WO2022034696A1 - Electroconductive composition - Google Patents
Electroconductive composition Download PDFInfo
- Publication number
- WO2022034696A1 WO2022034696A1 PCT/JP2020/031185 JP2020031185W WO2022034696A1 WO 2022034696 A1 WO2022034696 A1 WO 2022034696A1 JP 2020031185 W JP2020031185 W JP 2020031185W WO 2022034696 A1 WO2022034696 A1 WO 2022034696A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- metal particles
- mass
- melting point
- conductive composition
- acrylate
- Prior art date
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 86
- 239000002923 metal particle Substances 0.000 claims abstract description 78
- 150000001875 compounds Chemical class 0.000 claims abstract description 77
- 238000002844 melting Methods 0.000 claims abstract description 62
- 230000008018 melting Effects 0.000 claims abstract description 62
- 239000011230 binding agent Substances 0.000 claims abstract description 36
- 229920001187 thermosetting polymer Polymers 0.000 claims abstract description 17
- 229910052731 fluorine Inorganic materials 0.000 claims abstract description 13
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims abstract description 10
- 239000011737 fluorine Substances 0.000 claims abstract description 10
- 239000004094 surface-active agent Substances 0.000 claims abstract description 10
- 239000004593 Epoxy Substances 0.000 claims description 64
- 239000002245 particle Substances 0.000 claims description 34
- -1 acrylate compound Chemical class 0.000 claims description 33
- 239000003795 chemical substances by application Substances 0.000 claims description 29
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 21
- 229910052709 silver Inorganic materials 0.000 claims description 21
- 239000004332 silver Substances 0.000 claims description 21
- 229910052802 copper Inorganic materials 0.000 claims description 14
- 239000010949 copper Substances 0.000 claims description 14
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 13
- 229910000881 Cu alloy Inorganic materials 0.000 claims description 12
- 230000004907 flux Effects 0.000 claims description 11
- 239000007788 liquid Substances 0.000 claims description 11
- 239000007787 solid Substances 0.000 claims description 11
- 239000003870 refractory metal Substances 0.000 claims description 9
- 229910000679 solder Inorganic materials 0.000 abstract description 34
- 239000003822 epoxy resin Substances 0.000 description 51
- 229920000647 polyepoxide Polymers 0.000 description 51
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 32
- 238000001723 curing Methods 0.000 description 31
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 19
- 239000004065 semiconductor Substances 0.000 description 18
- 239000000539 dimer Substances 0.000 description 14
- 238000007747 plating Methods 0.000 description 14
- 229910052751 metal Inorganic materials 0.000 description 12
- 239000002184 metal Substances 0.000 description 12
- 239000000758 substrate Substances 0.000 description 12
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 11
- 229910045601 alloy Inorganic materials 0.000 description 11
- 239000000956 alloy Substances 0.000 description 11
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 11
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 9
- 229920005989 resin Polymers 0.000 description 9
- 239000011347 resin Substances 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 8
- 238000001465 metallisation Methods 0.000 description 8
- 229910052759 nickel Inorganic materials 0.000 description 8
- 229920003986 novolac Polymers 0.000 description 8
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 7
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 6
- 239000002253 acid Substances 0.000 description 6
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 6
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 6
- 239000011701 zinc Substances 0.000 description 6
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical class NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 5
- 229930185605 Bisphenol Natural products 0.000 description 5
- 229920001971 elastomer Polymers 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000005060 rubber Substances 0.000 description 5
- 229910052718 tin Inorganic materials 0.000 description 5
- KJCVRFUGPWSIIH-UHFFFAOYSA-N 1-naphthol Chemical compound C1=CC=C2C(O)=CC=CC2=C1 KJCVRFUGPWSIIH-UHFFFAOYSA-N 0.000 description 4
- 125000003647 acryloyl group Chemical group O=C([*])C([H])=C([H])[H] 0.000 description 4
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 4
- 125000002091 cationic group Chemical group 0.000 description 4
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical compound C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 150000002430 hydrocarbons Chemical group 0.000 description 4
- 230000007774 longterm Effects 0.000 description 4
- 229920000768 polyamine Polymers 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 229910052725 zinc Inorganic materials 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- 229910001152 Bi alloy Inorganic materials 0.000 description 3
- 229910017482 Cu 6 Sn 5 Inorganic materials 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 3
- 229920000459 Nitrile rubber Polymers 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 229910001128 Sn alloy Inorganic materials 0.000 description 3
- 125000001931 aliphatic group Chemical group 0.000 description 3
- 125000000217 alkyl group Chemical group 0.000 description 3
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 125000003700 epoxy group Chemical group 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 3
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- AFEQENGXSMURHA-UHFFFAOYSA-N oxiran-2-ylmethanamine Chemical compound NCC1CO1 AFEQENGXSMURHA-UHFFFAOYSA-N 0.000 description 3
- 239000005056 polyisocyanate Substances 0.000 description 3
- 229920001228 polyisocyanate Polymers 0.000 description 3
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 3
- 150000004670 unsaturated fatty acids Chemical class 0.000 description 3
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 2
- CDAWCLOXVUBKRW-UHFFFAOYSA-N 2-aminophenol Chemical compound NC1=CC=CC=C1O CDAWCLOXVUBKRW-UHFFFAOYSA-N 0.000 description 2
- XLLIQLLCWZCATF-UHFFFAOYSA-N 2-methoxyethyl acetate Chemical compound COCCOC(C)=O XLLIQLLCWZCATF-UHFFFAOYSA-N 0.000 description 2
- ZCUJYXPAKHMBAZ-UHFFFAOYSA-N 2-phenyl-1h-imidazole Chemical compound C1=CNC(C=2C=CC=CC=2)=N1 ZCUJYXPAKHMBAZ-UHFFFAOYSA-N 0.000 description 2
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 2
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 2
- KWOLFJPFCHCOCG-UHFFFAOYSA-N Acetophenone Chemical compound CC(=O)C1=CC=CC=C1 KWOLFJPFCHCOCG-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 2
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical class OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- 229910000990 Ni alloy Inorganic materials 0.000 description 2
- 239000005642 Oleic acid Substances 0.000 description 2
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 2
- 229910000978 Pb alloy Inorganic materials 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 229910001297 Zn alloy Inorganic materials 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 125000002723 alicyclic group Chemical group 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- WTEOIRVLGSZEPR-UHFFFAOYSA-N boron trifluoride Chemical compound FB(F)F WTEOIRVLGSZEPR-UHFFFAOYSA-N 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 125000001153 fluoro group Chemical group F* 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- 239000012948 isocyanate Substances 0.000 description 2
- 150000002513 isocyanates Chemical class 0.000 description 2
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 2
- HJOVHMDZYOCNQW-UHFFFAOYSA-N isophorone Chemical compound CC1=CC(=O)CC(C)(C)C1 HJOVHMDZYOCNQW-UHFFFAOYSA-N 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 2
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 150000003254 radicals Chemical class 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000001029 thermal curing Methods 0.000 description 2
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical class CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 description 2
- RSJKGSCJYJTIGS-UHFFFAOYSA-N undecane Chemical compound CCCCCCCCCCC RSJKGSCJYJTIGS-UHFFFAOYSA-N 0.000 description 2
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 2
- FKTHNVSLHLHISI-UHFFFAOYSA-N 1,2-bis(isocyanatomethyl)benzene Chemical compound O=C=NCC1=CC=CC=C1CN=C=O FKTHNVSLHLHISI-UHFFFAOYSA-N 0.000 description 1
- ZTNJGMFHJYGMDR-UHFFFAOYSA-N 1,2-diisocyanatoethane Chemical compound O=C=NCCN=C=O ZTNJGMFHJYGMDR-UHFFFAOYSA-N 0.000 description 1
- WZCQRUWWHSTZEM-UHFFFAOYSA-N 1,3-phenylenediamine Chemical compound NC1=CC=CC(N)=C1 WZCQRUWWHSTZEM-UHFFFAOYSA-N 0.000 description 1
- OVBFMUAFNIIQAL-UHFFFAOYSA-N 1,4-diisocyanatobutane Chemical compound O=C=NCCCCN=C=O OVBFMUAFNIIQAL-UHFFFAOYSA-N 0.000 description 1
- CBCKQZAAMUWICA-UHFFFAOYSA-N 1,4-phenylenediamine Chemical compound NC1=CC=C(N)C=C1 CBCKQZAAMUWICA-UHFFFAOYSA-N 0.000 description 1
- PHLQAMBMQBBCKA-UHFFFAOYSA-N 1,6-diisocyanatohexane ethyl carbamate prop-2-enoic acid Chemical compound OC(=O)C=C.CCOC(N)=O.O=C=NCCCCCCN=C=O PHLQAMBMQBBCKA-UHFFFAOYSA-N 0.000 description 1
- 229940008841 1,6-hexamethylene diisocyanate Drugs 0.000 description 1
- VILCJCGEZXAXTO-UHFFFAOYSA-N 2,2,2-tetramine Chemical compound NCCNCCNCCN VILCJCGEZXAXTO-UHFFFAOYSA-N 0.000 description 1
- ZVDSMYGTJDFNHN-UHFFFAOYSA-N 2,4,6-trimethylbenzene-1,3-diamine Chemical compound CC1=CC(C)=C(N)C(C)=C1N ZVDSMYGTJDFNHN-UHFFFAOYSA-N 0.000 description 1
- SBASXUCJHJRPEV-UHFFFAOYSA-N 2-(2-methoxyethoxy)ethanol Chemical compound COCCOCCO SBASXUCJHJRPEV-UHFFFAOYSA-N 0.000 description 1
- XMNIXWIUMCBBBL-UHFFFAOYSA-N 2-(2-phenylpropan-2-ylperoxy)propan-2-ylbenzene Chemical compound C=1C=CC=CC=1C(C)(C)OOC(C)(C)C1=CC=CC=C1 XMNIXWIUMCBBBL-UHFFFAOYSA-N 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- STHCTMWQPJVCGN-UHFFFAOYSA-N 2-[[2-[1,1,2-tris[2-(oxiran-2-ylmethoxy)phenyl]ethyl]phenoxy]methyl]oxirane Chemical compound C1OC1COC1=CC=CC=C1CC(C=1C(=CC=CC=1)OCC1OC1)(C=1C(=CC=CC=1)OCC1OC1)C1=CC=CC=C1OCC1CO1 STHCTMWQPJVCGN-UHFFFAOYSA-N 0.000 description 1
- UJWXADOOYOEBCW-UHFFFAOYSA-N 2-[[2-[bis[2-(oxiran-2-ylmethoxy)phenyl]methyl]phenoxy]methyl]oxirane Chemical compound C1OC1COC1=CC=CC=C1C(C=1C(=CC=CC=1)OCC1OC1)C1=CC=CC=C1OCC1CO1 UJWXADOOYOEBCW-UHFFFAOYSA-N 0.000 description 1
- TXBCBTDQIULDIA-UHFFFAOYSA-N 2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol Chemical compound OCC(CO)(CO)COCC(CO)(CO)CO TXBCBTDQIULDIA-UHFFFAOYSA-N 0.000 description 1
- PQAMFDRRWURCFQ-UHFFFAOYSA-N 2-ethyl-1h-imidazole Chemical compound CCC1=NC=CN1 PQAMFDRRWURCFQ-UHFFFAOYSA-N 0.000 description 1
- YTWBFUCJVWKCCK-UHFFFAOYSA-N 2-heptadecyl-1h-imidazole Chemical compound CCCCCCCCCCCCCCCCCC1=NC=CN1 YTWBFUCJVWKCCK-UHFFFAOYSA-N 0.000 description 1
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 description 1
- LXBGSDVWAMZHDD-UHFFFAOYSA-N 2-methyl-1h-imidazole Chemical compound CC1=NC=CN1 LXBGSDVWAMZHDD-UHFFFAOYSA-N 0.000 description 1
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 1
- BIISIZOQPWZPPS-UHFFFAOYSA-N 2-tert-butylperoxypropan-2-ylbenzene Chemical compound CC(C)(C)OOC(C)(C)C1=CC=CC=C1 BIISIZOQPWZPPS-UHFFFAOYSA-N 0.000 description 1
- LLEASVZEQBICSN-UHFFFAOYSA-N 2-undecyl-1h-imidazole Chemical compound CCCCCCCCCCCC1=NC=CN1 LLEASVZEQBICSN-UHFFFAOYSA-N 0.000 description 1
- FRIBMENBGGCKPD-UHFFFAOYSA-N 3-(2,3-dimethoxyphenyl)prop-2-enal Chemical compound COC1=CC=CC(C=CC=O)=C1OC FRIBMENBGGCKPD-UHFFFAOYSA-N 0.000 description 1
- SZUPZARBRLCVCB-UHFFFAOYSA-N 3-(2-undecylimidazol-1-yl)propanenitrile Chemical compound CCCCCCCCCCCC1=NC=CN1CCC#N SZUPZARBRLCVCB-UHFFFAOYSA-N 0.000 description 1
- RNLHGQLZWXBQNY-UHFFFAOYSA-N 3-(aminomethyl)-3,5,5-trimethylcyclohexan-1-amine Chemical compound CC1(C)CC(N)CC(C)(CN)C1 RNLHGQLZWXBQNY-UHFFFAOYSA-N 0.000 description 1
- QOXOZONBQWIKDA-UHFFFAOYSA-N 3-hydroxypropyl Chemical group [CH2]CCO QOXOZONBQWIKDA-UHFFFAOYSA-N 0.000 description 1
- ZVYGIPWYVVJFRW-UHFFFAOYSA-N 3-methylbutyl prop-2-enoate Chemical compound CC(C)CCOC(=O)C=C ZVYGIPWYVVJFRW-UHFFFAOYSA-N 0.000 description 1
- CYUZOYPRAQASLN-UHFFFAOYSA-N 3-prop-2-enoyloxypropanoic acid Chemical compound OC(=O)CCOC(=O)C=C CYUZOYPRAQASLN-UHFFFAOYSA-N 0.000 description 1
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 1
- YBRVSVVVWCFQMG-UHFFFAOYSA-N 4,4'-diaminodiphenylmethane Chemical compound C1=CC(N)=CC=C1CC1=CC=C(N)C=C1 YBRVSVVVWCFQMG-UHFFFAOYSA-N 0.000 description 1
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N 4,4'-sulfonyldiphenol Chemical compound C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 description 1
- AHIPJALLQVEEQF-UHFFFAOYSA-N 4-(oxiran-2-ylmethoxy)-n,n-bis(oxiran-2-ylmethyl)aniline Chemical compound C1OC1COC(C=C1)=CC=C1N(CC1OC1)CC1CO1 AHIPJALLQVEEQF-UHFFFAOYSA-N 0.000 description 1
- ULKLGIFJWFIQFF-UHFFFAOYSA-N 5K8XI641G3 Chemical compound CCC1=NC=C(C)N1 ULKLGIFJWFIQFF-UHFFFAOYSA-N 0.000 description 1
- CUXGDKOCSSIRKK-UHFFFAOYSA-N 7-methyloctyl prop-2-enoate Chemical compound CC(C)CCCCCCOC(=O)C=C CUXGDKOCSSIRKK-UHFFFAOYSA-N 0.000 description 1
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 1
- 229910015900 BF3 Inorganic materials 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- LCFVJGUPQDGYKZ-UHFFFAOYSA-N Bisphenol A diglycidyl ether Chemical compound C=1C=C(OCC2OC2)C=CC=1C(C)(C)C(C=C1)=CC=C1OCC1CO1 LCFVJGUPQDGYKZ-UHFFFAOYSA-N 0.000 description 1
- 229940126062 Compound A Drugs 0.000 description 1
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 1
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- NLDMNSXOCDLTTB-UHFFFAOYSA-N Heterophylliin A Natural products O1C2COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC2C(OC(=O)C=2C=C(O)C(O)=C(O)C=2)C(O)C1OC(=O)C1=CC(O)=C(O)C(O)=C1 NLDMNSXOCDLTTB-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- OYHQOLUKZRVURQ-HZJYTTRNSA-N Linoleic acid Chemical compound CCCCC\C=C/C\C=C/CCCCCCCC(O)=O OYHQOLUKZRVURQ-HZJYTTRNSA-N 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- FQYUMYWMJTYZTK-UHFFFAOYSA-N Phenyl glycidyl ether Chemical compound C1OC1COC1=CC=CC=C1 FQYUMYWMJTYZTK-UHFFFAOYSA-N 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004820 Pressure-sensitive adhesive Substances 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 1
- 229910020830 Sn-Bi Inorganic materials 0.000 description 1
- 229910007116 SnPb Inorganic materials 0.000 description 1
- 229910018728 Sn—Bi Inorganic materials 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- DAKWPKUUDNSNPN-UHFFFAOYSA-N Trimethylolpropane triacrylate Chemical compound C=CC(=O)OCC(CC)(COC(=O)C=C)COC(=O)C=C DAKWPKUUDNSNPN-UHFFFAOYSA-N 0.000 description 1
- XZAHJRZBUWYCBM-UHFFFAOYSA-N [1-(aminomethyl)cyclohexyl]methanamine Chemical compound NCC1(CN)CCCCC1 XZAHJRZBUWYCBM-UHFFFAOYSA-N 0.000 description 1
- MZVQCMJNVPIDEA-UHFFFAOYSA-N [CH2]CN(CC)CC Chemical group [CH2]CN(CC)CC MZVQCMJNVPIDEA-UHFFFAOYSA-N 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 229920000800 acrylic rubber Polymers 0.000 description 1
- 125000002015 acyclic group Chemical group 0.000 description 1
- 229920000180 alkyd Polymers 0.000 description 1
- 229910002065 alloy metal Inorganic materials 0.000 description 1
- IMUDHTPIFIBORV-UHFFFAOYSA-N aminoethylpiperazine Chemical compound NCCN1CCNCC1 IMUDHTPIFIBORV-UHFFFAOYSA-N 0.000 description 1
- MMCPOSDMTGQNKG-UJZMCJRSSA-N aniline;hydrochloride Chemical compound Cl.N[14C]1=[14CH][14CH]=[14CH][14CH]=[14CH]1 MMCPOSDMTGQNKG-UJZMCJRSSA-N 0.000 description 1
- 125000003710 aryl alkyl group Chemical group 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- LZDHIQDKAYUDND-UHFFFAOYSA-N biphenylene-1,2-diamine Chemical compound C1=CC=C2C3=C(N)C(N)=CC=C3C2=C1 LZDHIQDKAYUDND-UHFFFAOYSA-N 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- RNOOHTVUSNIPCJ-UHFFFAOYSA-N butan-2-yl prop-2-enoate Chemical compound CCC(C)OC(=O)C=C RNOOHTVUSNIPCJ-UHFFFAOYSA-N 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229920005549 butyl rubber Polymers 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- DVBJBNKEBPCGSY-UHFFFAOYSA-M cetylpyridinium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+]1=CC=CC=C1 DVBJBNKEBPCGSY-UHFFFAOYSA-M 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 235000015165 citric acid Nutrition 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000011231 conductive filler Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229930003836 cresol Natural products 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- KBLWLMPSVYBVDK-UHFFFAOYSA-N cyclohexyl prop-2-enoate Chemical compound C=CC(=O)OC1CCCCC1 KBLWLMPSVYBVDK-UHFFFAOYSA-N 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- KEIQPMUPONZJJH-UHFFFAOYSA-N dicyclohexylmethanediamine Chemical compound C1CCCCC1C(N)(N)C1CCCCC1 KEIQPMUPONZJJH-UHFFFAOYSA-N 0.000 description 1
- SBZXBUIDTXKZTM-UHFFFAOYSA-N diglyme Chemical compound COCCOCCOC SBZXBUIDTXKZTM-UHFFFAOYSA-N 0.000 description 1
- 125000005442 diisocyanate group Chemical group 0.000 description 1
- SZXQTJUDPRGNJN-UHFFFAOYSA-N dipropylene glycol Chemical compound OCCCOCCCO SZXQTJUDPRGNJN-UHFFFAOYSA-N 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 235000019197 fats Nutrition 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 229930195712 glutamate Natural products 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 238000013007 heat curing Methods 0.000 description 1
- HCDGVLDPFQMKDK-UHFFFAOYSA-N hexafluoropropylene Chemical compound FC(F)=C(F)C(F)(F)F HCDGVLDPFQMKDK-UHFFFAOYSA-N 0.000 description 1
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 1
- ACCCMOQWYVYDOT-UHFFFAOYSA-N hexane-1,1-diol Chemical compound CCCCCC(O)O ACCCMOQWYVYDOT-UHFFFAOYSA-N 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- NUKZAGXMHTUAFE-UHFFFAOYSA-N hexanoic acid methyl ester Natural products CCCCCC(=O)OC NUKZAGXMHTUAFE-UHFFFAOYSA-N 0.000 description 1
- LNMQRPPRQDGUDR-UHFFFAOYSA-N hexyl prop-2-enoate Chemical compound CCCCCCOC(=O)C=C LNMQRPPRQDGUDR-UHFFFAOYSA-N 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 229920003049 isoprene rubber Polymers 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 235000020778 linoleic acid Nutrition 0.000 description 1
- OYHQOLUKZRVURQ-IXWMQOLASA-N linoleic acid Natural products CCCCC\C=C/C\C=C\CCCCCCCC(O)=O OYHQOLUKZRVURQ-IXWMQOLASA-N 0.000 description 1
- 229940018564 m-phenylenediamine Drugs 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- QOHMWDJIBGVPIF-UHFFFAOYSA-N n',n'-diethylpropane-1,3-diamine Chemical compound CCN(CC)CCCN QOHMWDJIBGVPIF-UHFFFAOYSA-N 0.000 description 1
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 235000021313 oleic acid Nutrition 0.000 description 1
- 150000004010 onium ions Chemical class 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- IGALFTFNPPBUDN-UHFFFAOYSA-N phenyl-[2,3,4,5-tetrakis(oxiran-2-ylmethyl)phenyl]methanediamine Chemical compound C=1C(CC2OC2)=C(CC2OC2)C(CC2OC2)=C(CC2OC2)C=1C(N)(N)C1=CC=CC=C1 IGALFTFNPPBUDN-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920001084 poly(chloroprene) Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000003505 polymerization initiator Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- WGYKZJWCGVVSQN-UHFFFAOYSA-N propylamine Chemical group CCCN WGYKZJWCGVVSQN-UHFFFAOYSA-N 0.000 description 1
- LVTJOONKWUXEFR-FZRMHRINSA-N protoneodioscin Natural products O(C[C@@H](CC[C@]1(O)[C@H](C)[C@@H]2[C@]3(C)[C@H]([C@H]4[C@@H]([C@]5(C)C(=CC4)C[C@@H](O[C@@H]4[C@H](O[C@H]6[C@@H](O)[C@@H](O)[C@@H](O)[C@H](C)O6)[C@@H](O)[C@H](O[C@H]6[C@@H](O)[C@@H](O)[C@@H](O)[C@H](C)O6)[C@H](CO)O4)CC5)CC3)C[C@@H]2O1)C)[C@H]1[C@H](O)[C@H](O)[C@H](O)[C@@H](CO)O1 LVTJOONKWUXEFR-FZRMHRINSA-N 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 150000003505 terpenes Chemical class 0.000 description 1
- 235000007586 terpenes Nutrition 0.000 description 1
- ISXSCDLOGDJUNJ-UHFFFAOYSA-N tert-butyl prop-2-enoate Chemical compound CC(C)(C)OC(=O)C=C ISXSCDLOGDJUNJ-UHFFFAOYSA-N 0.000 description 1
- CIHOLLKRGTVIJN-UHFFFAOYSA-N tert‐butyl hydroperoxide Chemical compound CC(C)(C)OO CIHOLLKRGTVIJN-UHFFFAOYSA-N 0.000 description 1
- BJQWBACJIAKDTJ-UHFFFAOYSA-N tetrabutylphosphanium Chemical compound CCCC[P+](CCCC)(CCCC)CCCC BJQWBACJIAKDTJ-UHFFFAOYSA-N 0.000 description 1
- FAGUFWYHJQFNRV-UHFFFAOYSA-N tetraethylenepentamine Chemical compound NCCNCCNCCNCCN FAGUFWYHJQFNRV-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- RUELTTOHQODFPA-UHFFFAOYSA-N toluene 2,6-diisocyanate Chemical compound CC1=C(N=C=O)C=CC=C1N=C=O RUELTTOHQODFPA-UHFFFAOYSA-N 0.000 description 1
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 1
- WLOQLWBIJZDHET-UHFFFAOYSA-N triphenylsulfonium Chemical compound C1=CC=CC=C1[S+](C=1C=CC=CC=1)C1=CC=CC=C1 WLOQLWBIJZDHET-UHFFFAOYSA-N 0.000 description 1
- 239000012953 triphenylsulfonium Substances 0.000 description 1
- 239000011592 zinc chloride Substances 0.000 description 1
- 235000005074 zinc chloride Nutrition 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/40—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
- C08G59/44—Amides
- C08G59/46—Amides together with other curing agents
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/08—Metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/02—Halogenated hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/02—Ingredients treated with inorganic substances
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L33/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
- C08L33/04—Homopolymers or copolymers of esters
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L63/00—Compositions of epoxy resins; Compositions of derivatives of epoxy resins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/20—Conductive material dispersed in non-conductive organic material
- H01B1/22—Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
Definitions
- the present invention relates to a conductive composition.
- a multilayer substrate in which a plurality of conductive layers and an insulating layer are laminated has been used for the purpose of high-density mounting.
- a conductive paste used for filling holes in a multilayer substrate a paste containing a curing agent, a thermosetting resin, and a metal powder is known.
- a via or a through hole is first formed on the wiring board, the inner wall surface of the via or the through hole is plated to obtain conduction above and below the substrate, and then the formed through hole is filled with the conductive paste.
- the filled paste is heat-cured and used (for example, Patent Documents 1 and 2).
- the conductive fillers come into contact with each other to obtain conductivity.
- POP Package On Package
- the conventional POP structure 2 in which the semiconductor packages using the conductive layer 21 and the mold resin 22 are laminated with each other is on the cured product 23 which is filled with the vias of the lower semiconductor package P1 and cured.
- the lid plating 25 is applied to the lid plating 25, bumps 24 are formed on the lid plating 25 by soldering or the like, and the upper semiconductor package P2 is laminated via the bumps 24.
- the conventional conductive paste has a problem that when the solder is to be mounted after being filled and cured in vias or the like, the wettability of the solder is poor and the bumps cannot be formed satisfactorily because they are repelled on the cured product of the paste. there were.
- the present invention has been made in view of the above, and an object of the present invention is to provide a conductive composition capable of forming a cured product having good solder wettability.
- the present inventors have made a conductive composition containing a binder component containing a thermosetting compound, low melting point metal particles, high melting point metal particles, and a fluorine-based surfactant. According to this, it was found that a cured product having good wettability of solder can be formed.
- the present invention has been completed based on these findings.
- the present invention contains a binder component containing a thermosetting compound, metal particles, and a fluorine-based surfactant, and the metal particles have a low melting point metal particle having a melting point of 240 ° C. or lower and a high melting point having a melting point of 800 ° C. or higher.
- a conductive composition containing metal particles wherein the content of the metal particles is 1000 to 2000 parts by mass and the content of the low melting point metal particles is 10 to 900 parts by mass with respect to 100 parts by mass of the binder component. do.
- the mass ratio [low melting point metal particles / high melting point metal particles] of the low melting point metal particles to the high melting point metal particles is preferably 0.005 to 2.0.
- thermosetting compound preferably contains at least one of an epoxy compound and an acrylate compound.
- the epoxy compound preferably contains at least one of a liquid epoxy compound and a solid epoxy compound.
- the conductive composition preferably further contains a flux.
- the refractory metal particles preferably contain one or more metal particles selected from the group consisting of silver particles, copper particles, silver-coated copper particles, and silver-coated copper alloy particles.
- the conductive composition preferably further contains a curing agent.
- the conductive composition of the present invention it is possible to form a cured product having good solder wettability. Therefore, according to the conductive composition of the present invention, a POP structure can be formed without subjecting lid plating, further miniaturization is possible, and manufacturing ease is excellent.
- FIG. 3 is an enlarged cross-sectional view showing a state in which solder is repelled on a cured product of the conductive composition.
- the conductive composition of the present invention contains at least a binder component, metal particles, and a fluorine-based surfactant.
- the conductive composition of the present invention may contain other components other than the above-mentioned components.
- the binder component contains at least a thermosetting compound.
- the binder component binds other components to a cured product (cured product of the conductive composition) formed by heat-curing at least one kind of thermosetting compound after filling the conductive composition, and the cured product. It has the role of forming a matrix.
- the binder component only one kind may be used, or two or more kinds may be used.
- thermosetting compound examples include epoxy compounds, acrylate compounds, phenolic resins, urethane resins, melamine resins, alkyd resins and the like. Above all, from the viewpoint that the binder resin formed after thermosetting has excellent adhesion to the through-hole wall surface of the cured product, it is preferable to use at least one of the epoxy compound and the acrylate compound, and it is preferable to use both the epoxy compound and the acrylate compound. More preferred. As the thermosetting compound, only one kind may be used, or two or more kinds may be used.
- the above epoxy compound is a compound having at least one epoxy group (oxylanyl group) in the molecule (in one molecule).
- the epoxy compound may be a solid epoxy compound at room temperature or a liquid epoxy compound at room temperature.
- the epoxy compound may contain both a solid epoxy compound at room temperature and an epoxy compound liquid at room temperature from the viewpoint of having a viscosity suitable for filling through holes.
- As the epoxy compound only one kind may be used, or two or more kinds may be used.
- an epoxy compound that is solid at room temperature may be referred to as a "solid epoxy compound”.
- an epoxy compound that is liquid at room temperature may be referred to as a “liquid epoxy compound”.
- solid at room temperature means a state in which fluidity is not exhibited in a solvent-free state at 25 ° C.
- liquid at room temperature means a state showing fluidity in a solvent-free state at 25 ° C.
- the epoxy compound is not particularly limited, and for example, a bisphenol type epoxy resin, a spirocyclic epoxy resin, a naphthalene type epoxy resin, a biphenyl type epoxy resin, a terpene type epoxy resin, a novolak type epoxy resin, and a dimer acid-modified epoxy compound.
- a bisphenol type epoxy resin a spirocyclic epoxy resin, a naphthalene type epoxy resin, a biphenyl type epoxy resin, a terpene type epoxy resin, a novolak type epoxy resin, and a dimer acid-modified epoxy compound.
- Examples thereof include a glycidylamine type epoxy compound, a glycidyl ether type epoxy compound, a rubber-modified epoxy resin, and a chelate-modified epoxy resin.
- bisphenol type epoxy resin examples include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, tetrabrom bisphenol A type epoxy resin and the like.
- novolak type epoxy resin examples include cresol novolac type epoxy resin, phenol novolac type epoxy resin, ⁇ -naphthol novolac type epoxy resin, brominated phenol novolac type epoxy resin and the like.
- the dimer acid-modified epoxy resin is an epoxy resin modified with dimer acid, that is, a reaction between at least one carboxyl group in the dimer acid structure and a polyfunctional epoxy resin.
- dimer acid is a dimer of unsaturated fatty acids.
- the raw material unsaturated fatty acid is not particularly limited, but for example, plant-derived fats and oils containing an unsaturated fatty acid having 18 carbon atoms such as oleic acid and linoleic acid as a main component can be used.
- the structure of dimer acid may be cyclic or acyclic.
- the epoxy resin that undergoes dimer acid modification is not particularly limited, and examples thereof include the epoxy resin exemplified as the above-mentioned epoxy compound.
- the epoxy resin contained in the dimer acid-modified epoxy resin only one kind may be used, or two or more kinds may be used.
- a known dimer acid-modified epoxy resin obtained by modifying various epoxy resins such as bisphenol type, ether ester type, novolak epoxy type, ester type, aliphatic type, and aromatic type with dimer acid can be used.
- glycidylamine type epoxy compound examples include aminophenol type epoxy resins such as tetraglycidyldiaminodiphenylmethane and N, N-bis (2,3-epoxypropyl) -4- (2,3-epoxypropoxy) aniline. Can be mentioned.
- Examples of the glycidyl ether type epoxy compound include tris (glycidyloxyphenyl) methane, tetrakis (glycidyloxyphenyl) ethane, and glycidyl alkyl ether.
- the rubber-modified epoxy resin imparts flexibility to the cured product of the conductive composition, maintains heat resistance due to the epoxy compound, improves the adhesion of the cured product to the through-hole wall surface, and causes cracks. It can be suppressed.
- the rubber-modified epoxy resin contains a rubber component in the epoxy resin.
- the rubber component include butadiene rubber, acrylic rubber, silicone rubber, butyl rubber, isoprene rubber, styrene rubber, chloroprene rubber, NBR, SBR, IR, EPR and the like.
- the rubber component only one kind may be used, or two or more kinds may be used.
- an epoxy resin modified with NBR NBR-modified epoxy resin
- NBR-modified epoxy resin is particularly preferable.
- the epoxy resin that undergoes rubber modification is not particularly limited, and examples thereof include the epoxy resin exemplified as the above-mentioned epoxy compound.
- the epoxy resin contained in the rubber-modified epoxy resin only one kind may be used, or two or more kinds may be used.
- the epoxy equivalent of the above epoxy compound is not particularly limited, but the number of grams (epoxy equivalent) of the resin containing 1 gram equivalent of the epoxy group measured by a method based on JIS K7236 is preferably 40 to 800 g / eq, and is preferably 80 to 80. 500 g / eq is more preferable.
- the epoxy equivalent is 40 g / eq or more, the adhesiveness of the cured product of the conductive composition to the through-hole wall surface is more excellent. Further, when the epoxy equivalent is 800 g / eq or less, the heat resistance is more excellent.
- the epoxy equivalent of the dimer acid-modified epoxy resin is preferably 100 to 800 g / eq, more preferably 300 to 600 g / eq.
- the molecular weight of the dimer acid-modified epoxy resin is not particularly limited and may be appropriately selected depending on the intended use. For example, for hole filling applications, the mass average molecular weight is preferably 100 to 5000.
- the rubber-modified epoxy resin preferably has an epoxy equivalent of 40 to 500 g / eq, more preferably 70 to 400.
- the epoxy equivalent is 40 g / eq or more, the adhesiveness of the cured product of the conductive composition to the through-hole wall surface is more excellent. Further, when the epoxy equivalent is 500 g / eq or less, the heat resistance is more excellent.
- epoxy compound bisphenol type epoxy resin, glycidylamine type epoxy compound, and glycidyl ether type epoxy compound are preferable.
- bisphenol type epoxy resin bisphenol A type epoxy resin and bisphenol F type epoxy resin are more preferable.
- the content ratio of the epoxy compound in the binder component is not particularly limited, but is preferably 40 to 100% by mass, more preferably 50 to 90% by mass, and further preferably 50 to 90% by mass with respect to 100% by mass of the total amount of the binder component. It is preferably 60 to 80% by mass.
- the content ratio is 40% by mass or more, the heat resistance of the cured product of the conductive composition is excellent.
- the content ratio is 90% by mass or less, the acrylate compound can be sufficiently contained, and the effect thereof can be sufficiently obtained.
- the content ratio of the epoxy compound is the total content ratio of all the epoxy compounds in the conductive composition of the present invention.
- the content ratio of the rubber-modified epoxy resin in the binder component is not particularly limited, but is preferably 0 to 30% by mass, more preferably 5 to 15% by mass, based on 100% by mass of the total amount of the binder component. be. When the content ratio is 5% by mass or more, the flexibility of the cured product of the conductive composition is more excellent. When the content ratio is 30% by mass or less, other epoxy compounds and acrylate compounds can be sufficiently contained, and the effects of these binder components can be sufficiently obtained.
- the content ratio of the rubber-modified epoxy resin is the total content ratio of all the rubber-modified epoxy resins in the conductive composition of the present invention.
- the content ratio of the solid epoxy compound in the binder component is not particularly limited, but is preferably 0 to 30% by mass, more preferably 1 to 20% by mass, based on 100% by mass of the total amount of the binder component. ..
- the content ratio of the liquid epoxy compound in the binder component is not particularly limited, but is preferably 30 to 100% by mass, more preferably 40 to 90% by mass, based on 100% by mass of the total amount of the binder component. Is. With the above content ratio, the balance between the solid epoxy compound and the liquid epoxy compound becomes good, and the viscosity can be made more suitable for filling through holes.
- R is a hydrogen atom or an alkyl group (particularly an alkyl group having 1 to 3 carbon atoms)).
- examples thereof include compounds having a (meth) acryloyl group.
- “(meth) acryloyl” means acryloyl and / or methacryloyl.
- As the acrylate compound a compound having two or more (meth) acryloyl groups in one molecule (polyfunctional acrylate compound) is preferable.
- the acrylate compound only one kind may be used, or two or more kinds may be used.
- acrylate compound examples include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate, and isobutyl (meth) acrylate.
- (meth) acrylic acid alkyl ester having a linear or branched alkyl group (meth) acrylic acid; carboxyethyl acrylate, etc.
- Carboxyl group-containing (meth) acrylic acid ester 2-hydroxymethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 6-hydroxyhexyl Hydroxyl group-containing (meth) acrylic acid esters such as (meth) acrylates, diethylene glycol mono (meth) acrylates, and dipropylene glycol mono (meth) acrylates; (meth) acrylic acid cycloalkyl esters such as (meth) cyclohexyl acrylate; N.
- -(Meta) acrylic acid amide derivatives such as methylol (meth) acrylamide, N-butoxymethyl (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide; dimethylaminoethyl (meth) ) Acrylate, diethylaminoethyl (meth) acrylate, dipropylaminoethyl (meth) acrylate, dimethylaminopropyl (meth) acrylate, dipropylaminopropyl (meth) acrylate and other (meth) acrylic acid dialkylaminoalkyl esters. Be done.
- 2-hydroxy-3-acryloyloxypropyl (meth) acrylate, phenylglycidyl ether (meth) acrylate hexamethylene diisocyanate urethane prepolymer, bisphenol A diglycidyl ether acrylic acid adduct and the like can also be mentioned.
- polyfunctional acrylate compound examples include neopentyl glycol di (meth) acrylate, trimethylol propanetri (meth) acrylate, ditrimethylol propanetetra (meth) acrylate, ethylene glycol di (meth) acrylate, and diethylene glycol di (meth) acrylate.
- the content ratio of the acrylate compound in the binder component is not particularly limited, but is preferably 0 to 60% by mass, more preferably 10 to 50% by mass, and further preferably 10 to 50% by mass with respect to 100% by mass of the total amount of the binder component. It is preferably 20 to 40% by mass. When the content ratio is 60% by mass or less, the epoxy compound can be sufficiently contained, and the effect thereof can be sufficiently obtained. When the content ratio is 10% by mass or more, the adhesion of the cured product of the conductive composition is more excellent. In particular, it is preferable that the content ratio of the polyfunctional acrylate compound in the binder component is within the above range.
- the content ratio of the acrylate compound is the total content ratio of all the acrylate compounds in the conductive composition of the present invention.
- the content ratio of the binder component (particularly, the total of the epoxy compound and the acrylate compound) in the conductive composition of the present invention is not particularly limited, but is 3 to 15% by mass with respect to 100% by mass of the conductive composition of the present invention. %, More preferably 4 to 12% by mass, still more preferably 5 to 10% by mass.
- the metal particles include low melting point metal particles having a melting point of 240 ° C. or lower and high melting point metal particles having a melting point of 800 ° C. or higher.
- low melting point metal particles having a melting point of 240 ° C. or lower are simply referred to as “low melting point metal particles”
- high melting point metal particles having a melting point of 800 ° C. or higher are simply referred to as "high melting point metal particles”.
- the conductive composition of the present invention contains the low melting point metal particles and the high melting point metal particles as metal particles, the metal particles are metallized by heating, and the formed cured product imparts excellent conductivity.
- metallization means that at least a part of two or more kinds of metals is melted and integrated.
- Each of the above metal particles may be made of a single metal or may be made of an alloy of two or more kinds of metals.
- Examples of the low melting point metal particles include indium (melting point: 156 ° C.), tin (melting point: 232 ° C.), and alloys having a melting point of 240 ° C. or lower.
- Examples of the alloy include alloys containing one or more (preferably two or more) selected from the group consisting of indium, tin, lead, and bismuth. Examples of such alloys include SnPb, SnBi, SnPbBi and the like.
- As the low melting point metal particles only one kind may be used, or two or more kinds may be used.
- the low melting point metal particles are preferably metal particles containing tin, and examples thereof include tin and bismuth alloys, tin and lead alloys, and tin and bismuth and lead alloys. Of these, an alloy of tin and bismuth is preferable.
- the metal ratio [Sn: Bi] in the alloy is particularly preferably 80:20 to 35:65.
- the refractory metal particles examples include gold (melting point: 1064 ° C.), silver (melting point: 961 ° C.), copper (melting point: 1083 ° C.), nickel (melting point: 1455 ° C.), zinc (melting point: 420 ° C.), and the like. Alternatively, an alloy containing one or more of these and having a melting point of 800 ° C. or higher can be mentioned. As the refractory metal particles, only one kind may be used, or two or more kinds may be used.
- the refractory metal particles may be metal-coated metal particles, and examples thereof include silver-coated copper particles, gold-coated copper particles, silver-coated nickel particles, gold-coated nickel particles, and silver-coated alloy particles.
- the silver-coated alloy particles include silver-coated copper alloy particles in which alloy particles containing copper (for example, copper alloy particles made of an alloy of copper, nickel, and zinc) are coated with silver.
- the refractory metal particles are preferably silver-containing metal particles and copper-containing metal particles, and more preferably silver particles and copper particles, from the viewpoint of excellent conductivity. Further, from the viewpoint of excellent conductivity and low cost, copper-containing metal particles are preferable, and silver-coated copper particles and silver-coated copper alloy particles are more preferable. Metal particles with a silver surface have a longer pot life in the conductive composition.
- the copper alloy in the silver-coated copper alloy particles preferably contains nickel and / or zinc.
- zinc contributes to the improvement of conductivity
- nickel contributes to the improvement of long-term reliability. Therefore, it is preferable to adjust the ratio of both according to the use of the conductive composition and the like.
- an alloy layer of Cu 6 Sn 5 is formed by metallization, but if Cu 6 Sn 5 is excessively formed, mechanical properties such as tensile strength deteriorate. do. Therefore, when nickel is added to the copper alloy powder, (Cu, Ni) 6 Sn 5 is formed, the excessive formation of Cu 6 Sn 5 is suppressed, and the elastic modulus of the cured product of the conductive composition is increased. It is thought that the long-term reliability of the target characteristics will improve.
- the content ratios of nickel and zinc are preferably 1 to 40% by mass, more preferably 1 to 30% by mass, and further preferably 1 to 15% by mass.
- the shape of the metal particles examples include spherical shape, flake shape (scale shape), dendritic shape, fibrous shape, and amorphous shape (polyhedron). Above all, a spherical shape is preferable from the viewpoint of higher coating stability of the conductive composition and better conductivity.
- the average particle size (D50) of the metal particles is preferably 0.5 to 30 ⁇ m, more preferably 1 to 10 ⁇ m.
- the content of the metal particles is 1000 to 2000 parts by mass, preferably 1100 to 1900 parts by mass, and more preferably 1200 to 1800 parts by mass with respect to 100 parts by mass of the total amount of the binder component.
- the content is 1000 parts by mass or more, the conductivity of the cured product of the conductive composition becomes good.
- the content is 2000 parts by mass or less, the adhesion of the cured product to the through-hole wall surface is good. Further, when it is within the above range, the viscosity, pot life, and long-term reliability of the conductive composition are improved.
- the content of the low melting point metal particles is 10 to 900 parts by mass, preferably 20 to 800 parts by mass, more preferably 50 to 600 parts by mass, and further preferably more preferably 50 parts by mass with respect to 100 parts by mass of the total amount of the binder component. It is 150 to 350 parts by mass.
- the content is 10 parts by mass or more, metallization is promoted.
- the content is 900 parts by mass or less, the wettability of the solder to the cured product of the conductive composition becomes good.
- the content of the refractory metal particles is not particularly limited, but is preferably 900 to 1990 parts by mass, more preferably 1000 to 1800 parts by mass, and further preferably 1000 parts by mass with respect to 100 parts by mass of the total amount of the binder component. It is 1100 to 1300 parts by mass.
- the mass ratio of the low melting point metal particles to the high melting point metal particles is not particularly limited, but is preferably 0.005 to 2.0, more preferably 0.01 to 0.01. It is 1.0, more preferably 0.1 to 0.6, and particularly preferably 0.15 to 0.32. When the mass ratio is 0.005 or more, metallization is further promoted. When the mass ratio is 2.0 or less, the wettability of the solder to the cured product of the conductive composition becomes better.
- the fluorine-based surfactant is not particularly limited, and examples thereof include compounds having a fluoroaliphatic hydrocarbon skeleton.
- a fluoroaliphatic hydrocarbon skeleton In the above fluoroaliphatic hydrocarbon skeleton, at least a part of hydrogen atoms may be replaced with a fluorine atom, but from the viewpoint of better wettability of the solder to the cured product of the conductive composition, all hydrogens are used. It is preferably a perfluoroaliphatic hydrocarbon skeleton in which the atom is substituted with a fluorine atom.
- the above-mentioned fluorine-based surfactant only one kind may be used, or two or more kinds may be used.
- the fluoroaliphatic hydrocarbon skeleton includes a compound represented by the following general formula (I), an oligomer of a compound represented by the above general formula (I), and an oligomer of a compound represented by the above general formula (I).
- a compound as a main skeleton is preferable.
- Hexafluoropropene is particularly preferable as the compound represented by the general formula (I).
- Examples of the compound oligomer represented by the general formula (I) include polymers in which 2 to 100 compounds represented by the general formula (I) are bonded, and a hexafluoropropentrimer is particularly preferable.
- R 1 , R 2 , R 3 , and R 4 represent F, CF 3 , C 2 F 5 , or C 3 F 7 , respectively, which are the same or different.
- the content of the fluorosurfactant is not particularly limited, but is preferably 0.1 to 10 parts by mass, more preferably 0.2 to 8 parts by mass with respect to 100 parts by mass of the total amount of the binder component. Parts, more preferably 0.3 to 6 parts by mass, still more preferably 1 to 5 parts by mass, and particularly preferably 2 to 4 parts by mass.
- the content is 0.1 part by mass or more, the wettability of the solder to the cured product of the conductive composition becomes better.
- the content is 10 parts by mass or less, the curing inhibition of the epoxy compound can be made more difficult to occur, and the curability of the conductive composition becomes better.
- the conductive composition of the present invention preferably further contains a curing agent.
- the curing agent has a role of curing at least one kind of thermosetting compound.
- the curing agent preferably has a functional group that is reactive with the epoxy group. As the curing agent, only one kind may be used, or two or more kinds may be used.
- the curing agent examples include isocyanate-based curing agents, phenol-based curing agents, imidazole-based curing agents, amine-based curing agents, cationic-based curing agents, radical-based curing agents, and the like.
- the curing agent a phenol-based curing agent and a cationic-based curing agent are preferable.
- Examples of the isocyanate-based curing agent include lower aliphatic polyisocyanates such as 1,2-ethylene diisocyanate, 1,4-butylene diisocyanate, and 1,6-hexamethylene diisocyanate; cyclopentylene diisocyanate, cyclohexylene diisocyanate, and isophorone.
- Alicyclic polyisocyanates such as diisocyanate, hydrogenated tolylene diisocyanate, hydrogenated xylene diisocyanate; 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, xylylene diisocyanate, etc.
- Examples include aromatic polyisocyanates.
- phenol-based curing agent examples include novolak phenol and naphthol-based compounds.
- imidazole-based curing agent examples include imidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2-methylimidazole, 2-ethylimidazole, 2-phenylimidazole, 2-ethyl-4-methyl-imidazole, 1 -Cyanoethyl-2-undecylimidazole, 2-phenylimidazole and the like can be mentioned.
- amine-based curing agent examples include aliphatic polyamines such as ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, dipropylenediamine, diethylaminopropylamine and polypropylenetriamine; mensendiamine, isophoronediamine and bis (4-).
- Alicyclic polyamines such as undecane; m-phenylenediamine, p-phenylenediamine, tolylen-2,4-diamine, tolylen-2,6-diamine, mesitylene-2,4-diamine, 3,5- Mononuclear polyamines such as diethyltrilen-2,4-diamine, 3,5-diethyltrilen-2,6-diamine, biphenylenediamine, 4,4-diaminodiphenylmethane, 2,5-naphthylenediamine, 2,6 -Aromatic polyamine
- Examples of the cationic curing agent include an amine salt of boron trifluoride, p-methoxybenzenediazonium hexafluorophosphate, diphenyliodonium hexafluorophosphate, triphenylsulfonium, tetra-n-butylphosphonium tetraphenylborate, and tetra.
- Examples thereof include onium compounds such as -n-butylphosphonium-o and o-diethylphosphologithioate.
- radical curing agent examples include dicumyl peroxide, t-butyl cumyl peroxide, t-butyl hydroperoxide, cumene hydroperoxide and the like.
- the content of the curing agent is preferably 0.5 to 10 parts by mass, more preferably 1 to 8 parts by mass, and further preferably 2 to 6 parts by mass with respect to 100 parts by mass of the total amount of the binder component. Is. When the content is 0.5 parts by mass or more, the thermosetting component in the binder component is sufficiently cured. When the content is 10 parts by mass or less, the conductivity of the cured product of the conductive composition becomes good.
- the conductive composition of the present invention preferably further contains a flux.
- the flux has a role of promoting metallization of metal particles.
- the flux include zinc chloride, lactic acid, citric acid, oleic acid, stearic acid, glutamic acid, benzoic acid, oxalic acid, glutamate hydrochloride, aniline hydrochloride, cetylpyridine bromide, urea, triethanolamine, glycerin, and the like.
- Examples include hydrazine and rosin. Only one kind of the above flux may be used, or two or more kinds of the flux may be used.
- the content of the flux is preferably 5 to 100 parts by mass, more preferably 10 to 80 parts by mass, and further preferably 15 to 60 parts by mass with respect to 100 parts by mass of the total amount of the binder component.
- the content is 5 parts by mass or more, metallization of the metal particles can be sufficiently promoted.
- the content is 100 parts by mass or less, the physical properties such as the adhesion of the cured product of the conductive composition become better.
- the conductive composition of the present invention may contain other components other than the above-mentioned components as long as the effects of the present invention are not impaired.
- the other components include components contained in known or conventional compositions.
- the other components include solvents, defoamers, leveling agents, thickeners, pressure-sensitive adhesives, fillers, flame retardants, colorants and the like. As the above other components, only one kind may be used, or two or more kinds may be used.
- solvent examples include ketones such as methyl ethyl ketone, acetone, and acetophenone; ethers such as methyl cellosolve, methyl carbitol, diethylene glycol dimethyl ether, and tetrahydrofuran; known or commonly used organic substances such as esters of methyl cellosolve acetate, butyl acetate, and methyl acetate. Solvents can be mentioned.
- the content ratio of the solvent in the conductive composition of the present invention is not particularly limited, but is preferably 10% by mass or less, more preferably 5% by mass or less, based on 100% by mass of the conductive composition of the present invention. be.
- the conductive composition of the present invention is preferably in the form of a paste.
- BH type viscometer rotor No. of the conductive composition of the present invention The viscosity at 25 ° C. measured by 7 (rotational speed: 10 rpm) is not particularly limited, but is preferably 300 to 2500 dPa ⁇ s, and more preferably 500 to 2000 dPa ⁇ s. When the viscosity is within the above range, it can be preferably used for filling whole vias.
- the conductive composition of the present invention can be used for filling holes such as vias and through holes in semiconductor packages.
- holes such as vias and through holes in semiconductor packages.
- it can be used for filling holes in a multilayer substrate from the viewpoint of excellent wettability of solder to a cured product of the conductive composition.
- the conductive composition of the present invention is not particularly limited and can be produced by a known or conventional method.
- each of the above components can be mixed and stirred with a three-roll mill, a planetary stirrer, a planetary mixer, a homomixer, a paddle mixer, or the like.
- the heat-curable compound in the binder component is cured by thermal curing, and the metal particles are melted and metallized, resulting in low melting point metal particles and high melting point metal particles.
- the melting point metal particles are integrated, and the metal particles and the end portion of the conductive layer in the through hole are integrated.
- the obtained cured product has excellent adhesion to the end of the conductive layer in the through holes and the insulating layer constituting the multilayer substrate. It can be used without plating the inner wall surface of the through hole.
- the solder can be directly mounted on the cured product of the conductive composition without performing cover plating such as a metal plating layer. Therefore, when the conductive composition of the present invention is used, even if metal plating such as through-hole plating and lid plating is not performed, the metal particles are simply in contact with each other or the metal particles and the end portion of the conductive layer are in contact with each other. Higher conductivity is obtained as compared with the case where only the metal is used, the reliability of bonding at the end of the conductive layer is remarkably improved, and it is also possible to directly mount the solder.
- the conductive composition of the present invention is also excellent in adhesiveness to the insulating layer of the multilayer substrate, so that a multilayer substrate having high long-term reliability can be obtained.
- FIG. 1 is a schematic enlarged cross-sectional view showing an example of a semiconductor package having a POP structure using the conductive composition of the present invention.
- the POP structure 1 shown in FIG. 1 includes a printed wiring board B, a mold resin 12 provided on one surface of the printed wiring board B, and a conductive layer 11 provided on the bottom of a plurality of vias formed on the mold resin 12. And a semiconductor package P1 having a cured product 13 of the conductive composition filled in the via. Then, the cured product 13 in the semiconductor package P1 and the cured product 13 in the semiconductor package P2 are laminated on the cured product 13 of the conductive composition so as to be bonded to each other via bumps 14 formed by solder or the like.
- the structure itself in which the semiconductor packages P1 and P2 are laminated is similar to that of the prior art shown in FIG. 2, for example, but the cured product of the conductive composition in the semiconductor package P1 is bumped without being lid-plated. Is different from that of FIG. 2 in that is formed.
- a via is formed on the mold resin by a drill or a laser, and then a semiconductor package is printed so that the conductive layer formed on the surface of the printed wiring board covers the bottom of the via. Install on the wiring board.
- the via is filled with the conductive composition, and the thermosetting compound is cured by heating and the metallization of the metal particles is promoted. After curing, excess cured material protruding from the surface of the substrate is removed by polishing or the like.
- heating conditions of the conductive composition conditions suitable for both the curing of the thermosetting compound and the metallization of the metal particles are selected. Therefore, the specific conditions vary depending on the composition of the conductive composition, but are approximate. As a guide, heating may be performed for about 30 to 120 minutes within a temperature range of about 140 to 180 ° C.
- the blending amount shown in Table 1 is a relative blending amount (pure content) of each component when the binder component (pure content) is 100 parts by mass, and is represented by "parts by mass” unless otherwise specified. Further, "-" indicates that the component is not blended.
- ⁇ Binder component> Acrylate compound: Trimethylolpropane Triacrylate Liquid epoxy compound A: Glycidyl ether type epoxy compound (300 g / eq) Solid Epoxy Compound B: NBR Modified Epoxy Resin (400g / eq) Solid Epoxy Compound C: Chelate Modified Epoxy Resin (200g / eq) Liquid epoxy compound D: Aminophenol type epoxy resin (100 g / eq) ⁇ Metal particles> Refractory metal particles A: Silver-coated copper particles Refractory metal particles B: Silver-coated copper alloy particles (copper alloy consists of alloys of copper, nickel, and zinc) Low melting point metal particles: Sn—Bi alloy metal particles (Sn: Bi 42: 58, melting point 139 ° C.) ⁇ Curing agent> Cationic curing agent: Tetra-n-butylphosphonium Tetraphenylborate Phenolic curing agent: Phenolic naphthol-based
- solder wetability Each conductive composition obtained in Examples and Comparative Examples was printed on a glass epoxy substrate using a metal plate. After printing, it was heat-cured in an air oven (at 180 ° C. for 60 minutes) and cooled to room temperature to form a cured product of the conductive composition. Then, the solder paste (SAC305) was printed on the cured product of the conductive composition and charged into the reflow apparatus. After reflow, it was confirmed how much the solder was on the surface area of the cured product of the conductive composition. Then, "solder wettability" was evaluated according to the following criteria. ⁇ : Solder wet area 80% or more ⁇ : Solder wet area 50% or more and less than 80% ⁇ : Solder wet area 20% or more and less than 50% ⁇ : Solder wet area less than 20%
- the conductive composition (Example) of the present invention had good wettability of the solder to the cured product obtained by thermal curing, and could be mounted on the cured product without the solder being repelled (FIG. 3).
- the resistance value was also low.
- the fluorine-based surfactant was not blended (Comparative Example 1)
- the solder wettability with respect to the cured product was inferior.
- the cured product is not blended.
- the solder wettability was inferior, and when an attempt was made to mount the solder on the cured product of the conductive composition, the solder was repelled and the solder could not be mounted successfully (FIG. 4).
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Dispersion Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Conductive Materials (AREA)
Abstract
Provided is an electroconductive composition capable of forming a cured product having good solder wettability. The electroconductive composition contains a thermosetting compound-containing binder component, metal particles, and a fluorine-based surfactant, wherein the metal particles contain low melting point metal particles having a melting point of 240°C or lower and high melting point metal particles having a melting point of 800°C or higher, the content of the metal particles is 1000-2000 parts by mass, and the content of the low melting point metal particles is 10-900 parts by mass, with respect to 100 parts by mass of the binder component.
Description
本発明は、導電性組成物に関する。
The present invention relates to a conductive composition.
従来、高密度実装を目的として、複数の導電層と絶縁層を積層させた多層基板が用いられている。多層基板のホール充填等に用いられる導電性ペーストとして、硬化剤、熱硬化性樹脂、及び金属粉を配合したものが知られている。上記導電性ペーストは、まず配線基板にビアやスルーホールを形成し、ビアもしくはスルーホール内壁面をめっきして基板上下の導通を取り、次いで形成されたスルーホールに導電性ペーストを充填し、次いで充填されたペーストを熱硬化させて使用される(例えば特許文献1、2)。このようなペーストにおいては、熱硬化後において、導電性フィラー同士が互いに接触することで導電性が得られる。
Conventionally, a multilayer substrate in which a plurality of conductive layers and an insulating layer are laminated has been used for the purpose of high-density mounting. As a conductive paste used for filling holes in a multilayer substrate, a paste containing a curing agent, a thermosetting resin, and a metal powder is known. In the above conductive paste, a via or a through hole is first formed on the wiring board, the inner wall surface of the via or the through hole is plated to obtain conduction above and below the substrate, and then the formed through hole is filled with the conductive paste. The filled paste is heat-cured and used (for example, Patent Documents 1 and 2). In such a paste, after thermosetting, the conductive fillers come into contact with each other to obtain conductivity.
また、近年、スマートフォン、タブレット端末(タブレットPC)などの小型の高機能携帯端末の需要が増大している。このような高機能携帯端末を機能させるために用いられる半導体装置などについて、さらなる小型化及び高機能化が求められている。このような半導体装置の構造として、半導体パッケージ同士を積層することで、配線層の高密度化を可能とする、いわゆるパッケージオンパッケージ(POP:Package On Package)構造が知られている。
In recent years, the demand for small high-performance mobile terminals such as smartphones and tablet terminals (tablet PCs) has been increasing. Further miniaturization and higher functionality are required for semiconductor devices and the like used to make such high-performance mobile terminals function. As a structure of such a semiconductor device, a so-called package-on-package (POP: Package On Package) structure is known, which enables a high density of wiring layers by laminating semiconductor packages.
例えば、図2に示すように、導電層21とモールド樹脂22とを用いた半導体パッケージ同士を積層した従来のPOP構造2は、下側の半導体パッケージP1のビアに充填され硬化した硬化物23上に、蓋めっき25を施し、この蓋めっき25上にはんだ等によってバンプ24を形成し、当該バンプ24を介して上側の半導体パッケージP2を積層して形成される。
For example, as shown in FIG. 2, the conventional POP structure 2 in which the semiconductor packages using the conductive layer 21 and the mold resin 22 are laminated with each other is on the cured product 23 which is filled with the vias of the lower semiconductor package P1 and cured. The lid plating 25 is applied to the lid plating 25, bumps 24 are formed on the lid plating 25 by soldering or the like, and the upper semiconductor package P2 is laminated via the bumps 24.
近年、上述のように小型化及び高機能化が求められていることから、蓋めっきを施すことなくPOP構造の半導体パッケージを形成する技術が求められる。蓋めっきが不要となれば、製造工程の簡略化にもつながり、製造容易性にも優れることとなる。
In recent years, as mentioned above, there is a demand for miniaturization and high functionality, so a technique for forming a semiconductor package having a POP structure without performing lid plating is required. If lid plating is not required, the manufacturing process can be simplified and the manufacturing process can be improved.
しかしながら、従来の導電性ペーストでは、ビア等に充填及び硬化した後にはんだを搭載しようとした際、はんだの濡れ性が悪く、ペーストの硬化物上ではじかれるためバンプを良好に形成できないという問題があった。
However, the conventional conductive paste has a problem that when the solder is to be mounted after being filled and cured in vias or the like, the wettability of the solder is poor and the bumps cannot be formed satisfactorily because they are repelled on the cured product of the paste. there were.
本発明は上記に鑑みてなされたものであり、本発明の目的は、はんだの濡れ性が良好である硬化物を形成可能な導電性組成物を提供することにある。
The present invention has been made in view of the above, and an object of the present invention is to provide a conductive composition capable of forming a cured product having good solder wettability.
本発明者らは、上記目的を達成するため鋭意検討した結果、熱硬化性化合物を含むバインダー成分、低融点金属粒子、高融点金属粒子、及びフッ素系界面活性剤を含有する導電性組成物によれば、はんだの濡れ性が良好である硬化物を形成可能であることを見出した。本発明はこれらの知見に基づいて完成させたものである。
As a result of diligent studies to achieve the above object, the present inventors have made a conductive composition containing a binder component containing a thermosetting compound, low melting point metal particles, high melting point metal particles, and a fluorine-based surfactant. According to this, it was found that a cured product having good wettability of solder can be formed. The present invention has been completed based on these findings.
すなわち、本発明は、熱硬化性化合物を含むバインダー成分、金属粒子、及びフッ素系界面活性剤を含有し、上記金属粒子は、融点240℃以下の低融点金属粒子及び融点800℃以上の高融点金属粒子を含有し、上記バインダー成分100質量部に対し、上記金属粒子の含有量が1000~2000質量部、上記低融点金属粒子の含有量が10~900質量部である導電性組成物を提供する。
That is, the present invention contains a binder component containing a thermosetting compound, metal particles, and a fluorine-based surfactant, and the metal particles have a low melting point metal particle having a melting point of 240 ° C. or lower and a high melting point having a melting point of 800 ° C. or higher. Provided is a conductive composition containing metal particles, wherein the content of the metal particles is 1000 to 2000 parts by mass and the content of the low melting point metal particles is 10 to 900 parts by mass with respect to 100 parts by mass of the binder component. do.
上記低融点金属粒子と上記高融点金属粒子の質量比[低融点金属粒子/高融点金属粒子]は0.005~2.0であることが好ましい。
The mass ratio [low melting point metal particles / high melting point metal particles] of the low melting point metal particles to the high melting point metal particles is preferably 0.005 to 2.0.
上記熱硬化性化合物はエポキシ化合物及びアクリレート化合物の少なくとも一方を含有することが好ましい。
The thermosetting compound preferably contains at least one of an epoxy compound and an acrylate compound.
上記エポキシ化合物は液状エポキシ化合物及び固体エポキシ化合物の少なくとも一方を含有することが好ましい。
The epoxy compound preferably contains at least one of a liquid epoxy compound and a solid epoxy compound.
上記導電性組成物は、さらにフラックスを含有することが好ましい。
The conductive composition preferably further contains a flux.
上記高融点金属粒子は、銀粒子、銅粒子、銀被覆銅粒子、及び銀被覆銅合金粒子からなる群より選択される1以上の金属粒子を含有することが好ましい。
The refractory metal particles preferably contain one or more metal particles selected from the group consisting of silver particles, copper particles, silver-coated copper particles, and silver-coated copper alloy particles.
上記導電性組成物は、さらに硬化剤を含有することが好ましい。
The conductive composition preferably further contains a curing agent.
本発明の導電性組成物によれば、はんだの濡れ性が良好である硬化物を形成することができる。このため、本発明の導電性組成物によれば、蓋めっきを施すこと無くPOP構造を形成することができ、さらなる小型化が可能であり、さらに製造容易性にも優れる。
According to the conductive composition of the present invention, it is possible to form a cured product having good solder wettability. Therefore, according to the conductive composition of the present invention, a POP structure can be formed without subjecting lid plating, further miniaturization is possible, and manufacturing ease is excellent.
本発明の導電性組成物は、バインダー成分、金属粒子、フッ素系界面活性剤を少なくとも含む。本発明の導電性組成物は、上記各成分以外のその他の成分を含んでいてもよい。
The conductive composition of the present invention contains at least a binder component, metal particles, and a fluorine-based surfactant. The conductive composition of the present invention may contain other components other than the above-mentioned components.
[バインダー成分]
上記バインダー成分は、熱硬化性化合物を少なくとも含む。バインダー成分は、導電性組成物を充填した後少なくとも一種の熱硬化性化合物が熱硬化することで形成される硬化物(導電性組成物の硬化物)において他の成分をバインドし、硬化物のマトリックスを形成する役割を有する。上記バインダー成分は、一種のみを使用してもよいし、二種以上を使用してもよい。 [Binder component]
The binder component contains at least a thermosetting compound. The binder component binds other components to a cured product (cured product of the conductive composition) formed by heat-curing at least one kind of thermosetting compound after filling the conductive composition, and the cured product. It has the role of forming a matrix. As the binder component, only one kind may be used, or two or more kinds may be used.
上記バインダー成分は、熱硬化性化合物を少なくとも含む。バインダー成分は、導電性組成物を充填した後少なくとも一種の熱硬化性化合物が熱硬化することで形成される硬化物(導電性組成物の硬化物)において他の成分をバインドし、硬化物のマトリックスを形成する役割を有する。上記バインダー成分は、一種のみを使用してもよいし、二種以上を使用してもよい。 [Binder component]
The binder component contains at least a thermosetting compound. The binder component binds other components to a cured product (cured product of the conductive composition) formed by heat-curing at least one kind of thermosetting compound after filling the conductive composition, and the cured product. It has the role of forming a matrix. As the binder component, only one kind may be used, or two or more kinds may be used.
上記熱硬化性化合物としては、例えば、エポキシ化合物、アクリレート化合物、フェノール系樹脂、ウレタン系樹脂、メラミン系樹脂、アルキド系樹脂などが挙げられる。中でも、熱硬化後に形成するバインダー樹脂が硬化物のスルーホール壁面への密着性に優れる観点から、エポキシ化合物及びアクリレート化合物の少なくとも一方を用いることが好ましく、エポキシ化合物及びアクリレート化合物の両方を用いることがより好ましい。上記熱硬化性化合物は、一種のみを使用してもよいし、二種以上を使用してもよい。
Examples of the thermosetting compound include epoxy compounds, acrylate compounds, phenolic resins, urethane resins, melamine resins, alkyd resins and the like. Above all, from the viewpoint that the binder resin formed after thermosetting has excellent adhesion to the through-hole wall surface of the cured product, it is preferable to use at least one of the epoxy compound and the acrylate compound, and it is preferable to use both the epoxy compound and the acrylate compound. More preferred. As the thermosetting compound, only one kind may be used, or two or more kinds may be used.
上記エポキシ化合物は、分子内(一分子中)に1以上のエポキシ基(オキシラニル基)を少なくとも有する化合物である。上記エポキシ化合物は、常温で固体のエポキシ化合物であってもよく、常温で液体のエポキシ化合物であってもよい。上記エポキシ化合物としてはスルーホール充填用に適した粘度とする観点から、常温で固体のエポキシ化合物及び常温で液体のエポキシ化合物の両方を含んでいてもよい。上記エポキシ化合物は、一種のみを使用してもよいし、二種以上を使用してもよい。
The above epoxy compound is a compound having at least one epoxy group (oxylanyl group) in the molecule (in one molecule). The epoxy compound may be a solid epoxy compound at room temperature or a liquid epoxy compound at room temperature. The epoxy compound may contain both a solid epoxy compound at room temperature and an epoxy compound liquid at room temperature from the viewpoint of having a viscosity suitable for filling through holes. As the epoxy compound, only one kind may be used, or two or more kinds may be used.
なお、本明細書において、常温で固体のエポキシ化合物を「固体エポキシ化合物」と称する場合がある。また、常温で液体のエポキシ化合物を「液体エポキシ化合物」と称する場合がある。また、本明細書において、「常温で固体」とは、25℃において無溶媒状態で流動性を示さない状態であることを意味するものとする。また、「常温で液体」とは、25℃において無溶媒状態で流動性を示す状態であることを意味するものとする。
In the present specification, an epoxy compound that is solid at room temperature may be referred to as a "solid epoxy compound". Further, an epoxy compound that is liquid at room temperature may be referred to as a "liquid epoxy compound". Further, in the present specification, "solid at room temperature" means a state in which fluidity is not exhibited in a solvent-free state at 25 ° C. Further, "liquid at room temperature" means a state showing fluidity in a solvent-free state at 25 ° C.
上記エポキシ化合物としては、特に限定されないが、例えば、ビスフェノール型エポキシ樹脂、スピロ環型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、テルペン型エポキシ樹脂、ノボラック型エポキシ樹脂、ダイマー酸変性エポキシ化合物、グリシジルアミン型エポキシ化合物、グリシジルエーテル型エポキシ化合物、ゴム変性エポキシ樹脂、キレート変性エポキシ樹脂などが挙げられる。
The epoxy compound is not particularly limited, and for example, a bisphenol type epoxy resin, a spirocyclic epoxy resin, a naphthalene type epoxy resin, a biphenyl type epoxy resin, a terpene type epoxy resin, a novolak type epoxy resin, and a dimer acid-modified epoxy compound. Examples thereof include a glycidylamine type epoxy compound, a glycidyl ether type epoxy compound, a rubber-modified epoxy resin, and a chelate-modified epoxy resin.
上記ビスフェノール型エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、テトラブロムビスフェノールA型エポキシ樹脂などが挙げられる。
Examples of the bisphenol type epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, tetrabrom bisphenol A type epoxy resin and the like.
上記ノボラック型エポキシ樹脂としては、例えば、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、α−ナフトールノボラック型エポキシ樹脂、臭素化フェノールノボラック型エポキシ樹脂などが挙げられる。
Examples of the novolak type epoxy resin include cresol novolac type epoxy resin, phenol novolac type epoxy resin, α-naphthol novolac type epoxy resin, brominated phenol novolac type epoxy resin and the like.
上記ダイマー酸変性エポキシ樹脂とは、ダイマー酸で変性したエポキシ樹脂、すなわちダイマー酸構造中の少なくとも一つのカルボキシル基と多官能エポキシ樹脂が反応したものである。ここでダイマー酸とは不飽和脂肪酸の二量体である。原料の不飽和脂肪酸は、特に限定されないが、例えば、オレイン酸やリノール酸等の炭素数18の不飽和脂肪酸を主成分とする植物由来油脂が使用可能である。ダイマー酸の構造は、環状、非環状のいずれでもよい。
The dimer acid-modified epoxy resin is an epoxy resin modified with dimer acid, that is, a reaction between at least one carboxyl group in the dimer acid structure and a polyfunctional epoxy resin. Here, dimer acid is a dimer of unsaturated fatty acids. The raw material unsaturated fatty acid is not particularly limited, but for example, plant-derived fats and oils containing an unsaturated fatty acid having 18 carbon atoms such as oleic acid and linoleic acid as a main component can be used. The structure of dimer acid may be cyclic or acyclic.
ダイマー酸変性を行うエポキシ樹脂としては、特に限定されないが、例えば、上記エポキシ化合物として例示されたエポキシ樹脂などが挙げられる。上記ダイマー酸変性エポキシ樹脂に含まれるエポキシ樹脂は、一種のみを使用してもよいし、二種以上を使用してもよい。例えば、ビスフェノール型、エーテルエステル型、ノボラックエポキシ型、エステル型、脂肪族型、芳香族型等の各種エポキシ樹脂をダイマー酸で変性した公知のダイマー酸変性エポキシ樹脂を用いることができる。
The epoxy resin that undergoes dimer acid modification is not particularly limited, and examples thereof include the epoxy resin exemplified as the above-mentioned epoxy compound. As the epoxy resin contained in the dimer acid-modified epoxy resin, only one kind may be used, or two or more kinds may be used. For example, a known dimer acid-modified epoxy resin obtained by modifying various epoxy resins such as bisphenol type, ether ester type, novolak epoxy type, ester type, aliphatic type, and aromatic type with dimer acid can be used.
上記ダイマー酸変性エポキシ樹脂の市販品としては、三菱ケミカル(株)製の「jER871」(商品名、以下同様)、「jER872」、新日鐵住金化学(株)製の「YD−171」、「YD−172」などが挙げられる。
Commercially available products of the above dimer acid-modified epoxy resin include "jER871" (trade name, the same applies hereinafter) manufactured by Mitsubishi Chemical Corporation, "jER872", and "YD-171" manufactured by Nippon Steel & Sumitomo Metal Corporation. Examples include "YD-172".
上記グリシジルアミン型エポキシ化合物としては、例えば、テトラグリシジルジアミノジフェニルメタン、N,N−ビス(2,3−エポキシプロピル)−4−(2,3−エポキシプロポキシ)アニリン等のアミノフェノール型エポキシ樹脂などが挙げられる。
Examples of the glycidylamine type epoxy compound include aminophenol type epoxy resins such as tetraglycidyldiaminodiphenylmethane and N, N-bis (2,3-epoxypropyl) -4- (2,3-epoxypropoxy) aniline. Can be mentioned.
上記グリシジルエーテル型エポキシ化合物としては、例えば、トリス(グリシジルオキシフェニル)メタン、テトラキス(グリシジルオキシフェニル)エタン、グリシジルアルキルエーテルなどが挙げられる。
Examples of the glycidyl ether type epoxy compound include tris (glycidyloxyphenyl) methane, tetrakis (glycidyloxyphenyl) ethane, and glycidyl alkyl ether.
上記ゴム変性エポキシ樹脂は、導電性組成物の硬化物に柔軟性を付与し、エポキシ化合物による耐熱性を維持しつつ、硬化物のスルーホール壁面への密着性を向上させ、またクラックの発生を抑制することができる。
The rubber-modified epoxy resin imparts flexibility to the cured product of the conductive composition, maintains heat resistance due to the epoxy compound, improves the adhesion of the cured product to the through-hole wall surface, and causes cracks. It can be suppressed.
上記ゴム変性エポキシ樹脂は、エポキシ樹脂中にゴム成分を含む。上記ゴム成分としては、例えば、ブタジエンゴム、アクリルゴム、シリコーンゴム、ブチルゴム、イソプレンゴム、スチレンゴム、クロロプレンゴム、NBR、SBR、IR、EPRなどが挙げられる。上記ゴム成分は、一種のみを使用してもよいし、二種以上を使用してもよい。上記ゴム変性エポキシ樹脂は、中でも、NBRにより変性されたエポキシ樹脂(NBR変性エポキシ樹脂)が好ましい。
The rubber-modified epoxy resin contains a rubber component in the epoxy resin. Examples of the rubber component include butadiene rubber, acrylic rubber, silicone rubber, butyl rubber, isoprene rubber, styrene rubber, chloroprene rubber, NBR, SBR, IR, EPR and the like. As the rubber component, only one kind may be used, or two or more kinds may be used. As the rubber-modified epoxy resin, an epoxy resin modified with NBR (NBR-modified epoxy resin) is particularly preferable.
ゴム変性を行うエポキシ樹脂としては、特に限定されないが、例えば、上記エポキシ化合物として例示されたエポキシ樹脂などが挙げられる。上記ゴム変性エポキシ樹脂に含まれるエポキシ樹脂は、一種のみを使用してもよいし、二種以上を使用してもよい。
The epoxy resin that undergoes rubber modification is not particularly limited, and examples thereof include the epoxy resin exemplified as the above-mentioned epoxy compound. As the epoxy resin contained in the rubber-modified epoxy resin, only one kind may be used, or two or more kinds may be used.
上記エポキシ化合物のエポキシ当量は、特に限定されないが、JIS K7236に準拠した方法により測定した1グラム当量のエポキシ基を含む樹脂のグラム数(エポキシ当量)として、40~800g/eqが好ましく、80~500g/eqがより好ましい。上記エポキシ当量が40g/eq以上であると、導電性組成物の硬化物のスルーホール壁面への密着性により優れる。また、エポキシ当量が800g/eq以下であると、耐熱性がより優れる。
The epoxy equivalent of the above epoxy compound is not particularly limited, but the number of grams (epoxy equivalent) of the resin containing 1 gram equivalent of the epoxy group measured by a method based on JIS K7236 is preferably 40 to 800 g / eq, and is preferably 80 to 80. 500 g / eq is more preferable. When the epoxy equivalent is 40 g / eq or more, the adhesiveness of the cured product of the conductive composition to the through-hole wall surface is more excellent. Further, when the epoxy equivalent is 800 g / eq or less, the heat resistance is more excellent.
上記ダイマー酸変性エポキシ樹脂のエポキシ当量は、100~800g/eqが好ましく、300~600g/eqがより好ましい。また、ダイマー酸変性エポキシ樹脂の分子量は、特に限定されるものではなく用途に応じて適宜選択可能であるが、例えばホール充填用途では質量平均分子量で100~5000が好ましい。
The epoxy equivalent of the dimer acid-modified epoxy resin is preferably 100 to 800 g / eq, more preferably 300 to 600 g / eq. The molecular weight of the dimer acid-modified epoxy resin is not particularly limited and may be appropriately selected depending on the intended use. For example, for hole filling applications, the mass average molecular weight is preferably 100 to 5000.
上記ゴム変性エポキシ樹脂は、エポキシ当量が40~500g/eqであることが好ましく、より好ましくは70~400である。エポキシ当量が40g/eq以上であると、導電性組成物の硬化物のスルーホール壁面への密着性により優れる。また、エポキシ当量が500g/eq以下であると、耐熱性がより優れる。
The rubber-modified epoxy resin preferably has an epoxy equivalent of 40 to 500 g / eq, more preferably 70 to 400. When the epoxy equivalent is 40 g / eq or more, the adhesiveness of the cured product of the conductive composition to the through-hole wall surface is more excellent. Further, when the epoxy equivalent is 500 g / eq or less, the heat resistance is more excellent.
上記エポキシ化合物としては、中でも、ビスフェノール型エポキシ樹脂、グリシジルアミン型エポキシ化合物、グリシジルエーテル型エポキシ化合物が好ましい。上記ビスフェノール型エポキシ樹脂としては、中でも、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂がより好ましい。
As the epoxy compound, bisphenol type epoxy resin, glycidylamine type epoxy compound, and glycidyl ether type epoxy compound are preferable. As the bisphenol type epoxy resin, bisphenol A type epoxy resin and bisphenol F type epoxy resin are more preferable.
上記バインダー成分中の上記エポキシ化合物の含有割合は、特に限定されないが、バインダー成分の総量100質量%に対して、40~100質量%であることが好ましく、より好ましくは50~90質量%、さらに好ましくは60~80質量%である。上記含有割合が40質量%以上であると、導電性組成物の硬化物の耐熱性が優れる。なお、上記含有割合が90質量%以下であると、アクリレート化合物を充分に含有することができ、これによる効果を充分に得ることができる。上記エポキシ化合物の含有割合は、本発明の導電性組成物中の全てのエポキシ化合物の合計の含有割合である。
The content ratio of the epoxy compound in the binder component is not particularly limited, but is preferably 40 to 100% by mass, more preferably 50 to 90% by mass, and further preferably 50 to 90% by mass with respect to 100% by mass of the total amount of the binder component. It is preferably 60 to 80% by mass. When the content ratio is 40% by mass or more, the heat resistance of the cured product of the conductive composition is excellent. When the content ratio is 90% by mass or less, the acrylate compound can be sufficiently contained, and the effect thereof can be sufficiently obtained. The content ratio of the epoxy compound is the total content ratio of all the epoxy compounds in the conductive composition of the present invention.
上記バインダー成分中のゴム変性エポキシ樹脂の含有割合は、特に限定されないが、バインダー成分の総量100質量%に対して、0~30質量%であることが好ましく、より好ましくは5~15質量%である。上記含有割合が5質量%以上であると、導電性組成物の硬化物の柔軟性がより優れる。上記含有割合が30質量%以下であると、他のエポキシ化合物やアクリレート化合物を充分に含有することができ、これらバインダー成分の効果を充分に得ることができる。上記ゴム変性エポキシ樹脂の含有割合は、本発明の導電性組成物中の全てのゴム変性エポキシ樹脂の合計の含有割合である。
The content ratio of the rubber-modified epoxy resin in the binder component is not particularly limited, but is preferably 0 to 30% by mass, more preferably 5 to 15% by mass, based on 100% by mass of the total amount of the binder component. be. When the content ratio is 5% by mass or more, the flexibility of the cured product of the conductive composition is more excellent. When the content ratio is 30% by mass or less, other epoxy compounds and acrylate compounds can be sufficiently contained, and the effects of these binder components can be sufficiently obtained. The content ratio of the rubber-modified epoxy resin is the total content ratio of all the rubber-modified epoxy resins in the conductive composition of the present invention.
上記バインダー成分中の固体エポキシ化合物の含有割合は、特に限定されないが、バインダー成分の総量100質量%に対して、0~30質量%であることが好ましく、より好ましくは1~20質量%である。また、上記バインダー成分中の液体エポキシ化合物の含有割合は、特に限定されないが、バインダー成分の総量100質量%に対して、30~100質量%であることが好ましく、より好ましくは40~90質量%である。上記含有割合であると、固体エポキシ化合物と液体エポキシ化合物のバランスが良好となり、スルーホール充填用により適した粘度とすることができる。
The content ratio of the solid epoxy compound in the binder component is not particularly limited, but is preferably 0 to 30% by mass, more preferably 1 to 20% by mass, based on 100% by mass of the total amount of the binder component. .. The content ratio of the liquid epoxy compound in the binder component is not particularly limited, but is preferably 30 to 100% by mass, more preferably 40 to 90% by mass, based on 100% by mass of the total amount of the binder component. Is. With the above content ratio, the balance between the solid epoxy compound and the liquid epoxy compound becomes good, and the viscosity can be made more suitable for filling through holes.
上記アクリレート化合物は、CH2=CR−C(=O)−O−で表される構造を有する化合物(式中、Rは水素原子又はアルキル基(特に炭素数1~3のアルキル基)を示す)であり、(メタ)アクリロイル基を有する化合物が挙げられる。なお、本明細書において、「(メタ)アクリロイル」とは、アクリロイル及び/又はメタクリロイルを意味する。「(メタ)アクリル」、「(メタ)アクリレート」についても同様である。上記アクリレート化合物としては、1分子中に2個以上の(メタ)アクリロイル基を有する化合物(多官能アクリレート化合物)が好ましい。上記アクリレート化合物は、一種のみを使用してもよいし、二種以上を使用してもよい。
The acrylate compound represents a compound having a structure represented by CH 2 = CR-C (= O) -O- (in the formula, R is a hydrogen atom or an alkyl group (particularly an alkyl group having 1 to 3 carbon atoms)). ), And examples thereof include compounds having a (meth) acryloyl group. In addition, in this specification, "(meth) acryloyl" means acryloyl and / or methacryloyl. The same applies to "(meth) acrylic" and "(meth) acrylate". As the acrylate compound, a compound having two or more (meth) acryloyl groups in one molecule (polyfunctional acrylate compound) is preferable. As the acrylate compound, only one kind may be used, or two or more kinds may be used.
上記アクリレート化合物としては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸s−ブチル、(メタ)アクリル酸t−ブチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸イソアミル、(メタ)アクリル酸オクチル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸イソノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ドデシル等の直鎖又は分岐鎖状のアルキル基を有する(メタ)アクリル酸アルキルエステル;(メタ)アクリル酸;カルボキシエチルアクリレート等のカルボキシル基含有(メタ)アクリル酸エステル;2−ヒドロキシメチル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、3−ヒドロキシプロピル(メタ)アクリレート、6−ヒドロキシヘキシル(メタ)アクリレート、ジエチレングリコールモノ(メタ)アクリレート、ジプロピレングリコールモノ(メタ)アクリレート等のヒドロキシル基含有(メタ)アクリル酸エステル;(メタ)アクリル酸シクロヘキシル等の(メタ)アクリル酸シクロアルキルエステル;N−メチロール(メタ)アクリルアミド、N−ブトキシメチル(メタ)アクリルアミド、N,N−ジメチル(メタ)アクリルアミド、N,N−ジエチル(メタ)アクリルアミド等の(メタ)アクリル酸アミド誘導体;ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ジプロピルアミノエチル(メタ)アクリレート、ジメチルアミノプロピル(メタ)アクリレート、ジプロピルアミノプロピル(メタ)アクリレート等の(メタ)アクリル酸ジアルキルアミノアルキルエステル類などが挙げられる。さらに、2−ヒドロキシ−3−アクリロイロキシプロピル(メタ)アクリレート、フェニルグリシジルエーテル(メタ)アクリレートヘキサメチレンジイソシアネートウレタンプレポリマー、ビスフェノールAジグリシジルエーテルアクリル酸付加物なども挙げられる。
Examples of the acrylate compound include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate, and isobutyl (meth) acrylate. (Meta) s-butyl acrylate, (meth) t-butyl acrylate, (meth) hexyl acrylate, (meth) isoamyl acrylate, octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, (meth) ) Isononyl acrylate, decyl (meth) acrylate, dodecyl (meth) acrylate, etc. (meth) acrylic acid alkyl ester having a linear or branched alkyl group; (meth) acrylic acid; carboxyethyl acrylate, etc. Carboxyl group-containing (meth) acrylic acid ester; 2-hydroxymethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 6-hydroxyhexyl Hydroxyl group-containing (meth) acrylic acid esters such as (meth) acrylates, diethylene glycol mono (meth) acrylates, and dipropylene glycol mono (meth) acrylates; (meth) acrylic acid cycloalkyl esters such as (meth) cyclohexyl acrylate; N. -(Meta) acrylic acid amide derivatives such as methylol (meth) acrylamide, N-butoxymethyl (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide; dimethylaminoethyl (meth) ) Acrylate, diethylaminoethyl (meth) acrylate, dipropylaminoethyl (meth) acrylate, dimethylaminopropyl (meth) acrylate, dipropylaminopropyl (meth) acrylate and other (meth) acrylic acid dialkylaminoalkyl esters. Be done. Further, 2-hydroxy-3-acryloyloxypropyl (meth) acrylate, phenylglycidyl ether (meth) acrylate hexamethylene diisocyanate urethane prepolymer, bisphenol A diglycidyl ether acrylic acid adduct and the like can also be mentioned.
上記多官能アクリレート化合物としては、ネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレートなどが挙げられる。
Examples of the polyfunctional acrylate compound include neopentyl glycol di (meth) acrylate, trimethylol propanetri (meth) acrylate, ditrimethylol propanetetra (meth) acrylate, ethylene glycol di (meth) acrylate, and diethylene glycol di (meth) acrylate. Polyethylene glycol di (meth) acrylate, hexanediol di (meth) acrylate, (poly) propylene glycol di (meth) acrylate, pentaerythritol di (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) Examples include acrylate.
上記バインダー成分中の上記アクリレート化合物の含有割合は、特に限定されないが、バインダー成分の総量100質量%に対して、0~60質量%であることが好ましく、より好ましくは10~50質量%、さらに好ましくは20~40質量%である。上記含有割合が60質量%以下であると、エポキシ化合物を充分に含有することができ、これによる効果を充分に得ることができる。なお、上記含有割合が10質量%以上であると、導電性組成物の硬化物の密着性がより優れる。特に、上記バインダー成分中の上記多官能アクリレート化合物の含有割合が上述の範囲内であることが好ましい。上記アクリレート化合物の含有割合は、本発明の導電性組成物中の全てのアクリレート化合物の合計の含有割合である。
The content ratio of the acrylate compound in the binder component is not particularly limited, but is preferably 0 to 60% by mass, more preferably 10 to 50% by mass, and further preferably 10 to 50% by mass with respect to 100% by mass of the total amount of the binder component. It is preferably 20 to 40% by mass. When the content ratio is 60% by mass or less, the epoxy compound can be sufficiently contained, and the effect thereof can be sufficiently obtained. When the content ratio is 10% by mass or more, the adhesion of the cured product of the conductive composition is more excellent. In particular, it is preferable that the content ratio of the polyfunctional acrylate compound in the binder component is within the above range. The content ratio of the acrylate compound is the total content ratio of all the acrylate compounds in the conductive composition of the present invention.
本発明の導電性組成物中の上記バインダー成分(特に、エポキシ化合物及びアクリレート化合物の合計)の含有割合は、特に限定されないが、本発明の導電性組成物100質量%に対し、3~15質量%であることが好ましく、より好ましくは4~12質量%、さらに好ましくは5~10質量%である。
The content ratio of the binder component (particularly, the total of the epoxy compound and the acrylate compound) in the conductive composition of the present invention is not particularly limited, but is 3 to 15% by mass with respect to 100% by mass of the conductive composition of the present invention. %, More preferably 4 to 12% by mass, still more preferably 5 to 10% by mass.
[金属粒子]
上記金属粒子は、融点240℃以下の低融点金属粒子及び融点800℃以上の高融点金属粒子を含有する。なお、本明細書において、「融点240℃以下の低融点金属粒子」を単に「低融点金属粒子」、「融点800℃以上の高融点金属粒子」を単に「高融点金属粒子」とそれぞれ称する場合がある。本発明の導電性組成物が金属粒子として上記低融点金属粒子及び上記高融点金属粒子を含むことにより、加熱により金属粒子がメタライズ化し、形成される硬化物は優れた導電性を付与する。なお、メタライズ化とは、二種以上の金属の少なくとも一部が融解して一体化することをいう。上記の各金属粒子は、単一の金属からなるものであってもよく、二種以上の金属の合金からなるものであってもよい。 [Metal particles]
The metal particles include low melting point metal particles having a melting point of 240 ° C. or lower and high melting point metal particles having a melting point of 800 ° C. or higher. In the present specification, "low melting point metal particles having a melting point of 240 ° C. or lower" are simply referred to as "low melting point metal particles", and "high melting point metal particles having a melting point of 800 ° C. or higher" are simply referred to as "high melting point metal particles". There is. When the conductive composition of the present invention contains the low melting point metal particles and the high melting point metal particles as metal particles, the metal particles are metallized by heating, and the formed cured product imparts excellent conductivity. In addition, metallization means that at least a part of two or more kinds of metals is melted and integrated. Each of the above metal particles may be made of a single metal or may be made of an alloy of two or more kinds of metals.
上記金属粒子は、融点240℃以下の低融点金属粒子及び融点800℃以上の高融点金属粒子を含有する。なお、本明細書において、「融点240℃以下の低融点金属粒子」を単に「低融点金属粒子」、「融点800℃以上の高融点金属粒子」を単に「高融点金属粒子」とそれぞれ称する場合がある。本発明の導電性組成物が金属粒子として上記低融点金属粒子及び上記高融点金属粒子を含むことにより、加熱により金属粒子がメタライズ化し、形成される硬化物は優れた導電性を付与する。なお、メタライズ化とは、二種以上の金属の少なくとも一部が融解して一体化することをいう。上記の各金属粒子は、単一の金属からなるものであってもよく、二種以上の金属の合金からなるものであってもよい。 [Metal particles]
The metal particles include low melting point metal particles having a melting point of 240 ° C. or lower and high melting point metal particles having a melting point of 800 ° C. or higher. In the present specification, "low melting point metal particles having a melting point of 240 ° C. or lower" are simply referred to as "low melting point metal particles", and "high melting point metal particles having a melting point of 800 ° C. or higher" are simply referred to as "high melting point metal particles". There is. When the conductive composition of the present invention contains the low melting point metal particles and the high melting point metal particles as metal particles, the metal particles are metallized by heating, and the formed cured product imparts excellent conductivity. In addition, metallization means that at least a part of two or more kinds of metals is melted and integrated. Each of the above metal particles may be made of a single metal or may be made of an alloy of two or more kinds of metals.
上記低融点金属粒子としては、例えば、インジウム(融点:156℃)、スズ(融点:232℃)、合金であって融点240℃以下であるものが挙げられる。上記合金としては、インジウム、スズ、鉛、及びビスマスからなる群より選択される一種以上(好ましくは二種以上)を含む合金が挙げられる。このような合金としては、例えば、SnPb、SnBi、SnPbBiなどが挙げられる。上記低融点金属粒子は、一種のみを使用してもよいし、二種以上を使用してもよい。
Examples of the low melting point metal particles include indium (melting point: 156 ° C.), tin (melting point: 232 ° C.), and alloys having a melting point of 240 ° C. or lower. Examples of the alloy include alloys containing one or more (preferably two or more) selected from the group consisting of indium, tin, lead, and bismuth. Examples of such alloys include SnPb, SnBi, SnPbBi and the like. As the low melting point metal particles, only one kind may be used, or two or more kinds may be used.
上記低融点金属粒子は、スズを含む金属粒子であることが好ましく、例えば、スズとビスマスの合金、スズと鉛の合金、スズとビスマスと鉛の合金などが挙げられる。中でも、スズとビスマスの合金が好ましい。その合金における金属比率[Sn:Bi]は80:20~35:65であることが特に好ましい。
The low melting point metal particles are preferably metal particles containing tin, and examples thereof include tin and bismuth alloys, tin and lead alloys, and tin and bismuth and lead alloys. Of these, an alloy of tin and bismuth is preferable. The metal ratio [Sn: Bi] in the alloy is particularly preferably 80:20 to 35:65.
上記高融点金属粒子としては、例えば、金(融点:1064℃)、銀(融点:961℃)、銅(融点:1083℃)、ニッケル(融点:1455℃)、亜鉛(融点:420℃)、又はこれらのうちの一種以上を含む合金であって融点800℃以上であるものが挙げられる。上記高融点金属粒子は、一種のみを使用してもよいし、二種以上を使用してもよい。
Examples of the refractory metal particles include gold (melting point: 1064 ° C.), silver (melting point: 961 ° C.), copper (melting point: 1083 ° C.), nickel (melting point: 1455 ° C.), zinc (melting point: 420 ° C.), and the like. Alternatively, an alloy containing one or more of these and having a melting point of 800 ° C. or higher can be mentioned. As the refractory metal particles, only one kind may be used, or two or more kinds may be used.
また、上記高融点金属粒子は、金属被覆金属粒子であってもよく、例えば、銀被覆銅粒子、金被覆銅粒子、銀被覆ニッケル粒子、金被覆ニッケル粒子、銀被覆合金粒子などが挙げられる。上記銀被覆合金粒子としては、例えば、銅を含む合金粒子(例えば、銅とニッケルと亜鉛との合金からなる銅合金粒子)が銀により被覆された銀被覆銅合金粒子などが挙げられる。
Further, the refractory metal particles may be metal-coated metal particles, and examples thereof include silver-coated copper particles, gold-coated copper particles, silver-coated nickel particles, gold-coated nickel particles, and silver-coated alloy particles. Examples of the silver-coated alloy particles include silver-coated copper alloy particles in which alloy particles containing copper (for example, copper alloy particles made of an alloy of copper, nickel, and zinc) are coated with silver.
上記高融点金属粒子としては、中でも、導電性に優れる観点から、銀含有金属粒子、銅含有金属粒子が好ましく、より好ましくは銀粒子、銅粒子である。また、導電性に優れ、低コストである観点から、銅含有金属粒子であることが好ましく、より好ましくは銀被覆銅粒子、銀被覆銅合金粒子である。表面が銀である金属粒子は導電性組成物のポットライフが長くなる。
The refractory metal particles are preferably silver-containing metal particles and copper-containing metal particles, and more preferably silver particles and copper particles, from the viewpoint of excellent conductivity. Further, from the viewpoint of excellent conductivity and low cost, copper-containing metal particles are preferable, and silver-coated copper particles and silver-coated copper alloy particles are more preferable. Metal particles with a silver surface have a longer pot life in the conductive composition.
上記銀被覆銅合金粒子における銅合金は、ニッケル及び/又は亜鉛を含むことが好ましい。特に亜鉛は導電性の向上に寄与し、ニッケルは長期信頼性の向上に寄与するので、導電性組成物の用途等に応じて両者の割合を調整するのが好ましい。また、低融点金属粒子としてスズを使用した場合、メタライズ化によりCu6Sn5の合金層が形成されるが、Cu6Sn5は過剰に形成されると、引張強度等の機械的特性が低下する。そこで、銅合金粉にニッケルを添加すると、(Cu,Ni)6Sn5が形成され、Cu6Sn5の過剰形成を抑制し、導電性組成物の硬化物の弾性率が上昇するため、機械的特性の長期信頼性が向上すると考えられる。ニッケル及び亜鉛の含有割合は、それぞれ、1~40質量%であることが好ましく、より好ましくは1~30質量%、さらに好ましくは1~15質量%である。
The copper alloy in the silver-coated copper alloy particles preferably contains nickel and / or zinc. In particular, zinc contributes to the improvement of conductivity and nickel contributes to the improvement of long-term reliability. Therefore, it is preferable to adjust the ratio of both according to the use of the conductive composition and the like. Further, when tin is used as the low melting point metal particles, an alloy layer of Cu 6 Sn 5 is formed by metallization, but if Cu 6 Sn 5 is excessively formed, mechanical properties such as tensile strength deteriorate. do. Therefore, when nickel is added to the copper alloy powder, (Cu, Ni) 6 Sn 5 is formed, the excessive formation of Cu 6 Sn 5 is suppressed, and the elastic modulus of the cured product of the conductive composition is increased. It is thought that the long-term reliability of the target characteristics will improve. The content ratios of nickel and zinc are preferably 1 to 40% by mass, more preferably 1 to 30% by mass, and further preferably 1 to 15% by mass.
上記金属粒子の形状としては、球状、フレーク状(鱗片状)、樹枝状、繊維状、不定形(多面体)などが挙げられる。中でも、導電性組成物の塗布安定性がより高く、導電性により優れる観点から、球状が好ましい。上記金属粒子の平均粒径(D50)は、0.5~30μmであることが好ましく、より好ましくは1~10μmである。
Examples of the shape of the metal particles include spherical shape, flake shape (scale shape), dendritic shape, fibrous shape, and amorphous shape (polyhedron). Above all, a spherical shape is preferable from the viewpoint of higher coating stability of the conductive composition and better conductivity. The average particle size (D50) of the metal particles is preferably 0.5 to 30 μm, more preferably 1 to 10 μm.
上記金属粒子の含有量は、上記バインダー成分の総量100質量部に対して、1000~2000質量部であり、好ましくは1100~1900質量部、より好ましくは1200~1800質量部である。上記含有量が1000質量部以上であることにより、導電性組成物の硬化物の導電性が良好となる。上記含有量が2000質量部以下であることにより、硬化物のスルーホール壁面との密着性が良好となる。また、上記範囲内であることにより、導電性組成物の粘度、ポットライフ、及び長期信頼性が良好となる。
The content of the metal particles is 1000 to 2000 parts by mass, preferably 1100 to 1900 parts by mass, and more preferably 1200 to 1800 parts by mass with respect to 100 parts by mass of the total amount of the binder component. When the content is 1000 parts by mass or more, the conductivity of the cured product of the conductive composition becomes good. When the content is 2000 parts by mass or less, the adhesion of the cured product to the through-hole wall surface is good. Further, when it is within the above range, the viscosity, pot life, and long-term reliability of the conductive composition are improved.
上記低融点金属粒子の含有量は、上記バインダー成分の総量100質量部に対して、10~900質量部であり、好ましくは20~800質量部、より好ましくは50~600質量部、さらに好ましくは150~350質量部である。上記含有量が10質量部以上であることにより、メタライズ化が促進される。上記含有量が900質量部以下であることにより、導電性組成物の硬化物に対するはんだの濡れ性が良好となる。
The content of the low melting point metal particles is 10 to 900 parts by mass, preferably 20 to 800 parts by mass, more preferably 50 to 600 parts by mass, and further preferably more preferably 50 parts by mass with respect to 100 parts by mass of the total amount of the binder component. It is 150 to 350 parts by mass. When the content is 10 parts by mass or more, metallization is promoted. When the content is 900 parts by mass or less, the wettability of the solder to the cured product of the conductive composition becomes good.
上記高融点金属粒子の含有量は、特に限定されないが、上記バインダー成分の総量100質量部に対して、900~1990質量部であることが好ましく、より好ましくは1000~1800質量部、さらに好ましくは1100~1300質量部である。
The content of the refractory metal particles is not particularly limited, but is preferably 900 to 1990 parts by mass, more preferably 1000 to 1800 parts by mass, and further preferably 1000 parts by mass with respect to 100 parts by mass of the total amount of the binder component. It is 1100 to 1300 parts by mass.
低融点金属粒子と高融点金属粒子の質量比[低融点金属粒子/高融点金属粒子]は、特に限定されないが、0.005~2.0であることが好ましく、より好ましくは0.01~1.0、さらに好ましくは0.1~0.6、特に好ましくは0.15~0.32である。上記質量比が0.005以上であると、メタライズ化がより促進される。上記質量比が2.0以下であると、導電性組成物の硬化物に対するはんだの濡れ性がより良好となる。
The mass ratio of the low melting point metal particles to the high melting point metal particles [low melting point metal particles / high melting point metal particles] is not particularly limited, but is preferably 0.005 to 2.0, more preferably 0.01 to 0.01. It is 1.0, more preferably 0.1 to 0.6, and particularly preferably 0.15 to 0.32. When the mass ratio is 0.005 or more, metallization is further promoted. When the mass ratio is 2.0 or less, the wettability of the solder to the cured product of the conductive composition becomes better.
[フッ素系界面活性剤]
上記フッ素系界面活性剤としては、特に限定されないが、フルオロ脂肪族炭化水素骨格を有する化合物が挙げられる。上記フルオロ脂肪族炭化水素骨格は、少なくとも一部の水素原子がフッ素原子に置換されていればよいが、導電性組成物の硬化物に対するはんだの濡れ性がより良好となる観点から、全ての水素原子がフッ素原子で置換されたパーフルオロ脂肪族炭化水素骨格であることが好ましい。上記フッ素系界面活性剤は、一種のみを使用してもよいし、二種以上を使用してもよい。 [Fluorosurfactant]
The fluorine-based surfactant is not particularly limited, and examples thereof include compounds having a fluoroaliphatic hydrocarbon skeleton. In the above fluoroaliphatic hydrocarbon skeleton, at least a part of hydrogen atoms may be replaced with a fluorine atom, but from the viewpoint of better wettability of the solder to the cured product of the conductive composition, all hydrogens are used. It is preferably a perfluoroaliphatic hydrocarbon skeleton in which the atom is substituted with a fluorine atom. As the above-mentioned fluorine-based surfactant, only one kind may be used, or two or more kinds may be used.
上記フッ素系界面活性剤としては、特に限定されないが、フルオロ脂肪族炭化水素骨格を有する化合物が挙げられる。上記フルオロ脂肪族炭化水素骨格は、少なくとも一部の水素原子がフッ素原子に置換されていればよいが、導電性組成物の硬化物に対するはんだの濡れ性がより良好となる観点から、全ての水素原子がフッ素原子で置換されたパーフルオロ脂肪族炭化水素骨格であることが好ましい。上記フッ素系界面活性剤は、一種のみを使用してもよいし、二種以上を使用してもよい。 [Fluorosurfactant]
The fluorine-based surfactant is not particularly limited, and examples thereof include compounds having a fluoroaliphatic hydrocarbon skeleton. In the above fluoroaliphatic hydrocarbon skeleton, at least a part of hydrogen atoms may be replaced with a fluorine atom, but from the viewpoint of better wettability of the solder to the cured product of the conductive composition, all hydrogens are used. It is preferably a perfluoroaliphatic hydrocarbon skeleton in which the atom is substituted with a fluorine atom. As the above-mentioned fluorine-based surfactant, only one kind may be used, or two or more kinds may be used.
上記フルオロ脂肪族炭化水素骨格としては、下記一般式(I)で表される化合物、上記一般式(I)で表される化合物のオリゴマー、上記一般式(I)で表される化合物のオリゴマーを主骨格とする化合物が好ましい。上記一般式(I)で表される化合物としては、ヘキサフルオロプロペンが特に好ましい。上記一般式(I)で表される化合物オリゴマーは、一般式(I)で表される化合物が例えば2~100個結合した重合体が挙げられ、ヘキサフルオロプロペントリマーが特に好ましい。
The fluoroaliphatic hydrocarbon skeleton includes a compound represented by the following general formula (I), an oligomer of a compound represented by the above general formula (I), and an oligomer of a compound represented by the above general formula (I). A compound as a main skeleton is preferable. Hexafluoropropene is particularly preferable as the compound represented by the general formula (I). Examples of the compound oligomer represented by the general formula (I) include polymers in which 2 to 100 compounds represented by the general formula (I) are bonded, and a hexafluoropropentrimer is particularly preferable.
上記フッ素系界面活性剤の含有量は、特に限定されないが、上記バインダー成分の総量100質量部に対して、0.1~10質量部であることが好ましく、より好ましくは0.2~8質量部、さらに好ましくは0.3~6質量部、さらに好ましくは1~5質量部、特に好ましくは2~4質量部である。上記含有量が0.1質量部以上であると、導電性組成物の硬化物に対するはんだの濡れ性がより良好となる。上記含有量が10質量部以下であると、エポキシ化合物の硬化阻害をよりいっそう起こりにくくすることができ、導電性組成物の硬化性がより良好となる。
The content of the fluorosurfactant is not particularly limited, but is preferably 0.1 to 10 parts by mass, more preferably 0.2 to 8 parts by mass with respect to 100 parts by mass of the total amount of the binder component. Parts, more preferably 0.3 to 6 parts by mass, still more preferably 1 to 5 parts by mass, and particularly preferably 2 to 4 parts by mass. When the content is 0.1 part by mass or more, the wettability of the solder to the cured product of the conductive composition becomes better. When the content is 10 parts by mass or less, the curing inhibition of the epoxy compound can be made more difficult to occur, and the curability of the conductive composition becomes better.
[硬化剤]
本発明の導電性組成物は、さらに、硬化剤を含むことが好ましい。上記硬化剤は、少なくとも一種の熱硬化性化合物を硬化させる役割を有する。上記硬化剤は、エポキシ基と反応性を有する官能基を有することが好ましい。上記硬化剤は、一種のみを使用してもよいし、二種以上を使用してもよい。 [Curing agent]
The conductive composition of the present invention preferably further contains a curing agent. The curing agent has a role of curing at least one kind of thermosetting compound. The curing agent preferably has a functional group that is reactive with the epoxy group. As the curing agent, only one kind may be used, or two or more kinds may be used.
本発明の導電性組成物は、さらに、硬化剤を含むことが好ましい。上記硬化剤は、少なくとも一種の熱硬化性化合物を硬化させる役割を有する。上記硬化剤は、エポキシ基と反応性を有する官能基を有することが好ましい。上記硬化剤は、一種のみを使用してもよいし、二種以上を使用してもよい。 [Curing agent]
The conductive composition of the present invention preferably further contains a curing agent. The curing agent has a role of curing at least one kind of thermosetting compound. The curing agent preferably has a functional group that is reactive with the epoxy group. As the curing agent, only one kind may be used, or two or more kinds may be used.
上記硬化剤としては、例えば、イソシアネート系硬化剤、フェノール系硬化剤、イミダゾール系硬化剤、アミン系硬化剤、カチオン系硬化剤、ラジカル系硬化剤などが挙げられる。上記硬化剤としては、中でも、フェノール系硬化剤、カチオン系硬化剤が好ましい。
Examples of the curing agent include isocyanate-based curing agents, phenol-based curing agents, imidazole-based curing agents, amine-based curing agents, cationic-based curing agents, radical-based curing agents, and the like. As the curing agent, a phenol-based curing agent and a cationic-based curing agent are preferable.
上記イソシアネート系硬化剤としては、例えば、1,2−エチレンジイソシアネート、1,4−ブチレンジイソシアネート、1,6−ヘキサメチレンジイソシアネート等の低級脂肪族ポリイソシアネート類;シクロペンチレンジイソシアネート、シクロヘキシレンジイソシアネート、イソホロンジイソシアネート、水素添加トリレンジイソシアネート、水素添加キシレンジイソシアネート等の脂環族ポリイソシアネート類;2,4−トリレンジイソシアネート、2,6−トリレンジイソシアネート、4,4’−ジフェニルメタンジイソシアネート、キシリレンジイソシアネート等の芳香族ポリイソシアネート類などが挙げられる。
Examples of the isocyanate-based curing agent include lower aliphatic polyisocyanates such as 1,2-ethylene diisocyanate, 1,4-butylene diisocyanate, and 1,6-hexamethylene diisocyanate; cyclopentylene diisocyanate, cyclohexylene diisocyanate, and isophorone. Alicyclic polyisocyanates such as diisocyanate, hydrogenated tolylene diisocyanate, hydrogenated xylene diisocyanate; 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, xylylene diisocyanate, etc. Examples include aromatic polyisocyanates.
上記フェノール系硬化剤としては、例えば、ノボラックフェノール、ナフトール系化合物などが挙げられる。
Examples of the phenol-based curing agent include novolak phenol and naphthol-based compounds.
上記イミダゾール系硬化剤としては、例えば、イミダゾール、2−ウンデシルイミダゾール、2−ヘプタデシルイミダゾール、2−メチルイミダゾール、2−エチルイミダゾール、2−フェニルイミダゾール、2−エチル−4−メチル−イミダゾール、1−シアノエチル−2−ウンデシルイミダゾール、2−フェニルイミダゾールなどが挙げられる。
Examples of the imidazole-based curing agent include imidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2-methylimidazole, 2-ethylimidazole, 2-phenylimidazole, 2-ethyl-4-methyl-imidazole, 1 -Cyanoethyl-2-undecylimidazole, 2-phenylimidazole and the like can be mentioned.
上記アミン系硬化剤としては、例えば、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ジプロピレンジアミン、ジエチルアミノプロピルアミン、ポリプロピレントリアミン等の脂肪族ポリアミン;メンセンジアミン、イソホロンジアミン、ビス(4−アミノ−3−メチルジシクロヘキシル)メタン、ジアミノジシクロヘキシルメタン、ビス(アミノメチル)シクロヘキサン、N−アミノエチルピペラジン、3,9−ビス(3−アミノプロピル)−3,4,8,10−テトラオキサスピロ[5,5]ウンデカン等の脂環式ポリアミン;m−フェニレンジアミン、p−フェニレンジアミン、トリレン−2,4−ジアミン、トリレン−2,6−ジアミン、メシチレン−2,4−ジアミン、3,5−ジエチルトリレン−2,4−ジアミン、3,5−ジエチルトリレン−2,6−ジアミン等の単核ポリアミン、ビフェニレンジアミン、4,4−ジアミノジフェニルメタン、2,5−ナフチレンジアミン、2,6−ナフチレンジアミン等の芳香族ポリアミンなどが挙げられる。
Examples of the amine-based curing agent include aliphatic polyamines such as ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, dipropylenediamine, diethylaminopropylamine and polypropylenetriamine; mensendiamine, isophoronediamine and bis (4-). Amino-3-methyldicyclohexyl) methane, diaminodicyclohexylmethane, bis (aminomethyl) cyclohexane, N-aminoethylpiperazine, 3,9-bis (3-aminopropyl) -3,4,8,10-tetraoxaspiro [ 5,5] Alicyclic polyamines such as undecane; m-phenylenediamine, p-phenylenediamine, tolylen-2,4-diamine, tolylen-2,6-diamine, mesitylene-2,4-diamine, 3,5- Mononuclear polyamines such as diethyltrilen-2,4-diamine, 3,5-diethyltrilen-2,6-diamine, biphenylenediamine, 4,4-diaminodiphenylmethane, 2,5-naphthylenediamine, 2,6 -Aromatic polyamines such as naphthylenediamines can be mentioned.
上記カチオン系硬化剤としては、例えば、三フッ化ホウ素のアミン塩、p−メトキシベンゼンジアゾニウムヘキサフルオロホスフェート、ジフェニルイオドニウムヘキサフルオロホスフェート、トリフェニルスルホニウム、テトラ−n−ブチルホスホニウムテトラフェニルボレート、テトラ−n−ブチルホスホニウム−o,o−ジエチルホスホロジチオエート等のオニウム系化合物などが挙げられる。
Examples of the cationic curing agent include an amine salt of boron trifluoride, p-methoxybenzenediazonium hexafluorophosphate, diphenyliodonium hexafluorophosphate, triphenylsulfonium, tetra-n-butylphosphonium tetraphenylborate, and tetra. Examples thereof include onium compounds such as -n-butylphosphonium-o and o-diethylphosphologithioate.
ラジカル系硬化剤(重合開始剤)としては、例えば、ジクミルパーオキサイド、t−ブチルクミルパーオキサイド、t−ブチルハイドロパーオキサイド、クメンハイドロパーオキサイドなどが挙げられる。
Examples of the radical curing agent (polymerization initiator) include dicumyl peroxide, t-butyl cumyl peroxide, t-butyl hydroperoxide, cumene hydroperoxide and the like.
上記硬化剤の含有量は、上記バインダー成分の総量100質量部に対して、0.5~10質量部であることが好ましく、より好ましくは1~8質量部、さらに好ましくは2~6質量部である。上記含有量が0.5質量部以上であると、バインダー成分中の熱硬化性成分の硬化が充分となる。上記含有量が10質量部以下であると、導電性組成物の硬化物の導電性が良好となる。
The content of the curing agent is preferably 0.5 to 10 parts by mass, more preferably 1 to 8 parts by mass, and further preferably 2 to 6 parts by mass with respect to 100 parts by mass of the total amount of the binder component. Is. When the content is 0.5 parts by mass or more, the thermosetting component in the binder component is sufficiently cured. When the content is 10 parts by mass or less, the conductivity of the cured product of the conductive composition becomes good.
[フラックス]
本発明の導電性組成物は、さらに、フラックスを含むことが好ましい。上記フラックスは、金属粒子のメタライズ化を促進させる役割を有する。上記フラックスとしては、例えば、塩化亜鉛、乳酸、クエン酸、オレイン酸、ステアリン酸、グルタミン酸、安息香酸、シュウ酸、グルタミン酸塩酸塩、アニリン塩酸塩、臭化セチルピリジン、尿素、トリエタノールアミン、グリセリン、ヒドラジン、ロジンなどが挙げられる。上記フラックスは、一種のみを使用してもよいし、二種以上を使用してもよい。 [flux]
The conductive composition of the present invention preferably further contains a flux. The flux has a role of promoting metallization of metal particles. Examples of the flux include zinc chloride, lactic acid, citric acid, oleic acid, stearic acid, glutamic acid, benzoic acid, oxalic acid, glutamate hydrochloride, aniline hydrochloride, cetylpyridine bromide, urea, triethanolamine, glycerin, and the like. Examples include hydrazine and rosin. Only one kind of the above flux may be used, or two or more kinds of the flux may be used.
本発明の導電性組成物は、さらに、フラックスを含むことが好ましい。上記フラックスは、金属粒子のメタライズ化を促進させる役割を有する。上記フラックスとしては、例えば、塩化亜鉛、乳酸、クエン酸、オレイン酸、ステアリン酸、グルタミン酸、安息香酸、シュウ酸、グルタミン酸塩酸塩、アニリン塩酸塩、臭化セチルピリジン、尿素、トリエタノールアミン、グリセリン、ヒドラジン、ロジンなどが挙げられる。上記フラックスは、一種のみを使用してもよいし、二種以上を使用してもよい。 [flux]
The conductive composition of the present invention preferably further contains a flux. The flux has a role of promoting metallization of metal particles. Examples of the flux include zinc chloride, lactic acid, citric acid, oleic acid, stearic acid, glutamic acid, benzoic acid, oxalic acid, glutamate hydrochloride, aniline hydrochloride, cetylpyridine bromide, urea, triethanolamine, glycerin, and the like. Examples include hydrazine and rosin. Only one kind of the above flux may be used, or two or more kinds of the flux may be used.
上記フラックスの含有量は、上記バインダー成分の総量100質量部に対して、5~100質量部であることが好ましく、より好ましくは10~80質量部、さらに好ましくは15~60質量部である。上記含有量が5質量部以上であると、金属粒子のメタライズ化を充分に促進することができる。上記含有量が100質量部以下であると、導電性組成物の硬化物の密着性等の物理的特性がより良好となる。
The content of the flux is preferably 5 to 100 parts by mass, more preferably 10 to 80 parts by mass, and further preferably 15 to 60 parts by mass with respect to 100 parts by mass of the total amount of the binder component. When the content is 5 parts by mass or more, metallization of the metal particles can be sufficiently promoted. When the content is 100 parts by mass or less, the physical properties such as the adhesion of the cured product of the conductive composition become better.
本発明の導電性組成物は、本発明の効果を損なわない範囲内において、上述の各成分以外のその他の成分を含有していてもよい。上記その他の成分としては、公知乃至慣用の組成物に含まれる成分が挙げられる。上記その他の成分としては、例えば、溶剤、消泡剤、レベリング剤、増粘剤、粘着剤、充填剤、難燃剤、着色剤などが挙げられる。上記その他の成分は、一種のみを使用してもよいし、二種以上を使用してもよい。
The conductive composition of the present invention may contain other components other than the above-mentioned components as long as the effects of the present invention are not impaired. Examples of the other components include components contained in known or conventional compositions. Examples of the other components include solvents, defoamers, leveling agents, thickeners, pressure-sensitive adhesives, fillers, flame retardants, colorants and the like. As the above other components, only one kind may be used, or two or more kinds may be used.
上記溶剤としては、例えば、メチルエチルケトン、アセトン、アセトフェノン等のケトン;メチルセロソルブ、メチルカルビトール、ジエチレングリコールジメチルエーテル、テトラヒドロフラン等のエーテル;メチルセロソルブアセテート、酢酸ブチル、酢酸メチル等のエステルなどの公知乃至慣用の有機溶剤が挙げられる。
Examples of the solvent include ketones such as methyl ethyl ketone, acetone, and acetophenone; ethers such as methyl cellosolve, methyl carbitol, diethylene glycol dimethyl ether, and tetrahydrofuran; known or commonly used organic substances such as esters of methyl cellosolve acetate, butyl acetate, and methyl acetate. Solvents can be mentioned.
本発明の導電性組成物における溶剤の含有割合は、特に限定されないが、本発明の導電性組成物100質量%に対し、10質量%以下であることが好ましく、より好ましくは5質量%以下である。
The content ratio of the solvent in the conductive composition of the present invention is not particularly limited, but is preferably 10% by mass or less, more preferably 5% by mass or less, based on 100% by mass of the conductive composition of the present invention. be.
本発明の導電性組成物は、ペースト状であることが好ましい。本発明の導電性組成物の、BH型粘度計ローターNo.7(回転速度:10rpm)により測定される25℃における粘度は、特に限定されないが、300~2500dPa・sであることが好ましく、より好ましくは500~2000dPa・sである。上記粘度が上記範囲内であると、ホールビア充填用に好ましく用いることができる。
The conductive composition of the present invention is preferably in the form of a paste. BH type viscometer rotor No. of the conductive composition of the present invention. The viscosity at 25 ° C. measured by 7 (rotational speed: 10 rpm) is not particularly limited, but is preferably 300 to 2500 dPa · s, and more preferably 500 to 2000 dPa · s. When the viscosity is within the above range, it can be preferably used for filling whole vias.
本発明の導電性組成物は、半導体パッケージのビアやスルーホールなどのホール充填用とすることができる。特に、POP構造の半導体パッケージ作製に際し、導電性組成物の硬化物に対するはんだの濡れ性に優れる観点から、多層基板のホール充填用とすることができる。
The conductive composition of the present invention can be used for filling holes such as vias and through holes in semiconductor packages. In particular, when manufacturing a semiconductor package having a POP structure, it can be used for filling holes in a multilayer substrate from the viewpoint of excellent wettability of solder to a cured product of the conductive composition.
本発明の導電性組成物は、特に限定されず、公知乃至慣用の方法により製造することができる。例えば、上記各成分を混合し、3本ロールミル、遊星式撹拌装置、プラネタリーミキサー、ホモミキサー、パドルミキサーなどで撹拌して製造することができる。
The conductive composition of the present invention is not particularly limited and can be produced by a known or conventional method. For example, each of the above components can be mixed and stirred with a three-roll mill, a planetary stirrer, a planetary mixer, a homomixer, a paddle mixer, or the like.
本発明の導電性組成物を多層基板のスルーホール充填に用いた場合、熱硬化によりバインダー成分中の熱硬化性化合物が硬化するとともに、金属粒子が融解してメタライズ化し、低融点金属粒子と高融点金属粒子が一体化して、金属粒子とスルーホール内の導電層端部とが一体化する。また、本発明の導電性組成物は、スルーホール充填用に用いられる場合、得られる硬化物が、スルーホール内の導電層端部や多層基板を構成する絶縁層に対する密着性に優れる観点から、スルーホール内壁面にめっきを施さずに使用可能である。さらに、はんだの濡れ性に優れる硬化物を形成可能である観点から、導電性組成物の硬化物上に金属めっき層等の蓋めっきを施さずに直接はんだを搭載することができる。従って、本発明の導電性組成物を用いた場合、スルーホールめっき及び蓋めっき等の金属めっきを施さなくても、金属粒子相互間、又は金属粒子と上記導電層端部とが単に接触しているだけの場合と比較して高い導電性が得られ、導電層端部での接合の信頼性が顕著に向上し、さらに、直接はんだを搭載することも可能である。また、本発明の導電性組成物は、多層基板の絶縁層との接着性にも優れるので、高い長期信頼性を有する多層基板が得られる。
When the conductive composition of the present invention is used for filling through holes in a multilayer substrate, the heat-curable compound in the binder component is cured by thermal curing, and the metal particles are melted and metallized, resulting in low melting point metal particles and high melting point metal particles. The melting point metal particles are integrated, and the metal particles and the end portion of the conductive layer in the through hole are integrated. Further, when the conductive composition of the present invention is used for filling through holes, the obtained cured product has excellent adhesion to the end of the conductive layer in the through holes and the insulating layer constituting the multilayer substrate. It can be used without plating the inner wall surface of the through hole. Further, from the viewpoint that a cured product having excellent wettability of the solder can be formed, the solder can be directly mounted on the cured product of the conductive composition without performing cover plating such as a metal plating layer. Therefore, when the conductive composition of the present invention is used, even if metal plating such as through-hole plating and lid plating is not performed, the metal particles are simply in contact with each other or the metal particles and the end portion of the conductive layer are in contact with each other. Higher conductivity is obtained as compared with the case where only the metal is used, the reliability of bonding at the end of the conductive layer is remarkably improved, and it is also possible to directly mount the solder. In addition, the conductive composition of the present invention is also excellent in adhesiveness to the insulating layer of the multilayer substrate, so that a multilayer substrate having high long-term reliability can be obtained.
次に、本発明の導電性組成物を用いたPOP構造を有する半導体パッケージ、及びその製造方法について説明する。
Next, a semiconductor package having a POP structure using the conductive composition of the present invention and a method for manufacturing the same will be described.
図1は、本発明の導電性組成物を用いたPOP構造を有する半導体パッケージの例を示す模式拡大断面図である。図1に示すPOP構造1は、プリント配線板Bと、プリント配線板Bの一方の面に設けられたモールド樹脂12と、モールド樹脂12に複数形成されたビアの底部に設けられた導電層11と、当該ビアに充填された導電性組成物の硬化物13と、を有する半導体パッケージP1を有する。そして、導電性組成物の硬化物13上に、はんだ等により形成されたバンプ14を介して半導体パッケージP1における硬化物13と半導体パッケージP2における硬化物13とが接合するように積層されている。半導体パッケージP1及びP2が積層された構造自体は例えば図2に示した従来技術のものと類似しているが、半導体パッケージP1における導電性組成物の硬化物上に蓋めっきが施されずにバンプが形成されている点で図2のものと異なる。
FIG. 1 is a schematic enlarged cross-sectional view showing an example of a semiconductor package having a POP structure using the conductive composition of the present invention. The POP structure 1 shown in FIG. 1 includes a printed wiring board B, a mold resin 12 provided on one surface of the printed wiring board B, and a conductive layer 11 provided on the bottom of a plurality of vias formed on the mold resin 12. And a semiconductor package P1 having a cured product 13 of the conductive composition filled in the via. Then, the cured product 13 in the semiconductor package P1 and the cured product 13 in the semiconductor package P2 are laminated on the cured product 13 of the conductive composition so as to be bonded to each other via bumps 14 formed by solder or the like. The structure itself in which the semiconductor packages P1 and P2 are laminated is similar to that of the prior art shown in FIG. 2, for example, but the cured product of the conductive composition in the semiconductor package P1 is bumped without being lid-plated. Is different from that of FIG. 2 in that is formed.
本図に示したPOP構造を得るには、例えばドリルやレーザーによりモールド樹脂にビアを形成したのち、プリント配線板表面に形成された導電層が上記ビアの底部を覆うように、半導体パッケージをプリント配線板上に設置する。次いで、上記ビアに導電性組成物を充填して、加熱により熱硬化性化合物を硬化させるとともに金属粒子のメタライズ化を進行させる。硬化後には、基板表面から突出した余分な硬化物を、研磨等により除去する。
To obtain the POP structure shown in this figure, for example, a via is formed on the mold resin by a drill or a laser, and then a semiconductor package is printed so that the conductive layer formed on the surface of the printed wiring board covers the bottom of the via. Install on the wiring board. Next, the via is filled with the conductive composition, and the thermosetting compound is cured by heating and the metallization of the metal particles is promoted. After curing, excess cured material protruding from the surface of the substrate is removed by polishing or the like.
導電性組成物の加熱条件としては、熱硬化性化合物の硬化と金属粒子のメタライズ化の双方に適した条件を選択するので、具体的な条件は導電性組成物の組成により異なるが、おおよその目安としては、約140~180℃の温度範囲内で、約30~120分間程度加熱すればよい。
As the heating conditions of the conductive composition, conditions suitable for both the curing of the thermosetting compound and the metallization of the metal particles are selected. Therefore, the specific conditions vary depending on the composition of the conductive composition, but are approximate. As a guide, heating may be performed for about 30 to 120 minutes within a temperature range of about 140 to 180 ° C.
以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例にのみ限定されるものではない。なお、表1に記載の配合量はバインダー成分(純分)を100質量部としたときの各成分の相対的な配合量(純分)であり、特記しない限り「質量部」で表す。また、「−」はその成分を配合しないことを示す。
Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples. The blending amount shown in Table 1 is a relative blending amount (pure content) of each component when the binder component (pure content) is 100 parts by mass, and is represented by "parts by mass" unless otherwise specified. Further, "-" indicates that the component is not blended.
実施例1~11、比較例1~3
表に記した各成分を配合して混合し、実施例及び比較例の各導電性組成物を調製した。使用した各成分の詳細は以下の通りである。 Examples 1 to 11 and Comparative Examples 1 to 3
Each of the components shown in the table was mixed and mixed to prepare each conductive composition of Examples and Comparative Examples. The details of each component used are as follows.
表に記した各成分を配合して混合し、実施例及び比較例の各導電性組成物を調製した。使用した各成分の詳細は以下の通りである。 Examples 1 to 11 and Comparative Examples 1 to 3
Each of the components shown in the table was mixed and mixed to prepare each conductive composition of Examples and Comparative Examples. The details of each component used are as follows.
<バインダー成分>
アクリレート化合物:トリメチロールプロパントリアクリレート
液体エポキシ化合物A:グリシジルエーテル型エポキシ化合物(300g/eq)
固体エポキシ化合物B:NBR変性エポキシ樹脂(400g/eq)
固体エポキシ化合物C:キレート変性エポキシ樹脂(200g/eq)
液体エポキシ化合物D:アミノフェノール型エポキシ樹脂(100g/eq)
<金属粒子>
高融点金属粒子A:銀被覆銅粒子
高融点金属粒子B:銀被覆銅合金粒子(銅合金は、銅、ニッケル、及び亜鉛の合金からなる)
低融点金属粒子:Sn−Bi合金金属粒子(Sn:Bi=42:58、融点139℃)
<硬化剤>
カチオン系硬化剤:テトラ−n−ブチルホスホニウムテトラフェニルボレート
フェノール系硬化剤:フェノールナフトール系アラルキル樹脂
<フッ素系界面活性剤>
フッ素系界面活性剤A:(株)ネオス製、商品名「フタージェント FTX−218」
フッ素系界面活性剤B:DIC(株)製、商品名「メガファック F−444」
フッ素系界面活性剤C:AGCセイミケミカル(株)製、商品名「サーフロン S−243」
<フラックス>
フラックス:トリエタノールアミン <Binder component>
Acrylate compound: Trimethylolpropane Triacrylate Liquid epoxy compound A: Glycidyl ether type epoxy compound (300 g / eq)
Solid Epoxy Compound B: NBR Modified Epoxy Resin (400g / eq)
Solid Epoxy Compound C: Chelate Modified Epoxy Resin (200g / eq)
Liquid epoxy compound D: Aminophenol type epoxy resin (100 g / eq)
<Metal particles>
Refractory metal particles A: Silver-coated copper particles Refractory metal particles B: Silver-coated copper alloy particles (copper alloy consists of alloys of copper, nickel, and zinc)
Low melting point metal particles: Sn—Bi alloy metal particles (Sn: Bi = 42: 58, melting point 139 ° C.)
<Curing agent>
Cationic curing agent: Tetra-n-butylphosphonium Tetraphenylborate Phenolic curing agent: Phenolic naphthol-based aralkyl resin <Fluorosurfactant>
Fluorosurfactant A: Made by Neos Co., Ltd., trade name "Futergent FTX-218"
Fluorine-based surfactant B: Made by DIC Corporation, trade name "Megafuck F-444"
Fluorosurfactant C: AGC Seimi Chemical Co., Ltd., trade name "Surflon S-243"
<Flux>
Flux: Triethanolamine
アクリレート化合物:トリメチロールプロパントリアクリレート
液体エポキシ化合物A:グリシジルエーテル型エポキシ化合物(300g/eq)
固体エポキシ化合物B:NBR変性エポキシ樹脂(400g/eq)
固体エポキシ化合物C:キレート変性エポキシ樹脂(200g/eq)
液体エポキシ化合物D:アミノフェノール型エポキシ樹脂(100g/eq)
<金属粒子>
高融点金属粒子A:銀被覆銅粒子
高融点金属粒子B:銀被覆銅合金粒子(銅合金は、銅、ニッケル、及び亜鉛の合金からなる)
低融点金属粒子:Sn−Bi合金金属粒子(Sn:Bi=42:58、融点139℃)
<硬化剤>
カチオン系硬化剤:テトラ−n−ブチルホスホニウムテトラフェニルボレート
フェノール系硬化剤:フェノールナフトール系アラルキル樹脂
<フッ素系界面活性剤>
フッ素系界面活性剤A:(株)ネオス製、商品名「フタージェント FTX−218」
フッ素系界面活性剤B:DIC(株)製、商品名「メガファック F−444」
フッ素系界面活性剤C:AGCセイミケミカル(株)製、商品名「サーフロン S−243」
<フラックス>
フラックス:トリエタノールアミン <Binder component>
Acrylate compound: Trimethylolpropane Triacrylate Liquid epoxy compound A: Glycidyl ether type epoxy compound (300 g / eq)
Solid Epoxy Compound B: NBR Modified Epoxy Resin (400g / eq)
Solid Epoxy Compound C: Chelate Modified Epoxy Resin (200g / eq)
Liquid epoxy compound D: Aminophenol type epoxy resin (100 g / eq)
<Metal particles>
Refractory metal particles A: Silver-coated copper particles Refractory metal particles B: Silver-coated copper alloy particles (copper alloy consists of alloys of copper, nickel, and zinc)
Low melting point metal particles: Sn—Bi alloy metal particles (Sn: Bi = 42: 58, melting point 139 ° C.)
<Curing agent>
Cationic curing agent: Tetra-n-butylphosphonium Tetraphenylborate Phenolic curing agent: Phenolic naphthol-based aralkyl resin <Fluorosurfactant>
Fluorosurfactant A: Made by Neos Co., Ltd., trade name "Futergent FTX-218"
Fluorine-based surfactant B: Made by DIC Corporation, trade name "Megafuck F-444"
Fluorosurfactant C: AGC Seimi Chemical Co., Ltd., trade name "Surflon S-243"
<Flux>
Flux: Triethanolamine
(評価)
実施例及び比較例で得られた各導電性組成物について以下の通り評価した。評価結果は表に記載した。 (evaluation)
Each conductive composition obtained in Examples and Comparative Examples was evaluated as follows. The evaluation results are shown in the table.
実施例及び比較例で得られた各導電性組成物について以下の通り評価した。評価結果は表に記載した。 (evaluation)
Each conductive composition obtained in Examples and Comparative Examples was evaluated as follows. The evaluation results are shown in the table.
(1)はんだ濡れ性
ガラスエポキシ基板上にメタル版を用いて実施例及び比較例で得られた各導電性組成物を印刷した。印刷後、エアーオーブンで加熱硬化し(180℃で60分間)、室温まで冷却し、導電性組成物の硬化物を形成した。その後、導電性組成物の硬化物上にはんだペースト(SAC305)を印刷し、リフロー装置へ投入した。リフロー後、導電性組成物の硬化物の表面積に対してはんだがどの程度のっているか確認した。そして、「はんだ濡れ性」を以下の基準で評価した。
◎:はんだ濡れ面積80%以上
○:はんだ濡れ面積50%以上、80%未満
Δ:はんだ濡れ面積20%以上、50%未満
×:はんだ濡れ面積20%未満 (1) Solder Wetability Each conductive composition obtained in Examples and Comparative Examples was printed on a glass epoxy substrate using a metal plate. After printing, it was heat-cured in an air oven (at 180 ° C. for 60 minutes) and cooled to room temperature to form a cured product of the conductive composition. Then, the solder paste (SAC305) was printed on the cured product of the conductive composition and charged into the reflow apparatus. After reflow, it was confirmed how much the solder was on the surface area of the cured product of the conductive composition. Then, "solder wettability" was evaluated according to the following criteria.
⊚: Solder wet area 80% or more ○: Solder wet area 50% or more and less than 80% Δ: Solder wet area 20% or more and less than 50% ×: Solder wet area less than 20%
ガラスエポキシ基板上にメタル版を用いて実施例及び比較例で得られた各導電性組成物を印刷した。印刷後、エアーオーブンで加熱硬化し(180℃で60分間)、室温まで冷却し、導電性組成物の硬化物を形成した。その後、導電性組成物の硬化物上にはんだペースト(SAC305)を印刷し、リフロー装置へ投入した。リフロー後、導電性組成物の硬化物の表面積に対してはんだがどの程度のっているか確認した。そして、「はんだ濡れ性」を以下の基準で評価した。
◎:はんだ濡れ面積80%以上
○:はんだ濡れ面積50%以上、80%未満
Δ:はんだ濡れ面積20%以上、50%未満
×:はんだ濡れ面積20%未満 (1) Solder Wetability Each conductive composition obtained in Examples and Comparative Examples was printed on a glass epoxy substrate using a metal plate. After printing, it was heat-cured in an air oven (at 180 ° C. for 60 minutes) and cooled to room temperature to form a cured product of the conductive composition. Then, the solder paste (SAC305) was printed on the cured product of the conductive composition and charged into the reflow apparatus. After reflow, it was confirmed how much the solder was on the surface area of the cured product of the conductive composition. Then, "solder wettability" was evaluated according to the following criteria.
⊚: Solder wet area 80% or more ○: Solder wet area 50% or more and less than 80% Δ: Solder wet area 20% or more and less than 50% ×: Solder wet area less than 20%
(2)抵抗値
比抵抗(×10−4Ω・cm):ガラスエポキシ基板上にメタル版を用いて実施例及び比較例で得られた各導電性組成物をライン印刷(長さ60mm、幅1mm、厚さ約100μm)し、180℃で60分間加熱することにより本硬化させ、導電性パターンが形成された評価用基板を作製した。次いで、テスターを用いて導電性パターンの両端間の抵抗値を測定し、断面積(S、cm2)と長さ(L、cm)から次式(1)により比抵抗を計算した。なお、ガラスエポキシ基板3枚に各5本のライン印刷を施して導電性パターンを合計15本形成し、それらの比抵抗の平均値を求めた。
比抵抗=(S/L)×R (1) (2) Resistance value Specific resistance (× 10 -4 Ω · cm): Using a metal plate on a glass epoxy substrate, each conductive composition obtained in Examples and Comparative Examples was line-printed (length 60 mm, width). 1 mm, thickness of about 100 μm), and heating at 180 ° C. for 60 minutes to cure the film to produce an evaluation substrate on which a conductive pattern was formed. Next, the resistance value between both ends of the conductive pattern was measured using a tester, and the resistivity was calculated from the cross-sectional area (S, cm 2 ) and the length (L, cm) by the following equation (1). In addition, 5 lines were printed on each of 3 glass epoxy boards to form a total of 15 conductive patterns, and the average value of their specific resistances was obtained.
Specific resistance = (S / L) × R (1)
比抵抗(×10−4Ω・cm):ガラスエポキシ基板上にメタル版を用いて実施例及び比較例で得られた各導電性組成物をライン印刷(長さ60mm、幅1mm、厚さ約100μm)し、180℃で60分間加熱することにより本硬化させ、導電性パターンが形成された評価用基板を作製した。次いで、テスターを用いて導電性パターンの両端間の抵抗値を測定し、断面積(S、cm2)と長さ(L、cm)から次式(1)により比抵抗を計算した。なお、ガラスエポキシ基板3枚に各5本のライン印刷を施して導電性パターンを合計15本形成し、それらの比抵抗の平均値を求めた。
比抵抗=(S/L)×R (1) (2) Resistance value Specific resistance (× 10 -4 Ω · cm): Using a metal plate on a glass epoxy substrate, each conductive composition obtained in Examples and Comparative Examples was line-printed (length 60 mm, width). 1 mm, thickness of about 100 μm), and heating at 180 ° C. for 60 minutes to cure the film to produce an evaluation substrate on which a conductive pattern was formed. Next, the resistance value between both ends of the conductive pattern was measured using a tester, and the resistivity was calculated from the cross-sectional area (S, cm 2 ) and the length (L, cm) by the following equation (1). In addition, 5 lines were printed on each of 3 glass epoxy boards to form a total of 15 conductive patterns, and the average value of their specific resistances was obtained.
Specific resistance = (S / L) × R (1)
本発明の導電性組成物(実施例)は、熱硬化により得られる硬化物に対するはんだの濡れ性が良好であり、硬化物上ではんだがはじかれずに搭載できた(図3)。また、抵抗値も低かった。一方、フッ素系界面活性剤を配合しない場合(比較例1)、硬化物に対するはんだ濡れ性が劣っていた。また、フッ素系界面活性剤を配合した場合であっても、低融点金属粒子の配合量が多い場合(比較例2)及び低融点金属粒子を配合しない場合(比較例3)も、硬化物に対するはんだ濡れ性が劣っており、導電性組成物の硬化物上にはんだを搭載しようとした際、はんだがはじかれてうまく搭載できなかった(図4)。
The conductive composition (Example) of the present invention had good wettability of the solder to the cured product obtained by thermal curing, and could be mounted on the cured product without the solder being repelled (FIG. 3). The resistance value was also low. On the other hand, when the fluorine-based surfactant was not blended (Comparative Example 1), the solder wettability with respect to the cured product was inferior. Further, even when a fluorine-based surfactant is blended, even when the blending amount of the low melting point metal particles is large (Comparative Example 2) and when the low melting point metal particles are not blended (Comparative Example 3), the cured product is not blended. The solder wettability was inferior, and when an attempt was made to mount the solder on the cured product of the conductive composition, the solder was repelled and the solder could not be mounted successfully (FIG. 4).
1,2 POP構造
11,21 導電層
12,22 モールド樹脂
13,23 導電性組成物の硬化物
14,24 はんだバンプ
25 蓋めっき
B プリント配線板
P1,P2 半導体パッケージ
X 導電性組成物の硬化物
Y はんだ 1, POP structure 11, 21, Conductive layer 12, 22 Molded resin 13, 23 Cured product of conductive composition 14, 24 Solder bump 25 Cover plating B Printed wiring board P1, P2 Semiconductor package X Cured product of conductive composition Y solder
11,21 導電層
12,22 モールド樹脂
13,23 導電性組成物の硬化物
14,24 はんだバンプ
25 蓋めっき
B プリント配線板
P1,P2 半導体パッケージ
X 導電性組成物の硬化物
Y はんだ 1,
Claims (7)
- 熱硬化性化合物を含むバインダー成分、金属粒子、及びフッ素系界面活性剤を含有し、
前記金属粒子は、融点240℃以下の低融点金属粒子及び融点800℃以上の高融点金属粒子を含有し、
前記バインダー成分100質量部に対し、前記金属粒子の含有量が1000~2000質量部、前記低融点金属粒子の含有量が10~900質量部である導電性組成物。 It contains a binder component containing a thermosetting compound, metal particles, and a fluorine-based surfactant.
The metal particles contain low melting point metal particles having a melting point of 240 ° C. or lower and high melting point metal particles having a melting point of 800 ° C. or higher.
A conductive composition in which the content of the metal particles is 1000 to 2000 parts by mass and the content of the low melting point metal particles is 10 to 900 parts by mass with respect to 100 parts by mass of the binder component. - 前記低融点金属粒子と前記高融点金属粒子の質量比[低融点金属粒子/高融点金属粒子]が0.005~2.0である請求項1に記載の導電性組成物。 The conductive composition according to claim 1, wherein the mass ratio [low melting point metal particles / high melting point metal particles] of the low melting point metal particles to the high melting point metal particles is 0.005 to 2.0.
- 前記熱硬化性化合物がエポキシ化合物及びアクリレート化合物の少なくとも一方を含有する請求項1又は2に記載の導電性組成物。 The conductive composition according to claim 1 or 2, wherein the thermosetting compound contains at least one of an epoxy compound and an acrylate compound.
- 前記エポキシ化合物が液状エポキシ化合物及び固体エポキシ化合物の少なくとも一方を含有する請求項3に記載の導電性組成物。 The conductive composition according to claim 3, wherein the epoxy compound contains at least one of a liquid epoxy compound and a solid epoxy compound.
- さらにフラックスを含有する請求項1~4のいずれか1項に記載の導電性組成物。 The conductive composition according to any one of claims 1 to 4, further containing a flux.
- 前記高融点金属粒子が銀粒子、銅粒子、銀被覆銅粒子、及び銀被覆銅合金粒子からなる群より選択される1以上の金属粒子を含有する請求項1~5のいずれか1項に記載の導電性組成物。 The invention according to any one of claims 1 to 5, wherein the refractory metal particles contain one or more metal particles selected from the group consisting of silver particles, copper particles, silver-coated copper particles, and silver-coated copper alloy particles. Conductive composition.
- さらに硬化剤を含有する請求項1~6のいずれか1項に記載の導電性組成物。 The conductive composition according to any one of claims 1 to 6, further containing a curing agent.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/031185 WO2022034696A1 (en) | 2020-08-11 | 2020-08-11 | Electroconductive composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/031185 WO2022034696A1 (en) | 2020-08-11 | 2020-08-11 | Electroconductive composition |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022034696A1 true WO2022034696A1 (en) | 2022-02-17 |
Family
ID=80247111
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/031185 WO2022034696A1 (en) | 2020-08-11 | 2020-08-11 | Electroconductive composition |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2022034696A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023157941A1 (en) * | 2022-02-21 | 2023-08-24 | タツタ電線株式会社 | Conductive paste and multilayer substrate |
WO2024048628A1 (en) * | 2022-09-01 | 2024-03-07 | タツタ電線株式会社 | Conductive paste and multilayer substrate using same |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008108629A (en) * | 2006-10-26 | 2008-05-08 | Tatsuta System Electronics Kk | Conductive paste and multilayer board using this |
JP2017130623A (en) * | 2016-01-22 | 2017-07-27 | 株式会社村田製作所 | Paste material for filling, manufacturing method of via-hole conductor using the same, and manufacturing method of multilayer substrate |
JP2019212577A (en) * | 2018-06-08 | 2019-12-12 | トヨタ自動車株式会社 | Bonding agent |
-
2020
- 2020-08-11 WO PCT/JP2020/031185 patent/WO2022034696A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008108629A (en) * | 2006-10-26 | 2008-05-08 | Tatsuta System Electronics Kk | Conductive paste and multilayer board using this |
JP2017130623A (en) * | 2016-01-22 | 2017-07-27 | 株式会社村田製作所 | Paste material for filling, manufacturing method of via-hole conductor using the same, and manufacturing method of multilayer substrate |
JP2019212577A (en) * | 2018-06-08 | 2019-12-12 | トヨタ自動車株式会社 | Bonding agent |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023157941A1 (en) * | 2022-02-21 | 2023-08-24 | タツタ電線株式会社 | Conductive paste and multilayer substrate |
WO2024048628A1 (en) * | 2022-09-01 | 2024-03-07 | タツタ電線株式会社 | Conductive paste and multilayer substrate using same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7125907B2 (en) | conductive composition | |
JP7519752B2 (en) | Sinterable films and pastes and methods of use thereof | |
JP5320523B1 (en) | Conductive particle, method for producing conductive particle, conductive material, and connection structure | |
JP5323284B1 (en) | Conductive material and connection structure | |
JP5735716B2 (en) | Conductive material and connection structure | |
KR102411356B1 (en) | Electrically conductive paste, joined structure, and method for manufacturing joined structure | |
WO2003105160A1 (en) | Conductive paste, multilayer board including the conductive paste and process for producing the same | |
WO2022034696A1 (en) | Electroconductive composition | |
JP6203783B2 (en) | Conductive adhesive and method for manufacturing electronic substrate | |
JP2013152867A (en) | Conductive particle, anisotropic conductive material, and connection structure | |
JP6310954B2 (en) | Conductive adhesive and method for manufacturing electronic substrate | |
US20180340102A1 (en) | Use of nickel and nickel-containing alloys as conductive fillers in adhesive formulations | |
US20180229333A1 (en) | Solder paste and mount structure obtained by using same | |
JP6496431B2 (en) | Conductive material and connection structure | |
JP2016127011A (en) | Conductive film, connection structure and method for producing connection structure | |
TW201946997A (en) | Curable adhesive composition for die attach | |
WO2016104276A1 (en) | Electrically conductive paste, connection structure, and production method for connection structure | |
WO2016104275A1 (en) | Electrically conductive paste, connection structure, and production method for connection structure | |
JP6062106B1 (en) | Method for manufacturing connection structure | |
TWI809295B (en) | Conductive composition | |
TW201945423A (en) | Underfill film and method of manufacturing for semiconductor device using thereof | |
JP2019054105A (en) | Method of connecting electrodes and method of manufacturing electronic substrate | |
WO2016133113A1 (en) | Electroconductive paste and connection structure | |
JP2013033735A (en) | Anisotropic conductive material and connection structure | |
WO2023282351A1 (en) | Conductive paste and multilayer substrate using same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20949558 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20949558 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |