WO2022036730A1 - 太阳能模块 - Google Patents

太阳能模块 Download PDF

Info

Publication number
WO2022036730A1
WO2022036730A1 PCT/CN2020/111088 CN2020111088W WO2022036730A1 WO 2022036730 A1 WO2022036730 A1 WO 2022036730A1 CN 2020111088 W CN2020111088 W CN 2020111088W WO 2022036730 A1 WO2022036730 A1 WO 2022036730A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar module
reflective
light
parts
nanometers
Prior art date
Application number
PCT/CN2020/111088
Other languages
English (en)
French (fr)
Inventor
郭证翔
Original Assignee
友达光电股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 友达光电股份有限公司 filed Critical 友达光电股份有限公司
Publication of WO2022036730A1 publication Critical patent/WO2022036730A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to a solar module, and more particularly, to a solar module including a plurality of light reflectors.
  • the main color of the solar module in appearance is mostly the color of the back sheet. Therefore, the appearance color of the solar module is usually determined by the back sheet.
  • the power generation of some solar modules is greatly affected by the color of the backplane, so that the color of some backplanes may cause the power generation of the solar module to be greatly reduced.
  • At least one embodiment of the present invention provides a solar module, which includes a plurality of light-reflecting parts that can help improve power generation.
  • the solar module provided by at least one embodiment of the present invention includes a back sheet, the above-mentioned reflective portion, a connecting layer, a packaging material, a plurality of photovoltaic elements and a transparent plate.
  • the average reflectivity of the backplane in the wavelength range of 500 nanometers to 1200 nanometers is greater than 0.
  • the light-reflecting parts are disposed on the back plate, wherein the light-reflecting parts are separated from each other, and the average reflectivity of each light-reflecting part in the wavelength range of 300 nanometers to 1200 nanometers is greater than or equal to 50%.
  • the connection layer is arranged on the backplane and covers these reflective parts.
  • the encapsulation material is arranged on the connection layer.
  • the photovoltaic elements are arranged in the encapsulation material, wherein the photovoltaic elements cover the reflective parts respectively.
  • the transparent plate is arranged on the packaging material.
  • the above-mentioned back plate includes a reflective plate and a colored layer.
  • the colored layer is formed on the reflective plate, wherein the reflective parts are arranged on the colored layer.
  • the average reflectivity of the backplane in the wavelength range of 500 nanometers to 1200 nanometers is greater than 20%.
  • the color of the above-mentioned colored layer is black.
  • the constituent materials of the colored layer include carbon black, titanium oxide, cobalt black, cobalt sulfide, copper chrome black, iron chrome black, aniline black, nickel oxide, iron oxide, aluminum oxide, tin oxide , at least one of lead sulfate, lead chromate, calcium carbonate and silicon oxide.
  • the constituent material of the above-mentioned colored layer further includes a fluoropolymer.
  • the average reflectivity of the back plate in the visible light range is less than 10%.
  • the refractive index of the connection layer is less than or equal to the refractive index of the packaging material.
  • the photovoltaic elements are projected on the backplane along the normal line of the backplane to form a plurality of covering areas, and the light-reflecting parts are respectively confined in the covering areas.
  • the reflective parts are regularly arranged.
  • the thickness of each light-reflecting portion is greater than or equal to 2 microns.
  • At least one reflective portion includes at least one reflective member, and the shape of the reflective member is a cylinder or a cone.
  • the length, width and height of the above-mentioned reflector are all greater than or equal to 2 microns.
  • the light-reflecting parts include a plurality of light-reflecting parts, and the light-reflecting parts of the same light-reflecting part are separated from each other.
  • the light-reflecting parts include a plurality of light-reflecting parts, and the light-reflecting parts of the same light-reflecting part are connected to each other.
  • the reflective parts are a plurality of reflective films.
  • the constituent materials of the light-reflecting parts include at least one of titanium oxide, tin oxide, barium sulfate, silicon oxide, aluminum oxide, magnesium oxide, calcium carbonate, aluminum silicate and magnesium silicate.
  • the reflective parts can reflect light to increase the light incident on the photovoltaic elements. In this way, these reflective parts can help maintain or improve the power generation of the solar module even when the color of the back sheet is not conducive to the power generation.
  • FIG. 1A is a schematic perspective view of a solar module according to at least one embodiment of the present invention.
  • FIG. 1B is a schematic cross-sectional view taken along the line 1B-1B in FIG. 1A .
  • FIG. 1C is a schematic diagram of broken lines of the reflectivity of both the backplane in FIG. 1B and the conventional black backplane as a function of wavelength.
  • FIG. 1D is a schematic top view of the back plate and the light-reflecting portion in FIG. 1B .
  • FIG. 1E is a schematic top view of the reflector in FIG. 1B .
  • FIG. 2 is a schematic top view of a reflective member in other embodiments of the present invention.
  • FIG 3 is a schematic cross-sectional view of a reflective member in other embodiments of the present invention.
  • FIG. 4 is a schematic cross-sectional view of a solar module according to another embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view of a solar module according to another embodiment of the present invention.
  • Words such as “about”, “approximately” or “substantially” appearing in this text may be used to select acceptable ranges or standard deviations based on optical properties, etching properties, mechanical properties or other properties, not a single Standard deviation to apply all of the above optical, etch, mechanical and other properties.
  • FIG. 1A is a schematic three-dimensional view of a solar module according to at least one embodiment of the present invention, and is also an exploded schematic view of the solar module 100 , so the elements of the solar module 100 shown in FIG. 1A are separated from each other and not combined.
  • the solar module 100 includes a backsheet 110 , an encapsulation material 130 , a plurality of photovoltaic elements 150 , and a transparent plate 140 , wherein the encapsulation material 130 is disposed on the backplane 110 , and the transparent plate 140 is disposed on the encapsulation material 130 .
  • the transparent plate 140 is, for example, a glass plate or a transparent plastic plate.
  • the encapsulation material 130 has a multi-layer structure, and the photovoltaic elements 150 are arranged between two layers of the multi-layer structure.
  • the encapsulation material 130 may include two encapsulation layers: a first encapsulation layer 131 and a second encapsulation layer 132 .
  • the first encapsulation layer 131 is disposed on the backplane 110
  • the second encapsulation layer 132 is disposed on the first encapsulation layer 131
  • the photovoltaic elements 150 are disposed between the first encapsulation layer 131 and the second encapsulation layer 132 .
  • Both the first encapsulation layer 131 and the second encapsulation layer 132 can be made of polymer materials, wherein the constituent materials of the first encapsulation layer 131 and the second encapsulation layer 132 can be the same or different.
  • the first encapsulation layer 131 and the second encapsulation layer 132 may both be made of ethylene-vinyl acetate (Ethylene-Vinyl Acetate, EVA). Since the constituent materials of the first encapsulation layer 131 and the second encapsulation layer 132 may be the same, the first encapsulation layer 131 and the second encapsulation layer 132 may have the same refractive index.
  • both the first encapsulation layer 131 and the second encapsulation layer 132 may have different refractive indices from each other.
  • the first encapsulation layer 131 and the second encapsulation layer 132 are both made of ethylene-vinyl acetate copolymer (EVA)
  • EVA ethylene-vinyl acetate copolymer
  • the interior of one of the first encapsulation layer 131 and the second encapsulation layer 132 may be mixed with air or Other materials, such as glass particles.
  • the first encapsulation layer 131 and the second encapsulation layer 132 both include the same material, they may have different refractive indices.
  • the photovoltaic element 150 may be made of a semiconductor material such as silicon.
  • the photovoltaic elements 150 may have a plurality of wires 159, wherein the wires 159 may be ribbons formed of solder, and the photovoltaic elements 150 can be electrically connected to each other, for example, the photovoltaic elements 150 are connected in series, so as to improve the reliability of the solar module 100. output voltage.
  • the solar module 100 may further include a junction box 190 , wherein the junction box 190 may be disposed under the back panel 110 . Therefore, the backplane 110 may be disposed between the encapsulation material 130 and the junction box 190 .
  • the junction box 190 may have cables (not shown) that electrically connect the photovoltaic elements 150 . Using these cables, the junction box 190 can output the power generated by the solar module 100 for use by external electronic devices or power systems.
  • FIG. 1B is a schematic cross-sectional view of the backplane 110 , the encapsulation material 130 , the photovoltaic elements 150 and the transparent plate 140 in FIG. 1A , taken along the line 1B-1B, wherein the junction box 190 and the wires 159 are omitted in FIG. 1B .
  • the first encapsulation layer 131 is fixed on the backplane 110 , wherein the first encapsulation layer 131 can be bonded to the backplane 110 .
  • the solar module 100 includes a connection layer 120 , which may be a transparent adhesive material.
  • the connection layer 120 is disposed on the backplane 110, and the first encapsulation layer 131 of the encapsulation material 130 is disposed on the connection layer 120.
  • connection layer 120 may have adhesive properties, so the connection layer 120 can bond the first encapsulation layer 131 and the backplane 110 .
  • the constituent materials of the connection layer 120 may include at least one of polyolefins, acrylic resins, silicone silanes, polyurethane resins, polyvinyl butyral, ethylene glycol ether acetate and fluoropolymers.
  • the constituent materials of the connecting layer 120 can be selected from polyolefins, acrylic resins, silicone silanes, polyurethane resins, polyvinyl butyral, ethylene glycol ether acetate and fluoropolymers
  • the formed group, that is, the constituent materials of the connection layer 120 can be any combination of the above-mentioned materials.
  • the constituent material of the connection layer 120 may only include silicone silanes, or include silicone silanes and fluoropolymers.
  • the polyolefins are, for example, ethylene-vinyl acetate copolymer (EVA), polyolefin elastomer (Polyolefin Elastomer, POE), polyethylene or polypropylene.
  • EVA ethylene-vinyl acetate copolymer
  • POE polyolefin elastomer
  • Acrylic resins are, for example, methyl methacrylate, butyl methacrylate, or n-butyl acrylate.
  • Silicone silanes are, for example, polydimethylsiloxane (PDMS).
  • Fluoropolymers are, for example, fluoroacrylate monomers (FA), dodecafluoroheptyl methacrylate (DFMA), chlorotrifluoroethylene, hexafluoropropylene, polyvinyl fluoride, polyvinylidene fluoride, ethylene-tetrafluoroethylene Ethylene copolymer, polytetrafluoroethylene or perfluoroethylene propylene copolymer.
  • FFA fluoroacrylate monomers
  • DFMA dodecafluoroheptyl methacrylate
  • chlorotrifluoroethylene hexafluoropropylene
  • polyvinyl fluoride polyvinylidene fluoride
  • Ethylene copolymer ethylene-tetrafluoroethylene Ethylene copolymer
  • polytetrafluoroethylene or perfluoroethylene propylene copolymer perfluoroethylene propylene copolymer.
  • the back plate 110 includes a colored layer 111 and a reflective plate 112 , wherein the colored layer 111 is formed on the reflective plate 112 .
  • the reflector 112 may be a white plate, which may be made of a polymer material.
  • the reflector 112 may be a white plate made of polyethylene terephthalate (PET).
  • PET polyethylene terephthalate
  • the reflector 112 can also be a metal plate, so the reflector 112 is not limited to be a plate made of a polymer material. Since the reflector 112 can be a white plate or a metal plate, the reflector 112 can reflect light, wherein the reflector 112 can reflect not only visible light but also infrared light.
  • the color of the colored layer 111 may be black, blue, green, red or other colors. Alternatively, the colored layer 111 may also include at least two colors, so that the appearance of the solar module 100 can present various colors.
  • the constituent materials of the colored layer 111 may include carbon black, titanium oxide, cobalt black, cobalt sulfide, copper chrome black, iron chrome black, aniline black, nickel oxide, iron oxide, aluminum oxide, At least one of tin oxide, lead sulfate, lead chromate, calcium carbonate and silicon oxide.
  • the constituent materials of the black colored layer 111 can be selected from carbon black, titanium oxide, cobalt black, cobalt sulfide, copper chrome black, iron chrome black, aniline black, nickel oxide, iron oxide, aluminum oxide, tin oxide , the group composed of lead sulfate, lead chromate, calcium carbonate and silicon oxide, that is, the constituent material of the black colored layer 111 can be any combination of the above materials.
  • the black colored layer 111 may include carbon black and titanium oxide, or only nigrosine or iron oxide.
  • the constituent materials of the colored layer 111 may further include the above-mentioned fluoropolymers, such as fluoroacrylate monomer (FA), dodecafluoroheptyl methacrylate (DFMA), chlorotrifluoroethylene, hexafluoropropylene, polyvinyl fluoride, Polyvinylidene fluoride, ethylene-tetrafluoroethylene copolymer, polytetrafluoroethylene or perfluoroethylene propylene copolymer.
  • fluoropolymers such as fluoroacrylate monomer (FA), dodecafluoroheptyl methacrylate (DFMA), chlorotrifluoroethylene, hexafluoropropylene, polyvinyl fluoride, Polyvinylidene fluoride, ethylene-tetrafluoroethylene copolymer, polytetrafluoroethylene or perfluoroethylene propylene copolymer.
  • the back plate 110 may further include a protective layer 113 , wherein the protective layer 113 is disposed on the reflective plate 112 , and the reflective plate 112 is located between the protective layer 113 and the colored layer 111 .
  • the constituent material of the protective layer 113 may include a fluorine-based material, such as polyvinyl fluoride (PVF), polyvinylidene difluoride (PVDF), fluoroplastic film (Ethylene Tetrafluoroethylene, ETFE) or polytetrafluoroethylene ( Polytetrafluoroethylene, PTFE, commonly known as Teflon).
  • the above-mentioned fluorine-based materials have good weather resistance and anti-ultraviolet light functions, and thus can effectively protect the solar module 100 so that the solar module 100 is suitable for operation in an outdoor environment.
  • FIG. 1C is a schematic diagram of broken lines of the reflectivity of both the backplane in FIG. 1B and the conventional black backplane as a function of wavelength.
  • the number line C11 in FIG. 1C represents the reflectivity of the backplane 110
  • the reflectivity of the number line C11 is obtained by measuring the backplane 110 from the colored layer 111 , wherein the number line C11 is in the colored layer 111 .
  • the reflectivity of the back plate 110 is measured and drawn.
  • the number line C12 represents the reflectivity of a black backplane commonly used in conventional solar modules, wherein the conventional black backplane is a plate with a completely black surface.
  • the average reflectivity of the back plate 110 is greater than 0, and the average reflectivity of the back plate 110 in the wavelength range of 500 nanometers to 1200 nanometers is higher greater than 20%.
  • the reflector 112 can reflect infrared light, under the condition that the color of the colored layer 111 is black, the average reflectivity of the back plate 110 in the infrared light range (about 1000 nm to 1200 nm) can be significantly greater than 20%.
  • the average reflectivity of the backplane 110 in the visible light range (about 380 nm to 750 nm) is less than 10%, so under the condition that the color of the colored layer 111 is black, the backplane 110 can reflect more infrared light and more less visible light.
  • the average reflectance of the conventional black backplane in the wavelength range of 500 nm to 1200 nm is substantially equal to zero, and from the number line C12 in FIG. 1C , the conventional black backplane is in the infrared light range (about 1000 nanometer to 1200 nanometers) reflectivity is fairly close to zero. It can be seen from this that it is difficult for the conventional black backplane not only to reflect visible light, but also to reflect infrared light. Therefore, in the wavelength range of 500 nm to 1200 nm, the backplane 110 has a significantly higher reflectivity than the conventional black backplane.
  • FIG. 1D is a schematic top view of the back plate and the light-reflecting portion in FIG. 1B .
  • the solar module 100 further includes a plurality of reflective parts 160 , wherein the reflective parts 160 are disposed on the colored layers 111 of the back sheet 110 and separated from each other, and the connecting layer 120 covers the reflective parts 160 .
  • the thickness 161h of each reflective portion 160 may be greater than or equal to 2 ⁇ m, and the thickness 161h may be smaller than the thickness of the connecting layer 120 , so that the reflective portion 160 will not penetrate the connecting layer 120 .
  • the thickness 161h may also be less than 2 microns, so the thickness 161h is not limited to be greater than or equal to 2 microns.
  • each reflective portion 160 in the wavelength range of 300 nm to 1200 nm may be greater than or equal to 50%, so the reflective portion 160 can reflect not only visible light but also infrared light.
  • the constituent materials of the light-reflecting parts 160 may include at least one of titanium oxide, tin oxide, barium sulfate, silicon oxide, aluminum oxide, magnesium oxide, calcium carbonate, aluminum silicate and magnesium silicate.
  • the constituent material of the light-reflecting portion 160 may be selected from the group consisting of titanium oxide, tin oxide, barium sulfate, silicon oxide, aluminum oxide, magnesium oxide, calcium carbonate, aluminum silicate and magnesium silicate, that is,
  • the constituent material of the light-reflecting portion 160 may be any combination of the above-mentioned materials.
  • the photovoltaic elements 150 cover the reflective parts 160 respectively.
  • the photovoltaic elements 150 can be projected on the back plate 110 along the normal line N1 of the back plate 110 to form a plurality of covering regions R15 , and the reflective parts 160 are respectively confined in the covering regions R15 .
  • each reflective part 160 will be limited within the range of one covering area R15, and will not exceed the range of the covering area R15.
  • the photovoltaic elements 150 are respectively aligned with the light-reflecting parts 160, and among the photovoltaic elements 150 and the light-reflecting parts 160 that are aligned with each other, the light-reflecting parts 160 do not protrude from the side 153 of the photovoltaic element 150, as shown in FIG. 1B and FIG. 1D .
  • the reflective parts 160 and the photovoltaic elements 150 may be regularly arranged.
  • the reflective parts 160 and the photovoltaic elements 150 may be arranged in an array.
  • the reflective parts 160 and the photovoltaic elements 150 may also be arranged in other arrangements than the array arrangement, or even in an irregular arrangement, so FIG. 1D does not limit the arrangement of the reflective parts 160 and the photovoltaic elements 150 .
  • the at least one reflective part 160 includes at least one reflective member 161, wherein the shape of the reflective member 161 may be a cone, such as a pyramid or a cone.
  • each reflective portion 160 includes a plurality of reflective members 161 , wherein these reflective members 161 may be formed by printing multiple times. For example, in the method of forming the reflective member 161 , screen printing may be performed to form a thin film on the back plate 110 . Next, the film is cured, wherein the curing can be performed using microwaves. Then, screen printing is performed again to form another new film on top of the cured film. Next, the new film is cured. After that, the above steps are repeated until the reflective member 161 is completed.
  • each reflective portion 160 may include nine reflective members 161 arranged in a 3 ⁇ 3 matrix, and the nine reflective members 161 are connected to each other. Since each reflective part 160 is limited within the scope of one covering area R15, each reflective member 161 will not fall on the area outside the covering area R15, nor will it fall on the boundary of the covering area R15.
  • the back plate 110 and the reflective parts 160 can reflect the light L11 to L14 to the photovoltaic elements 150 , so that the These photovoltaic elements 150 can absorb the light rays L11 to L14 and convert the light rays L11 to L14 into electrical energy.
  • the wavelength range of the light rays L11 to L14 covers not only visible light (about 380 nm to 750 nm) but also infrared light (about 1000 nm to 1200 nm). Therefore, the light rays L11 to L14 include visible light and invisible infrared light.
  • the refractive index of the transparent plate 140 may be greater than or equal to the refractive index of the encapsulation material 130 .
  • the refractive index of the transparent plate 140 may be about 1.5, and the refractive index of the encapsulating material 130 may be about 1.5. It may be about 1.48, which is less than the refractive index of the transparent plate 140 .
  • the light rays L11 and L12 pass through the interface between the transparent plate 140 and the packaging material 130 , the light rays L11 and L12 are deflected and deviate from the normal line N1 of the back plate 110 .
  • the light rays L11 and L12 enter the connection layer 120 from the encapsulation material 130 .
  • the refractive index of the connection layer 120 may be less than or equal to the refractive index of the encapsulation material 130 , so when the light rays L11 and L12 pass through the interface between the encapsulation material 130 and the connection layer 120 , the light rays L11 and L12 will deviate from the normal line N1 . After that, the light rays L11 and L12 are incident on the back plate 110 .
  • the backplane 110 can reflect a part of the light L11 and a part of the light L12, especially the infrared light in both the reflected light L11 and L12, so the backplane 110 will absorb part of the light L11 and L12, and will not completely reflect the light L11 and L12. After the light L12 is reflected by the back plate 110 , it is incident on the second surface 152 of the photovoltaic element 150 and is absorbed by the photovoltaic element 150 .
  • the photovoltaic element 150 has a first surface 151 and a second surface 152, wherein the first surface 151 is opposite to the second surface 152, and the photovoltaic element 150 can absorb light from the first surface 151 and the second surface 152 to generate electricity. Therefore, when the photovoltaic element 150 absorbs the light L12 from the second surface 152, the photovoltaic element 150 can convert the light L12 into electrical energy.
  • the photovoltaic element 150 can absorb the light L11 and convert the light L11 into electrical energy.
  • the light rays L13 and L14 After the light rays L13 and L14 enter the solar module 100 from the transparent plate 140, the light rays L13 and L14 also penetrate the transparent plate 140 and the encapsulation material 130 in sequence, and the interface between the transparent plate 140 and the encapsulation material 130 can also deflect the light rays L13 and L14 , so that the light rays L13 and L14 deviate from the normal line N1 of the backplane 110 , thereby increasing the probability of the light rays L13 and L14 entering the first encapsulation layer 131 .
  • the light rays L13 and L14 After the deflected light rays L13 and L14 enter the first encapsulation layer 131 , the light rays L13 and L14 are incident on the connection layer 120 . Since the refractive index of the connection layer 120 is less than or equal to the refractive index of the packaging material 130 , the light rays L13 and L14 are deflected by the interface between the packaging material 130 and the connection layer 120 and deviate from the normal line N1 , thereby increasing the incidence of the light rays L13 and L14 the probability of the reflection part 160 .
  • the light reflecting portion 160 can reflect the light beams L13 and L14. Since the average reflectivity of the reflective portion 160 in the wavelength range of 300 nm to 1200 nm is greater than or equal to 50%, the reflective portion 160 can basically reflect visible light and infrared light in both the light rays L13 and L14.
  • the light beams L13 and L14 reflected by the light-reflecting portion 160 pass through the connection layer 120 and enter the first encapsulation layer 131 , wherein the light beam L14 is incident on the second surface 152 and absorbed by the photovoltaic element 150 . In this way, the photovoltaic element 150 can convert the light L14 into electrical energy.
  • the photovoltaic element 150 can absorb the light L13 and convert the light L13 into electrical energy.
  • the light reflecting parts 160 can reflect light (eg, light L11 to L14 ), so as to increase the light absorbed by the photovoltaic element 150 , thereby increasing the power generation of the solar module 100 .
  • the back plate 110 has a very low reflectivity due to the color, so that it is difficult for the back plate 110 to reflect more light to the photovoltaic elements 150 .
  • These light-reflecting parts 160 can also reflect light to increase the amount of light that the photovoltaic elements 150 can absorb. light, thereby helping to improve the power generation of the solar module 100 .
  • the reflective parts 160 can substantially reduce or avoid the adverse effect of the color of the back plate 110 on the power generation. Therefore, under the condition that the color of the back plate 110 can be freely selected, the reflective parts 160 can maintain a certain power generation or improve generating power.
  • the reflector plate 112 can allow the back plate 110 to reflect infrared light. Therefore, even if the colored layer 111 has a very low reflectivity due to the color (eg, the black colored layer 111 ), the reflector 112 can still reflect the infrared light in the external light, so that the photovoltaic elements 150 can absorb more infrared light , thereby increasing the power generation of the solar module 100
  • FIG. 1E is a schematic top view of the reflector in FIG. 1B .
  • the shape of the reflector 161 may be a cone.
  • the shape of the reflector 161 can be a pyramid, so the bottom surface of the reflector 161, that is, the area occupied by the reflector 161 on the back plate 110, can be substantially rectangular, such as a square (as shown in FIG. 1E ) .
  • the width 161 a , the length 161 b and the height of the reflective member 161 can all be greater than or equal to 2 ⁇ m, wherein the height of the reflective member 161 is equal to the thickness 161 h shown in FIG. 1B .
  • these reflective members 161 basically do not diffract visible light.
  • the wavelength range of general infrared light covers 2 microns, so when the width 161a, length 161b and height (ie thickness 161h) of the reflective members 161 are equal to or close to 2 microns, these reflective members 161 can diffract wavelengths of about Infrared light at or near 2 microns.
  • the reflective members 161 can diffract infrared light, the reflective members 161 can still make the light rays (eg, the light rays L11 to L14 ) incident to the photovoltaic elements 150 . Even if the reflective member 161 can diffract light (including visible light and infrared light), the overall power generation of the solar module 100 will not be adversely affected. Therefore, the width 161a and the length 161b of the reflector 161 can also be less than 2 microns, and the reflector 161 with the width 161a and the length 161b both less than 2 microns can still allow the photovoltaic element 150 to absorb more light, so the solar module 100 will not be damaged. The overall power generation is reduced.
  • the shape of the bottom surface of the reflective member 161 may be substantially rectangular (eg, square), but in other embodiments, the shape of the bottom surface of the reflective member 161 may be substantially circular or rectangular. Other polygons, such as the reflectors 201 and 202 shown in FIG. 2 . See Figure 2.
  • At least one reflective member 161 in the solar module 100 may be replaced with the reflective member 201 or 202 in FIG. 2 . That is, the solar module 100 may include at least one of the reflectors 201 and 202 .
  • the solar module 100 may include the reflectors 161 , 201 and 202 .
  • the solar module 100 includes a plurality of reflective members 201 , but does not include the reflective members 161 and 202 .
  • the shape of the bottom surface of the reflective member 201 can be substantially circular, and the shape of the bottom surface of the reflective member 202 can be substantially polygonal, such as the hexagon shown in FIG. 2 .
  • the diameter 201r of the bottom surface of the reflector 201 may be greater than or equal to 2 ⁇ m, and the width 202a and the length 202b of the reflector 202 may both be greater than or equal to 2 ⁇ m.
  • the diameter 201r, the width 202a and the length 202b can all be smaller than 2 microns, so the diameter 201r, the width 202a and the length 202b are not limited to be greater than or equal to 2 microns.
  • the constituent materials and forming methods of the reflective members 201 and 202 may be the same as the constituent materials and forming methods of the reflective member 161 .
  • each reflector 161 may be a pyramid, such as a pyramid.
  • the shapes of the reflectors 301 , 302 and 303 shown in FIG. 3 are all cylinders instead of the cones shown in FIG. 1B .
  • at least one of the reflectors 301 , 302 and 303 shown in FIG. 3 can replace at least one reflector 161 in FIG. 1B . That is, the solar module 100 shown in FIG. 1B may include at least one of the reflective members 301 , 302 and 303 .
  • the reflector 301 is substantially a cylinder with a circular arc top surface
  • the reflector 302 is substantially a cube or a cylinder
  • the reflector 303 is substantially a cylinder with a roof-shaped top.
  • the shape of the reflectors in other embodiments can also be substantially other shapes of cylinders, such as a frustum. Therefore, the shape of the reflector is not limited to those shown in FIGS. 1B and 3 .
  • the constituent materials and forming methods of the reflective members 301 , 302 and 303 may be the same as the constituent materials and forming methods of the reflective member 161 .
  • FIG. 4 is a schematic cross-sectional view of a solar module according to another embodiment of the present invention. Please refer to FIG. 4 .
  • the solar module 400 shown in FIG. 4 is similar to the aforementioned solar module 100 .
  • the solar module 400 also includes a plurality of reflective parts 460 , and these reflective parts 460 also include a plurality of reflective members 161 .
  • the only difference from the solar module 100 is that: in the solar module 400 shown in FIG. 4 , the reflective members 161 of the same reflective portion 460 are separated from each other and are not connected or contacted.
  • At least one reflective member 161 can be replaced with the reflective member 201 or 202 shown in FIG. 2 , or the reflective members 301 and 302 shown in FIG. 3 . or 303. Therefore, the shape of the reflector 161 shown in FIG. 4 can also be a cylinder, and is not limited to a cone (eg, a pyramid).
  • the at least one reflective part 460 may also include at least one of the reflective members 201 , 202 , 301 , 302 and 303 .
  • a single reflector 460 includes reflectors 201 and 202 .
  • a single reflector 460 includes reflectors 301 , 302 and 303 . Therefore, the reflective part 460 shown in FIG. 4 is not limited to include only the reflective member 161 .
  • FIG. 5 is a schematic cross-sectional view of a solar module according to another embodiment of the present invention.
  • the solar module 500 shown in FIG. 5 is similar to the aforementioned solar module 100 .
  • the solar module 500 also includes a plurality of light-reflecting parts 560 whose constituent materials are also the same as the constituent materials of the light-reflecting parts 160 .
  • the reflective parts 560 are a plurality of reflective films, the thickness of which can be less than 2 microns.
  • These reflective parts 560 can be formed by printing, such as screen printing or inkjet. When the reflective portion 560 is formed by multiple printings, the reflective portion 560 may have a thicker thickness, even more than 2 microns. Therefore, the light-reflecting portion 560 may also be greater than or equal to 2 microns.
  • At least one reflective part 160 in FIG. 1B or at least one reflective part 460 in FIG. 4 can be replaced with the reflective part 560 shown in FIG. 5 .
  • the solar module 100 or 400 may further include at least one reflective portion 560 shown in FIG. 5 , and at least two of the reflective portions 160 , 460 and 560 may be jointly disposed on the same backplane 110 .
  • At least one reflective part 560 can be replaced with at least one of the reflective members 161 , 201 , 202 , 301 , 302 and 303 , so that the solar module 500 can include only one reflective member (eg reflective elements 161, 201, 202, 301, 302 or 303), or include a plurality of reflective elements.
  • the solar modules 100 , 400 and 500 disclosed in the above embodiments may include multiple reflective parts or multiple reflective members, and are not limited to include only the same type of reflective parts and reflective members.
  • the light-reflecting parts can reflect light
  • the light-reflecting parts can increase the light incident on the photovoltaic elements, so as to increase the power generation.
  • these reflectors can help maintain or improve the power generation of the solar module even when the color of the back sheet is not conducive to the power generation.
  • these reflective parts can maintain a certain power generation power or increase the power generation power, so that the color of the back sheet can be freely selected, thereby helping to improve the visual effect and aesthetics of the solar module.
  • the light-reflecting parts can reflect light
  • the light-reflecting parts can increase the light incident on the photovoltaic elements, so as to increase the power generation.
  • these reflectors can help maintain or improve the power generation of the solar module even when the color of the back sheet is not conducive to the power generation.
  • these reflective parts can maintain a certain power generation power or increase the power generation power, so that the color of the back sheet can be freely selected, thereby helping to improve the visual effect and aesthetics of the solar module.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明涉及一种太阳能模块,包括背板、多个反光部、连接层、封装材料、多个光伏元件与透明板。背板在波长500纳米至1200纳米范围内的平均反射率大于0。这些彼此分离的反光部设置于背板上,而各个反光部在波长300纳米至1200纳米范围内的平均反射率大于或等于50%。连接层设置于背板上,并覆盖这些反光部。封装材料设置于连接层上。这些光伏元件设置于封装材料内,并且分别遮盖这些反光部。透明板设置于封装材料上。

Description

太阳能模块 技术领域
本发明是有关于一种太阳能模块,且特别是有关于一种包括多个反光部的太阳能模块。
背景技术
现今有的太阳能模块通常包括背板,而太阳能模块在外观上所呈现的主要颜色大多为背板的颜色。所以,太阳能模块的外观颜色通常是由背板来决定。然而,目前有的太阳能模块的发电功率却深受背板颜色影响,以至于有的背板颜色可能会造成太阳能模块的发电功率大幅降低。
发明公开
本发明至少一实施例提出一种太阳能模块,其所包括的多个反光部能帮助提升发电功率。
本发明至少一实施例所提供的太阳能模块包括背板、上述反光部、连接层、封装材料、多个光伏元件与透明板。背板在波长500纳米至1200纳米范围内的平均反射率大于0。这些反光部设置于背板上,其中这些反光部彼此分离,且各个反光部在波长300纳米至1200纳米范围内的平均反射率大于或等于50%。连接层设置于背板上,并覆盖这些反光部。封装材料设置于连接层上。这些光伏元件设置于封装材料内,其中这些光伏元件分别遮盖这些反光部。透明板设置于封装材料上。
在本发明至少一实施例中,上述背板包括反光板与有色层。有色层形成于反光板上,其中这些反光部设置于有色层上。
在本发明至少一实施例中,上述背板在波长500纳米至1200纳米范围内的平均反射率大于20%。
在本发明至少一实施例中,上述有色层的颜色为黑色。
在本发明至少一实施例中,上述有色层的构成材料包括碳黑、氧化钛、钴黑、硫化钴、铜铬黑、铁铬黑、苯胺黑、氧化镍、氧化铁、氧化铝、氧化锡、 硫酸铅、铬酸铅、碳酸钙以及氧化硅其中至少一种。
在本发明至少一实施例中,上述有色层的构成材料还包括含氟聚合物。
在本发明至少一实施例中,上述背板在可见光范围内的平均反射率小于10%。
在本发明至少一实施例中,上述连接层的折射率小于或等于封装材料的折射率。
在本发明至少一实施例中,这些光伏元件沿着背板的法线在背板上投影而成多个遮盖区域,而这些反光部分别局限在这些遮盖区域内。
在本发明至少一实施例中,这些反光部呈规则排列。
在本发明至少一实施例中,各个反光部的厚度大于或等于2微米。
在本发明至少一实施例中,至少一个反光部包括至少一反光件,而反光件的形状为柱体或锥体。
在本发明至少一实施例中,上述反光件的长度、宽度与高度皆大于或等于2微米。
在本发明至少一实施例中,这些反光部包括多个反光件,而同一个反光部的这些反光件彼此分离。
在本发明至少一实施例中,这些反光部包括多个反光件,而同一个反光部的这些反光件彼此相连。
在本发明至少一实施例中,这些反光部为多个反光膜。
在本发明至少一实施例中,这些反光部的构成材料包括氧化钛、氧化锡、硫酸钡、氧化硅、氧化铝、氧化镁、碳酸钙、硅酸铝以及硅酸镁其中至少一种。
基于上述,由于各个反光部在波长300纳米至1200纳米范围内的平均反射率大于或等于50%,因此这些反光部能反射光线,以增加入射于这些光伏元件的光线。如此,即使在背板的颜色不利于发电功率的情况下,这些反光部可以帮助维持或提升太阳能模块的发电功率。
以下结合附图和具体实施例对本发明进行详细描述,但不作为对本发明的限定。
附图简要说明
图1A是本发明至少一实施例的太阳能模块的立体示意图。
图1B是图1A中沿线1B-1B剖面而绘示的剖面示意图。
图1C是图1B中的背板与习知黑背板两者的反射率随波长而变化的折线示意图。
图1D是图1B中的背板与反光部的俯视示意图。
图1E是图1B中的反光件的俯视示意图。
图2是本发明其他多个实施例中的反光件的俯视示意图。
图3是本发明其他多个实施例中的反光件的剖面示意图。
图4是本发明另一实施例的太阳能模块的剖面示意图。
图5是本发明另一实施例的太阳能模块的剖面示意图。
其中,附图标记:
100、400、500:太阳能模块
110:背板
111:有色层
112:反光板
113:保护层
120:连接层
130:封装材料
131:第一封装层
132:第二封装层
140:透明板
150:光伏元件
151:第一表面
152:第二表面
153:侧边
159:导线
160、460、560:反光部
161、201、202、301、302、303:反光件
161a、202a:宽度
161b、202b:长度
161h:厚度
190:接线盒
201r:直径
C11、C12:数线
L11、L12、L13、L14:光线
N1:法线
R15:遮盖区域
实现本发明的最佳方式
下面结合附图对本发明的结构原理和工作原理作具体的描述:
在以下的内文中,为了清楚呈现本案的技术特征,图式中的元件(例如层、膜、基板以及区域等)的尺寸(例如长度、宽度、厚度与深度)会以不等比例的方式放大。因此,下文实施例的说明与解释不受限于图式中的元件所呈现的尺寸与形状,而应涵盖如实际制程和/或公差所导致的尺寸、形状以及两者的偏差。例如,附图所示的平坦表面可以具有粗糙和/或非线性的特征,而图式所示的锐角可以是圆的。所以,本案附图所呈示的元件主要是用于示意,并非旨在精准地描绘出元件的实际形状,也非用于限制本案的申请专利范围。
其次,本案内容中所出现的「约」、「近似」或「实质上」等这类用字不仅涵盖明确记载的数值与数值范围,而且也涵盖发明所属技术领域中具有通常知识者所能理解的可允许偏差范围,其中此偏差范围可由测量时所产生的误差来决定,而此误差例如是起因于测量系统或制程条件两者的限制。此外,「约」可表示在上述数值的一个或多个标准偏差内,例如±30%、±20%、±10%或±5%内。本案文中所出现的「约」、「近似」或「实质上」等这类用字可依光学性质、蚀刻性质、机械性质或其他性质来选择可以接受的偏差范围或标准偏差,并非单以一个标准偏差来套用以上光学性质、蚀刻性质、机械性质以及其他性质等所有性质。
图1A是本发明至少一实施例的太阳能模块的立体示意图,也是太阳能模块100的分解示意图,所以图1A所呈现的太阳能模块100的多个元件是彼此分开而未组合。请参阅图1A,太阳能模块100包括背板110、封装材料130、多个光伏元件150以及透明板140,其中封装材料130设置在背板110上,而透明板140设置于封装材料130上。透明板140例如是玻璃板或透明塑胶板。
这些光伏元件150设置于封装材料130内。具体而言,封装材料130具有多层结构,而这些光伏元件150设置在多层结构的其中两层之间。以图1A为例,封装材料130可包括两层封装层:第一封装层131与第二封装层132。第一封装层131设置在背板110上,而第二封装层132设置于第一封装层131上,其中这些光伏元件150设置在第一封装层131与第二封装层132之间。
第一封装层131与第二封装层132两者可由高分子材料所制成,其中第一封装层131与第二封装层132两者构成材料可以相同或不同。例如,第一封装层131与第二封装层132可以皆由乙烯-醋酸乙烯酯共聚物(Ethylene-Vinyl Acetate,EVA)制成。由于第一封装层131与第二封装层132两者构成材料可相同,因此第一封装层131与第二封装层132可具有相同的折射率。
不过,即使第一封装层131与第二封装层132两者构成材料包括相同的高分子材料,第一封装层131与第二封装层132两者也可以具有彼此不同的折射率。例如,当第一封装层131与第二封装层132皆由乙烯-醋酸乙烯酯共聚物(EVA)制成时,第一封装层131与第二封装层132其中一者的内部可以混入空气或其他材料,例如玻璃颗粒。如此,虽然第一封装层131以及第二封装层132两者包括相同材料,但却可以具有不同的折射率。
光伏元件150可以是由半导体材料所制成,其中此半导体材料例如是硅。这些光伏元件150可以具有多条导线159,其中这些导线159可以是由焊料所形成的焊带,并且能将这些光伏元件150彼此电性连接,例如串联这些光伏元件150,以提高太阳能模块100所输出的电压。
太阳能模块100可还包括接线盒190,其中接线盒190可设置于背板110下方。所以,背板110可设置在封装材料130与接线盒190之间。接线盒190可以具有多条缆线(cable,未示出),而这些缆线电性连接这些光伏元件150。利用这些缆线,接线盒190能输出太阳能模块100所产生的电能,供外部电子装置或电力系统使用。
图1B是在图1A中的背板110、封装材料130、这些光伏元件150以及透明板140组合之后,沿线1B-1B剖面而绘示的剖面示意图,其中图1B省略接线盒190与导线159。请参阅图1A与图1B,第一封装层131固定在背板110上,其中第一封装层131可被黏合于背板110。以图1B为例,太阳能模块100包括连接层120,其可以是透明胶材。连接层120设置于背板110上,而封装 材料130的第一封装层131设置于连接层120上。
连接层120可具有黏性,所以连接层120能黏合第一封装层131与背板110。连接层120的构成材料可包括聚烯烃类、丙烯酸系树脂类、硅树脂硅烷类、聚氨酯树脂、聚乙烯醇缩丁醛酯、乙二醇乙醚醋酸酯与含氟聚合物其中至少一种。换句话说,连接层120的构成材料可选自于聚烯烃类、丙烯酸系树脂类、硅树脂硅烷类、聚氨酯树脂、聚乙烯醇缩丁醛酯、乙二醇乙醚醋酸酯与含氟聚合物所组成的群组,即连接层120的构成材料可以是上述材料的任意组合。例如,连接层120的构成材料可以仅包括硅树脂硅烷类,或是包括硅树脂硅烷类与含氟聚合物。
承上述,聚烯烃类例如是乙烯-醋酸乙烯酯共聚物(EVA)、聚烯烃弹性体(Polyolefin Elastomer,POE)、聚乙烯或聚丙烯。丙烯酸系树脂类例如是甲基丙烯酸甲酯、甲基丙烯酸丁酯或丙烯酸正丁酯。硅树脂硅烷类例如是聚二甲基硅氧烷(Polydimethylsiloxane,PDMS)。含氟聚合物例如是氟丙烯酸酯单体(FA)、甲基丙烯酸十二氟庚酯(DFMA)、三氟氯乙烯、六氟丙烯、聚氟乙烯、聚偏二氟乙烯、乙烯-四氟乙烯共聚物、聚四氟乙烯或全氟乙烯丙烯共聚物。
背板110包括有色层111与反光板112,其中有色层111形成于反光板112上。反光板112可以是白色板材,其可以由高分子材料制成。例如,反光板112可以是由聚对苯二甲酸乙二酯(Polyethylene Terephthalate,PET)所制成的白色板材。此外,反光板112也可以是金属板,所以反光板112不限制是高分子材料制成的板材。由于反光板112可为白色板材或金属板,因此反光板112能反射光线,其中反光板112不仅能反射可见光,而且还能反射红外光。
有色层111的颜色可以是黑色、蓝色、绿色、红色或其他种颜色。或者,有色层111也可以包括至少两种颜色,以使太阳能模块100的外观可以呈现多种色彩。当有色层111的颜色为黑色时,有色层111的构成材料可包括碳黑、氧化钛、钴黑、硫化钴、铜铬黑、铁铬黑、苯胺黑、氧化镍、氧化铁、氧化铝、氧化锡、硫酸铅、铬酸铅、碳酸钙与氧化硅其中至少一种。
换句话说,黑色的有色层111的构成材料可选自于碳黑、氧化钛、钴黑、硫化钴、铜铬黑、铁铬黑、苯胺黑、氧化镍、氧化铁、氧化铝、氧化锡、硫酸铅、铬酸铅、碳酸钙与氧化硅所组成的群组,即黑色的有色层111的构成材料可以是上述材料的任意组合。例如,黑色的有色层111可包括碳黑与氧化钛, 或是仅包括苯胺黑或氧化铁。有色层111的构成材料还可包括上述含氟聚合物,例如氟丙烯酸酯单体(FA)、甲基丙烯酸十二氟庚酯(DFMA)、三氟氯乙烯、六氟丙烯、聚氟乙烯、聚偏二氟乙烯、乙烯-四氟乙烯共聚物、聚四氟乙烯或全氟乙烯丙烯共聚物。
背板110还可以包括保护层113,其中保护层113设置于反光板112上,而反光板112位于保护层113与有色层111之间。保护层113的构成材料可以包括氟系材料,例如聚氟乙烯(Polyvinyl Fluoride,PVF)、聚偏二氟乙烯(Polyvinylidene Difluoride,PVDF)、氟塑膜(Ethylene Tetrafluoroethylene,ETFE)或聚四氟乙烯(Polytetrafluoroethylene,PTFE,俗称铁氟龙)。上述氟系材料具有良好的耐候性以及抗紫外光的功能,因而能有效保护太阳能模块100,以使太阳能模块100适于在室外环境下运作。
图1C是图1B中的背板与习知黑背板两者的反射率随波长而变化的折线示意图。请参阅图1B与图1C,图1C中的数线C11代表背板110的反射率,且数线C11的反射率是从有色层111量测背板110而得到,其中数线C11是在有色层111的颜色为黑色的条件下,量测背板110的反射率而绘制。数线C12代表习知太阳能模块常用的黑色背板的反射率,其中上述习知黑色背板为一块表面完全为黑色的板材。
从图1C中的数线C11可看出,在波长500纳米至1200纳米范围内,背板110的平均反射率大于0,其中背板110在波长500纳米至1200纳米范围内的平均反射率更大于20%。其次,由于反光板112能反射红外光,因此在有色层111的颜色为黑色的条件下,背板110在红外光范围内(约1000纳米至1200纳米)的平均反射率可明显大于20%。不过,背板110在可见光范围内(约380纳米至750纳米)的平均反射率小于10%,所以在有色层111的颜色为黑色的条件下,背板110能反射较多的红外光以及较少的可见光。
相对地,习知黑色背板在波长500纳米至1200纳米范围内的平均反射率却实质上等于零,而且从图1C的数线C12来看,习知黑色背板在红外光范围内(约1000纳米至1200纳米)的反射率相当接近于零。由此可知,习知黑色背板不仅很难反射可见光,而且也很难反射红外光。因此,在波长500纳米至1200纳米范围内,背板110具有比习知黑色背板明显较高的反射率。
图1D是图1B中的背板与反光部的俯视示意图。请参阅图1B与图1D, 太阳能模块100还包括多个反光部160,其中这些反光部160设置于背板110的有色层111上,并且彼此分离,而连接层120覆盖这些反光部160。此外,各个反光部160的厚度161h可以大于或等于2微米,而且厚度161h可以小于连接层120的厚度,以使反光部160不会穿透连接层120。另外,在其他实施例中,厚度161h也可以小于2微米,所以厚度161h不限制大于或等于2微米。
各个反光部160在波长300纳米至1200纳米范围内的平均反射率可以大于或等于50%,所以反光部160不仅能反射可见光,而且也能反射红外光。这些反光部160的构成材料可以包括氧化钛、氧化锡、硫酸钡、氧化硅、氧化铝、氧化镁、碳酸钙、硅酸铝以及硅酸镁其中至少一种。也就是说,反光部160的构成材料可以选自于由氧化钛、氧化锡、硫酸钡、氧化硅、氧化铝、氧化镁、碳酸钙、硅酸铝以及硅酸镁所组成的群组,即反光部160的构成材料可以是上述材料的任意组合。
这些光伏元件150分别遮盖这些反光部160。以图1B为例,这些光伏元件150沿着背板110的法线N1能在背板110上投影而成多个遮盖区域R15,而这些反光部160分别局限在这些遮盖区域R15内。换句话说,各个反光部160会被局限在一个遮盖区域R15的范围内,不会超出遮盖区域R15的范围。
这些光伏元件150分别对准这些反光部160,而在彼此对准的光伏元件150与反光部160中,反光部160不会凸出于光伏元件150的侧边153,如图1B与图1D所示。此外,这些反光部160与这些光伏元件150可以呈规则排列。例如,在图1D所示的实施例中,这些反光部160与这些光伏元件150可以呈阵列排列。不过,在其他实施例中,反光部160与光伏元件150也可呈阵列排列以外的其他排列方式,甚至是呈不规则排列,所以图1D不限制反光部160与光伏元件150的排列方式。
至少一个反光部160包括至少一个反光件161,其中反光件161的形状可为锥体,例如角锥(pyramid)或圆锥(cone)。在本实施例中,各个反光部160包括多个反光件161,其中这些反光件161可利用多次印刷的方式来形成。例如,在形成反光件161的方法中,可进行网印,以在背板110上形成薄膜。接着,固化此薄膜,其中可利用微波来进行固化。然后,再次进行网印,以在固化后的薄膜上形成另一层新的薄膜。接着,固化此新的薄膜。之后,重复以上步骤,直到反光件161完成。
同一个反光部160的这些反光件161彼此相连。以图1B与图1D为例,各个反光部160可包括九个呈3×3矩阵排列的反光件161,而这九个反光件161彼此相连。由于各个反光部160被局限在一个遮盖区域R15的范围内,因此各个反光件161不会落在遮盖区域R15以外的区域,也不会落在遮盖区域R15的边界上。
当外界的光线L11、L12、L13与L14,例如太阳光,从透明板140入射至太阳能模块100时,背板110与这些反光部160能将光线L11至L14反射至这些光伏元件150,以使这些光伏元件150能吸收光线L11至L14,并将光线L11至L14转换成电能。此外,光线L11至L14的波长范围不仅涵盖可见光(约380纳米至750纳米),而且也涵盖红外光(约1000纳米至1200纳米)。所以,光线L11至L14包括可见光与不可见的红外光。
在光线L11与L12从透明板140进入太阳能模块100之后,光线L11与L12会依序穿透透明板140与封装材料130。透明板140的折射率可大于或等于封装材料130的折射率。例如,在透明板140为玻璃板,而封装材料130是由乙烯-醋酸乙烯酯共聚物(EVA)制成的条件下,透明板140的折射率可约为1.5,而封装材料130的折射率可约为1.48,其小于透明板140的折射率。
当光线L11与L12通过透明板140与封装材料130之间的界面时,光线L11与L12会发生偏折(deflected),并偏离背板110的法线N1。接着,光线L11与L12从封装材料130进入连接层120。连接层120的折射率可小于或等于封装材料130的折射率,所以当光线L11与L12通过封装材料130与连接层120之间的界面时,光线L11与L12会偏离法线N1。之后,光线L11与L12入射于背板110。
背板110能反射一部分光线L11以及一部分光线L12,特别是反射光线L11与L12两者中的红外光,所以背板110会吸收部分光线L11与L12,不会完全反射光线L11与L12。光线L12被背板110反射之后,入射至光伏元件150的第二表面152,从而被光伏元件150吸收。
光伏元件150具有第一表面151与第二表面152,其中第一表面151相对于第二表面152,而光伏元件150能从第一表面151与第二表面152吸收光线,以产生电能。因此,当光伏元件150从第二表面152吸收光线L12时,光伏元件150能将光线L12转换成电能。
光线L11被背板110反射之后,入射于透明板140与封装材料130之间的界面。之后,光线L11的一部分会被透明板140与封装材料130之间的界面反射。被透明板140与封装材料130之间的界面所反射的部分光线L11会入射于光伏元件150的第一表面151。如此,光伏元件150能吸收光线L11,并将光线L11转换成电能。
在光线L13与L14从透明板140进入太阳能模块100之后,光线L13与L14也会依序穿透透明板140与封装材料130,其中透明板140与封装材料130之间的界面也能偏折光线L13与L14,以使光线L13与L14偏离背板110的法线N1,从而增加光线L13与L14进入第一封装层131的机率。
在被偏折的光线L13与L14进入第一封装层131之后,光线L13与L14入射于连接层120。由于连接层120的折射率小于或等于封装材料130的折射率,所以光线L13与L14会被封装材料130与连接层120之间的界面偏折而偏离法线N1,进而增加光线L13与L14入射于反光部160的机率。
当光线L13与L14入射于反光部160时,反光部160能反射光线L13与L14。由于反光部160在波长300纳米至1200纳米范围内的平均反射率大于或等于50%,因此反光部160基本上能反射光线L13与L14两者中的可见光与红外光。被反光部160反射的光线L13与L14穿透连接层120而入射于第一封装层131,其中光线L14会入射于第二表面152而被光伏元件150吸收。如此,光伏元件150能将光线L14转换成电能。
光线L13被反光部160反射之后,入射于透明板140与封装材料130之间的界面。之后,光线L13的一部分会被透明板140与封装材料130之间的界面反射。被上述界面反射的部分光线L13入射于光伏元件150的第一表面151。如此,光伏元件150能吸收光线L13,并且将光线L13转换成电能。
由此可知,这些反光部160能反射光线(例如光线L11至L14),以增加光伏元件150所能吸收到的光线,从而提升太阳能模块100的发电功率。综使背板110因颜色的缘故而具有很低的反射率,导致背板110难以反射较多光线至光伏元件150,这些反光部160也能反射光线,以增加光伏元件150所能吸收到的光线,从而帮助提升太阳能模块100的发电功率。换句话说,这些反光部160实质上能减少或避免背板110颜色对发电功率的不利影响,因此在背板110颜色可自由选择的条件下,这些反光部160能维持一定的发电功率或提高 发电功率。
此外,反光板112可以让背板110能反射红外光。所以即使有色层111因颜色的缘故而具有很低的反射率(例如黑色有色层111),反光板112仍可以反射外界光线中的红外光,以使这些光伏元件150可以吸收较多的红外光,从而提升太阳能模块100的发电功率
图1E是图1B中的反光件的俯视示意图。请参阅图1B与图1E,在本实施例中,反光件161的形状可以是锥体。例如,反光件161的形状可以是金字塔形,所以反光件161的底面,即反光件161在背板110上所占据的区域,其形状实质上可以是矩形,例如正方形(如图1E所示)。反光件161的宽度161a、长度161b以及高度皆可以大于或等于2微米,其中反光件161的高度等于图1B所示的厚度161h。
由于反光件161的宽度161a、长度161b与高度皆大于或等于2微米,因此这些反光件161基本上不会绕射可见光。不过,一般红外光的波长范围涵盖到2微米,所以在反光件161的宽度161a、长度161b与高度(即厚度161h)等于或接近2微米的情况下,这些反光件161可以绕射波长约为2微米或其附近的红外光。
然而,即使反光件161能绕射红外光,这些反光件161仍可以使光线(例如光线L11至L14)入射至这些光伏元件150。纵使反光件161能绕射光线(包括可见光与红外光),太阳能模块100的整体发电功率也不会受到不利的影响。因此,反光件161的宽度161a与长度161b也可小于2微米,而宽度161a与长度161b皆小于2微米的反光件161依然可以使光伏元件150吸收较多的光线,所以不会造成太阳能模块100整体发电功率降低。
在图1E所示的实施例中,反光件161的底面的形状实质上可为矩形(例如正方形),但在其他实施例中,反光件161的底面的形状实质上也可为圆形或矩形以外的多边形,例如图2所示的反光件201与202。请参阅图2。太阳能模块100中的至少一个反光件161可以替换成图2中的反光件201或202。也就是说,太阳能模块100可以包括反光件201与202其中至少一个。例如,太阳能模块100可包括反光件161、201与202。或者,太阳能模块100包括多个反光件201,但不包括反光件161与202。
反光件201底面的形状实质上可为圆形,而反光件202底面的形状实质上 可以是多边形,例如图2所示的六边形。在图2所示的实施例中,反光件201的底面的直径201r可以大于或等于2微米,而反光件202的宽度202a与长度202b皆可大于或等于2微米。在其他实施例中,直径201r、宽度202a与长度202b也皆可小于2微米,所以直径201r、宽度202a与长度202b不限制大于或等于2微米。另外,反光件201与202的构成材料与形成方法可相同于反光件161的构成材料与形成方法。
在图1B所示的实施例中,各个反光件161的形状可为锥体,例如金字塔形。然而,在其他实施例中,例如图3所示的反光件301、302与303三者的形状皆为柱体,而非如图1B所示的锥体。请参阅图3,图3所示的反光件301、302与303其中至少一个可以替换图1B中至少一个反光件161。也就是说,图1B所示的太阳能模块100可包括反光件301、302与303其中至少一个。
反光件301实质上为具有圆弧顶面的圆柱体,反光件302实质上为立方体或圆柱体,而反光件303实质上为顶面呈屋顶形状的柱体。此外,除了图3所示的反光件301、302与303,其他实施例中的反光件的形状实质上也可以是其他形状的柱体,例如锥台(Frustum)。因此,反光件的形状不以图1B与图3为限制。此外,反光件301、302与303的构成材料与形成方法可以相同于反光件161的构成材料与形成方法。
图4是本发明另一实施例的太阳能模块的剖面示意图。请参阅图4,图4所示的太阳能模块400与前述太阳能模块100相似。例如,太阳能模块400也包括多个反光部460,而这些反光部460也包括多个反光件161。然而,唯一不同于太阳能模块100的地方在于:在图4所示的太阳能模块400中,同一个反光部460的这些反光件161彼此分离而不相连,也不接触。
必须说明的是,在图4所示的太阳能模块400中,其中至少一个反光件161可以替换成如图2所示的反光件201或202,或是如图3所示的反光件301、302或303。所以,图4所示的反光件161的形状也可以是柱体,不限制为锥体(例如金字塔形)。此外,至少一个反光部460也可以包括反光件201、202、301、302与303其中至少一个。例如,单一个反光部460包括反光件201与202。或者,单一个反光部460包括反光件301、302与303。所以,图4所示的反光部460不限制只包括反光件161。
图5是本发明另一实施例的太阳能模块的剖面示意图。请参阅图5,图5 所示的太阳能模块500与前述太阳能模块100相似。例如,太阳能模块500也包括多个反光部560,其构成材料也相同于反光部160的构成材料。不过,有别于太阳能模块100,这些反光部560为多个反光膜,其厚度可以小于2微米。这些反光部560可用印刷方式形成,例如网印或喷墨。当反光部560是利用多次印刷而形成时,反光部560可具有较厚的厚度,甚至可超过2微米。因此,反光部560也可以大于或等于2微米。
特别一提的是,图1B中的至少一个反光部160或图4中的至少一个反光部460可以替换成图5所示的反光部560。换句话说,太阳能模块100或400可以更包括至少一个图5所示的反光部560,而反光部160、460与560其中至少两者可以共同设置在同一块背板110上。
在图5所示的太阳能模块500中,至少一个反光部560可以替换成这些反光件161、201、202、301、302与303其中至少一个,以使太阳能模块500可以仅包括一个反光件(例如反光件161、201、202、301、302或303),或是包括多个反光件。由此可知,以上实施例所揭示的太阳能模块100、400与500可以包括多种反光部或多种反光件,不限制仅包括同一种反光部与反光件。
综上所述,由于这些反光部能反射光线,因此反光部能增加入射于这些光伏元件的光线,以提升发电功率。如此,即使在背板的颜色不利于发电功率的情况下,这些反光部也能帮助维持或提升太阳能模块的发电功率。换句话说,这些反光部能维持一定的发电功率或提高发电功率,以使背板的颜色可以自由选择,进而有助于提升太阳能模块在外观上的视觉效果与美感。
当然,本发明还可有其它多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员当可根据本发明作出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。
工业应用性
由于这些反光部能反射光线,因此反光部能增加入射于这些光伏元件的光线,以提升发电功率。如此,即使在背板的颜色不利于发电功率的情况下,这些反光部也能帮助维持或提升太阳能模块的发电功率。换句话说,这些反光部能维持一定的发电功率或提高发电功率,以使背板的颜色可以自由选择,进而有助于提升太阳能模块在外观上的视觉效果与美感。

Claims (17)

  1. 一种太阳能模块,其特征在于,包括:
    一背板,在波长500纳米至1200纳米范围内的平均反射率大于0;
    多个反光部,设置于该背板上,其中该些反光部彼此分离,且各该反光部在波长300纳米至1200纳米范围内的平均反射率大于或等于50%;
    一连接层,设置于该背板上,并覆盖该些反光部;
    一封装材料,设置于该连接层上;
    多个光伏元件,设置于该封装材料内,其中该些光伏元件分别遮盖该些反光部;以及
    一透明板,设置于该封装材料上。
  2. 如权利要求1所述的太阳能模块,其特征在于,该背板包括:
    一反光板;以及
    一有色层,形成于该反光板上,其中该些反光部设置于该有色层上。
  3. 如权利要求2所述的太阳能模块,其特征在于,该背板在波长500纳米至1200纳米范围内的平均反射率大于20%。
  4. 如权利要求2所述的太阳能模块,其特征在于,该有色层的颜色为黑色。
  5. 如权利要求2所述的太阳能模块,其特征在于,该有色层的构成材料包括碳黑、氧化钛、钴黑、硫化钴、铜铬黑、铁铬黑、苯胺黑、氧化镍、氧化铁、氧化铝、氧化锡、硫酸铅、铬酸铅、碳酸钙以及氧化硅其中至少一种。
  6. 如权利要求5所述的太阳能模块,其特征在于,该有色层的构成材料还包括含氟聚合物。
  7. 如权利要求2所述的太阳能模块,其特征在于,该背板在可见光范围内的平均反射率小于10%。
  8. 如权利要求1所述的太阳能模块,其特征在于,该连接层的折射率小于或等于该封装材料的折射率。
  9. 如权利要求1所述的太阳能模块,其特征在于,该些光伏元件沿着该背板的一法线在该背板上投影而成多个遮盖区域,而该些反光部分别局限在该些遮盖区域内。
  10. 如权利要求1所述的太阳能模块,其特征在于,该些反光部呈规则排 列。
  11. 如权利要求1所述的太阳能模块,其特征在于,各该反光部的厚度大于或等于2微米。
  12. 如权利要求1所述的太阳能模块,其特征在于,至少一该反光部包括至少一反光件,而该至少一反光件的形状为柱体或锥体。
  13. 如权利要求12所述的太阳能模块,其特征在于,该至少一反光件的长度、宽度与高度皆大于或等于2微米。
  14. 如权利要求1所述的太阳能模块,其特征在于,该些反光部包括多个反光件,而同一个该反光部的该些反光件彼此分离。
  15. 如权利要求1所述的太阳能模块,其特征在于,该些反光部包括多个反光件,而同一个该反光部的该些反光件彼此相连。
  16. 如权利要求1所述的太阳能模块,其特征在于,该些反光部为多个反光膜。
  17. 如权利要求1所述的太阳能模块,其特征在于,该些反光部的构成材料包括氧化钛、氧化锡、硫酸钡、氧化硅、氧化铝、氧化镁、碳酸钙、硅酸铝以及硅酸镁其中至少一种。
PCT/CN2020/111088 2020-08-21 2020-08-25 太阳能模块 WO2022036730A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010850028.XA CN112054084A (zh) 2020-08-21 2020-08-21 太阳能模块
CN202010850028.X 2020-08-21

Publications (1)

Publication Number Publication Date
WO2022036730A1 true WO2022036730A1 (zh) 2022-02-24

Family

ID=73599656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/111088 WO2022036730A1 (zh) 2020-08-21 2020-08-25 太阳能模块

Country Status (3)

Country Link
CN (1) CN112054084A (zh)
TW (1) TWI775221B (zh)
WO (1) WO2022036730A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110068216A (ko) * 2009-12-15 2011-06-22 엘지디스플레이 주식회사 태양전지 및 그 제조방법
CN103400885A (zh) * 2013-08-14 2013-11-20 英利集团有限公司 黑色太阳能电池组件
CN109713069A (zh) * 2018-12-21 2019-05-03 苏州赛伍应用技术股份有限公司 一种黑色高反射太阳能电池背板及其制备方法
CN210575985U (zh) * 2019-11-07 2020-05-19 浙江正泰太阳能科技有限公司 一种黑组件
CN111244214A (zh) * 2020-03-19 2020-06-05 浙江晶科能源有限公司 一种光伏组件及光伏系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012507851A (ja) * 2008-11-06 2012-03-29 エルジー・ハウシス・リミテッド 機能性シート及びこれを含む太陽電池モジュール
JP4706759B2 (ja) * 2009-01-23 2011-06-22 トヨタ自動車株式会社 太陽電池
CN104039553B (zh) * 2012-01-13 2016-12-28 惠和株式会社 太阳能电池组件用背板、太阳能电池组件用背板的制造方法和太阳能电池组件
US9812590B2 (en) * 2012-10-25 2017-11-07 Sunpower Corporation Bifacial solar cell module with backside reflector
NL2013168B1 (en) * 2014-07-11 2016-09-09 Stichting Energieonderzoek Centrum Nederland Solar panel and method of manufacturing such a solar panel.
KR101727366B1 (ko) * 2014-09-03 2017-04-14 주식회사 엘지화학 백시트
CN105609575B (zh) * 2015-12-31 2017-12-15 杭州福斯特应用材料股份有限公司 一种高反射光伏组件背板材料
KR102389859B1 (ko) * 2016-06-28 2022-04-22 코오롱인더스트리 주식회사 태양광 모듈 백시트 및 이의 제조방법
JP6907474B2 (ja) * 2016-07-13 2021-07-21 大日本印刷株式会社 太陽電池モジュール用の裏面保護シート及びそれを用いてなる太陽電池モジュール
CN208521943U (zh) * 2018-01-30 2019-02-19 3M创新有限公司 柔性太阳光重定向膜、光重定向膜和光伏模块

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110068216A (ko) * 2009-12-15 2011-06-22 엘지디스플레이 주식회사 태양전지 및 그 제조방법
CN103400885A (zh) * 2013-08-14 2013-11-20 英利集团有限公司 黑色太阳能电池组件
CN109713069A (zh) * 2018-12-21 2019-05-03 苏州赛伍应用技术股份有限公司 一种黑色高反射太阳能电池背板及其制备方法
CN210575985U (zh) * 2019-11-07 2020-05-19 浙江正泰太阳能科技有限公司 一种黑组件
CN111244214A (zh) * 2020-03-19 2020-06-05 浙江晶科能源有限公司 一种光伏组件及光伏系统

Also Published As

Publication number Publication date
TW202209695A (zh) 2022-03-01
TWI775221B (zh) 2022-08-21
CN112054084A (zh) 2020-12-08

Similar Documents

Publication Publication Date Title
TWI472047B (zh) 光伏裝置
KR101325012B1 (ko) 광전지 모듈용 커버기판 및 이를 구비한 광전지 모듈
EP2234177A1 (en) Solar cell module
JP2018061056A (ja) 太陽電池モジュール
KR101707716B1 (ko) 이중 층 구조의 태양광 모듈 및 이의 제조방법
US9105784B2 (en) Solar module
US20120138119A1 (en) Package structure of solar photovoltaic module and method of manufacturing the same
JP2011249418A (ja) 光起電力素子モジュールおよびその製造方法
JP2012079772A (ja) 太陽電池モジュール
US20170365727A1 (en) Solar cell module
WO2022036730A1 (zh) 太阳能模块
JP6207255B2 (ja) 太陽電池モジュール及び太陽電池モジュールの製造方法
US20160079462A1 (en) Package structure of solar photovoltaic module
US20200127152A1 (en) Bifacial solar panel
US20190305165A1 (en) Photovoltaic module
KR101616131B1 (ko) 태양전지 모듈
JP2014036044A (ja) 太陽電池モジュール
JP2000208793A (ja) 太陽電池モジュ―ルおよびその製造方法
CN111725342A (zh) 高吸收率的光伏组件
JP2013004948A (ja) 太陽電池モジュール
JP2008053273A (ja) 太陽電池およびその製造方法
TWI814224B (zh) 具有導光結構的太陽能模組
JP6516228B2 (ja) 太陽電池モジュール
CN218333822U (zh) 一种新型光伏背板和光伏组件
WO2019194151A1 (ja) 太陽電池モジュールおよび太陽電池モジュールの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20949937

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20949937

Country of ref document: EP

Kind code of ref document: A1