WO2022139143A1 - 배터리 관리 장치 및 방법 - Google Patents
배터리 관리 장치 및 방법 Download PDFInfo
- Publication number
- WO2022139143A1 WO2022139143A1 PCT/KR2021/014592 KR2021014592W WO2022139143A1 WO 2022139143 A1 WO2022139143 A1 WO 2022139143A1 KR 2021014592 W KR2021014592 W KR 2021014592W WO 2022139143 A1 WO2022139143 A1 WO 2022139143A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- battery cell
- capacity
- battery
- value
- statistical analysis
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 24
- 238000007619 statistical method Methods 0.000 claims abstract description 31
- 238000004458 analytical method Methods 0.000 claims abstract description 14
- 238000007726 management method Methods 0.000 claims description 39
- 230000014509 gene expression Effects 0.000 claims description 35
- 238000007599 discharging Methods 0.000 claims description 18
- 238000003064 k means clustering Methods 0.000 claims description 16
- 238000004364 calculation method Methods 0.000 abstract description 4
- 238000010586 diagram Methods 0.000 description 17
- 230000015654 memory Effects 0.000 description 15
- 230000015556 catabolic process Effects 0.000 description 8
- 238000006731 degradation reaction Methods 0.000 description 8
- 238000004891 communication Methods 0.000 description 6
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 4
- 230000002159 abnormal effect Effects 0.000 description 4
- 229910001416 lithium ion Inorganic materials 0.000 description 4
- 230000005856 abnormality Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000000875 corresponding effect Effects 0.000 description 2
- 238000004146 energy storage Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000004590 computer program Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/367—Software therefor, e.g. for battery testing using modelling or look-up tables
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/3644—Constructional arrangements
- G01R31/3648—Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/382—Arrangements for monitoring battery or accumulator variables, e.g. SoC
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/425—Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/48—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/48—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
- H01M10/482—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/425—Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
- H01M2010/4271—Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/20—Batteries in motive systems, e.g. vehicle, ship, plane
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- Embodiments disclosed in this document relate to a battery management apparatus and method.
- the secondary battery is a battery capable of charging and discharging, and includes all of the conventional Ni/Cd batteries, Ni/MH batteries, and the latest lithium ion batteries.
- lithium ion batteries have an advantage in that their energy density is much higher than that of conventional Ni/Cd batteries and Ni/MH batteries.
- lithium ion batteries can be manufactured in a small size and light weight, so they are used as power sources for mobile devices.
- the lithium ion battery is receiving attention as a next-generation energy storage medium as the range of use has been expanded as a power source for electric vehicles.
- the secondary battery is generally used as a battery rack including a battery module in which a plurality of battery cells are connected in series and/or in parallel. And the battery rack is managed and controlled state and operation by the battery management system.
- a calculation formula such as Ah Counting is generally used after all charging and discharging of the battery cell is completed.
- the battery cell is charged and discharged up to 300 cycles in advance to check the capacity deterioration rate before shipment.
- charging and discharging the battery cell up to 300 cycles consumes a lot of time and money.
- An object of the embodiments disclosed in this document is to provide a battery management apparatus and method capable of predicting the capacity of a battery cell in an early stage by statistically analyzing the state data measured in real time during charging and discharging of the battery cell.
- a battery management apparatus includes a calculation unit for calculating a differential value of capacity with respect to voltage of a battery cell, an analysis unit performing statistical analysis on the differential value, and the battery cell based on the statistical analysis It may include a determination unit for determining the capacity of.
- the analysis unit may select a largest value among the deviations of the differential value between charge/discharge cycles of the battery cell as a representative value, and perform statistical analysis on the representative value.
- the analyzer may calculate an approximate expression for the representative value and perform statistical analysis on coefficients of the approximate expression.
- K-means clustering may be performed on the coefficients of the approximation equation.
- the determining unit may determine that the capacity of the battery cell is normal when the battery cell belongs to a predetermined cluster among a plurality of clusters.
- the predetermined cluster may include a battery cell in which a slope of an approximate expression with respect to the representative value is less than a reference value.
- a storage unit for storing information about the plurality of clusters may be further included.
- the determination unit may determine the capacity of the battery cell after charging and discharging the battery cell up to a preset number of cycles.
- the approximate expression may be a first-order or a second-order polynomial.
- a battery management method includes calculating a differential value of capacity with respect to voltage of a battery cell, performing statistical analysis on the differential value, and a capacity of the battery cell based on the statistical analysis It may include the step of determining
- the method may further include selecting a largest value among the deviations of the differential value between charging and discharging cycles of the battery cell as a representative value, and performing the statistical analysis includes performing statistical analysis on the representative value.
- K-means clustering may be performed on the coefficients of the approximation equation.
- the determining unit may determine that the capacity of the battery cell is normal when the battery cell belongs to a predetermined cluster among a plurality of clusters.
- the predetermined cluster may include a battery cell in which a slope of an approximate expression with respect to the representative value is less than a reference value.
- a storage unit for storing information about the plurality of clusters may be further included.
- the determination unit may determine the capacity of the battery cell after charging and discharging the battery cell up to a preset number of cycles.
- the approximate expression may be a first-order or a second-order polynomial.
- a battery management method includes calculating a differential value of capacity with respect to voltage of a battery cell, performing statistical analysis on the differential value, and a capacity of the battery cell based on the statistical analysis It may include the step of determining
- the method may further include selecting a largest value among the deviations of the differential value between charging and discharging cycles of the battery cell as a representative value, and performing the statistical analysis includes performing statistical analysis on the representative value.
- the method may further include calculating an approximate expression for the representative value, and performing the statistical analysis may include performing statistical analysis on the coefficients of the approximate expression.
- the method may further include performing K-means clustering on the coefficients of the approximate expression.
- the determining of the capacity of the battery cell may include determining that the capacity of the battery cell is normal when the battery cell belongs to a predetermined cluster among a plurality of clusters.
- the battery management apparatus and method according to an embodiment disclosed in this document may predict the capacity of a battery cell early by statistically analyzing the state data measured in real time during charging and discharging of the battery cell.
- 1 is a block diagram showing the configuration of a general battery rack.
- FIG. 2 is a block diagram illustrating a configuration of a battery management apparatus according to an embodiment disclosed in this document.
- FIG 3 is a view for explaining a process of selecting a representative value of a battery cell according to an embodiment disclosed in this document.
- FIG. 4 is a diagram exemplarily illustrating a graph of an approximate expression calculated for a representative value of a battery cell according to an embodiment disclosed in this document.
- FIG. 5 is a diagram illustrating performing K-means clustering on coefficients of approximate expressions for representative values of battery cells calculated according to an embodiment disclosed in this document.
- FIG. 6 is a diagram exemplarily illustrating SOH and representative values of battery cells belonging to each cluster classified through K-means clustering according to an embodiment disclosed in this document.
- FIG. 7 is a diagram illustrating a graph of a representative value of a battery cell classified by clusters according to an exemplary embodiment disclosed in this document.
- FIG. 8 is a diagram illustrating the capacity degradation of battery cells included in each cluster calculated according to an exemplary embodiment disclosed in this document according to cycles.
- FIG. 9 is a flowchart illustrating a battery management method according to an embodiment disclosed in this document.
- FIG. 10 is a block diagram illustrating a computing system executing a battery management method according to an embodiment disclosed in this document.
- first, second, first, or second used in various embodiments may modify various components regardless of order and/or importance, do not limit For example, without departing from the scope of rights of the embodiments disclosed in this document, a first component may be referred to as a second component, and similarly, the second component may also be renamed as a first component.
- 1 is a block diagram showing the configuration of a general battery rack.
- FIG. 1 schematically shows a battery control system 1 including a battery rack 10 and an upper-level controller 20 included in the upper-level system according to an embodiment disclosed in this document.
- the battery rack 10 may include a plurality of battery modules 12 , a sensor 14 , a switching unit 16 and a battery management system 100 .
- the battery rack 10 may be provided with a plurality of the battery module 12, the sensor 14, the switching unit 16 and the battery management system (100).
- the plurality of battery modules 12 may include at least one chargeable/dischargeable battery cell.
- the sensor 14 may detect a current flowing in the battery rack 10 .
- the detection signal may be transmitted to the battery management system 100 .
- the switching unit 16 may be connected in series to the (+) terminal side or the (-) terminal side of the battery module 12 to control the charge/discharge current flow of the battery module 12 .
- the switching unit 16 may use at least one relay, a magnetic contactor, etc. according to the specifications of the battery rack 10 .
- the battery management system 100 may monitor the voltage, current, temperature, etc. of the battery rack 10, and may control and manage to prevent overcharging and overdischarging, etc., and may include, for example, RBMS.
- the battery management system 100 is an interface for receiving the measured values of the various parameters described above, and may include a plurality of terminals and a circuit connected to these terminals to process the received values.
- the battery management system 100 may control ON/OFF of the switching unit 16, for example, a relay or a contactor, and is connected to the battery module 12 to determine the state of each of the battery modules 12 . can monitor
- the differential value of the capacity with respect to the voltage of the battery cell measured through a separate program is calculated and statistically analyzed to predict the capacity of the battery cell.
- the upper controller 20 may transmit a control signal for controlling the battery module 12 to the battery management system 100 . Accordingly, the operation of the battery management system 100 may be controlled based on a control signal applied from the upper controller 20 .
- the battery module 12 may be a component included in an Energy Storage System (ESS).
- the upper controller 20 may be a controller (BBMS) of a battery bank including a plurality of battery racks 10 or an ESS controller that controls the entire ESS including a plurality of banks.
- the battery rack 10 is not limited to these uses.
- FIG. 2 is a block diagram illustrating a configuration of a battery management apparatus according to an embodiment disclosed in this document.
- the battery management apparatus 100 may include a calculator 110 , an analyzer 120 , a determiner 130 , and a storage unit 140 . .
- the calculator 110 may calculate a differential value of the capacity with respect to the voltage of the battery cell. Specifically, the calculator 110 may calculate dQ/dV, which is a differential value of the capacity with respect to the voltage of the battery cell, based on the voltage and current for each charge/discharge cycle of each battery cell. Also, the calculator 110 may store the dQ/dV value for each charge/discharge cycle calculated for each battery cell in the storage 140 .
- the analysis unit 120 may perform statistical analysis on the differential value calculated by the calculation unit 110 . Specifically, the analysis unit 120 selects the largest value among the deviations of the differential value between charge and discharge cycles of the battery cell as a representative value (hereinafter, referred to as nonfixV dQ/dV), and statistically analyzes the selected representative value. can be performed. Also, the analysis unit 120 may store, in the storage unit 140 , representative values calculated in each charge/discharge cycle for each battery cell.
- the analysis unit 120 may calculate an approximate expression for the representative value and perform statistical analysis on the coefficients of the approximate expression.
- the approximation to the representative value may be a first-order or second-order polynomial.
- the approximation formula can be calculated by approximating for any number of charge/discharge cycles.
- the approximate expression may be calculated based on data of 1 to 4 cycles or data of 1 to 100 cycles for each battery cell.
- the approximation formula calculated by the analysis unit 120 is a quadratic formula, it can be approximated more closely to the open form for the representative value, which can be useful when analyzing with an emphasis on the open form itself. It can be approximated so that the slope of the value is emphasized, so that the analysis can be focused more on the amount of change.
- the analyzer 120 may perform K-means clustering on the calculated coefficients of the approximate expression to classify the calculated coefficients into a predetermined number of clusters.
- each cluster may be classified based on the slope of the representative value of the battery cell. This will be described later with reference to FIG. 5 .
- the determination unit 130 may determine the capacity of the battery cell based on statistical analysis. Specifically, the determination unit 130 may determine that the capacity of the battery cell is normal when the battery cell belongs to a predetermined cluster among the plurality of clusters calculated by the analysis unit 120 .
- the predetermined cluster may include battery cells in which the slope of the representative value is less than the reference value. Meanwhile, when the battery cell does not belong to a predetermined cluster, the determination unit 130 may determine the capacity of the battery cell after charging and discharging the battery cell up to a preset number of cycles (eg, 300 cycles). .
- the storage unit 140 may store information about a plurality of clusters. For example, the storage unit 140 may store information about a cluster previously calculated through K-means clustering by the analysis unit 120 . Also, the storage unit 140 may store data regarding the differential value and the representative value calculated for each battery cell.
- the battery management apparatus 100 has been described as including the storage unit 140 , but the battery management apparatus 100 includes a communication unit (not shown) instead of the storage unit 140 . ) may be included.
- the battery management apparatus 100 may operate by storing various data such as differential data for each battery cell, a representative value, and information on a plurality of clusters in an external server and transmitting and receiving data through the communication unit.
- the capacity of a battery cell can be predicted early by statistically analyzing the state data measured in real time during charging and discharging of the battery cell.
- FIG. 3 is a diagram for exemplarily explaining that the largest value among the deviations of differential values between charging and discharging cycles of a battery cell is selected as a representative value.
- each graph of FIG. 3 shows a calculated differential value for each charge/discharge cycle of a battery cell.
- the battery management apparatus 100 may select the largest value among the deviations of differential values between charge/discharge cycles of battery cells as a representative value. Since the calculated representative value has a high correlation with the capacity of the battery cell, as will be described below, it may be suitable for early prediction of the capacity of the battery cell even if the charge/discharge cycle of the battery cell is not performed several times.
- FIG. 4 is a diagram exemplarily showing a graph of an approximate expression calculated with respect to a representative value of a battery cell.
- the x-axis represents the number of charge/discharge cycles of a battery cell
- the y-axis represents a representative nonfixV dQ/dV of the battery cell.
- the representative value of the y-axis may be a value having the largest deviation between charge/discharge cycles among dQ/dV of the battery cell.
- 4 is a graph (A) of a representative value of a battery cell and a graph (B) obtained by calculating an approximate expression for the representative value as a second-order polynomial (ax2+bx+c). As shown in FIG. 4 , it can be seen that the representative value decreases as the charge/discharge cycle progresses and appears in a form similar to the approximate equation.
- FIG. 5 is a diagram illustrating performing K-means clustering on coefficients of an approximate expression with respect to a representative value of a battery cell.
- each coordinate axis represents a, b, and c axes that are coefficients of an approximate expression of a representative value.
- each point in FIG. 5 represents a coefficient of an approximate expression for a representative value of each battery cell.
- each battery cell is classified into three clusters (Clusters 1 to 3) through K-means clustering.
- the present embodiment is not limited thereto, and the number of clusters of each battery cell may be determined to be arbitrary.
- FIG. 6 is a diagram exemplarily illustrating SOH and representative values of battery cells belonging to each cluster classified through K-means clustering.
- FIG. 6 graphs for clusters 1 to 3 on the coordinate space shown in FIG. 5 are shown.
- the graph in light indicates a case where the capacity of the battery cell falls within the normal range (Pass)
- the graph in dark indicates the portion where the capacity of the battery cell has an abnormality (Fail). indicates.
- FIG. 6 shows the above-described representative values classified through K-means clustering, and then a capacity degradation test is performed on each cluster to determine normal or abnormal.
- a capacity degradation test is performed on each cluster to determine normal or abnormal.
- 226 passes and 16 fail among 242 battery cells
- 154 passes among 197 battery cells.
- 43 abnormalities showed 43 abnormalities (Fail).
- Cluster 3 all 11 battery cells were found to be normal.
- the battery management apparatus according to an embodiment disclosed in this document, after K-means clustering is performed on the representative value of the differential value of the battery cell to calculate each cluster in advance, the battery cell is set to a specific cluster ( For example, by determining that the degradation degree is in the normal range (Pass) when belonging to Cluster 3), it is possible to estimate the capacity of the battery cell early even if it does not proceed up to 300 cycles as in the prior art.
- the degradation degree is in the normal range (Pass) when belonging to Cluster 3
- FIG. 7 is a diagram illustrating graphs of representative values of battery cells classified by clusters.
- the x-axis represents the number of charge/discharge cycles of the battery cell
- the y-axis represents a representative value of the differential value of the battery cell.
- the slope of the representative value of the differential value with respect to the cycle is gentle. That is, in the case of a battery cell belonging to Cluster 3, since the change in the representative value highly correlated with the SOH is small, the positive electrode capacity deterioration may appear relatively small. Therefore, as a result of performing statistical analysis through the battery management device disclosed in this document, if a specific battery cell belongs to Cluster 3, the charging/discharging experiment may be immediately stopped and it may be determined as a battery cell having a normal degree of degradation.
- FIG. 8 is a diagram illustrating capacity degradation of battery cells belonging to each cluster according to cycles.
- the representative value which is the maximum deviation value between cycles of the differential value of the capacity with respect to the voltage of the battery cell, is approximated with the first polynomial and the second polynomial, respectively, and then the capacity degradation degree is normal (Pass) or abnormal ( Fail) or not.
- Pass normal
- Fail abnormal
- FIG. 8 it can be seen that the normal/abnormal determination result is diffused or vibrated at the beginning of the charging/discharging cycle of the battery cell, and then the result value gradually converges after a certain number of cycles or more.
- the battery management apparatus According to the battery management apparatus according to an embodiment disclosed in this document, it is possible to determine early whether the capacity is normal due to the deterioration of the positive electrode of the battery cell through statistical analysis of the representative value of the battery cell.
- FIG. 9 is a flowchart illustrating a battery management method according to an embodiment disclosed in this document.
- a differential value of capacity with respect to voltage of a battery cell is calculated ( S110 ).
- dQ/dV which is a differential value of capacity with respect to the voltage of the battery cell, may be calculated based on the voltage and current for each charge/discharge cycle of each battery cell.
- the approximate expression may be a first-order or a second-order polynomial.
- the approximation formula is a quadratic formula, it can be more approximated to the reformulation for the representative value, which can be useful for analysis focusing on the reformulation itself. focus can be analyzed.
- K-means clustering is performed on the coefficients of the approximate expression calculated in step S130 (S140). Accordingly, each battery cell may be classified into clusters according to the preset number of clusters. In addition, it is determined whether the battery cell is included in a predetermined cluster (S150).
- the predetermined cluster may include battery cells in which the slope of the approximate expression with respect to the representative value is less than the reference value.
- the predetermined cluster may correspond to the aforementioned Cluster 3 .
- the capacity of the battery cell is determined after charging and discharging the battery cell up to a preset number of cycles (eg, 300 cycles) ( S170 ).
- the capacity of the battery cell can be predicted early by statistically analyzing the state data measured in real time during charging and discharging of the battery cell.
- FIG. 10 is a block diagram illustrating a computing system executing a battery management method according to an embodiment disclosed in this document.
- the computing system 30 may include an MCU 32 , a memory 34 , an input/output I/F 36 , and a communication I/F 38 . have.
- the MCU 32 executes various programs (eg, a differential calculation program, a capacity prediction program, etc.) stored in the memory 34 , and through these programs, various programs including voltage, current, capacity, etc. of the battery cell It may be a processor that processes data and performs functions of the battery management device illustrated in FIG. 2 described above.
- various programs eg, a differential calculation program, a capacity prediction program, etc.
- the memory 34 may store various programs related to calculating the differential value of the battery cell and predicting the capacity. Also, the memory 34 may store various data such as voltage, current, differential value, and representative value data of each battery cell.
- Memory 34 may be volatile memory or non-volatile memory.
- RAM volatile memory
- DRAM dynamic random access memory
- SRAM static random access memory
- non-volatile memory ROM, PROM, EAROM, EPROM, EEPROM, flash memory, or the like can be used.
- the examples of memories 34 listed above are merely examples and are not limited to these examples.
- the input/output I/F 36 is an interface that connects between an input device (not shown) such as a keyboard, mouse, and touch panel, and an output device, such as a display (not shown), and the MCU 32 to transmit/receive data can provide
- the communication I/F 340 is a configuration capable of transmitting and receiving various data to and from the server, and may be various devices capable of supporting wired or wireless communication. For example, it is possible to transmit/receive a program or various data for calculating a differential value and a representative value of a battery cell or predicting a capacity from an external server provided separately through the communication I/F 38 .
- the computer program according to an embodiment disclosed in this document is recorded in the memory 34 and processed by the MCU 32, so that it may be implemented as a module performing each function shown in FIG. 2 , for example. have.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Secondary Cells (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Tests Of Electric Status Of Batteries (AREA)
Abstract
본 문서에 개시된 일 실시 예에 따른 배터리 관리 장치는 배터리 셀의 전압에 대한 용량의 미분치를 산출하는 산출부, 상기 미분치에 대한 통계 분석을 수행하는 분석부 및 상기 통계 분석에 기초하여 상기 배터리 셀의 용량을 판정하는 판정부를 포함할 수 있다.
Description
관련출원과의 상호인용
본 발명은 2020.12.24.에 출원된 한국 특허 출원 제10-2020-0183970호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용을 본 명세서의 일부로 포함한다.
기술분야
본 문서에 개시된 실시예들은 배터리 관리 장치 및 방법에 관한 것이다.
최근 이차 전지에 대한 연구 개발이 활발히 이루어지고 있다. 여기서 이차 전지는 충방전이 가능한 전지로서, 종래의 Ni/Cd 전지, Ni/MH 전지 등과 최근의 리튬 이온 전지를 모두 포함하는 의미이다. 이차 전지 중 리튬 이온 전지는 종래의 Ni/Cd 전지, Ni/MH 전지 등에 비하여 에너지 밀도가 훨씬 높다는 장점이 있다, 또한, 리튬 이온 전지는 소형, 경량으로 제작할 수 있어서, 이동 기기의 전원으로 사용된다. 또한, 리튬 이온 전지는 전기 자동차의 전원으로 사용 범위가 확장되어 차세대 에너지 저장 매체로 주목을 받고 있다.
또한, 이차 전지는 일반적으로 복수 개의 배터리 셀들이 직렬 및/또는 병렬로 연결된 배터리 모듈을 포함하는 배터리 랙으로 이용된다. 그리고 배터리 랙은 배터리 관리 시스템에 의하여 상태 및 동작이 관리 및 제어된다.
이러한 배터리 셀의 용량을 계산하기 위해서는 통상적으로 배터리 셀의 충전 및 방전이 모두 끝난 후 Ah Counting 등의 계산식을 이용한다. 또한, 이러한 배터리 셀을 출하하는 경우 미리 배터리 셀을 300 사이클까지 충방전시켜 용량 퇴화율을 점검한 후에 출하가 이루어진다. 그러나, 배터리 셀을 300 사이클까지 충방전시키는 것은 시간과 비용이 많이 소모되는 문제가 있다.
본 문서에 개시된 실시예들은 배터리 셀의 충전 및 방전 중에 실시간으로 측정된 상태 데이터를 통계적으로 분석함으로써 배터리 셀의 용량을 조기에 예측할 수 있는 배터리 관리 장치 및 방법을 제공하는 것을 일 목적으로 한다.
본 문서에 개시된 실시예들의 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재들로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본 문서에 개시된 일 실시 예에 따른 배터리 관리 장치는 배터리 셀의 전압에 대한 용량의 미분치를 산출하는 산출부, 상기 미분치에 대한 통계 분석을 수행하는 분석부 및 상기 통계 분석에 기초하여 상기 배터리 셀의 용량을 판정하는 판정부를 포함할 수 있다.
일 실시예에 따라, 상기 분석부는 상기 배터리 셀의 충방전 사이클간 상기 미분치의 편차 중 가장 큰 값을 대표값으로 선정하고, 상기 대표값에 대해 통계 분석을 수행할 수 있다.
일 실시예에 따라, 상기 분석부는 상기 대표값에 대한 근사식을 산출하고, 상기 근사식의 계수에 대해 통계 분석을 수행할 수 있다.
일 실시예에 따라, 상기 근사식의 계수에 대해 K-means 클러스터링을 수행할 수 있다.
일 실시예에 따라, 상기 판정부는 상기 배터리 셀이 복수의 클러스터 중 미리 결정된 클러스터에 속하는 경우 상기 배터리 셀의 용량이 정상인 것으로 판정할 수 있다.
일 실시예에 따라, 상기 미리 결정된 클러스터는 상기 대표값에 대한 근사식의 기울기가 기준치 미만인 배터리 셀을 포함할 수 있다.
일 실시예에 따라, 상기 복수의 클러스터에 관한 정보를 저장하는 저장부를 더 포함할 수 있다.
일 실시예에 따라, 상기 판정부는 상기 배터리 셀이 상기 미리 결정된 클러스터에 속하지 않는 경우에는 기설정된 사이클 수까지 상기 배터리 셀의 충방전을 수행한 후에 상기 배터리 셀의 용량을 판정할 수 있다.
일 실시예에 따라, 상기 근사식은 1차 또는 2차 다항식일 수 있다.
본 문서에 개시된 일 실시 예에 따른 배터리 관리 방법은 배터리 셀의 전압에 대한 용량의 미분치를 산출하는 단계, 상기 미분치에 대한 통계 분석을 수행하는 단계 및 상기 통계 분석에 기초하여 상기 배터리 셀의 용량을 판정하는 단계를 포함할 수 있다.
일 실시예에 따라, 상기 배터리 셀의 충방전 사이클간 상기 미분치의 편차 중 가장 큰 값을 대표값으로 선정하는 단계를 더 포함하고, 상기 통계 분석을 수행하는 단계는 상기 대표값에 대해 통계 분석을 수행할 수 있다.
일 실시예에 따라, 상기 근사식의 계수에 대해 K-means 클러스터링을 수행할 수 있다.
일 실시예에 따라, 상기 판정부는 상기 배터리 셀이 복수의 클러스터 중 미리 결정된 클러스터에 속하는 경우 상기 배터리 셀의 용량이 정상인 것으로 판정할 수 있다.
일 실시예에 따라, 상기 미리 결정된 클러스터는 상기 대표값에 대한 근사식의 기울기가 기준치 미만인 배터리 셀을 포함할 수 있다.
일 실시예에 따라, 상기 복수의 클러스터에 관한 정보를 저장하는 저장부를 더 포함할 수 있다.
일 실시예에 따라, 상기 판정부는 상기 배터리 셀이 상기 미리 결정된 클러스터에 속하지 않는 경우에는 기설정된 사이클 수까지 상기 배터리 셀의 충방전을 수행한 후에 상기 배터리 셀의 용량을 판정할 수 있다.
일 실시예에 따라, 상기 근사식은 1차 또는 2차 다항식일 수 있다.
본 문서에 개시된 일 실시 예에 따른 배터리 관리 방법은 배터리 셀의 전압에 대한 용량의 미분치를 산출하는 단계, 상기 미분치에 대한 통계 분석을 수행하는 단계 및 상기 통계 분석에 기초하여 상기 배터리 셀의 용량을 판정하는 단계를 포함할 수 있다.
일 실시예에 따라, 상기 배터리 셀의 충방전 사이클간 상기 미분치의 편차 중 가장 큰 값을 대표값으로 선정하는 단계를 더 포함하고, 상기 통계 분석을 수행하는 단계는 상기 대표값에 대해 통계 분석을 수행할 수 있다.
일 실시예에 따라, 상기 대표값에 대한 근사식을 산출하는 단계를 더 포함하고, 상기 통계 분석을 수행하는 단계는 상기 근사식의 계수에 대해 통계 분석을 수행할 수 있다.
일 실시예에 따라, 상기 근사식의 계수에 대해 K-means 클러스터링을 수행하는 단계를 더 포함할 수 있다.
일 실시예에 따라, 상기 배터리 셀의 용량을 판정하는 단계는 상기 배터리 셀이 복수의 클러스터 중 미리 결정된 클러스터에 속하는 경우 상기 배터리 셀의 용량이 정상인 것으로 판정할 수 있다.
본 문서에 개시된 일 실시예에 따른 배터리 관리 장치 및 방법은, 배터리 셀의 충전 및 방전 중에 실시간으로 측정된 상태 데이터를 통계적으로 분석함으로써 배터리 셀의 용량을 조기에 예측할 수 있다.
도 1은 일반적인 배터리 랙의 구성을 나타내는 블록도이다.
도 2는 본 문서에 개시된 일 실시 예에 따른 배터리 관리 장치의 구성을 나타내는 블록도이다.
도 3은 본 문서에 개시된 일 실시예에 따른 배터리 셀의 대표값 선정 과정을 설명하기 위한 도면이다.
도 4는 본 문서에 개시된 일 실시예에 따라 배터리 셀의 대표값에 대해 산출된 근사식의 그래프를 예시적으로 나타내는 도면이다.
도 5는 본 문서에 개시된 일 실시예에 따라 산출된 배터리 셀의 대표값에 대한 근사식의 계수에 대해 K-means 클러스터링을 수행하는 것을 나타내는 도면이다.
도 6은 본 문서에 개시된 일 실시예에 따라 K-means 클러스터링을 통해 분류된 각 클러스터에 속한 배터리 셀들의 SOH와 대표값을 예시적으로 나타내는 도면이다.
도 7은 본 문서에 개시된 일 실시예에 따른 배터리 셀의 대표값에 대한 그래프를 클러스터별로 분류하여 나타내는 도면이다.
도 8은 본 문서에 개시된 일 실시예에 따라 산출된 각 클러스터에 속한 배터리 셀들에 대한 용량 퇴화도를 사이클에 따라 나타내는 도면이다.
도 9는 본 문서에 개시된 일 실시 예에 따른 배터리 관리 방법을 나타내는 흐름도이다.
도 10은 본 문서에 개시된 일 실시 예에 따른 배터리 관리 방법을 실행하는 컴퓨팅 시스템을 보여주는 블록도이다.
이하, 첨부한 도면을 참조하여 본 문서에 개시된 다양한 실시 예들에 대해 상세히 설명하고자 한다. 본 문서에서 도면상의 동일한 구성 요소에 대해서는 동일한 참조 부호를 사용하고 동일한 구성요소에 대해서 중복된 설명은 생략한다.
본 문서에 개시되어 있는 다양한 실시 예들에 대해서, 특정한 구조적 내지 기능적 설명들은 단지 실시 예들을 설명하기 위한 목적으로 예시된 것으로, 본 문서에 개시된 다양한 실시 예들은 여러 가지 형태로 실시될 수 있으며 본 문서에 설명된 실시 예들에 한정되는 것으로 해석되어서는 아니 된다.
다양한 실시 예에서 사용된 "제1", "제2", "첫째", 또는 "둘째" 등의 표현들은 다양한 구성요소들을, 순서 및/또는 중요도에 상관없이 수식할 수 있고, 해당 구성 요소들을 한정하지 않는다. 예를 들면, 본 문서에 개시된 실시예의 권리 범위를 벗어나지 않으면서 제1 구성 요소는 제2 구성 요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성 요소로 바꾸어 명명될 수 있다.
본 문서에서 사용된 용어들은 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 다른 실시 예의 범위를 한정하려는 의도가 아닐 수 있다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함할 수 있다.
기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 문서에 개시된 실시예들의 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가질 수 있다. 일반적으로 사용되는 사전에 정의된 용어들은 관련 기술의 문맥 상 가지는 의미와 동일 또는 유사한 의미를 가지는 것으로 해석될 수 있으며, 본 문서에서 명백하게 정의되지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다. 경우에 따라서, 본 문서에서 정의된 용어일지라도 본 문서에 개시된 실시 예들을 배제하도록 해석될 수 없다.
도 1은 일반적인 배터리 랙의 구성을 나타내는 블록도이다.
구체적으로, 도 1은 본 문서에 개시된 일 실시 예에 따른 배터리 랙(10)과 상위 시스템에 포함되어 있는 상위 제어기(20)를 포함하는 배터리 제어 시스템(1)을 개략적으로 보여준다.
도 1에 도시된 바와 같이, 배터리 랙(10)은 복수의 배터리 모듈(12), 센서(14), 스위칭부(16) 및 배터리 관리 시스템(100)을 포함할 수 있다. 이 때, 배터리 랙(10)에는 배터리 모듈(12), 센서(14), 스위칭부(16) 및 배터리 관리 시스템(100)이 복수 개 구비될 수 있다.
복수의 배터리 모듈(12)은 충방전 가능한 적어도 하나의 배터리 셀들을 포함할 수 있다.
센서(14)는 배터리 랙(10)에 흐르는 전류를 검출할 수 있다. 이 때, 검출 신호는 배터리 관리 시스템(100)으로 전달될 수 있다.
스위칭부(16)는 배터리 모듈(12)의 (+) 단자 측 또는 (-) 단자 측에 직렬로 연결되어 배터리 모듈(12)의 충방전 전류 흐름을 제어할 수 있다. 예를 들면, 스위칭부(16)는 배터리 랙(10)의 사양에 따라서 적어도 하나의 릴레이, 마그네틱 접촉기 등이 이용될 수 있다.
배터리 관리 시스템(100)은 배터리 랙(10)의 전압, 전류, 온도 등을 모니터링하여, 과충전 및 과방전 등을 방지하도록 제어 관리할 수 있으며, 예를 들면, RBMS를 포함할 수 있다.
배터리 관리 시스템(100)은 상술한 각종 파라미터를 측정한 값을 입력받는 인터페이스로서, 복수의 단자와, 이들 단자와 연결되어 입력받은 값들의 처리를 수행하는 회로 등을 포함할 수 있다. 또한, 배터리 관리 시스템(100)은, 스위칭부(16) 예를 들어, 릴레이 또는 접촉기 등의 ON/OFF를 제어할 수도 있으며, 배터리 모듈(12)에 연결되어 배터리 모듈(12) 각각의 상태를 감시할 수 있다.
한편, 본 문서에 개시된 배터리 관리 시스템(100)에서는 이하에서 후술하는 바와 같이 별도의 프로그램을 통해 측정된 배터리 셀의 전압에 대한 용량의 미분치를 산출하고, 이를 통계적으로 분석하여 배터리 셀의 용량을 예측할 수 있다.
상위 제어기(20) 배터리 모듈(12)을 제어하기 위한 제어 신호를 배터리 관리 시스템(100)에 전송할 수 있다. 이에 따라, 배터리 관리 시스템(100)은 상위 제어기(20)로부터 인가되는 제어 신호에 기초하여 동작이 제어될 수 있다. 또한, 배터리 모듈(12)은 ESS(Energy Storage System)에 포함된 구성일 수 있다. 이러한 경우, 상위 제어기(20)는 복수의 배터리 랙(10)을 포함하는 배터리 뱅크의 제어기(BBMS) 또는 복수의 뱅크를 포함하는 ESS 전체를 제어하는 ESS 제어기일 수 있을 것이다. 다만, 배터리 랙(10)은 이러한 용도에 한정되는 것은 아니다.
이와 같은 배터리 랙(10)의 구성 및 배터리 관리 시스템(100)의 구성은 공지된 구성이므로, 보다 구체적인 설명은 생략하기로 한다.
도 2는 본 문서에 개시된 일 실시 예에 따른 배터리 관리 장치의 구성을 나타내는 블록도이다.
도 2를 참조하면, 본 문서에 개시된 일 실시 예에 따른 배터리 관리 장치(100)는 산출부(110), 분석부(120), 판정부(130) 및 저장부(140)를 포함할 수 있다.
산출부(110)는 배터리 셀의 전압에 대한 용량의 미분치를 산출할 수 있다. 구체적으로, 산출부(110)는 배터리 셀 각각의 매 충방전 사이클(cycle)마다의 전압과 전류에 기초하여 배터리 셀의 전압에 대한 용량의 미분치인 dQ/dV를 산출할 수 있다. 또한, 산출부(110)는 배터리 셀 각각에 대해 산출된 매 충방전 사이클별 dQ/dV값을 저장부(140)에 저장할 수 있다.
분석부(120)는 산출부(110)에 의해 산출된 미분치에 대한 통계 분석을 수행할 수 있다. 구체적으로, 분석부(120)는 배터리 셀의 충방전 사이클간 미분치의 편차 중 가장 큰 값을 대표값(이하에서, nonfixV dQ/dV로 설명함)으로 선정하고, 선정된 대표값에 대해 통계 분석을 수행할 수 있다. 또한, 분석부(120)는 배터리 셀 각각에 대해 매 충방전 사이클에서 산출된 각각의 대표값들을 저장부(140)에 저장할 수 있다.
분석부(120)는 대표값에 대한 근사식을 산출하고, 근사식의 계수에 대해 통계 분석을 수행할 수 있다. 예를 들면, 대표값에 대한 근사식은 1차 또는 2차 다항식일 수 있다. 또한, 근사식은 임의의 수의 충방전 사이클 수에 대해 근사하여 산출될 수 있다. 예를 들면, 근사식은 배터리 셀 각각에 대하여, 1 내지 4 사이클까지의 데이터에 기초하여 산출되거나, 1 내지 100 사이클까지의 데이터에 기초하여 산출될 수 있다. 분석부(120)에 의해 산출되는 근사식이 2차식인 경우 대표값에 대한 개형에 보다 가깝게 근사시킬 수 있어 개형 자체에 중점을 두고 분석하는 경우에 유용할 수 있으며, 근사식이 1차식인 경우에는 대표값의 기울기가 부각되도록 근사시킬 수 있어 변화량에 보다 중점을 두고 분석할 수 있다.
또한, 분석부(120)는 산출된 근사식의 계수에 대해 K-means 클러스터링을 수행하여 기설정된 수의 클러스터로 분류할 수 있다. 이 때, 각 클러스터는 배터리 셀의 대표값의 기울기에 기초하여 분류될 수 있다. 이에 관해서는 도 5를 참조하여 후술한다.
판정부(130)는 통계 분석에 기초하여 배터리 셀의 용량을 판정할 수 있다. 구체적으로, 판정부(130)는 배터리 셀이 분석부(120)에서 산출된 복수의 클러스터 중 미리 결정된 클러스터에 속하는 경우 배터리 셀의 용량이 정상인 것으로 판정할 수 있다. 이 경우, 미리 결정된 클러스터는 대표값의 기울기가 기준치 미만인 배터리 셀을 포함할 수 있다. 한편, 판정부(130)는 배터리 셀이 미리 결정된 클러스터에 속하지 않는 경우에는 기설정된 사이클 수(예를 들면, 300 사이클)까지 배터리 셀의 충방전을 수행한 후에 배터리 셀의 용량을 판정할 수 있다.
저장부(140)는 복수의 클러스터에 관한 정보를 저장할 수 있다. 예를 들면, 저장부(140)는 분석부(120)에 의해 K-means 클러스터링을 통해 미리 산출된 클러스터에 관한 정보를 저장할 수 있다. 또한, 저장부(140)는 배터리 셀 각각에 대해 산출된 미분치와 대표값에 관한 데이터를 저장할 수 있다.
한편, 도 1에서는 본 문서에 개시된 일 실시 예에 따른 배터리 관리 장치(100)가 저장부(140)를 포함하는 것으로 설명하였으나, 배터리 관리 장치(100)는 저장부(140) 대신 통신부(미도시)를 포함할 수 있다. 이 경우, 배터리 관리 장치(100)는 배터리 셀 각각에 대한 미분치 데이터, 대표값, 복수의 클러스터에 관한 정보 등 각종 데이터를 외부 서버에 저장해두고 통신부를 통해 송수신하는 방식으로 동작할 수 있다
이와 같이, 본 문서에 개시된 일 실시 예에 따른 배터리 관리 장치(100)에 따르면, 배터리 셀의 충전 및 방전 중에 실시간으로 측정된 상태 데이터를 통계적으로 분석함으로써 배터리 셀의 용량을 조기에 예측할 수 있다.
도 3은 배터리 셀의 충방전 사이클간 미분치의 편차 중 가장 큰 값을 대표값으로 선정하는 것을 예시적으로 설명하기 위한 도면이다.
도 3을 참조하면, x축은 배터리 셀의 전압(V)을 나타내고, y축은 배터리 셀의 전압에 대한 용량의 미분치(dQ/dV)를 나타낸다. 또한, 도 3의 각 그래프는 배터리 셀의 충방전 사이클 별로 미분치를 산출하여 나타낸 것이다.
도 3에 나타낸 것과 같이, 본 문서에 개시된 일 실시 예에 따른 배터리 관리 장치(100)는 배터리 셀의 충방전 사이클간 미분치의 편차 중 가장 큰 값을 대표값으로 선정할 수 있다. 이처럼 산출된 대표값은 이하에서 설명하는 것과 같이 배터리 셀의 용량과의 상관성이 높으므로 배터리 셀의 충방전 사이클을 여러 차례 진행하지 않더라도 조기에 배터리 셀의 용량을 예측하기에 적합할 수 있다.
도 4는 배터리 셀의 대표값에 대해 산출된 근사식의 그래프를 예시적으로 나타내는 도면이다.
도 4를 참조하면, x축은 배터리 셀의 충방전 사이클 수를 나타내고, y축은 배터리 셀의 대표값 nonfixV dQ/dV을 나타낸다. 이 때, y축의 대표값은 배터리 셀의 dQ/dV 중 충방전 사이클간 편차가 가장 큰 값일 수 있다. 도 4는 배터리 셀의 대표값의 그래프(A)와 대표값에 대한 근사식을 2차 다항식(ax2+bx+c)으로 산출하여 그래프(B)로 도시한 것이다. 도 4에 나타낸 것과 같이, 대표값은 충방전 사이클이 진행될수록 감소하여 근사식과 유사한 형태로 나타남을 알 수 있다.
도 5는 배터리 셀의 대표값에 대한 근사식의 계수에 대해 K-means 클러스터링을 수행하는 것을 나타내는 도면이다.
도 5에 나타낸 좌표 공간에서 각각의 좌표축은 대표값의 근사식의 계수인 a, b 및 c축을 나타낸다. 또한, 도 5의 각 포인트들은 배터리 셀 각각의 대표값에 대한 근사식의 계수를 나타낸다. 도 5의 예시에서는 각 배터리 셀들을 K-means 클러스터링을 통해 3개의 클러스터(Cluster 1 내지 3)로 분류하고 있다. 그러나, 본 실시예는 이에 제한되는 것은 아니며, 각 배터리 셀들의 클러스터는 임의의 수로 결정될 수 있다.
도 6은 K-means 클러스터링을 통해 분류된 각 클러스터에 속한 배터리 셀들의 SOH와 대표값을 예시적으로 나타내는 도면이다.
도 6을 참조하면, 도 5에 나타낸 좌표 공간 상의 클러스터 1 내지 3에 대한 그래프를 나타내고 있다. 또한, 도 6의 Cluster 1 내지 3에서 연하게 표시한 그래프는 배터리 셀의 용량이 정상 범위에 속하는 경우(Pass)를 나타내고, 진하게 표시한 그래프는 배터리 셀의 용량에 이상이 있는 부분(Fail)을 나타낸다.
구체적으로, 도 6은 전술한 대표값을 K-means 클러스터링을 통해 분류한 후, 각 클러스터에 대해 용량 퇴화 테스트를 수행하여 정상 또는 비정상을 판정하여 나타낸 것이다. 이 때, 도 6에 나타낸 Cluster 1의 경우에는 242개의 배터리 셀 중 정상(Pass)이 226개, 비정상(Fail)이 16개이고, Cluster 2의 경우에는 197개의 배터리 셀 중 정상(Pass)이 154개, 비정상(Fail)이 43개를 나타내었다. 반면, Cluster 3의 경우에는 11개의 배터리 셀 모두가 정상으로 나타났다.
이처럼, K-means 클러스터링을 통해 분류한 Cluster 3의 경우에는 배터리 셀의 미분치 중 최대값을 나타내는 대표값의 기울기가 다른 클러스터에 비해 작아, 초기 대표값 대비 일정 사이클 후의 변화량이 작음을 알 수 있다. 따라서, 본 문서에 개시된 일 실시 예에 따른 배터리 관리 장치에 의하면, 배터리 셀의 미분치에 관한 대표값에 대해 K-means 클러스터링을 수행하여 각 클러스터를 사전에 산출한 후, 배터리 셀이 특정 클러스터(예를 들면, Cluster 3)에 속하는 경우에 퇴화도가 정상 범주(Pass)인 것으로 판단함으로써, 종래와 같이 300 사이클까지 진행하지 않더라도 조기에 배터리 셀의 용량을 추정할 수 있다.
도 7은 배터리 셀의 대표값에 대한 그래프를 클러스터별로 분류하여 나타내는 도면이다.
도 7을 참조하면, x축은 배터리 셀의 충방전 사이클 수이고, y축은 배터리 셀의 미분치에 관한 대표값을 나타낸다. 도 7에서도 알 수 있는 바와 같이, Cluster 1 및 2와 비교하여 Cluster 3의 경우가 미분치에 관한 대표값의 사이클에 대한 기울기가 완만하게 나타남을 확인할 수 있다. 즉, Cluster 3에 속하는 배터리 셀의 경우, SOH와 상관성이 높은 대표값의 변화가 적으므로, 양극 용량 퇴화가 상대적으로 작게 나타날 수 있다. 따라서, 본 문서에 개시된 배터리 관리 장치를 통해 통계 분석을 수행한 결과 특정 배터리 셀이 Cluster 3에 속하는 경우 즉시 충방전 실험을 중단하고 퇴화도가 정상인 배터리 셀로 판단할 수 있다.
도 8은 각 클러스터에 속한 배터리 셀들에 대한 용량 퇴화도를 사이클에 따라 나타내는 도면이다.
도 8을 참조하면, 배터리 셀의 전압에 대한 용량의 미분치의 사이클간 최대 편차값인 대표값에 대하여, 각각 1차 다항식과 2차 다항식으로 근사시킨 후 용량 퇴화도의 정상(Pass) 또는 비정상(Fail) 여부를 나타내었다. 도 8에 나타낸 것과 같이, 배터리 셀의 충방전 사이클의 초기에는 정상/비정상 판정 결과가 확산 또는 진동하다가 사이클이 일정 수 이상 진행된 후에는 점차적으로 결과값이 수렴해감을 알 수 있다.
특히, 도 8을 참조하면, 배터리 셀의 대표값에 대하여 개형에 중점을 두어 2차 다항식으로 근사시킨 경우, 상대적으로 용량 퇴화도의 결과값이 정상과 비정상 양쪽에서 확산 또는 진동함을 알 수 있다. 반면, 배터리 셀의 대표값에 대하여 기울기를 극대화한 1차 다항식으로 근사시킨 경우에는 용량 퇴화도의 결과값이 초기 단계에서부터 수렴함을 알 수 있다. 즉, 도 8에 나타낸 것과 같이, 1차 다항식의 경우에는 Cluster 3의 경우 약 36 사이클부터 정상과 비정상이 수렴하여, 특히 비정상(Fail)인 경우가 36 사이클 이후에는 0으로 나타나게 되어 2차 다항식에 비해 안정적으로 용량 퇴화 여부를 구분할 수 있다.
이처럼, 본 문서에 개시된 일 실시 예에 따른 배터리 관리 장치에 따르면, 배터리 셀의 대표값에 대한 통계 분석을 통해 배터리 셀의 양극 퇴화로 인한 용량의 정상 여부를 조기에 판정해낼 수 있다.
도 9는 본 문서에 개시된 일 실시 예에 따른 배터리 관리 방법을 나타내는 흐름도이다.
도 9를 참조하면, 본 문서에 개시된 일 실시 예에 따른 배터리 관리 방법은 먼저, 배터리 셀의 전압에 대한 용량의 미분치를 산출한다(S110). 구체적으로, 단계 S110에서는 배터리 셀 각각의 매 충방전 사이클마다의 전압과 전류에 기초하여 배터리 셀의 전압에 대한 용량의 미분치인 dQ/dV를 산출할 수 있다.
그리고, 배터리 셀의 충방전 사이클간 미분치의 편차 중 가장 큰 값을 대표값으로 선정하고(S120), 선정된 대표값에 대한 근사식을 산출한다(S130). 이 때, 근사식은 1차 또는 2차 다항식일 수 있다. 전술한 바와 같이, 근사식이 2차식인 경우 대표값에 대한 개형에 보다 근사시킬 수 있어 개형 자체에 중점을 두고 분석하는 경우에 유용할 수 있으며, 근사식이 1차식인 경우에는 대표값의 변화량에 보다 중점을 두고 분석할 수 있다.
다음으로, 단계 S130에서 산출된 근사식의 계수에 대해 K-means 클러스터링을 수행한다(S140). 따라서, 기설정된 클러스터 수에 따라 각 배터리 셀을 클러스터 별로 분류할 수 있다. 또한, 배터리 셀이 미리 결정된 클러스터에 포함되는지 여부를 판단한다(S150).
만약, 배터리 셀이 미리 결정된 클러스터에 포함되는 경우(YES), 해당 배터리 셀의 용량이 정상인 것으로 판정한다(S160). 이 경우, 미리 결정된 클러스터는 대표값에 대한 근사식의 기울기가 기준치 미만인 배터리 셀을 포함할 수 있다. 예를 들어, 미리 결정된 클러스터는 전술한 Cluster 3에 해당할 수 있다. 반면, 배터리 셀이 미리 결정된 클러스터에 포함되지 않는 경우(NO), 기설정된 사이클 수(예를 들면, 300 사이클)까지 배터리 셀의 충방전을 수행한 후에 배터리 셀의 용량을 판정한다(S170).
이와 같이, 본 문서에 개시된 일 실시 예에 따른 배터리 관리 방법에 따르면, 배터리 셀의 충전 및 방전 중에 실시간으로 측정된 상태 데이터를 통계적으로 분석함으로써 배터리 셀의 용량을 조기에 예측할 수 있다.
도 10은 본 문서에 개시된 일 실시 예에 따른 배터리 관리 방법을 실행하는 컴퓨팅 시스템을 보여주는 블록도이다.
도 10을 참조하면, 본 문서에 개시된 일 실시 예에 따른 컴퓨팅 시스템(30)은 MCU(32), 메모리(34), 입출력 I/F(36) 및 통신 I/F(38)를 포함할 수 있다.
MCU(32)는 메모리(34)에 저장되어 있는 각종 프로그램(예를 들면, 미분치 산출 프로그램, 용량 예측 프로그램 등)을 실행시키고, 이러한 프로그램들을 통해 배터리 셀의 전압, 전류, 용량 등을 포함한 각종 데이터를 처리하며, 전술한 도 2에 나타낸 배터리 관리 장치의 기능들을 수행하도록 하는 프로세서일 수 있다.
메모리(34)는 배터리 셀의 미분치 산출과 용량 예측에 관한 각종 프로그램을 저장할 수 있다. 또한, 메모리(34)는 배터리 셀 각각의 전압, 전류, 미분치, 대표값 데이터 등 각종 데이터를 저장할 수 있다.
이러한 메모리(34)는 필요에 따라서 복수 개 마련될 수도 있을 것이다. 메모리(34)는 휘발성 메모리일 수도 있으며 비휘발성 메모리일 수 있다. 휘발성 메모리로서의 메모리(34)는 RAM, DRAM, SRAM 등이 사용될 수 있다. 비휘발성 메모리로서의 메모리(34)는 ROM, PROM, EAROM, EPROM, EEPROM, 플래시 메모리 등이 사용될 수 있다. 상기 열거한 메모리(34)들의 예를 단지 예시일 뿐이며 이들 예로 한정되는 것은 아니다.
입출력 I/F(36)는, 키보드, 마우스, 터치 패널 등의 입력 장치(미도시)와 디스플레이(미도시) 등의 출력 장치와 MCU(32) 사이를 연결하여 데이터를 송수신할 수 있도록 하는 인터페이스를 제공할 수 있다.
통신 I/F(340)는 서버와 각종 데이터를 송수신할 수 있는 구성으로서, 유선 또는 무선 통신을 지원할 수 있는 각종 장치일 수 있다. 예를 들면, 통신 I/F(38)를 통해 별도로 마련된 외부 서버로부터 배터리 셀의 미분치 및 대표값 산출이나 용량 예측을 위한 프로그램이나 각종 데이터 등을 송수신할 수 있다.
이와 같이, 본 문서에 개시된 일 실시 예에 따른 컴퓨터 프로그램은 메모리(34)에 기록되고, MCU(32)에 의해 처리됨으로써, 예를 들면 도 2에서 도시한 각 기능들을 수행하는 모듈로서 구현될 수도 있다.
이상에서, 본 문서에 개시된 실시 예를 구성하는 모든 구성 요소들이 하나로 결합하거나 결합하여 동작하는 것으로 설명되었다고 해서, 본 문서에 개시된 실시예들이 반드시 이러한 실시 예에 한정되는 것은 아니다. 즉, 본 문서에 개시된 실시예들의 목적 범위 안에서라면, 그 모든 구성 요소들이 하나 이상으로 선택적으로 결합하여 동작할 수도 있다.
또한, 이상에서 기재된 "포함하다", "구성하다" 또는 "가지다" 등의 용어는, 특별히 반대되는 기재가 없는 한, 해당 구성 요소가 내재할 수 있음을 의미하는 것이므로, 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것으로 해석되어야 한다. 기술적이거나 과학적인 용어를 포함한 모든 용어들은, 다르게 정의되지 않는 한, 본 문서에 개시된 실시예들이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미가 있다. 사전에 정의된 용어와 같이 일반적으로 사용되는 용어들은 관련 기술의 문맥상의 의미와 일치하는 것으로 해석되어야 하며, 본 문서에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이상의 설명은 본 문서에 개시된 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 문서에 개시된 실시예들이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 문서에 개시된 실시예들의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 문서에 개시된 실시 예들은 본 문서에 개시된 실시예들의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시 예에 의하여 본 문서에 개시된 기술 사상의 범위가 한정되는 것은 아니다. 본 문서에 개시되 기술사상의 보호 범위는 아래의 청구 범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 문서의 권리 범위에 포함되는 것으로 해석되어야 할 것이다.
Claims (14)
- 배터리 셀의 전압에 대한 용량의 미분치를 산출하는 산출부;상기 미분치에 대한 통계 분석을 수행하는 분석부; 및상기 통계 분석에 기초하여 상기 배터리 셀의 용량을 판정하는 판정부를 포함하는 배터리 관리 장치.
- 청구항 1에 있어서,상기 분석부는 상기 배터리 셀의 충방전 사이클간 상기 미분치의 편차 중 가장 큰 값을 대표값으로 선정하고, 상기 대표값에 대해 통계 분석을 수행하는 배터리 관리 장치.
- 청구항 2에 있어서,상기 분석부는 상기 대표값에 대한 근사식을 산출하고, 상기 근사식의 계수에 대해 통계 분석을 수행하는 배터리 관리 장치.
- 청구항 3에 있어서,상기 분석부는 상기 근사식의 계수에 대해 K-means 클러스터링을 수행하는 배터리 관리 장치.
- 청구항 4에 있어서,상기 판정부는 상기 배터리 셀이 복수의 클러스터 중 미리 결정된 클러스터에 속하는 경우 상기 배터리 셀의 용량이 정상인 것으로 판정하는 배터리 관리 장치.
- 청구항 5에 있어서,상기 미리 결정된 클러스터는 상기 대표값에 대한 근사식의 기울기가 기준치 미만인 배터리 셀을 포함하는 배터리 관리 장치.
- 청구항 5에 있어서,상기 복수의 클러스터에 관한 정보를 저장하는 저장부를 더 포함하는 배터리 관리 장치.
- 청구항 5에 있어서,상기 판정부는 상기 배터리 셀이 상기 미리 결정된 클러스터에 속하지 않는 경우에는 기설정된 사이클 수까지 상기 배터리 셀의 충방전을 수행한 후에 상기 배터리 셀의 용량을 판정하는 배터리 관리 장치.
- 청구항 3에 있어서,상기 근사식은 1차 또는 2차 다항식인 배터리 관리 장치.
- 배터리 셀의 전압에 대한 용량의 미분치를 산출하는 단계;상기 미분치에 대한 통계 분석을 수행하는 단계; 및상기 통계 분석에 기초하여 상기 배터리 셀의 용량을 판정하는 단계를 포함하는 배터리 관리 방법.
- 청구항 10에 있어서,상기 배터리 셀의 충방전 사이클간 상기 미분치의 편차 중 가장 큰 값을 대표값으로 선정하는 단계를 더 포함하고,상기 통계 분석을 수행하는 단계는 상기 대표값에 대해 통계 분석을 수행하는 배터리 관리 방법.
- 청구항 11에 있어서,상기 대표값에 대한 근사식을 산출하는 단계를 더 포함하고,상기 통계 분석을 수행하는 단계는 상기 근사식의 계수에 대해 통계 분석을 수행하는 배터리 관리 방법.
- 청구항 12에 있어서,상기 근사식의 계수에 대해 K-means 클러스터링을 수행하는 단계를 더 포함하는 배터리 관리 방법.
- 청구항 13에 있어서,상기 배터리 셀의 용량을 판정하는 단계는 상기 배터리 셀이 복수의 클러스터 중 미리 결정된 클러스터에 속하는 경우 상기 배터리 셀의 용량이 정상인 것으로 판정하는 배터리 관리 방법.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202180068892.7A CN116324446A (zh) | 2020-12-24 | 2021-10-19 | 电池管理装置和方法 |
JP2023518859A JP7524469B2 (ja) | 2020-12-24 | 2021-10-19 | 電池管理装置および方法 |
US18/031,431 US20230408583A1 (en) | 2020-12-24 | 2021-10-19 | Battery management apparatus and method |
EP21911210.9A EP4206708A4 (en) | 2020-12-24 | 2021-10-19 | BATTERY MANAGEMENT DEVICE AND METHOD |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2020-0183970 | 2020-12-24 | ||
KR1020200183970A KR20220092313A (ko) | 2020-12-24 | 2020-12-24 | 배터리 관리 장치 및 방법 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022139143A1 true WO2022139143A1 (ko) | 2022-06-30 |
Family
ID=82159469
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2021/014592 WO2022139143A1 (ko) | 2020-12-24 | 2021-10-19 | 배터리 관리 장치 및 방법 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20230408583A1 (ko) |
EP (1) | EP4206708A4 (ko) |
JP (1) | JP7524469B2 (ko) |
KR (1) | KR20220092313A (ko) |
CN (1) | CN116324446A (ko) |
WO (1) | WO2022139143A1 (ko) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012054220A (ja) * | 2010-08-04 | 2012-03-15 | Nec Energy Devices Ltd | リチウム二次電池およびその制御システム、ならびにリチウム二次電池の状態検出方法 |
JP2017020916A (ja) * | 2015-07-10 | 2017-01-26 | 株式会社Gsユアサ | 蓄電素子劣化状態推定装置、蓄電素子劣化状態推定方法及び蓄電システム |
KR101878538B1 (ko) * | 2014-09-01 | 2018-07-13 | 요코가와 덴키 가부시키가이샤 | 2차 전지 용량 측정 시스템 및 2차 전지 용량 측정 방법 |
JP2019020392A (ja) * | 2017-07-19 | 2019-02-07 | 株式会社Gsユアサ | 推定装置、蓄電装置、推定方法、及びコンピュータプログラム |
US20190113577A1 (en) * | 2017-10-17 | 2019-04-18 | The Board Of Trustees Of The Leland Stanford Junior University | Data-driven Model for Lithium-ion Battery Capacity Fade and Lifetime Prediction |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10393813B2 (en) * | 2013-08-27 | 2019-08-27 | The Regents Of The University Of Michigan | On-board state of health monitoring of batteries using incremental capacity analysis |
CN103785629B (zh) * | 2014-01-13 | 2015-10-28 | 国家电网公司 | 一种梯次利用锂电池筛选成组方法 |
JP6380417B2 (ja) * | 2016-01-21 | 2018-08-29 | 横河電機株式会社 | 二次電池容量測定システム及び二次電池容量測定方法 |
TWI649573B (zh) | 2017-12-04 | 2019-02-01 | 財團法人工業技術研究院 | 電池內短路阻抗之偵測方法和系統 |
JP6881428B2 (ja) | 2018-12-28 | 2021-06-02 | 横河電機株式会社 | 学習装置、推定装置、学習方法、推定方法、学習プログラム、および推定プログラム |
CN111693882B (zh) | 2020-06-30 | 2022-09-06 | 厦门金龙联合汽车工业有限公司 | 一种换电电池健康状态的评价方法 |
-
2020
- 2020-12-24 KR KR1020200183970A patent/KR20220092313A/ko unknown
-
2021
- 2021-10-19 EP EP21911210.9A patent/EP4206708A4/en active Pending
- 2021-10-19 WO PCT/KR2021/014592 patent/WO2022139143A1/ko unknown
- 2021-10-19 US US18/031,431 patent/US20230408583A1/en active Pending
- 2021-10-19 CN CN202180068892.7A patent/CN116324446A/zh active Pending
- 2021-10-19 JP JP2023518859A patent/JP7524469B2/ja active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012054220A (ja) * | 2010-08-04 | 2012-03-15 | Nec Energy Devices Ltd | リチウム二次電池およびその制御システム、ならびにリチウム二次電池の状態検出方法 |
KR101878538B1 (ko) * | 2014-09-01 | 2018-07-13 | 요코가와 덴키 가부시키가이샤 | 2차 전지 용량 측정 시스템 및 2차 전지 용량 측정 방법 |
JP2017020916A (ja) * | 2015-07-10 | 2017-01-26 | 株式会社Gsユアサ | 蓄電素子劣化状態推定装置、蓄電素子劣化状態推定方法及び蓄電システム |
JP2019020392A (ja) * | 2017-07-19 | 2019-02-07 | 株式会社Gsユアサ | 推定装置、蓄電装置、推定方法、及びコンピュータプログラム |
US20190113577A1 (en) * | 2017-10-17 | 2019-04-18 | The Board Of Trustees Of The Leland Stanford Junior University | Data-driven Model for Lithium-ion Battery Capacity Fade and Lifetime Prediction |
Non-Patent Citations (1)
Title |
---|
See also references of EP4206708A4 * |
Also Published As
Publication number | Publication date |
---|---|
KR20220092313A (ko) | 2022-07-01 |
US20230408583A1 (en) | 2023-12-21 |
JP7524469B2 (ja) | 2024-07-29 |
CN116324446A (zh) | 2023-06-23 |
EP4206708A1 (en) | 2023-07-05 |
EP4206708A4 (en) | 2024-04-10 |
JP2023543766A (ja) | 2023-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021049753A1 (ko) | 배터리 진단 장치 및 방법 | |
WO2021006566A1 (ko) | 배터리 셀 진단 장치 및 방법 | |
WO2021125676A1 (ko) | 배터리 진단 장치 및 방법 | |
WO2016064171A1 (ko) | 배터리의 soc 보정 시스템 및 방법 | |
WO2021230533A1 (ko) | 배터리를 진단하기 위한 장치 및 그 방법 | |
WO2022025533A1 (ko) | 배터리 진단 장치 및 방법 | |
WO2022035149A1 (ko) | 배터리 이상 진단 장치 및 방법 | |
WO2022149824A1 (ko) | 배터리 관리 장치 및 방법 | |
WO2022035153A1 (ko) | 배터리 용량 추정 장치 및 방법 | |
WO2022097931A1 (ko) | 배터리 관리 장치 및 방법 | |
WO2023136512A1 (ko) | 배터리 충전 심도 산출 장치 및 그것의 동작 방법 | |
WO2022149822A1 (ko) | 배터리 관리 장치 및 방법 | |
WO2022139143A1 (ko) | 배터리 관리 장치 및 방법 | |
WO2022035151A1 (ko) | 배터리 이상 진단 장치 및 방법 | |
WO2021125678A1 (ko) | 병렬 배터리 릴레이 진단 장치 및 방법 | |
WO2022080746A1 (ko) | 배터리 상태 진단 장치 및 방법 | |
WO2021154043A1 (ko) | 배터리 충방전 제어 장치 및 방법 | |
WO2022019703A1 (ko) | 배터리를 진단하기 위한 장치 및 그 방법 | |
WO2024058523A1 (ko) | 배터리 관리 장치 및 그것의 동작 방법 | |
WO2023132520A1 (ko) | 배터리 용량 예측 장치 및 그것의 동작 방법 | |
WO2023075244A1 (ko) | 배터리 관리 장치 및 그것의 동작 방법 | |
WO2023224288A1 (ko) | 배터리 상태 관리 장치 및 그것의 동작 방법 | |
WO2024029746A1 (ko) | 배터리 관리 장치 및 그것의 동작 방법 | |
WO2022149864A1 (ko) | 배터리 관리 장치 및 그것의 동작 방법 | |
WO2023063630A1 (ko) | 배터리 관리 장치 및 그것의 동작 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21911210 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2023518859 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2021911210 Country of ref document: EP Effective date: 20230329 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |