WO2022034871A1 - Copper foil with resin layer and laminate using same - Google Patents

Copper foil with resin layer and laminate using same Download PDF

Info

Publication number
WO2022034871A1
WO2022034871A1 PCT/JP2021/029458 JP2021029458W WO2022034871A1 WO 2022034871 A1 WO2022034871 A1 WO 2022034871A1 JP 2021029458 W JP2021029458 W JP 2021029458W WO 2022034871 A1 WO2022034871 A1 WO 2022034871A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin layer
resin
compound
copper foil
inorganic filler
Prior art date
Application number
PCT/JP2021/029458
Other languages
French (fr)
Japanese (ja)
Inventor
晃樹 小松
慎也 喜多村
憲明 杉本
洋介 松山
豪志 信國
Original Assignee
三菱瓦斯化学株式会社
Mgcエレクトロテクノ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社, Mgcエレクトロテクノ株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to CN202180056742.4A priority Critical patent/CN116075557A/en
Priority to JP2022542846A priority patent/JPWO2022034871A1/ja
Priority to KR1020237005096A priority patent/KR20230050341A/en
Publication of WO2022034871A1 publication Critical patent/WO2022034871A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • B32B2311/12Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards

Definitions

  • the present invention relates to a copper foil with a resin layer and a laminated body using the same. More specifically, the present invention relates to a copper foil with a resin layer useful for a printed wiring board or a substrate for mounting a semiconductor element, and a laminate using the same.
  • printed wiring boards or substrates for mounting semiconductor elements which are widely used in electronic devices, communication devices, personal computers, etc.
  • a method for manufacturing a printed wiring board or a substrate for mounting a semiconductor element a build-up method in which circuit-formed conductor layers and insulating layers (interlayer insulating layers) are alternately stacked is widely used, and wiring is used.
  • a semi-additive method that can form a fine pattern is often used for forming a pattern.
  • Patent Document 1 solves the problem that a step is generated in the via hole of each layer during laser processing and the shape of the via hole becomes distorted by adjusting the etching amount of each of the multi-layered layers. As described above, development for obtaining a good processed shape for the via hole has been promoted conventionally.
  • the present invention has been made based on such a problem, and is a copper foil with a resin layer capable of enhancing smear removal property and suppressing overhang, and a laminated body using the same.
  • the purpose is to provide.
  • the present inventors have a copper foil with a resin layer having a copper foil, a first resin layer laminated on the copper foil, and a second resin layer laminated on the first resin layer. , The above-mentioned problems can be solved by adjusting the ratio of the inorganic filler in the first resin layer and the second resin layer, and the present invention has been completed.
  • the present invention is as follows.
  • the first resin layer is a first resin composition containing a thermosetting resin (A1) and not containing an inorganic filler, or a thermosetting resin (A1) and an inorganic filler (B1).
  • the second resin layer comprises a first resin composition containing 15% by volume or less of the inorganic filler (B1), and the second resin layer contains a thermosetting resin (A2) and an inorganic filler (B2).
  • a copper foil with a resin layer comprising a second resin composition containing the inorganic filler (B2) having a content of 15% by volume or more and 35% by volume or less.
  • the total content of the inorganic filler (B1) and the inorganic filler (B2) with respect to the total of the first resin composition and the second resin composition is 2.5% by volume or more 33.
  • the thermosetting resin (A1) includes a polyimide resin, a liquid crystal polyester, an epoxy compound, a cyanate ester compound, a maleimide compound, a phenol compound, a polyphenylene ether compound, a benzoxazine compound, an organic group-modified silicone compound, and a non-polymerizable resin.
  • the copper foil with a resin layer according to [1] which contains at least one selected from the group consisting of compounds having a saturated group.
  • the thermosetting resin (A2) is composed of an epoxy compound, a cyanate ester compound, a maleimide compound, a phenol compound, a polyphenylene ether compound, a benzoxazine compound, an organic group-modified silicone compound, and a compound having a polymerizable unsaturated group.
  • the inorganic filler (B1) and the inorganic filler (B2) are at least one selected from magnesium hydroxide, magnesium oxide, silica, molybdenum compound, alumina, aluminum nitride, glass, talc, titanium compound, and zirconium oxide.
  • the copper foil with a resin layer according to [1] which is contained.
  • the present invention in the formation of via holes, it is possible to improve the smear removal property while suppressing the generation of cracks, and it is possible to suppress overhang. Therefore, it is possible to obtain a good processing shape in both the conformal laser processing and the direct laser processing.
  • the present embodiment will be described in detail, but the present invention is not limited thereto, and various modifications are made without departing from the gist thereof. Is possible.
  • the laminated bodies are those in which the layers are adhered to each other, but the layers may be peelable from each other, if necessary.
  • the “resin solid content” refers to the components of the first resin layer 12 or the second resin layer 13 excluding the solvent and the inorganic filler, unless otherwise specified, and refers to the “resin solid content”. "100 parts by mass” means that the total of the components of the first resin layer 12 or the second resin layer 13 excluding the solvent and the inorganic filler is 100 parts by mass.
  • FIG. 1 shows the configuration of a copper foil 10 with a resin layer according to an embodiment of the present invention.
  • the copper foil 10 with a resin layer includes a copper foil 11, a first resin layer 12 laminated on the copper foil 11, and a second resin layer 13 laminated on the first resin layer 12. It is equipped with.
  • the copper foil 10 with a resin layer is useful, for example, as a material for forming an insulating layer provided on a circuit pattern (conductor layer), and is used, for example, in the manufacture of electronic devices, communication devices, personal computers, and the like. It can be used as a material for forming an insulating layer of a printed wiring board or a substrate for mounting a semiconductor element.
  • a copper foil 10 with a resin layer is arranged on a substrate on which a conductor layer such as a circuit pattern is formed so that the second resin layer 13 and the conductor layer are in contact with each other. After that, the first resin layer 12 and the second resin layer 13 are cured by heating and pressing (pressing) to form an insulating layer on the conductor layer.
  • the second resin layer 13 is a layer containing a resin having fluidity at the time of press processing, and is a layer in which uneven portions such as a conductor layer of a circuit pattern are embedded.
  • the first resin layer 12 may be formed with the copper foil 11 even after a press treatment such as when forming a laminate. It is a layer that maintains a distance from the second resin layer 13. Since the second resin layer 13 functions as an embedded layer, it is preferable that at least one of the constituent components and physical properties is different from that of the first resin layer 12.
  • the first resin layer 12 is a polyimide resin and the second resin layer 13 is an epoxy compound.
  • the first resin layer 12 can be obtained by changing the composition ratio of the components contained in each layer or the cured state (for example, by changing the coating conditions of each layer).
  • the physical properties are different depending on (such as completely curing the second resin layer 13 to make the second resin layer 13 in a semi-cured state), and there are cases where these are combined.
  • the copper foil 11 may be any one used for ordinary printed wiring boards, and examples thereof include electrolytic copper foil, rolled copper foil, and copper alloy film.
  • the copper foil 11 may be subjected to known surface treatments such as matte treatment, corona treatment, nickel treatment and cobalt treatment.
  • commercially available products can be used, for example, "GHY5" (trade name, 12 ⁇ m thick copper foil) and "JXUT-I" (trade name, 1) manufactured by JX Nippon Mining & Metals Co., Ltd.
  • the arithmetic mean roughness (Ra) of the copper foil surface is usually 0.05 ⁇ m to 2 ⁇ m because it can improve the adhesion strength between the copper foil 11 and the first resin layer 12 and prevent peeling during long-term use. It is preferably in the range of 0.08 ⁇ m to 1.7 ⁇ m, and more preferably in the range of 0.2 ⁇ m to 1.6 ⁇ m from the viewpoint that better adhesion can be obtained. ..
  • the arithmetic mean roughness can be measured using a commercially available shape measuring microscope (laser microscope, for example, "VK-1000" (trade name) manufactured by KEYENCE CORPORATION).
  • the thickness of the copper foil 11 is not particularly limited, but is preferably in the range of 1 ⁇ m to 18 ⁇ m in consideration of the surface roughening treatment, and a thin printed wiring board and a substrate for mounting a semiconductor element can be preferably obtained. It is more preferably in the range of 2 ⁇ m to 15 ⁇ m.
  • the first resin layer 12 contains a first resin composition containing a thermosetting resin (A1) and no inorganic filler, or a thermosetting resin (A1) and an inorganic filler (B1). It is composed of a first resin composition containing 15% by volume or less of the inorganic filler (B1). That is, the first resin layer 12 does not contain an inorganic filler, or even if it contains an inorganic filler, the content is 15% by volume or less. When the inorganic filler is added, the processability is improved, but when the content exceeds 15% by volume, it becomes difficult to obtain a good processed shape due to the relationship with the second resin layer 13.
  • the first resin composition does not contain an inorganic filler, or even if it contains an inorganic filler, the content is less than 5% by volume.
  • the content of the inorganic filler (B1) is the content of the inorganic filler (B1) with respect to the first resin composition (inorganic filler (B1) / first resin composition ⁇ 100). ..
  • the thickness of the first resin layer 12 is not particularly limited, but is preferably 5 ⁇ m or less from the viewpoint of thinning, and is preferably 1 ⁇ m or more in consideration of ensuring insulation.
  • the first resin layer 12 may be in a semi-cured state (B-Stage) or a completely cured state (C-Stage).
  • the first resin layer 12 can be formed by a known means such as coating by using, for example, the first resin composition.
  • the first resin composition may contain other additives described later, if necessary.
  • the thermosetting resin (A1) is not particularly limited, and is, for example, a polyimide resin, a liquid crystal polyester, an epoxy compound, a cyanate ester compound, a maleimide compound, a phenol compound, a polyphenylene ether compound, a benzoxazine compound, and an organic group modification. Examples thereof include a silicone compound and a compound having a polymerizable unsaturated group.
  • the thermosetting resin (A1) can be used by appropriately mixing one or more of these. Above all, it is preferable to include at least one of the polyimide resin and the liquid crystal polyester because the thickness reduction rate can be lowered. Further, it is preferable to include an epoxy compound and a phenol compound in addition to the polyimide resin or the liquid crystal polyester because excellent peel strength and adhesion to the second resin layer 13 can be obtained. It is more preferable to include the compound.
  • the polyimide resin As the polyimide resin, a commercially available product can be appropriately selected and used.
  • a solvent-soluble polyimide resin synthesized by the production method described in JP-A-2005-15629 can also be used.
  • the solvent-soluble polyimide resin includes an aliphatic tetracarboxylic acid dianhydride represented by the following formula (1), an aliphatic tetracarboxylic acid represented by the following formula (2), and the aliphatic tetracarboxylic acid. It can be obtained by polycondensing one or more selected from acid derivatives and one or more diamine compounds in a solvent in the presence of a tertiary amine compound.
  • R is a tetravalent aliphatic hydrocarbon group having 4 to 16 carbon atoms.
  • R is a tetravalent aliphatic hydrocarbon group having 4 to 16 carbon atoms
  • Y 1 to Y 4 are independently hydrogen or a hydrocarbon group having 1 to 8 carbon atoms.
  • a substantially equal molar amount of the aliphatic tetracarboxylic acid and the diamine compound can be heated in a solvent in the presence of a tertiary amine compound and polycondensed.
  • the reaction molar ratio of the aliphatic tetracarboxylic acids and the diamine compound is preferably in the range of 95 to 105 mol% with respect to one of them.
  • tetracarboxylic acid dianhydride is usually used as the tetracarboxylic acid, but in the above production method, in addition to the aliphatic tetracarboxylic acid dianhydride, the aliphatic tetra is used.
  • a practical polyimide resin can be produced by using an ester of a carboxylic acid or an aliphatic tetracarboxylic acid and an alcohol. If the aliphatic tetracarboxylic acid can be used as it is, it is advantageous in terms of production equipment and cost.
  • Examples of the aliphatic tetracarboxylic acid dianhydride represented by the formula (1) include 1,2,3,4-cyclobutanetetracarboxylic acid dianhydride and 1,2,4,5-cyclopentanetetra.
  • examples of the aliphatic tetracarboxylic acid represented by the formula (2) and its derivatives include 1,2,3,4-cyclobutanetetracarboxylic acid and 1,2,4,5-cyclopentanetetracarboxylic acid.
  • 1,2,4,5-Cyclohexanetetracarboxylic acid 1,2,4,5-Cyclohexanetetracarboxylic acid, bicyclo [2.2.2] octo-7-en-2,3,5,6-tetracarboxylic acid, etc., and their alcohol esters. Can be done. These can be used alone or in admixture of two or more. Of these, 1,2,4,5-cyclohexanetetracarboxylic dianhydride and 1,2,4,5-cyclohexanetetracarboxylic acid are preferred.
  • tetracarboxylic dians and derivatives thereof can be mixed and used as long as the solvent solubility is not impaired.
  • pyromellitic acid 3,3', 4,4'-biphenyltetracarboxylic acid, 2,3,3', 4'-biphenyltetracarboxylic acid, 2,2-bis (3,4-dicarboxyphenyl).
  • the diamine compound is preferably an aromatic diamine compound containing 6 to 28 carbon atoms or an aliphatic diamine compound containing 2 to 28 carbon atoms.
  • Examples of the diamine compound include p-phenylenediamine, m-phenylenediamine, 4,4'-diaminobiphenyl, 4,4'-diamino-2,2'-dimethylbiphenyl, and 4,4'-diamino-3,3.
  • aromatic diamine compounds are 4,4'-diamino-3,3'-dimethylbiphenyl, 4,4'-diamino-2,2'-ditrifluoromethylbiphenyl, 4,4'-diamino.
  • the aliphatic diamine compound 4,4'-diaminodicyclohexylmethane, 3 (4), 8 (9) -bis (aminomethyl) -tricyclo [5.2.1.02,6] decane are preferable.
  • tertiary amine compound examples include trimethylamine, triethylamine, tripropylamine, tributylamine, triethanolamine, N, N-dimethylethanolamine, N, N-diethylethanolamine, triethylenediamine, N-methylpyrrolidin, and N.
  • -Ethylpyrolidin, N-methylpiperidine, N-ethylpiperidine, imidazole, pyridine, quinoline, isoquinoline and the like can be mentioned.
  • triethylamine is particularly preferred.
  • Examples of the solvent used in the above-mentioned production method include ⁇ -butyrolactone, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N, N-dimethylformamide, dimethyl sulfoxide, hexamethylphosphoramide, and tetramethylene sulfone. , P-Chlorphenol, m-Cresol, 2-Chlor-4-hydroxytoluene and the like. These can be used alone or in admixture of two or more.
  • ⁇ -butyrolactone, N, N-dimethylacetamide and N-methyl-2-pyrrolidone are preferable, and ⁇ -butyrolactone and N, N-dimethylacetamide are even more preferable.
  • a poor solvent of the polyimide resin can be used in combination to the extent that the polymer does not precipitate.
  • the poor solvent include hexane, heptane, benzene, toluene, xylene, chlorbenzene, o-dichlorobenzene and the like.
  • the total weight of the aliphatic tetracarboxylic acid component and the diamine component is preferably 1 to 50% by mass, more preferably 20 to 45% by mass with respect to the total mass of the reaction solution.
  • the method of charging the aliphatic tetracarboxylic acid component and the diamine compound component is not particularly limited, and the method of charging both components at once or in a solution containing either component (it does not have to be completely dissolved) is already used.
  • a method of gradually charging one of the components in a solid state or a solution state can be performed.
  • the method of charging both components at once is advantageous in terms of productivity because the charging time can be shortened.
  • the tertiary amine compound it is preferable to charge the tertiary amine compound by raising the temperature and reaching the target temperature in order to fully exert its catalytic effect.
  • the method for charging the solvent is also not particularly limited, and a method of charging in advance into a reaction vessel, a method of charging into a reaction vessel in which either one or both of an aliphatic tetracarboxylic acid component or a diamine compound is present, and an aliphatic tetra
  • a method of charging into a reaction vessel in which either one or both of an aliphatic tetracarboxylic acid component or a diamine compound is present and an aliphatic tetra
  • the solvent as described above may be added to the solvent-soluble polyimide resin solution in the state during the reaction, in the state of staying in the reaction tank after the reaction, or in the state of being taken out from the reaction tank after the reaction, depending on the purpose. can.
  • a block copolymer polyimide resin can be used as the polyimide resin used in this embodiment.
  • a block copolymer polyimide resin examples include the block copolymer polyimide resin described in International Publication No. WO2010-073952.
  • the block copolymer polyimide resin is composed of a structure A in which an imide oligomer composed of a second structural unit is bonded to the end of an imide oligomer composed of a first structural unit, and a second structural unit.
  • the copolymerized polyimide resin is not particularly limited as long as it has a structure in which the structure B in which the imide oligomer composed of the first structural unit is bonded to the end of the imide oligomer is alternately repeated.
  • the second structural unit is different from the first structural unit.
  • These block copolymerized polyimide resins are obtained by reacting a tetracarboxylic acid dianhydride with a diamine in a polar solvent to form an imide oligomer, and then further diamine or another tetracarboxylic acid with the tetracarboxylic acid dianhydride. It can be synthesized by a step-growth polymerization reaction in which acid dianhydride and diamine are added and imidized.
  • the content thereof is not particularly limited, but from the viewpoint of heat resistance and curability, the resin solid content of the first resin layer 12 is 100 parts by mass.
  • the range of 10 to 90 parts by mass is preferable, and the range of 30 to 80 parts by mass is particularly preferable.
  • the liquid crystal polyester is an aromatic polyester that exhibits liquid crystal properties when melted.
  • a known one can be appropriately selected and used.
  • the aromatic polyester described in JP-A-2001-11296 can be used. Specific examples thereof include aromatic polyesters containing 90 mol% or more of the following structural unit (3).
  • the aromatic polyester containing the structural unit (3) described above for example, polyoxybenzoate, which is a homopolymer of the structural unit (3), can be used from the viewpoint of availability.
  • a method for producing the aromatic polyester a known method can be adopted.
  • the aromatic polyester containing the above-mentioned structural unit (3) is often sparingly or insoluble in a normal solvent, and is sparingly or insoluble, so that it does not exhibit liquid crystallinity. Therefore, the aromatic polyester containing the above-mentioned structural unit (3) is preferably used as a powder.
  • the powder is obtained by pulverizing an aromatic polyester resin or fiber, and the particle size is preferably not more than the thickness of the first resin layer 12, and is preferably not more than, for example, 5 ⁇ m.
  • the molecular weight of the liquid crystal polyester is usually 1000 to 100,000, preferably 10,000 to 50,000.
  • liquid crystal polyester a commercially available product can be appropriately selected and used, and for example, "Econol E101-F” manufactured by Sumitomo Chemical Co., Ltd. can be used.
  • the content thereof is not particularly limited, but from the viewpoint of heat resistance and curability, the resin solid content of the first resin layer 12 is 100 parts by mass.
  • the range of 10 to 90 parts by mass is preferable, and the range of 30 to 80 parts by mass is particularly preferable.
  • the epoxy compound has 1 or more (preferably 2 to 12, more preferably 2 to 6, still more preferably 2 to 4, more preferably 2 or 3, even more preferably 2) epoxy groups in one molecule.
  • the compound or resin is not particularly limited, and any conventionally known epoxy compound can be used.
  • the epoxy equivalent of the epoxy compound is preferably 250 g / eq to 850 g / eq, more preferably 250 g / eq to 450 g / eq, from the viewpoint of improving the adhesiveness and flexibility.
  • the epoxy equivalent can be measured by a conventional method.
  • epoxy compound examples include polyoxynaphthylene type epoxy resin, biphenyl aralkyl type epoxy resin, naphthalene tetrafunctional epoxy resin, xylene type epoxy resin, naphthol aralkyl type epoxy resin, bisphenol A type epoxy resin, and bisphenol F.
  • Type epoxy resin bisphenol A novolak type epoxy resin, trifunctional phenol type epoxy resin, tetrafunctional phenol type epoxy resin, naphthalene type epoxy resin, biphenyl type epoxy resin, aralkylnovolac type epoxy resin, alicyclic epoxy resin, polyol type epoxy
  • examples thereof include a resin, a glycidylamine type epoxy resin, a glycidyl ester type epoxy resin, a compound obtained by epoxidizing a double bond such as butadiene, and a compound obtained by reacting a hydroxyl group-containing silicone resin with epichlorohydrin.
  • polyoxynaphthylene type epoxy resin biphenyl aralkyl type epoxy resin, naphthalene tetrafunctional epoxy resin, xylene type epoxy resin, and naphthol aralkyl type epoxy resin are particularly from the viewpoint of adhesiveness to plated copper and flame retardancy. Is preferable.
  • These epoxy compounds may be used alone or in admixture of two or more.
  • the content thereof is not particularly limited, but from the viewpoint of heat resistance and curability, the resin solid content of the first resin layer 12 is 100 parts by mass.
  • the range of 1 to 60 parts by mass is preferable, and the range of 1 to 30 parts by mass is particularly preferable.
  • the cyanic acid ester compound has excellent chemical resistance, adhesiveness, and the like, and the excellent chemical resistance makes it possible to form a uniform roughened surface. Therefore, the resin layer in the present embodiment. Can be suitably used as a component of.
  • the cyanate ester compound has one or more cyanate groups (cyanato groups) in the molecule (preferably 2 to 12, more preferably 2 to 6, still more preferably 2 to 4, more preferably 2 or 3, still more preferably. 2)
  • the compound is not particularly limited as long as it is contained, and a compound usually used in the field of printed wiring board can be widely used.
  • Specific examples of the cyanate ester compound include, for example, an ⁇ -naphthol aralkyl type cyanate ester compound represented by the formula (4), a phenol novolac type cyanate ester compound represented by the formula (5), and a formula (6).
  • Biphenyl aralkyl type cyanic acid ester compound naphthylene ether type cyanic acid ester compound, xylene resin type cyanic acid ester compound, trisphenol methane type cyanic acid ester compound, adamantan skeleton type cyanic acid ester compound, bisphenol M type cyanide.
  • At least one selected from the group consisting of an acid ester compound, a bisphenol A type cyanate ester compound, and a diallyl bisphenol A type cyanate ester compound can be mentioned.
  • These cyanate ester compounds may be prepared by a known method, or commercially available products may be used.
  • Cyanic acid ester compounds are preferable because they have excellent flame retardancy, high curability, and a low thermal expansion coefficient of the cured product.
  • R 1 represents a hydrogen atom or a methyl group
  • n 1 represents an integer of 1 or more.
  • n 1 is preferably an integer of 1 to 50.
  • R 2 represents a hydrogen atom or a methyl group
  • n 2 represents an integer of 1 or more.
  • n 2 is preferably an integer of 1 to 50.
  • R 3 represents a hydrogen atom or a methyl group
  • n 3 represents an integer of 1 or more.
  • n 3 is preferably an integer of 1 to 50.
  • the content thereof is not particularly limited, but from the viewpoint of heat resistance and adhesion to the copper foil, the first resin layer 12 has a content thereof.
  • the range of 1 to 60 parts by mass is preferable, and the range of 1 to 30 parts by mass is more preferable with respect to 100 parts by mass of the resin solid content.
  • the maleimide compound can improve the hygroscopic heat resistance of the insulating resin layer, it can be suitably used as a component of the resin layer in the present embodiment.
  • the maleimide compound has 1 or more (preferably 2 to 12, more preferably 2 to 6, still more preferably 2 to 4, more preferably 2 or 3, even more preferably 2) maleimide groups in one molecule.
  • the compound is not particularly limited, and any conventionally known maleimide compound can be used.
  • maleimide compound examples include, for example, bis (4-maleimidephenyl) methane, 2,2-bis ⁇ 4- (4-maleimidephenoxy) -phenyl ⁇ propane, and bis (3,5-dimethyl-4-maleimidephenyl).
  • Bismaleimide compounds such as methane, bis (3-ethyl-5-methyl-4-maleimidephenyl) methane, bis (3,5-diethyl-4-maleimidephenyl) methane; polyphenylmethane maleimide.
  • These maleimide compounds may be used alone or in admixture of two or more.
  • bismaleimide compounds are preferable from the viewpoint of heat resistance, and among them, 2,2-bis [4- (4-maleimidephenoxy) phenyl] propane and bis (3-ethyl-5-methyl-4-maleimidephenyl) are preferable. Methane is more preferred.
  • the maleimide compound when used for the first resin layer 12, the content thereof is not particularly limited, but from the viewpoint of heat resistance and adhesion to the copper foil, the resin solid of the first resin layer 12 is used.
  • the range of 5 to 75 parts by mass is preferable, and the range of 5 to 45 parts by mass is more preferable with respect to 100 parts by mass.
  • the phenolic compound includes 1 or more (preferably 2 to 12, more preferably 2 to 6, still more preferably 2 to 4, more preferably 2 or 3, even more preferably 2) phenolic hydroxy groups in one molecule.
  • the phenol compound is not particularly limited as long as it has, and any conventionally known phenol compound can be used.
  • Specific examples of the phenol compound include, for example, bisphenol A type phenol resin, bisphenol E type phenol resin, bisphenol F type phenol resin, bisphenol S type phenol resin, phenol novolac resin, bisphenol A novolak type phenol resin, and glycidyl ester type phenol resin.
  • the polyphenylene ether compound according to this embodiment is a compound represented by the general formula (7).
  • the polyphenylene ether compound represented by the general formula (7) used in the present embodiment preferably has a number average molecular weight of 1000 or more and 7000 or less. By setting the number average molecular weight to 7,000 or less, the compatibility between the resins can be controlled. Further, by setting the number average molecular weight to 1000 or more, the original excellent insulating properties and hygroscopic heat resistance of the polyphenylene ether resin can be obtained.
  • the number average molecular weight of the polyphenylene ether compound is preferably 1100 or more and 5000 or less. More preferably, the number average molecular weight of the polyphenylene ether compound is 4500 or less, and even more preferably, the number average molecular weight of the polyphenylene ether compound is 3000 or less. The number average molecular weight is measured using gel permeation chromatography according to a routine method.
  • X represents an aryl group (aromatic group)
  • ⁇ (YO) n 2 ⁇ represents a polyphenylene ether moiety
  • R 1 , R 2 and R 3 are independent of each other. It represents a hydrogen atom, an alkyl group, an alkenyl group or an alkynyl group
  • n 2 represents an integer of 1 to 100
  • n 1 represents an integer of 1 to 6
  • n 3 represents an integer of 1 to 4.
  • n 1 is preferably an integer of 1 or more and 4 or less, more preferably n 1 is 1 or 2, ideally n 1 is 1 and preferably n 3 is. It is preferably an integer of 1 or more and 3 or less, more preferably n 3 is 1 or 2, and ideally n 3 is 2.
  • the polyphenylene ether compound represented by the general formula (7) preferably contains a polymer of the structural unit represented by the following general formula (8).
  • R 901 , R 902 , R 903 , and R 904 each independently represent an alkyl group, an aryl group, a halogen atom, or a hydrogen atom having 6 or less carbon atoms.
  • the polymer may further contain at least one structural unit selected from the group consisting of the structural units represented by the general formula (9) and the general formula (10).
  • R 905 , R 906 , R 907 , R 911 , and R 912 each independently represent an alkyl group or a phenyl group having 6 or less carbon atoms.
  • R 908 , R 909 , and R 910 are.
  • R 913 , R 914 , R 915 , R 916 , R 917 , R 918 , R 919 , and R 920 each independently contain a hydrogen atom and an alkyl group or a phenyl group having 6 or less carbon atoms.
  • -A- is a linear, branched or cyclic divalent hydrocarbon group having 20 or less carbon atoms.
  • the general formulas (8), (9) and (10) are preferably ⁇ (YO) ⁇ of the general formula (7).
  • an aromatic hydrocarbon group can be used as the aryl group in X of the general formula (7).
  • a group for example, a phenyl group, a biphenyl group, etc.
  • a group obtained by removing n3 hydrogen atoms from one ring structure selected from a benzene ring structure , a biphenyl structure, an indenyl ring structure, and a naphthalene ring structure.
  • Indenyl group and naphthyl group can be used, and it is preferable to use a biphenyl group.
  • the aryl group includes a diphenyl ether group in which the above aryl group is bonded with an oxygen atom, a benzophenone group bonded with a carbonyl group, a 2,2-diphenylpropane group bonded with an alkylene group, and the like. But it may be. Further, the aryl group may be substituted with a general substituent such as an alkyl group (preferably an alkyl group having 1 to 6 carbon atoms, particularly a methyl group), an alkenyl group, an alkynyl group or a halogen atom. However, since the "aryl group" is substituted with a polyphenylene ether moiety via an oxygen atom, the limit on the number of general substituents depends on the number of polyphenylene ether moieties.
  • the polyphenylene ether compound contains a polyphenylene ether represented by the structure of the following general formula (11).
  • X is an aryl group (aromatic group)
  • ⁇ (YO) n 2 ⁇ indicates a polyphenylene ether moiety
  • n 2 is an integer of 1 to 100, respectively.
  • Shows.) -(YO) n 2- and n 2 are synonymous with those in the general formula (7). It may contain a plurality of kinds of compounds having different n2 .
  • X in the general formula (7) and the general formula (11) is preferably the general formula (12), the general formula (13), or the general formula (14), and the general formula (7) and the general formula (11).
  • -(YO) n 2 - is a structure in which the general formula (15) or the general formula (16) is arranged, or a structure in which the general formula (15) and the general formula (16) are randomly arranged. More preferred.
  • R 921 , R 922 , R 923 , and R 924 each independently represent a hydrogen atom or a methyl group.
  • -B- is a linear, branched, or cyclic group having 20 or less carbon atoms. It is a divalent hydrocarbon group of.
  • -B- is a linear, branched or cyclic divalent hydrocarbon group having 20 or less carbon atoms.
  • the method for producing the modified polyphenylene ether having the structure represented by the general formula (11) is not particularly limited, and is, for example, a bifunctional phenylene obtained by oxidation-coupling a bifunctional phenol compound and a monofunctional phenol compound. It can be produced by converting the terminal phenolic hydroxyl group of the ether oligomer into vinylbenzyl ether.
  • a modified polyphenylene ether a commercially available product can be used, and for example, OPE-2St1200 and OPE-2St2200 manufactured by Mitsubishi Gas Chemical Company, Inc. can be preferably used.
  • the content thereof is not particularly limited, but is 1 part by mass or more with respect to 100 parts by mass of the resin solid content of the first resin layer 12. It is preferably present, and more preferably 3 parts by mass or more.
  • the upper limit of the content is preferably less than 20 parts by mass. Within such a range, the interlayer adhesion, the plating adhesion, and the hygroscopic heat resistance can be effectively improved.
  • the first resin layer 12 may contain only one type of polyphenylene ether compound, or may contain two or more types of polyphenylene ether compound. When two or more kinds are contained, it is preferable that the total amount is within the above range.
  • the benzoxazine compound is not particularly limited as long as it is a compound having two or more dihydrobenzoxazine rings in one molecule, and generally known compounds can be used.
  • Specific examples of the benzoxazine compound include, for example, bisphenol A type benzoxazine BA-BXZ (trade name manufactured by Konishi Chemical Co., Ltd.), bisphenol F type benzoxazine BF-BXZ (trade name manufactured by Konishi Chemical Co., Ltd.), and bisphenol S type benzoxazine BS-BXZ. (Product name manufactured by Konishi Chemical Co., Ltd.) and the like. These benzoxazine compounds may be used alone or in admixture of two or more.
  • organic group-modified silicone compound is not particularly limited, and specific examples thereof include di (methylamino) polydimethylsiloxane, di (ethylamino) polydimethylsiloxane, di (propylamino) polydimethylsiloxane, and di (epoxypropyl). Examples thereof include polydimethylsiloxane and di (epoxybutyl) polydimethylsiloxane. These organic-modified silicone compounds may be used alone or in admixture of two or more.
  • the compound having a polymerizable unsaturated group is not particularly limited, and generally known compounds can be used. Specific examples of the compound having a polymerizable unsaturated group include vinyl compounds such as ethylene, propylene, styrene, divinylbenzene and divinylbiphenyl; methyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-.
  • Hydroxypropyl (meth) acrylate polypropylene glycol di (meth) acrylate, trimethylolpropane di (meth) acrylate, trimethylolpropanetri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, etc.
  • Methoda) acrylates of monovalent or polyhydric alcohols; epoxy (meth) acrylates such as bisphenol A type epoxy (meth) acrylate and bisphenol F type epoxy (meth) acrylate; benzocyclobutene resin and the like can be mentioned. These compounds having a polymerizable unsaturated group can be used alone or in admixture of two or more.
  • the inorganic filler (B1) means the first resin layer 12, that is, the inorganic filler contained in the first resin composition.
  • a spherical filler can be used from the viewpoint of low thermal expansion rate, moldability, filling property and rigidity, and is not particularly limited as long as it is a spherical filler used for the insulating layer of the printed wiring board. ..
  • Examples of the inorganic filler (B1) include magnesium hydroxide; magnesium oxide; silica such as natural silica, molten silica, amorphous silica, and hollow silica; molybdenum compounds such as molybdenum disulfide, molybdenum oxide, and zinc molybdenum; alumina; Aluminum nitride; glass; talc; titanium compounds such as titanium oxide, barium titanate, and strontium titanate; zirconium oxide and the like can be mentioned. These can be used by appropriately mixing one kind or two or more kinds.
  • silica is preferable as the inorganic filler (B1) from the viewpoint of low thermal expansion, and specifically, spherical molten silica is preferable.
  • Commercially available spherical fused silica includes SC2050-MB, SC2500-SQ, SC4500-SQ, SO-C2, SO-C1, K180SQ-C1 manufactured by Admatex Co., Ltd., and M273 manufactured by CIK Nanotech Co., Ltd. Examples include SFP-130MC manufactured by Denka Co., Ltd.
  • the particle size of the inorganic filler (B1) is not particularly limited, but is preferably not more than or equal to the film thickness of the first resin layer 12, for example, preferably 5 ⁇ m or less, more preferably 3 ⁇ m or less, still more preferably 2 ⁇ m or less. , 1.0 ⁇ m or less is even more preferable.
  • the particle size of the inorganic filler (B1) can be measured by a laser diffraction / scattering method based on the Mie scattering theory. As the measurement sample, an inorganic filler (B1) dispersed in water by ultrasonic waves can be preferably used.
  • the laser diffraction / scattering type particle size distribution measuring device "MT3000II" manufactured by Microtrac Bell Co., Ltd. or the like can be used.
  • the inorganic filler (B1) may be surface-treated with a silane coupling agent or the like.
  • a silane coupling agent the silane coupling agent described later can be used.
  • the second resin layer 13 contains a thermosetting resin (A2) and an inorganic filler (B2), and the content of the inorganic filler (B2) is 15% by volume or more and 35% by volume or less. It is composed of things. If the content of the inorganic filler (B2) is higher than this, the flexibility is reduced and cracks are more likely to occur, and conversely, if the content of the inorganic filler (B2) is lower than this, smear is removed. This is because the sex becomes low.
  • the content of the inorganic filler (B2) is the content of the inorganic filler (B2) with respect to the second resin composition (inorganic filler (B2) / second resin composition ⁇ 100). ..
  • the total content (total inorganic filler content) of the inorganic filler (B1) and the inorganic filler (B2) with respect to the total of the first resin composition and the second resin composition is 2. It is preferably 5% by volume or more and 33.3% by volume or less. This is because within this range, the smear removability can be improved while suppressing the occurrence of cracks.
  • the thickness of the second resin layer 13 is not particularly limited, but is preferably 10 ⁇ m or less from the viewpoint of thinning, and is preferably 1 ⁇ m or more in consideration of ensuring insulation.
  • the second resin layer 13 is preferably in a semi-cured state (B-Stage).
  • the second resin layer 13 can be formed by a known means such as coating by using, for example, the second resin composition.
  • the second resin composition may contain other additives described later, if necessary.
  • the thermosetting resin (A2) is not particularly limited, and is, for example, an epoxy compound, a cyanate ester compound, a maleimide compound, a phenol compound, a polyphenylene ether compound, a benzoxazine compound, an organic group-modified silicone compound, and polymerization. Examples include compounds having possible unsaturated groups. As these compounds, the same compounds as those exemplified for the thermosetting resin (A1) can be used.
  • the thermosetting resin (A2) can be used by appropriately mixing one or more of these. Above all, it is preferable to include an epoxy compound and a phenol compound because excellent peel strength can be obtained, and it is more preferable to further contain a maleimide compound together with the epoxy compound and the phenol compound.
  • the content thereof is not particularly limited, but from the viewpoint of heat resistance and curability, the resin solid content of the second resin layer 13 is 100 parts by mass.
  • the range of 10 to 80 parts by mass is preferable, and the range of 30 to 70 parts by mass is particularly preferable.
  • the content thereof is not particularly limited, but from the viewpoint of heat resistance and adhesion to the copper foil, the resin solid of the second resin layer 13 is used.
  • the range of 10 to 80 parts by mass is preferable, and the range of 20 to 60 parts by mass is more preferable with respect to 100 parts by mass.
  • the maleimide compound when used for the second resin layer 13, the content thereof is not particularly limited, but from the viewpoint of heat resistance and adhesion to the copper foil, the resin solid of the second resin layer 13 is used.
  • the range of 10 to 80 parts by mass is preferable, and the range of 10 to 50 parts by mass is more preferable with respect to 100 parts by mass.
  • the inorganic filler (B2) means the second resin layer 13, that is, the inorganic filler contained in the second resin composition.
  • a spherical filler can be used from the viewpoint of low thermal expansion rate, moldability, filling property and rigidity, and is not particularly limited as long as it is a spherical filler used for the insulating layer of the printed wiring board. ..
  • the inorganic filler (B2) for example, those mentioned in the inorganic filler (B1) can be used in the same manner, and among them, silica is preferable, and specifically, spherical molten silica is preferable.
  • the particle size and surface treatment of the inorganic filler (B2) are the same as those of the inorganic filler (B1).
  • the first resin layer 12 and the second resin layer 13 in the present embodiment can each contain other components, if necessary.
  • a silane coupling agent may be contained for the purpose of improving hygroscopic heat resistance.
  • the silane coupling agent is not particularly limited as long as it is a silane coupling agent generally used for surface treatment of inorganic substances. Specific examples include aminosilane-based silane coupling agents (eg, ⁇ -aminopropyltriethoxysilane, N- ⁇ - (aminoethyl) - ⁇ -aminopropyltrimethoxysilane), and epoxysilane-based silane coupling agents (eg, ⁇ -aminopropyltriethoxysilane).
  • aminosilane-based silane coupling agents eg, ⁇ -aminopropyltriethoxysilane, N- ⁇ - (aminoethyl) - ⁇ -aminopropyltrimethoxysilane
  • epoxysilane-based silane coupling agents eg, ⁇ -aminopropyltriethoxysi
  • silane-based silane coupling agent eg, ⁇ -acryloxypropyltrimethoxysilane, vinylsilane-based silane coupling agent (eg, ⁇ -methacryloxypropyltrimethoxysilane)).
  • Cationic silane-based silane coupling agent for example, N- ⁇ - (N-vinylbenzylaminoethyl) - ⁇ -aminopropyltrimethoxysilane hydrochloride
  • phenylsilane-based silane coupling agent one kind or two or more kinds can be appropriately mixed and used.
  • the content of the silane coupling agent is not particularly limited, but is 0.05 with respect to 100 parts by mass of the inorganic filler (B1) or the inorganic filler (B2) from the viewpoint of improving moisture absorption and heat resistance.
  • the range of up to 5 parts by mass is preferable, and the range of 0.1 to 3 parts by mass is more preferable.
  • the total amount of these silane coupling agents satisfies the above range.
  • a wet dispersant may be contained for the purpose of improving manufacturability.
  • the wet dispersant is not particularly limited as long as it is a wet dispersant generally used for paints and the like.
  • Disperbyk registered trademark
  • -110, -111, -118, -180, -161, BYK registered trademark
  • BYK registered trademark
  • These wet dispersants can be used alone or in admixture of two or more.
  • the content of the wet dispersant is not particularly limited, but is 0.1 to 5 with respect to 100 parts by mass of the inorganic filler (B1) or the inorganic filler (B2) from the viewpoint of improving manufacturability.
  • the range of parts by mass is preferable, and the range of 0.5 to 3 parts by mass is more preferable.
  • the total amount thereof satisfies the above range.
  • a curing accelerator may be contained for the purpose of adjusting the curing rate.
  • the curing accelerator is not particularly limited, but is an organic metal salt containing a metal such as copper, zinc, cobalt, nickel, manganese, etc. (for example, lead naphthenate, lead stearate, zinc naphthenate, zinc octylate, tin oleate).
  • Inorganic metal salts such as tin chloride, zinc chloride, aluminum chloride; dioctyl tin oxide, other alkyl tin, alkyl tin oxide), imidazoles and derivatives thereof (eg, 2-ethyl-4-methylimidazole, 1-benzyl- 2-Phenylimidazole, 2,4,5-triphenylimidazole), tertiary amines (eg, triethylamine, N, N-dimethylbenzylamine, N, N-dimethylaniline, N, N-dimethyltoluidine, 2-N -Ethylanilinoethanol, tri-n-butylamine, pyridine, quinoline, N-methylmorpholine, triethanolamine, triethylenediamine, tetramethylbutanediamine, N-methylpiperidine, etc.), organic peroxides (eg, benzoyl peroxide) , Lauroyl peroxide, acetyl peroxid
  • the content of the curing accelerator is not particularly limited, but from the viewpoint of obtaining a high glass transition temperature, the content of the first resin layer 12 or the second resin layer 13 is 100 parts by mass with respect to the resin solid content. , 0.001 to 5 parts by mass is preferable, and the range of 0.01 to 3 parts by mass is more preferable. When two or more kinds of curing accelerators are used in combination, it is preferable that the total amount thereof satisfies the above range.
  • various other polymer compounds and / or flame-retardant compounds may be contained.
  • the polymer compound and the flame-retardant compound are not particularly limited as long as they are generally used.
  • polymer compound examples include various thermosetting resins and thermoplastic resins, oligomers thereof, elastomers and the like other than the thermosetting resin (A1) or the thermosetting resin (B1).
  • SBR styrene-butadiene rubber
  • IR isoprene rubber
  • BR butadiene rubber
  • NBR acrylonitrile butadiene rubber
  • polyurethane polypropylene
  • acrylic oligomers examples include acrylic oligomers, (meth) acrylic polymers and silicone resins. From the viewpoint of compatibility, acrylonitrile butadiene rubber or styrene-butadiene rubber is preferable.
  • the flame-retardant compound examples include a phosphorus-containing compound (for example, phosphoric acid ester, phosphoric acid melamine, phosphorus-containing epoxy resin), and nitrogen-containing compound other than the inorganic filler (B1) or the inorganic filler (B2).
  • a phosphorus-containing compound for example, phosphoric acid ester, phosphoric acid melamine, phosphorus-containing epoxy resin
  • examples thereof include compounds (for example, melamine and benzoguanamine), oxazine ring-containing compounds, and silicone-based compounds.
  • These polymer compounds and / or flame-retardant compounds may be used alone or in admixture of two or more.
  • the first resin layer 12 and the second resin layer 13 may contain various other additives for various purposes.
  • additives include UV absorbers, antioxidants, photopolymerization initiators, optical brighteners, photosensitizers, dyes, pigments, thickeners, lubricants, defoaming agents, dispersants, and leveling agents. And brighteners. These additives may be used alone or in admixture of two or more.
  • the method for producing the copper foil 10 with a resin layer of the present embodiment is not particularly limited.
  • a solution (varnish) in which the first resin composition is dissolved or dispersed in an organic solvent is applied to the surface of the copper foil 11, dried under heating and / or reduced pressure, and the solvent is used. Is removed to solidify the first resin composition to form the first resin layer 12.
  • the first resin layer 12 may be in a completely cured state as well as in a semi-cured state.
  • a solution (varnish) in which the second resin composition is dissolved or dispersed in an organic solvent is applied onto the first resin layer 12, and dried under heating and / or reduced pressure to remove the solvent.
  • the second resin composition is solidified to form the second resin layer 13.
  • the second resin layer 13 is in a B-stage (semi-cured state).
  • a protective layer such as a plastic film may be provided on the second resin layer 13. The protective layer is appropriately removed at the time of producing the laminate described later.
  • the drying conditions are not particularly limited, but the first resin layer 12 or the second resin layer 13 is dried so that the amount of the organic solvent is usually 10 parts by mass or less, preferably 5 parts by mass or less, based on 100 parts by mass. Let me.
  • the conditions for achieving drying differ depending on the amount of the organic solvent in the varnish. For example, in the case of a varnish containing 30 to 60 parts by mass of an organic solvent with respect to 100 parts by mass of the varnish, the heating conditions are 50 ° C. to 200 ° C. It may be dried underneath for about 3 to 10 minutes.
  • the organic solvent is not particularly limited as long as each component can be suitably dissolved or dispersed and the effect of the first resin layer 12 or the second resin layer 13 is exhibited.
  • organic solvents include alcohols (eg, methanol, ethanol and propanol), ketones (eg, acetone, methylethylketone and methylisobutylketone), amides (eg, dimethylacetamide and dimethylformamide), aromatic hydrocarbons. Classes (eg, toluene and xylene), N-methyl-2-pyrrolidone, ⁇ -butyrolactone and the like can be mentioned. These organic solvents may be used alone or in admixture of two or more.
  • the method of coating is also not particularly limited, but for example, bar coater coating, air knife coating, gravure coating, reverse gravure coating, micro gravure coating, micro reverse gravure coater coating, die coater coating, dip coating, spin coating coating. , A coating method known for spray coating and the like can be used.
  • the laminate using the copper foil 10 with a resin layer of the present embodiment (hereinafter, may be simply referred to as “the laminate of the present embodiment”) is, for example, a build-up of a printed wiring board or a substrate for mounting a semiconductor element. It can be used for materials and for manufacturing coreless substrates.
  • the laminate of the present embodiment can be configured as a laminate having a build-up layer in which a conductor layer and an insulating layer formed by using a copper foil 10 with a resin layer are alternately laminated, for example.
  • the "insulating layer formed by using the copper foil 10 with a resin layer” means, for example, such that the second resin layer 13 of the copper foil 10 with a resin layer is in contact with the substrate on which the conductor layer is formed. Can be laminated and configured.
  • the conductor layer may be the copper foil 11 of the copper foil 10 with a resin layer, or another conductor (copper foil or the like) such as the copper foil of the copper-clad laminate may be separately laminated to form the conductor layer. May be formed.
  • the laminated body 20 is formed by laminating a copper foil 10 with a resin layer on a substrate 22 on which a conductor layer 21 is formed so that a second resin layer 13 is in contact with the first resin layer 12. And the second resin layer 13 form an insulating layer 23.
  • the build-up layer has a plurality of conductor layers and an insulating layer, and the conductor layer is between the insulating layers and of the build-up layer. It can be configured to be arranged on the surface of the outermost layer.
  • the number of insulating layers is not particularly limited, but may be, for example, 3 layers or 4 layers.
  • a coreless substrate can be produced by using the laminated body of the present embodiment. Examples of the coreless substrate include a coreless substrate having two or more layers, and examples thereof include a three-layer coreless substrate. The configuration of the coreless substrate will be described later.
  • the laminate of this embodiment can be used as a printed wiring board.
  • a laminate using the copper foil 10 with a resin layer of the present embodiment is used as a build-up material for a metal foil-clad laminate in which an insulating resin layer called a core base material is completely cured.
  • an insulating resin layer called a core base material is completely cured.
  • the copper foil 10 (laminated body) with a resin layer of the present embodiment for example, it is possible to manufacture a thin printed wiring board without using a thick support substrate (carrier substrate).
  • a conductor circuit is formed by a conductor layer obtained by peeling off the metal foil and / or the metal foil of a commonly used metal foil-clad laminate and then plating.
  • the base material of the metal foil-clad laminate is not particularly limited, but is mainly a glass epoxy substrate, a metal substrate, a polyester substrate, a polyimide substrate, a BT resin substrate, and a thermosetting polyphenylene ether substrate.
  • the build-up refers to the first resin layer 12 and the second resin layer 13 in the copper foil 10 with a resin layer with respect to the metal foil and / or the conductor layer on the surface of the metal foil-clad laminate. It is to stack.
  • holes such as via holes and / or through holes are machined in order to electrically connect each conductor layer as needed.
  • Drilling is usually performed using a mechanical drill, a carbon dioxide laser, a UV laser, a YAG laser, or the like.
  • the insulating layer formed by using the copper foil 10 with a resin layer it is possible to improve the smear removing property while suppressing the generation of cracks in the formation of via holes, and it is possible to suppress overhang. Therefore, a good processed shape can be obtained in the conformal laser processing and the direct laser processing.
  • the roughening treatment usually consists of a swelling step, a surface roughening and smear melting step, and a neutralization step.
  • the swelling step is performed by swelling the surface of the insulating resin layer with a swelling agent.
  • the swelling agent As the swelling agent, the wettability of the surface of the insulating resin layer is improved, and the surface of the insulating resin layer can be swelled to the extent that oxidative decomposition is promoted in the next surface roughening and smear dissolution steps. If so, it is not particularly limited. Examples include an alkaline solution, a surfactant solution and the like.
  • the surface roughening and smear dissolution steps are carried out using an oxidizing agent.
  • the oxidizing agent include an alkaline permanganate solution and the like, and suitable specific examples thereof include an aqueous solution of potassium permanganate and an aqueous solution of sodium permanganate.
  • Such an oxidant treatment is called wet desmear, and in addition to the wet desmear, other known roughening treatments such as plasma treatment, dry desmear by UV treatment, mechanical polishing by buffing, and sandblasting are appropriately combined. May be.
  • the neutralization step is to neutralize the oxidizing agent used in the previous step with a reducing agent.
  • the reducing agent examples include amine-based reducing agents, and suitable specific examples thereof include acidic aqueous solutions such as a hydroxylamine sulfate aqueous solution, an ethylenediamine tetraacetic acid aqueous solution, and a nitrilotriacetic acid aqueous solution.
  • acidic aqueous solutions such as a hydroxylamine sulfate aqueous solution, an ethylenediamine tetraacetic acid aqueous solution, and a nitrilotriacetic acid aqueous solution.
  • the via hole and / or the through hole is provided, or after the via hole and / or the through hole is desmeared, it is preferable to perform a metal plating treatment to electrically connect each conductor layer.
  • the method of the metal plating treatment is not particularly limited, and a method of the metal plating treatment in the production of a normal multilayer printed wiring board can be appropriately used.
  • the method of metal plating treatment and the type of chemical solution used for plating are not particularly limited, and the metal plating treatment method and chemical solution in the production of a normal multilayer printed wiring board can be appropriately used.
  • the chemical solution used for the metal plating treatment may be a commercially available product.
  • the metal plating treatment method is not particularly limited, and is, for example, a treatment with a degreasing liquid, a treatment with a soft etching liquid, an acid cleaning, a treatment with a predip liquid, a treatment with a catalyst liquid, a treatment with an accelerator liquid, and a chemical copper liquid.
  • a treatment with a degreasing liquid a treatment with a soft etching liquid
  • an acid cleaning a treatment with a predip liquid
  • a treatment with a catalyst liquid a treatment with an accelerator liquid
  • chemical copper liquid examples thereof include treatment, pickling, and treatment of immersing in a copper sulfate solution and passing a current.
  • the first resin layer 12 or the second resin layer 13 in the semi-cured state is usually heat-treated.
  • a printed wiring board can be obtained by completely curing.
  • another copper foil 10 with a resin layer may be further laminated on the obtained printed wiring board.
  • the laminating method in the build-up method is not particularly limited, but a vacuum-pressurized laminator can be preferably used.
  • the copper foil 10 with a resin layer can be laminated via an elastic body such as rubber.
  • the laminating conditions are not particularly limited as long as they are conditions used in laminating ordinary printed wiring boards, but for example, a temperature of 70 ° C. to 140 ° C., a contact pressure in the range of 1 kgf / cm 2 to 11 kgf / cm 2 , and a contact pressure of 1 kgf / cm 2 to 11 kgf / cm 2. It is carried out under an atmospheric reduced pressure of 20 hPa or less.
  • the laminated adhesive film may be smoothed by hot pressing with a metal plate.
  • the laminating step and the smoothing step can be continuously performed by a commercially available vacuum pressurizing laminator.
  • the first resin layer 12 and the second resin layer 13 can be completely cured.
  • the thermosetting conditions differ depending on the types of components contained in the first resin layer 12 and the second resin layer 13, but usually the curing temperature is 100 ° C to 300 ° C and the pressure is 0.1 kgf / cm 2 to 100 kgf. / Cm 2 (about 9.8 kPa to about 9.8 MPa), curing time is 30 seconds to 5 hours.
  • Examples of the method for forming a circuit pattern on the copper foil on one side or both sides of the printed wiring board in the present embodiment include a semi-additive method, a full additive method, and a subtractive method. Above all, the semi-additive method is preferable from the viewpoint of forming a fine wiring pattern.
  • a method of selectively electroplating using a plating resist pattern plating
  • pattern plating a method of selectively electroplating using a plating resist
  • etching an appropriate amount of the whole to form a wiring pattern can be mentioned.
  • electroless plating and electrolytic plating are combined, and at that time, it is preferable to perform drying after electroless plating and after electrolytic plating, respectively. Drying after electroless plating is not particularly limited, but is preferably performed at 80 ° C. to 180 ° C. for 10 minutes to 120 minutes, and drying after electrolytic plating is not particularly limited, but is, for example, at 130 ° C. to 220 ° C. It is preferably performed for 10 to 120 minutes. Copper plating is preferable as the plating.
  • An example of a method of forming a circuit pattern by the subtractive method is a method of forming a wiring pattern by selectively removing a conductor layer using an etching resist.
  • a dry film resist (Hitachi Kasei RD-1225 (trade name)) is laminated and bonded (laminated) on the entire surface of the copper foil at a temperature of 110 ⁇ 10 ° C. and a pressure of 0.50 ⁇ 0.02 MPa. Then, exposure is performed according to the circuit pattern and masking is performed. Then, the dry film resist is developed with a 1% aqueous sodium carbonate solution, and finally the dry film resist is peeled off with an amine-based resist stripping solution. This makes it possible to form circuit patterning on the copper foil.
  • a multilayer printed wiring board can be obtained by further laminating an insulating resin layer and / or a conductor layer on the printed wiring board.
  • a circuit board may be provided in the inner layer of the multilayer printed wiring board.
  • the copper foil 10 with a resin layer constitutes one of the insulating resin layer and the conductor layer of the multilayer printed wiring board.
  • the laminating method is not particularly limited, and a method generally used for laminating and forming a normal printed wiring board can be used.
  • Examples of the laminating method include a multi-stage press, a multi-stage vacuum press, a laminator, a vacuum laminator, an autoclave forming machine, and the like.
  • the temperature at the time of stacking is not particularly limited, but is not particularly limited, for example, 100 ° C. to 300 ° C.
  • the pressure is not particularly limited, for example, 0.1 kgf / cm 2 to 100 kgf / cm 2 (about 9.8 kPa to about 9.8 MPa).
  • the heating time is not particularly limited, but is appropriately selected in the range of, for example, 30 seconds to 5 hours. Further, if necessary, for example, post-curing may be performed in a temperature range of 150 ° C. to 300 ° C. to adjust the degree of curing.
  • the laminate of this embodiment can be used as a substrate for mounting a semiconductor element.
  • a substrate for mounting a semiconductor element is produced, for example, by laminating a copper foil 10 with a resin layer on a metal foil-clad laminate and masking and patterning the copper foil on the surface or one side of the obtained laminate.
  • the masking and patterning known masking and patterning performed in the manufacture of the printed wiring board can be used, and the circuit pattern is preferably formed by the above-mentioned subtractive method without particular limitation.
  • the circuit pattern may be formed on only one side of the laminate, or may be formed on both sides.
  • the laminate of this embodiment can be a coreless substrate as described above.
  • An example of the coreless substrate is a multilayer coreless substrate.
  • the multilayer coreless substrate is, for example, a plurality of insulating layers composed of a first insulating layer, one or a plurality of second insulating layers laminated on one side of the first insulating layer, and a plurality of insulating layers.
  • FIG. 3 is a schematic diagram showing an example of a multilayer coreless substrate in this embodiment.
  • the first conductor layer 113 arranged between each of the plurality of insulating layers (first insulating layer 111 and the second insulating layer 112) and their respective insulating layers 113. It has a plurality of conductor layers composed of a second conductor layer 114 arranged on the outermost layer of the plurality of insulating layers (first insulating layer 111 and second insulating layer 112).
  • the present embodiment in the formation of the via hole, it is possible to improve the smear removal property while suppressing the generation of cracks, and it is possible to suppress the overhang. Therefore, it is possible to obtain a good processing shape in both the conformal laser processing and the direct laser processing.
  • Terminal styrenated polyphenylene ether compound (product name: OPE-2St2200, manufactured by Mitsubishi Gas Chemical Company, Inc.) 15.0 parts by mass, polyimide resin (product name: Neoprim (registered trademark) S100, manufactured by Mitsubishi Gas Chemical Company, Inc.) 49 .9 parts by mass, 2,2-bis- (4- (4-maleimidephenoxy) phenylpropane (product name: BMI-80, manufactured by KI Kasei Co., Ltd.) 34.9 parts by mass, 2,4,5 -The first resin composition was obtained by blending (mixing) 0.2 parts by mass of triphenylimidazole (manufactured by Tokyo Chemical Industry Co., Ltd.).
  • the inorganic filler was added to the first resin composition.
  • the first resin composition was diluted with N-methyl-2-pyrrolidone (hereinafter referred to as “NMP”) to obtain varnish A.
  • NMP N-methyl-2-pyrrolidone
  • the obtained varnish A was 3 ⁇ m thick by a bar coater.
  • the copper foil 11 product name: MT-FL, manufactured by Mitsui Metal Mining Co., Ltd.
  • the coating film was heated and dried at 180 ° C. for 10 minutes onto the copper foil 11.
  • the first resin layer 12 was formed.
  • biphenyl aralkyl type phenol resin product name: KAYAHARD GPH-103, hydroxyl group equivalent: 231 g / eq., manufactured by Nippon Kayaku Co., Ltd.
  • BMI-70 bis (3-ethyl-5-methyl-4- Maleimide diphenyl) methane
  • naphthalene aralkyl type epoxy resin product name: HP-9900, epoxy equivalent: 274 g / eq.
  • DIC (Co., Ltd.) 7.0 parts by mass
  • biphenyl aralkyl type epoxy resin product name: NC-3000-FH, manufactured by Nippon Kayaku Co., Ltd., epoxy equivalent: 320 g / eq.) 38.8 parts by mass
  • 2,4 5-Triphenylimidazole (manufactured by Tokyo Kasei Kogy
  • the second resin composition was obtained by blending (mixing). At that time, the content of silica as the inorganic filler (B2) with respect to the second resin composition (inorganic filler (B2) / second resin composition ⁇ 100) was set to 15% by volume. Then, this second resin composition was diluted with methyl ethyl ketone to obtain varnish B. The obtained varnish B was applied by a bar coater onto the first resin layer 12 obtained by the above method. Then, the coating film was heated and dried at 150 ° C. for 10 minutes to obtain a copper foil 10 with a resin layer having a first resin layer 12 and a second resin layer 13.
  • the thickness of the first resin layer 12 was 5 ⁇ m, and the thickness of the second resin layer 13 was 1 ⁇ m. Further, the total content (total inorganic filler content) of the inorganic filler (B1) and the inorganic filler (B2) with respect to the total of the first resin composition and the second resin composition is 2. 5% by volume.
  • Example 2 Silica (product name: K180SQ-C1, average particle size 0.18 ⁇ m, manufactured by Admatex Co., Ltd.) is blended (mixed) as an inorganic filler (B1) in the first resin composition, and the first resin layer 12 is mixed.
  • the first resin layer 12 was formed on the copper foil 11 in the same manner as in Example 1 except that the thickness of the resin was 2.5 ⁇ m.
  • the content of silica as the inorganic filler (B1) with respect to the first resin composition was set to 14% by volume.
  • Example 2 The same as in Example 1 except that the content of silica as the inorganic filler (B2) in the second resin composition was 20% by volume and the thickness of the second resin layer 13 was 5 ⁇ m.
  • the second resin layer 13 was formed on the first resin layer 12.
  • the total content (total inorganic filler content) of the inorganic filler (B1) and the inorganic filler (B2) with respect to the total of the first resin composition and the second resin composition is 18.0 volumes. %.
  • Example 3 The first resin layer 12 was formed on the copper foil 11 in the same manner as in Example 1 except that the thickness of the first resin layer 12 was 2.5 ⁇ m. That is, no inorganic filler was added to the first resin composition.
  • the second resin layer 13 was formed on the first resin layer 12.
  • the total content (total inorganic filler content) of the inorganic filler (B1) and the inorganic filler (B2) with respect to the total of the first resin composition and the second resin composition is 13.3 volumes. %.
  • Example 4 Silica (product name: K180SQ-C1, average particle size 0.18 ⁇ m, manufactured by Admatex Co., Ltd.) is blended (mixed) as an inorganic filler (B1) in the first resin composition, and the first resin layer 12 is mixed.
  • the first resin layer 12 was formed on the copper foil 11 in the same manner as in Example 1 except that the thickness of the resin was 1 ⁇ m.
  • the content of silica as the inorganic filler (B1) with respect to the first resin composition was set to 14% by volume.
  • Example 2 The same as in Example 1 except that the content of silica as the inorganic filler (B2) in the second resin composition was 35% by volume and the thickness of the second resin layer 13 was 10 ⁇ m.
  • the second resin layer 13 was formed on the first resin layer 12.
  • the total content (total inorganic filler content) of the inorganic filler (B1) and the inorganic filler (B2) with respect to the total of the first resin composition and the second resin composition is 33.3 volumes. %.
  • Example 5 Silica (product name: K180SQ-C1, average particle size 0.18 ⁇ m, manufactured by Admatex Co., Ltd.) is blended (mixed) as an inorganic filler (B1) in the first resin composition, and the first resin layer 12 is mixed.
  • the first resin layer 12 was formed on the copper foil 11 in the same manner as in Example 1 except that the thickness of the resin was 2.5 ⁇ m.
  • the content of silica as the inorganic filler (B1) with respect to the first resin composition was set to 1.1% by volume.
  • Example 2 The same as in Example 1 except that the content of silica as the inorganic filler (B2) in the second resin composition was 25% by volume and the thickness of the second resin layer 13 was 5 ⁇ m.
  • the second resin layer 13 was formed on the first resin layer 12.
  • the total content (total inorganic filler content) of the inorganic filler (B1) and the inorganic filler (B2) with respect to the total of the first resin composition and the second resin composition is 22.7 volumes. %.
  • the first resin layer 12 was formed on the copper foil 11 in the same manner as in Example 1 except that the thickness of the first resin layer 12 was 2.5 ⁇ m. That is, no inorganic filler was added to the first resin composition. Further, except that the inorganic filler was not added to the second resin composition and the thickness of the second resin layer 13 was set to 5 ⁇ m, the other steps were the same as in Example 1 of the first resin layer 12. A second resin layer 13 was formed on the top.
  • the total content (total inorganic filler content) of the inorganic filler (B1) and the inorganic filler (B2) with respect to the total of the first resin composition and the second resin composition is 0.0 volume. %.
  • Example 2 Silica (product name: K180SQ-C1, average particle size 0.18 ⁇ m, manufactured by Admatex Co., Ltd.) is blended (mixed) as an inorganic filler (B1) in the first resin composition, and the first resin layer 12 is mixed.
  • the first resin layer 12 was formed on the copper foil 11 in the same manner as in Example 1 except that the thickness of the resin was 2.5 ⁇ m.
  • the content of silica as the inorganic filler (B1) with respect to the first resin composition was set to 15% by volume.
  • a second resin layer 13 was formed on the top.
  • the total content (total inorganic filler content) of the inorganic filler (B1) and the inorganic filler (B2) with respect to the total of the first resin composition and the second resin composition is 5.0 volumes. %.
  • the first resin layer 12 was formed on the copper foil 11 in the same manner as in Example 1 except that the thickness of the first resin layer 12 was 2.5 ⁇ m. That is, no inorganic filler was added to the first resin composition.
  • the second resin layer 13 was formed on the first resin layer 12.
  • the total content (total inorganic filler content) of the inorganic filler (B1) and the inorganic filler (B2) with respect to the total of the first resin composition and the second resin composition is 26.7 volumes. %.
  • Example 4 Silica (product name: K180SQ-C1, average particle size 0.18 ⁇ m, manufactured by Admatex Co., Ltd.) is blended (mixed) as an inorganic filler (B1) in the first resin composition, and the first resin layer 12 is mixed.
  • the first resin layer 12 was formed on the copper foil 11 in the same manner as in Example 1 except that the thickness of the resin was 2.5 ⁇ m.
  • the content of silica as the inorganic filler (B1) with respect to the first resin composition was set to 25% by volume.
  • Example 2 The same as in Example 1 except that the content of silica as the inorganic filler (B2) in the second resin composition was 14% by volume and the thickness of the second resin layer 13 was 5 ⁇ m.
  • the second resin layer 13 was formed on the first resin layer 12.
  • the total content (total inorganic filler content) of the inorganic filler (B1) and the inorganic filler (B2) with respect to the total of the first resin composition and the second resin composition is 17.7 volumes. %.
  • a circular opening with a diameter of about 15 ⁇ m was formed in the copper foil on the surface of each of the obtained four-layer substrates by a subtractive method, and a non-through hole with a diameter of about 15 ⁇ m was formed by irradiating the same with a laser.
  • a smear removing step each of the four-layer substrates obtained on the plating jig was racked, and the immersion was shaken in the expansion tank, the etching tank, and the neutralization tank.
  • the chemical solution used was an up-death process manufactured by C. Uyemura & Co., Ltd.
  • the swelling solution was Updes MDS-37
  • the etching solution was a mixture of Updes MDE-40 and ELC-SH
  • the neutralization was Updes MDN-62.
  • the temperature of the etching tank was 80 ° C., and the etching tank was immersed for 10 minutes.
  • each of the four-layer substrates obtained in the plating jig was racked, and electroless copper plating was performed with an device of Armex PE Co., Ltd., which can be immersed and rocked in an electroless copper plating tank.
  • the chemical solution used was a mixture of Sulcup PEA manufactured by C. Uyemura & Co., Ltd. and formaldehyde.
  • the electroless copper plating thickness was 0.4 ⁇ m.
  • an immersion type device of Almex PE Co., Ltd. was used, and plating was performed so as to have a thickness of 15 ⁇ m.
  • the cross-section of the non-through hole was formed by a cross-section polishing machine of Marumoto Struas Co., Ltd.
  • polishing rough cutting was performed using # 1000 polishing paper, a cross section at the center of the non-through hole was cut out with # 2400 polishing paper, and buffing was performed as a finish.
  • the observation after cutting out the cross section was performed using a metallurgical microscope Olympus Co., Ltd. GX51 with a magnification of 50 times or 100 times.
  • the top diameter and bottom diameter were measured for each of the prepared samples, and the top-bottom ratio (bottom diameter / top diameter) was calculated. The results obtained are shown in Table 1.
  • the copper foil 10 with a resin layer obtained in each Example and each Comparative Example was laminated on both sides of a copper foil-clad laminate to obtain a four-layer substrate.
  • the surface copper foil was blackened on each of the obtained four-layer substrates, and a through hole having a diameter of about 40 ⁇ m was formed therein by irradiating the surface copper foil with a laser.
  • smear removal, electroless copper plating, and via filling plating were performed in the same manner as in the evaluation of conformal laser processability.
  • Comparative Example 4 in which the content of the inorganic filler (B1) in the first resin composition is more than 15% by volume, overhang occurs in the direct laser machining, and both the conformal laser workability and the direct laser machining are top. Good results were not obtained in the bottom ratio.
  • the inorganic filler (B1) is added to reduce the content of the inorganic filler (B1) to 15% by volume or less and the second. If the inorganic filler (B2) is added to the resin composition so that the content of the inorganic filler (B2) is 15% by volume or more and 35% by volume or less, cracks are suppressed and the conformal laser processing is performed. However, it was found that a good processed shape can be obtained even in direct laser processing.

Abstract

[Problem] To provide a copper foil with a resin layer capable of improving smear removal and capable of suppressing overhang. [Solution] The copper foil with a resin layer 10 has a copper foil 11, a first resin layer 12 laminated on the copper foil 11, and a second resin layer 13 laminated on the first resin layer 12. The first resin layer 12 is composed of a first resin composition that includes a thermosetting resin (A1) and does not include an inorganic filler or a first resin composition that includes a thermosetting resin (A1) and an inorganic filler (B1), in which the content of the inorganic filler (B1) is 15 vol% or less. The second resin layer 13 is composed of a second resin composition that includes a thermosetting resin (A2) and an inorganic filler (B2), in which the content of the inorganic filler (B2) is from 15 vol% to 35 vol%.

Description

樹脂層付き銅箔、及び、これを用いた積層体Copper foil with resin layer and laminate using this
 本発明は、樹脂層付き銅箔、及び、これを用いた積層体に関する。詳しくは、本発明は、プリント配線板又は半導体素子搭載用基板用途に有用な樹脂層付き銅箔、及び、これを用いた積層体に関する。 The present invention relates to a copper foil with a resin layer and a laminated body using the same. More specifically, the present invention relates to a copper foil with a resin layer useful for a printed wiring board or a substrate for mounting a semiconductor element, and a laminate using the same.
 近年、電子機器や通信機、パーソナルコンピューター等に広く用いられるプリント配線板又は半導体素子搭載用基板においては、高密度化、高集積化、軽薄化が進展している。これに伴い、プリント配線板又は半導体素子搭載用基板の製造方法としては、回路形成された導体層と絶縁層(層間絶縁層)を交互に積み上げていくビルドアップ方式が広く用いられており、配線パターンの形成には、微細なパターンを形成することができるセミアディティブ工法が多く用いられている。 In recent years, printed wiring boards or substrates for mounting semiconductor elements, which are widely used in electronic devices, communication devices, personal computers, etc., have been increasing in density, becoming more integrated, and becoming thinner. Along with this, as a method for manufacturing a printed wiring board or a substrate for mounting a semiconductor element, a build-up method in which circuit-formed conductor layers and insulating layers (interlayer insulating layers) are alternately stacked is widely used, and wiring is used. A semi-additive method that can form a fine pattern is often used for forming a pattern.
 このようなプリント配線板に用いられる絶縁層としては、樹脂組成物層を複層化したものが知られている(例えば、特許文献1参照)。特許文献1は、複層化した各層のエッチング量を調整することにより、レーザー加工の際に各層のビアホールで段差が発生し、ビアホール形状がいびつになってしまうことを解決するものである。このように、従来から、ビアホールについて良好な加工形状を得るための開発が進められている。 As an insulating layer used for such a printed wiring board, a multi-layered resin composition layer is known (see, for example, Patent Document 1). Patent Document 1 solves the problem that a step is generated in the via hole of each layer during laser processing and the shape of the via hole becomes distorted by adjusting the etching amount of each of the multi-layered layers. As described above, development for obtaining a good processed shape for the via hole has been promoted conventionally.
特開2017-50561号公報Japanese Unexamined Patent Publication No. 2017-50561
 しかしながら、例えば、コンフォーマルレーザー加工によりビアホールを形成する場合と、ダイレクトレーザー加工によりビアホールを形成する場合とでは、求められる特性が異なっており、両方の加工方法において良好な加工形状を得ることができる材料の開発が求められていた。例えば、コンフォーマルレーザー加工の場合には、スミア除去性が高いことが求められ、ダイレクトレーザー加工の場合には、オーバーハング等を抑制することが求められている。特許文献1は、これらを解決するものではなく、本願発明とは具体的な構成も異なっている。 However, for example, the required characteristics are different between the case of forming a via hole by conformal laser processing and the case of forming a via hole by direct laser processing, and a good processed shape can be obtained by both processing methods. The development of materials was required. For example, in the case of conformal laser processing, it is required to have high smear removing property, and in the case of direct laser processing, it is required to suppress overhang and the like. Patent Document 1 does not solve these problems, and its specific configuration is different from that of the present invention.
 本発明は、このような問題に基づきなされたものであり、スミア除去性を高くすることができ、かつ、オーバーハングを抑制することができる樹脂層付き銅箔、及び、これを用いた積層体を提供することを目的とする。 The present invention has been made based on such a problem, and is a copper foil with a resin layer capable of enhancing smear removal property and suppressing overhang, and a laminated body using the same. The purpose is to provide.
 本発明者らは、銅箔と、銅箔の上に積層された第1の樹脂層と、第1の樹脂層の上に積層された第2の樹脂層とを有する樹脂層付き銅箔において、第1の樹脂層及び第2の樹脂層における無機充填材の割合を調整することにより、上記課題を解決できることを見出し、本発明を完成するに至った。 The present inventors have a copper foil with a resin layer having a copper foil, a first resin layer laminated on the copper foil, and a second resin layer laminated on the first resin layer. , The above-mentioned problems can be solved by adjusting the ratio of the inorganic filler in the first resin layer and the second resin layer, and the present invention has been completed.
 すなわち、本発明は以下の通りである。
[1]
 銅箔と、前記銅箔の上に積層された第1の樹脂層と、前記第1の樹脂層の上に積層された第2の樹脂層とを有する樹脂層付き銅箔であって、
 前記第1の樹脂層は、熱硬化性樹脂(A1)を含み、かつ、無機充填材を含まない第1の樹脂組成物、又は、熱硬化性樹脂(A1)及び無機充填材(B1)を含み、前記無機充填材(B1)の含有量が15体積%以下である第1の樹脂組成物からなり
 前記第2の樹脂層は、熱硬化性樹脂(A2)及び無機充填材(B2)を含み、前記無機充填材(B2)の含有量が15体積%以上35体積%以下である第2の樹脂組成物からなる
 ことを特徴とする樹脂層付き銅箔。
[2]
 前記第1の樹脂組成物と前記第2の樹脂組成物との合計に対する前記無機充填材(B1)と前記無機充填材(B2)との合計の含有量は、2.5体積%以上33.3体積%以下である、[1]に記載の樹脂層付き銅箔。
[3]
 前記第1の樹脂層の厚みは1μm以上5μm以下である、[1]に記載の樹脂層付き銅箔。
[4]
 前記第2の樹脂層の厚みは1μm以上10μm以下である、[1]に記載の樹脂層付き銅箔。
[5]
 前記熱硬化性樹脂(A1)は、ポリイミド樹脂、液晶ポリエステル、エポキシ化合物、シアン酸エステル化合物、マレイミド化合物、フェノール化合物、ポリフェニレンエーテル化合物、ベンゾオキサジン化合物、有機基変性シリコーン化合物、及び、重合可能な不飽和基を有する化合物からなる群より選択される少なくとも1種を含有する、[1]に記載の樹脂層付き銅箔。
[6]
 前記熱硬化性樹脂(A2)は、エポキシ化合物、シアン酸エステル化合物、マレイミド化合物、フェノール化合物、ポリフェニレンエーテル化合物、ベンゾオキサジン化合物、有機基変性シリコーン化合物、及び、重合可能な不飽和基を有する化合物からなる群より選択される少なくとも1種を含有する、[1]に記載の樹脂層付き銅箔。
[7]
 前記無機充填材(B1)及び前記無機充填材(B2)は水酸化マグネシウム、酸化マグネシウム、シリカ、モリブデン化合物、アルミナ、窒化アルミニウム、ガラス、タルク、チタン化合物、酸化ジルコニウムから選択される少なくとも1種を含有する、[1]に記載の樹脂層付き銅箔。
[8]
 導体層と、[1]に記載の樹脂層付き銅箔を用いて形成されたビルドアップ層を有する積層体。
That is, the present invention is as follows.
[1]
A copper foil with a resin layer having a copper foil, a first resin layer laminated on the copper foil, and a second resin layer laminated on the first resin layer.
The first resin layer is a first resin composition containing a thermosetting resin (A1) and not containing an inorganic filler, or a thermosetting resin (A1) and an inorganic filler (B1). The second resin layer comprises a first resin composition containing 15% by volume or less of the inorganic filler (B1), and the second resin layer contains a thermosetting resin (A2) and an inorganic filler (B2). A copper foil with a resin layer, comprising a second resin composition containing the inorganic filler (B2) having a content of 15% by volume or more and 35% by volume or less.
[2]
The total content of the inorganic filler (B1) and the inorganic filler (B2) with respect to the total of the first resin composition and the second resin composition is 2.5% by volume or more 33. The copper foil with a resin layer according to [1], which is 3% by volume or less.
[3]
The copper foil with a resin layer according to [1], wherein the thickness of the first resin layer is 1 μm or more and 5 μm or less.
[4]
The copper foil with a resin layer according to [1], wherein the thickness of the second resin layer is 1 μm or more and 10 μm or less.
[5]
The thermosetting resin (A1) includes a polyimide resin, a liquid crystal polyester, an epoxy compound, a cyanate ester compound, a maleimide compound, a phenol compound, a polyphenylene ether compound, a benzoxazine compound, an organic group-modified silicone compound, and a non-polymerizable resin. The copper foil with a resin layer according to [1], which contains at least one selected from the group consisting of compounds having a saturated group.
[6]
The thermosetting resin (A2) is composed of an epoxy compound, a cyanate ester compound, a maleimide compound, a phenol compound, a polyphenylene ether compound, a benzoxazine compound, an organic group-modified silicone compound, and a compound having a polymerizable unsaturated group. The copper foil with a resin layer according to [1], which contains at least one selected from the above group.
[7]
The inorganic filler (B1) and the inorganic filler (B2) are at least one selected from magnesium hydroxide, magnesium oxide, silica, molybdenum compound, alumina, aluminum nitride, glass, talc, titanium compound, and zirconium oxide. The copper foil with a resin layer according to [1], which is contained.
[8]
A laminate having a conductor layer and a build-up layer formed by using the copper foil with the resin layer according to [1].
 本発明によれば、ビアホールの形成において、クラックの発生を抑えつつスミア除去性を高くすることができると共に、オーバーハングを抑制することができる。よって、コンフォーマルレーザー加工においても、ダイレクトレーザー加工においても、良好な加工形状を得ることができる。 According to the present invention, in the formation of via holes, it is possible to improve the smear removal property while suppressing the generation of cracks, and it is possible to suppress overhang. Therefore, it is possible to obtain a good processing shape in both the conformal laser processing and the direct laser processing.
本発明の一実施の形態に係る樹脂層付き銅箔の構成を表す模式図である。It is a schematic diagram which shows the structure of the copper foil with a resin layer which concerns on one Embodiment of this invention. 本発明の一実施の形態に係る積層体の一例を示す模式図である。It is a schematic diagram which shows an example of the laminated body which concerns on one Embodiment of this invention. 本発明の一実施の形態に係る多層コアレス基板の一例を示す模式図である。It is a schematic diagram which shows an example of the multilayer coreless substrate which concerns on one Embodiment of this invention.
 以下、本発明を実施するための形態(以下、「本実施形態」という。)について詳細に説明するが、本発明はこれに限定されるものではなく、その要旨を逸脱しない範囲で様々な変形が可能である。本明細書において、積層体は、各層が互いに接着したものであるが、その各層は、必要に応じて、互いに剥離可能なものであってもよい。 Hereinafter, embodiments for carrying out the present invention (hereinafter referred to as “the present embodiment”) will be described in detail, but the present invention is not limited thereto, and various modifications are made without departing from the gist thereof. Is possible. In the present specification, the laminated bodies are those in which the layers are adhered to each other, but the layers may be peelable from each other, if necessary.
 本実施形態において、「樹脂固形分」とは、特に断りのない限り、第1の樹脂層12又は第2の樹脂層13における、溶剤及び無機充填材を除いた成分をいい、「樹脂固形分100質量部」とは、第1の樹脂層12又は第2の樹脂層13における、溶剤及び無機充填材を除いた成分の合計が100質量部であることをいう。 In the present embodiment, the “resin solid content” refers to the components of the first resin layer 12 or the second resin layer 13 excluding the solvent and the inorganic filler, unless otherwise specified, and refers to the “resin solid content”. "100 parts by mass" means that the total of the components of the first resin layer 12 or the second resin layer 13 excluding the solvent and the inorganic filler is 100 parts by mass.
[樹脂層付き銅箔]
 図1は、本発明の一実施の形態に係る樹脂層付き銅箔10の構成を表すものである。この樹脂層付き銅箔10は、銅箔11と、銅箔11の上に積層された第1の樹脂層12と、第1の樹脂層12の上に積層された第2の樹脂層13とを備えている。
[Copper foil with resin layer]
FIG. 1 shows the configuration of a copper foil 10 with a resin layer according to an embodiment of the present invention. The copper foil 10 with a resin layer includes a copper foil 11, a first resin layer 12 laminated on the copper foil 11, and a second resin layer 13 laminated on the first resin layer 12. It is equipped with.
 この樹脂層付き銅箔10は、例えば、回路パターン(導体層)上に設けられる絶縁層を形成するための材料として有用であり、例えば、電子機器、通信機器及びパーソナルコンピューター等の製造に用いられるプリント配線板又は半導体素子搭載用基板の絶縁層の形成材料として用いることができる。例えば、プリント配線板等を作製する場合、樹脂層付き銅箔10を、回路パターンなどの導体層が形成された基板上に、第2の樹脂層13と導体層とが接するように配置し、その後、加熱押圧(プレス)して第1樹脂層12及び第2の樹脂層13を硬化させることで、導体層上に絶縁層を形成する。 The copper foil 10 with a resin layer is useful, for example, as a material for forming an insulating layer provided on a circuit pattern (conductor layer), and is used, for example, in the manufacture of electronic devices, communication devices, personal computers, and the like. It can be used as a material for forming an insulating layer of a printed wiring board or a substrate for mounting a semiconductor element. For example, when manufacturing a printed wiring board or the like, a copper foil 10 with a resin layer is arranged on a substrate on which a conductor layer such as a circuit pattern is formed so that the second resin layer 13 and the conductor layer are in contact with each other. After that, the first resin layer 12 and the second resin layer 13 are cured by heating and pressing (pressing) to form an insulating layer on the conductor layer.
 第2の樹脂層13は、プレス処理時に流動性を有する樹脂を含む層であって、回路パターンの導体層などの凹凸部が埋め込まれる層である。第1の樹脂層12は、第2の樹脂層13に埋め込まれた導体層と銅箔11と間の絶縁性を保つために、積層体形成時などのプレス処理後においても、銅箔11と第2の樹脂層13との間の距離を維持する層である。第2の樹脂層13は、埋設層として機能するため、構成する成分及び物性の少なくともいずれかが第1の樹脂層12と異なることが好ましい。特に限定されるものではないが、例えば、第1の樹脂層12と第2の樹脂層13とが異なる態様としては、第1の樹脂層12にポリイミド樹脂、第2の樹脂層13にエポキシ化合物を用いるなど、樹脂種などが異なることにより成分が異なる場合や、各層に含まれる成分の配合比、又は、硬化状態(例えば、各層の塗工条件を変更することで、第1の樹脂層12を完全に硬化させ、第2の樹脂層13を半硬化状態にするなど)によって物性が異なる場合、並びに、これらを複合した場合などが挙げられる。 The second resin layer 13 is a layer containing a resin having fluidity at the time of press processing, and is a layer in which uneven portions such as a conductor layer of a circuit pattern are embedded. In order to maintain the insulating property between the conductor layer embedded in the second resin layer 13 and the copper foil 11, the first resin layer 12 may be formed with the copper foil 11 even after a press treatment such as when forming a laminate. It is a layer that maintains a distance from the second resin layer 13. Since the second resin layer 13 functions as an embedded layer, it is preferable that at least one of the constituent components and physical properties is different from that of the first resin layer 12. Although not particularly limited, for example, as an embodiment in which the first resin layer 12 and the second resin layer 13 are different, the first resin layer 12 is a polyimide resin and the second resin layer 13 is an epoxy compound. The first resin layer 12 can be obtained by changing the composition ratio of the components contained in each layer or the cured state (for example, by changing the coating conditions of each layer). The physical properties are different depending on (such as completely curing the second resin layer 13 to make the second resin layer 13 in a semi-cured state), and there are cases where these are combined.
[銅箔]
 銅箔11は、通常のプリント配線板に用いられるものであればどのようなものでもよく、例えば、電解銅箔、圧延銅箔及び銅合金フィルムが挙げられる。銅箔11には、例えば、マット処理、コロナ処理、ニッケル処理及びコバルト処理等の公知の表面処理が施されていてもよい。本実施形態における銅箔11としては、市販品を用いることができ、例えば、JX金属(株)製の「GHY5」(商品名、12μm厚銅箔)及び「JXUT-I」(商品名、1.5μm厚銅箔)、三井金属鉱業(株)製の「MT-FL」(商品名、3μm厚銅箔)、「3EC-VLP」(商品名、12μm厚銅箔)、「3EC-III」(商品名、12μm厚銅箔)及び「3EC-M2S-VLP」(商品名、12μm厚銅箔)、並びに、古河電気工業(株)製の銅箔「GTS-MP」(商品名、12μm厚銅箔)を挙げることができる。
[Copper foil]
The copper foil 11 may be any one used for ordinary printed wiring boards, and examples thereof include electrolytic copper foil, rolled copper foil, and copper alloy film. The copper foil 11 may be subjected to known surface treatments such as matte treatment, corona treatment, nickel treatment and cobalt treatment. As the copper foil 11 in the present embodiment, commercially available products can be used, for example, "GHY5" (trade name, 12 μm thick copper foil) and "JXUT-I" (trade name, 1) manufactured by JX Nippon Mining & Metals Co., Ltd. .5 μm thick copper foil), “MT-FL” (trade name, 3 μm thick copper foil), “3EC-VLP” (trade name, 12 μm thick copper foil), “3EC-III” manufactured by Mitsui Kinzoku Mining Co., Ltd. (Product name, 12 μm thick copper foil) and “3EC-M2S-VLP” (trade name, 12 μm thick copper foil), and copper foil “GTS-MP” (trade name, 12 μm thickness) manufactured by Furukawa Denki Kogyo Co., Ltd. Copper foil) can be mentioned.
 銅箔面の算術平均粗さ(Ra)は、銅箔11と第1の樹脂層12との密着強度を向上させ、長期間使用における剥離を防ぐことができる点から、通常0.05μm~2μmであることが好ましく、0.08μm~1.7μmの範囲であることがさらに好ましく、より優れた密着性を得ることができる点から、0.2μm~1.6μmの範囲であることが特に好ましい。なお、算術平均粗さは、市販の形状測定顕微鏡(レーザー顕微鏡、例えば、キーエンス株式会社製、「VK-1000」(商品名))を用いて測定できる。 The arithmetic mean roughness (Ra) of the copper foil surface is usually 0.05 μm to 2 μm because it can improve the adhesion strength between the copper foil 11 and the first resin layer 12 and prevent peeling during long-term use. It is preferably in the range of 0.08 μm to 1.7 μm, and more preferably in the range of 0.2 μm to 1.6 μm from the viewpoint that better adhesion can be obtained. .. The arithmetic mean roughness can be measured using a commercially available shape measuring microscope (laser microscope, for example, "VK-1000" (trade name) manufactured by KEYENCE CORPORATION).
 銅箔11の厚さは、特に限定されないが、表面の粗化処理を考慮すると、1μm~18μmの範囲が好ましく、薄型のプリント配線板及び半導体素子搭載用基板を好適に得ることができることから、2μm~15μmの範囲であることがより好ましい。 The thickness of the copper foil 11 is not particularly limited, but is preferably in the range of 1 μm to 18 μm in consideration of the surface roughening treatment, and a thin printed wiring board and a substrate for mounting a semiconductor element can be preferably obtained. It is more preferably in the range of 2 μm to 15 μm.
[第1の樹脂層]
 第1の樹脂層12は、熱硬化性樹脂(A1)を含み、かつ、無機充填材を含まない第1の樹脂組成物、又は、熱硬化性樹脂(A1)及び無機充填材(B1)を含み、無機充填材(B1)の含有量が15体積%以下である第1の樹脂組成物により構成されている。すなわち、第1の樹脂層12は、無機充填材を含まないか、又は、含んでいても含有量が15体積%以下のものである。無機充填材を添加すると加工性は向上するが、含有量が15体積%を超えると、第2の樹脂層13との関係により良好な加工形状を得ることが難しくなるからである。また、第1の樹脂組成物は、無機充填材を含まないか、又は、含んでいても含有量が5体積%未満であればより好ましい。上記配合とすることで銅箔密着性や配線形成性を向上させることができる。また、ダイレクトレーザーによる穴加工において、オーバーハングの発生を抑制することができる。なお、無機充填材(B1)の含有量というのは、第1の樹脂組成物に対する無機充填材(B1)の含有量(無機充填材(B1)/第1の樹脂組成物×100)である。
[First resin layer]
The first resin layer 12 contains a first resin composition containing a thermosetting resin (A1) and no inorganic filler, or a thermosetting resin (A1) and an inorganic filler (B1). It is composed of a first resin composition containing 15% by volume or less of the inorganic filler (B1). That is, the first resin layer 12 does not contain an inorganic filler, or even if it contains an inorganic filler, the content is 15% by volume or less. When the inorganic filler is added, the processability is improved, but when the content exceeds 15% by volume, it becomes difficult to obtain a good processed shape due to the relationship with the second resin layer 13. Further, it is more preferable that the first resin composition does not contain an inorganic filler, or even if it contains an inorganic filler, the content is less than 5% by volume. By using the above composition, the copper foil adhesion and wiring formability can be improved. In addition, it is possible to suppress the occurrence of overhang in the hole drilling by the direct laser. The content of the inorganic filler (B1) is the content of the inorganic filler (B1) with respect to the first resin composition (inorganic filler (B1) / first resin composition × 100). ..
 第1の樹脂層12の厚みは、特に限定されるものではないが、薄膜化の観点から5μm以下であることが好ましく、絶縁性の確保も考慮すると1μm以上であることが好ましい。第1の樹脂層12は、半硬化状態(B-Stage)であってもよいし、完全硬化状態(C-Stage)であってもよい。第1の樹脂層12は、例えば、第1の樹脂組成物を用いて、塗布等の公知の手段により形成することができる。第1の樹脂組成物は、必要に応じて、後述する他の添加剤を含んでいてもよい。 The thickness of the first resin layer 12 is not particularly limited, but is preferably 5 μm or less from the viewpoint of thinning, and is preferably 1 μm or more in consideration of ensuring insulation. The first resin layer 12 may be in a semi-cured state (B-Stage) or a completely cured state (C-Stage). The first resin layer 12 can be formed by a known means such as coating by using, for example, the first resin composition. The first resin composition may contain other additives described later, if necessary.
<熱硬化性樹脂(A1)>
 熱硬化性樹脂(A1)は特に限定されるものではないが、例えば、ポリイミド樹脂、液晶ポリエステル、エポキシ化合物、シアン酸エステル化合物、マレイミド化合物、フェノール化合物、ポリフェニレンエーテル化合物、ベンゾオキサジン化合物、有機基変性シリコーン化合物、及び、重合可能な不飽和基を有する化合物が挙げられる。熱硬化性樹脂(A1)は、これらの1種又は2種以上を適宜混合して使用することができる。中でも、ポリイミド樹脂及び液晶ポリエステルの少なくとも1種を含むようにすれば、厚み減少率を低くすることができるので好ましい。また、ポリイミド樹脂又は液晶ポリエステルに加えて、エポキシ化合物及びフェノール化合物を含むようにすれば、優れたピール強度及び第2の樹脂層13との密着性を得ることができるので好ましく、これらと共に、マレイミド化合物を含むようにすればより好ましい。
<Thermosetting resin (A1)>
The thermosetting resin (A1) is not particularly limited, and is, for example, a polyimide resin, a liquid crystal polyester, an epoxy compound, a cyanate ester compound, a maleimide compound, a phenol compound, a polyphenylene ether compound, a benzoxazine compound, and an organic group modification. Examples thereof include a silicone compound and a compound having a polymerizable unsaturated group. The thermosetting resin (A1) can be used by appropriately mixing one or more of these. Above all, it is preferable to include at least one of the polyimide resin and the liquid crystal polyester because the thickness reduction rate can be lowered. Further, it is preferable to include an epoxy compound and a phenol compound in addition to the polyimide resin or the liquid crystal polyester because excellent peel strength and adhesion to the second resin layer 13 can be obtained. It is more preferable to include the compound.
-ポリイミド樹脂-
 ポリイミド樹脂としては、市販の製品を適宜選定して用いることができ、例えば、特開2005-15629号公報に記載の製造方法によって合成される溶媒可溶性ポリイミド樹脂を用いることもできる。具体的には、溶媒可溶性ポリイミド樹脂は、下記式(1)で表される脂肪族テトラカルボン酸二無水物、下記式(2)で表される脂肪族テトラカルボン酸、及び当該脂肪族テトラカルボン酸の誘導体から選ばれる1種以上と、ジアミン化合物の1種以上とを、3級アミン化合物存在下に溶媒中にて重縮合させることで得ることができる。
-Polyimide resin-
As the polyimide resin, a commercially available product can be appropriately selected and used. For example, a solvent-soluble polyimide resin synthesized by the production method described in JP-A-2005-15629 can also be used. Specifically, the solvent-soluble polyimide resin includes an aliphatic tetracarboxylic acid dianhydride represented by the following formula (1), an aliphatic tetracarboxylic acid represented by the following formula (2), and the aliphatic tetracarboxylic acid. It can be obtained by polycondensing one or more selected from acid derivatives and one or more diamine compounds in a solvent in the presence of a tertiary amine compound.
Figure JPOXMLDOC01-appb-C000001
(式中、Rは炭素数4~16の4価の脂肪族炭化水素基である。)
Figure JPOXMLDOC01-appb-C000001
(In the formula, R is a tetravalent aliphatic hydrocarbon group having 4 to 16 carbon atoms.)
Figure JPOXMLDOC01-appb-C000002
(式中、Rは炭素数4~16の4価の脂肪族炭化水素基であり、Y~Yは独立して水素又は炭素数1~8の炭化水素基である。)
Figure JPOXMLDOC01-appb-C000002
(In the formula, R is a tetravalent aliphatic hydrocarbon group having 4 to 16 carbon atoms, and Y 1 to Y 4 are independently hydrogen or a hydrocarbon group having 1 to 8 carbon atoms.)
 前記製造方法においては、脂肪族テトラカルボン酸類とジアミン化合物との略等モル量を3級アミン化合物存在下に溶媒中にて加熱し、重縮合することができる。また、脂肪族テトラカルボン酸類とジアミン化合物との反応モル比は、どちらか一方に対してもう一方が95~105モル%の範囲であることが好ましい。 In the above-mentioned production method, a substantially equal molar amount of the aliphatic tetracarboxylic acid and the diamine compound can be heated in a solvent in the presence of a tertiary amine compound and polycondensed. The reaction molar ratio of the aliphatic tetracarboxylic acids and the diamine compound is preferably in the range of 95 to 105 mol% with respect to one of them.
 一般的なポリイミド樹脂の製造では、テトラカルボン酸類としてテトラカルボン酸二無水物を使用するのが普通であるが、前記製造方法では、脂肪族テトラカルボン酸二無水物のほかに、その脂肪族テトラカルボン酸や脂肪族テトラカルボン酸とアルコールとのエステル類を使って実用的なポリイミド樹脂を製造することができる。脂肪族テトラカルボン酸をそのまま使用できると、生産設備やコストの面で有利である。
 また、式(1)で表される脂肪族テトラカルボン酸二無水物としては、例えば、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,4,5-シクロペンタンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、ビシクロ[2.2.2]オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物などを挙げることができる。
 さらに、式(2)で表される脂肪族テトラカルボン酸、及びその誘導体としては、例えば、1,2,3,4-シクロブタンテトラカルボン酸、1,2,4,5-シクロペンタンテトラカルボン酸、1,2,4,5-シクロヘキサンテトラカルボン酸、ビシクロ[2.2.2]オクト-7-エン-2,3,5,6-テトラカルボン酸など、及びそれらのアルコールエステル類を挙げることができる。これらは1種類単独かあるいは2種類以上を混合して使用することができる。これらのうち、好ましいのは1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸が挙げられる。
In the production of a general polyimide resin, tetracarboxylic acid dianhydride is usually used as the tetracarboxylic acid, but in the above production method, in addition to the aliphatic tetracarboxylic acid dianhydride, the aliphatic tetra is used. A practical polyimide resin can be produced by using an ester of a carboxylic acid or an aliphatic tetracarboxylic acid and an alcohol. If the aliphatic tetracarboxylic acid can be used as it is, it is advantageous in terms of production equipment and cost.
Examples of the aliphatic tetracarboxylic acid dianhydride represented by the formula (1) include 1,2,3,4-cyclobutanetetracarboxylic acid dianhydride and 1,2,4,5-cyclopentanetetra. Carboxylic acid dianhydride, 1,2,4,5-cyclohexanetetracarboxylic acid dianhydride, Bicyclo [2.2.2] Oct-7-en-2,3,5,6-tetracarboxylic acid dianhydride And so on.
Further, examples of the aliphatic tetracarboxylic acid represented by the formula (2) and its derivatives include 1,2,3,4-cyclobutanetetracarboxylic acid and 1,2,4,5-cyclopentanetetracarboxylic acid. , 1,2,4,5-Cyclohexanetetracarboxylic acid, bicyclo [2.2.2] octo-7-en-2,3,5,6-tetracarboxylic acid, etc., and their alcohol esters. Can be done. These can be used alone or in admixture of two or more. Of these, 1,2,4,5-cyclohexanetetracarboxylic dianhydride and 1,2,4,5-cyclohexanetetracarboxylic acid are preferred.
 前記製造方法では、溶媒可溶性を損なわない範囲で、他のテトラカルボン酸及びその誘導体を混合して用いることができる。例えば、ピロメリット酸、3,3’,4,4’-ビフェニルテトラカルボン酸、2,3,3’,4’-ビフェニルテトラカルボン酸、2,2-ビス(3,4-ジカルボキシフェニル)プロパン、2,2-ビス(2,3-ジカルボキシフェニル)プロパン、2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス(2,3-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、ビス(3,4-ジカルボキシフェニル)スルホン、ビス(3,4-ジカルボキシフェニル)エーテル、ビス(2,3-ジカルボキシフェニル)エーテル、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、2,2’,3,3’-ベンゾフェノンテトラカルボン酸、4,4-(p-フェニレンジオキシ)ジフタル酸、4,4-(m-フェニレンジオキシ)ジフタル酸、エチレンテトラカルボン酸、3-カルボキシメチル-1,2,4-シクロペンタントリカルボン酸、1,1-ビス(2,3-ジカルボキシフェニル)エタン、ビス(2,3-ジカルボキシフェニル)メタン、ビス(3,4-ジカルボキシフェニル)メタンなど、及びそれらの誘導体を挙げることができる。これらの他のテトラカルボン酸成分の割合は全テトラカルボン酸成分中50モル%未満であることが好ましい。 In the above-mentioned production method, other tetracarboxylic dians and derivatives thereof can be mixed and used as long as the solvent solubility is not impaired. For example, pyromellitic acid, 3,3', 4,4'-biphenyltetracarboxylic acid, 2,3,3', 4'-biphenyltetracarboxylic acid, 2,2-bis (3,4-dicarboxyphenyl). Propane, 2,2-bis (2,3-dicarboxyphenyl) propane, 2,2-bis (3,4-dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropane, 2 , 2-bis (2,3-dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropane, bis (3,4-dicarboxyphenyl) sulfone, bis (3,4-dicarboxyphenyl) Phenyl) ether, bis (2,3-dicarboxyphenyl) ether, 3,3', 4,4'-benzophenone tetracarboxylic acid, 2,2', 3,3'-benzophenone tetracarboxylic acid, 4,4- (P-Phenylenedoxy) diphthalic acid, 4,4- (m-Phenylenedoxy) diphthalic acid, ethylenetetracarboxylic acid, 3-carboxymethyl-1,2,4-cyclopentantricarboxylic acid, 1,1-bis Examples thereof include (2,3-dicarboxyphenyl) ethane, bis (2,3-dicarboxyphenyl) methane, bis (3,4-dicarboxyphenyl) methane, and derivatives thereof. The proportion of these other tetracarboxylic acid components is preferably less than 50 mol% of the total tetracarboxylic acid components.
 前記ジアミン化合物は、6~28の炭素原子を含む芳香族ジアミン化合物、又は2~28の炭素原子を含む脂肪族ジアミン化合物が好ましい。ジアミン化合物としては、例えば、p-フェニレンジアミン、m-フェニレンジアミン、4,4’-ジアミノビフェニル、4,4’-ジアミノ-2,2’-ジメチルビフェニル、4,4’-ジアミノ-3,3’-ジメチルビフェニル、4,4’-ジアミノ-2,2’-ジトリフルオロメチルビフェニル、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノベンゾフェノン、4,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルフィド、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、9,9-ビス(4-アミノフェニル)フルオレンなどの芳香族ジアミン化合物、エチレンジアミン、ヘキサメチレンジアミン、ポリエチレングリコールビス(3-アミノプロピル)エーテル、ポリプロピレングリコールビス(3-アミノプロピル)エーテル、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、4,4’-ジアミノジシクロヘキシルメタン、3(4),8(9)-ビス(アミノメチル)-トリシクロ[5.2.1.02,6]デカン、メタキシリレンジアミン、パラキシリレンジアミン、イソホロンジアミン、ノルボルナンジアミン、シロキサンジアミン類などの脂肪族ジアミン化合物を挙げることができる。これらは1種類単独かあるいは2種類以上を混合して使用することができる。これらのジアミン化合物のうち、芳香族ジアミン化合物では4,4’-ジアミノ-3,3’-ジメチルビフェニル、4,4’-ジアミノ-2,2’-ジトリフルオロメチルビフェニル、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルメタン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパンが好ましく、脂肪族ジアミン化合物では4,4’-ジアミノジシクロヘキシルメタン、3(4),8(9)-ビス(アミノメチル)-トリシクロ[5.2.1.02,6]デカンが好ましい。 The diamine compound is preferably an aromatic diamine compound containing 6 to 28 carbon atoms or an aliphatic diamine compound containing 2 to 28 carbon atoms. Examples of the diamine compound include p-phenylenediamine, m-phenylenediamine, 4,4'-diaminobiphenyl, 4,4'-diamino-2,2'-dimethylbiphenyl, and 4,4'-diamino-3,3. '-Dimethylbiphenyl, 4,4'-diamino-2,2'-ditrifluoromethylbiphenyl, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenylmethane, 4,4' -Diaminobenzophenone, 4,4'-diaminodiphenylsulfone, 4,4'-diaminodiphenylsulfide, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 4, 4'-bis (4-aminophenoxy) biphenyl, bis [4- (4-aminophenoxy) phenyl] sulfone, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 2,2-bis [ 4- (4-Aminophenoxy) phenyl] -1,1,1,3,3,3-hexafluoropropane, bis [4- (3-aminophenoxy) phenyl] sulfone, 9,9-bis (4-amino) Aromatic diamine compounds such as phenyl) fluorene, ethylenediamine, hexamethylenediamine, polyethylene glycol bis (3-aminopropyl) ether, polypropylene glycol bis (3-aminopropyl) ether, 1,3-bis (aminomethyl) cyclohexane, 1 , 4-Bis (Aminomethyl) Cyclohexane, 4,4'-Diaminodicyclohexylmethane, 3 (4), 8 (9) -Bis (Aminomethyl) -Tricyclo [5.2.2.102,6] Decane, Meta Examples thereof include aliphatic diamine compounds such as xylylene diamine, paraxylylene diamine, isophorone diamine, norbornan diamine and siloxane diamines. These can be used alone or in admixture of two or more. Among these diamine compounds, aromatic diamine compounds are 4,4'-diamino-3,3'-dimethylbiphenyl, 4,4'-diamino-2,2'-ditrifluoromethylbiphenyl, 4,4'-diamino. Diphenyl ether, 4,4'-diaminodiphenylmethane, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 4,4'-bis (4-aminophenoxy) biphenyl, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 2,2-bis [4- (4-aminophenoxy) phenyl] -1,1,1,3,3,3-hexafluoropropane Of the aliphatic diamine compound, 4,4'-diaminodicyclohexylmethane, 3 (4), 8 (9) -bis (aminomethyl) -tricyclo [5.2.1.02,6] decane are preferable.
 前記製造方法では、用いる脂肪族テトラカルボン酸成分1モルに対して3級アミン化合物を0.001~1.0モル使用することが好ましく、0.01~0.2モル使用することがさらに好ましい。 In the above-mentioned production method, it is preferable to use 0.001 to 1.0 mol of the tertiary amine compound with respect to 1 mol of the aliphatic tetracarboxylic acid component to be used, and it is more preferable to use 0.01 to 0.2 mol of the tertiary amine compound. ..
 前記3級アミン化合物としては、例えば、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、トリエタノールアミン、N,N-ジメチルエタノールアミン、N,N-ジエチルエタノールアミン、トリエチレンジアミン、N-メチルピロリジン、N-エチルピロリジン、N-メチルピペリジン、N-エチルピペリジン、イミダゾール、ピリジン、キノリン、イソキノリンなどを挙げることができる。これらの3級アミン化合物のうち、特に好ましいのはトリエチルアミンである。 Examples of the tertiary amine compound include trimethylamine, triethylamine, tripropylamine, tributylamine, triethanolamine, N, N-dimethylethanolamine, N, N-diethylethanolamine, triethylenediamine, N-methylpyrrolidin, and N. -Ethylpyrolidin, N-methylpiperidine, N-ethylpiperidine, imidazole, pyridine, quinoline, isoquinoline and the like can be mentioned. Of these tertiary amine compounds, triethylamine is particularly preferred.
 前記製造方法に用いられる溶媒としては、例えば、γ-ブチロラクトン、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、ジメチルスルホキシド、ヘキサメチルホスホルアミド、テトラメチレンスルホン、p-クロルフェノール、m-クレゾール、2-クロル-4-ヒドロキシトルエンなどを挙げることができる。これらは1種類単独かあるいは2種類以上を混合して使用することができる。これらのうち、γ-ブチロラクトン、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドンが好ましく、γ-ブチロラクトン、N,N-ジメチルアセトアミドがさらに好ましい。また、重合体が析出しない程度にポリイミド樹脂の貧溶媒を併用することもできる。貧溶媒としては、例えば、ヘキサン、ヘプタン、ベンゼン、トルエン、キシレン、クロルベンゼン、o-ジクロロベンゼンなどを挙げることができる。
 前記製造方法における溶媒の使用量は、脂肪族テトラカルボン酸成分及びジアミン成分の総重量が反応液全体の質量に対して1~50質量%が好ましく、20~45重量%がさらに好ましい。
Examples of the solvent used in the above-mentioned production method include γ-butyrolactone, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N, N-dimethylformamide, dimethyl sulfoxide, hexamethylphosphoramide, and tetramethylene sulfone. , P-Chlorphenol, m-Cresol, 2-Chlor-4-hydroxytoluene and the like. These can be used alone or in admixture of two or more. Of these, γ-butyrolactone, N, N-dimethylacetamide and N-methyl-2-pyrrolidone are preferable, and γ-butyrolactone and N, N-dimethylacetamide are even more preferable. Further, a poor solvent of the polyimide resin can be used in combination to the extent that the polymer does not precipitate. Examples of the poor solvent include hexane, heptane, benzene, toluene, xylene, chlorbenzene, o-dichlorobenzene and the like.
As for the amount of the solvent used in the production method, the total weight of the aliphatic tetracarboxylic acid component and the diamine component is preferably 1 to 50% by mass, more preferably 20 to 45% by mass with respect to the total mass of the reaction solution.
 脂肪族テトラカルボン酸成分とジアミン化合物成分との仕込み方法は特に限定されず、両成分を一括に仕込む方法、どちらか一方の成分を含む溶液中(完全に溶解していなくてもよい)にもう一方の成分を固体かあるいは溶液の状態で徐々に仕込む方法などを行なうことができる。特に、両成分を一括に仕込む方法は仕込み時間を短縮できることから生産性の面で有利である。 The method of charging the aliphatic tetracarboxylic acid component and the diamine compound component is not particularly limited, and the method of charging both components at once or in a solution containing either component (it does not have to be completely dissolved) is already used. A method of gradually charging one of the components in a solid state or a solution state can be performed. In particular, the method of charging both components at once is advantageous in terms of productivity because the charging time can be shortened.
 3級アミン化合物は、その触媒効果を十分に発揮させるために、昇温して目標温度に到達するまでに仕込むのが好ましい。特に、溶媒、脂肪族テトラカルボン酸成分、及びジアミン化合物を仕込むのと同時に仕込むのが好ましい。 It is preferable to charge the tertiary amine compound by raising the temperature and reaching the target temperature in order to fully exert its catalytic effect. In particular, it is preferable to charge the solvent, the aliphatic tetracarboxylic acid component, and the diamine compound at the same time.
 前記溶媒の仕込み方法も特に限定されず、あらかじめ反応槽内へ仕込む方法、脂肪族テトラカルボン酸成分、あるいはジアミン化合物のどちらか一方、あるいはその両方が存在する反応槽内へ仕込む方法、脂肪族テトラカルボン酸成分、あるいはジアミン成分のどちらか一方をあらかじめ溶解させてから反応槽内へ仕込む方法などを、それら単独かあるいは組み合わせて行なうことができる。また、反応途中の状態、あるいは反応後に反応槽内にとどまった状態、あるいは反応後に反応槽から取り出した状態の溶媒可溶性ポリイミド樹脂溶液中に、上記したような溶媒を目的に応じて追加することができる。 The method for charging the solvent is also not particularly limited, and a method of charging in advance into a reaction vessel, a method of charging into a reaction vessel in which either one or both of an aliphatic tetracarboxylic acid component or a diamine compound is present, and an aliphatic tetra A method in which either the carboxylic acid component or the diamine component is dissolved in advance and then charged into the reaction vessel can be carried out alone or in combination. Further, the solvent as described above may be added to the solvent-soluble polyimide resin solution in the state during the reaction, in the state of staying in the reaction tank after the reaction, or in the state of being taken out from the reaction tank after the reaction, depending on the purpose. can.
 また、本実施形態に用いられるポリイミド樹脂としては、例えば、ブロック共重合ポリイミド樹脂を用いることができる。このようなブロック共重合体ポリイミド樹脂としては、例えば、国際公開WO2010-073952号公報に記載のブロック共重合体ポリイミド樹脂などを挙げることができる。具体的には、ブロック共重合ポリイミド樹脂は、第一の構造単位からなるイミドオリゴマーの末端に第二の構造単位からなるイミドオリゴマーが結合している構造A、及び、第二の構造単位からなるイミドオリゴマーの末端に第一の構造単位からなるイミドオリゴマーが結合している構造B、が交互に繰り返される構造を有する共重合ポリイミド樹脂であれば、特に限定されない。なお、第二の構造単位は、第一の構造単位とは異なる。これらのブロック共重合ポリイミド樹脂は、極性溶媒中で、テトラカルボン酸二無水物とジアミンとを反応させイミドオリゴマーとした後、更にテトラカルボン酸二無水物と別のジアミン、或いは、別のテトラカルボン酸二無水物とジアミンを加え、イミド化する逐次重合反応によって合成することができる。 Further, as the polyimide resin used in this embodiment, for example, a block copolymer polyimide resin can be used. Examples of such a block copolymer polyimide resin include the block copolymer polyimide resin described in International Publication No. WO2010-073952. Specifically, the block copolymer polyimide resin is composed of a structure A in which an imide oligomer composed of a second structural unit is bonded to the end of an imide oligomer composed of a first structural unit, and a second structural unit. The copolymerized polyimide resin is not particularly limited as long as it has a structure in which the structure B in which the imide oligomer composed of the first structural unit is bonded to the end of the imide oligomer is alternately repeated. The second structural unit is different from the first structural unit. These block copolymerized polyimide resins are obtained by reacting a tetracarboxylic acid dianhydride with a diamine in a polar solvent to form an imide oligomer, and then further diamine or another tetracarboxylic acid with the tetracarboxylic acid dianhydride. It can be synthesized by a step-growth polymerization reaction in which acid dianhydride and diamine are added and imidized.
 本実施形態において、第1の樹脂層12にポリイミド樹脂を用いる場合、その含有量は、特に限定されないが、耐熱性及び硬化性の点から、第1の樹脂層12の樹脂固形分100質量部に対して、10~90質量部の範囲が好ましく、30~80質量部の範囲が特に好適である。 In the present embodiment, when the polyimide resin is used for the first resin layer 12, the content thereof is not particularly limited, but from the viewpoint of heat resistance and curability, the resin solid content of the first resin layer 12 is 100 parts by mass. On the other hand, the range of 10 to 90 parts by mass is preferable, and the range of 30 to 80 parts by mass is particularly preferable.
-液晶ポリエステル-
 液晶ポリエステルは、溶融時に液晶性を示す芳香族ポリエステルである。液晶ポリエステルとしては公知のものを適宜選定して用いることができる。公知の液晶ポリエステルとしては、例えば、特開2001-11296号公報に記載の芳香族ポリエステルなどを用いることができる。具体的には、下記構造単位(3)を90モル%以上含む芳香族ポリエステルなどが挙げられる。
-Liquid crystal polyester-
The liquid crystal polyester is an aromatic polyester that exhibits liquid crystal properties when melted. As the liquid crystal polyester, a known one can be appropriately selected and used. As the known liquid crystal polyester, for example, the aromatic polyester described in JP-A-2001-11296 can be used. Specific examples thereof include aromatic polyesters containing 90 mol% or more of the following structural unit (3).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 上述の構造単位(3)を含む芳香族ポリエステルとしては、例えば、入手性の観点から、実質的に構造単位(3)のホモポリマーであるポリオキシベンゾエートを用いることができる。当該芳香族ポリエステルの製造方法としては、公知の方法を採用することができる。なお、上述の構造単位(3)を含む芳香族ポリエステルは、通常の溶剤に対して難溶又は不溶であることが多く、また、難融又は不融であるため、液晶性を示さない。したがって、上述の構造単位(3)を含む芳香族ポリエステルは、粉末として用いるのが好ましい。該粉末は、芳香族ポリエステルの樹脂又は繊維を粉砕処理して得られ、粒径は第1の樹脂層12の厚み以下とすることが好ましく、例えば、5μm以下とすることが好ましい。 As the aromatic polyester containing the structural unit (3) described above, for example, polyoxybenzoate, which is a homopolymer of the structural unit (3), can be used from the viewpoint of availability. As a method for producing the aromatic polyester, a known method can be adopted. The aromatic polyester containing the above-mentioned structural unit (3) is often sparingly or insoluble in a normal solvent, and is sparingly or insoluble, so that it does not exhibit liquid crystallinity. Therefore, the aromatic polyester containing the above-mentioned structural unit (3) is preferably used as a powder. The powder is obtained by pulverizing an aromatic polyester resin or fiber, and the particle size is preferably not more than the thickness of the first resin layer 12, and is preferably not more than, for example, 5 μm.
 特に限定されるものではないが、液晶ポリエステルの分子量は、通常1000~100000であり、好ましくは10000~50000である。 Although not particularly limited, the molecular weight of the liquid crystal polyester is usually 1000 to 100,000, preferably 10,000 to 50,000.
 液晶ポリエステルとしては、市販の製品を適宜選定して用いることができるが、例えば、住友化学工業(株)製「エコノールE101-F」などを用いることができる。本実施形態において、第1の樹脂層12に液晶ポリエステルを用いる場合、その含有量は、特に限定されないが、耐熱性及び硬化性の点から、第1の樹脂層12の樹脂固形分100質量部に対して、10~90質量部の範囲が好ましく、30~80質量部の範囲が特に好適である。 As the liquid crystal polyester, a commercially available product can be appropriately selected and used, and for example, "Econol E101-F" manufactured by Sumitomo Chemical Co., Ltd. can be used. In the present embodiment, when the liquid crystal polyester is used for the first resin layer 12, the content thereof is not particularly limited, but from the viewpoint of heat resistance and curability, the resin solid content of the first resin layer 12 is 100 parts by mass. On the other hand, the range of 10 to 90 parts by mass is preferable, and the range of 30 to 80 parts by mass is particularly preferable.
-エポキシ化合物-
 エポキシ化合物としては、1分子中に1以上(好ましくは2~12、より好ましくは2~6、さらに好ましくは2~4、一層好ましくは2又は3、より一層好ましくは2)のエポキシ基を有する化合物または樹脂であれば特に限定されず、従来公知の任意のエポキシ化合物が使用できる。エポキシ化合物のエポキシ当量は、接着性及び可撓性をより良好にする点から、250g/eq~850g/eqが好ましく、より好ましくは250g/eq~450g/eqである。エポキシ当量は、常法により測定することができる。
-Epoxy compound-
The epoxy compound has 1 or more (preferably 2 to 12, more preferably 2 to 6, still more preferably 2 to 4, more preferably 2 or 3, even more preferably 2) epoxy groups in one molecule. The compound or resin is not particularly limited, and any conventionally known epoxy compound can be used. The epoxy equivalent of the epoxy compound is preferably 250 g / eq to 850 g / eq, more preferably 250 g / eq to 450 g / eq, from the viewpoint of improving the adhesiveness and flexibility. The epoxy equivalent can be measured by a conventional method.
 エポキシ化合物の具体例としては、例えば、ポリオキシナフチレン型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ナフタレン4官能型エポキシ樹脂、キシレン型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、3官能フェノール型エポキシ樹脂、4官能フェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、アラルキルノボラック型エポキシ樹脂、脂環式エポキシ樹脂、ポリオール型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、ブタジエン等の2重結合をエポキシ化した化合物、水酸基含有シリコーン樹脂類とエピクロルヒドリンとの反応により得られる化合物が挙げられる。これらの中でも、特にめっき銅付着性と難燃性の点から、ポリオキシナフチレン型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ナフタレン4官能型エポキシ樹脂、キシレン型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂であることが好ましい。これらのエポキシ化合物は、1種又は2種以上を適宜混合して使用することができる。 Specific examples of the epoxy compound include polyoxynaphthylene type epoxy resin, biphenyl aralkyl type epoxy resin, naphthalene tetrafunctional epoxy resin, xylene type epoxy resin, naphthol aralkyl type epoxy resin, bisphenol A type epoxy resin, and bisphenol F. Type epoxy resin, bisphenol A novolak type epoxy resin, trifunctional phenol type epoxy resin, tetrafunctional phenol type epoxy resin, naphthalene type epoxy resin, biphenyl type epoxy resin, aralkylnovolac type epoxy resin, alicyclic epoxy resin, polyol type epoxy Examples thereof include a resin, a glycidylamine type epoxy resin, a glycidyl ester type epoxy resin, a compound obtained by epoxidizing a double bond such as butadiene, and a compound obtained by reacting a hydroxyl group-containing silicone resin with epichlorohydrin. Among these, polyoxynaphthylene type epoxy resin, biphenyl aralkyl type epoxy resin, naphthalene tetrafunctional epoxy resin, xylene type epoxy resin, and naphthol aralkyl type epoxy resin are particularly from the viewpoint of adhesiveness to plated copper and flame retardancy. Is preferable. These epoxy compounds may be used alone or in admixture of two or more.
 本実施形態において、第1の樹脂層12にエポキシ化合物を用いる場合、その含有量は、特に限定されないが、耐熱性及び硬化性の点から、第1の樹脂層12の樹脂固形分100質量部に対して、1~60質量部の範囲が好ましく、1~30質量部の範囲が特に好適である。 In the present embodiment, when the epoxy compound is used for the first resin layer 12, the content thereof is not particularly limited, but from the viewpoint of heat resistance and curability, the resin solid content of the first resin layer 12 is 100 parts by mass. On the other hand, the range of 1 to 60 parts by mass is preferable, and the range of 1 to 30 parts by mass is particularly preferable.
-シアン酸エステル化合物-
 シアン酸エステル化合物は、耐薬品性、接着性等に優れた特性を有し、その優れた耐薬品性により、均一な粗化面を形成することが可能であるため、本実施形態における樹脂層の成分として好適に使用することができる。
-Cyanic acid ester compound-
The cyanic acid ester compound has excellent chemical resistance, adhesiveness, and the like, and the excellent chemical resistance makes it possible to form a uniform roughened surface. Therefore, the resin layer in the present embodiment. Can be suitably used as a component of.
 シアン酸エステル化合物は、シアネート基(シアナト基)を分子内に1以上(好ましくは2~12、より好ましくは2~6、さらに好ましくは2~4、一層好ましくは2又は3、より一層好ましくは2)含む化合物であれば特に限定されず、プリント配線板の分野で通常用いられる化合物を広く用いることができる。シアン酸エステル化合物の具体例としては、例えば、式(4)で表されるα-ナフトールアラルキル型シアン酸エステル化合物、式(5)で表されるフェノールノボラック型シアン酸エステル化合物、式(6)で表されるビフェニルアラルキル型シアン酸エステル化合物、ナフチレンエーテル型シアン酸エステル化合物、キシレン樹脂型シアン酸エステル化合物、トリスフェノールメタン型シアン酸エステル化合物、アダマンタン骨格型シアン酸エステル化合物、ビスフェノールM型シアン酸エステル化合物、ビスフェノールA型シアン酸エステル化合物、およびジアリルビスフェノールA型シアン酸エステル化合物からなる群より選択される少なくとも1種が挙げられる。これらの中でも、低吸水性をより一層向上させる観点から、式(4)で表されるα-ナフトールアラルキル型シアン酸エステル化合物、式(5)で表されるフェノールノボラック型シアン酸エステル化合物、式(6)で表されるビフェニルアラルキル型シアン酸エステル化合物、ナフチレンエーテル型シアン酸エステル化合物、キシレン樹脂型シアン酸エステル化合物、ビスフェノールM型シアン酸エステル化合物、ビスフェノールA型シアン酸エステル化合物、およびジアリルビスフェノールA型シアン酸エステル化合物からなる群より選択される少なくとも1種であることが好ましい。これらのシアン酸エステル化合物は、公知の方法により調製してもよく、市販品を用いてもよい。 The cyanate ester compound has one or more cyanate groups (cyanato groups) in the molecule (preferably 2 to 12, more preferably 2 to 6, still more preferably 2 to 4, more preferably 2 or 3, still more preferably. 2) The compound is not particularly limited as long as it is contained, and a compound usually used in the field of printed wiring board can be widely used. Specific examples of the cyanate ester compound include, for example, an α-naphthol aralkyl type cyanate ester compound represented by the formula (4), a phenol novolac type cyanate ester compound represented by the formula (5), and a formula (6). Biphenyl aralkyl type cyanic acid ester compound, naphthylene ether type cyanic acid ester compound, xylene resin type cyanic acid ester compound, trisphenol methane type cyanic acid ester compound, adamantan skeleton type cyanic acid ester compound, bisphenol M type cyanide. At least one selected from the group consisting of an acid ester compound, a bisphenol A type cyanate ester compound, and a diallyl bisphenol A type cyanate ester compound can be mentioned. Among these, from the viewpoint of further improving low water absorption, the α-naphthol aralkyl type cyanate ester compound represented by the formula (4), the phenol novolac type cyanate ester compound represented by the formula (5), and the formula Biphenyl aralkyl type cyanate ester compound represented by (6), naphthylene ether type cyanate ester compound, xylene resin type cyanate ester compound, bisphenol M type cyanate ester compound, bisphenol A type cyanate ester compound, and diallyl. It is preferably at least one selected from the group consisting of the bisphenol A type cyanate ester compound. These cyanate ester compounds may be prepared by a known method, or commercially available products may be used.
 これらの中でも、式(4)で表されるα-ナフトールアラルキル型シアン酸エステル化合物、式(5)で表されるフェノールノボラック型シアン酸エステル化合物、及び式(6)で表されるビフェニルアラルキル型シアン酸エステル化合物が、難燃性に優れ、硬化性が高く、かつ硬化物の熱膨張係数が低いことから好ましい。 Among these, the α-naphthol aralkyl type cyanate ester compound represented by the formula (4), the phenol novolac type cyanate ester compound represented by the formula (5), and the biphenyl aralkyl type represented by the formula (6). Cyanic acid ester compounds are preferable because they have excellent flame retardancy, high curability, and a low thermal expansion coefficient of the cured product.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 式(4)中、Rは水素原子又はメチル基を示し、nは1以上の整数を示す。nは1~50の整数であることが好ましい。) In formula (4), R 1 represents a hydrogen atom or a methyl group, and n 1 represents an integer of 1 or more. n 1 is preferably an integer of 1 to 50. )
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式(5)中、Rは水素原子又はメチル基を示し、nは1以上の整数を示す。nは1~50の整数であることが好ましい。 In formula (5), R 2 represents a hydrogen atom or a methyl group, and n 2 represents an integer of 1 or more. n 2 is preferably an integer of 1 to 50.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式(6)中、Rは水素原子又はメチル基を示し、nは1以上の整数を示す。nは1~50の整数であることが好ましい。 In formula (6), R 3 represents a hydrogen atom or a methyl group, and n 3 represents an integer of 1 or more. n 3 is preferably an integer of 1 to 50.
 本実施形態において、第1の樹脂層12にシアン酸エステル化合物を用いる場合、その含有量は、特に限定されないが、耐熱性や銅箔との密着性の点から、第1の樹脂層12の樹脂固形分100質量部に対して、1~60質量部の範囲が好ましく、1~30質量部の範囲が更に好ましい。 In the present embodiment, when the cyanic acid ester compound is used for the first resin layer 12, the content thereof is not particularly limited, but from the viewpoint of heat resistance and adhesion to the copper foil, the first resin layer 12 has a content thereof. The range of 1 to 60 parts by mass is preferable, and the range of 1 to 30 parts by mass is more preferable with respect to 100 parts by mass of the resin solid content.
-マレイミド化合物-
 マレイミド化合物は、絶縁性樹脂層の吸湿耐熱性を向上させることが可能であるため、本実施形態における樹脂層の成分として好適に使用することができる。マレイミド化合物としては、1分子中に1以上(好ましくは2~12、より好ましくは2~6、さらに好ましくは2~4、一層好ましくは2または3、より一層好ましくは2)のマレイミド基を有する化合物であれば特に限定されず、従来公知の任意のマレイミド化合物が使用できる。
-Maleimide compound-
Since the maleimide compound can improve the hygroscopic heat resistance of the insulating resin layer, it can be suitably used as a component of the resin layer in the present embodiment. The maleimide compound has 1 or more (preferably 2 to 12, more preferably 2 to 6, still more preferably 2 to 4, more preferably 2 or 3, even more preferably 2) maleimide groups in one molecule. The compound is not particularly limited, and any conventionally known maleimide compound can be used.
 マレイミド化合物の具体例としては、例えば、ビス(4-マレイミドフェニル)メタン、2,2-ビス{4-(4-マレイミドフェノキシ)-フェニル}プロパン、ビス(3,5-ジメチル-4-マレイミドフェニル)メタン、ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタン、ビス(3,5-ジエチル-4-マレイミドフェニル)メタン等のビスマレイミド化合物;ポリフェニルメタンマレイミドが挙げられる。なお、これらマレイミド化合物のプレポリマー、もしくはマレイミド化合物とアミン化合物のプレポリマー等の形で配合することもできる。これらのマレイミド化合物は、1種又は2種以上を適宜混合して使用することができる。 Specific examples of the maleimide compound include, for example, bis (4-maleimidephenyl) methane, 2,2-bis {4- (4-maleimidephenoxy) -phenyl} propane, and bis (3,5-dimethyl-4-maleimidephenyl). ) Bismaleimide compounds such as methane, bis (3-ethyl-5-methyl-4-maleimidephenyl) methane, bis (3,5-diethyl-4-maleimidephenyl) methane; polyphenylmethane maleimide. In addition, it is also possible to blend in the form of a prepolymer of these maleimide compounds, or a prepolymer of a maleimide compound and an amine compound. These maleimide compounds may be used alone or in admixture of two or more.
 これらの中でも、耐熱性の点から、ビスマレイミド化合物が好ましく、中でも2,2-ビス[4-(4-マレイミドフェノキシ)フェニル]プロパンやビス(3-エチル-5-メチル-4-マレイミドフェニル)メタンがより好ましい。 Among these, bismaleimide compounds are preferable from the viewpoint of heat resistance, and among them, 2,2-bis [4- (4-maleimidephenoxy) phenyl] propane and bis (3-ethyl-5-methyl-4-maleimidephenyl) are preferable. Methane is more preferred.
 本実施形態において、第1の樹脂層12にマレイミド化合物を用いる場合、その含有量は、特に限定されないが、耐熱性と銅箔との密着性の点から、第1の樹脂層12の樹脂固形分100質量部に対して、5~75質量部の範囲が好ましく、5~45質量部の範囲が更に好ましい。 In the present embodiment, when the maleimide compound is used for the first resin layer 12, the content thereof is not particularly limited, but from the viewpoint of heat resistance and adhesion to the copper foil, the resin solid of the first resin layer 12 is used. The range of 5 to 75 parts by mass is preferable, and the range of 5 to 45 parts by mass is more preferable with respect to 100 parts by mass.
-フェノール化合物-
 フェノール化合物としては、1分子中に1以上(好ましくは2~12、より好ましくは2~6、さらに好ましくは2~4、一層好ましくは2または3、より一層好ましくは2)のフェノール性ヒドロキシ基を有するフェノール化合物であれば特に限定されず、従来公知の任意のフェノール化合物が使用できる。フェノール化合物の具体例としては、例えば、ビスフェノールA型フェノール樹脂、ビスフェノールE型フェノール樹脂、ビスフェノールF型フェノール樹脂、ビスフェノールS型フェノール樹脂、フェノールノボラック樹脂、ビスフェノールAノボラック型フェノール樹脂、グリシジルエステル型フェノール樹脂、アラルキルノボラックフェノール樹脂、ビフェニルアラルキル型フェノール樹脂、クレゾールノボラック型フェノール樹脂、多官能フェノール樹脂、ナフトール樹脂、ナフトールノボラック樹脂、多官能ナフトール樹脂、アントラセン型フェノール樹脂、ナフタレン骨格変性ノボラック型フェノール樹脂、フェノールアラルキル型フェノール樹脂、ナフトールアラルキル型フェノール樹脂、ジシクロペンタジエン型フェノール樹脂、ビフェニル型フェノール樹脂、脂環式フェノール樹脂、ポリオール型フェノール樹脂、リン含有フェノール樹脂、水酸基含有シリコーン樹脂類等が挙げられる。これらのフェノール化合物は、1種又は2種以上を適宜混合して使用することができる。
-Phenol compound-
The phenolic compound includes 1 or more (preferably 2 to 12, more preferably 2 to 6, still more preferably 2 to 4, more preferably 2 or 3, even more preferably 2) phenolic hydroxy groups in one molecule. The phenol compound is not particularly limited as long as it has, and any conventionally known phenol compound can be used. Specific examples of the phenol compound include, for example, bisphenol A type phenol resin, bisphenol E type phenol resin, bisphenol F type phenol resin, bisphenol S type phenol resin, phenol novolac resin, bisphenol A novolak type phenol resin, and glycidyl ester type phenol resin. , Aralkirnobolak phenol resin, Biphenylaralkyl typephenol resin, Cresolnovolak typephenol resin, Polyfunctional phenol resin, Naftor resin, Naftornovolak resin, Polyfunctional naphthol resin, Anthracene type phenol resin, Naphthalene skeleton-modified Novorak type phenol resin, Phenol Aralkir Examples thereof include type phenol resin, naphthol aralkyl type phenol resin, dicyclopentadiene type phenol resin, biphenyl type phenol resin, alicyclic phenol resin, polyol type phenol resin, phosphorus-containing phenol resin, hydroxyl group-containing silicone resin and the like. These phenol compounds can be used alone or in admixture of two or more.
-ポリフェニレンエーテル化合物-
 本実施形態に係るポリフェニレンエーテル化合物は、一般式(7)で表される化合物である。ポリフェニレンエーテル化合物を含有することにより、絶縁性、めっき密着性、及び、吸湿耐熱性を向上させることができる。本実施形態に用いられる一般式(7)で表されるポリフェニレンエーテル化合物は、数平均分子量が1000以上7000以下であることが好ましい。数平均分子量を7000以下とすることで樹脂同士の相溶性をコントロールできる。また数平均分子量を1000以上とすることで、ポリフェニレンエーテル樹脂本来の優れた絶縁性及び吸湿耐熱性が得られる。その中でも、より優れた相溶性、絶縁性、及び、吸湿耐熱性を得るためには、ポリフェニレンエーテル化合物の数平均分子量が1100以上5000以下であるとよい。より好ましくは、ポリフェニレンエーテル化合物の数平均分子量が4500以下であるとよく、さらに好ましくは、ポリフェニレンエーテル化合物の数平均分子量が3000以下である。数平均分子量は、定法に従ってゲル浸透クロマトグラフィーを使用して測定される。
-Polyphenylene ether compound-
The polyphenylene ether compound according to this embodiment is a compound represented by the general formula (7). By containing the polyphenylene ether compound, the insulating property, the plating adhesion, and the hygroscopic heat resistance can be improved. The polyphenylene ether compound represented by the general formula (7) used in the present embodiment preferably has a number average molecular weight of 1000 or more and 7000 or less. By setting the number average molecular weight to 7,000 or less, the compatibility between the resins can be controlled. Further, by setting the number average molecular weight to 1000 or more, the original excellent insulating properties and hygroscopic heat resistance of the polyphenylene ether resin can be obtained. Among them, in order to obtain more excellent compatibility, insulation, and hygroscopic heat resistance, the number average molecular weight of the polyphenylene ether compound is preferably 1100 or more and 5000 or less. More preferably, the number average molecular weight of the polyphenylene ether compound is 4500 or less, and even more preferably, the number average molecular weight of the polyphenylene ether compound is 3000 or less. The number average molecular weight is measured using gel permeation chromatography according to a routine method.
Figure JPOXMLDOC01-appb-C000007
(一般式(7)において、Xはアリール基(芳香族基)を示し、-(Y-O)n-はポリフェニレンエーテル部分を示し、R,R,Rは、各々独立して水素原子、アルキル基、アルケニル基又はアルキニル基を示し、nは1~100の整数を示し、nは1~6の整数を示し、nは1~4の整数を示す。好ましくは、nは1以上4以下の整数であるとよく、さらに好ましくは、nは1又は2であるとよく、理想的にはnは1であるとよい。また、好ましくは、nは1以上3以下の整数であるとよく、さらに好ましくは、nは1又は2であるとよく、理想的にはnは2であるとよい。)
Figure JPOXMLDOC01-appb-C000007
(In the general formula (7), X represents an aryl group (aromatic group), − (YO) n 2 − represents a polyphenylene ether moiety, and R 1 , R 2 and R 3 are independent of each other. It represents a hydrogen atom, an alkyl group, an alkenyl group or an alkynyl group, n 2 represents an integer of 1 to 100, n 1 represents an integer of 1 to 6, and n 3 represents an integer of 1 to 4. n 1 is preferably an integer of 1 or more and 4 or less, more preferably n 1 is 1 or 2, ideally n 1 is 1 and preferably n 3 is. It is preferably an integer of 1 or more and 3 or less, more preferably n 3 is 1 or 2, and ideally n 3 is 2.)
 一般式(7)で表されるポリフェニレンエーテル化合物は、以下の一般式(8)で表される構成単位の重合体を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000008
(一般式(8)中、R901,R902,R903,R904は、各々独立に炭素数6以下のアルキル基、アリール基、ハロゲン原子、又は水素原子を表す。)
The polyphenylene ether compound represented by the general formula (7) preferably contains a polymer of the structural unit represented by the following general formula (8).
Figure JPOXMLDOC01-appb-C000008
(In the general formula (8), R 901 , R 902 , R 903 , and R 904 each independently represent an alkyl group, an aryl group, a halogen atom, or a hydrogen atom having 6 or less carbon atoms.)
 前記重合体は、一般式(9)及び一般式(10)で表される構造単位からなる群より選ばれる少なくとも1種の構造単位をさらに含んでもよい。
Figure JPOXMLDOC01-appb-C000009
(一般式(9)中、R905,R906,R907,R911,R912は、各々独立に炭素数6以下のアルキル基又はフェニル基を表す。R908,R909,R910は、各々独立に水素原子、炭素数6以下のアルキル基又はフェニル基を表す。)
Figure JPOXMLDOC01-appb-C000010
(一般式(10)中、R913,R914,R915,R916,R917,R918,R919,R920は、各々独立に水素原子、炭素数6以下のアルキル基又はフェニル基を表す。-A-は、炭素数20以下の直鎖状、分岐状又は環状の2価の炭化水素基である。)
 一般式(7)との関係でいうと、上記一般式(8)、(9)、(10)は一般式(7)の-(Y-O)-であることが好ましい。-(Y-O)-はnの数(1~100)の繰り返し単位を有する。
The polymer may further contain at least one structural unit selected from the group consisting of the structural units represented by the general formula (9) and the general formula (10).
Figure JPOXMLDOC01-appb-C000009
(In the general formula (9), R 905 , R 906 , R 907 , R 911 , and R 912 each independently represent an alkyl group or a phenyl group having 6 or less carbon atoms. R 908 , R 909 , and R 910 are. Each independently represents a hydrogen atom, an alkyl group having 6 or less carbon atoms, or a phenyl group.)
Figure JPOXMLDOC01-appb-C000010
(In the general formula (10), R 913 , R 914 , R 915 , R 916 , R 917 , R 918 , R 919 , and R 920 each independently contain a hydrogen atom and an alkyl group or a phenyl group having 6 or less carbon atoms. -A- is a linear, branched or cyclic divalent hydrocarbon group having 20 or less carbon atoms.)
In relation to the general formula (7), the general formulas (8), (9) and (10) are preferably − (YO) − of the general formula (7). -(YO)-has a repeating unit of a number of n 2 (1-100).
 一般式(7)のXにおけるアリール基としては、芳香族炭化水素基を用いることができる。具体的には、ベンゼン環構造、ビフェニル構造、インデニル環構造、及びナフタレン環構造から選ばれた1種の環構造から、n個の水素原子を除いた基(例えば、フェニル基、ビフェニル基、インデニル基、及びナフチル基)を用いることができ、好ましくはビフェニル基を用いるとよい。ここで、アリール基は、上記のアリール基が酸素原子で結合されているジフェニルエーテル基等や、カルボニル基で結合されたベンゾフェノン基等、アルキレン基により結合された2,2-ジフェニルプロパン基等を含んでもよい。また、アリール基は、アルキル基(好適には炭素数1~6のアルキル基、特にメチル基)、アルケニル基、アルキニル基やハロゲン原子など、一般的な置換基によって置換されていてもよい。但し、前記「アリール基」は、酸素原子を介してポリフェニレンエーテル部分に置換されているので、一般的置換基の数の限界は、ポリフェニレンエーテル部分の数に依存する。 As the aryl group in X of the general formula (7), an aromatic hydrocarbon group can be used. Specifically, a group (for example, a phenyl group, a biphenyl group, etc.) obtained by removing n3 hydrogen atoms from one ring structure selected from a benzene ring structure , a biphenyl structure, an indenyl ring structure, and a naphthalene ring structure. Indenyl group and naphthyl group) can be used, and it is preferable to use a biphenyl group. Here, the aryl group includes a diphenyl ether group in which the above aryl group is bonded with an oxygen atom, a benzophenone group bonded with a carbonyl group, a 2,2-diphenylpropane group bonded with an alkylene group, and the like. But it may be. Further, the aryl group may be substituted with a general substituent such as an alkyl group (preferably an alkyl group having 1 to 6 carbon atoms, particularly a methyl group), an alkenyl group, an alkynyl group or a halogen atom. However, since the "aryl group" is substituted with a polyphenylene ether moiety via an oxygen atom, the limit on the number of general substituents depends on the number of polyphenylene ether moieties.
 ポリフェニレンエーテル化合物としては、下記一般式(11)の構造で表されるポリフェニレンエーテルを含むことが特に好ましい。
Figure JPOXMLDOC01-appb-C000011
(一般式(11)中、Xはアリール基(芳香族基)であり、-(Y-O)n-は、それぞれ、ポリフェニレンエーテル部分を示し、nは、それぞれ、1~100の整数を示す。)
 -(Y-O)n-及びnは、一般式(7)におけるものと同義である。nの異なる化合物を複数種含んでいてもよい。
It is particularly preferable that the polyphenylene ether compound contains a polyphenylene ether represented by the structure of the following general formula (11).
Figure JPOXMLDOC01-appb-C000011
(In the general formula (11), X is an aryl group (aromatic group), − (YO) n 2 − indicates a polyphenylene ether moiety, and n 2 is an integer of 1 to 100, respectively. Shows.)
-(YO) n 2- and n 2 are synonymous with those in the general formula (7). It may contain a plurality of kinds of compounds having different n2 .
 一般式(7)及び一般式(11)におけるXは、一般式(12)、一般式(13)、又は一般式(14)であることが好ましく、一般式(7)及び一般式(11)における-(Y-O)n-は、一般式(15)若しくは一般式(16)が配列した構造であるか、又は一般式(15)と一般式(16)がランダムに配列した構造がより好ましい。
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
(一般式(13)中、R921,R922,R923,R924は、各々独立に水素原子又はメチル基を表す。-B-は、炭素数20以下の直鎖状、分岐状又は環状の2価の炭化水素基である。)
Figure JPOXMLDOC01-appb-C000014
(一般式(14)中、-B-は、炭素数20以下の直鎖状、分岐状又は環状の2価の炭化水素基である。)
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
X in the general formula (7) and the general formula (11) is preferably the general formula (12), the general formula (13), or the general formula (14), and the general formula (7) and the general formula (11). -(YO) n 2 -is a structure in which the general formula (15) or the general formula (16) is arranged, or a structure in which the general formula (15) and the general formula (16) are randomly arranged. More preferred.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
(In the general formula (13), R 921 , R 922 , R 923 , and R 924 each independently represent a hydrogen atom or a methyl group.-B- is a linear, branched, or cyclic group having 20 or less carbon atoms. It is a divalent hydrocarbon group of.)
Figure JPOXMLDOC01-appb-C000014
(In the general formula (14), -B- is a linear, branched or cyclic divalent hydrocarbon group having 20 or less carbon atoms.)
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
 一般式(11)で表される構造を有する変性ポリフェニレンエーテルの製造方法は、特に限定されるものではなく、例えば、2官能フェノール化合物と1官能フェノール化合物を酸化カップリングさせて得られる2官能フェニレンエーテルオリゴマーの末端フェノール性水酸基をビニルベンジルエーテル化することで製造することができる。
 また、このような変性ポリフェニレンエーテルは市販品を用いることができ、例えば、三菱ガス化学(株)製OPE-2St1200、OPE-2St2200を好適に使用することができる。
The method for producing the modified polyphenylene ether having the structure represented by the general formula (11) is not particularly limited, and is, for example, a bifunctional phenylene obtained by oxidation-coupling a bifunctional phenol compound and a monofunctional phenol compound. It can be produced by converting the terminal phenolic hydroxyl group of the ether oligomer into vinylbenzyl ether.
Further, as such a modified polyphenylene ether, a commercially available product can be used, and for example, OPE-2St1200 and OPE-2St2200 manufactured by Mitsubishi Gas Chemical Company, Inc. can be preferably used.
 本実施形態において、第1の樹脂層12にポリフェニレンエーテル化合物を用いる場合、その含有量は、特に限定されないが、第1の樹脂層12の樹脂固形分100質量部に対し、1質量部以上であることが好ましく、3質量部以上であることがより好ましい。また、前記含有量の上限値としては、20質量部未満であることが好ましい。このような範囲とすることにより、効果的に、層間密着性、めっき密着性、及び、吸湿耐熱性を向上させることができる。第1の樹脂層12は、ポリフェニレンエーテル化合物を、1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。 In the present embodiment, when the polyphenylene ether compound is used for the first resin layer 12, the content thereof is not particularly limited, but is 1 part by mass or more with respect to 100 parts by mass of the resin solid content of the first resin layer 12. It is preferably present, and more preferably 3 parts by mass or more. The upper limit of the content is preferably less than 20 parts by mass. Within such a range, the interlayer adhesion, the plating adhesion, and the hygroscopic heat resistance can be effectively improved. The first resin layer 12 may contain only one type of polyphenylene ether compound, or may contain two or more types of polyphenylene ether compound. When two or more kinds are contained, it is preferable that the total amount is within the above range.
-ベンゾオキサジン化合物-
 ベンゾオキサジン化合物としては、1分子中に2個以上のジヒドロベンゾオキサジン環を有する化合物であれば、特に限定されず、一般に公知のものを用いることができる。ベンゾオキサジン化合物の具体例としては、例えば、ビスフェノールA型ベンゾオキサジンBA-BXZ(小西化学製商品名)ビスフェノールF型ベンゾオキサジンBF-BXZ(小西化学製商品名)、ビスフェノールS型ベンゾオキサジンBS-BXZ(小西化学製商品名)等が挙げられる。これらのベンゾオキサジン化合物は、1種を単独で又は2種以上混合して用いることができる。
-Benzoxazine compound-
The benzoxazine compound is not particularly limited as long as it is a compound having two or more dihydrobenzoxazine rings in one molecule, and generally known compounds can be used. Specific examples of the benzoxazine compound include, for example, bisphenol A type benzoxazine BA-BXZ (trade name manufactured by Konishi Chemical Co., Ltd.), bisphenol F type benzoxazine BF-BXZ (trade name manufactured by Konishi Chemical Co., Ltd.), and bisphenol S type benzoxazine BS-BXZ. (Product name manufactured by Konishi Chemical Co., Ltd.) and the like. These benzoxazine compounds may be used alone or in admixture of two or more.
-有機基変性シリコーン化合物-
 有機基変性シリコーン化合物としては、特に限定されず、具体例としては、ジ(メチルアミノ)ポリジメチルシロキサン、ジ(エチルアミノ)ポリジメチルシロキサン、ジ(プロピルアミノ)ポリジメチルシロキサン、ジ(エポキシプロピル)ポリジメチルシロキサン、ジ(エポキシブチル)ポリジメチルシロキサンが挙げられる。これらの有機基変性シリコーン化合物は、1種又は2種以上を適宜混合して使用することができる。
-Organic group modified silicone compound-
The organic group-modified silicone compound is not particularly limited, and specific examples thereof include di (methylamino) polydimethylsiloxane, di (ethylamino) polydimethylsiloxane, di (propylamino) polydimethylsiloxane, and di (epoxypropyl). Examples thereof include polydimethylsiloxane and di (epoxybutyl) polydimethylsiloxane. These organic-modified silicone compounds may be used alone or in admixture of two or more.
-重合可能な不飽和基を有する化合物-
 重合可能な不飽和基を有する化合物としては、特に限定されず、一般に公知のものを使用できる。重合可能な不飽和基を有する化合物の具体例としては、例えば、エチレン、プロピレン、スチレン、ジビニルベンゼン、ジビニルビフェニル等のビニル化合物;メチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の1価又は多価アルコールの(メタ)アクリレート類;ビスフェノールA型エポキシ(メタ)アクリレート、ビスフェノールF型エポキシ(メタ)アクリレート等のエポキシ(メタ)アクリレート類;ベンゾシクロブテン樹脂等が挙げられる。これらの重合可能な不飽和基を有する化合物は、1種又は2種以上を適宜混合して使用することができる。
-Compounds with polymerizable unsaturated groups-
The compound having a polymerizable unsaturated group is not particularly limited, and generally known compounds can be used. Specific examples of the compound having a polymerizable unsaturated group include vinyl compounds such as ethylene, propylene, styrene, divinylbenzene and divinylbiphenyl; methyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-. Hydroxypropyl (meth) acrylate, polypropylene glycol di (meth) acrylate, trimethylolpropane di (meth) acrylate, trimethylolpropanetri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, etc. (Meta) acrylates of monovalent or polyhydric alcohols; epoxy (meth) acrylates such as bisphenol A type epoxy (meth) acrylate and bisphenol F type epoxy (meth) acrylate; benzocyclobutene resin and the like can be mentioned. These compounds having a polymerizable unsaturated group can be used alone or in admixture of two or more.
<無機充填材(B1)>
 無機充填材(B1)は、第1の樹脂層12、すなわち第1の樹脂組成物に含まれる無機充填材を意味している。無機充填材(B1)としては、低熱膨張率、成形性、充填性及び剛性の点から、球状フィラーを用いることができ、プリント配線板の絶縁層に用いられる球状のフィラーであれば特に限定されない。
<Inorganic filler (B1)>
The inorganic filler (B1) means the first resin layer 12, that is, the inorganic filler contained in the first resin composition. As the inorganic filler (B1), a spherical filler can be used from the viewpoint of low thermal expansion rate, moldability, filling property and rigidity, and is not particularly limited as long as it is a spherical filler used for the insulating layer of the printed wiring board. ..
 無機充填材(B1)としては、例えば、水酸化マグネシウム;酸化マグネシウム;天然シリカ、溶融シリカ、アモルファスシリカ、中空シリカ等のシリカ;二硫化モリブデン、酸化モリブデン、モリブデン酸亜鉛等のモリブデン化合物;アルミナ;窒化アルミニウム;ガラス;タルク;酸化チタン、チタン酸バリウム、チタン酸ストロンチウム等のチタン化合物;酸化ジルコニウム等が挙げられる。これらは、1種又は2種以上を適宜混合して使用することができる。 Examples of the inorganic filler (B1) include magnesium hydroxide; magnesium oxide; silica such as natural silica, molten silica, amorphous silica, and hollow silica; molybdenum compounds such as molybdenum disulfide, molybdenum oxide, and zinc molybdenum; alumina; Aluminum nitride; glass; talc; titanium compounds such as titanium oxide, barium titanate, and strontium titanate; zirconium oxide and the like can be mentioned. These can be used by appropriately mixing one kind or two or more kinds.
 中でも、無機充填材(B1)としては、低熱膨張性の点から、シリカが好ましく、具体的には、球状溶融シリカが好ましい。市販されている球状溶融シリカとしては、(株)アドマテックス製のSC2050-MB、SC2500-SQ、SC4500-SQ、SO-C2、SO-C1、K180SQ-C1、CIKナノテック(株)製のM273、デンカ(株)製のSFP-130MC等が挙げられる。 Among them, silica is preferable as the inorganic filler (B1) from the viewpoint of low thermal expansion, and specifically, spherical molten silica is preferable. Commercially available spherical fused silica includes SC2050-MB, SC2500-SQ, SC4500-SQ, SO-C2, SO-C1, K180SQ-C1 manufactured by Admatex Co., Ltd., and M273 manufactured by CIK Nanotech Co., Ltd. Examples include SFP-130MC manufactured by Denka Co., Ltd.
 無機充填材(B1)の粒径は、特に限定されないが、第1の樹脂層12の膜厚以下とすることが好ましく、例えば、5μm以下が好ましく、3μm以下がより好ましく、2μm以下が更に好ましく、1.0μm以下が更により好ましい。無機充填材(B1)の粒径は、ミー(Mie)散乱理論に基づくレーザー回折・散乱法により測定することができる。測定サンプルは、無機充填材(B1)を超音波により水中に分散させたものを好ましく使用することができる。レーザー回折散乱式粒度分布測定装置としては、マイクロトラック・ベル株式会社製「MT3000II」等を使用することができる。 The particle size of the inorganic filler (B1) is not particularly limited, but is preferably not more than or equal to the film thickness of the first resin layer 12, for example, preferably 5 μm or less, more preferably 3 μm or less, still more preferably 2 μm or less. , 1.0 μm or less is even more preferable. The particle size of the inorganic filler (B1) can be measured by a laser diffraction / scattering method based on the Mie scattering theory. As the measurement sample, an inorganic filler (B1) dispersed in water by ultrasonic waves can be preferably used. As the laser diffraction / scattering type particle size distribution measuring device, "MT3000II" manufactured by Microtrac Bell Co., Ltd. or the like can be used.
 また、無機充填材(B1)は、シランカップリング剤等で表面処理されていてもよい。シランカップリング剤としては、後述のシランカップリング剤を用いることができる。 Further, the inorganic filler (B1) may be surface-treated with a silane coupling agent or the like. As the silane coupling agent, the silane coupling agent described later can be used.
[第2の樹脂層]
 第2の樹脂層13は、熱硬化性樹脂(A2)及び無機充填材(B2)を含み、無機充填材(B2)の含有量が15体積%以上35体積%以下である第2の樹脂組成物により構成されている。無機充填材(B2)の含有量がこれよりも多いと、柔軟性が低下してクラックが発生しやすくなり、逆に、無機充填材(B2)の含有量がこれよりも少ないと、スミア除去性が低くなるからである。なお、無機充填材(B2)の含有量というのは、第2の樹脂組成物に対する無機充填材(B2)の含有量(無機充填材(B2)/第2の樹脂組成物×100)である。
[Second resin layer]
The second resin layer 13 contains a thermosetting resin (A2) and an inorganic filler (B2), and the content of the inorganic filler (B2) is 15% by volume or more and 35% by volume or less. It is composed of things. If the content of the inorganic filler (B2) is higher than this, the flexibility is reduced and cracks are more likely to occur, and conversely, if the content of the inorganic filler (B2) is lower than this, smear is removed. This is because the sex becomes low. The content of the inorganic filler (B2) is the content of the inorganic filler (B2) with respect to the second resin composition (inorganic filler (B2) / second resin composition × 100). ..
 また、第1の樹脂組成物と第2の樹脂組成物との合計に対する無機充填材(B1)と無機充填材(B2)との合計の含有量(総無機充填材含有量)は、2.5体積%以上33.3体積%以下であることが好ましい。この範囲内において、クラックの発生を抑制しつつスミア除去性を高くすることができるからである。 Further, the total content (total inorganic filler content) of the inorganic filler (B1) and the inorganic filler (B2) with respect to the total of the first resin composition and the second resin composition is 2. It is preferably 5% by volume or more and 33.3% by volume or less. This is because within this range, the smear removability can be improved while suppressing the occurrence of cracks.
 第2の樹脂層13の厚みは、特に限定されるものではないが、薄膜化の観点から10μm以下であることが好ましく、絶縁性の確保も考慮すると1μm以上であることが好ましい。第2の樹脂層13は、半硬化状態(B-Stage)とすることが好ましい。第2の樹脂層13は、例えば、第2の樹脂組成物を用いて、塗布等の公知の手段により形成することができる。第2の樹脂組成物は、必要に応じて、後述する他の添加剤を含んでいてもよい。 The thickness of the second resin layer 13 is not particularly limited, but is preferably 10 μm or less from the viewpoint of thinning, and is preferably 1 μm or more in consideration of ensuring insulation. The second resin layer 13 is preferably in a semi-cured state (B-Stage). The second resin layer 13 can be formed by a known means such as coating by using, for example, the second resin composition. The second resin composition may contain other additives described later, if necessary.
<熱硬化性樹脂(A2)>
 熱硬化性樹脂(A2)は特に限定されるものではないが、例えば、エポキシ化合物、シアン酸エステル化合物、マレイミド化合物、フェノール化合物、ポリフェニレンエーテル化合物、ベンゾオキサジン化合物、有機基変性シリコーン化合物、及び、重合可能な不飽和基を有する化合物が挙げられる。これら化合物としては熱硬化性樹脂(A1)で例示したものと同様のものを用いることができる。熱硬化性樹脂(A2)は、これらの1種又は2種以上を適宜混合して使用することができる。中でも、エポキシ化合物及びフェノール化合物を含むようにすれば、優れたピール強度を得ることができるので好ましく、エポキシ化合物及びフェノール化合物と共に、マレイミド化合物を更に含むことがより好ましい。
<Thermosetting resin (A2)>
The thermosetting resin (A2) is not particularly limited, and is, for example, an epoxy compound, a cyanate ester compound, a maleimide compound, a phenol compound, a polyphenylene ether compound, a benzoxazine compound, an organic group-modified silicone compound, and polymerization. Examples include compounds having possible unsaturated groups. As these compounds, the same compounds as those exemplified for the thermosetting resin (A1) can be used. The thermosetting resin (A2) can be used by appropriately mixing one or more of these. Above all, it is preferable to include an epoxy compound and a phenol compound because excellent peel strength can be obtained, and it is more preferable to further contain a maleimide compound together with the epoxy compound and the phenol compound.
 本実施形態において、第2の樹脂層13にエポキシ化合物を用いる場合、その含有量は、特に限定されないが、耐熱性及び硬化性の点から、第2の樹脂層13の樹脂固形分100質量部に対して、10~80質量部の範囲が好ましく、30~70質量部の範囲が特に好適である。 In the present embodiment, when the epoxy compound is used for the second resin layer 13, the content thereof is not particularly limited, but from the viewpoint of heat resistance and curability, the resin solid content of the second resin layer 13 is 100 parts by mass. On the other hand, the range of 10 to 80 parts by mass is preferable, and the range of 30 to 70 parts by mass is particularly preferable.
 本実施形態において、第2の樹脂層13にフェノール化合物を用いる場合、その含有量は、特に限定されないが、耐熱性や銅箔との密着性の点から、第2の樹脂層13の樹脂固形分100質量部に対して、10~80質量部の範囲が好ましく、20~60質量部の範囲が更に好ましい。 In the present embodiment, when the phenol compound is used for the second resin layer 13, the content thereof is not particularly limited, but from the viewpoint of heat resistance and adhesion to the copper foil, the resin solid of the second resin layer 13 is used. The range of 10 to 80 parts by mass is preferable, and the range of 20 to 60 parts by mass is more preferable with respect to 100 parts by mass.
 本実施形態において、第2の樹脂層13にマレイミド化合物を用いる場合、その含有量は、特に限定されないが、耐熱性と銅箔との密着性の点から、第2の樹脂層13の樹脂固形分100質量部に対して、10~80質量部の範囲が好ましく、10~50質量部の範囲が更に好ましい。 In the present embodiment, when the maleimide compound is used for the second resin layer 13, the content thereof is not particularly limited, but from the viewpoint of heat resistance and adhesion to the copper foil, the resin solid of the second resin layer 13 is used. The range of 10 to 80 parts by mass is preferable, and the range of 10 to 50 parts by mass is more preferable with respect to 100 parts by mass.
<無機充填材(B2)>
 無機充填材(B2)は、第2の樹脂層13、すなわち第2の樹脂組成物に含まれる無機充填材を意味している。無機充填材(B2)としては、低熱膨張率、成形性、充填性及び剛性の点から、球状フィラーを用いることができ、プリント配線板の絶縁層に用いられる球状のフィラーであれば特に限定されない。無機充填材(B2)としては、例えば、無機充填材(B1)において挙げたものを同様に用いることができ、中でも、シリカが好ましく、具体的には、球状溶融シリカが好ましい。無機充填材(B2)の粒径及び表面処理についても、無機充填材(B1)と同様である。
<Inorganic filler (B2)>
The inorganic filler (B2) means the second resin layer 13, that is, the inorganic filler contained in the second resin composition. As the inorganic filler (B2), a spherical filler can be used from the viewpoint of low thermal expansion rate, moldability, filling property and rigidity, and is not particularly limited as long as it is a spherical filler used for the insulating layer of the printed wiring board. .. As the inorganic filler (B2), for example, those mentioned in the inorganic filler (B1) can be used in the same manner, and among them, silica is preferable, and specifically, spherical molten silica is preferable. The particle size and surface treatment of the inorganic filler (B2) are the same as those of the inorganic filler (B1).
[その他の成分]
 上述のように本実施形態における第1の樹脂層12及び第2の樹脂層13には各々必要に応じて、他の成分を含めることができる。
[Other ingredients]
As described above, the first resin layer 12 and the second resin layer 13 in the present embodiment can each contain other components, if necessary.
 その他の成分としては、例えば、吸湿耐熱性向上の目的で、シランカップリング剤を含有してもよい。シランカップリング剤としては、一般に無機物の表面処理に使用されるシランカップリング剤であれば、特に限定されない。具体例としては、アミノシラン系シランカップリング剤(例えば、γ-アミノプロピルトリエトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシラン)、エポキシシラン系シランカップリング剤(例えば、γ-グリシドキシプロピルトリメトキシシラン)、アクリルシラン系シランカップリング剤(たとえは、γ-アクリロキシプロピルトリメトキシシラン、ビニルシラン系シランカップリング剤(例えば、γ-メタアクリロキシプロピルトリメトキシシラン)、カチオン性シラン系シランカップリング剤(例えば、N-β-(N-ビニルベンジルアミノエチル)-γ-アミノプロピルトリメトキシシラン塩酸塩)、フェニルシラン系シランカップリング剤等が挙げられる。これらのシランカップリング剤は、1種又は2種以上を適宜混合して使用することができる。 As other components, for example, a silane coupling agent may be contained for the purpose of improving hygroscopic heat resistance. The silane coupling agent is not particularly limited as long as it is a silane coupling agent generally used for surface treatment of inorganic substances. Specific examples include aminosilane-based silane coupling agents (eg, γ-aminopropyltriethoxysilane, N-β- (aminoethyl) -γ-aminopropyltrimethoxysilane), and epoxysilane-based silane coupling agents (eg, γ-aminopropyltriethoxysilane). γ-glycidoxypropyltrimethoxysilane), acrylic silane-based silane coupling agent (eg, γ-acryloxypropyltrimethoxysilane, vinylsilane-based silane coupling agent (eg, γ-methacryloxypropyltrimethoxysilane)). , Cationic silane-based silane coupling agent (for example, N-β- (N-vinylbenzylaminoethyl) -γ-aminopropyltrimethoxysilane hydrochloride), phenylsilane-based silane coupling agent and the like. As the silane coupling agent, one kind or two or more kinds can be appropriately mixed and used.
 本実施形態において、シランカップリング剤の含有量は、特に限定されないが、吸湿耐熱性向上の点から、無機充填材(B1)又は無機充填材(B2)100質量部に対して、0.05~5質量部の範囲が好ましく、0.1~3質量部の範囲がより好ましい。なお、2種以上のシランカップリング剤を併用する場合には、これらの合計量が前記範囲を満たすことが好ましい。 In the present embodiment, the content of the silane coupling agent is not particularly limited, but is 0.05 with respect to 100 parts by mass of the inorganic filler (B1) or the inorganic filler (B2) from the viewpoint of improving moisture absorption and heat resistance. The range of up to 5 parts by mass is preferable, and the range of 0.1 to 3 parts by mass is more preferable. When two or more kinds of silane coupling agents are used in combination, it is preferable that the total amount of these silane coupling agents satisfies the above range.
 その他の成分としては、例えば、製造性向上等の目的として、湿潤分散剤を含有してもよい。湿潤分散剤としては、一般に塗料等に使用される湿潤分散剤であれば、特に限定されない。具体例としては、ビックケミー・ジャパン(株)製のDisperbyk(登録商標)-110、同-111、同-118、同-180、同-161、BYK(登録商標)-W996、同-W9010、同-W903等が挙げられる。これらの湿潤分散剤は、1種又は2種以上を適宜混合して使用することができる。 As other components, for example, a wet dispersant may be contained for the purpose of improving manufacturability. The wet dispersant is not particularly limited as long as it is a wet dispersant generally used for paints and the like. As specific examples, Disperbyk (registered trademark) -110, -111, -118, -180, -161, BYK (registered trademark) -W996, -W9010, manufactured by Big Chemie Japan Co., Ltd. -W903 and the like can be mentioned. These wet dispersants can be used alone or in admixture of two or more.
 本実施形態において、湿潤分散剤の含有量は、特に限定されないが、製造性向上の点から、無機充填材(B1)又は無機充填材(B2)100質量部に対して、0.1~5質量部の範囲が好ましく、0.5~3質量部の範囲がより好ましい。なお、2種以上の湿潤分散剤を併用する場合には、これらの合計量が前記範囲を満たすことが好ましい。 In the present embodiment, the content of the wet dispersant is not particularly limited, but is 0.1 to 5 with respect to 100 parts by mass of the inorganic filler (B1) or the inorganic filler (B2) from the viewpoint of improving manufacturability. The range of parts by mass is preferable, and the range of 0.5 to 3 parts by mass is more preferable. When two or more kinds of wet dispersants are used in combination, it is preferable that the total amount thereof satisfies the above range.
 その他の成分としては、例えば、硬化速度の調整等の目的から、硬化促進剤を含有してもよい。硬化促進剤としては、特に限定されないが、銅、亜鉛、コバルト、ニッケル、マンガン等の金属を含む有機金属塩類(例えば、ナフテン酸鉛、ステアリン酸鉛、ナフテン酸亜鉛、オクチル酸亜鉛、オレイン酸錫、ジブチル錫マレート、ナフテン酸マンガン、ナフテン酸コバルト、オクチル酸ニッケル、オクチル酸マンガン、アセチルアセトン鉄)、これら有機金属塩をフェノール、ビスフェノールなどの水酸基含有化合物に溶解してなるもの、有機錫化合物(例えば、塩化錫、塩化亜鉛、塩化アルミニウムなどの無機金属塩;ジオクチル錫オキサイド、その他のアルキル錫、アルキル錫オキサイド)、イミダゾール類及びその誘導体(例えば、2-エチル-4-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、2,4,5-トリフェニルイミダゾール)、第3級アミン(例えば、トリエチルアミン、N,N-ジメチルベンジルアミン、N,N-ジメチルアニリン、N,N-ジメチルトルイジン、2-N-エチルアニリノエタノール、トリ-n-ブチルアミン、ピリジン、キノリン、N-メチルモルホリン、トリエタノールアミン、トリエチレンジアミン、テトラメチルブタンジアミン、N-メチルピペリジンなど)、有機過酸化物(例えば、過酸化ベンゾイル、ラウロイルパーオキサイド、アセチルパーオキサイド、パラクロロベンゾイルパーオキサイド、ジ-tert-ブチル-ジ-パーフタレート)、アゾ化合物(例えば、アゾビスニトリル)、フェノール類(例えば、フェノール、キシレノール、クレゾール、レゾルシン、カテコール)が挙げられる。これらの硬化促進剤は、1種又は2種以上を適宜混合して使用することができる。 As other components, for example, a curing accelerator may be contained for the purpose of adjusting the curing rate. The curing accelerator is not particularly limited, but is an organic metal salt containing a metal such as copper, zinc, cobalt, nickel, manganese, etc. (for example, lead naphthenate, lead stearate, zinc naphthenate, zinc octylate, tin oleate). , Dibutyltin malate, manganese naphthenate, cobalt naphthenate, nickel octylate, manganese octylate, iron acetylacetone), those obtained by dissolving these organic metal salts in hydroxyl group-containing compounds such as phenol and bisphenol, organic tin compounds (for example). , Inorganic metal salts such as tin chloride, zinc chloride, aluminum chloride; dioctyl tin oxide, other alkyl tin, alkyl tin oxide), imidazoles and derivatives thereof (eg, 2-ethyl-4-methylimidazole, 1-benzyl- 2-Phenylimidazole, 2,4,5-triphenylimidazole), tertiary amines (eg, triethylamine, N, N-dimethylbenzylamine, N, N-dimethylaniline, N, N-dimethyltoluidine, 2-N -Ethylanilinoethanol, tri-n-butylamine, pyridine, quinoline, N-methylmorpholine, triethanolamine, triethylenediamine, tetramethylbutanediamine, N-methylpiperidine, etc.), organic peroxides (eg, benzoyl peroxide) , Lauroyl peroxide, acetyl peroxide, parachlorobenzoyl peroxide, di-tert-butyl-di-perphthalate), azo compounds (eg, azobisnitrile), phenols (eg, phenol, xylenol, cresol, resorcin, Phenol). These curing accelerators can be used alone or in admixture of two or more.
 本実施形態において、硬化促進剤の含有量は、特に限定されないが、高いガラス転移温度を得る点から、第1の樹脂層12又は第2の樹脂層13の樹脂固形分100質量部に対して、0.001~5質量部の範囲が好ましく、0.01~3質量部の範囲がより好ましい。なお、2種以上の硬化促進剤を併用する場合には、これらの合計量が前記範囲を満たすことが好ましい。 In the present embodiment, the content of the curing accelerator is not particularly limited, but from the viewpoint of obtaining a high glass transition temperature, the content of the first resin layer 12 or the second resin layer 13 is 100 parts by mass with respect to the resin solid content. , 0.001 to 5 parts by mass is preferable, and the range of 0.01 to 3 parts by mass is more preferable. When two or more kinds of curing accelerators are used in combination, it is preferable that the total amount thereof satisfies the above range.
 その他の成分としては、例えば、その他の種々の高分子化合物及び/又は難燃性化合物等を含有してもよい。高分子化合物及び難燃性化合物としては、一般に使用されるものであれば、特に限定されない。 As other components, for example, various other polymer compounds and / or flame-retardant compounds may be contained. The polymer compound and the flame-retardant compound are not particularly limited as long as they are generally used.
 高分子化合物としては、熱硬化性樹脂(A1)又は熱硬化性樹脂(B1)以外であって、各種の熱硬化性樹脂及び熱可塑性樹脂並びにそのオリゴマー、エラストマー類等が挙げられる。具体的には、ポリイミド樹脂、ポリアミドイミド樹脂、ポリスチレン、ポリオレフィン、スチレン-ブタジエンゴム(SBR)、イソプレンゴム(IR)、ブタジエンゴム(BR)、アクリロニトリルブタジエンゴム(NBR)、ポリウレタン、ポリプロピレン、(メタ)アクリルオリゴマー、(メタ)アクリルポリマー及びシリコーン樹脂等が挙げられる。相溶性の点から、アクリロニトリルブタジエンゴム若しくはスチレン-ブタジエンゴムが好ましい。 Examples of the polymer compound include various thermosetting resins and thermoplastic resins, oligomers thereof, elastomers and the like other than the thermosetting resin (A1) or the thermosetting resin (B1). Specifically, polyimide resin, polyamide-imide resin, polystyrene, polyolefin, styrene-butadiene rubber (SBR), isoprene rubber (IR), butadiene rubber (BR), acrylonitrile butadiene rubber (NBR), polyurethane, polypropylene, (meth). Examples thereof include acrylic oligomers, (meth) acrylic polymers and silicone resins. From the viewpoint of compatibility, acrylonitrile butadiene rubber or styrene-butadiene rubber is preferable.
 難燃性化合物の具体例としては、無機充填材(B1)又は無機充填材(B2)以外であって、リン含有化合物(例えば、リン酸エステル、リン酸メラミン、リン含有エポキシ樹脂)、窒素含有化合物(例えば、メラミン、ベンゾグアナミン)、オキサジン環含有化合物、シリコーン系化合物等が挙げられる。これらの高分子化合物及び/又は難燃性化合物は、1種又は2種以上を適宜混合して使用することができる。 Specific examples of the flame-retardant compound include a phosphorus-containing compound (for example, phosphoric acid ester, phosphoric acid melamine, phosphorus-containing epoxy resin), and nitrogen-containing compound other than the inorganic filler (B1) or the inorganic filler (B2). Examples thereof include compounds (for example, melamine and benzoguanamine), oxazine ring-containing compounds, and silicone-based compounds. These polymer compounds and / or flame-retardant compounds may be used alone or in admixture of two or more.
 第1の樹脂層12及び第2の樹脂層13には、種々の目的により、その他、各種の添加剤を含有してもよい。添加剤の具体例としては、紫外線吸収剤、酸化防止剤、光重合開始剤、蛍光増白剤、光増感剤、染料、顔料、増粘剤、滑剤、消泡剤、分散剤、レベリング剤及び光沢剤が挙げられる。これらの添加剤は、1種又は2種以上を適宜混合して使用することができる。 The first resin layer 12 and the second resin layer 13 may contain various other additives for various purposes. Specific examples of additives include UV absorbers, antioxidants, photopolymerization initiators, optical brighteners, photosensitizers, dyes, pigments, thickeners, lubricants, defoaming agents, dispersants, and leveling agents. And brighteners. These additives may be used alone or in admixture of two or more.
[樹脂層付き銅箔の製造方法]
 本実施形態の樹脂層付き銅箔10を製造する方法は、特に限定されない。製造方法としては、例えば、まず、第1の樹脂組成物を有機溶剤に溶解又は分散させた溶液(ワニス)を、銅箔11の表面に塗布し、加熱及び/又は減圧下で乾燥し、溶媒を除去して第1の樹脂組成物を固化させて、第1の樹脂層12を形成する。上述のように、第1の樹脂層12は半硬化状態のみならず完全に硬化した状態であってもよい。その後、第1の樹脂層12の上に、第2の樹脂組成物を有機溶剤に溶解又は分散させた溶液(ワニス)を塗布し、加熱及び/又は減圧下で乾燥し、溶媒を除去して第2の樹脂組成物を固化させて、第2の樹脂層13を形成する。この際、第2の樹脂層13はB-stage(半硬化状態)とすることが好ましい。また、第2の樹脂層13の上には、プラスチックフィルムなどの保護層を設けてもよい。当該保護層は、後述の積層体作製時に適宜除去される。
[Manufacturing method of copper foil with resin layer]
The method for producing the copper foil 10 with a resin layer of the present embodiment is not particularly limited. As a production method, for example, first, a solution (varnish) in which the first resin composition is dissolved or dispersed in an organic solvent is applied to the surface of the copper foil 11, dried under heating and / or reduced pressure, and the solvent is used. Is removed to solidify the first resin composition to form the first resin layer 12. As described above, the first resin layer 12 may be in a completely cured state as well as in a semi-cured state. Then, a solution (varnish) in which the second resin composition is dissolved or dispersed in an organic solvent is applied onto the first resin layer 12, and dried under heating and / or reduced pressure to remove the solvent. The second resin composition is solidified to form the second resin layer 13. At this time, it is preferable that the second resin layer 13 is in a B-stage (semi-cured state). Further, a protective layer such as a plastic film may be provided on the second resin layer 13. The protective layer is appropriately removed at the time of producing the laminate described later.
 乾燥条件は、特に限定されないが、第1の樹脂層12又は第2の樹脂層13を100質量部に対して、有機溶剤が通常10質量部以下、好ましくは5質量部以下となるように乾燥させる。乾燥を達成する条件は、ワニス中の有機溶剤量によっても異なるが、例えば、ワニス100質量部に対して、30~60質量部の有機溶剤を含むワニスの場合、50℃~200℃の加熱条件下で3~10分間程度乾燥させればよい。 The drying conditions are not particularly limited, but the first resin layer 12 or the second resin layer 13 is dried so that the amount of the organic solvent is usually 10 parts by mass or less, preferably 5 parts by mass or less, based on 100 parts by mass. Let me. The conditions for achieving drying differ depending on the amount of the organic solvent in the varnish. For example, in the case of a varnish containing 30 to 60 parts by mass of an organic solvent with respect to 100 parts by mass of the varnish, the heating conditions are 50 ° C. to 200 ° C. It may be dried underneath for about 3 to 10 minutes.
 有機溶剤としては、各成分を各々好適に溶解又は分散させることができ、かつ、第1の樹脂層12又は第2の樹脂層13の効果を奏する限り、特に限定されない。有機溶剤の具体例としては、アルコール類(例えば、メタノール、エタノール及びプロパノール)、ケトン類(例えば、アセトン、メチルエチルケトン及びメチルイソブチルケトン)、アミド類(例えば、ジメチルアセトアミド及びジメチルホルムアミド)、芳香族炭化水素類(例えば、トルエン及びキシレン)、N-メチル-2-ピロリドン、又は、γ-ブチロラクトン等が挙げられる。これらの有機溶剤は、1種又は2種以上を適宜混合して使用することができる。 The organic solvent is not particularly limited as long as each component can be suitably dissolved or dispersed and the effect of the first resin layer 12 or the second resin layer 13 is exhibited. Specific examples of organic solvents include alcohols (eg, methanol, ethanol and propanol), ketones (eg, acetone, methylethylketone and methylisobutylketone), amides (eg, dimethylacetamide and dimethylformamide), aromatic hydrocarbons. Classes (eg, toluene and xylene), N-methyl-2-pyrrolidone, γ-butyrolactone and the like can be mentioned. These organic solvents may be used alone or in admixture of two or more.
 塗布する方法についても特に限定されるものではないが、例えば、バーコーター塗布、エアナイフ塗布、グラビア塗布、リバースグラビア塗布、マイクログラビア塗布、マイクロリバースグラビアコーター塗布、ダイコーター塗布、ディップ塗布、スピンコート塗布、スプレー塗布などが公知の塗布法を用いることができる。 The method of coating is also not particularly limited, but for example, bar coater coating, air knife coating, gravure coating, reverse gravure coating, micro gravure coating, micro reverse gravure coater coating, die coater coating, dip coating, spin coating coating. , A coating method known for spray coating and the like can be used.
[積層体及びその製造方法]
 本実施形態の樹脂層付き銅箔10を用いた積層体(以下、単に「本実施形態の積層体」と称することがある。)は、例えば、プリント配線板又は半導体素子搭載用基板のビルドアップ材料用途、コアレス基板の作製用途に用いることができる。
 本実施形態の積層体は、例えば、導体層と、樹脂層付き銅箔10を用いて形成された絶縁層と、を交互に積層されたビルドアップ層を有する積層体として構成することができる。ここで、「樹脂層付き銅箔10を用いて形成された絶縁層」とは、例えば、導体層が形成された基板上に、樹脂層付き銅箔10の第2の樹脂層13が接するように積層して構成することができる。また、絶縁層を3つ以上の樹脂層付き銅箔10を用いて形成する場合には、必要に応じて銅箔11を除去し、第1の樹脂層12及び第2の樹脂層13を積層して、絶縁層を形成することができる。また、前記導体層は、樹脂層付き銅箔10の銅箔11がその役割を担ってもよいし、銅張積層板の銅箔など他の導体(銅箔等)を別に積層して導体層を形成してもよい。図2は本実施形態の積層体20の一例を示すものである。この積層体20は、導体層21が形成された基板22の上に、1つの樹脂層付き銅箔10を第2の樹脂層13が接するように積層したものであり、第1の樹脂層12と第2の樹脂層13により絶縁層23が形成されている。
[Laminate and its manufacturing method]
The laminate using the copper foil 10 with a resin layer of the present embodiment (hereinafter, may be simply referred to as “the laminate of the present embodiment”) is, for example, a build-up of a printed wiring board or a substrate for mounting a semiconductor element. It can be used for materials and for manufacturing coreless substrates.
The laminate of the present embodiment can be configured as a laminate having a build-up layer in which a conductor layer and an insulating layer formed by using a copper foil 10 with a resin layer are alternately laminated, for example. Here, the "insulating layer formed by using the copper foil 10 with a resin layer" means, for example, such that the second resin layer 13 of the copper foil 10 with a resin layer is in contact with the substrate on which the conductor layer is formed. Can be laminated and configured. When the insulating layer is formed by using the copper foil 10 with three or more resin layers, the copper foil 11 is removed as necessary, and the first resin layer 12 and the second resin layer 13 are laminated. Then, the insulating layer can be formed. Further, the conductor layer may be the copper foil 11 of the copper foil 10 with a resin layer, or another conductor (copper foil or the like) such as the copper foil of the copper-clad laminate may be separately laminated to form the conductor layer. May be formed. FIG. 2 shows an example of the laminated body 20 of the present embodiment. The laminated body 20 is formed by laminating a copper foil 10 with a resin layer on a substrate 22 on which a conductor layer 21 is formed so that a second resin layer 13 is in contact with the first resin layer 12. And the second resin layer 13 form an insulating layer 23.
 本実施形態の積層体がビルドアップ層を有する場合、例えば、当該ビルドアップ層は、複数の導体層と絶縁層とを有し、導体層が、各絶縁層の間、及び、ビルドアップ層の最外層の表面に配置される構成とすることができる。この際、絶縁層の数は特に限定はないが、例えば、3層又は4層とすることできる。
 また、本実施形態の積層体を用いて、コアレス基板を作製することができる。前記コアレス基板としては、例えば、2層以上のコアレス基板が挙げられ、例えば、3層コアレス基板が挙げられる。コアレス基板の構成については後述する。
When the laminate of the present embodiment has a build-up layer, for example, the build-up layer has a plurality of conductor layers and an insulating layer, and the conductor layer is between the insulating layers and of the build-up layer. It can be configured to be arranged on the surface of the outermost layer. At this time, the number of insulating layers is not particularly limited, but may be, for example, 3 layers or 4 layers.
Further, a coreless substrate can be produced by using the laminated body of the present embodiment. Examples of the coreless substrate include a coreless substrate having two or more layers, and examples thereof include a three-layer coreless substrate. The configuration of the coreless substrate will be described later.
[プリント配線板]
 本実施形態の積層体はプリント配線板として用いることができる。ここで、プリント配線板は、コア基材と呼ばれる絶縁性樹脂層が完全硬化した金属箔張積層板に対し、ビルドアップ材料として本実施形態の樹脂層付き銅箔10を用いた積層体を用いることにより得ることができる。本実施形態の樹脂層付き銅箔10(積層体)を用いると、例えば、厚い支持基板(キャリア基板)を用いずに薄型のプリント配線板を製造することが可能である。
[Printed wiring board]
The laminate of this embodiment can be used as a printed wiring board. Here, as the printed wiring board, a laminate using the copper foil 10 with a resin layer of the present embodiment is used as a build-up material for a metal foil-clad laminate in which an insulating resin layer called a core base material is completely cured. Can be obtained by By using the copper foil 10 (laminated body) with a resin layer of the present embodiment, for example, it is possible to manufacture a thin printed wiring board without using a thick support substrate (carrier substrate).
 金属箔張積層板の表面には、通常用いられる金属箔張積層板の金属箔及び/又は金属箔を剥離した後にめっきする等して得られる導体層により導体回路が形成される。また、金属箔張積層板の基材は、特に限定されないが、主として、ガラスエポキシ基板、金属基板、ポリエステル基板、ポリイミド基板、BTレジン基板及び熱硬化型ポリフェニレンエーテル基板である。 On the surface of the metal foil-clad laminate, a conductor circuit is formed by a conductor layer obtained by peeling off the metal foil and / or the metal foil of a commonly used metal foil-clad laminate and then plating. The base material of the metal foil-clad laminate is not particularly limited, but is mainly a glass epoxy substrate, a metal substrate, a polyester substrate, a polyimide substrate, a BT resin substrate, and a thermosetting polyphenylene ether substrate.
 本実施形態において、ビルドアップとは、金属箔張積層板の表面の金属箔及び/又は導体層に対して、樹脂層付き銅箔10における第1の樹脂層12及び第2の樹脂層13を積層させることである。 In the present embodiment, the build-up refers to the first resin layer 12 and the second resin layer 13 in the copper foil 10 with a resin layer with respect to the metal foil and / or the conductor layer on the surface of the metal foil-clad laminate. It is to stack.
 プリント配線板の製造では、必要に応じて、各導体層を電気的に接続するため、ビアホール及び/又はスルーホール等の穴加工が行われる。穴加工は、通常、メカニカルドリル、炭酸ガスレーザー、UVレーザー及びYAGレーザー等を用いて行う。樹脂層付き銅箔10を用いて形成した絶縁層では、ビアホールの形成において、クラックの発生を抑えつつスミア除去性を高くすることができ、また、オーバーハングを抑制することができる。よって、コンフォーマルレーザー加工及びダイレクトレーザー加工において、良好な加工形状が得られる。 In the manufacture of printed wiring boards, holes such as via holes and / or through holes are machined in order to electrically connect each conductor layer as needed. Drilling is usually performed using a mechanical drill, a carbon dioxide laser, a UV laser, a YAG laser, or the like. In the insulating layer formed by using the copper foil 10 with a resin layer, it is possible to improve the smear removing property while suppressing the generation of cracks in the formation of via holes, and it is possible to suppress overhang. Therefore, a good processed shape can be obtained in the conformal laser processing and the direct laser processing.
 穴加工が行われた場合、その後、デスミア処理を含む粗化処理を行う。粗化処理は、通常、膨潤工程、表面粗化及びスミア溶解工程、及び中和工程からなる。膨潤工程は、膨潤剤を用いて絶縁性樹脂層の表面を膨潤させることにより行う。膨潤剤としては、絶縁性樹脂層の表面の濡れ性が向上し、次の表面粗化及びスミア溶解工程において酸化分解が促進される程度にまで絶縁性樹脂層の表面を膨潤させることができるものであれば、特に限定されない。例としては、アルカリ溶液、界面活性剤溶液等が挙げられる。表面粗化及びスミア溶解工程は、酸化剤を用いて行う。酸化剤としては、例えば、アルカリ性の過マンガン酸塩溶液等が挙げられ、好適な具体例としては、過マンガン酸カリウム水溶液、過マンガン酸ナトリウム水溶液等が挙げられる。かかる酸化剤処理はウェットデスミアと呼ばれるが、当該ウェットデスミアに加えて、プラズマ処理やUV処理によるドライデスミア、バフ等による機械研磨、サンドブラスト等の他の公知の粗化処理を、適宜組み合わせて実施してもよい。中和工程は、前工程で使用した酸化剤を還元剤で中和するものである。還元剤としては、アミン系還元剤が挙げられ、好適な具体例としては、ヒドロキシルアミン硫酸塩水溶液、エチレンジアミン四酢酸水溶液、ニトリロ三酢酸水溶液等の酸性水溶液が挙げられる。 When hole processing is performed, then roughening processing including desmear processing is performed. The roughening treatment usually consists of a swelling step, a surface roughening and smear melting step, and a neutralization step. The swelling step is performed by swelling the surface of the insulating resin layer with a swelling agent. As the swelling agent, the wettability of the surface of the insulating resin layer is improved, and the surface of the insulating resin layer can be swelled to the extent that oxidative decomposition is promoted in the next surface roughening and smear dissolution steps. If so, it is not particularly limited. Examples include an alkaline solution, a surfactant solution and the like. The surface roughening and smear dissolution steps are carried out using an oxidizing agent. Examples of the oxidizing agent include an alkaline permanganate solution and the like, and suitable specific examples thereof include an aqueous solution of potassium permanganate and an aqueous solution of sodium permanganate. Such an oxidant treatment is called wet desmear, and in addition to the wet desmear, other known roughening treatments such as plasma treatment, dry desmear by UV treatment, mechanical polishing by buffing, and sandblasting are appropriately combined. May be. The neutralization step is to neutralize the oxidizing agent used in the previous step with a reducing agent. Examples of the reducing agent include amine-based reducing agents, and suitable specific examples thereof include acidic aqueous solutions such as a hydroxylamine sulfate aqueous solution, an ethylenediamine tetraacetic acid aqueous solution, and a nitrilotriacetic acid aqueous solution.
 本実施形態において、ビアホール及び/又はスルーホールを設けた後、又はビアホール及び/又はスルーホール内をデスミア処理した後に、各導体層を電気的に接続するために金属めっき処理することが好ましい。金属めっき処理の方法としては、特に限定されず、通常の多層プリント配線板の製造における金属めっき処理の方法を適宜用いることができる。金属めっき処理の方法及びめっきに使用される薬液の種類は、特に限定されず、通常の多層プリント配線板の製造における金属めっき処理の方法及び薬液を適宜用いることができる。金属めっき処理に使用される薬液は、市販品であってもよい。金属めっき処理方法としては、特に限定されず、例えば、脱脂液による処理、ソフトエッチング液による処理、酸洗浄、プレディップ液による処理、キャタリスト液による処理、アクセレーター液による処理、化学銅液による処理、酸洗浄及び硫酸銅液に浸漬し電流を流す処理が挙げられる。 In the present embodiment, after the via hole and / or the through hole is provided, or after the via hole and / or the through hole is desmeared, it is preferable to perform a metal plating treatment to electrically connect each conductor layer. The method of the metal plating treatment is not particularly limited, and a method of the metal plating treatment in the production of a normal multilayer printed wiring board can be appropriately used. The method of metal plating treatment and the type of chemical solution used for plating are not particularly limited, and the metal plating treatment method and chemical solution in the production of a normal multilayer printed wiring board can be appropriately used. The chemical solution used for the metal plating treatment may be a commercially available product. The metal plating treatment method is not particularly limited, and is, for example, a treatment with a degreasing liquid, a treatment with a soft etching liquid, an acid cleaning, a treatment with a predip liquid, a treatment with a catalyst liquid, a treatment with an accelerator liquid, and a chemical copper liquid. Examples thereof include treatment, pickling, and treatment of immersing in a copper sulfate solution and passing a current.
 また、半硬化状態の樹脂層付き銅箔10を用いてビルドアップさせた場合には、通常、半硬化状態の第1の樹脂層12又は第2の樹脂層13に対して熱処理等を行って完全硬化させることでプリント配線板を得ることができる。本実施形態では、得られたプリント配線板に対して、別の樹脂層付き銅箔10を更に積層させてもよい。 Further, when the copper foil 10 with the resin layer in the semi-cured state is used for build-up, the first resin layer 12 or the second resin layer 13 in the semi-cured state is usually heat-treated. A printed wiring board can be obtained by completely curing. In the present embodiment, another copper foil 10 with a resin layer may be further laminated on the obtained printed wiring board.
 ビルドアップ法における積層方法としては、特に限定されないが、真空加圧式ラミネーターを好適に用いることができる。この場合、樹脂層付き銅箔10に対してゴム等の弾性体を介して積層することもできる。ラミネート条件としては、通常のプリント配線板の積層において使用される条件であれば特に限定されないが、例えば、70℃~140℃の温度、1kgf/cm~11kgf/cmの範囲の接触圧力並びに20hPa以下の雰囲気減圧下で行われる。ラミネート工程の後に、金属板による熱プレスにより、ラミネートされた接着フィルムの平滑化を行ってもよい。ラミネート工程及び平滑化工程は、市販されている真空加圧式ラミネーターによって連続的に行うことができる。ラミネート工程の後に、又は平滑化工程の後に、熱硬化工程を有していてもよい。熱硬化工程を用いることで、第1の樹脂層12及び第2の樹脂層13を完全に硬化させることができる。熱硬化条件は、第1の樹脂層12及び第2の樹脂層13に含まれる成分の種類等によって異なるが、通常、硬化温度が100℃~300℃、圧力が0.1kgf/cm~100kgf/cm(約9.8kPa~約9.8MPa)、硬化時間が30秒~5時間である。 The laminating method in the build-up method is not particularly limited, but a vacuum-pressurized laminator can be preferably used. In this case, the copper foil 10 with a resin layer can be laminated via an elastic body such as rubber. The laminating conditions are not particularly limited as long as they are conditions used in laminating ordinary printed wiring boards, but for example, a temperature of 70 ° C. to 140 ° C., a contact pressure in the range of 1 kgf / cm 2 to 11 kgf / cm 2 , and a contact pressure of 1 kgf / cm 2 to 11 kgf / cm 2. It is carried out under an atmospheric reduced pressure of 20 hPa or less. After the laminating step, the laminated adhesive film may be smoothed by hot pressing with a metal plate. The laminating step and the smoothing step can be continuously performed by a commercially available vacuum pressurizing laminator. There may be a thermosetting step after the laminating step or after the smoothing step. By using the thermosetting step, the first resin layer 12 and the second resin layer 13 can be completely cured. The thermosetting conditions differ depending on the types of components contained in the first resin layer 12 and the second resin layer 13, but usually the curing temperature is 100 ° C to 300 ° C and the pressure is 0.1 kgf / cm 2 to 100 kgf. / Cm 2 (about 9.8 kPa to about 9.8 MPa), curing time is 30 seconds to 5 hours.
 本実施形態におけるプリント配線板の片面又は両面の銅箔に対して、回路パターンを形成する方法としては、セミアディティブ法、フルアディティブ法、サブトラクティブ法等が挙げられる。中でも、微細配線パターンを形成する点からは、セミアディティブ法が好ましい。 Examples of the method for forming a circuit pattern on the copper foil on one side or both sides of the printed wiring board in the present embodiment include a semi-additive method, a full additive method, and a subtractive method. Above all, the semi-additive method is preferable from the viewpoint of forming a fine wiring pattern.
 セミアディティブ法で回路パターンを形成する方法の例としては、めっきレジストを用いて選択的に電解めっきを施し(パターンめっき)、その後めっきレジストを剥離し、全体を適量エッチングして配線パターン形成する手法が挙げられる。セミアディティブ法による回路パターン形成では、無電解めっきと電解めっきとを組み合わせて行うが、その際、無電解めっきの後と、電解めっきの後に、それぞれ乾燥を行うことが好ましい。無電解後の乾燥は、特に限定されないが、例えば、80℃~180℃で10分~120分間行うことが好ましく、電解めっき後の乾燥は、特に限定されないが、例えば、130℃~220℃で10分~120分間行うことが好ましい。めっきとしては、銅めっきが好ましい。 As an example of the method of forming a circuit pattern by the semi-additive method, a method of selectively electroplating using a plating resist (pattern plating), then peeling off the plating resist, and etching an appropriate amount of the whole to form a wiring pattern. Can be mentioned. In the circuit pattern formation by the semi-additive method, electroless plating and electrolytic plating are combined, and at that time, it is preferable to perform drying after electroless plating and after electrolytic plating, respectively. Drying after electroless plating is not particularly limited, but is preferably performed at 80 ° C. to 180 ° C. for 10 minutes to 120 minutes, and drying after electrolytic plating is not particularly limited, but is, for example, at 130 ° C. to 220 ° C. It is preferably performed for 10 to 120 minutes. Copper plating is preferable as the plating.
 サブトラクティブ法で回路パターンを形成する方法の例としては、エッチングレジストを用いて選択的に導体層を除去することにより、配線パターンを形成する手法が挙げられる。具体的には、例えば、次のようにして行うことができる。銅箔の全面に、温度110±10℃、圧力0.50±0.02MPaでドライフィルムレジスト(日立化成製RD-1225(商品名))を積層貼着(ラミネート)する。ついで、回路パターンに沿って露光し、マスキングを行う。その後、1%炭酸ナトリウム水溶液にてドライフィルムレジストを現像処理し、最終的にアミン系のレジスト剥離液にてドライフィルムレジストを剥離する。これにより、銅箔に回路パターニングを形成することができる。 An example of a method of forming a circuit pattern by the subtractive method is a method of forming a wiring pattern by selectively removing a conductor layer using an etching resist. Specifically, for example, it can be performed as follows. A dry film resist (Hitachi Kasei RD-1225 (trade name)) is laminated and bonded (laminated) on the entire surface of the copper foil at a temperature of 110 ± 10 ° C. and a pressure of 0.50 ± 0.02 MPa. Then, exposure is performed according to the circuit pattern and masking is performed. Then, the dry film resist is developed with a 1% aqueous sodium carbonate solution, and finally the dry film resist is peeled off with an amine-based resist stripping solution. This makes it possible to form circuit patterning on the copper foil.
 本実施形態では、プリント配線板に、更に絶縁性樹脂層及び/又は導体層を積層させ、多層プリント配線板を得ることもできる。多層プリント配線板の内層には、回路基板を有していてもよい。樹脂層付き銅箔10は、多層プリント配線板の絶縁性樹脂層及び導体層の一つを構成することになる。 In the present embodiment, a multilayer printed wiring board can be obtained by further laminating an insulating resin layer and / or a conductor layer on the printed wiring board. A circuit board may be provided in the inner layer of the multilayer printed wiring board. The copper foil 10 with a resin layer constitutes one of the insulating resin layer and the conductor layer of the multilayer printed wiring board.
 積層の方法は、特に限定されず、通常のプリント配線板の積層成形に一般に使用される方法を用いることができる。積層方法としては、例えば、多段プレス、多段真空プレス、ラミネーター、真空ラミネーター、オートクレーブ成形機等が挙げられる。積層時の温度は、特に限定されないが、例えば、100℃~300℃、圧力は、特に限定されないが、例えば、0.1kgf/cm~100kgf/cm(約9.8kPa~約9.8MPa)、加熱時間は、特に限定されないが、例えば、30秒~5時間の範囲で適宜選択して行う。また、必要に応じて、例えば、150℃~300℃の温度範囲で後硬化を行い、硬化度を調整してもよい。 The laminating method is not particularly limited, and a method generally used for laminating and forming a normal printed wiring board can be used. Examples of the laminating method include a multi-stage press, a multi-stage vacuum press, a laminator, a vacuum laminator, an autoclave forming machine, and the like. The temperature at the time of stacking is not particularly limited, but is not particularly limited, for example, 100 ° C. to 300 ° C., and the pressure is not particularly limited, for example, 0.1 kgf / cm 2 to 100 kgf / cm 2 (about 9.8 kPa to about 9.8 MPa). ), The heating time is not particularly limited, but is appropriately selected in the range of, for example, 30 seconds to 5 hours. Further, if necessary, for example, post-curing may be performed in a temperature range of 150 ° C. to 300 ° C. to adjust the degree of curing.
[半導体素子搭載用基板]
 上述のように、本実施形態の積層体は半導体素子搭載用基板として用いることができる。半導体素子搭載用基板は、例えば、金属箔張積層板に樹脂層付き銅箔10を積層させ、得られた積層体の表面又は片面における銅箔をマスキング及びパターニングすることで作製される。マスキング及びパターニングは、プリント配線板の製造において行われる公知のマスキング及びパターニングを用いることができ、特に限定されないが、前述のサブトラクティブ法によって、回路パターンを形成することが好ましい。回路パターンは、積層体の片面にだけ形成されてもよく、両面に形成されてもよい。
[Semiconductor device mounting substrate]
As described above, the laminate of this embodiment can be used as a substrate for mounting a semiconductor element. A substrate for mounting a semiconductor element is produced, for example, by laminating a copper foil 10 with a resin layer on a metal foil-clad laminate and masking and patterning the copper foil on the surface or one side of the obtained laminate. As the masking and patterning, known masking and patterning performed in the manufacture of the printed wiring board can be used, and the circuit pattern is preferably formed by the above-mentioned subtractive method without particular limitation. The circuit pattern may be formed on only one side of the laminate, or may be formed on both sides.
[多層コアレス基板(多層プリント配線板)]
 本実施形態の積層体は、上述のようにコアレス基板とすることができる。前記コアレス基板の一例として、多層コアレス基板が挙げられる。
 多層コアレス基板は、例えば、第1の絶縁層と、第1の絶縁層の片面側に積層された1つ又は複数の第2の絶縁層とからなる複数の絶縁層と、複数の絶縁層の各々の間に配置された第1の導体層と、複数の絶縁層の最外層の表面に配置された第2の導体層とからなる複数の導体層とを有し、第1の絶縁層及び前記第2の絶縁層が、それぞれ、樹脂層付き銅箔10の第1の樹脂層12及び第2の樹脂層13の硬化物を有するように構成することができる。多層コアレス基板の具体例について図3を用いて説明する。図3は、本実施形態における多層コアレス基板の一例を示す模式図である。図3に示す多層コアレス基板100は、第1の絶縁層111と、第1の絶縁層111の片面方向(図示上面方向)に積層された2つの第2の絶縁層112を含み、第1の絶縁層111及び2つの第2の絶縁層112は、それぞれ1つの樹脂層付き銅箔10の第1の樹脂層12及び第2の樹脂層13を用いて形成されている。また、図3に示す多層コアレス基板100は、複数の絶縁層(第1の絶縁層111及び第2の絶縁層112)の各々の間に配置された第1の導体層113、及び、それらの複数の絶縁層(第1の絶縁層111及び第2の絶縁層112)の最外層に配置された第2の導体層114からなる複数の導体層を有する。
[Multilayer coreless board (multilayer printed wiring board)]
The laminate of this embodiment can be a coreless substrate as described above. An example of the coreless substrate is a multilayer coreless substrate.
The multilayer coreless substrate is, for example, a plurality of insulating layers composed of a first insulating layer, one or a plurality of second insulating layers laminated on one side of the first insulating layer, and a plurality of insulating layers. It has a plurality of conductor layers composed of a first conductor layer arranged between each and a second conductor layer arranged on the surface of the outermost layer of the plurality of insulating layers, and the first insulating layer and The second insulating layer can be configured to have a cured product of the first resin layer 12 and the second resin layer 13 of the copper foil 10 with a resin layer, respectively. A specific example of the multilayer coreless substrate will be described with reference to FIG. FIG. 3 is a schematic diagram showing an example of a multilayer coreless substrate in this embodiment. The multilayer coreless substrate 100 shown in FIG. 3 includes a first insulating layer 111 and two second insulating layers 112 laminated in one side direction (upper surface direction in the drawing) of the first insulating layer 111. The insulating layer 111 and the two second insulating layers 112 are formed by using the first resin layer 12 and the second resin layer 13 of the copper foil 10 with one resin layer, respectively. Further, in the multilayer coreless substrate 100 shown in FIG. 3, the first conductor layer 113 arranged between each of the plurality of insulating layers (first insulating layer 111 and the second insulating layer 112) and their respective insulating layers 113. It has a plurality of conductor layers composed of a second conductor layer 114 arranged on the outermost layer of the plurality of insulating layers (first insulating layer 111 and second insulating layer 112).
 このように本実施の形態によれば、ビアホールの形成において、クラックの発生を抑えつつスミア除去性を高くすることができると共に、オーバーハングを抑制することができる。よって、コンフォーマルレーザー加工においても、ダイレクトレーザー加工においても、良好な加工形状を得ることができる。 As described above, according to the present embodiment, in the formation of the via hole, it is possible to improve the smear removal property while suppressing the generation of cracks, and it is possible to suppress the overhang. Therefore, it is possible to obtain a good processing shape in both the conformal laser processing and the direct laser processing.
 以下に実施例及び比較例を用いて本発明を更に具体的に説明するが、本発明はこれらの実施例により何ら限定されない。 The present invention will be described in more detail below with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.
(実施例1)
 末端スチレン化ポリフェニレンエーテル化合物(製品名:OPE-2St2200、三菱ガス化学(株)製)15.0質量部、ポリイミド樹脂(製品名:ネオプリム(登録商標)S100、三菱ガス化学(株)製)49.9質量部、2,2-ビス-(4-(4-マレイミドフェノキシ)フェニルプロパン(製品名:BMI-80、ケイ・アイ化成(株)製)34.9質量部、2,4,5-トリフェニルイミダゾール(東京化成工業(株)製)0.2質量部を配合(混合)して第1の樹脂組成物を得た。すなわち、第1の樹脂組成物に無機充填材は添加しなかった。次いで、第1の樹脂組成物をN-メチル-2-ピロリドン(以下、“NMP”と称する)で希釈してワニスAを得た。得られたワニスAを、バーコーターによって3μm厚の銅箔11(製品名:MT-FL、三井金属鉱業(株)製)のマット面側に塗布した。その後、塗布膜を180℃で10分間加熱乾燥することにより、銅箔11の上に第1の樹脂層12を形成した。
(Example 1)
Terminal styrenated polyphenylene ether compound (product name: OPE-2St2200, manufactured by Mitsubishi Gas Chemical Company, Inc.) 15.0 parts by mass, polyimide resin (product name: Neoprim (registered trademark) S100, manufactured by Mitsubishi Gas Chemical Company, Inc.) 49 .9 parts by mass, 2,2-bis- (4- (4-maleimidephenoxy) phenylpropane (product name: BMI-80, manufactured by KI Kasei Co., Ltd.) 34.9 parts by mass, 2,4,5 -The first resin composition was obtained by blending (mixing) 0.2 parts by mass of triphenylimidazole (manufactured by Tokyo Chemical Industry Co., Ltd.). That is, the inorganic filler was added to the first resin composition. Next, the first resin composition was diluted with N-methyl-2-pyrrolidone (hereinafter referred to as “NMP”) to obtain varnish A. The obtained varnish A was 3 μm thick by a bar coater. The copper foil 11 (product name: MT-FL, manufactured by Mitsui Metal Mining Co., Ltd.) was applied to the matte surface side. Then, the coating film was heated and dried at 180 ° C. for 10 minutes onto the copper foil 11. The first resin layer 12 was formed.
 また、ビフェニルアラルキル型フェノール樹脂(製品名:KAYAHARD GPH-103、水酸基当量:231g/eq.、日本化薬(株)製)35.8質量部、ビス(3-エチル-5-メチル-4-マレイミドジフェニル)メタン(製品名:BMI-70、ケイ・アイ化成(株)製)17.9質量部、ナフタレンアラルキル型エポキシ樹脂(製品名:HP-9900、エポキシ当量:274g/eq.、DIC(株)製)7.0質量部、ビフェニルアラルキル型エポキシ樹脂(製品名:NC-3000-FH、日本化薬(株)製、エポキシ当量:320g/eq.)38.8質量部、2,4,5-トリフェニルイミダゾール(東京化成工業(株)製)0.5質量部、無機充填材(B2)としてシリカ(製品名:M273、平均粒径0.1μm、CIKナノテック(株)製)を配合(混合)して第2の樹脂組成物を得た。その際、第2の樹脂組成物に対する無機充填材(B2)であるシリカの含有量(無機充填材(B2)/第2の樹脂組成物×100)は、15体積%とした。次いで、この第2の樹脂組成物をメチルエチルケトンで希釈してワニスBを得た。得られたワニスBを、バーコーターによって上述の方法で得られた第1の樹脂層12の上に塗布した。その後、塗布膜を150℃で10分間加熱乾燥することにより、第1の樹脂層12と第2の樹脂層13とを有する樹脂層付き銅箔10を得た。 In addition, biphenyl aralkyl type phenol resin (product name: KAYAHARD GPH-103, hydroxyl group equivalent: 231 g / eq., manufactured by Nippon Kayaku Co., Ltd.) 35.8 parts by mass, bis (3-ethyl-5-methyl-4- Maleimide diphenyl) methane (product name: BMI-70, manufactured by Keiai Kasei Co., Ltd.) 17.9 parts by mass, naphthalene aralkyl type epoxy resin (product name: HP-9900, epoxy equivalent: 274 g / eq., DIC ( (Co., Ltd.) 7.0 parts by mass, biphenyl aralkyl type epoxy resin (product name: NC-3000-FH, manufactured by Nippon Kayaku Co., Ltd., epoxy equivalent: 320 g / eq.) 38.8 parts by mass, 2,4 , 5-Triphenylimidazole (manufactured by Tokyo Kasei Kogyo Co., Ltd.) 0.5 parts by mass, silica (product name: M273, average particle size 0.1 μm, manufactured by CIK Nanotech Co., Ltd.) as an inorganic filler (B2). The second resin composition was obtained by blending (mixing). At that time, the content of silica as the inorganic filler (B2) with respect to the second resin composition (inorganic filler (B2) / second resin composition × 100) was set to 15% by volume. Then, this second resin composition was diluted with methyl ethyl ketone to obtain varnish B. The obtained varnish B was applied by a bar coater onto the first resin layer 12 obtained by the above method. Then, the coating film was heated and dried at 150 ° C. for 10 minutes to obtain a copper foil 10 with a resin layer having a first resin layer 12 and a second resin layer 13.
 第1の樹脂層12の厚みは5μm、第2の樹脂層13の厚みは1μmとした。また、第1の樹脂組成物と第2の樹脂組成物との合計に対する無機充填材(B1)と無機充填材(B2)との合計の含有量(総無機充填材含有量)は、2.5体積%である。 The thickness of the first resin layer 12 was 5 μm, and the thickness of the second resin layer 13 was 1 μm. Further, the total content (total inorganic filler content) of the inorganic filler (B1) and the inorganic filler (B2) with respect to the total of the first resin composition and the second resin composition is 2. 5% by volume.
(実施例2)
 第1の樹脂組成物に無機充填材(B1)としてシリカ(製品名:K180SQ-C1、平均粒径0.18μm、(株)アドマテックス製)を配合(混合)し、第1の樹脂層12の厚みを2.5μmとしたことを除き、他は実施例1と同様にして、銅箔11の上に第1の樹脂層12を形成した。その際、第1の樹脂組成物に対する無機充填材(B1)であるシリカの含有量(無機充填材(B1)/第1の樹脂組成物×100)は、14体積%とした。
(Example 2)
Silica (product name: K180SQ-C1, average particle size 0.18 μm, manufactured by Admatex Co., Ltd.) is blended (mixed) as an inorganic filler (B1) in the first resin composition, and the first resin layer 12 is mixed. The first resin layer 12 was formed on the copper foil 11 in the same manner as in Example 1 except that the thickness of the resin was 2.5 μm. At that time, the content of silica as the inorganic filler (B1) with respect to the first resin composition (inorganic filler (B1) / first resin composition × 100) was set to 14% by volume.
 また、第2の樹脂組成物に対する無機充填材(B2)であるシリカの含有量を20体積%とし、第2の樹脂層13の厚みを5μmとしたことを除き、他は実施例1と同様にして、第1の樹脂層12の上に第2の樹脂層13を形成した。第1の樹脂組成物と第2の樹脂組成物との合計に対する無機充填材(B1)と無機充填材(B2)との合計の含有量(総無機充填材含有量)は、18.0体積%である。 The same as in Example 1 except that the content of silica as the inorganic filler (B2) in the second resin composition was 20% by volume and the thickness of the second resin layer 13 was 5 μm. The second resin layer 13 was formed on the first resin layer 12. The total content (total inorganic filler content) of the inorganic filler (B1) and the inorganic filler (B2) with respect to the total of the first resin composition and the second resin composition is 18.0 volumes. %.
(実施例3)
 第1の樹脂層12の厚みを2.5μmとしたことを除き、他は実施例1と同様にして、銅箔11の上に第1の樹脂層12を形成した。すなわち、第1の樹脂組成物には無機充填材を添加しなかった。また、第2の樹脂組成物に対する無機充填材(B2)であるシリカの含有量を20体積%とし、第2の樹脂層13の厚みを5μmとしたことを除き、他は実施例1と同様にして、第1の樹脂層12の上に第2の樹脂層13を形成した。第1の樹脂組成物と第2の樹脂組成物との合計に対する無機充填材(B1)と無機充填材(B2)との合計の含有量(総無機充填材含有量)は、13.3体積%である。
(Example 3)
The first resin layer 12 was formed on the copper foil 11 in the same manner as in Example 1 except that the thickness of the first resin layer 12 was 2.5 μm. That is, no inorganic filler was added to the first resin composition. The same as in Example 1 except that the content of silica as the inorganic filler (B2) in the second resin composition was 20% by volume and the thickness of the second resin layer 13 was 5 μm. The second resin layer 13 was formed on the first resin layer 12. The total content (total inorganic filler content) of the inorganic filler (B1) and the inorganic filler (B2) with respect to the total of the first resin composition and the second resin composition is 13.3 volumes. %.
(実施例4)
 第1の樹脂組成物に無機充填材(B1)としてシリカ(製品名:K180SQ-C1、平均粒径0.18μm、(株)アドマテックス製)を配合(混合)し、第1の樹脂層12の厚みを1μmとしたことを除き、他は実施例1と同様にして、銅箔11の上に第1の樹脂層12を形成した。その際、第1の樹脂組成物に対する無機充填材(B1)であるシリカの含有量(無機充填材(B1)/第1の樹脂組成物×100)は、14体積%とした。
(Example 4)
Silica (product name: K180SQ-C1, average particle size 0.18 μm, manufactured by Admatex Co., Ltd.) is blended (mixed) as an inorganic filler (B1) in the first resin composition, and the first resin layer 12 is mixed. The first resin layer 12 was formed on the copper foil 11 in the same manner as in Example 1 except that the thickness of the resin was 1 μm. At that time, the content of silica as the inorganic filler (B1) with respect to the first resin composition (inorganic filler (B1) / first resin composition × 100) was set to 14% by volume.
 また、第2の樹脂組成物に対する無機充填材(B2)であるシリカの含有量を35体積%とし、第2の樹脂層13の厚みを10μmとしたことを除き、他は実施例1と同様にして、第1の樹脂層12の上に第2の樹脂層13を形成した。第1の樹脂組成物と第2の樹脂組成物との合計に対する無機充填材(B1)と無機充填材(B2)との合計の含有量(総無機充填材含有量)は、33.3体積%である。 The same as in Example 1 except that the content of silica as the inorganic filler (B2) in the second resin composition was 35% by volume and the thickness of the second resin layer 13 was 10 μm. The second resin layer 13 was formed on the first resin layer 12. The total content (total inorganic filler content) of the inorganic filler (B1) and the inorganic filler (B2) with respect to the total of the first resin composition and the second resin composition is 33.3 volumes. %.
(実施例5)
 第1の樹脂組成物に無機充填材(B1)としてシリカ(製品名:K180SQ-C1、平均粒径0.18μm、(株)アドマテックス製)を配合(混合)し、第1の樹脂層12の厚みを2.5μmとしたことを除き、他は実施例1と同様にして、銅箔11の上に第1の樹脂層12を形成した。その際、第1の樹脂組成物に対する無機充填材(B1)であるシリカの含有量(無機充填材(B1)/第1の樹脂組成物×100)は、1.1体積%とした。
(Example 5)
Silica (product name: K180SQ-C1, average particle size 0.18 μm, manufactured by Admatex Co., Ltd.) is blended (mixed) as an inorganic filler (B1) in the first resin composition, and the first resin layer 12 is mixed. The first resin layer 12 was formed on the copper foil 11 in the same manner as in Example 1 except that the thickness of the resin was 2.5 μm. At that time, the content of silica as the inorganic filler (B1) with respect to the first resin composition (inorganic filler (B1) / first resin composition × 100) was set to 1.1% by volume.
 また、第2の樹脂組成物に対する無機充填材(B2)であるシリカの含有量を25体積%とし、第2の樹脂層13の厚みを5μmとしたことを除き、他は実施例1と同様にして、第1の樹脂層12の上に第2の樹脂層13を形成した。第1の樹脂組成物と第2の樹脂組成物との合計に対する無機充填材(B1)と無機充填材(B2)との合計の含有量(総無機充填材含有量)は、22.7体積%である。 The same as in Example 1 except that the content of silica as the inorganic filler (B2) in the second resin composition was 25% by volume and the thickness of the second resin layer 13 was 5 μm. The second resin layer 13 was formed on the first resin layer 12. The total content (total inorganic filler content) of the inorganic filler (B1) and the inorganic filler (B2) with respect to the total of the first resin composition and the second resin composition is 22.7 volumes. %.
(比較例1)
 第1の樹脂層12の厚みを2.5μmとしたことを除き、他は実施例1と同様にして、銅箔11の上に第1の樹脂層12を形成した。すなわち、第1の樹脂組成物には無機充填材を添加しなかった。また、第2の樹脂組成物に無機充填材を添加せず、第2の樹脂層13の厚みを5μmとしたことを除き、他は実施例1と同様にして、第1の樹脂層12の上に第2の樹脂層13を形成した。第1の樹脂組成物と第2の樹脂組成物との合計に対する無機充填材(B1)と無機充填材(B2)との合計の含有量(総無機充填材含有量)は、0.0体積%である。
(Comparative Example 1)
The first resin layer 12 was formed on the copper foil 11 in the same manner as in Example 1 except that the thickness of the first resin layer 12 was 2.5 μm. That is, no inorganic filler was added to the first resin composition. Further, except that the inorganic filler was not added to the second resin composition and the thickness of the second resin layer 13 was set to 5 μm, the other steps were the same as in Example 1 of the first resin layer 12. A second resin layer 13 was formed on the top. The total content (total inorganic filler content) of the inorganic filler (B1) and the inorganic filler (B2) with respect to the total of the first resin composition and the second resin composition is 0.0 volume. %.
(比較例2)
 第1の樹脂組成物に無機充填材(B1)としてシリカ(製品名:K180SQ-C1、平均粒径0.18μm、(株)アドマテックス製)を配合(混合)し、第1の樹脂層12の厚みを2.5μmとしたことを除き、他は実施例1と同様にして、銅箔11の上に第1の樹脂層12を形成した。その際、第1の樹脂組成物に対する無機充填材(B1)であるシリカの含有量(無機充填材(B1)/第1の樹脂組成物×100)は、15体積%とした。
(Comparative Example 2)
Silica (product name: K180SQ-C1, average particle size 0.18 μm, manufactured by Admatex Co., Ltd.) is blended (mixed) as an inorganic filler (B1) in the first resin composition, and the first resin layer 12 is mixed. The first resin layer 12 was formed on the copper foil 11 in the same manner as in Example 1 except that the thickness of the resin was 2.5 μm. At that time, the content of silica as the inorganic filler (B1) with respect to the first resin composition (inorganic filler (B1) / first resin composition × 100) was set to 15% by volume.
 また、第2の樹脂組成物に無機充填材を添加せず、第2の樹脂層13の厚みを5μmとしたことを除き、他は実施例1と同様にして、第1の樹脂層12の上に第2の樹脂層13を形成した。第1の樹脂組成物と第2の樹脂組成物との合計に対する無機充填材(B1)と無機充填材(B2)との合計の含有量(総無機充填材含有量)は、5.0体積%である。 Further, except that the inorganic filler was not added to the second resin composition and the thickness of the second resin layer 13 was set to 5 μm, the other steps were the same as in Example 1 of the first resin layer 12. A second resin layer 13 was formed on the top. The total content (total inorganic filler content) of the inorganic filler (B1) and the inorganic filler (B2) with respect to the total of the first resin composition and the second resin composition is 5.0 volumes. %.
(比較例3)
 第1の樹脂層12の厚みを2.5μmとしたことを除き、他は実施例1と同様にして、銅箔11の上に第1の樹脂層12を形成した。すなわち、第1の樹脂組成物には無機充填材を添加しなかった。また、第2の樹脂組成物に対する無機充填材(B2)であるシリカの含有量を40体積%とし、第2の樹脂層13の厚みを5μmとしたことを除き、他は実施例1と同様にして、第1の樹脂層12の上に第2の樹脂層13を形成した。第1の樹脂組成物と第2の樹脂組成物との合計に対する無機充填材(B1)と無機充填材(B2)との合計の含有量(総無機充填材含有量)は、26.7体積%である。
(Comparative Example 3)
The first resin layer 12 was formed on the copper foil 11 in the same manner as in Example 1 except that the thickness of the first resin layer 12 was 2.5 μm. That is, no inorganic filler was added to the first resin composition. The same as in Example 1 except that the content of silica as the inorganic filler (B2) in the second resin composition was 40% by volume and the thickness of the second resin layer 13 was 5 μm. The second resin layer 13 was formed on the first resin layer 12. The total content (total inorganic filler content) of the inorganic filler (B1) and the inorganic filler (B2) with respect to the total of the first resin composition and the second resin composition is 26.7 volumes. %.
(比較例4)
 第1の樹脂組成物に無機充填材(B1)としてシリカ(製品名:K180SQ-C1、平均粒径0.18μm、(株)アドマテックス製)を配合(混合)し、第1の樹脂層12の厚みを2.5μmとしたことを除き、他は実施例1と同様にして、銅箔11の上に第1の樹脂層12を形成した。その際、第1の樹脂組成物に対する無機充填材(B1)であるシリカの含有量(無機充填材(B1)/第1の樹脂組成物×100)は、25体積%とした。
(Comparative Example 4)
Silica (product name: K180SQ-C1, average particle size 0.18 μm, manufactured by Admatex Co., Ltd.) is blended (mixed) as an inorganic filler (B1) in the first resin composition, and the first resin layer 12 is mixed. The first resin layer 12 was formed on the copper foil 11 in the same manner as in Example 1 except that the thickness of the resin was 2.5 μm. At that time, the content of silica as the inorganic filler (B1) with respect to the first resin composition (inorganic filler (B1) / first resin composition × 100) was set to 25% by volume.
 また、第2の樹脂組成物に対する無機充填材(B2)であるシリカの含有量を14体積%とし、第2の樹脂層13の厚みを5μmとしたことを除き、他は実施例1と同様にして、第1の樹脂層12の上に第2の樹脂層13を形成した。第1の樹脂組成物と第2の樹脂組成物との合計に対する無機充填材(B1)と無機充填材(B2)との合計の含有量(総無機充填材含有量)は、17.7体積%である。 The same as in Example 1 except that the content of silica as the inorganic filler (B2) in the second resin composition was 14% by volume and the thickness of the second resin layer 13 was 5 μm. The second resin layer 13 was formed on the first resin layer 12. The total content (total inorganic filler content) of the inorganic filler (B1) and the inorganic filler (B2) with respect to the total of the first resin composition and the second resin composition is 17.7 volumes. %.
(特性評価)
 各実施例及び各比較例の特性を以下の方法により測定した。
(Characteristic evaluation)
The characteristics of each Example and each Comparative Example were measured by the following methods.
(コンフォーマルレーザー加工性の評価)
 内層回路を形成した銅箔張積層板(HL832NS(商品名) T/T 0.2mmt、三菱ガス化学(株)製)の両面を0.5μm~1μm程度エッチング(内層粗化処理、CZ-8101(商品名)、メック株式会社製)し、その両面に、各実施例及び各比較例で得られた樹脂層付き銅箔10を第2の樹脂層13が内側になるように配置して、圧力30kgf/cm、温度220℃で90分間の積層成形(熱硬化)を行い、4層基板を得た。
(Evaluation of conformal laser workability)
Etching both sides of a copper foil-clad laminate (HL832NS (trade name) T / T 0.2 mmt, manufactured by Mitsubishi Gas Chemical Company, Inc.) on which an inner layer circuit is formed by about 0.5 μm to 1 μm (inner layer roughening treatment, CZ-8101) (Product name), manufactured by MEC Co., Ltd.), and the copper foil 10 with a resin layer obtained in each Example and each Comparative Example was arranged on both sides thereof so that the second resin layer 13 was on the inside. Laminate molding (heat curing) was performed at a pressure of 30 kgf / cm 2 and a temperature of 220 ° C. for 90 minutes to obtain a four-layer substrate.
 得られた各4層基板の表面の銅箔に、サブトラクティブ法により、直径約15μmの円形の開口を形成し、そこにレーザーを照射することにより直径約15μmの非貫通孔を形成した。次いで、スミア除去工程としてめっき用治具に得られた各4層基板のラッキングを行い、膨潤槽、エッチング槽、中和槽に浸漬揺動を行った。薬液は上村工業(株)製のアップデスプロセスを使用した。膨潤液はアップデスMDS-37、エッチング液はアップデスMDE-40およびELC-SHの混合液、中和はアップデスMDN-62を使用した。エッチング槽は温度80℃とし、10分間の浸漬を行った。 A circular opening with a diameter of about 15 μm was formed in the copper foil on the surface of each of the obtained four-layer substrates by a subtractive method, and a non-through hole with a diameter of about 15 μm was formed by irradiating the same with a laser. Next, as a smear removing step, each of the four-layer substrates obtained on the plating jig was racked, and the immersion was shaken in the expansion tank, the etching tank, and the neutralization tank. The chemical solution used was an up-death process manufactured by C. Uyemura & Co., Ltd. The swelling solution was Updes MDS-37, the etching solution was a mixture of Updes MDE-40 and ELC-SH, and the neutralization was Updes MDN-62. The temperature of the etching tank was 80 ° C., and the etching tank was immersed for 10 minutes.
 続いて、めっき用治具に得られた各4層基板のラッキングを行い、無電解銅めっき槽に浸漬揺動ができるアルメックスPE(株)の装置で無電解銅めっきを行った。薬液は上村工業(株)製スルカップPEAおよびホルムアルデヒド混合したものを使用した。無電解銅めっき厚みは0.4μmとした。次に、ビアフィリングめっきとして、アルメックスPE(株)の浸漬タイプの装置を使用し、15μmの厚みになるようにめっきを行った。 Subsequently, each of the four-layer substrates obtained in the plating jig was racked, and electroless copper plating was performed with an device of Armex PE Co., Ltd., which can be immersed and rocked in an electroless copper plating tank. The chemical solution used was a mixture of Sulcup PEA manufactured by C. Uyemura & Co., Ltd. and formaldehyde. The electroless copper plating thickness was 0.4 μm. Next, as the via filling plating, an immersion type device of Almex PE Co., Ltd. was used, and plating was performed so as to have a thickness of 15 μm.
 めっきした各4層基板について、非貫通孔の穴径を確認するために、まず、丸本ストルアス(株)の断面研磨機にて非貫通孔の断面出しを行った。研磨は、#1000の研磨紙を使用して粗削りを行い、#2400の研磨紙で非貫通孔中心の断面を削り出し、仕上げとしてバフ研磨を行った。断面を削り出した後の観察は、金属顕微鏡Olympus(株)のGX51を使用し、50倍又は100倍に倍率を合わせて行った。作成した各試料について、トップ径及びボトム径を計測し、トップボトム比(ボトム径/トップ径)を算出した。得られた結果を表1に示す。表1において、ボトム径/トップ径が、0.7以上1以下であった場合に「〇」、0.7未満及びそれ以外の場合を「×」とした。なお、ボトム径/トップ径が「×」となる場合としては、スミア除去性が悪く、スミアの残存によりボトム径が小さくなる場合、並びに、開口径や第1の樹脂層12及び第2の樹脂層13に占める無機充填材の体積率のバランスが悪く、加工形状が良好でない場合が考えられる。 In order to confirm the hole diameter of the non-through hole in each of the plated 4-layer boards, first, the cross-section of the non-through hole was formed by a cross-section polishing machine of Marumoto Struas Co., Ltd. For polishing, rough cutting was performed using # 1000 polishing paper, a cross section at the center of the non-through hole was cut out with # 2400 polishing paper, and buffing was performed as a finish. The observation after cutting out the cross section was performed using a metallurgical microscope Olympus Co., Ltd. GX51 with a magnification of 50 times or 100 times. The top diameter and bottom diameter were measured for each of the prepared samples, and the top-bottom ratio (bottom diameter / top diameter) was calculated. The results obtained are shown in Table 1. In Table 1, when the bottom diameter / top diameter was 0.7 or more and 1 or less, it was evaluated as “◯”, and when it was less than 0.7 and other cases, it was evaluated as “x”. When the bottom diameter / top diameter is "x", the smear removal property is poor and the bottom diameter becomes small due to the remaining smear, and the opening diameter and the first resin layer 12 and the second resin are used. It is conceivable that the balance of the volume fraction of the inorganic filler in the layer 13 is poor and the processed shape is not good.
(ダイレクトレーザー加工性の評価)
 コンフォーマルレーザー加工性の評価と同様にして、銅箔張積層板の両面に各実施例及び各比較例で得られた樹脂層付き銅箔10を積層し、4層基板を得た。得られた各4層基板について、表層銅箔の黒化処理を行い、そこにレーザーを照射することにより直径約40μmの貫通孔を形成した。次いで、コンフォーマルレーザー加工性の評価と同様にして、スミア除去、無電解銅めっき、及び、ビアフィリングめっきを行った。また、めっきした各4層基板について、コンフォーマルレーザー加工性の評価と同様にして、貫通孔の断面出しを行い、トップ径及びボトム径を計測し、トップボトム比(ボトム径/トップ径)を算出した。得られた結果を表1に示す。評価の「〇」「×」の判定基準は、コンフォーマルレーザー加工性の評価と同様である。
(Evaluation of direct laser workability)
Similar to the evaluation of conformal laser workability, the copper foil 10 with a resin layer obtained in each Example and each Comparative Example was laminated on both sides of a copper foil-clad laminate to obtain a four-layer substrate. The surface copper foil was blackened on each of the obtained four-layer substrates, and a through hole having a diameter of about 40 μm was formed therein by irradiating the surface copper foil with a laser. Next, smear removal, electroless copper plating, and via filling plating were performed in the same manner as in the evaluation of conformal laser processability. In addition, for each of the plated 4-layer substrates, the cross-section of the through holes was made, the top diameter and bottom diameter were measured, and the top-bottom ratio (bottom diameter / top diameter) was determined in the same manner as in the evaluation of conformal laser workability. Calculated. The results obtained are shown in Table 1. The criteria for the evaluation of "○" and "×" are the same as the evaluation of conformal laser workability.
(積層フィルム強度の評価)
 各実施例及び各比較例で得られた樹脂層付き銅箔10について、積層プレス(220℃で90分)した後、表層の銅箔のエッチングをして積層することを繰り返すことで樹脂組成物を含む層の厚さが30μmの樹脂シートを作製し、その一部を切り出すことで試験片を得た。この試験片を、スライドガラス上に置き、微小ビッカース硬度計(商品名:HMV-G、(株)島津製作所製、荷重2kgf、保持時間15秒)で10か所に荷重をかけた。これにより、十字状のひび(クラック)が発生した場合は、ひびの縦と横の長さをそれぞれ測長した。ひびが見られなかった場合は、ひびの長さを0とした。ひびの縦と横の両方の長さから、ひびの長さの平均値を算出して、その平均値が400μm以下の場合は「◎」、401μm以上1000μm以下の場合は「〇」、それ以外の場合は「×」とした。得られた結果を表1に示す。
(Evaluation of laminated film strength)
The resin composition of the copper foil 10 with a resin layer obtained in each Example and each comparative example was repeatedly pressed by laminating press (at 220 ° C. for 90 minutes), and then the copper foil on the surface layer was etched and laminated. A resin sheet having a layer thickness of 30 μm was prepared, and a part thereof was cut out to obtain a test piece. This test piece was placed on a slide glass, and a load was applied to 10 places with a micro Vickers hardness tester (trade name: HMV-G, manufactured by Shimadzu Corporation, load 2 kgf, holding time 15 seconds). As a result, when a cross-shaped crack occurred, the length and width of the crack were measured respectively. When no crack was found, the length of the crack was set to 0. Calculate the average value of the crack length from both the vertical and horizontal lengths of the crack, and if the average value is 400 μm or less, it is “◎”, if it is 401 μm or more and 1000 μm or less, it is “〇”, otherwise. In the case of, it was set as "x". The results obtained are shown in Table 1.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
 表1に示したように、実施例1~5によれば、コンフォーマルレーザー加工性、ダイレクトレーザー加工、及び、積層フィルム強度について、いずれも良好な結果が得られた。これに対して、第2の樹脂組成物における無機充填材(B2)の含有量が15体積%よりも少ない比較例1,2では、スミア残が発生し、コンフォーマルレーザー加工性及びダイレクトレーザー加工について良好な結果が得られなかった。第2の樹脂組成物における無機充填材(B2)の含有量が35体積%よりも多い比較例3では、クラック長が長く、良好な結果が得られなかった。更に、第1の樹脂組成物における無機充填材(B1)の含有量が15体積%よりも多い比較例4では、ダイレクトレーザー加工においてオーバーハングが起き、コンフォーマルレーザー加工性及びダイレクトレーザー加工ともにトップボトム比において良好な結果が得られなかった。 As shown in Table 1, according to Examples 1 to 5, good results were obtained in all of the conformal laser processability, the direct laser process, and the laminated film strength. On the other hand, in Comparative Examples 1 and 2 in which the content of the inorganic filler (B2) in the second resin composition is less than 15% by volume, smear residue is generated, and conformal laser processability and direct laser processing are performed. No good results were obtained. In Comparative Example 3 in which the content of the inorganic filler (B2) in the second resin composition was more than 35% by volume, the crack length was long and good results could not be obtained. Further, in Comparative Example 4 in which the content of the inorganic filler (B1) in the first resin composition is more than 15% by volume, overhang occurs in the direct laser machining, and both the conformal laser workability and the direct laser machining are top. Good results were not obtained in the bottom ratio.
 すなわち、第1の樹脂組成物に無機充填材を添加しないか、又は、無機充填材(B1)を添加し、無機充填材(B1)の含有量を15体積%以下とし、かつ、第2の樹脂組成物に無機充填材(B2)を添加し、無機充填材(B2)の含有量を15体積%以上35体積%以下するようにすれば、クラックの発生を抑えつつ、コンフォーマルレーザー加工においても、ダイレクトレーザー加工においても、良好な加工形状を得られることが分かった。 That is, no inorganic filler is added to the first resin composition, or the inorganic filler (B1) is added to reduce the content of the inorganic filler (B1) to 15% by volume or less and the second. If the inorganic filler (B2) is added to the resin composition so that the content of the inorganic filler (B2) is 15% by volume or more and 35% by volume or less, cracks are suppressed and the conformal laser processing is performed. However, it was found that a good processed shape can be obtained even in direct laser processing.
 10…樹脂層付き銅箔、11…銅箔、12…第1の樹脂層、13…第2の樹脂層、20…積層体、21…導体層、22…基板、23…絶縁層、100…多層コアレス基板、111…第1の絶縁層、112…第2の絶縁層、113…第1の導体層、114…第2の導体層 10 ... Copper foil with resin layer, 11 ... Copper foil, 12 ... First resin layer, 13 ... Second resin layer, 20 ... Laminate, 21 ... Conductor layer, 22 ... Substrate, 23 ... Insulation layer, 100 ... Multilayer coreless substrate, 111 ... first insulating layer, 112 ... second insulating layer, 113 ... first conductor layer, 114 ... second conductor layer

Claims (8)

  1.  銅箔と、前記銅箔の上に積層された第1の樹脂層と、前記第1の樹脂層の上に積層された第2の樹脂層とを有する樹脂層付き銅箔であって、
     前記第1の樹脂層は、熱硬化性樹脂(A1)を含み、かつ、無機充填材を含まない第1の樹脂組成物、又は、熱硬化性樹脂(A1)及び無機充填材(B1)を含み、前記無機充填材(B1)の含有量が15体積%以下である第1の樹脂組成物からなり
     前記第2の樹脂層は、熱硬化性樹脂(A2)及び無機充填材(B2)を含み、前記無機充填材(B2)の含有量が15体積%以上35体積%以下である第2の樹脂組成物からなる
     ことを特徴とする樹脂層付き銅箔。
    A copper foil with a resin layer having a copper foil, a first resin layer laminated on the copper foil, and a second resin layer laminated on the first resin layer.
    The first resin layer is a first resin composition containing a thermosetting resin (A1) and not containing an inorganic filler, or a thermosetting resin (A1) and an inorganic filler (B1). The second resin layer comprises a first resin composition containing 15% by volume or less of the inorganic filler (B1), and the second resin layer contains a thermosetting resin (A2) and an inorganic filler (B2). A copper foil with a resin layer, comprising a second resin composition containing the inorganic filler (B2) having a content of 15% by volume or more and 35% by volume or less.
  2.  前記第1の樹脂組成物と前記第2の樹脂組成物との合計に対する前記無機充填材(B1)と前記無機充填材(B2)との合計の含有量は、2.5体積%以上33.3体積%以下である、請求項1に記載の樹脂層付き銅箔。 The total content of the inorganic filler (B1) and the inorganic filler (B2) with respect to the total of the first resin composition and the second resin composition is 2.5% by volume or more 33. The copper foil with a resin layer according to claim 1, which is 3% by volume or less.
  3.  前記第1の樹脂層の厚みは1μm以上5μm以下である、請求項1に記載の樹脂層付き銅箔。 The copper foil with a resin layer according to claim 1, wherein the thickness of the first resin layer is 1 μm or more and 5 μm or less.
  4.  前記第2の樹脂層の厚みは1μm以上10μm以下である、請求項1に記載の樹脂層付き銅箔。 The copper foil with a resin layer according to claim 1, wherein the thickness of the second resin layer is 1 μm or more and 10 μm or less.
  5.  前記熱硬化性樹脂(A1)は、ポリイミド樹脂、液晶ポリエステル、エポキシ化合物、シアン酸エステル化合物、マレイミド化合物、フェノール化合物、ポリフェニレンエーテル化合物、ベンゾオキサジン化合物、有機基変性シリコーン化合物、及び、重合可能な不飽和基を有する化合物からなる群より選択される少なくとも1種を含有する、請求項1に記載の樹脂層付き銅箔。 The thermosetting resin (A1) includes a polyimide resin, a liquid crystal polyester, an epoxy compound, a cyanate ester compound, a maleimide compound, a phenol compound, a polyphenylene ether compound, a benzoxazine compound, an organic group-modified silicone compound, and a non-polymerizable resin. The copper foil with a resin layer according to claim 1, which contains at least one selected from the group consisting of compounds having a saturated group.
  6.  前記熱硬化性樹脂(A2)は、エポキシ化合物、シアン酸エステル化合物、マレイミド化合物、フェノール化合物、ポリフェニレンエーテル化合物、ベンゾオキサジン化合物、有機基変性シリコーン化合物、及び、重合可能な不飽和基を有する化合物からなる群より選択される少なくとも1種を含有する、請求項1に記載の樹脂層付き銅箔。 The thermosetting resin (A2) is composed of an epoxy compound, a cyanate ester compound, a maleimide compound, a phenol compound, a polyphenylene ether compound, a benzoxazine compound, an organic group-modified silicone compound, and a compound having a polymerizable unsaturated group. The copper foil with a resin layer according to claim 1, which contains at least one selected from the group.
  7.  前記無機充填材(B1)及び前記無機充填材(B2)は水酸化マグネシウム、酸化マグネシウム、シリカ、モリブデン化合物、アルミナ、窒化アルミニウム、ガラス、タルク、チタン化合物、酸化ジルコニウムから選択される少なくとも1種を含有する、請求項1に記載の樹脂層付き銅箔。 The inorganic filler (B1) and the inorganic filler (B2) are at least one selected from magnesium hydroxide, magnesium oxide, silica, molybdenum compound, alumina, aluminum nitride, glass, talc, titanium compound, and zirconium oxide. The copper foil with a resin layer according to claim 1, which is contained.
  8.  導体層と、請求項1に記載の樹脂層付き銅箔を用いて形成されたビルドアップ層を有する積層体。 A laminate having a conductor layer and a build-up layer formed by using the copper foil with the resin layer according to claim 1.
PCT/JP2021/029458 2020-08-13 2021-08-07 Copper foil with resin layer and laminate using same WO2022034871A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180056742.4A CN116075557A (en) 2020-08-13 2021-08-07 Copper foil with resin layer and laminate using the same
JP2022542846A JPWO2022034871A1 (en) 2020-08-13 2021-08-07
KR1020237005096A KR20230050341A (en) 2020-08-13 2021-08-07 Copper foil with a resin layer and a laminate using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020136712 2020-08-13
JP2020-136712 2020-08-13

Publications (1)

Publication Number Publication Date
WO2022034871A1 true WO2022034871A1 (en) 2022-02-17

Family

ID=80247906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/029458 WO2022034871A1 (en) 2020-08-13 2021-08-07 Copper foil with resin layer and laminate using same

Country Status (5)

Country Link
JP (1) JPWO2022034871A1 (en)
KR (1) KR20230050341A (en)
CN (1) CN116075557A (en)
TW (1) TW202216441A (en)
WO (1) WO2022034871A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022211071A1 (en) * 2021-03-31 2022-10-06 太陽ホールディングス株式会社 Curable resin multilayer body, dry film, cured product and electronic component

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008207550A (en) * 2007-01-29 2008-09-11 Somar Corp Resin-coated metal foil and its manufacturing method, and metal clad laminated sheet using the resin-coated metal foil obtained by the manufacturing method and its manufacturing method
WO2010073952A1 (en) * 2008-12-26 2010-07-01 三菱瓦斯化学株式会社 Copper foil with resin
JP2012081586A (en) * 2010-10-06 2012-04-26 Sumitomo Bakelite Co Ltd Resin sheet, laminated plate, electronic component, print wiring board and semiconductor device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6252658B2 (en) 2016-11-16 2017-12-27 味の素株式会社 Insulating resin sheet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008207550A (en) * 2007-01-29 2008-09-11 Somar Corp Resin-coated metal foil and its manufacturing method, and metal clad laminated sheet using the resin-coated metal foil obtained by the manufacturing method and its manufacturing method
WO2010073952A1 (en) * 2008-12-26 2010-07-01 三菱瓦斯化学株式会社 Copper foil with resin
JP2012081586A (en) * 2010-10-06 2012-04-26 Sumitomo Bakelite Co Ltd Resin sheet, laminated plate, electronic component, print wiring board and semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022211071A1 (en) * 2021-03-31 2022-10-06 太陽ホールディングス株式会社 Curable resin multilayer body, dry film, cured product and electronic component

Also Published As

Publication number Publication date
CN116075557A (en) 2023-05-05
KR20230050341A (en) 2023-04-14
TW202216441A (en) 2022-05-01
JPWO2022034871A1 (en) 2022-02-17

Similar Documents

Publication Publication Date Title
JP6769032B2 (en) Thermosetting resin composition, interlayer insulating resin film, interlayer insulating resin film with adhesive auxiliary layer, and printed wiring board
KR101816503B1 (en) Resin composition
TWI760370B (en) Interlayer insulating material and multilayer printed wiring board
JP7332479B2 (en) Resin material, laminated structure and multilayer printed wiring board
TW201418357A (en) Resin composition
JP2019173009A (en) Cured body, resin material and multilayer printed board
WO2022034872A1 (en) Resin layer-equipped copper foil and layered body using same
TW201900768A (en) Resin composition
JP2016010964A (en) Resin sheet and printed wiring board
JP7153242B2 (en) Copper foil with insulating resin layer
TW201631017A (en) Resin composition
WO2022034871A1 (en) Copper foil with resin layer and laminate using same
WO2016088744A1 (en) Resin sheet and printed wiring board
TWI825152B (en) Laminate, metal foil-clad laminate, patterned metal foil-clad laminate, laminate having build-up structure, printed wiring board, multilayer coreless substrate, and method for manufacturing same
TW201817813A (en) Cured body and multilayered substrate
JP2021025051A (en) Resin material and multilayer printed wiring board
WO2020241899A1 (en) Insulating-resin-layer-equipped substrate, and laminated body and laminated body manufacturing method using same
KR20070039761A (en) Thermosetting resin composition containing modified polyimide resin
WO2014157468A1 (en) Laminate, laminated sheet, printed circuit board, and production method for laminate and laminated sheet
TWI618630B (en) Laminated body, laminated board, printed wiring board, manufacturing method of laminated body, and manufacturing method of laminated board
JP2017039898A (en) Resin composition, prepreg, resin sheet, metal foil-clad laminate and printed wiring board
TW202130509A (en) Resin sheet and printed circuit board
WO2019146105A1 (en) Thermosetting resin composition, interlayer insulating resin film, composite film, printed circuit board, and semiconductor package
JP2021025052A (en) Resin material and multilayer printed wiring board
JP2020050829A (en) Resin material and multilayer printed board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21855950

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022542846

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237005096

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21855950

Country of ref document: EP

Kind code of ref document: A1