WO2022035153A1 - 배터리 용량 추정 장치 및 방법 - Google Patents

배터리 용량 추정 장치 및 방법 Download PDF

Info

Publication number
WO2022035153A1
WO2022035153A1 PCT/KR2021/010477 KR2021010477W WO2022035153A1 WO 2022035153 A1 WO2022035153 A1 WO 2022035153A1 KR 2021010477 W KR2021010477 W KR 2021010477W WO 2022035153 A1 WO2022035153 A1 WO 2022035153A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
voltage
battery
battery cell
capacity
Prior art date
Application number
PCT/KR2021/010477
Other languages
English (en)
French (fr)
Inventor
임보미
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to JP2023504078A priority Critical patent/JP2023534823A/ja
Priority to CN202180060872.5A priority patent/CN116194787A/zh
Priority to EP21856159.5A priority patent/EP4170367A4/en
Priority to US18/018,019 priority patent/US20230273262A1/en
Publication of WO2022035153A1 publication Critical patent/WO2022035153A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/387Determining ampere-hour charge capacity or SoC
    • G01R31/388Determining ampere-hour charge capacity or SoC involving voltage measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention claims the benefit of priority based on Korean Patent Application No. 10-2020-0101866 filed on August 13, 2020, and includes all contents disclosed in the literature of the Korean patent application as a part of this specification.
  • the present invention relates to an apparatus and method for estimating the capacity of a battery by constructing a model by classifying data that is easy to analyze and data that are not easy to analyze.
  • the secondary battery is a battery capable of charging and discharging, and includes all of the conventional Ni/Cd batteries, Ni/MH batteries, and the latest lithium ion batteries.
  • lithium ion batteries have an advantage in that their energy density is much higher than that of conventional Ni/Cd batteries and Ni/MH batteries.
  • lithium ion batteries can be manufactured in a small size and light weight, so they are used as power sources for mobile devices.
  • the lithium ion battery is receiving attention as a next-generation energy storage medium as the range of use has been expanded as a power source for electric vehicles.
  • the secondary battery is generally used as a battery pack including a battery module in which a plurality of battery cells are connected in series and/or in parallel.
  • the state and operation of the battery pack are managed and controlled by the battery management system.
  • LAT lot assembly test
  • the present invention has been devised to solve the above problems, and by dividing data that is easy to analyze and data that is not easy to analyze among logging data of battery cells, and applying a capacity estimation model to each data, accurately and efficiently battery
  • An object of the present invention is to provide an apparatus and method for estimating a battery capacity capable of estimating the capacity of a cell.
  • a battery capacity estimating apparatus includes a voltage measuring unit for measuring the voltage of a battery cell, and when a logging pattern among voltage data of the battery cell is out of a preset reference range, converts the corresponding voltage data as first data
  • a filtering unit for determining the voltage data of the battery cell, a statistical analysis unit for determining second data through statistical analysis of the voltage data of the battery cell, and a capacity estimation model generated by dividing the first data and the second data into a battery cell as a measurement target for estimating the capacity by applying the data classified by the filtering unit or the statistical analysis unit may be included.
  • the method for estimating battery capacity includes measuring a voltage of a battery cell, and when a logging pattern among voltage data of the battery cell is out of a preset reference range, determining the corresponding voltage data as first data Step, determining second data through statistical analysis of voltage data of the battery cell, and estimating the capacity of the battery cell by applying the first data and the second data to a capacity estimation model, respectively can do.
  • the apparatus and method for estimating battery capacity of the present invention data that is easy to analyze and data that is not easy to analyze among logging data of a battery cell are classified, and a capacity estimation model is applied to each data to accurately and efficiently control the battery cell. capacity can be estimated.
  • 1 is a block diagram showing the configuration of a general battery rack.
  • FIG. 2 is a block diagram illustrating a configuration of an apparatus for estimating battery capacity according to an embodiment of the present invention.
  • FIG. 3 is a flowchart illustrating an operation of classifying data by an apparatus for estimating battery capacity according to an embodiment of the present invention.
  • FIG. 4 is a diagram illustrating a correlation between logging data and capacity of a battery cell.
  • FIG. 5 is a diagram illustrating the classification of logging data of battery cells into a plurality of clusters by the apparatus for estimating battery capacity according to an embodiment of the present invention.
  • FIG. 6 is a diagram illustrating that logging data of all battery cells is classified into a plurality of clusters by the apparatus for estimating battery capacity according to an embodiment of the present invention.
  • FIG. 7 is a diagram illustrating an example of a capacity estimation model (LSTM) of an apparatus for estimating battery capacity according to an embodiment of the present invention.
  • LSTM capacity estimation model
  • FIG. 8 is a flowchart illustrating a method for estimating battery capacity according to an embodiment of the present invention.
  • FIG. 9 is a block diagram illustrating a hardware configuration of an apparatus for estimating battery capacity according to an embodiment of the present invention.
  • first, second, first, or second used in various embodiments may modify various components regardless of order and/or importance, do not limit
  • a first component may be referred to as a second component, and similarly, the second component may also be renamed as a first component.
  • 1 is a block diagram showing the configuration of a general battery rack.
  • FIG. 1 it schematically shows a battery control system including a battery rack (1) and the upper controller (2) included in the upper system according to an embodiment of the present invention.
  • the battery rack (1) is made of one or more battery cells and a battery module 10 capable of charging and discharging, the (+) terminal side or the (-) terminal side of the battery module 10 in series
  • the switching unit 14 for controlling the charge/discharge current flow of the battery module 10 connected to the and a battery management system 20 (eg, RBMS).
  • the battery rack 1 may include a plurality of battery modules 10 , sensors 12 , a switching unit 14 , and a battery management system 20 .
  • the switching unit 14 is a device for controlling the current flow for the charging or discharging of the plurality of battery modules 10, for example, according to the specifications of the battery rack (1) at least one relay, magnetic contactor etc. may be used.
  • the battery management system 20 is an interface for receiving measured values of the various parameters described above, and may include a plurality of terminals and a circuit connected to these terminals to process the received values.
  • the battery management system 20 may control ON/OFF of the switching unit 14 , for example, a relay or a contactor, and is connected to the battery module 10 to determine the state of each battery module 10 . can monitor
  • a regression analysis on the voltage of a battery cell may be performed through a separate program, as will be described later. Also, the abnormal type of the battery cell may be classified using the calculated regression equation.
  • the upper controller 2 may transmit a control signal for the battery module 10 to the battery management system 20 . Accordingly, the operation of the battery management system 20 may be controlled based on a signal applied from the upper controller 2 .
  • the battery cell of the present invention may be a configuration included in the battery module 10 used in the ESS (Energy Storage System).
  • the host controller 2 may be a battery bank controller (BBMS) including a plurality of racks or an ESS controller that controls the entire ESS including a plurality of banks.
  • BBMS battery bank controller
  • the battery rack (1) is not limited to this use.
  • FIG. 2 is a block diagram illustrating a configuration of an apparatus for estimating battery capacity according to an embodiment of the present invention.
  • the apparatus 200 for estimating battery capacity according to an embodiment of the present invention includes a voltage measuring unit 210 , a filtering unit 220 , a statistical analysis unit 230 , and a capacity estimating unit 240 . can do.
  • the apparatus 200 for estimating battery capacity according to an embodiment of the present invention may be an apparatus for estimating the capacity of a battery cell by analyzing charging/discharging data of a battery in real time, or may be mounted on a module when manufacturing a battery cell It may be a device that samples and tests whether it is defective before performing the test.
  • the voltage measuring unit 210 may measure the voltage of the battery cell. In this case, the voltage measuring unit 210 may measure the voltage of the battery cell at regular time intervals. For example, the voltage measuring unit 210 may measure a voltage for a rest period after charging or discharging of the battery cell. Also, the voltage measuring unit 210 may measure a current flowing through the battery cell.
  • the filtering unit 220 may determine the corresponding voltage data as the first data when a logging pattern among voltage data of the battery cell is out of a preset reference range. Specifically, when at least one of the logging time and the number of voltage data of the battery cell is out of the reference range, the filtering unit 220 may determine the corresponding voltage data as the first data.
  • the logging pattern of the voltage data of the battery cell may be to extract four voltage data in units of 5 minutes.
  • there is an error in the logging time such as when the logging time of the voltage data of the battery cell is (59, 10, 20, 5 minutes), or the logging time is (5, 10, 20 minutes) or (10, 15, 20 minutes), certain logging data may be omitted.
  • the filtering unit 220 may classify the corresponding data as first data.
  • the statistical analysis unit 230 may determine the second data through statistical analysis of the voltage data of the battery cells. In this case, the statistical analysis unit 230 may perform statistical analysis on data other than the data determined as the first data by the filtering unit 220 . In addition, the statistical analysis unit 230 may calculate the differential data (dV/dt) of the voltage with respect to the time of the battery cell. As will be described later, since the tendency of the differential data with respect to the time of voltage appears more clearly than that of the logged voltage data, the statistical analysis unit 230 may utilize the differential data with respect to the time of the voltage.
  • the statistical analyzer 230 may extract principal component data of the voltage data by performing a principal component analysis (PCA) on the differential data.
  • PCA principal component analysis
  • the statistical analysis unit 230 calculates a plurality of clusters through k-means clustering with respect to the principal component data, determines that the differential data is included in a specific cluster, as second data, and the Differential data not included in the cluster may be determined as the first data.
  • the first data may be data in which the voltage data of the battery cell appears in a discontinuous form
  • the second data may be data in which the voltage data of the battery cell appears in a continuous form. That is, the first data may be data that is not easy to analyze, and the second data may be data that is easy to analyze.
  • the apparatus 200 for estimating battery capacity applies a capacity estimation model by classifying the first data and the second data having different types, and thus data in which the first and second data are mixed.
  • Accuracy can be improved compared to the case of using
  • the battery capacity estimation apparatus 200 according to an embodiment of the present invention in the case of predicting the capacity of 300 cycles using data for the initial 100 cycles during charging and discharging of the battery, data is divided into Accuracy can be improved by applying it to the capacity estimation model.
  • the capacity estimating unit 240 applies the data classified by the filtering unit 220 or the statistical analysis unit 230 to the capacity estimation model generated by dividing the first data and the second data to the battery cell to be measured. can be estimated.
  • the capacity estimation model may be a Long Short Term Memory Networks (LSTM) model.
  • the capacity estimation model generated for each of the first data and the second data may include different parameter values.
  • the apparatus 200 for estimating battery capacity according to an embodiment of the present invention may include a storage unit.
  • the storage unit may store various data such as voltage data measured by the voltage measuring unit 210 , voltage data classified by the filtering unit 220 and the statistical analysis unit 230 , and a capacity estimation program.
  • the apparatus 200 for estimating battery capacity according to an embodiment of the present invention may operate by communicating with an external server through a communication unit (not shown) instead of including a storage unit to transmit/receive the above-described data.
  • the battery capacity estimation apparatus 200 As described above, according to the battery capacity estimation apparatus 200 according to an embodiment of the present invention, data that is easy to analyze and data that is not easy to analyze among logging data of battery cells are divided, and a capacity estimation model is applied to each data. By applying it, it is possible to accurately and efficiently estimate the capacity of a battery cell.
  • FIG. 3 is a flowchart illustrating an operation of classifying data by an apparatus for estimating battery capacity according to an embodiment of the present invention.
  • the corresponding data is classified as first data (S330).
  • time-dependent differential data (dV/dt) of the corresponding voltage data is calculated ( S340 ).
  • characteristic (principal component) data is extracted through principal component analysis (PCA) on the differential data of voltage.
  • PCA principal component analysis
  • the dimension of the data can be reduced by performing principal component analysis on the differential data.
  • the data are classified into a plurality of clusters by applying k-means clustering to the principal component data (S360).
  • the classified data is not included in a specific cluster (eg, cluster 2) (NO), it is classified as the first data ( S370 ).
  • the data is classified as second data (S380).
  • a time unit of logging data may be checked, and voltage data may be classified through principal component analysis and a k-means clustering algorithm. Accordingly, it is possible to more efficiently and accurately perform battery capacity estimation by classifying data having similar characteristics.
  • FIG. 4 is a diagram illustrating a correlation between logging data and capacity of a battery cell.
  • the graph on the left of FIG. 4 is a battery capacity value (eg, SOH) (y-axis) for each of the differential data (dV1, dV2, dV3, dV4) (x-axis) with respect to time of voltage after charging and discharging Correlation with (y-axis) The relationship is shown, and the table on the right shows the logging data of voltage after charging and discharging of the battery.
  • SOH battery capacity value
  • the x-axis represents dV1, dV2, dV3, dV4, which are voltage differential data after charging, and dV1, dV2, dV3, and dV4, which are voltage differential data after discharging, respectively.
  • the correlation with the battery capacity value is higher. That is, it can be seen that the data 25 and 29 immediately after charging and discharging have a higher correlation with the battery capacity value than other data. This is because the voltage change immediately after charging and discharging is relatively distinct compared to the voltage change thereafter.
  • FIG. 5 is a diagram illustrating the classification of logging data of battery cells into a plurality of clusters by the apparatus for estimating battery capacity according to an embodiment of the present invention.
  • the x-axis represents the number of charge/discharge cycles of the battery cell
  • the y-axis represents the differential data dV1 to dV4 with respect to the time of the voltage in the idle period after the charge/discharge of the battery cell.
  • cluster 1 the aforementioned first data is indicated
  • cluster 2 is indicated by the aforementioned second data.
  • the data is relatively discontinuous. That is, since the first data has irregular characteristics, it may be difficult to analyze the battery capacity.
  • the second data belonging to cluster 2 it can be seen that it appears in the form of a continuous and gentle curve compared to the first data. That is, the second data shows a relatively constant tendency compared to the first data, and may be data that is easy to analyze.
  • FIG. 6 is a diagram illustrating that logging data of all battery cells is classified into a plurality of clusters by the apparatus for estimating battery capacity according to an embodiment of the present invention.
  • the x-axis represents the number of charge/discharge cycles of the battery cells
  • the y-axis represents the differential data dV2 with respect to the time of voltage in the rest period after charging/discharging of all battery cells.
  • data belonging to cluster 1 includes a plurality of data irregularly protruding to the top or bottom.
  • data belonging to cluster 2 appears in a smoother form compared to cluster 1. Accordingly, it is possible to more accurately calculate the result when estimating the capacity of the battery.
  • FIG. 7 is a diagram illustrating an example of a capacity estimation model (LSTM) of an apparatus for estimating battery capacity according to an embodiment of the present invention.
  • LSTM capacity estimation model
  • the capacity estimation model shown in FIG. 7 represents a long-term memory network model (LSTM).
  • C denotes long-term information
  • h denotes information from a previous step
  • ⁇ and tanh denote activation functions
  • W denotes weight
  • b denotes noise.
  • the LSTM of FIG. 7 consists of a forget gate layer, a decision layer, a new cell state update (Update new state value), and a step of determining an output value (Decide the output value).
  • the forget gate layer receives h t-1 and x t having an output value between 0 and 1 as inputs, and determines which information to keep (1) or discard (0).
  • the decision layer determines which value to update to store the new state.
  • a value to be updated is determined through an input gate layer, and a vector C of new candidate values that can be newly added to the cell state is generated through the tanh layer.
  • the old cell state (Ct-1) is updated with the new cell state (Ct).
  • the output value determination step what value to output is determined, a value between -1 and 1 is extracted for the cell state through the tanh function, and the output value is multiplied by the output value of the forget gate layer.
  • the capacity value (eg, capacity %) of the battery cell may be output through the above-described processes.
  • the LSTM model of FIG. 7 is a known configuration, a detailed description thereof will be omitted.
  • the long-term short-term memory network model (LSTM) of FIG. 7 is only an example, and the capacity estimation model of the present invention is not limited thereto, and various estimation models may be used.
  • FIG. 8 is a flowchart illustrating a method for estimating battery capacity according to an embodiment of the present invention.
  • the voltage of the battery cell is first measured ( S810 ).
  • the voltage of the battery cell may be measured at regular time intervals. For example, a voltage may be measured for a rest period after charging or discharging of a battery cell.
  • the corresponding voltage data is determined as the first data ( S820 ).
  • the corresponding voltage data may be determined as the first data.
  • the logging pattern of the voltage data of the battery cell may be to extract four voltage data in units of 5 minutes.
  • second data is determined through statistical analysis of the voltage data of the battery cells ( S830 ).
  • differential data (dV/dt) of the voltage with respect to the time of the battery cell may be calculated.
  • principal component data for voltage data may be extracted by performing principal component analysis (PCA) on the differential data.
  • PCA principal component analysis
  • a plurality of clusters are calculated through k-means clustering for the principal component data, and when the differential data is included in a specific cluster, it is determined as the second data, and the differential data not included in the cluster can be determined as the first data. there is.
  • the capacity of the battery cell is estimated by applying the first data and the second data extracted in steps S820 and S830 respectively to the capacity estimation model ( S840 ).
  • the capacity estimation model may be the long-term memory network (LSTM) model described above.
  • the capacity estimation model of the first data and the second data may be the same, but parameter values input to the capacity estimation model may be different.
  • data that is easy to analyze and data that is not easily analyzed are classified among logging data of battery cells, and a capacity estimation model is applied to each data to be accurate. and can efficiently estimate the capacity of a battery cell.
  • FIG. 9 is a block diagram illustrating a hardware configuration of an apparatus for diagnosing a battery abnormality according to an embodiment of the present invention.
  • the battery capacity estimation apparatus 900 may include an MCU 910 , a memory 920 , an input/output I/F 930 , and a communication I/F 940 .
  • an MCU 910 may include an MCU 910 , a memory 920 , an input/output I/F 930 , and a communication I/F 940 .
  • the MCU 910 executes various programs (eg, a battery capacity estimation program, a principal component analysis program, a k-means clustering program, etc.) stored in the memory 920 , and through these programs, data classification and It may be a processor that processes various data for capacity estimation and the like, and performs the functions of FIG. 2 described above.
  • programs eg, a battery capacity estimation program, a principal component analysis program, a k-means clustering program, etc.
  • the memory 920 may store various programs related to statistical analysis of battery cells, capacity estimation, and the like. Also, the memory 920 may store various data such as voltage data of battery cells and differential data of battery cell voltages.
  • a plurality of such memories 920 may be provided as needed.
  • the memory 920 may be a volatile memory or a non-volatile memory.
  • RAM random access memory
  • DRAM dynamic random access memory
  • SRAM static random access memory
  • non-volatile memory ROM, PROM, EAROM, EPROM, EEPROM, flash memory, or the like may be used. Examples of the above-listed memories 720 are merely examples and are not limited to these examples.
  • the input/output I/F 930 is an interface that connects between an input device (not shown) such as a keyboard, mouse, and touch panel and an output device such as a display (not shown) and the MCU 710 to transmit and receive data. can provide an input device (not shown) such as a keyboard, mouse, and touch panel and an output device such as a display (not shown) and the MCU 710 to transmit and receive data. can provide an input device (not shown) such as a keyboard, mouse, and touch panel and an output device such as a display (not shown) and the MCU 710 to transmit and receive data. can provide
  • the communication I/F 940 is a configuration capable of transmitting and receiving various data with a server, and may be various devices capable of supporting wired or wireless communication. For example, a program or various data for statistical analysis and capacity estimation of battery cells may be transmitted/received from an external server provided separately through the communication I/F 940 .
  • the computer program according to an embodiment of the present invention may be written in the memory 920 and processed by the MCU 910 to be implemented as, for example, a module that performs each functional block illustrated in FIG. 2 . there is.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

본 발명의 일 실시 예에 따른 배터리 용량 추정 장치는 배터리 셀의 전압을 측정하는 전압 측정부, 상기 배터리 셀의 전압 데이터 중 로깅 패턴이 미리 설정된 기준 범위를 벗어난 경우, 해당 전압 데이터를 제1 데이터로 결정하는 필터링부, 상기 배터리 셀의 전압 데이터에 대한 통계적 분석을 통해 제2 데이터를 결정하는 통계 분석부 및 상기 제1 데이터와 상기 제2 데이터를 구분하여 생성된 용량 추정 모델에 측정 대상인 배터리 셀에 대해서 상기 필터링부 또는 상기 통계 분석부에 의하여 분류된 데이터를 적용하여 용량을 추정하는 용량 추정부를 포함할 수 있다.

Description

배터리 용량 추정 장치 및 방법
관련출원과의 상호인용
본 발명은 2020.08.13.에 출원된 한국 특허 출원 제10-2020-0101866호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용을 본 명세서의 일부로서 포함한다.
기술분야
본 발명은 분석이 용이한 데이터와 용이하지 않은 데이터를 구분하여 모델을 구성함으로써 배터리의 용량을 추정하기 위한 장치 및 방법에 관한 것이다.
최근 이차 전지에 대한 연구 개발이 활발히 이루어지고 있다. 여기서 이차 전지는 충방전이 가능한 전지로서, 종래의 Ni/Cd 전지, Ni/MH 전지 등과 최근의 리튬 이온 전지를 모두 포함하는 의미이다. 이차 전지 중 리튬 이온 전지는 종래의 Ni/Cd 전지, Ni/MH 전지 등에 비하여 에너지 밀도가 훨씬 높다는 장점이 있다, 또한, 리튬 이온 전지는 소형, 경량으로 제작할 수 있어서, 이동 기기의 전원으로 사용된다. 또한, 리튬 이온 전지는 전기 자동차의 전원으로 사용 범위가 확장되어 차세대 에너지 저장 매체로 주목을 받고 있다.
또한, 이차 전지는 일반적으로 복수 개의 배터리 셀들이 직렬 및/또는 병렬로 연결된 배터리 모듈을 포함하는 배터리 팩으로 이용된다. 그리고 배터리 팩은 배터리 관리 시스템에 의하여 상태 및 동작이 관리 및 제어된다.
이러한 이차 전지는 생산시 각 셀의 품질을 판단하기 위해 생산 공정에서 LAT(Lot Assembly Test)를 수행한다. 일반적으로 복수의 셀의 단위인 Lot 당 1개의 샘플을 선택하여 LAT를 진행한다. LAT는 이차 전지를 가속 퇴화시켜 300 사이클 후에도 용량이 일정 수준 이상이 되는지 여부를 확인하기 위함이다.
이러한 LAT를 통해 1 내지 300 사이클을 동일한 실험 조건으로 완전 충전 및 방전을 진행하고 300 사이클에서의 SOH(state of health) 수명에 따라 셀의 테스트 합격 여부를 결정한다. 그러나, LAT에서 로깅되어 있는 데이터는 분석이 용이한 데이터와 그렇지 않은 데이터가 함께 포함되어 있어 데이터 값을 분석함에 있어 어려움이 있으며, 정확도가 떨어지는 문제점이 있다.
본 발명은 상기와 같은 과제를 해결하기 위해 고안된 것으로서, 배터리 셀의 로깅 데이터 중 분석이 용이한 데이터와 분석이 용이하지 않은 데이터를 구분하고, 각 데이터에 용량 추정 모델을 적용함으로써 정확하고 효율적으로 배터리 셀의 용량을 추정할 수 있는 배터리 용량 추정 장치 및 방법을 제공하는 것을 목적으로 한다.
본 발명의 일 실시 예에 따른 배터리 용량 추정 장치는 배터리 셀의 전압을 측정하는 전압 측정부, 상기 배터리 셀의 전압 데이터 중 로깅 패턴이 미리 설정된 기준 범위를 벗어난 경우, 해당 전압 데이터를 제1 데이터로 결정하는 필터링부, 상기 배터리 셀의 전압 데이터에 대한 통계적 분석을 통해 제2 데이터를 결정하는 통계 분석부 및 상기 제1 데이터와 상기 제2 데이터를 구분하여 생성된 용량 추정 모델에 측정 대상인 배터리 셀에 대해서 상기 필터링부 또는 상기 통계 분석부에 의하여 분류된 데이터를 적용하여 용량을 추정하는 용량 추정부를 포함할 수 있다.
본 발명의 일 실시 예에 따른 배터리 용량 추정 방법은 배터리 셀의 전압을 측정하는 단계, 상기 배터리 셀의 전압 데이터 중 로깅 패턴이 미리 설정된 기준 범위를 벗어난 경우, 해당 전압 데이터를 제1 데이터로 결정하는 단계, 상기 배터리 셀의 전압 데이터에 대한 통계적 분석을 통해 제2 데이터를 결정하는 단계 및 상기 제1 데이터 및 상기 제2 데이터를 용량 추정 모델에 각각 적용함으로써 상기 배터리 셀의 용량을 추정하는 단계를 포함할 수 있다.
본 발명의 배터리 용량 추정 장치 및 방법에 따르면, 배터리 셀의 로깅 데이터 중 분석이 용이한 데이터와 분석이 용이하지 않은 데이터를 구분하고, 각 데이터에 용량 추정 모델을 적용함으로써 정확하고 효율적으로 배터리 셀의 용량을 추정할 수 있다.
도 1은 일반적인 배터리 랙의 구성을 나타내는 블록도이다.
도 2는 본 발명의 일 실시 예에 따른 배터리 용량 추정 장치의 구성을 나타내는 블록도이다.
도 3은 본 발명의 일 실시 예에 따른 배터리 용량 추정 장치가 데이터를 분류하는 동작을 나타내는 흐름도이다.
도 4는 배터리 셀의 로깅 데이터와 용량 간의 상관관계를 나타내는 도면이다.
도 5는 본 발명의 일 실시 예에 따른 배터리 용량 추정 장치에 의해 배터리 셀의 로깅 데이터를 복수의 클러스터로 분류한 것을 나타낸 도면이다.
도 6은 본 발명의 일 실시 예에 따른 배터리 용량 추정 장치에 의해 모든 배터리 셀들의 로깅 데이터를 복수의 클러스터로 분류한 것을 나타낸 도면이다.
도 7은 본 발명의 일 실시 예에 따른 배터리 용량 추정 장치의 용량 추정 모델(LSTM)의 예시를 나타낸 도면이다.
도 8은 본 발명의 일 실시 예에 따른 배터리 용량 추정 방법을 나타내는 흐름도이다.
도 9는 본 발명의 일 실시 예에 따른 배터리 용량 추정 장치의 하드웨어 구성을 나타내는 블록도이다.
이하, 첨부한 도면을 참조하여 본 발명의 다양한 실시 예들에 대해 상세히 설명하고자 한다. 본 문서에서 도면상의 동일한 구성 요소에 대해서는 동일한 참조 부호를 사용하고 동일한 구성요소에 대해서 중복된 설명은 생략한다.
본 문서에 개시되어 있는 본 발명의 다양한 실시 예들에 대해서, 특정한 구조적 내지 기능적 설명들은 단지 본 발명의 실시 예를 설명하기 위한 목적으로 예시된 것으로, 본 발명의 다양한 실시 예들은 여러 가지 형태로 실시될 수 있으며 본 문서에 설명된 실시 예들에 한정되는 것으로 해석되어서는 아니 된다.
다양한 실시 예에서 사용된 "제1", "제2", "첫째", 또는 "둘째" 등의 표현들은 다양한 구성요소들을, 순서 및/또는 중요도에 상관없이 수식할 수 있고, 해당 구성 요소들을 한정하지 않는다. 예를 들면, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성 요소는 제2 구성 요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성 요소로 바꾸어 명명될 수 있다.
본 문서에서 사용된 용어들은 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 다른 실시 예의 범위를 한정하려는 의도가 아닐 수 있다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함할 수 있다.
기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명의 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가질 수 있다. 일반적으로 사용되는 사전에 정의된 용어들은 관련 기술의 문맥 상 가지는 의미와 동일 또는 유사한 의미를 가지는 것으로 해석될 수 있으며, 본 문서에서 명백하게 정의되지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다. 경우에 따라서, 본 문서에서 정의된 용어일지라도 본 발명의 실시 예들을 배제하도록 해석될 수 없다.
도 1은 일반적인 배터리 랙의 구성을 나타내는 블록도이다.
도 1을 참조하면, 본 발명의 일 실시 예에 따른 배터리 랙(1)과 상위 시스템에 포함되어 있는 상위 제어기(2)를 포함하는 배터리 제어 시스템을 개략적으로 나타낸다.
도 1에 도시된 바와 같이, 배터리 랙(1)은 하나의 이상의 배터리 셀로 이루어지고 충방전 가능한 배터리 모듈(10)과, 배터리 모듈(10)의 (+) 단자 측 또는 (-) 단자 측에 직렬로 연결되어 배터리 모듈(10)의 충방전 전류 흐름을 제어하기 위한 스위칭부(14)와, 배터리 랙(1)의 전압, 전류, 온도 등을 모니터링하여, 과충전 및 과방전 등을 방지하도록 제어 관리하는 배터리 관리 시스템(20)(예를 들면, RBMS)을 포함한다. 이 때, 배터리 랙(1)에는 배터리 모듈(10), 센서(12), 스위칭부(14) 및 배터리 관리 시스템(20)이 복수 개 구비될 수 있다.
여기서, 스위칭부(14)는 복수의 배터리 모듈(10)의 충전 또는 방전에 대한 전류 흐름을 제어하기 위한 소자로서, 예를 들면, 배터리 랙(1)의 사양에 따라서 적어도 하나의 릴레이, 마그네틱 접촉기 등이 이용될 수 있다.
배터리 관리 시스템(20)은 상술한 각종 파라미터를 측정한 값을 입력받는 인터페이스로서, 복수의 단자와, 이들 단자와 연결되어 입력받은 값들의 처리를 수행하는 회로 등을 포함할 수 있다. 또한, 배터리 관리 시스템(20)은, 스위칭부(14) 예를 들어, 릴레이 또는 접촉기 등의 ON/OFF를 제어할 수도 있으며, 배터리 모듈(10)에 연결되어 배터리 모듈(10) 각각의 상태를 감시할 수 있다.
한편, 본 발명의 배터리 관리 시스템(20)에서는 이하에서 후술하는 바와 같이 배터리 셀의 전압에 관한 회귀 분석을 별도의 프로그램을 통해 수행할 수 있다. 또한, 산출된 회귀식을 이용하여 배터리 셀의 이상 유형을 분류할 수 있다.
상위 제어기(2)는 배터리 관리 시스템(20)으로 배터리 모듈(10)에 대한 제어 신호를 전송할 수 있다. 이에 따라, 배터리 관리 시스템(20)은 상위 제어기(2)로부터 인가되는 신호에 기초하여 동작이 제어될 수 있을 것이다. 한편, 본 발명의 배터리 셀은 ESS(Energy Storage System)에 이용되는 배터리 모듈(10)에 포함된 구성일 수 있다. 그리고 이러한 경우, 상위 제어기(2)는 복수의 랙을 포함하는 배터리 뱅크의 제어기(BBMS) 또는 복수의 뱅크를 포함하는 ESS 전체를 제어하는 ESS 제어기일 수 있을 것이다. 다만, 배터리 랙(1)은 이러한 용도에 한정되는 것은 아니다.
이와 같은 배터리 랙(1)의 구성 및 배터리 관리 시스템(20)의 구성은 공지된 구성이므로, 보다 구체적인 설명은 생략하기로 한다.
도 2는 본 발명의 일 실시 예에 따른 배터리 용량 추정 장치의 구성을 나타내는 블록도이다.
도 2를 참조하면, 본 발명의 일 실시 예에 따른 배터리 용량 추정 장치(200)는 전압 측정부(210), 필터링부(220), 통계 분석부(230) 및 용량 추정부(240)를 포함할 수 있다. 예를 들면, 본 발명의 일 실시 예에 따른 배터리 용량 추정 장치(200)는 실시간으로 배터리의 충방전 데이터를 분석하여 배터리 셀의 용량을 추정하는 장치일 수 있으며, 또는 배터리 셀 제조시 모듈에 탑재하기 전에 불량 여부를 샘플링하여 테스트하는 장치일 수 있다.
전압 측정부(210)는 배터리 셀의 전압을 측정할 수 있다. 이 때, 전압 측정부(210)는 일정 시간 간격으로 배터리 셀의 전압을 측정할 수 있다. 예를 들어, 전압 측정부(210)는 배터리 셀의 충전 또는 방전 후 휴지 구간에 대하여 전압을 측정할 수 있다. 또한, 전압 측정부(210)는 배터리 셀에 흐르는 전류를 측정할 수 있다.
필터링부(220)는 배터리 셀의 전압 데이터 중 로깅 패턴이 미리 설정된 기준 범위를 벗어난 경우, 해당 전압 데이터를 제1 데이터로 결정할 수 있다. 구체적으로, 필터링부(220)는 배터리 셀의 전압 데이터 중 로깅 시간 및 개수 중 적어도 하나가 기준 범위를 벗어난 경우, 해당 전압 데이터를 제1 데이터로 결정할 수 있다.
예를 들면, 배터리 셀의 전압 데이터의 로깅 패턴은 5분 단위로 4개의 전압 데이터를 추출하는 것일 수 있다. 이 경우, 배터리 셀의 전압 데이터의 로깅 시간이 (59, 10, 20, 5분)인 경우와 같이 로깅 시간에 오류가 있거나, 로깅 시간이 (5, 10, 20분) 또는 (10, 15, 20분)인 경우 등 특정 로깅 데이터가 누락되는 경우가 발생할 수 있다. 이와 같은 경우, 필터링부(220)는 해당 데이터들을 제1 데이터로 분류할 수 있다.
통계 분석부(230)는 배터리 셀의 전압 데이터에 대한 통계적 분석을 통해 제2 데이터를 결정할 수 있다. 이 때, 통계 분석부(230)는 필터링부(220)에서 제1 데이터로 결정된 데이터 이외의 데이터를 대상으로 하여 통계적 분석을 수행할 수 있다. 또한, 통계 분석부(230)는 배터리 셀의 시간에 대한 전압의 미분 데이터(dV/dt)를 산출할 수 있다. 후술하는 것과 같이, 로깅된 전압 데이터에 비해 전압의 시간에 대한 미분 데이터가 경향성이 보다 뚜렷하게 나타나므로, 통계 분석부(230)는 전압의 시간에 대한 미분 데이터를 활용할 수 있다.
구체적으로, 통계 분석부(230)는 미분 데이터에 대하여 주성분 분석(Principal Component Analysis, PCA)을 수행하여 전압 데이터에 대한 주성분 데이터를 추출할 수 있다.
또한, 통계 분석부(230)는 주성분 데이터에 대하여 k-평균 클러스터화(k-means clustering)를 통해 복수의 클러스터를 산출하고, 미분 데이터가 특정 클러스터에 포함되는 경우 제2 데이터로 결정하고, 상기 클러스터에 포함되지 않는 미분 데이터를 제1 데이터로 결정할 수 있다.
예를 들면, 제1 데이터는 배터리 셀의 전압 데이터가 불연속적인 형태로 나타나는 데이터이고, 제2 데이터는 상기 배터리 셀의 전압 데이터가 연속적인 형태로 나타나는 데이터일 수 있다. 즉, 제1 데이터는 분석이 용이하지 않은 데이터이고, 제2 데이터는 분석이 용이한 데이터일 수 있다.
이처럼, 본 발명의 일 실시 예에 따른 배터리 용량 추정 장치(200)는 개형이 상이한 제1 데이터와 제2 데이터를 구분하여 용량 추정 모델을 적용함으로써, 기존에 제1, 2 데이터가 혼합되어 있는 데이터를 이용하는 경우에 비해 정확도를 향상시킬 수 있다. 예를 들어, 본 발명의 일 실시 예에 따른 배터리 용량 추정 장치(200)에 의하면, 배터리의 충방전시 초기 100 사이클에 대한 데이터를 이용하여 300 사이클의 용량을 예측하는 경우에 있어서 데이터를 구분하여 용량 추정 모델에 적용함으로써 정확도를 높일 수 있다.
용량 추정부(240)는 제1 데이터와 제2 데이터를 구분하여 생성된 용량 추정 모델에 측정 대상인 배터리 셀에 대해서 필터링부(220) 또는 통계 분석부(230)에 의하여 분류된 데이터를 적용하여 용량을 추정할 수 있다. 예를 들면, 용량 추정 모델은 장단기 기억 네트워크(Long Short Term Memory Networks, LSTM) 모델일 수 있다. 이 때, 제1 데이터와 제2 데이터 각각에 대해 생성된 용량 추정 모델은 상이한 파라미터 값을 포함할 수 있다.
한편, 도 2에서는 나타내지 않았으나, 본 발명의 일 실시 예에 따른 배터리 용량 추정 장치(200)는 저장부를 포함할 수 있다. 이 때, 저장부는 전압 측정부(210)에서 측정된 전압 데이터, 필터링부(220)와 통계 분석부(230)에 의해 분류된 전압 데이터, 용량 추정 프로그램 등 각종 데이터를 저장할 수 있다. 또한, 본 발명의 일 실시 예에 따른 배터리 용량 추정 장치(200)는 저장부를 포함하는 대신 통신부(미도시)를 통해 외부의 서버와 통신하여 상술한 데이터들을 송수신하는 방식으로 동작할 수 있다.
이와 같이, 본 발명의 일 실시 예에 따른 배터리 용량 추정 장치(200)에 따르면, 배터리 셀의 로깅 데이터 중 분석이 용이한 데이터와 분석이 용이하지 않은 데이터를 구분하고, 각 데이터에 용량 추정 모델을 적용함으로써 정확하고 효율적으로 배터리 셀의 용량을 추정할 수 있다.
도 3은 본 발명의 일 실시 예에 따른 배터리 용량 추정 장치가 데이터를 분류하는 동작을 나타내는 흐름도이다.
도 3을 참조하면, 본 발명의 일 실시 예에 따른 배터리 용량 추정 장치에서는 먼저 배터리 셀이 현재 휴지 상태(즉, 전류 = 0)인지 판단한다(S310). 배터리 셀이 휴지 상태인 경우 미리 설정된 방식에 따라 전압 데이터가 로깅되었는지 여부를 확인한다(S320). 예를 들면, 로깅 방식은 5분 간격으로 4개의 전압 데이터를 로깅하는 것일 수 있다.
만약, 전압 데이터가 정해진 로깅 방식에서 벗어난 경우(NO), 해당 데이터를 제1 데이터로 분류한다(S330). 반면, 전압 데이터가 정해진 방식에 따라 정상적으로 로깅이 된 경우(YES)에는 해당 전압 데이터의 시간에 대한 미분 데이터(dV/dt)를 산출한다(S340).
그리고, 전압의 미분 데이터에 대해 주성분 분석(PCA)을 통해 특질(주성분) 데이터를 추출한다. 이 때, 미분 데이터에 대해 주성분 분석을 함으로써 데이터의 차원을 축소시킬 수 있다. 그리고, 주성분 데이터에 대해 k-평균 클러스터링을 적용함으로써 데이터들을 복수의 클러스터로 분류한다(S360).
이 때, 분류된 데이터가 특정 클러스터(예를 들면, 클러스터 2)에 포함되지 않는 경우(NO), 제1 데이터로 분류한다(S370). 반면, 데이터가 특정 클러스터에 포함되는 경우(YES), 해당 데이터를 제2 데이터로 분류한다(S380).
이와 같이, 본 발명의 일 실시 예에 따른 배터리 용량 추정 장치에 의하면, 로깅 데이터의 시간 단위를 확인하고, 주성분 분석과 k-평균 클러스터링 알고리즘을 통해 전압 데이터를 구분할 수 있다. 따라서, 특성이 유사한 데이터끼리 분류하여 배터리의 용량 추정을 보다 효율적이고 정확하게 수행할 수 있다.
도 4는 배터리 셀의 로깅 데이터와 용량 간의 상관관계를 나타내는 도면이다.
도 4의 좌측 그래프는 충전 및 방전 후 전압의 시간에 대한 미분 데이터(dV1, dV2, dV3, dV4)(x축) 각각에 대한 배터리 용량값(예를 들면, SOH)(y축)과의 상관관계를 나타내고, 우측 표는 배터리의 충전 및 방전 후 전압의 로깅 데이터를 나타낸다.
도 4를 참조하면, x축은 각각 충전 후 전압 미분 데이터인 dV1, dV2, dV3, dV4 및 방전 후 전압 미분 데이터인 dV1, dV2, dV3, dV4를 나타낸다. 이 때, 도 4의 그래프에서 y축의 값이 1 또는 -1에 가깝고 세로 막대의 길이가 짧을수록 배터리 용량값과의 상관관계가 높은 것이다. 즉, 충전 및 방전 직후의 데이터(25 및 29)가 다른 데이터에 비해 배터리 용량값과의 상관관계가 높음을 알 수 있다. 이는 충전 및 방전 직후의 전압의 변화가 그 이후의 전압 변화에 비해 상대적으로 뚜렷하게 나타나기 때문이다.
도 5는 본 발명의 일 실시 예에 따른 배터리 용량 추정 장치에 의해 배터리 셀의 로깅 데이터를 복수의 클러스터로 분류한 것을 나타낸 도면이다.
도 5를 참조하면, x축은 배터리 셀의 충방전 사이클 수, y축은 배터리 셀의 충방전 후 휴지 구간에서의 전압의 시간에 대한 미분 데이터(dV1 내지 dV4)를 나타낸다. 또한, 클러스터 1의 경우 전술한 제1 데이터를 나타내고, 클러스터 2는 전술한 제2 데이터를 나타낸다.
도 5에 나타낸 것과 같이, 클러스터 1에 속한 제1 데이터의 경우에는 데이터가 상대적으로 불연속적으로 나타남을 알 수 있다. 즉, 제1 데이터는 그 특성이 불규칙적이므로 배터리 용량 분석에 용이하지 않은 데이터일 수 있다.
한편, 클러스터 2에 속한 제2 데이터의 경우, 제1 데이터에 비해 연속적이고 완만한 곡선의 형태로 나타남을 알 수 있다. 즉, 제2 데이터는 제1 데이터와 비교하여 상대적으로 일정한 경향성을 보이는 것으로서, 분석에 용이한 데이터일 수 있다.
도 6은 본 발명의 일 실시 예에 따른 배터리 용량 추정 장치에 의해 모든 배터리 셀들의 로깅 데이터를 복수의 클러스터로 분류한 것을 나타낸 도면이다.
도 6을 참조하면, x축은 배터리 셀의 충방전 사이클 수, y축은 전체 배터리 셀의 충방전 후 휴지 구간에서의 전압의 시간에 대한 미분 데이터(dV2)를 나타낸다.
도 5의 경우와 마찬가지로, 전체 배터리 셀들의 데이터를 합산하여 보더라도 클러스터 1에 속하는 데이터는 상단 또는 하단으로 불규칙하게 돌출된 데이터가 다수 발생함을 알 수 있다. 반면, 클러스터 2에 속하는 데이터는 클러스터 1에 비해 완만한 형태로 나타난다. 따라서, 배터리의 용량 추정시 보다 정확하게 결과를 산출할 수 있다.
도 7은 본 발명의 일 실시 예에 따른 배터리 용량 추정 장치의 용량 추정 모델(LSTM)의 예시를 나타낸 도면이다.
도 7에 나타낸 용량 추정 모델은 장단기 기억 네트워크 모델(LSTM)을 나타낸다. 도 7에서, C는 장기 정보, h는 이전 step에서의 정보, σ 및 tanh는 활성화(activation) 함수, W는 가중치, b는 노이즈를 나타낸다. 또한, 도 7의 LSTM은 포겟 게이트 레이어(Forget gate layer), 디시전 레이어(Decision layer)와 새로운 셀 스테이트 업데이트(Update new state value), 출력값 결정(Decide the output value)의 단계로 구성되어 있다.
구체적으로, 포겟 게이트 레이어는 0과 1 사이의 출력값을 갖는 ht-1과 xt를 입력으로 하여, 어떠한 정보를 유지할지(1) 또는 버릴지(0) 여부를 결정한다. 또한, 디시전 레이어에서는 어떠한 값을 업데이트하여 새로운 상태를 저장할지 결정하는 것이다. 이 때, 인풋 게이트 레이어(input gate layer)를 통해 어떠한 값을 갱신할지 결정을 하고, tanh 레이어를 통해 셀 스테이트에 새로 더해질 수 있는 새로운 후보값들의 벡터 C를 생성한다.
또한, 새로운 셀 스테이트 업데이트 단계에서는 오래된 셀 스테이트(Ct-1)를 새로운 셀 스테이트(Ct)로 업데이트한다. 그리고, 출력값 결정 단계에서는 어떠한 값을 출력할지 결정하고, 셀 스테이트를 tanh 함수를 통해 -1과 1 사이의 값을 추출한 후 출력된 값을 포겟 게이트 레이어의 출력갑소가 곱한다.
이처럼, 전술한 시계열 전압 데이터가 도 7에 나타낸 용량 추정 모델에 입력되면 상술한 과정들을 거쳐 배터리 셀의 용량값(예를 들면, 용량 %)이 출력될 수 있다. 한편, 도 7의 LSTM 모델은 공지된 구성이므로 자세한 설명은 생략한다.
한편, 도 7의 장단기 기억 네트워크 모델(LSTM)은 예시적인 것일 뿐, 본 발명의 용량 추정 모델이 이에 제한되는 것은 아니며 다양한 추정 모델들이 사용될 수 있다.
도 8은 본 발명의 일 실시 예에 따른 배터리 용량 추정 방법을 나타내는 흐름도이다.
도 8을 참조하면, 본 발명의 일 실시 예에 따른 배터리 용량 추정 방법에서는 먼저 배터리 셀의 전압을 측정한다(S810). 이 때, 단계 S810에서는 일정 시간 간격으로 배터리 셀의 전압을 측정할 수 있다. 예를 들면, 배터리 셀의 충전 또는 방전 후 휴지 구간에 대하여 전압을 측정할 수 있다.
그리고, 배터리 셀의 전압 데이터 중 로깅 패턴이 미리 설정된 기준 범위를 벗어난 경우, 해당 전압 데이터를 제1 데이터로 결정한다(S820). 구체적으로, 단계 S820에서는 배터리 셀의 전압 데이터 중 로깅 시간 및 개수 중 적어도 하나가 기준 범위를 벗어난 경우, 해당 전압 데이터를 제1 데이터로 결정할 수 있다. 예를 들면, 배터리 셀의 전압 데이터의 로깅 패턴은 5분 단위로 4개의 전압 데이터를 추출하는 것일 수 있다.
다음으로, 배터리 셀의 전압 데이터에 대한 통계적 분석을 통해 제2 데이터를 결정한다(S830). 이 때, 단계 S830에서는 배터리 셀의 시간에 대한 전압의 미분 데이터(dV/dt)를 산출할 수 있다. 구체적으로, 단계 S830에서는 미분 데이터에 대하여 주성분 분석(PCA)을 수행하여 전압 데이터에 대한 주성분 데이터를 추출할 수 있다. 또한, 주성분 데이터에 대하여 k-평균 클러스터링을 통해 복수의 클러스터를 산출하고, 미분 데이터가 특정 클러스터에 포함되는 경우 제2 데이터로 결정하고, 상기 클러스터에 포함되지 않는 미분 데이터를 제1 데이터로 결정할 수 있다.
마지막으로, 단계 S820과 S830에서 추출된 제1 데이터 및 제2 데이터를 용량 추정 모델에 각각 적용함으로써 배터리 셀의 용량을 추정한다(S840). 예를 들면, 용량 추정 모델은 전술한 장단기 기억 네트워크(LSTM) 모델일 수 있다. 이 때, 제1 데이터와 제2 데이터의 용량 추정 모델은 동일할 수 있으며, 다만 용량 추정 모델에 입력되는 파라미터 값이 달라질 수 있다.
이와 같이, 본 발명의 일 실시 예에 따른 배터리 용량 추정 방법에 따르면, 배터리 셀의 로깅 데이터 중 분석이 용이한 데이터와 분석이 용이하지 않은 데이터를 구분하고, 각 데이터에 용량 추정 모델을 적용함으로써 정확하고 효율적으로 배터리 셀의 용량을 추정할 수 있다.
도 9는 본 발명의 일 실시 예에 따른 배터리 이상 진단 장치의 하드웨어 구성을 나타내는 블록도이다.
도 9를 참조하면, 본 발명의 일 실시 예에 따른 배터리 용량 추정 장치(900)는 MCU(910), 메모리(920), 입출력 I/F(930) 및 통신 I/F(940)를 포함할 수 있다.
MCU(910)는 메모리(920)에 저장되어 있는 각종 프로그램(예를 들면, 배터리 용량 추정 프로그램, 주성분 분석 프로그램, k-means 클러스터링 프로그램 등)을 실행시키고, 이러한 프로그램들을 통해 배터리 셀의 데이터 분류와 용량 추정 등을 위한 각종 데이터를 처리하며, 전술한 도 2의 기능들을 수행하도록 하는 프로세서일 수 있다.
메모리(920)는 배터리 셀의 통계 분석, 용량 추정 등에 관한 각종 프로그램을 저장할 수 있다. 또한, 메모리(920)는 배터리 셀의 전압 데이터, 배터리 셀 전압의 미분 데이터 등 각종 데이터를 저장할 수 있다.
이러한 메모리(920)는 필요에 따라서 복수 개 마련될 수도 있을 것이다. 메모리(920)는 휘발성 메모리일 수도 있으며 비휘발성 메모리일 수 있다. 휘발성 메모리로서의 메모리(920)는 RAM, DRAM, SRAM 등이 사용될 수 있다. 비휘발성 메모리로서의 메모리(920)는 ROM, PROM, EAROM, EPROM, EEPROM, 플래시 메모리 등이 사용될 수 있다. 상기 열거한 메모리(720)들의 예를 단지 예시일 뿐이며 이들 예로 한정되는 것은 아니다.
입출력 I/F(930)는, 키보드, 마우스, 터치 패널 등의 입력 장치(미도시)와 디스플레이(미도시) 등의 출력 장치와 MCU(710) 사이를 연결하여 데이터를 송수신할 수 있도록 하는 인터페이스를 제공할 수 있다.
통신 I/F(940)는 서버와 각종 데이터를 송수신할 수 있는 구성으로서, 유선 또는 무선 통신을 지원할 수 있는 각종 장치일 수 있다. 예를 들면, 통신 I/F(940)를 통해 별도로 마련된 외부 서버로부터 배터리 셀의 통계 분석과 용량 추정을 위한 프로그램이나 각종 데이터 등을 송수신할 수 있다.
이와 같이, 본 발명의 일 실시 예에 따른 컴퓨터 프로그램은 메모리(920)에 기록되고, MCU(910)에 의해 처리됨으로써, 예를 들면 도 2에서 도시한 각 기능 블록들을 수행하는 모듈로서 구현될 수도 있다.
이상에서, 본 발명의 실시예를 구성하는 모든 구성 요소들이 하나로 결합하거나 결합하여 동작하는 것으로 설명되었다고 해서, 본 발명이 반드시 이러한 실시예에 한정되는 것은 아니다. 즉, 본 발명의 목적 범위 안에서라면, 그 모든 구성 요소들이 하나 이상으로 선택적으로 결합하여 동작할 수도 있다.
또한, 이상에서 기재된 "포함하다", "구성하다" 또는 "가지다" 등의 용어는, 특별히 반대되는 기재가 없는 한, 해당 구성 요소가 내재할 수 있음을 의미하는 것이므로, 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것으로 해석되어야 한다. 기술적이거나 과학적인 용어를 포함한 모든 용어들은, 다르게 정의되지 않는 한, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미가 있다. 사전에 정의된 용어와 같이 일반적으로 사용되는 용어들은 관련 기술의 문맥상의 의미와 일치하는 것으로 해석되어야 하며, 본 발명에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구 범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리 범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (15)

  1. 배터리 셀의 전압을 측정하는 전압 측정부;
    상기 배터리 셀의 전압 데이터 중 로깅 패턴이 미리 설정된 기준 범위를 벗어난 경우, 해당 전압 데이터를 제1 데이터로 결정하는 필터링부;
    상기 배터리 셀의 전압 데이터에 대한 통계적 분석을 통해 제2 데이터를 결정하는 통계 분석부; 및
    상기 제1 데이터와 상기 제2 데이터를 구분하여 생성된 용량 추정 모델에 측정 대상인 배터리 셀에 대해서 상기 필터링부 또는 상기 통계 분석부에 의하여 분류된 데이터를 적용하여 용량을 추정하는 용량 추정부를 포함하는 배터리 용량 추정 장치.
  2. 청구항 1에 있어서,
    상기 통계 분석부는 상기 필터링부에서 상기 제1 데이터로 결정된 데이터 이외의 데이터를 대상으로 하여 통계적 분석을 수행하는 배터리 용량 추정 장치.
  3. 청구항 1에 있어서,
    상기 통계 분석부는 상기 배터리 셀의 시간에 대한 전압의 미분 데이터를 산출하는 배터리 용량 추정 장치.
  4. 청구항 3에 있어서,
    상기 통계 분석부는 복수의 미분 데이터에 대하여 주성분 분석(Principal Component Analysis, PCA)을 수행하여 상기 복수의 미분 데이터를 하나의 주성분 데이터로 추출하는 배터리 용량 추정 장치.
  5. 청구항 4에 있어서,
    상기 통계 분석부는 상기 주성분 데이터에 대하여 k-평균 클러스터화(k-means clustering)를 통해 복수의 클러스터를 산출하고, 상기 미분 데이터가 미리 설정된 클러스터에 포함되는 경우 상기 제2 데이터로 결정하는 배터리 용량 추정 장치.
  6. 청구항 5에 있어서,
    상기 통계 분석부는 상기 클러스터에 포함되지 않는 미분 데이터를 상기 제1 데이터로 결정하는 배터리 용량 추정 장치.
  7. 청구항 1에 있어서,
    상기 용량 추정 모델은 장단기 기억 네트워크(Long Short Term Memory Networks, LSTM) 모델인 배터리 용량 추정 장치.
  8. 청구항 1에 있어서,
    상기 전압 측정부는 상기 배터리 셀의 충전 또는 방전 후 휴지 구간에 대하여 전압을 측정하는 배터리 용량 추정 장치.
  9. 청구항 1에 있어서,
    상기 필터링부는 상기 배터리 셀의 전압 데이터 중 로깅 시간 및 개수 중 적어도 하나가 상기 기준 범위를 벗어난 경우, 해당 전압 데이터를 제1 데이터로 결정하는 배터리 용량 추정 장치.
  10. 청구항 1에 있어서,
    상기 제1 데이터는 상기 배터리 셀의 전압 데이터가 불연속적인 형태로 나타나는 데이터이고, 상기 제2 데이터는 상기 배터리 셀의 전압 데이터가 연속적인 형태로 나타나는 데이터인 배터리 용량 추정 장치.
  11. 배터리 셀의 전압을 측정하는 단계;
    상기 배터리 셀의 전압 데이터 중 로깅 패턴이 미리 설정된 기준 범위를 벗어난 경우, 해당 전압 데이터를 제1 데이터로 결정하는 단계;
    상기 배터리 셀의 전압 데이터에 대한 통계적 분석을 통해 제2 데이터를 결정하는 단계; 및
    상기 제1 데이터 및 상기 제2 데이터를 용량 추정 모델에 각각 적용함으로써 상기 배터리 셀의 용량을 추정하는 단계를 포함하는 배터리 용량 추정 방법.
  12. 청구항 11에 있어서,
    상기 배터리 셀의 시간에 대한 전압의 미분 데이터를 산출하는 단계를 더 포함하는 배터리 용량 추정 방법.
  13. 청구항 12에 있어서,
    복수의 미분 데이터에 대하여 주성분 분석(Principal Component Analysis, PCA)을 수행하여 상기 복수의 미분 데이터를 하나의 주성분 데이터로 추출하는 단계를 더 포함하는 배터리 용량 추정 방법.
  14. 청구항 13에 있어서,
    상기 제2 데이터를 결정하는 단계는 상기 주성분 데이터에 대하여 k-평균 클러스터화(k-means clustering)를 통해 복수의 클러스터를 산출하고, 상기 미분 데이터가 미리 설정된 클러스터에 포함되는 경우 상기 제2 데이터로 결정하는 배터리 용량 추정 방법.
  15. 청구항 14에 있어서,
    상기 클러스터에 포함되지 않는 미분 데이터를 상기 제1 데이터로 결정하는 단계를 더 포함하는 배터리 용량 추정 방법.
PCT/KR2021/010477 2020-08-13 2021-08-09 배터리 용량 추정 장치 및 방법 WO2022035153A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023504078A JP2023534823A (ja) 2020-08-13 2021-08-09 バッテリー容量推定装置及び方法
CN202180060872.5A CN116194787A (zh) 2020-08-13 2021-08-09 电池容量估计装置和方法
EP21856159.5A EP4170367A4 (en) 2020-08-13 2021-08-09 APPARATUS AND METHOD FOR ESTIMATING BATTERY CAPACITY
US18/018,019 US20230273262A1 (en) 2020-08-13 2021-08-09 Battery capacity estimation apparatus and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200101866A KR20220021248A (ko) 2020-08-13 2020-08-13 배터리 용량 추정 장치 및 방법
KR10-2020-0101866 2020-08-13

Publications (1)

Publication Number Publication Date
WO2022035153A1 true WO2022035153A1 (ko) 2022-02-17

Family

ID=80247431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/010477 WO2022035153A1 (ko) 2020-08-13 2021-08-09 배터리 용량 추정 장치 및 방법

Country Status (6)

Country Link
US (1) US20230273262A1 (ko)
EP (1) EP4170367A4 (ko)
JP (1) JP2023534823A (ko)
KR (1) KR20220021248A (ko)
CN (1) CN116194787A (ko)
WO (1) WO2022035153A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115656834A (zh) * 2022-11-02 2023-01-31 武汉动力电池再生技术有限公司 一种电池容量预测方法、装置及电子设备
DE102022002866A1 (de) 2022-08-08 2024-02-08 Mercedes-Benz Group AG Verfahren zur Schätzung eines Gesundheitszustands einer Batteriezelle eines elektrischen Energiespeichers, Computerprogrammprodukt sowie elektronische Recheneinrichtung
CN118504627A (zh) * 2024-07-18 2024-08-16 孚能科技(赣州)股份有限公司 电池性能预测模型的生成与预测方法、装置、设备及介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220045451A (ko) 2020-10-05 2022-04-12 주식회사 엘지에너지솔루션 배터리 상태 진단 장치 및 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1010213A (ja) * 1996-06-27 1998-01-16 Yazaki Corp 電気自動車の電池残存容量測定装置
KR20160101506A (ko) * 2015-02-17 2016-08-25 삼성전자주식회사 배터리 신호 세그먼트 데이터의 확률 추론을 기반으로 한 배터리 상태 추정 방법 및 장치
KR20160107095A (ko) * 2015-03-03 2016-09-13 삼성전자주식회사 배터리의 잔여 수명을 자동으로 실시간 추정하는 장치 및 방법
JP2017062149A (ja) * 2015-09-24 2017-03-30 スズキ株式会社 バッテリの充電率推定装置およびバッテリの充電率推定方法
JP2019113524A (ja) * 2017-10-17 2019-07-11 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー リチウムイオン電池の容量低下と寿命予測のためのデータ駆動モデル

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102357351B1 (ko) * 2015-01-07 2022-01-28 삼성전자주식회사 복수의 배터리 셀들을 포함하는 배터리 팩의 상태를 추정하는 장치 및 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1010213A (ja) * 1996-06-27 1998-01-16 Yazaki Corp 電気自動車の電池残存容量測定装置
KR20160101506A (ko) * 2015-02-17 2016-08-25 삼성전자주식회사 배터리 신호 세그먼트 데이터의 확률 추론을 기반으로 한 배터리 상태 추정 방법 및 장치
KR20160107095A (ko) * 2015-03-03 2016-09-13 삼성전자주식회사 배터리의 잔여 수명을 자동으로 실시간 추정하는 장치 및 방법
JP2017062149A (ja) * 2015-09-24 2017-03-30 スズキ株式会社 バッテリの充電率推定装置およびバッテリの充電率推定方法
JP2019113524A (ja) * 2017-10-17 2019-07-11 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー リチウムイオン電池の容量低下と寿命予測のためのデータ駆動モデル

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4170367A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022002866A1 (de) 2022-08-08 2024-02-08 Mercedes-Benz Group AG Verfahren zur Schätzung eines Gesundheitszustands einer Batteriezelle eines elektrischen Energiespeichers, Computerprogrammprodukt sowie elektronische Recheneinrichtung
CN115656834A (zh) * 2022-11-02 2023-01-31 武汉动力电池再生技术有限公司 一种电池容量预测方法、装置及电子设备
WO2024093005A1 (zh) * 2022-11-02 2024-05-10 武汉动力电池再生技术有限公司 一种电池容量预测方法、装置及电子设备
CN118504627A (zh) * 2024-07-18 2024-08-16 孚能科技(赣州)股份有限公司 电池性能预测模型的生成与预测方法、装置、设备及介质

Also Published As

Publication number Publication date
US20230273262A1 (en) 2023-08-31
EP4170367A1 (en) 2023-04-26
JP2023534823A (ja) 2023-08-14
CN116194787A (zh) 2023-05-30
EP4170367A4 (en) 2023-11-29
KR20220021248A (ko) 2022-02-22

Similar Documents

Publication Publication Date Title
WO2022035153A1 (ko) 배터리 용량 추정 장치 및 방법
WO2022103185A1 (ko) 전지의 용량 측정 장치 및 방법, 및 상기 장치를 포함하는 전지 제어 시스템
WO2021169488A1 (zh) 监控电池短路的方法、系统以及装置
WO2022034983A1 (ko) 신경망 기반의 배터리 셀 불량 및 화재 사전 진단 방법 및 장치
WO2022025533A1 (ko) 배터리 진단 장치 및 방법
WO2022035149A1 (ko) 배터리 이상 진단 장치 및 방법
WO2020262787A1 (ko) 내부 단락 셀 검출 방법
WO2021125676A1 (ko) 배터리 진단 장치 및 방법
WO2021230533A1 (ko) 배터리를 진단하기 위한 장치 및 그 방법
WO2019083300A1 (en) APPARATUS AND METHODS FOR IDENTIFYING ONE OR MORE ANOMALIES IN A RECHARGEABLE EQUIPMENT BATTERY AND CONNECTED COMPONENT (S)
WO2021141255A1 (ko) 시뮬레이션 시스템 및 데이터 분산 방법
WO2020262789A1 (ko) 이상 배터리 셀 검출 방법
WO2021040236A1 (ko) Ess 배터리의 상태진단 및 수명예측을 위한 장치 및 방법
WO2022149824A1 (ko) 배터리 관리 장치 및 방법
WO2022092621A1 (ko) 배터리 진단 장치 및 방법
WO2022265458A1 (ko) 이차전지 저전압 불량 예측 장치 및 방법, 상기 장치를 포함하는 전지 제어 시스템
US20220166075A1 (en) Method for Enhancing a Battery Module Model of a Battery Module Type
WO2022149917A1 (ko) 배터리 관리 장치 및 방법
WO2023136512A1 (ko) 배터리 충전 심도 산출 장치 및 그것의 동작 방법
WO2022149822A1 (ko) 배터리 관리 장치 및 방법
WO2022035151A1 (ko) 배터리 이상 진단 장치 및 방법
WO2022139143A1 (ko) 배터리 관리 장치 및 방법
WO2023018070A1 (ko) 배터리 관리 장치 및 이를 포함하는 배터리 검사 시스템
WO2023177224A1 (ko) 배터리 수명 예측 장치 및 그것의 동작 방법
WO2023182860A1 (ko) 배터리 셀 공정 데이터 분석 시스템 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21856159

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023504078

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021856159

Country of ref document: EP

Effective date: 20230120

NENP Non-entry into the national phase

Ref country code: DE