施例中的任一实现方式。
在本申请第四方面的某些实施方式中,所述循环分离装置还包括至少一个循环富集模块,其中,所述循环富集模块包括:富集管路,包括第一段及第二段;其中,所述第一段的入口连通第一进流口,所述第二段的出口连通所述第一段;至少一第一分离模块,连通所述第一段的出口,包括第一分离组件以将所述第一分离模块分隔形成第一侧与第二侧,其中,所述第一侧连通所述第二段的入口;所述第二侧连通至少一第一排流口;所述第一进流口连接至所述循环分离模块的分离管路;至少一第一驱动装置,设于所述第一段,用于驱动所述富集管路的流体循环流动以控制所述富集管路中的流体总量动态平衡,以使所述第一分离模块在富集循环模式下富集出目标物质。
例如,请继续参阅图2,可显示为所述循环富集模块在一实施例中的简化示意图。所述循环富集模块包括:富集管路11,包括第一段111及第二段112;其中,所述第一段111的入口连通第一进流口,所述第二段112的出口连通所述第一段。
在此,所述富集管路11的第一段111与第二段112可基于一定的连接关系使得富集管路11中液体流动的方向可构成循环,所述第二段112的出口连通所述第一段111,流体从所述 第一进流口进入所述第一段111后,可流动至第二段112并从所述第二段112出口流至第一段111,即可构成流动循环。
所述至少一第一分离模块12包括第一分离组件以将所述第一分离模块12分隔形成第一侧与第二侧,其中,所述第一侧连通所述第一段111的出口及第二段112的入口;所述第二侧连通至少一第一排流口。
本申请第四方面还提供了将循环分离模块与循环富集模块级联的循环分离装置的实施例。在此,在所述循环分离装置包括相级联的循环分离模块与循环富集模块的实施例中,循环分离模块与循环富集模块的结构及连接方式、以及对流体的处理方式可参照本申请第二方面提供的将分离管路与富集管路级联实施例,例如图15a、15b所示实施例中的任一实现方式。
在本申请第四方面的某些实施方式中,所述第一分离组件为多孔膜、反渗透膜、或气体分离膜。
在本申请第四方面的某些实施方式中,所述多孔膜或反渗透膜的平均孔径或分子截留量与所述目标物质相关,所述多孔膜包括微滤膜、超滤膜、以及纳滤膜。
在本申请第四方面的某些实施方式中,所述第一分离组件包括平面膜、管式膜、卷式膜、螺旋膜、以及中空纤维膜中的一种或多种。
在本申请第四方面的某些实施方式中,所述第一分离模块为切向流过滤模块。
在本申请第四方面的某些实施方式中,所述至少一第一驱动装置控制所述第一段的流速在预设阈值以上,以使所述第一分离模块中的目标物质从所述第一段的出口流向所述第二段的入口。
在本申请第四方面的某些实施方式中,所述预设阈值与流体成分、流体温度、膜结构、膜材料、第一分离模块腔体结构、富集管路管径中的至少一者相关。
在本申请第四方面的某些实施方式中,所述第二段还设有所述第一驱动装置。
在本申请第四方面的某些实施方式中,所述循环富集模块在富集循环模式下,由所述第一进流口引入所述富集管路的流体总体积或总速率与由所述第一排流口引出所述富集管路的流体总体积或总速率相等。
在本申请第四方面的某些实施方式中,所述循环富集模块通过控制单位时间内引入所述富集管路的流体总量与所述富集管路中流体总量的比例以调节富集效率。
在本申请第四方面的某些实施方式中,所述循环富集模块还包括流道调节装置,设于所述第一段或/及所述第二段,用于调节所述富集管路中的流体流向,其中,所述流道调节装置 可通过以下至少一种方式调节富集管路中流体流向:通过调节所述第一进流口或/及第一排流口的开放状态以调节流体流向;通过调节连接至所述富集管路的至少一调节管道的开放状态以调节流体流向。
在本申请第四方面的某些实施方式中,所述流道调节装置包括设于所述第一进流口的管路开关,用于控制所述第一进流口开放状态以将所述流体在富集管路中切换至浓缩循环模式或清洗模式。
在本申请第四方面的某些实施方式中,所述流道调节装置还包括至少一调节管道以及管道开关,以令所述富集管路中形成清洗液入口及废液出口。
在本申请第四方面的某些实施方式中,所述流道调节装置为四通阀。
在本申请第四方面的某些实施方式中,所述富集管路基于所述流道调节装置切换于浓缩循环模式与稀释模式,以调节所述第一分离模块的分离效率。
在本申请第四方面的某些实施方式中,所述循环富集模块还包括排进气口,设于所述第一段或/及所述第二段,用于调节所述富集管路内部气体状态或气压状态。
在本申请第四方面的某些实施方式中,所述循环富集模块还包括至少一收集装置,设于所述第一段或/及所述第二段,用于调节所述富集管路容积以收集目标物质,或用于收集气泡。
在本申请第四方面的某些实施方式中,所述循环富集模块还包括控制装置、流体存储装置、压力检测装置、温度检测装置、控温装置、气泡检测及排除装置、报警装置、以及浓度检测装置中的至少一种。
在本申请第四方面的某些实施方式中,所述循环富集模块还包括流速检测装置,用于检测所述富集管路内部的动力状态,以形成对所述富集管路内部工作状态的调整信息。
本申请第四方面提供的循环分离装置中的循环富集模块可以是用于形成本申请第二方面提供的实施例中任一实施方式中的富集循环的执行设备或执行模块,对应可实现如本申请第二方面提供的实施例中的处理效果,此处不再赘述。
在本申请第四方面的某些实施例中,所述分离循环装置中还包括至少一处理模块,用于对所述循环分离装置中的流体预处理或再处理,其中,所述预处理或再处理包括过滤、吸附、加热、催化、富集、浓缩、化学处理、光学处理、以及电学处理中的至少一种。对应于实际应用,所述处理模块例如吸附装置、萃取装置、离子交换处理装置、离心装置、过滤装置、加热装置等。
在此,所述处理模块对所述流体预处理即对初始获得的流体进行处理,并将处理后的流 体通过第二进流口引入所述循环分离模块,所述处理模块即为执行预处理;所述处理模块对流体进行再处理即对循环分离模块中的分离流进行处理或对第二排流口引出的流体进行处理;又或,所述处理模块对所述循环富集模块中第一进流口处的流体进行处理、对富集管路内的流体进行处理、或对循环富集模块中第一排流口引出的流体进行处理均可视为再处理。
在本申请第四方面的某些实施方式中,所述循环分离装置为体外循环设备,其中,所述体外循环设备为血液透析设备、血浆置换设备、体外腹膜透析设备、或体外膜肺氧合设备。应理解的,所述体外循环设备可形成的设备类型不以此为限。
在某些实施方式中,所述循环分离装置单独作为一种医疗器械或治疗设备,也可整合至涉及血液或其他体液体外处理的医疗设备或器械中以形成新的设备。
在本申请第四方面的某些实施方式中,所述循环分离装置用于疾病治疗当中,例如通过目标分子的富集和选择性清除实现治疗效果,所述循环分离装置实现疾病治疗的方式及对应可行的治疗类型可参照本申请第二方面提供的实施例,在此不再赘述。
应当理解,本申请第四方面提供的循环分离装置可以是用于执行本申请第二方面提供实施例中任一实施方式所述的流体处理方法的设备。对应的,所述循环分离装置中循环分离模块与循环富集模块的具体结构、连接方式、与处理模块的联用方式、及所实现的流体处理效果均可参照本申请第二方面提供的实施例。
在一些场景中,所述循环分离装置中的循环分离模块或循环富集模块可作为独立的销售单元;在此,所述循环分离装置可表现为已形成连接的装置,也可表现为可获得连接关系的独立的组件,即独立的循环富集模块或循环分离模块,所述连接关系可以为一种或多种,例如,所述流体处理装置中包括多个循环富集模块及循环分离模块,所述循环富集模块与循环分离模块之间可以不同的连接关系连接以适用于不同处理需求,又或,适应于场景需求,还可在多个组件中可选的仅将对其中部分组件进行连接。
本申请在第五方面还提供了一种循环处理系统,包括,至少一个如本申请第三方面提供的实施例中任一实施方式所述的流体处理装置或/及至少一个如本申请第四方面提供的实施例中任一实施方式所述的循环分离装置;以及管路系统,所述管路系统包括流体引出管路以及流体输回管路。
即,所述循环处理系统的组成方式包括以下任意一种:
实施例A1,由一个所述流体处理装置与管路系统组成;实施例A2,由两个及以上所述流体处理装置与管路系统组成;
实施例B1,由一个所述循环分离装置与管路系统组成;实施例B2,由两个及以所述循环分离装置与管路系统组成;
实施例C,由至少一个所述流体处理装置与至少一个所述循环分离装置,以及管路系统组成。
在上述实施例A2、B2、C中,所述流体处理装置或/及循环分离装置之间连接方式可为串连或并连;其中,所述串连为包含顺序关系的连接方式,例如,在串连连接的两个流体处理装置中,流体从一流体处理装置中经历循环处理后流通至下一流体处理装置;所述并连连接为不同设备或装置的进流口可连通至同一管路、同一容器、或同一模块,或,不同流体处理装置或循环分离装置处理后的流体可连通至同一管路、同一容器、或同一模块,所述流体处理装置的并连连接方式例如电器元件间的并联形式。
应当理解,所述流体处理装置及循环分离装置可用于对流体中特定组分进行收集或处理,由此,流体中特定组分的含量或浓度被改变,通过更变流体处理装置或/及循环分离装置之间连接方式,即可实现不同的对流体组分的改变效果。
在本申请第五方面的某些实施方式中,所述管路系统还包括抗凝系统、流体存储装置、控制装置、流速检测装置、压力检测装置、温度检测装置、控温装置、氧气检测装置、气泡检测及排除装置、报警装置、以及浓度检测装置中的至少一种。
请参阅图18,显示为本申请的循环处理系统在一实施例中的简化示意图。
所述管路系统可选的包括上述装置,应当理解,所述管路系统主要用于对流体的牵引,上述装置可在不同的应用场景中对应于实际需求设置于管路系统中,例如,如图18所示实施例,当所述循环处理系统为人体体外循环装置,所述管路系统用于血液输送时,所述管路系统中通常可设置气泡检测及排除装置31、空气捕捉装置32、压力检测装置33及抗凝系统34。
在某些实现方式中,所述抗凝系统34与管路系统为耦合的系统,例如,当所述管路系统用于血液输送时,通过在所述管路系统中添加肝素、组织纤溶酶原激活剂、抗凝血酶等抑制凝血的组分,所述抑制凝血的组分随同管路系统中的流体流动即使得所述管路系统为抗凝系统。
所述气泡检测及排除装置31可用于确保流体在进入所述流体处理装置或循环分离装置前被排除气泡,又或将处理后的流体从所述流体处理装置或循环分离装置引出时排除气泡,例如,在医疗场景中所述流体例如血液在经由处理后引回人体血液循环前需排除气泡。
请参阅图19,显示为本申请的循环处理系统在另一实施例中的简化示意图。
如图所示,所述循环处理系统包括管路系统及一流体处理装置,所述管路系统中包括流体引出管路及流体输回管路。图19所示示例中,所述流体处理装置也为一循环富集模块。所述流体引出管路连接至一处理模块,所述处理模块也可为一分离装置,例如为切向流过滤模块或离心装置等,从所述分离装置处被分离出的部分流体连接至所述流体处理装置,经由所述流体处理装置处理后的第一排流口引出的流体连接至所述分离装置下游,即可与所述分离装置处的保留流体汇合并连接至所述流体输回管路。
以图示所述循环处理系统在医疗中的应用为例,所述流体引出管路例如可用于从人体中引出血液全血,对应的所述分离装置所述血液全血分离为细胞组分与血浆组分,所述细胞组分可作为保留液连接至流体输回管路,所述血浆组分连通至所述流体处理装置的第一进流口,由此可将所述血浆组分中特定组分如低密度脂蛋白富集于流体处理装置中,血浆组分中经由所述流体处理装置处理后的滤出液可连接至流体输回管路,由此即将处理后的血浆与细胞组分汇合即实现了对人体血液全血中低密度脂蛋白的定向去除(富集);在一些实现方式中,所述细胞组分与流体处理装置处的血浆组分滤出液可选的连接至一收集装置,所述收集装置连接至所述流体输回管路。在一些实施例当中,所述分离装置可以有效滤出血浆中的目标分子,而所述流体处理装置可以有效富集目标分子,形成对血浆中任意目标分子的富集(并去除)。
在某些实现方式中,所述管路系统中可选的设置有收集装置,所述管路系统中还可设置有抗凝系统34、压力检测系统33、控制装置、驱动装置、气泡检测及排除装置31等。
请参阅图20,显示为本申请的循环处理系统在又一实施例中的简化示意图。
如图所示,所述循环处理系统中包括管路系统及流体处理装置,所述管路系统中包括流体引出管路及流体输回管路。在此示例中,所述流体处理装置也为一循环富集模块。所述流体引出管路连接至一处理模块,所述处理模块例如为过滤装置或分离装置,用于将所述处理模块处理的流体分离为保留流体与过滤流体,从所述处理模块被滤出或分离出的过滤流体连接至所述循环富集模块的第一进流口,经由所述循环富集模块处理后的流体从所述第一排流口出引出并连接至所述处理模块上游,即,所述通过所述循环富集模块处理后的流体再次连接至所述处理模块进行处理,所述处理模块处的保留流体连接至所述管路输回管路。
以图示循环处理系统在医疗场景中的应用为例,所述循环处理系统例如为体外循环处理系统,所述流体引出管路及流体输回管路分别用于从人体引出血液及将流体处理装置处理后的血液输回人体。在此,所述处理模块例如为一过滤模块,用于将从人体引出的血液全血分离出部分组分如血浆组分,所述血浆组分通过管路牵引至流体处理装置的第一进流口,经由 所述流体处理装置处理后的滤出血浆从所述第一排流口引出并连接至所述过滤模块上游,由此顺应流动方向,所述滤出血浆再次经由所述过滤模块处理,从所述过滤模块处获得的保留支流例如即为更新后的血液全血,将更新后的血液全血连接至流体输回管路以输送至人体。即,在此实施例中,所述血浆组分可经过流体处理装置循环处理,同时,通过设置所述流体处理装置与处理模块的连接方式,所述过滤模块也可用于实现对血浆的循环过滤。
在某些实现方式中,所述管路系统中可选的设置有收集装置,所述管路系统中还可设置有抗凝系统34、压力检测系统33、控制装置、驱动装置、气泡检测及排除装置31等。
所述控制装置(图中未予以显示)可用于控制管路系统中的控温装置、气泡检测及排除装置、报警装置等,还可用于接收检测信息如温度信息、管路中氧气信息、压力信息等,以此基于所述检测信息控制管路系统中各装置的工作状态如开启或关闭、运行模式、运行功率等。
所述管路系统包括流体引出管路以及流体输回管路;在某些实施方式中,所述流体引出管路与流体输回管路可连接至同一容器或存储空间或人体,例如,所述流体引出管路将血液从人体中牵引至所述流体处理装置或循环分离装置,所述流体输回管路将经过处理的血液输回人体。
在某些示例中,所述管路系统中管路材料可设置为流体对应的特殊材质,例如,所述管路系统可设置为血液专用管路、蠕动泵专用管路、一次性使用的血液透析用血路管、高压灭菌处理后的硅胶管、腐蚀性液体专用管路、高生物相容性管路等;以所述流体处理方法在医疗场景中应用为例,所述管路系统例如为血液输送管路或药液输送管路,管路材料包括但不限于软聚氯乙烯塑料、高性能聚烯烃热塑弹性体(TPE)、纳米生物医用材料、树脂材料。
在本申请第五方面的某些实施方式中,所述循环处理系统为体外循环清除系统、体外富集清除设备、血液透析设备、血浆置换设备、体外腹膜透析设备、或体外膜肺氧合设备;在另一些实施方式中,所述循环处理系统也可作为一组成模块,嫁接于其他体外循环设备当中,例如人工肝、人工肾、血液透析设备,腹膜透析设备、血浆置换设备、血浆净化设备、血脂净化设备、分子吸附再循环系统、体外膜式氧合设备、白细胞去除设备、体外循环生命支持系统等。
在某些实施方式中,所述循环处理系统单独形成一种医疗器械或治疗设备,也可整合至涉及血液或其他体液体外处理的医疗设备或器械中以形成新的设备。
在本申请第五方面的某些实施方式中,所述循环处理系统用于细胞收集、微生物收集、 以及物料收集中的至少一种。
应当理解,所述循环处理系统中的流体处理装置与分离循环装置均可实现对特定组分的收集,在具体场景中,所述特定组分即可以是细胞、微生物或其他物料。
在一些实际场景中,每一所述流体处理装置或循环分离装置可作为一独立的销售单元;将所述流体处理装置与循环分离装置以不同连接关系关联,即可形成对流体处理的不同效果;在此,通过确定连接关系形成的所述循环处理系统亦可作为销售单元,对应的,所述循环处理系统可表现为连接完成的系统,也可表现为可获得连接关系的各个独立的组件如流体处理装置,在实际应用的一些实施例中,所述连接完成的系统还可包括一体化的壳体或模块外形,例如在壳体外预留管路系统对应的接口,将所述流出处理装置与循环分离装置整合在壳体内部;或如形成一可开启及关闭的壳体,以在壳体开启状态下将流体引入所述循环处理系统中。
本申请在第六方面还提供了一种医疗设备,所述医疗设备包括如本申请第五方面提供的实施方式所述的循环处理系统。
所述医疗设备即可用于医疗用途的设备,可为单独或者组合使用于人体的仪器、设备、器具、材料或者其他物品,也可包括所需要的软件;可用于实现对疾病的预防、诊断、治疗、监护、缓解、补偿。
在本申请提供的实施例中,所述医疗设备例如为:体外循环清除系统、体外富集清除设备、血液透析设备、血浆置换设备、体外腹膜透析设备、或体外膜肺氧合设备;在另一些实施方式中,所述医疗设备也可以是嫁接于其他体外循环设备当中的一组成模块,例如人工肝、人工肾、血液透析设备,腹膜透析设备、血浆置换设备、血浆净化设备、血脂净化设备、分子吸附再循环系统、体外膜式氧合设备、白细胞去除设备、体外循环生命支持系统等。
在某些实施方式中,所述医疗设备单独作为一种医疗器械或治疗设备,也可整合至涉及血液或其他体液体外处理的医疗设备或器械中以形成新的设备。
在此,当本申请第五方面提供的循环处理系统用于医疗用途时,即可作为医疗设备。
所述医疗用途包括对基于人体获得的流体进行处理,还包括用于获得治疗过程中的药品、制药用水、医疗用水等,例如,所述循环处理系统可用于对自来水进行处理,以获得可作为浓缩透析液的稀释用水。
在本申请第六方面提供的某些实施方式中,所述医疗设备通过选择性改变特定分子或分子组合浓度以用于进行疾病治疗,这些特定分子或分子组合(也可称为目标分子)往往是疾病发展过程当中的致病因子或结果、或对疾病的发展或健康的维持至关重要,对目标分子浓 度的控制,有利于疾病的治疗或者并发症的控制,其中,所述疾病包括但不限于家族性高胆固醇血症、高脂蛋白血症、系统性红斑狼疮、自免疫性疾病、重症肌无力、急进性肾小球肾炎、脂肪肝、肝硬化、急性肝衰竭、高脂血症重症急性胰腺炎、脓毒症、吉兰-巴雷综合征、以及肥胖中的至少一种。
在本申请提供的实施例中,所述治疗包括可导致预期的生理效果的防止性(即,预防性)、治愈性或缓和性处置。此外,“治疗”一词在此是指基于可部分或完全减轻、延迟发生、抑制进程、减轻严重性、和/或减少一种特定疾病、异常和/或医疗状况之一或多个病征出现机率的目的。
应理解的,在临床应用中,本申请的医疗设备可用于改变患者体内特定分子或分子组合的浓度,但针对于不同疾病类型,患者所需的医疗干预可能包括其他手段,例如,对肾功能不全的患者,通过本申请的医疗设备可帮助实现患者体内累积的致病因子或代谢废物的清除,但同时,肾功能不全可能伴随的并发症或合并症可能包括贫血、肾盂肾炎、尿路疾病等,在此则本申请的医疗设备可通过联用药物及其他治疗手段如外科手术、饮食护理等以共同用于疾病治疗。
在某些实施方式中,所述医疗设备通过药物联合以用于疾病治疗。例如,通过本申请的医疗设备改变患者体内特定分子或分子组合的浓度如:降低特定分子浓度或生成特定分子,同时,在患者基于所述医疗设备进行疾病治疗的同时配合使用药物治疗,所联合的药物例如为针对疾病并发症的药物、针对血浆置换技术的抗凝药、针对疾病本身的血管活性药物、抗感染药物等疾病治疗相关的药物,只要本申请所述治疗设备和药物可以独立治疗疾病或有利于健康,或两者共同作用才能实现或能够实现更好的治疗效果。
本申请在第七方面还提供了一种计算机可读存储介质,存储至少一种程序。其中,所述至少一种程序在被处理器调用时执行并实现如本申请第一方面或第二方面提供的实施例中任一实施方式所述的流体处理方法。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。
于本申请提供的实施例中,所述计算机可读写存储介质可以包括只读存储器、随机存取 存储器、EEPROM、CD-ROM或其它光盘存储装置、磁盘存储装置或其它磁存储设备、闪存、U盘、移动硬盘、或者能够用于存储具有指令或数据结构形式的期望的程序代码并能够由计算机进行存取的任何其它介质。另外,任何连接都可以适当地称为计算机可读介质。例如,如果指令是使用同轴电缆、光纤光缆、双绞线、数字订户线(DSL)或者诸如红外线、无线电和微波之类的无线技术,从网站、服务器或其它远程源发送的,则所述同轴电缆、光纤光缆、双绞线、DSL或者诸如红外线、无线电和微波之类的无线技术包括在所述介质的定义中。然而,应当理解的是,计算机可读写存储介质和数据存储介质不包括连接、载波、信号或者其它暂时性介质,而是旨在针对于非暂时性、有形的存储介质。如申请中所使用的磁盘和光盘包括压缩光盘(CD)、激光光盘、光盘、数字多功能光盘(DVD)、软盘和蓝光光盘,其中,磁盘通常磁性地复制数据,而光盘则用激光来光学地复制数据。
在一个或多个示例性方面,本申请第一方面或第二方面所述的流体处理方法的计算机程序所描述的功能可以用硬件、软件、固件或者其任意组合的方式来实现。当用软件实现时,可以将这些功能作为一个或多个指令或代码存储或传送到计算机可读介质上。本申请所公开的方法或算法的步骤可以用处理器可执行软件模块来体现,其中处理器可执行软件模块可以位于有形、非临时性计算机可读写存储介质上。有形、非临时性计算机可读写存储介质可以是计算机能够存取的任何可用介质。
本申请上述的附图中的流程图和框图,图示了按照本申请各种实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段、或代码的一部分,该模块、程序段、或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个接连地表示的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这根据所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以通过执行规定的功能或操作的专用的基于硬件的系统来实现,或者可以通过专用硬件与计算机指令的组合来实现。
上述实施例仅例示性说明本申请的原理及其功效,而非用于限制本申请。任何熟悉此技术的人士皆可在不违背本申请的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本申请所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本申请的权利要求所涵盖。

Claims (130)

  1. 一种流体处理方法,其特征在于,包括以下步骤:
    将流体引入一富集管路;其中,所述富集管路包括第一段及第二段,所述第一段的入口连通至少一第一进流口,所述第二段的出口连通所述第一段的入口;
    基于至少一第一分离模块截留所述流体中的目标物质;其中,所述第一分离模块具有第一分离组件分隔形成的第一侧及第二侧,所述第一侧的相对两端分别连通第一段的出口及第二段的入口,所述第二侧连通至少一第一排流口;
    基于至少一第一驱动装置驱动所述流体于富集管路中以预设流速循环流动以富集目标物质,其中,所述至少一第一驱动装置设于所述第一段并控制所述富集管路中流体总量动态平衡。
  2. 根据权利要求1所述的流体处理方法,其特征在于,所述流体包含目标物质,所述流体包括血液、血浆、血清、体液、组织液、清洗液、透析液、重组蛋白溶液、细胞培养液、微生物培养液、制药及医疗用水、药液、流体食品、动植物提取液、天然水、工业废水、再生水、甲烷、轻质油、以及液化气中的一种或多种的混合物。
  3. 根据权利要求1所述的流体处理方法,其特征在于,所述第一分离组件为多孔膜、反渗透膜、或气体分离膜。
  4. 根据权利要求3所述的流体处理方法,其特征在于,所述多孔膜或反渗透膜的平均孔径或分子截留量与所述目标物质相关,其中,所述多孔膜包括微滤膜、超滤膜、或纳滤膜。
  5. 根据权利要求3所述的流体处理方法,其特征在于,所述第一分离组件包括平面膜、管式膜、卷式膜、螺旋膜、以及中空纤维膜中的一种或多种。
  6. 根据权利要求3所述的流体处理方法,其特征在于,所述第一分离模块为切向流过滤模块。
  7. 根据权利要求6所述的流体处理方法,其特征在于,所述至少一第一驱动装置控制所述第一段的流速在预设阈值以上,以使所述目标物质从所述第一段的出口经由第一分离模块流向所述第二段的入口。
  8. 根据权利要求7所述的流体处理方法,其特征在于,所述预设阈值与流体成分、流体温度、膜结构、膜材料、第一分离模块腔体结构、以及富集管路管径中的至少一者相关。
  9. 根据权利要求1所述的流体处理方法,其特征在于,所述第二段还设有所述第一驱动装置。
  10. 根据权利要求1所述的流体处理方法,其特征在于,令从所述第一进流口引入所述富集 管路的流体总体积或总速率与由所述第一排流口引出所述富集管路的流体总体积或总速率相等,以循环富集所述目标物质。
  11. 根据权利要求10所述的流体处理方法,其特征在于,通过控制单位时间内引入所述富集管路的流体总量与所述富集管路中流体总量的比例以调节富集效率。
  12. 根据权利要求1所述的流体处理方法,其特征在于,所述富集管路中还设有流道调节装置,用于调节所述富集管路中的流体流向;其中,所述流道调节装置可通过以下至少一种方式调节富集管路中流体流向:
    通过调节所述第一进流口或/及第一排流口的开放状态以调节流体流向;
    通过调节连接至所述富集管路的至少一调节管道的开放状态以调节流体流向。
  13. 根据权利要求12所述的流体处理方法,其特征在于,所述流道调节装置包括设于所述第一进流口的管路开关,用于控制所述第一进流口开放状态,以将所述流体在富集管路中的处理状态切换至浓缩循环模式或清洗模式。
  14. 根据权利要求13所述的流体处理方法,其特征在于,所述流道调节装置还包括至少一调节管道以及管道开关,以令所述富集管路中形成清洗液入口及废液出口。
  15. 根据权利要求12所述的流体处理方法,其特征在于,所述流道调节装置为四通阀。
  16. 根据权利要求12所述的流体处理方法,其特征在于,所述富集管路通过所述流道调节装置切换至浓缩循环模式与稀释模式,以调节所述第一分离模块的分离效率。
  17. 根据权利要求1所述的流体处理方法,其特征在于,所述富集管路还包括排进气口,设于所述第一段或/及所述第二段,用于调节所述富集管路内部气压状态。
  18. 根据权利要求1或17所述的流体处理方法,其特征在于,所述富集管路还包括至少一收集装置,设于所述第一段或/及所述第二段,用于调节所述富集管路容积以收集目标物质,或用于收集气泡。
  19. 根据权利要求1所述的流体处理方法,其特征在于,所述富集管路还包括控制装置、流体存储装置、压力检测装置、温度检测装置、控温装置、氧气检测装置、气泡检测及排除装置、报警装置、流速检测装置、以及浓度检测装置中的至少一种。
  20. 根据权利要求1所述的流体处理方法,其特征在于,所述控制装置基于流速检测装置、压力检测装置、以及浓度检测装置中的至少一者形成对所述富集管路内部工作状态的调整信息。
  21. 根据权利要求1所述的流体处理方法,其特征在于,令所述第一进流口与所述第一排流 口连接至同一存储部,其中,所述存储部包括流体存储装置、容器、或人体。
  22. 根据权利要求1所述的流体处理方法,其特征在于,令所述流体将从在前富集管路对应的所述第一排流口引出的流体连通至在后富集管路对应的第一进流口,以使所述流体在N个级联的富集管路中循环流动以富集目标物质,其中,N为2以上的正整数。
  23. 根据权利要求22所述的流体处理方法,其特征在于,所述N个级联的富集管路对应富集的目标物质的分子粒径、分子量、或组分粒径顺应连接次序逐级递减。
  24. 根据权利要求1所述的流体处理方法,其特征在于,还包括以下步骤:
    基于至少一第二分离模块将从一富集管路对应的所述第一排流口引出的流体引入一分离管路;其中,所述分离管路具有入口及出口;所述第二分离模块具有第二分离组件分隔形成的第一侧与第二侧,第二分离模块第一侧的相对两端分别连通至少一第二进流口以及至少一第二排流口,第二分离模块第二侧的相对两端分别连通所述分离管路的入口及出口,所述第二进流口连通所述第一排流口;
    基于至少一第二驱动装置驱动流体于分离管路中以预设流速流动从入口流动至出口,以控制所述分离管路中流体总量动态平衡。
  25. 根据权利要求24所述的流体处理方法,其特征在于,所述第二分离组件为多孔膜、反渗透膜或气体分离膜。
  26. 根据权利要求25所述的流体处理方法,其特征在于,所述多孔膜或反渗透膜的平均孔径或分子截留量与所述流体成分相关,其中,所述多孔膜包括微滤膜、超滤膜、以及纳滤膜。
  27. 根据权利要求24所述的流体处理方法,其特征在于,所述第二分离组件包括板膜、管式膜、卷式膜、螺旋膜、以及中空纤维膜中的一种或多种。
  28. 根据权利要求24所述的流体处理方法,其特征在于,所述第二分离模块为切向流过滤模块。
  29. 根据权利要求24所述的流体处理方法,其特征在于,所述分离管路还设有控制装置、存储装置、收集装置、压力检测装置、温度检测装置、控温装置、气泡检测及排除装置、报警装置、流速检测装置、以及浓度检测装置中的至少一种。
  30. 根据权利要求1、或22、或24所述的流体处理方法,其特征在于,还包括通过至少一处理模块对所述流体进行预处理或再处理的步骤,其中,所述预处理或再处理包括过滤处理、吸附处理、加热处理、催化处理、富集处理、浓缩处理、化学处理、光学处理、以及电学处理中的至少一种。
  31. 根据权利要求1所述的流体处理方法,其特征在于,所述流体处理方法通过选择性改变特定分子或分子组合浓度以用于疾病治疗,其中,所述疾病包括家族性高胆固醇血症、高脂蛋白血症、系统性红斑狼疮、自免疫性疾病、重症肌无力、急进性肾小球肾炎、脂肪肝、肝硬化、急性肝衰竭、高脂血症重症急性胰腺炎、脓毒症、吉兰-巴雷综合征、以及肥胖中的至少一种。
  32. 一种流体处理方法,其特征在于,包括以下步骤:
    基于至少一第二分离模块将流体引入一分离管路;其中,所述分离管路具有入口及出口;所述第二分离模块具有第二分离组件分隔形成的第一侧及第二侧,第二分离模块第一侧的相对两端分别连通至少一第二进流口以及至少一第二排流口,第二分离模块第二侧的相对两端分别连通所述分离管路的入口及出口;
    基于至少一第二驱动装置驱动分离管路中的流体以预设流速从入口流动至出口,以控制所述分离管路中的流体总量动态平衡。
  33. 根据权利要求32所述的流体处理方法,其特征在于,所述流体包含目标物质,所述流体包括血液、血浆、血清、体液、组织液、清洗液、透析液、重组蛋白溶液、细胞培养液、微生物培养液、制药及医疗用水、药液、流体食品、动植物提取液、天然水、工业废水、再生水、甲烷、轻质油、以及液化气中的一种或多种的混合物。
  34. 根据权利要求32所述的流体处理方法,其特征在于,所述第二分离组件为多孔膜、反渗透膜或气体分离膜。
  35. 根据权利要求34所述的流体处理方法,其特征在于,所述多孔膜或反渗透膜的平均孔径或分子截留量与所述流体成分相关,其中,所述多孔膜包括微滤膜、超滤膜、以及纳滤膜。
  36. 根据权利要求32所述的流体处理方法,其特征在于,所述第二分离模块为切向流过滤模块。
  37. 根据权利要求32所述的流体处理方法,其特征在于,所述第二分离组件包括板膜、管式膜、卷式膜、螺旋膜、以及中空纤维膜中的一种或多种。
  38. 根据权利要求32所述的流体处理方法,其特征在于,所述分离管路还设有控制装置、流体存储装置、压力检测装置、温度检测装置、控温装置、氧气检测装置、气泡检测及排除装置、报警装置、以及浓度检测装置中的至少一种。
  39. 根据权利要求32所述的流体处理方法,其特征在于,将在前分离管路中的流体连通至在后分离管路对应的第二进流口,以使所述流体在N个级联的分离管路中循环流动,其中, N为2以上的正整数。
  40. 根据权利要求39所述的流体处理方法,其特征在于,所述N个级联的分离管路对应的目标物质的分子粒径、分子量、或组分粒径顺应连接次序逐级递减。
  41. 根据权利要求32所述的流体处理方法,其特征在于,还包括以下步骤:
    将一分离管路内的流体引入至一富集管路,其中,所述富集管路包括第一段及第二段,所述第一段的入口连通至少一第一进流口,所述第二段的出口连通所述第一段的入口;
    基于至少一第一分离模块截留流体中的目标物质;其中,所述第一分离模块具有第一分离组件分隔形成的第一侧及第二侧,所述第一侧的相对两端分别连通第一段及第二段,所述第二侧连通至少一第一排流口;
    基于至少一第一驱动装置驱动流体于富集管路中以预设流速循环流动以富集目标物质,其中,所述至少一第一驱动装置设于所述第一段并控制所述富集管路中流体总量动态平衡。
  42. 根据权利要求41所述的流体处理方法,其特征在于,所述第一分离组件为多孔膜、反渗透膜、或气体分离膜。
  43. 根据权利要求41所述的流体处理方法,其特征在于,所述多孔膜或反渗透膜的平均孔径或分子截留量与所述目标物质相关,其中,所述多孔膜包括微滤膜、超滤膜、或纳滤膜。
  44. 根据权利要求41所述的流体处理方法,其特征在于,所述第一分离组件包括平面膜、管式膜、卷式膜、螺旋膜、以及中空纤维膜中的一种或多种。
  45. 根据权利要求41所述的流体处理方法,其特征在于,所述第一分离模块为切向流过滤模块。
  46. 根据权利要求45所述的流体处理方法,其特征在于,所述至少一第一驱动装置控制所述第一段的流速在预设阈值以上,以使所述第一分离模块中的目标物质从所述第一段的出口流向所述第二段的入口。
  47. 根据权利要求46所述的流体处理方法,其特征在于,所述预设阈值与流体成分、流体温度、膜结构、膜材料、第一分离模块腔体结构、以及富集管路管径中的至少一者相关。
  48. 根据权利要求41所述的流体处理方法,其特征在于,所述第二段还设有所述第一驱动装置。
  49. 根据权利要求41所述的流体处理方法,其特征在于,令从所述第一进流口引入所述富集管路的流体总体积或总速率与由所述第一排流口引出所述富集管路的流体总体积或总速 率相等,以循环富集所述目标物质。
  50. 根据权利要求41所述的流体处理方法,其特征在于,通过控制单位时间内引入所述富集管路的流体总量与所述富集管路中流体总量的比例以调节富集效率。
  51. 根据权利要求41所述的流体处理方法,其特征在于,所述富集管路中还设有流道调节装置,用于调节所述富集管路中的流体流向;其中,所述流道调节装置可通过以下至少一种方式调节富集管路中流体流向:
    通过调节所述第一进流口或/及第一排流口的开放状态以调节流体流向;
    通过调节连接至所述富集管路的至少一调节管道的开放状态以调节流体流向。
  52. 根据权利要求51所述的流体处理方法,其特征在于,所述流道调节装置包括设于所述第一进流口的管路开关,用于控制所述第一进流口开放状态以将所述流体在富集管路中的处理状态切换至浓缩循环模式或清洗模式。
  53. 根据权利要求52所述的流体处理方法,其特征在于,所述流道调节装置还包括至少一调节管道以及管道开关,以令所述富集管路中形成清洗液入口及废液出口。
  54. 根据权利要求51所述的流体处理方法,其特征在于,所述流道调节装置为四通阀。
  55. 根据权利要求51所述的流体处理方法,其特征在于,令所述富集管路切换于浓缩循环模式与稀释模式,以调节所述第一分离模块的分离效率。
  56. 根据权利要求41所述的流体处理方法,其特征在于,所述富集管路还包括排进气口,设于所述第一段或/及所述第二段,用于调节所述富集管路内部气体状态或气压状态。
  57. 根据权利要求41或56所述的流体处理方法,其特征在于,所述富集管路还包括至少一收集装置,设于所述第一段或/及所述第二段,用于调节所述富集管路容积以收集目标物质,或用于收集气泡。
  58. 根据权利要求41所述的流体处理方法,其特征在于,所述富集管路还包括控制装置、流体存储装置、压力检测装置、温度检测装置、控温装置、氧气检测装置、气泡检测及排除装置、报警装置、流速检测装置、以及浓度检测装置中的至少一种。
  59. 权利要求58所述的流体处理方法,其特征在于,所述控制装置基于流速检测装置、压力检测装置、以及浓度检测装置中的至少一者形成对所述富集管路内部工作状态的调整信息。
  60. 根据权利要求32或39或41所述的流体处理方法,其特征在于,还包括通过至少一处理模块对所述流体进行预处理或再处理的步骤,其中,所述预处理或再处理包括过滤处理、 吸附处理、加热处理、催化处理、富集处理、浓缩处理、化学处理、光学处理、以及电学处理中的至少一种。
  61. 根据权利要求41所述的流体处理方法,其特征在于,令所述第二进流口与所述第二排流口连接至同一存储部,其中,所述存储部包括流体存储装置、容器、或人体。
  62. 根据权利要求32所述的流体处理方法,其特征在于,所述流体处理方法通过选择性改变特定分子或分子组合浓度以用于疾病治疗,其中,所述疾病包括家族性高胆固醇血症、高脂蛋白血症、系统性红斑狼疮、自免疫性疾病、重症肌无力、急进性肾小球肾炎、脂肪肝、肝硬化、急性肝衰竭、高脂血症重症急性胰腺炎、脓毒症、吉兰-巴雷综合征、以及肥胖中的至少一种。
  63. 一种流体处理装置,其特征在于,包括至少一循环富集模块,其中,所述循环富集模块包括:
    富集管路,包括第一段及第二段;其中,所述第一段的入口连通至少一第一进流口,所述第二段的出口连通所述第一段;
    至少一第一分离模块,包括第一分离组件以将所述第一分离模块分隔形成第一侧与第二侧,其中,所述第一侧的相对两端分别连通第一段及第二段;所述第二侧连通至少一第一排流口;
    至少一第一驱动装置,设于所述第一段,用于驱动所述富集管路的流体循环流动以控制所述富集管路中的流体总量动态平衡,以使所述第一分离模块在富集循环模式下富集出目标物质。
  64. 根据权利要求63所述的流体处理装置,其特征在于,所述流体包含目标物质,所述流体包括血液、血浆、血清、体液、组织液、清洗液、透析液、重组蛋白溶液、细胞培养液、微生物培养液、制药及医疗用水、药液、流体食品、动植物提取液、天然水、工业废水、再生水、甲烷、轻质油、以及液化气中的一种或多种的混合物。
  65. 根据权利要求63所述的流体处理装置,其特征在于,所述第一分离组件为多孔膜、反渗透膜、或气体分离膜。
  66. 根据权利要求63所述的流体处理装置,其特征在于,所述多孔膜或反渗透膜的平均孔径或分子截留量与所述目标物质相关,其中,所述多孔膜包括微滤膜、超滤膜、以及纳滤膜。
  67. 根据权利要求63所述的流体处理装置,其特征在于,所述第一分离组件包括平面膜、管式膜、卷式膜、螺旋膜、以及中空纤维膜中的一种或多种。
  68. 根据权利要求63所述的流体处理装置,其特征在于,所述第一分离模块为切向流过滤模块。
  69. 根据权利要求68所述的流体处理装置,其特征在于,所述至少一第一驱动装置控制所述第一段的流速大于一预设阈值,以使所述第一分离模块中的目标物质从所述第一段的出口流向所述第二段的入口。
  70. 根据权利要求69所述的流体处理装置,其特征在于,所述预设阈值与流体成分、流体温度、膜结构、膜材料、第一分离模块腔体结构、以及富集管路管径中的至少一者相关。
  71. 根据权利要求63所述的流体处理装置,其特征在于,所述第二段还设有所述第一驱动装置。
  72. 根据权利要求63所述的流体处理装置,其特征在于,在富集循环模式下,由所述第一进流口引入所述富集管路的流体总体积或总速率与由所述第一排流口引出所述富集管路的流体总体积或总速率相等。
  73. 根据权利要求63所述的流体处理装置,其特征在于,所述循环富集模块通过控制单位时间内引入所述富集管路的流体总量与所述富集管路中流体总量的比例以调节富集效率。
  74. 根据权利要求63所述的流体处理装置,其特征在于,所述富集管路中还设有流道调节装置,用于调节所述富集管路中的流体流向;其中,所述流道调节装置可通过以下至少一种方式调节富集管路中流体流向:
    通过调节所述第一进流口或/及第一排流口的开放状态以调节流体流向;
    通过调节连接至所述富集管路的至少一调节管道的开放状态以调节流体流向。
  75. 根据权利要求74所述的流体处理装置,其特征在于,所述流道调节装置包括设于所述第一进流口的管路开关,用于控制所述第一进流口开放状态以将所述流体在富集管路中的处理状态切换至浓缩循环模式或清洗模式。
  76. 根据权利要求75所述的流体处理装置,其特征在于,所述流道调节装置还包括至少一调节管道以及管道开关,以令所述富集管路中形成清洗液入口及废液出口。
  77. 根据权利要求74所述的流体处理装置,其特征在于,所述流道调节装置为四通阀。
  78. 根据权利要求74所述的流体处理装置,其特征在于,所述富集管路基于所述流道调节装置切换于浓缩循环模式与稀释模式,以调节所述第一分离模块的分离效率。
  79. 根据权利要求63所述的流体处理装置,其特征在于,所述循环富集模块还包括排进气口,设于所述第一段或/及所述第二段,用于调节所述富集管路内部气体状态或气压状态。
  80. 根据权利要求63或79所述的流体处理装置,其特征在于,所述循环富集模块还包括至少一收集装置,设于所述第一段或/及所述第二段,用于调节所述富集管路容积以收集目标物质,或用于收集气泡。
  81. 根据权利要求63所述的流体处理装置,其特征在于,所述循环富集模块还包括控制装置、流体存储装置、流速检测装置、压力检测装置、温度检测装置、控温装置、氧气检测装置、气泡检测及排除装置、报警装置、以及浓度检测装置中的至少一种。
  82. 权利要求81所述的流体处理装置,其特征在于,所述控制装置基于流速检测装置、压力检测装置、以及浓度检测装置中的至少一者形成对所述富集管路内部工作状态的调整信息。
  83. 根据权利要求63所述的流体处理装置,其特征在于,所述第一进流口与所述第一排流口连接至同一存储部,其中,所述存储部包括流体存储装置、容器、以及人体。
  84. 根据权利要求63所述的流体处理装置,其特征在于,包括N个相级联的所述循环富集模块,N为2以上的正整数;其中,在任意两个相邻的所述循环富集模块中,在前循环富集模块的第一排流口连接至在后循环富集模块的第一进流口。
  85. 根据权利要求84所述的流体处理装置,其特征在于,所述N个相级联的所述循环富集模块对应富集的目标物质的分子粒径、分子量、或组分粒径顺应连接次序逐级递减。
  86. 根据权利要求63所述的流体处理装置,其特征在于,还包括至少一个循环分离模块,其中,所述循环分离模块包括:
    分离管路,具有入口及出口;
    第二分离模块,包括第二分离组件以将所述第二分离模块分隔形成第一侧与第二侧,其中,第二分离模块第一侧的相对两端分别连通至少一第二进流口以及至少一第二排流口,第二分离模块第二侧的相对两端分别连通所述分离管路的入口及出口;所述第二进流口连接至所述循环富集模块的第一排流口;
    至少一第二驱动装置,设于所述分离管路,用于驱动分离管路中的流体以预设流速从入口流动至出口,以使循环分离模式下所述分离管路中的流体总量动态平衡。
  87. 根据权利要求86所述的流体处理装置,其特征在于,所述第二分离组件为多孔膜、反渗透膜或气体分离膜。
  88. 根据权利要求87所述的流体处理装置,其特征在于,所述多孔膜或反渗透膜的平均孔径 或分子截留量与所述流体成分相关,其中,所述多孔膜包括微滤膜、超滤膜、以及纳滤膜。
  89. 根据权利要求86所述的流体处理装置,其特征在于,所述第二分离模块为切向流过滤模块。
  90. 根据权利要求86所述的流体处理装置,其特征在于,所述第二分离组件包括板膜、管式膜、卷式膜、螺旋膜、以及中空纤维膜中的一种或多种。
  91. 根据权利要求86所述的流体处理装置,其特征在于,所述循环分离模块还包括控制装置、流体存储装置、压力检测装置、温度检测装置、控温装置、氧气检测装置、气泡检测及排除装置、报警装置、以及浓度检测装置中的至少一种。
  92. 根据权利要求63所述的流体处理装置,其特征在于,还包括至少一处理模块,用于对所述流体处理装置中的流体预处理或再处理,其中,所述预处理或再处理包括过滤、吸附、加热、催化、富集、浓缩、化学处理、光学处理、以及电学处理中的至少一种。
  93. 根据权利要求63所述的流体处理装置,其特征在于,所述流体处理装置为体外循环设备,其中,所述体外循环设备为血液透析设备、血液净化设备、血浆置换设备、体外腹膜透析设备、或体外膜肺氧合设备。
  94. 一种循环分离装置,其特征在于,用于进行流体处理,所述循环分离装置包括至少一循环分离模块,其中,所述循环分离模块包括:
    分离管路,具有入口及出口;
    第二分离模块,包括第二分离组件以将所述第二分离模块分隔形成第一侧与第二侧,其中,第二分离模块第一侧的相对两端分别连通至少一第二进流口以及至少一第二排流口,第二分离模块第二侧的相对两端分别连通所述分离管路的入口及出口;
    至少一第二驱动装置,设于所述分离管路,用于驱动分离管路中的流体以预设流速从入口流动至出口,以使循环分离模式下所述分离管路中的流体总量动态平衡。
  95. 根据权利要求94所述的循环分离装置,其特征在于,所述流体包含目标物质,所述流体包括血液、血浆、血清、体液、组织液、清洗液、透析液、重组蛋白溶液、细胞培养液、微生物培养液、制药及医疗用水、药液、流体食品、动植物提取液、天然水、工业废水、再生水、甲烷、轻质油、以及液化气中的一种或多种的混合物。
  96. 根据权利要求94所述的循环分离装置,其特征在于,所述第二分离组件为多孔膜、反渗透膜或气体分离膜。
  97. 根据权利要求96所述的循环分离装置,其特征在于,所述多孔膜或反渗透膜的平均孔径 或分子截留量与所述流体成分相关,其中,所述多孔膜包括微滤膜、超滤膜、以及纳滤膜。
  98. 根据权利要求97所述的循环分离装置,其特征在于,所述第二分离模块为切向流过滤模块。
  99. 根据权利要求97所述的循环分离装置,其特征在于,所述第二分离组件包括板膜、管式膜、卷式膜、螺旋膜、以及中空纤维膜中的一种或多种。
  100. 根据权利要求94所述的循环分离装置,其特征在于,所述循环分离模块还包括控制装置、流体存储装置、压力检测装置、温度检测装置、控温装置、气泡检测及排除装置、报警装置、以及浓度检测装置中的至少一种。
  101. 根据权利要求94所述的循环分离装置,其特征在于,包括N个相级联的所述循环分离模块,N为2以上的正整数;其中,在任意两个相邻的所述循环分离模块中,在前循环分离模块的分离管路连接至在后循环分离模块的第二进流口及第二排流口。
  102. 根据权利要求101所述的循环分离装置,其特征在于,所述N个相级联的所述循环分离模块对应的目标物质的分子粒径、分子量、或组分粒径顺应连接次序逐级递减。
  103. 根据权利要求94所述的循环分离装置,其特征在于,还包括至少一个循环富集模块,其中,所述循环富集模块包括:
    富集管路,包括第一段及第二段;其中,所述第一段的入口连通第一进流口,所述第二段的出口连通所述第一段;
    至少一第一分离模块,连通所述第一段的出口,包括第一分离组件以将所述第一分离模块分隔形成第一侧与第二侧,其中,所述第一侧连通所述第二段的入口;所述第二侧连通至少一第一排流口;所述第一进流口连接至所述循环分离模块的分离管路;
    至少一第一驱动装置,设于所述第一段,用于驱动所述富集管路的流体循环流动以控制所述富集管路中的流体总量动态平衡,以使所述第一分离模块在富集循环模式下富集出目标物质。
  104. 根据权利要求103所述的循环分离装置,其特征在于,所述第一分离组件为多孔膜、反渗透膜、或气体分离膜。
  105. 根据权利要求104所述的循环分离装置,其特征在于,所述多孔膜或反渗透膜的平均孔径或分子截留量与所述目标物质相关,所述多孔膜包括微滤膜、超滤膜、以及纳滤膜。
  106. 根据权利要求103所述的循环分离装置,其特征在于,所述第一分离组件包括平面膜、管式膜、卷式膜、螺旋膜、以及中空纤维膜中的一种或多种。
  107. 根据权利要求103所述的循环分离装置,其特征在于,所述第一分离模块为切向流过滤模块。
  108. 根据权利要求107所述的循环分离装置,其特征在于,所述至少一第一驱动装置控制所述第一段的流速在预设阈值以上,以使所述第一分离模块中的目标物质从所述第一段的出口流向所述第二段的入口。
  109. 根据权利要求108所述的循环分离装置,其特征在于,所述预设阈值与流体成分、流体温度、膜结构、膜材料、第一分离模块腔体结构、富集管路管径中的至少一者相关。
  110. 根据权利要求103所述的循环分离装置,其特征在于,所述第二段还设有所述第一驱动装置。
  111. 根据权利要求103所述的循环分离装置,其特征在于,所述循环富集模块在富集循环模式下,由所述第一进流口引入所述富集管路的流体总体积或总速率与由所述第一排流口引出所述富集管路的流体总体积或总速率相等。
  112. 根据权利要求103所述的循环分离装置,其特征在于,所述循环富集模块通过控制单位时间内引入所述富集管路的流体总量与所述富集管路中流体总量的比例以调节富集效率。
  113. 根据权利要求103所述的循环分离装置,其特征在于,所述循环富集模块还包括流道调节装置,设于所述第一段或/及所述第二段,用于调节所述富集管路中的流体流向,其中,所述流道调节装置可通过以下至少一种方式调节富集管路中流体流向:
    通过调节所述第一进流口或/及第一排流口的开放状态以调节流体流向;
    通过调节连接至所述富集管路的至少一调节管道的开放状态以调节流体流向。
  114. 根据权利要求113所述的循环分离装置,其特征在于,所述流道调节装置包括设于所述第一进流口的管路开关,用于控制所述第一进流口开放状态以将所述流体在富集管路中切换至浓缩循环模式或清洗模式。
  115. 根据权利要求114所述的循环分离装置,其特征在于,所述流道调节装置还包括至少一调节管道以及管道开关,以令所述富集管路中形成清洗液入口及废液出口。
  116. 根据权利要求113所述的循环分离装置,其特征在于,所述流道调节装置为四通阀。
  117. 根据权利要求113所述的循环分离装置,其特征在于,所述富集管路基于所述流道调节装置切换于浓缩循环模式与稀释模式,以调节所述第一分离模块的分离效率。
  118. 根据权利要求103所述的循环分离装置,其特征在于,所述循环富集模块还包括排进气口,设于所述第一段或/及所述第二段,用于调节所述富集管路内部气体状态或气压状态。
  119. 根据权利要求103或118所述的循环分离装置,其特征在于,所述循环富集模块还包括至少一收集装置,设于所述第一段或/及所述第二段,用于调节所述富集管路容积以收集目标物质,或用于收集气泡。
  120. 根据权利要求103所述的循环分离装置,其特征在于,所述循环富集模块还包括控制装置、流体存储装置、压力检测装置、温度检测装置、控温装置、气泡检测及排除装置、报警装置、以及浓度检测装置中的至少一种。
  121. 根据权利要求103所述的循环分离装置,其特征在于,所述循环富集模块还包括流速检测装置,用于检测所述富集管路内部的动力状态,以形成对所述富集管路内部工作状态的调整信息。
  122. 根据权利要求94所述的循环分离装置,其特征在于,还包括至少一处理模块,用于对所述循环分离装置中的流体预处理或再处理,其中,所述预处理或再处理包括过滤、吸附、加热、催化、富集、浓缩、化学处理、光学处理、以及电学处理中的至少一种。
  123. 根据权利要求94所述的循环分离装置,其特征在于,所述循环分离装置为体外循环设备,其中,所述体外循环设备为血液透析设备、血液净化设备、血浆置换设备、体外腹膜透析设备、或体外膜肺氧合设备。
  124. 一种循环处理系统,其特征在于,包括:
    至少一个如权利要求63-93任一项所述的流体处理装置或/及至少一个如权利要求94-123任一项所述的循环分离装置;
    管路系统,包括流体引出管路及流体输回管路。
  125. 根据权利要求124所述的循环处理系统,其特征在于,所述管路系统还包括抗凝系统、控制装置、存储装置、压力检测装置、温度检测装置、控温装置、氧气检测装置、气泡检测及排除装置、报警装置、以及浓度检测装置中的至少一种。
  126. 根据权利要求124所述的循环处理系统,其特征在于,用于细胞收集、微生物收集、以及物料收集中的至少一种。
  127. 一种医疗设备,其特征在于,包括:如权利要求124-126任一项所述的循环处理系统。
  128. 根据权利要求127所述的医疗设备,其特征在于,通过选择性改变特定分子或分子组合浓度以用于进行疾病治疗,其中,所述疾病包括家族性高胆固醇血症、高脂蛋白血症、系统性红斑狼疮、自免疫性疾病、重症肌无力、急进性肾小球肾炎、脂肪肝、肝硬化、急性肝衰竭、高脂血症重症急性胰腺炎、脓毒症、吉兰-巴雷综合征、以及肥胖中的至少一种。
  129. 根据权利要求128所述的医疗设备,其特征在于,所述医疗设备通过药物联合以用于疾病治疗。
  130. 一种计算机可读存储介质,其特征在于,存储至少一种程序,所述至少一种程序被处理器执行时实现如权利要求1-31任一项所述的流体处理方法、或者实现如权利要求32-62任一项所述的流体处理方法。
PCT/CN2020/111881 2020-08-19 2020-08-27 流体处理方法及流体处理装置 WO2022036738A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080101880.5A CN115697430B (zh) 2020-08-19 2020-08-27 流体处理方法及流体处理装置
EP20949945.8A EP4183432A1 (en) 2020-08-19 2020-08-27 Fluid treatment method and fluid treatment device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010838769.6 2020-08-19
CN202010838769 2020-08-19

Publications (1)

Publication Number Publication Date
WO2022036738A1 true WO2022036738A1 (zh) 2022-02-24

Family

ID=80322493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/111881 WO2022036738A1 (zh) 2020-08-19 2020-08-27 流体处理方法及流体处理装置

Country Status (3)

Country Link
EP (1) EP4183432A1 (zh)
CN (1) CN115697430B (zh)
WO (1) WO2022036738A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116492848A (zh) * 2023-06-27 2023-07-28 广州汉至蓝能源与环境技术有限公司 一种附带膜分离结构的发酵液成分提取装置及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4191182A (en) * 1977-09-23 1980-03-04 Hemotherapy Inc. Method and apparatus for continuous plasmaphersis
US4397747A (en) * 1980-07-18 1983-08-09 Kawasumi Laboratories, Inc. Apparatus for plasma separation/exchange by double filtration
CN1845935A (zh) * 2003-09-05 2006-10-11 东丽株式会社 生物体成分组成改变了的溶液的调制方法
CN1934129A (zh) * 2004-01-21 2007-03-21 东丽株式会社 分级装置和分级方法
CN103263704A (zh) 2013-05-09 2013-08-28 浙江大学 配备储浆袋的血浆置换吸附滤过净化系统及其应用方法
US20160022895A1 (en) * 2013-01-15 2016-01-28 Takatori Corporation Stock solution concentrating device, stock solution treatment device, and circulation-type treatment device
CN105408467A (zh) * 2013-07-23 2016-03-16 株式会社钟化 细胞浓缩液的制造方法以及细胞悬浊液处理系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7291122B2 (en) * 2000-03-24 2007-11-06 Immunocept, L.L.C. Hemofiltration methods for treatment of diseases in a mammal
US8038638B2 (en) * 2004-02-23 2011-10-18 Hemolife Medical, Inc. Plasma detoxification and volume control system and methods of use
CN102065926A (zh) * 2008-02-04 2011-05-18 纽约市哥伦比亚大学理事会 流体分离装置、系统和方法
US9950103B2 (en) * 2016-03-03 2018-04-24 Micromedics Inc. Combination kidney and liver dialysis system and method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4191182A (en) * 1977-09-23 1980-03-04 Hemotherapy Inc. Method and apparatus for continuous plasmaphersis
US4397747A (en) * 1980-07-18 1983-08-09 Kawasumi Laboratories, Inc. Apparatus for plasma separation/exchange by double filtration
CN1845935A (zh) * 2003-09-05 2006-10-11 东丽株式会社 生物体成分组成改变了的溶液的调制方法
CN1934129A (zh) * 2004-01-21 2007-03-21 东丽株式会社 分级装置和分级方法
US20160022895A1 (en) * 2013-01-15 2016-01-28 Takatori Corporation Stock solution concentrating device, stock solution treatment device, and circulation-type treatment device
CN103263704A (zh) 2013-05-09 2013-08-28 浙江大学 配备储浆袋的血浆置换吸附滤过净化系统及其应用方法
CN105408467A (zh) * 2013-07-23 2016-03-16 株式会社钟化 细胞浓缩液的制造方法以及细胞悬浊液处理系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116492848A (zh) * 2023-06-27 2023-07-28 广州汉至蓝能源与环境技术有限公司 一种附带膜分离结构的发酵液成分提取装置及方法
CN116492848B (zh) * 2023-06-27 2023-09-05 广州汉至蓝能源与环境技术有限公司 一种附带膜分离结构的发酵液成分提取装置及方法

Also Published As

Publication number Publication date
CN115697430A (zh) 2023-02-03
EP4183432A1 (en) 2023-05-24
CN115697430B (zh) 2023-10-03

Similar Documents

Publication Publication Date Title
US9713668B2 (en) Multi-staged filtration system for blood fluid removal
US9814822B2 (en) Plasma generation with dialysis systems
US20130102948A1 (en) Portable blood filtration devices, systems, and methods
US8414772B2 (en) Method for differentiation of substances
US6852231B2 (en) Spin-hemodialysis assembly and method
US11850347B2 (en) Systems and methods for automated recovery of white blood cells after producing a leuko-reduced blood product
JP2020533159A (ja) 蛋白質含有懸濁液又は蛋白質含有溶液を処理する方法
CN111315861A (zh) 利用交叉流过滤进行细胞富集的系统
WO2022036738A1 (zh) 流体处理方法及流体处理装置
US11607478B2 (en) System and method for treating haemorrhagic fluid for autotransfusion
CN108697987B (zh) 用于过滤流体的系统和方法
WO2022036739A1 (zh) 流体处理方法及循环处理设备、系统
US9757504B2 (en) Systems and methods for performing hemodialysis
CN106659834A (zh) 用于去除血液中的促炎介质以及粒细胞和单核细胞的系统
US9821110B2 (en) Systems and methods for minimizing loss of cellular components during apheresis
WO2024120144A1 (zh) 透析液再生循环系统及透析设备
US20230173147A1 (en) Blood separation system and blood products
Bronzino et al. Therapeutic Apheresis and Blood Fractionation
CN1733319A (zh) 一种膜式血浆分离器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20949945

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020949945

Country of ref document: EP

Effective date: 20230216

NENP Non-entry into the national phase

Ref country code: DE