WO2022265458A1 - 이차전지 저전압 불량 예측 장치 및 방법, 상기 장치를 포함하는 전지 제어 시스템 - Google Patents

이차전지 저전압 불량 예측 장치 및 방법, 상기 장치를 포함하는 전지 제어 시스템 Download PDF

Info

Publication number
WO2022265458A1
WO2022265458A1 PCT/KR2022/008648 KR2022008648W WO2022265458A1 WO 2022265458 A1 WO2022265458 A1 WO 2022265458A1 KR 2022008648 W KR2022008648 W KR 2022008648W WO 2022265458 A1 WO2022265458 A1 WO 2022265458A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
learning
low voltage
data
prediction
Prior art date
Application number
PCT/KR2022/008648
Other languages
English (en)
French (fr)
Other versions
WO2022265458A8 (ko
Inventor
공창선
김선민
이규황
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP22825381.1A priority Critical patent/EP4300109A1/en
Priority to JP2023553062A priority patent/JP2024509525A/ja
Priority to CN202280017983.2A priority patent/CN117795355A/zh
Priority to US18/283,261 priority patent/US20240168093A1/en
Publication of WO2022265458A1 publication Critical patent/WO2022265458A1/ko
Publication of WO2022265458A8 publication Critical patent/WO2022265458A8/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3828Arrangements for monitoring battery or accumulator variables, e.g. SoC using current integration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • G06N20/10Machine learning using kernel methods, e.g. support vector machines [SVM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • G06N20/20Ensemble learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computing arrangements using knowledge-based models
    • G06N5/01Dynamic search techniques; Heuristics; Dynamic trees; Branch-and-bound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an apparatus and method for predicting low voltage failure of a secondary battery, and a battery control system including the apparatus.
  • the degree of drop in operating voltage or open circuit voltage (OCV) during charging/discharging processes is used as a criterion.
  • An object of the present invention is to provide an apparatus and method for predicting a low voltage failure of a secondary battery by correcting the influence of battery usage conditions, and a battery control system including the apparatus.
  • An exemplary embodiment of the present invention includes a first learning data input unit that receives first learning data of a secondary battery measured in a charging, discharging, and rest process of an individual secondary battery selected as a first learning target for a specific time; a first measurement data input unit that receives first measurement data of a secondary battery selected as a first prediction target in a charging, discharging, and stopping process performed for a specific time; Machine learning is performed on the first learning data of the secondary battery input to the first learning data input unit to generate a low voltage prediction model of the first secondary battery, and a main factor among the first learning data A first data learning unit for selecting; While comparing the low voltage determination prediction result of the secondary battery obtained by applying the first measurement data to the low voltage prediction model of the first secondary battery generated by the first data learning unit and the low voltage determination result of the actual secondary battery of the first measurement data, a first verification unit for verifying and optimizing the low voltage prediction model of the first secondary battery by finding an optimal value of the weight k that can maximize the performance of the low voltage prediction model of the
  • a second data learning unit a second data learning unit
  • a second output unit outputting a low voltage determination prediction result of the secondary battery obtained by applying the second measurement data to the low voltage prediction model of the second secondary battery generated by the second data learning unit.
  • Another exemplary embodiment of the present invention includes the steps of inputting first learning data of a secondary battery measured in a charging, discharging, and rest process of an individual secondary battery selected as a first learning target for a specific time; performing machine learning on the first learning data, generating a low voltage prediction model of the first secondary battery, and selecting a main factor from the first learning data; inputting first measurement data of a secondary battery selected in a charging, discharging, and stopping process of the secondary battery selected as a first prediction target for a specific time; Low voltage prediction of the first secondary battery while comparing the low voltage determination prediction result of the secondary battery obtained by applying the first measurement data to the generated low voltage prediction model of the first secondary battery and the actual secondary battery low voltage determination result of the first measurement data.
  • a secondary battery low voltage failure prediction method is provided in which process conditions of the secondary battery selected as the first learning object and first prediction object and process conditions of the secondary battery selected as the second learning object and
  • One embodiment of the present invention provides a battery control system device including the above-described secondary battery low voltage failure prediction device.
  • One embodiment of the present invention relates to a mobile device including the battery control system device.
  • one embodiment of the present invention relates to a computer program stored in a recording medium for executing the method for predicting a low voltage failure of a secondary battery.
  • the apparatus and method according to the exemplary embodiment of the present invention may improve the accuracy of determining a low voltage defect of a secondary battery, thereby reducing process costs.
  • the apparatus and method according to the exemplary embodiment of the present invention reduce the time required to determine a low voltage defect of a secondary battery, and enable early detection and response to a low voltage defect, thereby minimizing the risk due to the defect. .
  • 1 is a diagram showing a confusion matrix for obtaining FDR, FOR, and MER.
  • FIG. 2 is a diagram illustrating a process of predicting a low voltage defect of an existing apparatus and method for predicting a low voltage defect of a secondary battery.
  • 3 to 7 are diagrams illustrating a process of predicting low voltage failure of a secondary battery low voltage failure prediction apparatus and method according to an exemplary embodiment of the present invention.
  • FIG. 8 is a diagram illustrating a process of obtaining an optimal value of a weight k for minimizing a misclassification error rate (MER).
  • MER misclassification error rate
  • FIG. 9 is a diagram comparing MER values of an embodiment that has undergone a transfer learning process and a comparative example that has not undergone a transfer learning process.
  • learning data means data for machine learning.
  • measurement data means data input to calculate “prediction data”
  • prediction data means data output as a result of applying machine learning to the input measurement data
  • low voltage defect is a phenomenon in which the voltage of a secondary battery in use rapidly and irreversibly drops in a short period of time (Sudden voltage drop), and is distinguished from a normal performance decrease of a secondary battery due to long-term use.
  • the criterion for determining the low voltage defect is defined in advance according to quality standards determined for each type of secondary battery.
  • An exemplary embodiment of the present invention includes a first learning data input unit that receives first learning data of a secondary battery measured in a charging, discharging, and rest process of an individual secondary battery selected as a first learning target for a specific time; a first measurement data input unit that receives first measurement data of a secondary battery selected as a first prediction target in a charging, discharging, and stopping process performed for a specific time; Machine learning is performed on the first learning data of the secondary battery input to the first learning data input unit to generate a low voltage prediction model of the first secondary battery, and a main factor among the first learning data A first data learning unit for selecting; While comparing the low voltage determination prediction result of the secondary battery obtained by applying the first measurement data to the low voltage prediction model of the first secondary battery generated by the first data learning unit and the low voltage determination result of the actual secondary battery of the first measurement data, 1 a first verification unit for verifying and optimizing a low voltage prediction model of a secondary battery; a model transfer unit receiving the optimized low voltage prediction model of the first secondary battery; a
  • a second data learning unit a second data learning unit
  • a second output unit outputting a low voltage determination prediction result of the secondary battery obtained by applying the second measurement data to the low voltage prediction model of the second secondary battery generated by the second data learning unit.
  • the device for predicting low-voltage failure of a secondary battery of the present invention accumulates a large amount of new data whenever there is a change in data or a battery model for establishing a decision criterion for predicting and diagnosing low-voltage failure, or when manufacturing conditions change. Since the time for the collection process to be repeated can be reduced, when the secondary battery low voltage defect prediction device of the present invention is applied to secondary batteries with different process conditions, the time required to determine the secondary battery low voltage defect is reduced, and the low voltage Risk due to defects can be minimized by enabling early detection and response to defects.
  • a battery selected as a learning target and a battery selected as a prediction target may mean individual cells independently disposed on a module, a pack, or a tray.
  • the battery selected as a prediction target and the battery selected as a prediction target may mean individual batteries each independently disposed on a module, a pack, or a tray.
  • machine learning is a field of artificial intelligence, and means a computer program improving information processing ability through learning using data and processing experience, or a technology related thereto.
  • Techniques related to the machine learning are widely known in the art to which the present invention belongs. That is, a detailed description of a specific learning algorithm for machine learning will be omitted.
  • the machine learning of the first data learning unit and the second data learning unit of the apparatus for predicting low voltage failure of a secondary battery is independently performed using a decision tree, a random forest,
  • One or more methods selected from among neural networks, deep neural networks, support vector machines, and gradient boosting machines may be applied, but is not limited thereto.
  • learning data and “measurement data” are data for accurately predicting low-voltage failure of a secondary battery using machine learning, and are measured, collected, and stored in a battery charging and discharging, rest state. It means data including the charging voltage of the battery, the discharging voltage of the battery, the charging current of the battery, the discharging current of the battery, the charging capacity of the battery, the discharging capacity of the battery, the impedance of the battery, and the temperature of the battery, It may include all factors that can be measured and collected in the charging and discharging of the battery and in the rest state.
  • the first learning data of the secondary battery, the first measurement data of the secondary battery, the second learning data, and the second measurement data of the secondary battery of the apparatus for predicting low voltage failure of the secondary battery are respectively Independently, the voltage measurement value of the battery, the current measurement value of the battery, the resistance measurement value of the battery, the temperature measurement value of the battery, the capacity measurement value of the battery, and the power of the battery measured in the charging, discharging and resting processes of the secondary battery. It may mean one or more measured values selected from among measured values, but is not limited thereto.
  • “measurement data” may mean including only data selected as a “main factor” in “learning data”.
  • the “main factor” refers to the average value of the charging voltage, the average value of the discharging voltage, the measured charging temperature value, the measured discharging temperature value, the measured charging capacity value, the measured discharging capacity value, It may include the measured value of charging power, the measured discharging power, and the measured electrical resistance, but the number and types of these main factors may be the same or different depending on the type of battery, and are limited to the types of the main factors. it is not going to be
  • the main factor is the open circuit voltage (OCV) measured at the start point of the pause process in the pause process section between the specific charge process and the discharge process, as represented by Equation 1 below, and the end point of the pause process It may include a deviation between open circuit voltage values (OCV) measured at , but is not limited thereto.
  • OCV open circuit voltage
  • OCV1 means the open-circuit voltage value measured at the start point of the pause process
  • OCV2 means the open-circuit voltage value measured at the end point of the pause process
  • means an absolute value
  • D means a deviation between the open circuit voltage value (OCV) measured at the start point of the pause process and the open circuit voltage value (OCV) measured at the end point of the pause process.
  • the main factor corresponds to data that is easy to collect in the process of charging, discharging, and stopping the secondary battery, and by selecting the main factor and using it as measurement data, the accuracy of predicting low-voltage failure of a secondary battery is increased, and the prediction You can reduce the time required.
  • the measured value can be measured by conventional devices, techniques and methods used in the field.
  • an ideal battery without special words means a secondary battery.
  • specific time refers to an arbitrarily determined time during which the charging and discharging process of the secondary battery is performed. For example, when it is decided to perform the charging and discharging process of the secondary battery for 1 hour, the specific time means 1 hour.
  • Verification and optimization of the low voltage prediction model of the first secondary battery of the first verifying unit of the apparatus for predicting low voltage failure of a secondary battery according to the present invention is the optimal value of the weight k that can maximize the performance of the low voltage prediction model of the first secondary battery.
  • the optimal value of the weight k may mean a value capable of minimizing a misclassification error rate (MER).
  • the misclassification error rate is the sum of the number of incorrectly determined batteries, that is, normal but judged to be defective or defective but judged to be normal among the total number of cells that have undergone the normal/defective determination. means the ratio of values.
  • different stochastic weighting factors can be assigned to the normal cell group (Class) and the defective cell group (Class) included in the data, and the accuracy of the model can be maximized.
  • a threshold value (k) of the weight is introduced.
  • the critical value of the weight means the optimal value of the weight k, and the k is a real number having a value greater than 0 and less than 1 (0 ⁇ k ⁇ 1).
  • FDR false discovery rate
  • FOR false omission rate
  • FDR means the ratio of the number of batteries that are found to be defective as a result of the final judgment to the total number of batteries that are classified as normal
  • FOR is the number of batteries that are finally determined to be good in the total number of batteries that are classified as defective. refers to the ratio of
  • the apparatus for predicting low-voltage failure of a secondary battery aims to minimize both the outflow rate of defects and the over-inspection rate, which means to minimize the misclassification error rate (MER).
  • MER misclassification error rate
  • FDR, FOR and MER can be expressed by Equations 2 to 4 below.
  • MER(%) ⁇ (FP + FN) / (TP + TN + FP + FN) ⁇ ⁇ 100(%)
  • FDR, FOR, and MER use a confusion matrix as shown in FIG. 1 when an actual normal cell is predicted to be normal (TP), when normal is incorrectly predicted to be defective (FN), It is possible to calculate the probability of the ratio corresponding to each item by dividing it into four items: when it is incorrectly predicted as normal (FP) and when it is predicted correctly as bad (TN).
  • FDR and FOR are calculated according to the change in the weight k value, and the k value that minimizes both index values is determined as the optimal value of the weight k.
  • An apparatus for predicting a low voltage failure of a secondary battery includes a first output unit for outputting a low voltage determination prediction result of a secondary battery obtained by applying the first measurement data to a low voltage prediction model of the first secondary battery generated by the first data learning unit. can include more.
  • An apparatus for predicting a low voltage failure of a secondary battery is a low voltage determination prediction result of a secondary battery obtained by applying the second measurement data to the low voltage prediction model of the second secondary battery generated by the second data learning unit and the actual second measurement data. It may further include a second verifying unit that verifies the low voltage prediction model of the second secondary battery while comparing the low voltage determination result of the secondary battery.
  • the "input unit” is an interface for receiving various necessary data. Specifically, in the present specification, the input unit may be divided into a learning data input unit receiving learning data and a measurement data input unit receiving measurement data. More specifically, the “input unit” is an interface that measures or collects a capacitance factor measured or collected under a rated capacity condition and transfers the measured or collected capacitance factor measurement data to a reference value storage unit or data learning unit. A method of receiving and transmitting data to the learning unit is not particularly limited.
  • the "data learning unit” is an interface for performing machine learning using learning data input to the learning data input unit.
  • the "output unit” is an interface for calculating prediction data by reflecting the result of machine learning.
  • a method of calculating the data of the output unit is not particularly limited.
  • the "verifier” determines the accuracy of the predicted data of the low voltage failure prediction model of the secondary battery reflecting the result of machine learning, and in some cases, proceeds with the process of optimizing the low voltage failure prediction model of the secondary battery It is an interface.
  • the "model transfer unit” is used to use a low-voltage failure prediction model of a secondary battery derived by reflecting a result of machine learning in the case of predicting a low-voltage failure of a secondary battery under a condition different from the existing condition. It is an interface for delivering data or an optimal value of weight k that can maximize the performance of the model.
  • the model transition unit includes information about the machine learning model (Model) that has been modeled under specific conditions, including a weight value k for minimizing the misclassification rate, for example, structural information of the model, learning It receives information on the probability distribution of data and information on major factors, and performs a function that enables it to be used when performing machine learning on secondary battery data under different conditions.
  • Model machine learning model
  • the interface according to the present invention can perform a predetermined function, its method and form are not particularly limited.
  • Integrated management means, for example, managing all data input, transmitted, or calculated to the interface of the device according to the present invention by a specific main computer or server, calculating a new value from the managed data, or returning it to the input unit. It can include all actions such as inputting data.
  • N means an integer greater than or equal to 1.
  • FIG. 3 illustrates a process of predicting a low voltage failure of a low voltage failure prediction device for a secondary battery according to an exemplary embodiment of the present invention, and specifically, first learning data and first measurement data corresponding to a secondary battery under a predetermined condition.
  • D1 charge and discharge data
  • the first secondary battery Calculate the low voltage prediction model.
  • the optimal value of the weight is determined, and the low voltage prediction model of the first secondary battery is optimized (step 1 is completed).
  • the optimized model may be used to predict low voltage failure of the secondary battery for which the first learning data and the first measurement data are collected.
  • the optimized low-voltage prediction model of the first secondary battery may be model transferred, and the low-voltage prediction model of the first secondary battery may be used to predict the low-voltage failure of the secondary battery under conditions different from those of the data D1.
  • start phase 2 Charge/discharge data D2 corresponding to the second learning data of the secondary battery under conditions different from those of the data D1 is collected, and a low voltage prediction model of the second secondary battery is calculated through machine learning modeling with the collected data D2.
  • the low voltage prediction model of the first secondary battery transferred in the process of calculating the low voltage prediction model of the second secondary battery is used.
  • the low voltage defect of the secondary battery may be predicted by applying the second measurement data of the secondary battery under conditions different from those of data D1 to the low voltage prediction model of the second secondary battery ( end of phase 2).
  • FIG. 4 more schematically illustrates a process of predicting a low voltage defect of the apparatus for predicting a low voltage defect of a secondary battery according to an exemplary embodiment of the present invention, and first learning data (D train ) which is machine learning data of a source domain.
  • first learning data D train
  • D1 first measurement data
  • ML machine learning
  • M1 M1
  • TL transfer and learned
  • the apparatus for predicting low-voltage failure of a secondary battery according to the present invention is characterized in that a previously generated low-voltage failure prediction model is transferred and used, and through this, the time for generating the prediction model can be shortened. That is, for example, as shown in FIG. 5, even if the data D2 of the target domain is smaller than the data D1 of the source domain, if the characteristics of the two domains are similar to each other, by using the information of the predictive model M1 Even if small-sized data is trained, the performance of model M2 can be improved with high accuracy.
  • FIG. 6 A more schematic configuration of the apparatus for predicting low voltage failure of a secondary battery according to the present invention is shown in FIG. 6 .
  • a part that collects data to be input into the first learning data input unit, the first measurement data input unit, the second learning data input unit, and the second measurement data input unit of the present invention may be referred to as a data collection unit.
  • a sensor unit capable of measuring characteristics of a target secondary battery may be further included.
  • the first learning data input unit, the first measurement data input unit, the second learning data input unit, and the second measurement data input unit may correspond to the data storage unit of FIG. 6, and specifically, the storage unit stores machine learning data. It can be divided into an area and an area in which data for new determination is stored. More specifically, in the case of the machine learning data D1 of the source domain, the data is composed of main factors (Xs,1) for determining low voltage failure and the determination result (Y1). On the other hand, in the case of data (D2) of the target domain, it consists only of the main factors (Xs, 2), and the decision result (Y2) is not included in the data.
  • the machine learning unit may correspond to the first learning unit and the second learning unit of the device for predicting the low voltage failure of the secondary battery of the present invention, and the part containing the machine learning algorithm and the importance of variables during machine learning ( It consists of a part that calculates and evaluates variable importance).
  • the normal/defective judgment unit may correspond to the first verification unit and the second verification unit of the apparatus for predicting low voltage failure of a secondary battery according to the present invention, and is a part that predicts whether newly input data is normal/defective. This part can be updated with a new model whenever data for machine learning is updated.
  • the normal/defective determination unit may be updated with a new model whenever machine learning data is updated, prediction accuracy of a low-voltage defect of a secondary battery may be improved.
  • the data collection unit continuously measures/measured values such as voltage, current, resistance (Impedance), temperature, capacity (Capacity), and power (Power) during charging/discharging/resting of the battery. It is collected and stored in a storage unit (storage medium).
  • the stored data values are received from the calculation unit for machine learning, and the main factors for predicting low voltage failure are evaluated and selected, and then a model is created.
  • the model becomes a low voltage prediction model (M1) of the source domain and is used to predict normal and low voltage failures for the battery group corresponding to the source domain.
  • a new prediction model M2 is generated using information of the prediction model M1 of the source domain.
  • a battery management system (BMS) device including a secondary battery low voltage failure prediction device according to the present invention.
  • the device for predicting low voltage failure of a secondary battery may be used in a battery management system (BMS) device.
  • the first learning data input unit; a first measurement data input unit; a first data learning unit; a first verification unit; model transition; a second learning data input unit; a second measurement data input unit; a second data learning unit; and a capacity measuring device including a second output unit.
  • BMS battery management system
  • a mobile device including a control system device according to the present application.
  • mobile device refers to a device that can be moved or easily carried by a user, and examples thereof include electric vehicles and mobile devices.
  • a first learning data input unit of the battery control system device may provide a battery control system device that is remotely controlled.
  • the first learning data input unit a first measurement data input unit; a first data learning unit; a first verification unit; model transition; a second learning data input unit; a second measurement data input unit; a second data learning unit; And it is possible to provide a battery control system device in which at least two of the second output units are remotely controlled.
  • the first learning data input unit a first measurement data input unit; a first data learning unit; a first verification unit; model transition; a second learning data input unit; a second measurement data input unit; a second data learning unit; and a battery control system device in which both of the second output unit are remotely controlled.
  • a first learning data input unit of the battery control system device may provide a battery control system device that is remotely controlled.
  • the battery control system device may include one or more interfaces, and one or more of the interfaces may provide a battery control system device that is remotely controlled.
  • the meaning of "remotely controlled” means that interfaces such as the input unit, the learning unit, and the output unit are located outside the battery control system device and transmit data and signals between interfaces through communication or It means performing its function while receiving.
  • a method of managing the performance of the function while transmitting or receiving data and signals between interfaces through communication by placing some of the interfaces in a cloud server may be exemplified.
  • any method capable of performing the function outside of the battery control system device can be applied to the configuration of the present invention.
  • the weight of the battery control system device can be reduced, so it is easy to apply to a mobile device, and since a specific main computer or cloud server is used, It is easy to manage data in an integrated manner.
  • a first learning data input unit of the battery control system device a first measurement data input unit; a first data learning unit; a first verification unit; model transition; a second learning data input unit; a second measurement data input unit; a second data learning unit; And at least one of the second output unit may be built into the mobile device.
  • a first learning data input unit of the battery control system device a first measurement data input unit; a first data learning unit; a first verification unit; model transition; a second learning data input unit; a second measurement data input unit; a second data learning unit; And at least two of the second output unit may be built into the mobile device.
  • a first learning data input unit of the battery control system device may all be built into the mobile device.
  • a first learning data input unit of the battery control system device a first measurement data input unit; a first data learning unit; a first verification unit; a first output unit; model transition; a second learning data input unit; a second measurement data input unit; a second data learning unit; And at least one of the second output unit may be built into the mobile device.
  • the battery control system device may include one or more interfaces, and one or more of the interfaces may be built into a mobile device.
  • the learning data input unit; a measurement data input unit; data learning unit; a reference value storage unit; and the capacity state diagnosis unit are all incorporated in the mobile device.
  • embedded in a mobile device means that interfaces such as the input unit, the learning unit, and the output unit correspond to one of the components of the mobile device.
  • each interface can be remote controlled or built into the mobile device.
  • the battery control system when the battery control system is mounted on an electric vehicle, mobile device, etc. and used as a power source, it performs capacity matching and cell balancing, controls charging or discharging of the battery, and determines the remaining amount of the battery It refers to a system that controls and manages the overall condition of a battery, such as failure of a battery.
  • the battery management system may be applied to one or more batteries. That is, it is generally applied to a plurality of batteries, but may be applied to one battery, and a battery control system may be individually applied to each battery.
  • Data generated by the battery control system device may also be managed integrally as described above.
  • the device for predicting low-voltage failure of a secondary battery according to the present invention When the device for predicting low-voltage failure of a secondary battery according to the present invention is applied to a battery control system device, the accuracy of measuring battery capacity can be improved, thereby improving the accuracy of diagnosing the state of the battery and predicting battery life. can make it In other words, as more than one battery is mounted on an electric vehicle or mobile device and used as a power source, the overall management of the battery, such as capacity matching and cell balancing by the battery control system, is performed more accurately and efficiently. can control.
  • inputting first learning data of a secondary battery measured in a charging, discharging, and rest process of an individual secondary battery selected as a first learning target for a specific time performing machine learning on the first learning data, generating a low voltage prediction model of the first secondary battery, and selecting a main factor from the first learning data; inputting first measurement data of a secondary battery selected in a charging, discharging, and stopping process of the secondary battery selected as a first prediction target for a specific time; Low voltage prediction of the first secondary battery while comparing the low voltage determination prediction result of the secondary battery obtained by applying the first measurement data to the generated low voltage prediction model of the first secondary battery and the actual secondary battery low voltage determination result of the first measurement data.
  • the method for predicting low-voltage failure of a secondary battery of the present invention accumulates a large amount of new data whenever there is a change in data or a battery model for establishing a decision criterion for predicting and diagnosing low-voltage failure or there is a change in manufacturing conditions, or Since the time for the collection process to be repeated can be reduced, when the secondary battery low-voltage defect prediction device of the present invention is applied to secondary batteries with different process conditions, the time required to determine the low-voltage defect of the secondary battery is reduced, and the low-voltage Risk due to defects can be minimized by enabling early detection and response to defects.
  • the first learning data of the secondary battery, the first measurement data of the secondary battery, the second learning data, and the second measurement data of the secondary battery of the method for predicting low voltage failure of the secondary battery are each independently, Among the measured values of the voltage of the battery, the measured current of the battery, the measured resistance of the battery, the measured value of the temperature of the battery, the measured value of the capacity of the battery, and the measured value of the electric power of the battery measured during the charging, discharging, and stopping process of the secondary battery. It may mean one or more selected measurement values, but is not limited thereto.
  • Machine learning performed on the first learning data and the second learning data of the method for predicting low voltage failure of a secondary battery is each independently a decision tree, a random forest, a neural network, a deep neural network, a support vector machine, and It may be to apply one or more methods selected from gradient boosting machines, but is not limited thereto.
  • the step of verifying and optimizing the low voltage prediction model of the first secondary battery of the method for predicting low voltage failure of a secondary battery is to optimize the weight k that can maximize the performance of the low voltage prediction model of the first secondary battery.
  • a step of finding a value is included, and the optimal value of the weight k means a value capable of minimizing a misclassification rate.
  • a method for predicting a low voltage defect of a secondary battery includes outputting a low voltage determination prediction result of a secondary battery by applying the first measurement data to a low voltage prediction model of the first secondary battery generated by the first data learning unit. Further steps may be included.
  • a method for predicting a low voltage defect of a secondary battery includes a low voltage determination prediction result of a secondary battery obtained by applying the second measurement data to a low voltage prediction model of the second secondary battery generated by the second data learning unit, and a second The method may further include verifying the low voltage prediction model of the second secondary battery while comparing the measured data with the actual secondary battery low voltage determination result.
  • the secondary battery low voltage failure prediction method may be a method used in the battery management system (BMS). That is, in one embodiment of the present invention, the battery control system may perform the functions of the above-described battery control system by utilizing the method for predicting a low voltage failure of a secondary battery according to the present invention.
  • BMS battery management system
  • one or more batteries are mounted on an electric vehicle, mobile device, etc. and used as a power source, and overall management of batteries such as capacity matching and cell balancing by the battery control system
  • the battery can be controlled more accurately and efficiently.
  • the description applied to the apparatus for predicting low voltage failure of a secondary battery according to an exemplary embodiment of the present invention may also be applied to the method for predicting low voltage failure of a secondary battery according to an exemplary embodiment of the present invention.
  • the device and method for predicting a low voltage defect of a secondary battery according to the present invention may improve the accuracy of determining a low voltage defect of a secondary battery, thereby reducing process costs.
  • the apparatus and method according to the exemplary embodiment of the present invention reduce the time required to determine a low voltage defect of a secondary battery and enable early detection and response to a low voltage defect, thereby minimizing the risk due to the defect.
  • An exemplary embodiment of the present invention provides a computer program stored in a recording medium for executing the method for predicting a low voltage failure of a secondary battery according to the present invention.
  • the description of the method for predicting low voltage failure of a secondary battery described above may be equally applied, except that each step of the method for predicting low voltage failure of a secondary battery is stored in a recording medium in the form of a computer program.
  • machine learning is applied to the first learning data, machine learning is performed on the data of 50,000 secondary batteries, a low voltage prediction model (M1) of the first secondary battery is generated, and a main factor is generated from the first learning data. was selected.
  • M1 low voltage prediction model
  • the low voltage prediction model (M1) of the first secondary battery reflecting the weight k value for minimizing the misclassification rate generated above and the weight k value for minimizing the misclassification rate are transferred, and the low voltage prediction of the transferred first secondary battery Machine learning was performed using the model (M1) and the second learning data, and a low voltage prediction model (M2) of the second secondary battery was generated.
  • This can be expressed as transferring M1 and performing machine learning as transfer learning (TL).
  • the misclassification rate was calculated by reflecting the second measurement data in the low voltage prediction model of the secondary battery. The results were shown in FIG. 9 below.
  • 10,000 to 50,000 secondary batteries to be learned are placed on modules, packs, and trays under the same second condition as the embodiment, and in the charging, discharging, and rest processes Measures and collects voltage measurement values, battery current measurement values, battery resistance measurement values, battery temperature measurement values, battery capacity measurement values, and battery power measurement values, and corresponds to the values as source data.
  • the learning data and measurement data to be stored in the storage medium.
  • machine learning was performed to generate a low voltage prediction model (M3) of the secondary battery. That is, unlike the embodiment, the optimal value of the weight k was not obtained, and transfer learning (TL) was not performed.
  • the misclassification rate (MER) was calculated by reflecting the measured data in the low voltage prediction model (M3) of the secondary battery. The results were shown in FIG. 9 below.
  • the device and method according to the embodiment of the present invention can improve the accuracy of determining a low voltage defect of a secondary battery, thereby reducing process costs. For example, this means that cost reduction can be brought about by preventing a problem in which a non-defective battery is mistaken for defective and discarded or a defective battery is mistaken for non-defective and shipped.
  • the above results indicate that the device and method according to the embodiment of the present invention have a large amount whenever there is a change in data or battery model or manufacturing conditions for establishing a decision criterion for predicting and diagnosing low voltage defects. It shows that the process of accumulating or collecting new data can reduce the repetition time. That is, it means that the risk due to the defect can be minimized by reducing the time required to determine the low voltage defect of the secondary battery and enabling the early detection and response to the low voltage defect.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Computing Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Medical Informatics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computational Linguistics (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

본 발명은 이차전지의 제1 학습 데이터를 입력 받는 제1 학습 데이터 입력부; 이차전지의 제1 측정 데이터를 입력 받는 제1 측정 데이터 입력부; 제1 이차전지의 저전압 예측 모델(Model)을 생성하고, 제1 학습 데이터 중에서 주요 인자를 선별하는 제1 데이터 학습부; 제1 이차전지의 저전압 예측 모델을 검증하고 최적화하는 제1 검증부; 최적화된 제1 이차전지의 저전압 예측 모델 및 가중치 k의 최적값을 전이 받는 모델 전이부; 이차전지의 제2 학습 데이터를 입력 받는 제2 학습 데이터 입력부; 이차전지의 제2 측정 데이터를 입력 받는 제2 측정 데이터 입력부; 제2 이차전지의 저전압 예측 모델을 생성하는 제2 데이터 학습부; 및 판정 예측 결과를 출력하는 제2 출력부를 포함하고, 제1 학습 대상 및 제1 예측 대상과 제2 학습 대상 및 제2 예측 대상으로 선택된 이차전지의 공정 조건은 서로 상이한 것인 이차전지 저전압 불량 예측 장치에 관한 것이다.

Description

이차전지 저전압 불량 예측 장치 및 방법, 상기 장치를 포함하는 전지 제어 시스템
본 출원은 2021년 06월 18일에 한국특허청에 제출된 한국 특허 출원 제10-2021-0079389호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
본 발명은 이차전지 저전압 불량 예측 장치 및 방법, 상기 장치를 포함하는 전지 제어 시스템에 관한 것이다.
전기자동차, 모바일 기기 등 이차전지의 수요는 급격히 확대되고 있으며, 이차전지의 상태 진단 및 품질 안정성에 대한 요구가 커지고 있다. 이러한 요구에 따라서, 생산 또는 사용 중인 이차전지의 저전압 불량을 예측하고 이에 대해서 대응함으로써, 이차전지의 품질 안정성을 높이는 방법이 활용되고 있다.
즉, 전기자동차, 모바일 기기 등에서 사용 중인 이차전지의 저전압 불량을 예측하고 대응하는 것뿐만 아니라, 생산 공정에서 품질 검사할 때 이차전지의 저전압 불량을 예측하여 불량 제품이 유출되는 것을 방지하여 이차전지의 품질 안정성을 높일 수 있다.
구체적으로, 생산 중인 이차전지 또는 사용 중인 이차전지의 저전압 불량 발생을 예측하기 위해서 충전/방전 과정에서의 운전 전압 또는 개회로 전압(OCV)이 강하하는 정도를 판정 기준으로 사용하고 있다.
다만, 이러한 기존의 방법은 저전압 불량 여부 판정 기준을 정하기 위한 데이터가 많이 필요하고, 제조 조건이 변경될 때마다 저전압 불량 여부 판정 기준을 정하기 위한 새로운 데이터가 필요해지므로, 저전압 불량 여부를 판단하는 데 있어서 상당한 시간이 필요하다는 단점이 있다. 또한, 기존의 방법으로 인한 판단의 정확도가 높지 않은 단점도 있다.
따라서, 저전압 불량 여부를 판단하는 시간을 단축시키면서도 그 정확도를 향상시킬 수 있는 방법과 해당 방법을 구현할 수 있는 장치가 필요한 상황이다.
<특허문헌>
한국 특허 출원 공개 제10-2015-0049528호
본 발명은 전지의 사용 조건의 영향을 보정하여 이차전지 저전압 불량 예측 장치 및 방법, 상기 장치를 포함하는 전지 제어 시스템을 제공하자고 한다.
본 발명의 일 실시상태는, 제1 학습 대상으로 선택된 개별 이차전지의 특정 시간 동안 진행된 충전, 방전 및 휴지(Rest) 공정에서 측정된 이차전지의 제1 학습 데이터를 입력 받는 제1 학습 데이터 입력부; 제1 예측 대상으로 선택된 이차전지의 특정 시간 동안 진행된 충전, 방전 및 휴지 공정에서 선택된 이차전지의 제1 측정 데이터를 입력 받는 제1 측정 데이터 입력부; 상기 제1 학습 데이터 입력부에 입력된 이차전지의 제1 학습 데이터에 기계 학습(Machine Learning)을 진행하여, 제1 이차전지의 저전압 예측 모델(Model)을 생성하고, 상기 제1 학습 데이터 중에서 주요 인자를 선별하는 제1 데이터 학습부; 상기 제1 데이터 학습부로부터 생성된 제1 이차전지의 저전압 예측 모델에 상기 제1 측정 데이터를 적용한 이차전지의 저전압 판정 예측 결과와 제1 측정 데이터의 실제 이차전지의 저전압 판정 결과를 비교하면서, 제1 이차전지의 저전압 예측 모델의 성능을 극대화할 수 있는 가중치 k의 최적값을 찾아서 제1 이차전지의 저전압 예측 모델을 검증하고 최적화하는 제1 검증부; 상기 최적화된 제1 이차전지의 저전압 예측 모델 및 가중치 k의 최적값을 전이 받는 모델 전이부; 제2 학습 대상으로 선택된 개별 이차전지의 특정 시간 동안 진행된 충전, 방전 및 휴지 공정에서 측정된 이차전지의 제2 학습 데이터를 입력 받는 제2 학습 데이터 입력부; 제2 예측 대상으로 선택된 이차전지의 특정 시간 동안 진행된 충전, 방전 및 휴지 공정에서 선택된 이차전지의 제2 측정 데이터를 입력 받는 제2 측정 데이터 입력부; 상기 모델 전이부에 전이된 최적화된 제1 이차전지의 저전압 예측 모델 및 제2 학습 데이터 입력부에 입력된 이차전지의 제2 학습 데이터에 기계 학습을 진행하여, 제2 이차전지의 저전압 예측 모델을 생성하는 제2 데이터 학습부; 및 상기 제2 데이터 학습부로부터 생성된 제2 이차전지의 저전압 예측 모델에 상기 제2 측정 데이터를 적용한 이차전지의 저전압 판정 예측 결과를 출력하는 제2 출력부를 포함하는 것인 이차전지 저전압 불량 예측 장치로서, 상기 제1 학습 대상 및 제1 예측 대상으로 선택된 이차전지의 공정 조건과 상기 제2 학습 대상 및 제2 예측 대상으로 선택된 이차전지의 공정 조건은 서로 상이한 것인 이차전지 저전압 불량 예측 장치를 제공한다.
다른 본 발명의 일 실시상태는, 제1 학습 대상으로 선택된 개별 이차전지의 특정 시간 동안 진행된 충전, 방전 및 휴지(Rest) 공정에서 측정된 이차전지의 제1 학습 데이터를 입력하는 단계; 상기 제1 학습 데이터에 기계 학습(Machine Learning)을 진행하여, 제1 이차전지의 저전압 예측 모델(Model)을 생성하고, 상기 제1 학습 데이터 중에서 주요 인자를 선별하는 단계; 제1 예측 대상으로 선택된 이차전지의 특정 시간 동안 진행된 충전, 방전 및 휴지 공정에서 선택된 이차전지의 제1 측정 데이터를 입력하는 단계; 상기 생성된 제1 이차전지의 저전압 예측 모델에 상기 제1 측정 데이터를 적용한 이차전지의 저전압 판정 예측 결과와 제1 측정 데이터의 실제 이차전지의 저전압 판정 결과를 비교하면서, 제1 이차전지의 저전압 예측 모델의 성능을 극대화할 수 있는 가중치 k의 최적값을 찾아서 제1 이차전지의 저전압 예측 모델을 검증하고 최적화하는 단계; 상기 최적화된 제1 이차전지의 저전압 예측 모델 및 가중치 k의 최적값을 전이하는 단계; 제2 학습 대상으로 선택된 개별 이차전지의 특정 시간 동안 진행된 충전, 방전 및 휴지 공정에서 측정된 이차전지의 제2 학습 데이터를 입력하는 단계; 상기 전이된 최적화된 제1 이차전지의 저전압 예측 모델 및 제2 학습 데이터에 기계 학습을 진행하여, 제2 이차전지의 저전압 예측 모델을 생성하는 단계; 제2 예측 대상으로 선택된 이차전지의 특정 시간 동안 진행된 충전, 방전 및 휴지 공정에서 선택된 이차전지의 제2 측정 데이터를 입력하는 단계; 및 상기 제2 데이터 학습부로부터 생성된 제2 이차전지의 저전압 예측 모델에 상기 제2 측정 데이터를 적용한 이차전지의 저전압 판정 예측 결과를 출력하는 단계를 포함하는 것인 이차전지 저전압 불량 예측 방법으로서, 상기 제1 학습 대상 및 제1 예측 대상으로 선택된 이차전지의 공정 조건과 상기 제2 학습 대상 및 제2 예측 대상으로 선택된 이차전지의 공정 조건은 서로 상이한 것인 이차전지 저전압 불량 예측 방법을 제공한다.
본 발명의 일 실시상태는 상술한 이차전지 저전압 불량 예측 장치를 포함하는 전지 제어 시스템 장치를 제공한다.
본 발명의 일 실시상태는 상기 전지 제어 시스템 장치를 포함하는 이동 장치에 관한 것이다.
마지막으로, 본 발명의 일 실시상태는 상술한 이차전지 저전압 불량 예측 방법을 실행시키는 기록 매체에 저장된 컴퓨터 프로그램에 관한 것이다.
본 발명의 실시상태에 따른 장치 및 방법은 이차전지 저전압 불량 판단에 대한 정확도를 향상시킬 수 있으며, 이로 인한 공정상의 비용 절감을 가져올 수 있다.
본 발명의 실시상태에 따른 장치 및 방법은 이차전지 저전압 불량 판단에 소요되는 시간을 감소시켜주고, 저전압 불량을 조기에 발견하여 대응할 수 있게 해줌으로써, 불량에 따른 리스크(Risk)를 최소화할 수 있다.
도 1은 FDR, FOR 및 MER을 구하기 위한 혼동 행렬(Confusion matrix)을 나타내는 도이다.
도 2는 기존의 이차전지 저전압 불량 예측 장치 및 방법의 저전압 불량을 예측하는 과정을 나타내는 도이다.
도 3 내지 도 7은 본 발명의 일 실시상태에 따른 이차전지 저전압 불량 예측 장치 및 방법의 저전압 불량을 예측하는 과정을 나타내는 도이다.
도 8은 오분류율(Misclassification Error Rate; MER)을 최소화하기 위한 가중치 k 의 최적값을 구하는 과정을 보여주는 도이다.
도 9는 전이 학습 과정을 거친 실시예와 전이 학습 과정을 거치지 않은 비교예의 MER 값을 비교한 도이다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 구성에만 한정되지 않는다.
본 명세서에서 어떤 부분이 어떤 구성 요소를 '포함'한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있다는 것을 의미한다.
즉, 본 명세서에 있어서, "학습 데이터"는 기계 학습을 시키기 위한 데이터를 의미한다.
또한, 본 명세서에 있어서, "측정 데이터"는 "예측 데이터"를 산출하기 위하여 입력되는 데이터를 의미하며, 상기 예측 데이터는 입력된 측정 데이터에 기계 학습을 반영한 결과 출력되는 데이터를 의미한다.
본 명세서에 있어서, “저전압 불량”이란, 사용 중인 이차전지의 전압이 단기간에 급격하게 비가역적으로 강하(Sudden voltage drop)하는 현상으로, 장기간 사용에 따른 이차전지의 정상적인 성능 감소와 구별되는 것이다. 상기 저전압 불량에 대한 판정 기준은 이차전지의 유형 별로 정해진 품질 규격에 따라 사전에 정의된다
본 발명의 일 실시상태는, 제1 학습 대상으로 선택된 개별 이차전지의 특정 시간 동안 진행된 충전, 방전 및 휴지(Rest) 공정에서 측정된 이차전지의 제1 학습 데이터를 입력 받는 제1 학습 데이터 입력부; 제1 예측 대상으로 선택된 이차전지의 특정 시간 동안 진행된 충전, 방전 및 휴지 공정에서 선택된 이차전지의 제1 측정 데이터를 입력 받는 제1 측정 데이터 입력부; 상기 제1 학습 데이터 입력부에 입력된 이차전지의 제1 학습 데이터에 기계 학습(Machine Learning)을 진행하여, 제1 이차전지의 저전압 예측 모델(Model)을 생성하고, 상기 제1 학습 데이터 중에서 주요 인자를 선별하는 제1 데이터 학습부; 상기 제1 데이터 학습부로부터 생성된 제1 이차전지의 저전압 예측 모델에 상기 제1 측정 데이터를 적용한 이차전지의 저전압 판정 예측 결과와 제1 측정 데이터의 실제 이차전지의 저전압 판정 결과를 비교하면서, 제1 이차전지의 저전압 예측 모델을 검증하고 최적화하는 제1 검증부; 상기 최적화된 제1 이차전지의 저전압 예측 모델을 전이 받는 모델 전이부; 제2 학습 대상으로 선택된 개별 이차전지의 특정 시간 동안 진행된 충전, 방전 및 휴지 공정에서 측정된 이차전지의 제2 학습 데이터를 입력 받는 제2 학습 데이터 입력부; 제2 예측 대상으로 선택된 이차전지의 특정 시간 동안 진행된 충전, 방전 및 휴지 공정에서 선택된 이차전지의 제2 측정 데이터를 입력 받는 제2 측정 데이터 입력부; 상기 모델 전이부에 전이된 최적화된 제1 이차전지의 저전압 예측 모델 및 제2 학습 데이터 입력부에 입력된 이차전지의 제2 학습 데이터에 기계 학습을 진행하여, 제2 이차전지의 저전압 예측 모델을 생성하는 제2 데이터 학습부; 및 상기 제2 데이터 학습부로부터 생성된 제2 이차전지의 저전압 예측 모델에 상기 제2 측정 데이터를 적용한 이차전지의 저전압 판정 예측 결과를 출력하는 제2 출력부를 포함하는 것인 이차전지 저전압 불량 예측 장치로서, 상기 제1 학습 대상 및 제1 예측 대상으로 선택된 이차전지의 공정 조건과 상기 제2 학습 대상 및 제2 예측 대상으로 선택된 이차전지의 공정 조건은 서로 상이한 것인 이차전지 저전압 불량 예측 장치를 제공한다.
본 발명의 이차전지 저전압 불량 예측 장치는 저전압 불량 여부를 예측 진단(Prognosis)하기 위한 판정 기준을 수립하기 위한 데이터 또는 전지 모델이 바뀌거나 제조 조건 등 변동이 있을 때마다 많은 양의 신규 데이터를 축적 또는 수집하는 과정이 반복이 되는 시간을 줄일 수 있기 때문에, 공정 조건이 상이한 이차전지에 본 발명의 이차전지 저전압 불량 예측 장치를 적용할 경우, 이차전지 저전압 불량 판단에 소요되는 시간을 감소시켜주고, 저전압 불량을 조기에 발견하여 대응할 수 있게 해줌으로써, 불량에 따른 리스크(Risk)를 최소화할 수 있다.
본 발명의 일 실시상태에 있어서, 학습 대상으로 선택된 전지 및 예측 대상으로 선택된 전지는 각각 독립적으로 모듈(Module), 팩(Pack), 트레이(Tray) 상에 배치된 개별 전지를 의미할 수 있다.
본 발명의 일 실시상태에 있어서, 예측 대상으로 선택된 전지 및 예측 대상으로 선택된 전지는 각각 독립적으로 모듈(Module), 팩(Pack), 트레이(Tray) 상에 배치된 개별 전지를 의미할 수 있다.
여기서, 기계 학습이란 인공 지능의 한 분야로 컴퓨터 프로그램이 데이터와 처리 경험을 이용한 학습을 통해 정보 처리 능력을 향상시키는 것 또는 이와 관련된 기술을 의미한다. 상기 기계 학습과 관련된 기술은 본 발명이 속한 기술분야에서 널리 알려져 있다. 즉, 기계 학습에 대한 구체적인 학습 알고리즘에 대해서는 상세한 설명을 생략하기로 한다.
구체적으로, 출원의 일 실시상태에 따른 이차전지 저전압 불량 예측 장치의 상기 제1 데이터 학습부 및 제2 데이터 학습부의 기계 학습은 각각 독립적으로, 결정 트리(Decision Tree), 랜덤 포레스트(Random Forest), 신경망(Neural Networks), 심층 신경망(Deep Neural Network), 서포트 벡터 머신(Support Vector Machine) 및 그레디언트 부스팅 머신(Gradient Boosting Machine) 중에서 선택된 1 이상의 방법을 적용하는 것일 수 있으나, 이에 한정되는 것은 아니다.
또한, 본 명세서에 있어서, "학습 데이터" 및 "측정 데이터"는 기계 학습을 이용해 정확한 이차전지 저전압 불량 예측을 하기 위한 데이터로서, 전지의 충전과 방전, 휴지(Rest) 상태에서 측정, 수집 및 저장되는 전지의 충전 전압, 전지의 방전 전압, 전지의 충전 전류, 전지의 방전 전류, 전지의 충전 용량, 전지의 방전 용량, 전지의 저항 (Impedance), 전지의 온도 등을 포함하는 데이터를 의미하며, 전지의 충전과 방전, 휴지(Rest) 상태에서 측정 및 수집 가능한 모든 인자들을 포함할 수 있다.
구체적으로, 본 발명의 일 실시상태에 따른 이차전지 저전압 불량 예측 장치 의 상기 이차전지의 제1 학습 데이터, 이차전지의 제1 측정 데이터, 제2 학습 데이터, 및 이차전지의 제2 측정 데이터는 각각 독립적으로, 이차전지의 충전, 방전 및 휴지 공정에서 측정된 전지의 전압 측정값, 전지의 전류 측정값, 전지의 저항 측정값, 전지의 온도 측정값, 전지의 용량 측정값, 및 전지의 전력의 측정값 중에서 선택된 1 이상의 측정값을 의미하는 것일 수 있으나, 이에 한정되는 것은 아니다.
또한, 보다 구체적으로, "측정 데이터"는 "학습 데이터"에서 "주요 인자"로 선별된 데이터들만을 포함하는 것을 의미할 수 있다. 여기서 "주요 인자"는 특정 충전 공정과 방전 공정 구간의 일부 또는 전부에서 측정된 충전 전압의 평균값, 방전 전압의 평균값, 충전 온도 측정값, 방전 온도 측정값, 충전 용량 측정값, 방전 용량 측정값, 충전 전력 측정값, 방전 전력 측정값, 전기 저항 측정값을 포함할 수 있으나, 이러한 주요 인자의 개수와 종류는 전지의 타입에 따라 동일할 수도 있고, 상이할 수도 있으며, 상기 주요 인자의 종류에 한정되는 것은 아니다.
또한, 상기 주요 인자로는 하기 식 1로 표시되는 것과 같이 특정 충전 공정과 방전 공정 사이의 휴지 공정 구간에서, 휴지 공정 개시점에서 측정된 개회로 전압값(Open Circuit Voltage, OCV)과 휴지 공정 종료점에서 측정된 개회로 전압값(OCV) 사이의 편차를 포함할 수 있으나, 이에 한정되는 것은 아니다.
[식 1]
D = |OCV1 - OCV2|
상기 식 1에서 OCV1은 휴지 공정 개시점에서 측정된 개회로 전압값을 의미하고, OCV2는 휴지 공정 종료점에서 측정된 개회로 전압값을 의미하며, | |는 절대값을 의미하고, D는 휴지 공정 개시점에서 측정된 개회로 전압값(Open Circuit Voltage, OCV)과 휴지 공정 종료점에서 측정된 개회로 전압값(OCV) 사이의 편차를 의미한다.
상기 주요 인자는 이차 전지의 충전, 방전 및 휴지 공정에서 수집하기 용이한 데이터에 해당하고, 상기 주요 인자를 선별하여 측정 데이터로 사용함으로 인하여, 이차전지 저전압 불량 예측을 예측의 정확도를 높이고, 예측에 소요되는 시간을 줄일 수 있다.
상기 측정값은 해당 분야에서 사용되는 통상의 장치, 기술 및 방법으로 측정할 수 있다.
본 명세서에 있어서, 특별한 말이 없는 이상 전지는 이차전지를 의미한다.
본 명세서에 있어서, "특정 시간"이란 임의로 정한 이차전지의 충전 및 방전 공정을 진행한 시간을 의미한다. 예를 들어 1 시간 동안 이차전지의 충전 및 방전 공정을 진행하기로 한 경우의 특정 시간이란 1 시간을 의미한다.
본 발명에 따른 이차전지 저전압 불량 예측 장치의 상기 제1 검증부의 제1 이차전지의 저전압 예측 모델을 검증하고 최적화하는 것은 제1 이차전지의 저전압 예측 모델의 성능을 극대화할 수 있는 가중치 k의 최적값을 찾는 단계를 포함하고, 상기 가중치 k의 최적값은 오분류율(Misclassification Error Rate; MER)을 최소화할 수 있는 값을 의미하는 것일 수 있다.
본 명세서에 있어서, 오분류율(Misclassification Error Rate; MER)은 정상/불량 판정을 진행한 전지 전체 개수 중에서 판정이 잘못된, 즉, 정상인데 불량으로 판정되거나 불량인데 정상으로 판정된 전지의 개수를 합한 값의 비율을 의미한다.
보다 구체적으로, 데이터에 포함된 정상 전지 그룹(Class)과 불량 전지 그룹(Class)에 대해 서로 다른 확률적 가중치 (Weighting factor)를 부여할 수 있으며, 모형의 정확도를 최대(Maximization)로 할 수 있는 가중치의 임계값(threshold value, k)을 도입하게 된다. 이 때, 가중치의 임계값은 상기 가중치 k의 최적값을 의미하며, 상기 k는 0 초과, 1 미만의 값을 가지는 실수이다(0<k<1).
보다 구체적으로 정상/불량의 예측에 있어서 예측 성능의 지표인 불량 유출률(False Discovery Rate, FDR)과 과검율(False Omission Rate, FOR)이라는 개념이 존재한다.
여기서, FDR은 정상으로 분류된 전지의 전체 개수에서 최종 판정결과 불량으로 판명된 전지의 개수의 비율을 의미하고, FOR은 불량으로 분류된 전지의 전체 개수에서 최종적으로 양품인 것으로 판명된 전지의 개수의 비율을 말한다.
이러한 정의에 의하면, FDR 및 FOR 중 어느 한 쪽 값을 감소시키기 위해서는 일반적으로 다른 한쪽 값의 증가를 수반하게 되므로, FDR 및 FOR 사이에는 균형(trade-off)이 존재한다.
본 발명에 따른 이차전지 저전압 불량 예측 장치는 불량 유출율과 과검율 두 가지 모두를 최소화하고자 하는 것으로, 이는 오분류율(Misclassification Error Rate; MER)을 최소화하는 것을 의미한다.
이 때, FDR, FOR 및 MER은 하기 식 2 내지 식 4로 표현할 수 있다.
(식 2)
MER(%) = {(FP + FN) / (TP + TN + FP + FN)} × 100(%)
(식 3)
FDR(%) = {FP / (TP + FP)} × 100(%)
(식 4)
FOR(%) = {FN / (TN + FN)} × 100(%)
상기 식 2 내지 식 4에서 TP, FP, TN, 및 FN의 정의는 하기와 같다.
- TP=True Positive : 정상이 정상으로 맞게 예측된 것
- FP=False Positive : 불량이 정상으로 잘못 예측된 경우
- TN=True Negative : 불량이 불량으로 맞게 예측된 경우
- FN=False Negative : 정상이 불량으로 잘못 예측된 경우
구체적으로, FDR, FOR 및 MER은 도 1와 같이 혼동 행렬(Confusion matrix)을 사용하여 실제 정상인 전지가 정상으로 맞게 예측된 경우(TP), 정상이 불량으로 잘못 예측된 경우(FN), 불량이 정상으로 잘못 예측된 경우(FP), 불량이 불량으로 맞게 예측된 경우(TN)의 4가지 항목으로 나누어 각각에 해당하는 비율을 확률로 계산할 수 있다.
결론적으로, 가중치 k값의 변화에 따른 FDR과 FOR을 산출하고 두 지표 값을 모두 최소화 하는 k값을 가중치 k의 최적값으로 결정하게 된다.
이처럼 최적화 과정이 필요한 이유는 동일 조건에서 생산되는 이차전지 중에서 정상인 전지와 저전압 불량인 전지의 비율이 상이하기 때문에 해당 비율을 고려하여 모형의 정확성을 높이기 위한 것이다. 예를 들어, 전지의 구성, 생산 방법과 설비 등 다양한 원인에 따라 다를 수 있지만 정상인 전지의 개수와 불량인 전지의 개수보다 훨씬 많은 특정 도메인에서 최적화된 가중치(k) 값은 그 도메인의 예측 모형의 특성을 반영할 수 있다.
본 발명에 따른 이차전지 저전압 불량 예측 장치는 상기 제1 데이터 학습부로부터 생성된 제1 이차전지의 저전압 예측 모델에 상기 제1 측정 데이터를 적용한 이차전지의 저전압 판정 예측 결과를 출력하는 제1 출력부를 더 포함할 수 있다.
본 발명에 따른 이차전지 저전압 불량 예측 장치는 상기 제2 데이터 학습부로부터 생성된 제2 이차전지의 저전압 예측 모델에 상기 제2 측정 데이터를 적용한 이차전지의 저전압 판정 예측 결과와 제2 측정 데이터의 실제 이차전지의 저전압 판정 결과를 비교하면서, 제2 이차전지의 저전압 예측 모델을 검증하는 제2 검증부를 더 포함하는 것일 수 있다.
본 명세서에 있어서, 상기 "입력부"는 필요한 각종 데이터를 입력 받기 위한 인터페이스이다. 구체적으로, 본 명세서에 있어서, 상기 입력부는 학습 데이터를 입력 받는 학습 데이터 입력부 및 측정 데이터를 입력 받는 측정 데이터 입력부로 구분할 수 있다. 보다 구체적으로, 상기 "입력부"는 정격 용량 조건에서 측정 또는 수집된 용량 인자를 측정 또는 수집하고, 상기 측정 또는 수집된 용량 인자 측정 데이터를 기준값 저장부 또는 데이터 학습부에 전달하는 인터페이스이다. 상기 학습부가 데이터를 입력 받는 방식 및 전달하는 방법은 특별히 제한되지 아니한다.
본 명세서에 있어서, 상기 "데이터 학습부"는 상기 학습 데이터 입력부에 입력된 학습 데이터를 이용하여 기계 학습을 진행하기 위한 인터페이스이다.
본 명세서에 있어서, 상기 "출력부"는 기계 학습의 결과를 반영하여 예측 데이터를 산출하기 위한 인터페이스이다. 상기 출력부가 데이터를 산출하는 방식은 특별히 제한되지 아니한다.
본 명세서에 있어서, 상기 "검증부"는 기계 학습의 결과를 반영한 이차전지의 저전압 불량 예측 모델의 예측 데이터의 정확도를 판단하고, 경우에 따라서 이차전지의 저전압 불량 예측 모델을 최적화하는 과정을 진행하는 인터페이스이다.
본 명세서에 있어서, 상기 "모델 전이부"는 기존 조건과 다른 조건의 이차전지의 저전압 불량을 예측하는 경우에서 기계 학습의 결과를 반영하여 도출된 이차전지의 저전압 불량 예측 모델을 이용하기 위해서 상기 모델을 데이터로 전달하거나, 상기 모델의 성능을 극대화할 수 있는 가중치 k의 최적값을 전달하기 위한 인터페이스이다. 구체적으로, 상기 모델 전이부는 오분류율을 최소화하기 위한 가중치 k값을 포함하여, 특정 조건에서 모형화(Modeling)를 수행한 기계 학습 모델(Model)에 대한 정보, 예를 들어 모델의 구조 정보, 학습 데이터의 확률적 분포에 대한 정보, 주요 인자에 대한 정보 등을 전달 받아 다른 조건의 이차전지 데이터에 대한 기계학습을 수행할 때 사용할 수 있게 해주는 기능을 수행한다.
본 발명에 따른 인터페이스는 정해진 기능을 수행할 수 있다면 그 방식 및 형태는 특별히 제한되지 않는다.
본 발명에 따른 장치의 인터페이스에 입력, 전달 또는 산출된 모든 데이터들은 통합적으로 관리될 수 있다. 여기서 통합적으로 관리된다는 것은 예를 들어 특정 메인 컴퓨터 또는 서버에 의해 본 발명에 따른 장치의 인터페이스에 입력, 전달 또는 산출된 모든 데이터를 관리하고, 관리된 데이터로부터 새로운 값을 산출하거나, 이를 다시 입력부에 데이터로서 입력하는 것과 같은 행위를 모두 포함할 수 있다.
도 2는 기존의 이차전지 저전압 불량 예측 장치의 저전압 불량을 예측하는 과정을 나타내는 것으로, 기존에는 충전/방전 과정에서의 운전 전압 또는 개회로 전압(OCV)이 강하하는 정도를 판정 기준으로 하여, N번 전압 또는 개회로 전압을 측정하여 산출된 전압 강하 특성값이 상기 판정 기준을 만족하는 경우, 저전압 불량으로 판단한다. 여기서 N은 1 이상의 정수를 의미한다.
도 3는 본 발명의 일 실시상태에 따른 이차전지 저전압 불량 예측 장치의 저전압 불량을 예측하는 과정을 나타내는 것으로, 구체적으로 우선 일정 조건의 이차 전지에 대해서 제1 학습 데이터 및 제1 측정 데이터에 해당하는 충방전 데이터(D1)을 수집하고, 상기 수집된 데이터 D1으로 기계학습을 진행하고, 데이터 중에서 저전압 불량을 예측하기 위한 주요 인자를 선별한 후, 1차적으로 기계학습 모형화를 통해 제1 이차전지의 저전압 예측 모델을 산출한다. 상기 산출된 제1 이차전지의 저전압 예측 모델을 본 발명의 이차전지 저전압 불량 예측 장치의 판정 기준인 오분류율(Misclassification Error Rate; MER)을 최소화하는 조건을 만족시키기 위해서 가중치(k) 최적화의 과정을 진행하여, 가중치의 최적값을 결정하여, 제1 이차전지의 저전압 예측 모델을 최적화한다(1 단계 종료). 상기 최적화된 모델은 제1 학습 데이터 및 제1 측정 데이터를 수집한 이차전지의 저전압 불량을 예측하는 데 사용될 수 있다.
이어서, 상기 최적화된 제1 이차전지의 저전압 예측 모델을 모형 전이(Model transfer)하고, 데이터 D1의 경우와 다른 조건의 이차전지의 저전압 불량을 예측하기 위해서 제1 이차전지의 저전압 예측 모델을 이용할 수 있다(2단계 시작). 데이터 D1의 경우와 다른 조건의 이차전지의 제2 학습 데이터 해당하는 충방전 데이터(D2)을 수집하고, 상기 수집된 데이터 D2로 기계학습 모형화를 통해 제2 이차전지의 저전압 예측 모델을 산출한다. 이 때, 제2 이차전지의 저전압 예측 모델을 산출하는 과정에서 전이된 제1 이차전지의 저전압 예측 모델을 이용한다. 제2 이차전지의 저전압 예측 모델이 산출되면 데이터 D1의 경우와 다른 조건의 이차전지의 제2 측정 데이터를 제2 이차전지의 저전압 예측 모델에 적용하여, 해당 이차전지의 저전압 불량을 예측할 수 있다(2 단계 종료).
상기 도 4는 본 발명의 일 실시상태에 따른 이차전지 저전압 불량 예측 장치의 저전압 불량을 예측하는 과정을 더욱 개략적으로 나타낸 것으로, 소스 도메인(Source Domain)의 기계 학습 데이터인 제1 학습 데이터(Dtrain) 및 제1 측정 데이터(Dtest)에 해당하는 충방전 데이터 D1을 기계 학습(ML)을 진행하여 소스 도메인의 저전압 불량 예측 모형인 M1을 생성하고, 생성된 M1을 전이시키고 학습(TL), 타겟 도메인(Target Domain)의 기계 학습 데이터인 제2 학습 데이터에 해당하는 충방전 데이터 D2를 기계 학습(ML)시키는 것을 의미한다.
본 발명에 따른 이차전지의 저전압 불량을 예측하는 장치는 기존에 생성된 저전압 불량 예측 모형을 전이시켜 이용하는 것이 특징으로, 이를 통해서 예측 모형을 생성하는 시간을 단축할 수 있다. 즉 예를 들어, 도 5에 나타난 바와 같이 타겟 도메인의 데이터(D2)는 소스 도메인의 데이터(D1)의 크기보다 작은 경우라도, 두 도메인의 특성이 서로 유사한 경우라면 예측 모형 M1의 정보를 활용함으로써 작은 크기의 데이터를 학습시키더라도 모형 M2의 성능을 높은 정확도로 향상시킬 수 있게 된다.
본 발명의 이차전지의 저전압 불량을 예측하는 장치의 구성을 더욱 대략적으로 나타내면, 도 6과 같다.
구체적으로, 본 발명의 제1 학습 데이터 입력부, 제1 측정 데이터 입력부, 제2 학습 데이터 입력부 및 제2 측정 데이터 입력부에 입력하기 위한 데이터를 수집하는 부분을 데이터 수집부라고 할 수 있다. 상기 데이터를 수집하기 위해서, 대상이 되는 이차전지의 특성을 측정할 수 있는 센서부가 더 포함될 수 있다.
또한, 제1 학습 데이터 입력부, 제1 측정 데이터 입력부, 제2 학습 데이터 입력부 및 제2 측정 데이터 입력부는 도 6의 데이터 저장부에 해당할 수 있으며, 구체적으로, 저장부는 기계학습용 데이터가 저장되어 있는 영역과 신규 판정을 위한 데이터가 저장되어 있는 영역으로 구분될 수 있다. 보다 자세하게는 소스 도메인의 기계학습용 데이터(D1)의 경우, 데이터는 저전압 불량 여부의 판정을 위한 주요 인자들(Xs,1)과 판정 결과(Y1)로 구성되어 있다. 반면, 타겟 도메인의 데이터(D2)의 경우, 주요 인자들(Xs,2)로만 구성되어져 있으며 판정 결과(Y2)는 데이터에 포함되어 있지 않다.
기계학습부(연산부)는 본 발명의 이차전지의 저전압 불량을 예측하는 장치의 제1 학습부 및 제2 학습부에 대응될 수 있으며, 기계학습 알고리즘이 들어있는 부분과 기계학습 중에 변수들의 중요도(Variable importance)를 연산하고 평가하는 부분으로 구성되어 있다.
정상/불량 판정부는 본 발명의 이차전지의 저전압 불량을 예측하는 장치의 제1 검증부 및 제2 검증부에 대응될 수 있으며, 새롭게 입력된 데이터에 대해 정상/불량 여부를 예측하는 부분이다. 해당 부분은 기계학습용 데이터가 업데이트될 때마다 신규 모형으로 업데이트 할 수 있다.
정상/불량 판정부를 기계학습용 데이터가 업데이트될 때마다 신규 모형으로 업데이트할 수 있으므로, 이차전지의 저전압 불량의 예측 정확도를 향상시킬 수 있다.
상술한 내용을 보다 자세하게 나타내면 하기 도 7과 같다.
도 7에 나타난 바와 같이 데이터 수집부에서는 전지의 충전/방전/휴지(Rest) 중에 전압, 전류, 저항(Impedance), 온도, 용량(Capacity), 전력(Power) 등의 측정값을 지속적으로 측정/수집하고 저장부(저장매체)에 저장한다. 저장된 데이터 값들을 기계학습을 위한 연산부에서 넘겨 받아 저전압 불량을 예측하기 위한 주요 인자를 평가하고 선정한 다음 모형을 생성시킨다. 모형의 예측 성능이 검증되면 해당 모형은 소스(Source) 도메인의 저전압 예측 모형(M1)이 되어 소스 도메인에 해당하는 전지 그룹에 대한 정상, 저전압 불량 예측에 사용한다. 소스 도메인에 속하는 전지와 유사한 형태의 신규 전지에 대한 예측 모형이 필요할 때 소스 도메인의 예측 모형(M1)의 정보를 이용하여 신규 예측 모형(M2)를 생성하게 된다. 신규 전지의 데이터가 수집, 저장되어 있는 타겟 도메인으로부터 M1에서 선정된 주요 인자들과 모형의 특성을 이용함으로써 작은 크기의 데이터를 이용하더라도 높은 예측 성능을 가진 모형 M2를 단기간에 생성시킨 다음 정상/불량 예측에 사용한다.
본 발명의 일 실시상태에 있어서, 본 발명에 따른 이차전지 저전압 불량 예측 장치를 포함하는 전지 제어 시스템(Battery Management System, BMS) 장치를 제공할 수 있다. 다시 말해서, 본 발명의 일 실시상태에 있어서, 상기 이차전지 저전압 불량 예측 장치는 전지 제어 시스템(Battery Management System, BMS) 장치에 사용되는 것일 수 있다.
본 발명의 일 실시상태에 있어서, 상기 제1 학습 데이터 입력부; 제1 측정 데이터 입력부; 제1 데이터 학습부; 제1 검증부; 모델 전이부; 제2 학습 데이터 입력부; 제2 측정 데이터 입력부; 제2 데이터 학습부; 및 제2 출력부를 포함하는 용량 측정 장치를 포함하는 전지 제어 시스템 장치를 제공할 수 있다.
본 명세서에 있어서, "전지 제어 시스템(Battery Management System, BMS) 장치"는 전지 제어 시스템을 포함하는 모든 형태의 인터페이스를 의미한다.
본 발명의 일 실시상태에 있어서, 본 출원에 따른 제어 시스템 장치를 포함하는 이동 장치를 제공할 수 있다.
본 명세서에 있어서, 상기 "이동 장치"의 의미는 장치 자체가 움직일 수 있거나, 사용자에 의해 쉽게 운반될 수 있는 장치를 의미하는 것으로서, 전기 자동차, 모바일 기기 등을 그 예로 할 수 있다.
본 발명의 일 실시상태에 있어서, 상기 전지 제어 시스템 장치의 제1 학습 데이터 입력부; 제1 측정 데이터 입력부; 제1 데이터 학습부; 제1 검증부; 모델 전이부; 제2 학습 데이터 입력부; 제2 측정 데이터 입력부; 제2 데이터 학습부; 및 제2 출력부 중 적어도 하나는 원격 제어되는 것인 전지 제어 시스템 장치를 제공할 수 있다.
본 발명의 일 실시상태에 있어서, 상기 제1 학습 데이터 입력부; 제1 측정 데이터 입력부; 제1 데이터 학습부; 제1 검증부; 모델 전이부; 제2 학습 데이터 입력부; 제2 측정 데이터 입력부; 제2 데이터 학습부; 및 제2 출력부 중 2 이상이 원격 제어되는 것인 전지 제어 시스템 장치를 제공할 수 있다.
본 발명의 일 실시상태에 있어서, 상기 제1 학습 데이터 입력부; 제1 측정 데이터 입력부; 제1 데이터 학습부; 제1 검증부; 모델 전이부; 제2 학습 데이터 입력부; 제2 측정 데이터 입력부; 제2 데이터 학습부; 및 제2 출력부 모두가 원격 제어되는 것인 전지 제어 시스템 장치를 제공할 수 있다.
본 발명의 일 실시상태에 있어서, 상기 전지 제어 시스템 장치의 제1 학습 데이터 입력부; 제1 측정 데이터 입력부; 제1 데이터 학습부; 제1 검증부; 제1 출력부; 모델 전이부; 제2 학습 데이터 입력부; 제2 측정 데이터 입력부; 제2 데이터 학습부; 및 제2 출력부 중 적어도 하나는 원격 제어되는 것인 전지 제어 시스템 장치를 제공할 수 있다.
본 발명의 일 실시상태에 있어서, 상기 전지 제어 시스템 장치는 1 이상의 인터페이스를 포함할 수 있고, 상기 인터페이스 중 1 이상은 원격 제어되는 것인 전지 제어 시스템 장치를 제공할 수 있다.
본 명세서에 있어서, 상기 "원격 제어되는 것"의 의미는 상기 입력부, 학습부 및 출력부 등의 인터페이스가 상기 전지 제어 시스템 장치의 외부에 위치하여 통신을 통하여 인터페이스들 사이에서 데이터와 신호를 송신 또는 수신하면서 그 기능을 수행하는 것을 의미한다. 상기 원격 제어의 방법으로, 상기 인터페이스들 중 일부를 클라우드 서버(Cloud Server)에 두고 통신을 통하여 인터페이스들 사이에서 데이터와 신호를 송신 또는 수신하면서 그 기능을 수행하는 것을 관리하는 방법을 예로 들 수 있으나, 이에 한정되는 것은 아니고, 상기 전지 제어 시스템 장치의 외부에서 그 기능을 수행할 수 있는 방법이라면 본 발명의 구성에 적용할 수 있다.
상기 장치의 일부 또는 전부의 인터페이스가 원격 제어되는 경우, 전지 제어 시스템 장치의 무게를 감소시킬 수 있어 이동 장치에 적용하기 용이하고, 특정 메인 컴퓨터 또는 클라우드 서버를 이용하는 것이므로 상기 장치를 사용하는 과정에서 발생한 데이터 등을 통합적으로 관리하기 용이하다.
또한, 상기 장치의 일부 인터페이스가 원격 제어되는 경우, 컴퓨터 하드웨어(hardware, H/W)와 관련하여 데이터 저장을 위한 메모리, 연산(Computation), 정보처리 등을 위해 요구되는 사양(Specification)을 낮추고 구성을 단순화시킬 수 있어서 이동 장치에 설치되는 컴퓨터 하드웨어 관련 비용을 절감할 수 있다.
또한, 본 발명의 일 실시상태에 있어서, 상기 전지 제어 시스템 장치의 제1 학습 데이터 입력부; 제1 측정 데이터 입력부; 제1 데이터 학습부; 제1 검증부; 모델 전이부; 제2 학습 데이터 입력부; 제2 측정 데이터 입력부; 제2 데이터 학습부; 및 제2 출력부 중 적어도 하나는 이동 장치에 내장되는 것일 수 있다.
또한, 본 발명의 일 실시상태에 있어서, 상기 전지 제어 시스템 장치의 제1 학습 데이터 입력부; 제1 측정 데이터 입력부; 제1 데이터 학습부; 제1 검증부; 모델 전이부; 제2 학습 데이터 입력부; 제2 측정 데이터 입력부; 제2 데이터 학습부; 및 제2 출력부 중 2 이상은 이동 장치에 내장되는 것일 수 있다.
또한, 본 발명의 일 실시상태에 있어서, 상기 전지 제어 시스템 장치의 제1 학습 데이터 입력부; 제1 측정 데이터 입력부; 제1 데이터 학습부; 제1 검증부; 모델 전이부; 제2 학습 데이터 입력부; 제2 측정 데이터 입력부; 제2 데이터 학습부; 및 제2 출력부 모두가 이동 장치에 내장되는 것일 수 있다.
또한, 본 발명의 일 실시상태에 있어서, 상기 전지 제어 시스템 장치의 제1 학습 데이터 입력부; 제1 측정 데이터 입력부; 제1 데이터 학습부; 제1 검증부; 제1 출력부; 모델 전이부; 제2 학습 데이터 입력부; 제2 측정 데이터 입력부; 제2 데이터 학습부; 및 제2 출력부 중 적어도 하나는 이동 장치에 내장되는 것일 수 있다.
본 발명의 일 실시상태에 있어서, 상기 전지 제어 시스템 장치는 1 이상의 인터페이스를 포함할 수 있고, 상기 인터페이스 중 1 이상은 이동 장치에 내장되는 것일 수 있다.
본 발명의 일 실시상태에 있어서, 상기 학습 데이터 입력부; 측정 데이터 입력부; 데이터 학습부; 기준값 저장부; 및 용량 상태 진단부 전부가 이동 장치에 내장되는 것인 이동 장치를 제공할 수 있다.
본 명세서에 있어서, 상기 "이동 장치에 내장되는 것"의 의미는 상기 입력부, 학습부 및 출력부 등의 인터페이스가 상기 이동 장치의 구성 요소 중 하나에 해당함을 의미한다.
상기 장치의 일부 또는 전부가 이동 장치에 내장 되는 경우, 통신상의 문제에 따른 안전상의 문제가 발생하지 않는 장점이 있다.
그 외 추가 가능한 인터페이스들이 있다면 각각의 인터페이스는 원격 제어되거나 이동 장치에 내장될 수 있다.
보다 구체적으로, 상기 전지 제어 시스템은 전기 자동차, 모바일 기기 등에 탑재되어 동력원으로 사용될 때, 용량 매칭(Matching)과 셀 밸런싱(Cell Balancing)을 진행하고, 전지의 충전 또는 방전을 제어하고, 전지의 잔량, 전지의 고장 등 전지의 전반적인 상태를 제어 및 관리해주는 시스템을 의미한다. 상기 전지 제어 시스템(Battery Management System, BMS)은 1 이상의 전지에 적용될 수 있다. 즉, 일반적으로 복수 개의 전지에 적용되나, 1개의 전지에 적용될 수 있으며, 각각의 전지에 개별적으로 전지 제어 시스템이 적용될 수 있다.
상기 전지 제어 시스템 장치에 의해 발생한 데이터도 상술한 바와 같이 통합적으로 관리될 수 있다.
본 발명에 따른 이차전지 저전압 불량 예측 장치를 전지 제어 시스템 장치에 적용할 경우, 전지 용량의 측정에 대한 정확도를 향상시킬 수 있고, 이를 통해 전지의 상태에 대한 진단, 전지의 수명 예측의 정확도를 향상시킬 수 있다. 즉, 1 이상의 전지가 전기 자동차, 모바일 기기 등에 탑재되어 동력원으로 사용되면서, 전지 제어 시스템에 의한 용량 매칭(Matching)과 셀 밸런싱(Cell Balancing) 등 전지의 전반적인 관리를 진행할 때 더욱 정확하고 효율적으로 전지를 제어할 수 있다.
본 발명의 일 실시상태에 있어서, 제1 학습 대상으로 선택된 개별 이차전지의 특정 시간 동안 진행된 충전, 방전 및 휴지(Rest) 공정에서 측정된 이차전지의 제1 학습 데이터를 입력하는 단계; 상기 제1 학습 데이터에 기계 학습(Machine Learning)을 진행하여, 제1 이차전지의 저전압 예측 모델(Model)을 생성하고, 상기 제1 학습 데이터 중에서 주요 인자를 선별하는 단계; 제1 예측 대상으로 선택된 이차전지의 특정 시간 동안 진행된 충전, 방전 및 휴지 공정에서 선택된 이차전지의 제1 측정 데이터를 입력하는 단계; 상기 생성된 제1 이차전지의 저전압 예측 모델에 상기 제1 측정 데이터를 적용한 이차전지의 저전압 판정 예측 결과와 제1 측정 데이터의 실제 이차전지의 저전압 판정 결과를 비교하면서, 제1 이차전지의 저전압 예측 모델을 검증하고 최적화하는 단계; 상기 최적화된 제1 이차전지의 저전압 예측 모델을 전이하는 단계; 제2 학습 대상으로 선택된 개별 이차전지의 특정 시간 동안 진행된 충전, 방전 및 휴지 공정에서 측정된 이차전지의 제2 학습 데이터를 입력하는 단계; 상기 전이된 최적화된 제1 이차전지의 저전압 예측 모델 및 제2 학습 데이터에 기계 학습을 진행하여, 제2 이차전지의 저전압 예측 모델을 생성하는 단계; 제2 예측 대상으로 선택된 이차전지의 특정 시간 동안 진행된 충전, 방전 및 휴지 공정에서 선택된 이차전지의 제2 측정 데이터를 입력하는 단계; 및 상기 제2 데이터 학습부로부터 생성된 제2 이차전지의 저전압 예측 모델에 상기 제2 측정 데이터를 적용한 이차전지의 저전압 판정 예측 결과를 출력하는 단계를 포함하는 것인 이차전지 저전압 불량 예측 방법으로서, 상기 제1 학습 대상 및 제1 예측 대상으로 선택된 이차전지의 공정 조건과 상기 제2 학습 대상 및 제2 예측 대상으로 선택된 이차전지의 공정 조건은 서로 상이한 것인 이차전지 저전압 불량 예측 방법을 제공한다.
본 발명의 이차전지 저전압 불량 예측 방법은 저전압 불량 여부를 예측 진단(Prognosis)하기 위한 판정 기준을 수립하기 위한 데이터 또는 전지 모델이 바뀌거나 제조 조건 등 변동이 있을 때마다 많은 양의 신규 데이터를 축적 또는 수집하는 과정이 반복이 되는 시간을 줄일 수 있기 때문에, 공정 조건이 상이한 이차전지에 본 발명의 이차전지 저전압 불량 예측 장치를 적용할 경우, 이차전지 저전압 불량 판단의 소요되는 시간을 감소시켜주고, 저전압 불량을 조기에 발견하여 대응할 수 있게 해줌으로써, 불량에 따른 리스크(Risk)를 최소화할 수 있다.
본 발명의 일 실시상태에 따른 이차전지 저전압 불량 예측 방법의 상기 이차전지의 제1 학습 데이터, 이차전지의 제1 측정 데이터, 제2 학습 데이터, 및 이차전지의 제2 측정 데이터는 각각 독립적으로, 이차전지의 충전, 방전 및 휴지 공정에서 측정된 전지의 전압 측정값, 전지의 전류 측정값, 전지의 저항 측정값, 전지의 온도 측정값, 전지의 용량 측정값, 및 전지의 전력의 측정값 중에서 선택된 1 이상의 측정값을 의미하는 것일 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 일 실시상태에 따른 이차전지 저전압 불량 예측 방법의 상기 제1 학습 데이터 및 제2 학습 데이터에 진행하는 기계 학습은 각각 독립적으로, 결정 트리, 랜덤 포레스트, 신경망, 심층 신경망, 서포트 벡터 머신 및 그레디언트 부스팅 머신 중에서 선택된 1 이상의 방법을 적용하는 것일 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 일 실시상태에 따른 이차전지 저전압 불량 예측 방법의 상기 제1 이차전지의 저전압 예측 모델을 검증하고 최적화하는 단계는 제1 이차전지의 저전압 예측 모델의 성능을 극대화할 수 있는 가중치 k의 최적값을 찾는 단계를 포함하고, 상기 가중치 k의 최적값은 오분류율을 최소화할 수 있는 값을 의미하는 것이다.
본 발명의 일 실시상태에 따른 이차전지 저전압 불량 예측 방법은 상기 제1 데이터 학습부로부터 생성된 제1 이차전지의 저전압 예측 모델에 상기 제1 측정 데이터를 적용한 이차전지의 저전압 판정 예측 결과를 출력하는 단계를 더 포함할 수 있다.
본 발명의 일 실시상태에 따른 이차전지 저전압 불량 예측 방법은 상기 제2 데이터 학습부로부터 생성된 제2 이차전지의 저전압 예측 모델에 상기 제2 측정 데이터를 적용한 이차전지의 저전압 판정 예측 결과와 제2 측정 데이터의 실제 이차전지의 저전압 판정 결과를 비교하면서, 제2 이차전지의 저전압 예측 모델을 검증하는 단계를 더 포함할 수 있다.
본 발명의 일 실시상태에 있어서, 상기 이차전지 저전압 불량 예측 방법은 상기 전지 제어 시스템(Battery Management System, BMS)에서 사용되는 방법일 수 있다. 즉, 본 발명의 일 실시상태에 있어서, 전지 제어 시스템은 본 발명에 따른 이차전지 저전압 불량 예측 방법을 활용하여 상술한 전지 제어 시스템의 기능을 수행 할 수 있다.
이 경우에도 상술한 바와 같이, 1 이상의 전지가 전기 자동차, 모바일 기기 등에 탑재되어 동력원으로 사용되면서, 전지 제어 시스템에 의한 용량 매칭(Matching)과 셀 밸런싱(Cell Balancing) 등 전지의 전반적인 관리를 진행할 때 더욱 정확하고 효율적으로 전지를 제어할 수 있다.
본 명세서에 있어서, 본 발명의 실시상태에 따른 이차전지 저전압 불량 예측 장치에 적용되는 설명은 본 발명의 실시상태에 따른 이차전지 저전압 불량 예측 방법에도 적용될 수 있다.
본 발명에 따른 이차전지 저전압 불량 예측 장치 및 방법은 본 발명의 실시상태에 따른 장치 및 방법은 이차전지 저전압 불량 판단에 대한 정확도를 향상시킬 수 있으며, 이로 인한 공정상의 비용 절감을 가져올 수 있다.
또한, 본 발명의 실시상태에 따른 장치 및 방법은 이차전지 저전압 불량 판단의 소요되는 시간을 감소시켜주고, 저전압 불량을 조기에 발견하여 대응할 수 있게 해줌으로써, 불량에 따른 리스크(Risk)를 최소화할 수 있다.
본 발명의 일 실시상태는, 본 발명에 따른 이차전지 저전압 불량 예측 방법을 실행시키는 기록 매체에 저장된 컴퓨터 프로그램을 제공한다. 상기 이차전지 저전압 불량 예측 방법의 각 단계가 컴퓨터 프로그램의 형태로 기록 매체에 저장되어 있는 것을 제외하고, 상술한 전지의 저전압 불량 예측 방법에 대한 설명이 동일하게 적용될 수 있다.
보다 구체적으로 전지의 이차전지 저전압 불량 예측 과정을 설명하면 하기와 같다.
<실시예>
제1 조건에서 모듈(Module), 팩(Pack), 트레이(tray)상에 학습하고자 하는 50,000개의 이차전지를 배치하고, 충전, 방전 및 휴지(Rest) 공정에서의 전압 측정값, 전지의 전류 측정값, 전지의 저항 측정값, 전지의 온도 측정값, 전지의 용량 측정값, 및 전지의 전력의 측정값들을 측정, 수집하고 그 값들을 소스(Source) 데이터에 해당하는 제1 학습 데이터 및 제1 측정 데이터로 저장매체에 저장하였다.
이 후, 제1 학습 데이터에 기계 학습을 적용하여, 상기 이차전지 50,000개의 데이터를 기계학습을 진행하여, 제1 이차전지의 저전압 예측 모델(M1)을 생성하고, 상기 제1 학습 데이터 중에서 주요 인자를 선별하였다.
상기 제1 데이터 학습부로부터 생성된 제1 이차전지의 저전압 예측 모델에 상기 제1 측정 데이터를 적용한 이차전지의 저전압 판정 예측 결과와 제1 측정 데이터의 실제 이차전지의 저전압 판정 결과를 비교하면서, 오분류율(Misclassification Error Rate; MER)을 최소화하기 위한 가중치 k 값을 구하였다. 본 실시예에서는 도 8에서 확인할 수 있듯이 k=0.55에서 가장 낮은 오분류율이 얻어지는 것을 확인할 수 있었다.
상기 제1 조건과 상이한 제2 조건에서의 모듈(Module), 팩(Pack), 트레이(tray)상에 학습하고자하는 10,000개 내지 50,000개의 이차전지를 배치하고, 충전, 방전 및 휴지(Rest) 공정에서의 전압 측정값, 전지의 전류 측정값, 전지의 저항 측정값, 전지의 온도 측정값, 전지의 용량 측정값, 및 전지의 전력의 측정값들을 측정, 수집하고 그 값들을 소스(Source) 데이터에 해당하는 제2 학습 데이터 및 제2 측정 데이터로 저장매체에 저장하였다.
앞에서 생성한 오분류율을 최소화하기 위한 가중치 k 값을 반영한 1 이차전지의 저전압 예측 모델(M1) 및 상기 오분류율을 최소화하기 위한 가중치 k 값을 전이시키고, 전이된 제1 이차전지의 저전압 예측 모델(M1) 및 제2 학습 데이터를 이용하여 기계 학습을 진행하였고, 제2 이차전지의 저전압 예측 모델(M2)을 생성하였다. 이를 M1을 전이시키고 기계학습을 하는 과정을 전이 학습(Transfer learning; TL)시켰다고 표현할 수 있다.
이 때, 제2 이차전지의 저전압 예측 모델에 제2 측정 데이터를 반영하여 오분류율(MER)을 산출하였다. 그 결과는 하기 도 9와 같았다.
<비교예>
실시예와 동일한 제2 조건에서의 모듈(Module), 팩(Pack), 트레이(tray)상에 학습하고자하는 10,000개 내지 50,000개의 이차전지를 배치하고, 충전, 방전 및 휴지(Rest) 공정에서의 전압 측정값, 전지의 전류 측정값, 전지의 저항 측정값, 전지의 온도 측정값, 전지의 용량 측정값, 및 전지의 전력의 측정값들을 측정, 수집하고 그 값들을 소스(Source) 데이터에 해당하는 학습 데이터 및 측정 데이터로 저장매체에 저장하였다.
상기 학습 데이터를 이용하여, 기계 학습을 진행하여, 이차전지의 저전압 예측 모델(M3)을 생성하였다. 즉, 실시예와 다르게 가중치 k의 최적값이 구해지지 않았고, 전이 학습(Transfer learning; TL)을 진행하지 않았다.
이 때, 이차전지의 저전압 예측 모델(M3)에 측정 데이터를 반영하여 오분류율(MER)을 산출하였다. 그 결과는 하기 도 9와 같았다.
상기 실시예 및 비교예의 결과를 보여주는 도 9를 통해서, 본 발명에 따른 이차전지 저전압 불량 예측 장치 및 방법은 예측의 정확도가 우수함을 확인할 수 있었다. 특히 전이 학습 과정을 포함함으로써, 훨씬 적은 수의 전지의 학습 데이터로부터 낮은 오분류율의 성능을 보여주는 모델을 생성할 수 있음을 확인할 수 있다. 다시 말해서, 전이 학습 과정을 포함한 경우가 훨씬 적은 수의 전지의 학습 데이터로부터 예측의 정확도가 높은 모델을 생성할 수 있음을 확인할 수 있었다.
상기 결과는 본 발명의 실시상태에 따른 장치 및 방법은 이차전지 저전압 불량 판단에 대한 정확도를 향상시킬 수 있으며, 이로 인한 공정상의 비용 절감을 가져올 수 있음을 의미한다. 예를 들어, 양품인 전지를 불량으로 오인하여 폐기 처리하게 되거나, 불량인 전지를 양품으로 오인하여 출하하게 되는 문제를 방지함으로써, 이로 인한 비용 발생의 절감을 가져올 수 있다는 것을 의미한다.
또한, 상기 결과는 본 발명의 실시상태에 따른 장치 및 방법은 저전압 불량 여부를 예측 진단(Prognosis)하기 위한 판정 기준을 수립하기 위한 데이터 또는 전지 모델이 바뀌거나 제조 조건 등 변동이 있을 때마다 많은 양의 신규 데이터를 축적 또는 수집하는 과정이 반복이 되는 시간을 줄일 수 있다는 것을 보여준다. 즉, 이차전지 저전압 불량 판단의 소요되는 시간을 감소시켜주고, 저전압 불량을 조기에 발견하여 대응할 수 있게 해줌으로써, 불량에 따른 리스크(Risk)를 최소화할 수 있음을 의미한다.

Claims (17)

  1. 제1 학습 대상으로 선택된 개별 이차전지의 특정 시간 동안 진행된 충전, 방전 및 휴지(Rest) 공정에서 측정된 이차전지의 제1 학습 데이터를 입력 받는 제1 학습 데이터 입력부;
    제1 예측 대상으로 선택된 이차전지의 특정 시간 동안 진행된 충전, 방전 및 휴지 공정에서 선택된 이차전지의 제1 측정 데이터를 입력 받는 제1 측정 데이터 입력부;
    상기 제1 학습 데이터 입력부에 입력된 이차전지의 제1 학습 데이터에 기계 학습(Machine Learning)을 진행하여, 제1 이차전지의 저전압 예측 모델(Model)을 생성하고, 상기 제1 학습 데이터 중에서 주요 인자를 선별하는 제1 데이터 학습부;
    상기 제1 데이터 학습부로부터 생성된 제1 이차전지의 저전압 예측 모델에 상기 제1 측정 데이터를 적용한 이차전지의 저전압 판정 예측 결과와 제1 측정 데이터의 실제 이차전지의 저전압 판정 결과를 비교하면서, 제1 이차전지의 저전압 예측 모델의 성능을 극대화할 수 있는 가중치 k의 최적값을 찾아서 제1 이차전지의 저전압 예측 모델을 검증하고 최적화하는 제1 검증부;
    상기 최적화된 제1 이차전지의 저전압 예측 모델 및 가중치 k의 최적값을 전이 받는 모델 전이부;
    제2 학습 대상으로 선택된 개별 이차전지의 특정 시간 동안 진행된 충전, 방전 및 휴지 공정에서 측정된 이차전지의 제2 학습 데이터를 입력 받는 제2 학습 데이터 입력부;
    제2 예측 대상으로 선택된 이차전지의 특정 시간 동안 진행된 충전, 방전 및 휴지 공정에서 선택된 이차전지의 제2 측정 데이터를 입력 받는 제2 측정 데이터 입력부;
    상기 모델 전이부에 전이된 최적화된 제1 이차전지의 저전압 예측 모델 및 제2 학습 데이터 입력부에 입력된 이차전지의 제2 학습 데이터에 기계 학습을 진행하여, 제2 이차전지의 저전압 예측 모델을 생성하는 제2 데이터 학습부; 및
    상기 제2 데이터 학습부로부터 생성된 제2 이차전지의 저전압 예측 모델에 상기 제2 측정 데이터를 적용한 이차전지의 저전압 판정 예측 결과를 출력하는 제2 출력부를 포함하는 것인 이차전지 저전압 불량 예측 장치로서,
    상기 제1 학습 대상 및 제1 예측 대상으로 선택된 이차전지의 공정 조건과 상기 제2 학습 대상 및 제2 예측 대상으로 선택된 이차전지의 공정 조건은 서로 상이한 것인 이차전지 저전압 불량 예측 장치.
  2. 제1항에 있어서,
    상기 이차전지의 제1 학습 데이터, 이차전지의 제1 측정 데이터, 제2 학습 데이터, 및 이차전지의 제2 측정 데이터는 각각 독립적으로, 이차전지의 충전, 방전 및 휴지 공정에서 측정된 전지의 전압 측정값, 전지의 전류 측정값, 전지의 저항 측정값, 전지의 온도 측정값, 전지의 용량 측정값, 및 전지의 전력의 측정값 중에서 선택된 1 이상의 측정값을 의미하는 것인 이차전지 저전압 불량 예측 장치.
  3. 제1항에 있어서,
    상기 제1 데이터 학습부 및 제2 데이터 학습부의 기계 학습은 각각 독립적으로, 결정 트리(Decision Tree), 랜덤 포레스트(Random Forest), 신경망(Neural Networks), 심층 신경망(Deep Neural Network), 서포트 벡터 머신(Support Vector Machine) 및 그레디언트 부스팅 머신(Gradient Boosting Machine) 중에서 선택된 1 이상의 방법을 적용하는 것인 이차전지 저전압 불량 예측 장치.
  4. 제1항에 있어서,
    상기 가중치 k의 최적값은 오분류율(Misclassification Error Rate; MER)을 최소화할 수 있는 값을 의미하는 것인 이차전지 저전압 불량 예측 장치.
  5. 제1항에 있어서,
    상기 제1 데이터 학습부로부터 생성된 제1 이차전지의 저전압 예측 모델에 상기 제1 측정 데이터를 적용한 이차전지의 저전압 판정 예측 결과를 출력하는 제1 출력부를 더 포함하는 것인 이차전지 저전압 불량 예측 장치.
  6. 제1항에 있어서,
    상기 제2 데이터 학습부로부터 생성된 제2 이차전지의 저전압 예측 모델에 상기 제2 측정 데이터를 적용한 이차전지의 저전압 판정 예측 결과와 제2 측정 데이터의 실제 이차전지의 저전압 판정 결과를 비교하면서, 제2 이차전지의 저전압 예측 모델을 검증하는 제2 검증부를 더 포함하는 것인 이차전지 저전압 불량 예측 장치.
  7. 제1 학습 대상으로 선택된 개별 이차전지의 특정 시간 동안 진행된 충전, 방전 및 휴지(Rest) 공정에서 측정된 이차전지의 제1 학습 데이터를 입력하는 단계;
    상기 제1 학습 데이터에 기계 학습(Machine Learning)을 진행하여, 제1 이차전지의 저전압 예측 모델(Model)을 생성하고, 상기 제1 학습 데이터 중에서 주요 인자를 선별하는 단계;
    제1 예측 대상으로 선택된 이차전지의 특정 시간 동안 진행된 충전, 방전 및 휴지 공정에서 선택된 이차전지의 제1 측정 데이터를 입력하는 단계;
    상기 생성된 제1 이차전지의 저전압 예측 모델에 상기 제1 측정 데이터를 적용한 이차전지의 저전압 판정 예측 결과와 제1 측정 데이터의 실제 이차전지의 저전압 판정 결과를 비교하면서, 제1 이차전지의 저전압 예측 모델의 성능을 극대화할 수 있는 가중치 k의 최적값을 찾아서 제1 이차전지의 저전압 예측 모델을 검증하고 최적화하는 단계;
    상기 최적화된 제1 이차전지의 저전압 예측 모델 및 가중치 k의 최적값을 전이하는 단계;
    제2 학습 대상으로 선택된 개별 이차전지의 특정 시간 동안 진행된 충전, 방전 및 휴지 공정에서 측정된 이차전지의 제2 학습 데이터를 입력하는 단계;
    상기 전이된 최적화된 제1 이차전지의 저전압 예측 모델 및 제2 학습 데이터에 기계 학습을 진행하여, 제2 이차전지의 저전압 예측 모델을 생성하는 단계;
    제2 예측 대상으로 선택된 이차전지의 특정 시간 동안 진행된 충전, 방전 및 휴지 공정에서 선택된 이차전지의 제2 측정 데이터를 입력하는 단계; 및
    상기 제2 데이터 학습부로부터 생성된 제2 이차전지의 저전압 예측 모델에 상기 제2 측정 데이터를 적용한 이차전지의 저전압 판정 예측 결과를 출력하는 단계를 포함하는 것인 이차전지 저전압 불량 예측 방법으로서,
    상기 제1 학습 대상 및 제1 예측 대상으로 선택된 이차전지의 공정 조건과 상기 제2 학습 대상 및 제2 예측 대상으로 선택된 이차전지의 공정 조건은 서로 상이한 것인 이차전지 저전압 불량 예측 방법.
  8. 제7항에 있어서,
    상기 이차전지의 제1 학습 데이터, 이차전지의 제1 측정 데이터, 제2 학습 데이터, 및 이차전지의 제2 측정 데이터는 각각 독립적으로, 이차전지의 충전, 방전 및 휴지 공정에서 측정된 전지의 전압 측정값, 전지의 전류 측정값, 전지의 저항 측정값, 전지의 온도 측정값, 전지의 용량 측정값, 및 전지의 전력의 측정값 중에서 선택된 1 이상의 측정값을 의미하는 것인 이차전지 저전압 불량 예측 방법.
  9. 제7항에 있어서,
    상기 제1 학습 데이터 및 제2 학습 데이터에 진행하는 기계 학습은 각각 독립적으로, 결정 트리, 랜덤 포레스트, 신경망, 심층 신경망, 서포트 벡터 머신 및 그레디언트 부스팅 머신 중에서 선택된 1 이상의 방법을 적용하는 것인 이차전지 저전압 불량 예측 방법.
  10. 제7항에 있어서,
    상기 가중치 k의 최적값은 오분류율을 최소화할 수 있는 값을 의미하는 것인 이차전지 저전압 불량 예측 방법.
  11. 제7항에 있어서,
    상기 제1 데이터 학습부로부터 생성된 제1 이차전지의 저전압 예측 모델에 상기 제1 측정 데이터를 적용한 이차전지의 저전압 판정 예측 결과를 출력하는 단계를 더 포함하는 것인 이차전지 저전압 불량 예측 방법.
  12. 제7항에 있어서,
    상기 제2 데이터 학습부로부터 생성된 제2 이차전지의 저전압 예측 모델에 상기 제2 측정 데이터를 적용한 이차전지의 저전압 판정 예측 결과와 제2 측정 데이터의 실제 이차전지의 저전압 판정 결과를 비교하면서, 제2 이차전지의 저전압 예측 모델을 검증하는 단계를 더 포함하는 것인 이차전지 저전압 불량 예측 방법.
  13. 제1항 내지 제6항 중 어느 한 항에 따른 이차전지 저전압 불량 예측 장치를 포함하는 전지 제어 시스템(Battery Management System, BMS) 장치.
  14. 제13항에 있어서,
    상기 전지 제어 시스템 장치의 제1 학습 데이터 입력부; 제1 측정 데이터 입력부; 제1 데이터 학습부; 제1 검증부; 모델 전이부; 제2 학습 데이터 입력부; 제2 측정 데이터 입력부; 제2 데이터 학습부; 및 제2 출력부 중 적어도 하나는 원격 제어되는 것인 전지 제어 시스템 장치.
  15. 제14항에 따른 전지 제어 시스템 장치를 포함하는 이동 장치.
  16. 제15항에 있어서,
    상기 전지 제어 시스템 장치의 제1 학습 데이터 입력부; 제1 측정 데이터 입력부; 제1 데이터 학습부; 제1 검증부; 모델 전이부; 제2 학습 데이터 입력부; 제2 측정 데이터 입력부; 제2 데이터 학습부; 및 제2 출력부 중 적어도 하나는 이동 장치에 내장되는 것인 이동 장치.
  17. 제7항 내지 제12항 중 어느 한 항에 따른 이차전지 저전압 불량 예측 방법을 실행시키는 기록 매체에 저장된 컴퓨터 프로그램.
PCT/KR2022/008648 2021-06-18 2022-06-17 이차전지 저전압 불량 예측 장치 및 방법, 상기 장치를 포함하는 전지 제어 시스템 WO2022265458A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP22825381.1A EP4300109A1 (en) 2021-06-18 2022-06-17 Device and method for predicting low voltage failure of secondary battery, and battery control system comprising same device
JP2023553062A JP2024509525A (ja) 2021-06-18 2022-06-17 二次電池の低電圧不良予測装置および方法、並びにその装置を含む電池制御システム
CN202280017983.2A CN117795355A (zh) 2021-06-18 2022-06-17 预测二次电池的低电压故障的装置和方法以及包括该装置的电池控制系统
US18/283,261 US20240168093A1 (en) 2021-06-18 2022-06-17 Device and Method for Predicting Low Voltage Failure of Secondary Battery, and Battery Control System Comprising Same Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0079389 2021-06-18
KR20210079389 2021-06-18

Publications (2)

Publication Number Publication Date
WO2022265458A1 true WO2022265458A1 (ko) 2022-12-22
WO2022265458A8 WO2022265458A8 (ko) 2023-11-16

Family

ID=84527253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/008648 WO2022265458A1 (ko) 2021-06-18 2022-06-17 이차전지 저전압 불량 예측 장치 및 방법, 상기 장치를 포함하는 전지 제어 시스템

Country Status (6)

Country Link
US (1) US20240168093A1 (ko)
EP (1) EP4300109A1 (ko)
JP (1) JP2024509525A (ko)
KR (1) KR20220169433A (ko)
CN (1) CN117795355A (ko)
WO (1) WO2022265458A1 (ko)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090020362A (ko) * 2007-08-23 2009-02-26 주식회사 엘지화학 배터리의 장기 특성 예측 시스템 및 방법
JP2014206499A (ja) * 2013-04-15 2014-10-30 新電元工業株式会社 二次電池寿命予測システム、二次電池特性評価装置、二次電池搭載装置、および二次電池寿命予測方法
KR20150049528A (ko) 2013-10-30 2015-05-08 주식회사 엘지화학 이차전지 저전압 불량 조기 감지 시스템 및 그 방법
KR20150049526A (ko) * 2013-10-30 2015-05-08 주식회사 엘지화학 이차전지 저전압 불량률 조기 감지 시스템 및 그 방법
KR20210016154A (ko) * 2019-07-31 2021-02-15 주식회사 에스제이 테크 머신러닝을 이용한 배터리 진단 방법
US20210103003A1 (en) * 2019-10-02 2021-04-08 Continental Automotive Systems, Inc. Method and system for determining battery state of health
KR20210079389A (ko) 2018-11-26 2021-06-29 마이크론 테크놀로지, 인크 메모리를 위한 명령/어드레스 채널 구성

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090020362A (ko) * 2007-08-23 2009-02-26 주식회사 엘지화학 배터리의 장기 특성 예측 시스템 및 방법
JP2014206499A (ja) * 2013-04-15 2014-10-30 新電元工業株式会社 二次電池寿命予測システム、二次電池特性評価装置、二次電池搭載装置、および二次電池寿命予測方法
KR20150049528A (ko) 2013-10-30 2015-05-08 주식회사 엘지화학 이차전지 저전압 불량 조기 감지 시스템 및 그 방법
KR20150049526A (ko) * 2013-10-30 2015-05-08 주식회사 엘지화학 이차전지 저전압 불량률 조기 감지 시스템 및 그 방법
KR20210079389A (ko) 2018-11-26 2021-06-29 마이크론 테크놀로지, 인크 메모리를 위한 명령/어드레스 채널 구성
KR20210016154A (ko) * 2019-07-31 2021-02-15 주식회사 에스제이 테크 머신러닝을 이용한 배터리 진단 방법
US20210103003A1 (en) * 2019-10-02 2021-04-08 Continental Automotive Systems, Inc. Method and system for determining battery state of health

Also Published As

Publication number Publication date
WO2022265458A8 (ko) 2023-11-16
JP2024509525A (ja) 2024-03-04
CN117795355A (zh) 2024-03-29
US20240168093A1 (en) 2024-05-23
KR20220169433A (ko) 2022-12-27
EP4300109A1 (en) 2024-01-03

Similar Documents

Publication Publication Date Title
WO2022103185A1 (ko) 전지의 용량 측정 장치 및 방법, 및 상기 장치를 포함하는 전지 제어 시스템
WO2020262787A1 (ko) 내부 단락 셀 검출 방법
WO2023068899A1 (ko) 배터리 팩 내의 이상 징후 셀 검출 장치 및 방법
WO2022055080A1 (ko) 배터리의 충전상태를 추정하는 방법
WO2021006566A1 (ko) 배터리 셀 진단 장치 및 방법
WO2020262789A1 (ko) 이상 배터리 셀 검출 방법
WO2022025533A1 (ko) 배터리 진단 장치 및 방법
WO2018199659A1 (ko) 변전소 자산 관리 방법
WO2019078658A1 (ko) 빅데이터 기반의 배터리 열화도 추정장치 및 방법
WO2022149824A1 (ko) 배터리 관리 장치 및 방법
WO2021230642A1 (ko) 배터리를 진단하기 위한 장치 및 그 방법
WO2020054924A1 (ko) 배터리의 상태를 셀 단위로 진단하는 장치 및 방법
WO2021230533A1 (ko) 배터리를 진단하기 위한 장치 및 그 방법
WO2021025295A1 (ko) 배터리 관리 장치, 배터리 관리 방법 및 배터리 팩
WO2022265458A1 (ko) 이차전지 저전압 불량 예측 장치 및 방법, 상기 장치를 포함하는 전지 제어 시스템
WO2021020817A1 (ko) 배터리 상태 예측 장치 및 배터리 상태 예측 방법
WO2022030751A1 (ko) 배터리 팩의 시뮬레이션 방법
WO2023033480A1 (ko) 배터리 진단 시스템 및 방법
WO2022019703A1 (ko) 배터리를 진단하기 위한 장치 및 그 방법
WO2021040306A1 (ko) 배터리 soh 예측 방법 및 이를 적용한 배터리 팩
WO2023200087A1 (ko) 배터리에 대한 불량률 예측 장치 및 방법
WO2024080484A1 (ko) 누설 전류 감지를 위한 배터리 진단 장치 및 방법
WO2024049172A1 (ko) 배터리 상태 예측 장치 및 그것의 동작 방법
WO2023018070A1 (ko) 배터리 관리 장치 및 이를 포함하는 배터리 검사 시스템
WO2022191372A1 (ko) 클라우드 서버 장치, 이를 포함하는 배터리 관리 시스템 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22825381

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280017983.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023553062

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18283261

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 22825381.1

Country of ref document: EP

Ref document number: 2022825381

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022825381

Country of ref document: EP

Effective date: 20230927

NENP Non-entry into the national phase

Ref country code: DE