WO2023282351A1 - Conductive paste and multilayer substrate using same - Google Patents

Conductive paste and multilayer substrate using same Download PDF

Info

Publication number
WO2023282351A1
WO2023282351A1 PCT/JP2022/027127 JP2022027127W WO2023282351A1 WO 2023282351 A1 WO2023282351 A1 WO 2023282351A1 JP 2022027127 W JP2022027127 W JP 2022027127W WO 2023282351 A1 WO2023282351 A1 WO 2023282351A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
metal particles
parts
point metal
conductive paste
Prior art date
Application number
PCT/JP2022/027127
Other languages
French (fr)
Japanese (ja)
Inventor
良太 藤川
政弘 山本
範博 山口
Original Assignee
タツタ電線株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by タツタ電線株式会社 filed Critical タツタ電線株式会社
Priority to JP2023533202A priority Critical patent/JPWO2023282351A1/ja
Publication of WO2023282351A1 publication Critical patent/WO2023282351A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/107Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing organic material comprising solvents, e.g. for slip casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/17Metallic particles coated with metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C12/00Alloys based on antimony or bismuth
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • C22C13/02Alloys based on tin with antimony or bismuth as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits

Definitions

  • the present invention relates to a conductive paste and a multilayer substrate using the same.
  • a conductive paste used for filling holes in a substrate for example, in Patent Document 1, (B) at least 1 low melting point metal having a melting point of 180 ° C. or less is added to 100 parts by mass of a resin component containing (A) an acrylate resin and an epoxy resin. 200 to 1800 parts by weight of metal powder composed of two or more metals containing seeds and at least one high melting point metal having a melting point of 800° C. or higher, and (C) a curing agent containing 0.3 to 35 parts by weight of a phenolic curing agent. 0.5 to 40 parts by weight, and (D) 0.3 to 80 parts by weight of flux.
  • the present invention has been made in view of the above, and aims to provide a conductive paste that is excellent in conductivity and long-term reliability.
  • the present invention includes embodiments shown below.
  • the silver-coated copper alloy particles have copper alloy particles and a silver-containing layer covering at least a portion of the copper alloy particles, and the copper alloy particles contain 0.5 to 25% by mass of zinc and/or
  • the content ratio of the high melting point metal particles and the low melting point metal particles is 0.75 to 2.50 in mass ratio [1] to [3]
  • the hardened conductive paste melts the low-melting-point metal particles and integrates them with the high-melting-point metal particles.
  • FIG. 1A to 1C are schematic cross-sectional views showing a method for manufacturing a multilayer substrate according to one embodiment of the present invention
  • FIG. 4 is a schematic cross-sectional view showing another method for manufacturing a multilayer substrate according to one embodiment of the present invention
  • the conductive paste according to the present embodiment contains 600 to 1200 parts by mass of high melting point metal particles containing silver-coated copper alloy particles per 100 parts by mass of a binder component containing an acrylate compound and an epoxy compound, and a low melting point of 180°C or less. It contains 900 to 1,500 parts by mass of metal particles, 0.5 to 30 parts by mass of a curing agent, and 1 to 100 parts by mass of flux.
  • the binder component containing an acrylate compound and an epoxy compound in the conductive paste of the present invention may consist only of an acrylate compound and an epoxy compound, or may contain one or more of alkyd resin, melamine resin and xylene resin. It may be blended with an acrylate compound and an epoxy compound.
  • the acrylate compound used in the present invention may have one or more reactive groups represented by the following structural formula I in the molecule, and may be a monomer, an oligomer, or a polymer. There may be. Moreover, these can also be used together 2 or more types.
  • R represents H or an alkyl group, and although the number of carbon atoms in the alkyl group is not particularly limited, it is usually 1 to 3.
  • acrylate compounds include isoamyl acrylate, neopentyl glycol diacrylate, trimethylolpropane triacrylate, ditrimethylolpropane tetraacrylate, pentaerythritol triacrylate, 2-hydroxy-3-acryloyloxypropyl methacrylate, and phenyl glycidyl ether acrylate.
  • hexamethylene diisocyanate urethane prepolymer bisphenol A diglycidyl ether acrylic acid adduct, ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, and the like.
  • the epoxy compound may be one having one or more epoxy groups in the molecule, and may be a monomer, an oligomer, or a polymer. Moreover, these can also be used together 2 or more types. Specific examples include alkyl alcohol glycidyl ether, bisphenol A type epoxy resin, brominated epoxy resin, bisphenol F type epoxy resin, novolak type epoxy resin, alicyclic epoxy resin, glycidylamine type epoxy resin, glycidyl ether type epoxy resin, Examples include glycidyl ester type epoxy resins, heterocyclic epoxy resins, and the like.
  • Alkyd resins, melamine resins, and xylene resins are each used as a resin modifier, and are not particularly limited as long as they can achieve their purpose.
  • the ratio of the acrylate compound and epoxy compound in 100 parts by mass of the binder component is 60 parts by mass. It is preferably 90 parts by mass or more, more preferably 90 parts by mass or more. That is, the ratio of other resins blended as modifiers is preferably 40 parts by mass or less, more preferably 10 parts by mass or less.
  • the mixing ratio of the acrylate compound and the epoxy compound is preferably 5:95 to 95:5, more preferably 20:80 to 80:20 in mass ratio.
  • the content of the acrylate compound is 5% by mass or more, the change in viscosity tends to be suppressed, and when it is 95% by mass or less, the physical properties after curing tend to be good.
  • the silver-coated copper alloy particles in the present invention are not particularly limited as long as they have copper alloy particles and a silver-containing layer covering at least a part of the copper alloy particles. It may contain up to 25% by mass and/or 0.5 to 30% by mass of nickel, the balance being made of copper, and the balance of copper containing unavoidable impurities.
  • the content of the silver-containing layer in the silver-coated copper alloy particles is not particularly limited, it is preferably 4 to 24% by mass.
  • the silver content in the silver-containing layer is not particularly limited, it is preferably 90 to 100% by mass.
  • the content of the high melting point metal particles is not particularly limited as long as it is 600 to 1,200 parts by mass with respect to 100 parts by mass of the binder component, but it is preferably 650 to 1,150 parts by mass, and more preferably 700 to 1,100 parts by mass. more preferred.
  • the content of the silver-coated copper alloy particles in the high melting point metal particles is not particularly limited, but is preferably 50 to 100% by mass, more preferably 70 to 100% by mass, and 90 to 100% by mass. is more preferred.
  • the average particle size of the high-melting-point metal particles is not particularly limited, it is preferably 0.5 to 30 ⁇ m, more preferably 1 to 10 ⁇ m.
  • the term "average particle size” means a particle size (primary particle size) at an integrated value of 50% in a particle size distribution obtained by a laser diffraction scattering method.
  • the shape of the high-melting-point metal particles is not particularly limited, and those conventionally used such as dendritic, spherical, and scaly can be used.
  • the low-melting-point metal particles are not particularly limited as long as they have a melting point of 180° C. or lower. (melting point: 271° C.), and two or more alloys selected from the group consisting of indium.
  • the content of the low-melting-point metal particles is not particularly limited as long as it is 900 to 1,500 parts by mass with respect to 100 parts by mass of the binder component, but is preferably 950 to 1,400 parts by mass, and more preferably 1,000 to 1,350 parts by mass. more preferred.
  • the average particle size of the low-melting-point metal particles is not particularly limited, it is preferably 0.5 to 30 ⁇ m, more preferably 1 to 15 ⁇ m.
  • the shape of the low-melting-point metal particles is not particularly limited, and conventionally used ones such as dendritic, spherical, and scaly can be used.
  • the content ratio of the high-melting-point metal particles and the low-melting-point metal particles is not particularly limited; 1.50 is more preferred.
  • the curing agent is not particularly limited, but cationic curing agents and phenolic curing agents can be used.
  • cationic curing agents include amine salts of boron trifluoride, p-methoxybenzenediazonium hexafluorophosphate, diphenyliodonium hexafluorophosphate, triphenylsulfonium, tri-n-octylphosphine oxide, tetra- Onium compounds typified by n-butylphosphonium tetraphenylborate, tetra-n-butylphosphonium benzotriazolate, tetra-n-butylphosphonium-o,o-diethylphosphorodithioate and the like can be mentioned.
  • phenol-based curing agents examples include novolac phenol and naphthol-based compounds.
  • the content of the curing agent is not particularly limited as long as it is 0.5 to 30 parts by mass with respect to 100 parts by mass of the binder component, preferably 1 to 20 parts by mass, and more preferably 3 to 15 parts by mass. more preferred.
  • Flux promotes melting of low-melting metal particles and mutual integration with high-melting metal particles.
  • fluxes include zinc chloride, lactic acid, citric acid, oleic acid, stearic acid, glutamic acid, benzoic acid, oxalic acid, glutamic hydrochloride, aniline hydrochloride, cetylpyridine bromide, urea, triethanolamine, glycerin, hydrazine, rosin and the like.
  • the content of the flux is not particularly limited as long as it is 1 to 100 parts by mass with respect to 100 parts by mass of the binder component, but it is preferably 10 to 80 parts by mass, more preferably 20 to 60 parts by mass. When the content of the flux is within the above range, the low-melting-point metal particles and the high-melting-point metal particles are easily integrated.
  • the conductive paste of the present invention can be obtained by blending a predetermined amount of each component described above and thoroughly mixing them.
  • the conductive paste of the present invention can also contain additives that have conventionally been added to the same type of conductive paste within a range that does not deviate from the purpose of the present invention.
  • additives include antifoaming agents, thickeners, tackifiers, antioxidants, plasticizers, ultraviolet absorbers, fillers, flame retardants and the like.
  • the viscosity of the conductive paste of the present invention is preferably 50 to 300 Pa ⁇ s, more preferably 100 to 250 Pa ⁇ s.
  • viscosity means rotor No. 7. A value measured 1 minute after the start of measurement under conditions of a rotation speed of 10 rpm and a measurement temperature of 25°C.
  • the method for manufacturing the multilayer substrate according to one embodiment of the present invention is not particularly limited, it can be manufactured, for example, by the following method.
  • a prepreg 3 is laminated on a substrate 1 having through holes 2 formed therein, and a PET film 4 is laminated thereon.
  • a CO 2 laser is irradiated to form a via 5 penetrating the PET film 4 and the prepreg 3 .
  • the prepreg 3 with the vias 5 formed therein is subjected to plasma treatment.
  • the via 5 is filled with a conductive paste 6.
  • the PET film 4 is peeled off.
  • a multilayer substrate 8 is obtained by laminating a substrate 1 on a prepreg 3 and applying hot press in the direction of the arrow.
  • a multilayer substrate according to one embodiment of the present invention can also be manufactured by the following method.
  • PET films 4 are laminated on both sides of the prepreg 3 .
  • a CO 2 laser is irradiated to form a via 5 penetrating the PET film 4 and the prepreg 3.
  • a prepreg having vias 5 formed thereon is placed on clean room dust-free paper 7, and the vias 5 are filled with conductive paste 6 (at this time, suction is applied from below the clean room dust-free paper). can be done).
  • the PET film 4 is peeled off.
  • the multilayer substrate 8 is obtained by laminating the prepreg 3 between the two substrates 1 and applying hot press in the direction of the arrow.
  • a conductive paste was prepared by mixing each component according to the formulation shown in Table 1 below.
  • ⁇ Acrylate compound 1 trimethylolpropane triacrylate
  • ⁇ Acrylate compound 2 pentaerythritol triacrylate
  • ⁇ Acrylate compound 3 2-hydroxy-3-acryloyloxypropyl methacrylate
  • ⁇ Epoxy compound 1 Alkyl (C10,12) alcohol glycidyl ether
  • ⁇ Epoxy compound 2 bisphenol A type epoxy resin
  • cationic curing agent 1 tetrabutylphosphonium tetraphenylborate
  • cationic curing agent 2 tetrabutylphosphonium benzotriazolate
  • cationic curing agent 3 tri-n-octylphosphine oxide
  • Phenolic curing agent 1 phenol/2-naphthol/paraxylylene polycondensate
  • ⁇ Phenolic curing agent 2 naphthol/cresol/formaldehyde resin
  • Imidazole curing agent 1-benzyl
  • the initial resistance value and long-term reliability 1 and 2 of the obtained conductive paste were measured, and the results are shown in Table 1.
  • the measuring method is as shown below.
  • a PET film with a thickness of about 25 ⁇ m was attached to both sides of a prepreg with a thickness of about 60 ⁇ m ("GEA-679FG" manufactured by Showa Denko Materials Co., Ltd.), and a CO 2 laser was applied to 900 locations on the prepreg at a pitch of 800 ⁇ m. Irradiated to form holes. Assuming that the surface irradiated with the CO 2 laser was the first surface and the opposite surface was the second surface, the hole diameter of the first surface was 120 ⁇ m and the hole diameter of the second surface was 100 ⁇ m. After filling the holes with a conductive paste by printing, the PET film was peeled off.
  • a glass epoxy substrate 1 (FR-4) having a pattern formed of copper foil with a thickness of 38 ⁇ m was prepared, the second surface of the prepreg was in contact with the glass epoxy substrate 1, and the holes of the prepreg were filled with a conductive paste.
  • the prepreg was laminated on the glass epoxy substrate 1 so that the pattern of the glass epoxy substrate 1 was connected.
  • a glass epoxy substrate 2 (FR-4) having a pattern formed of copper foil with a thickness of 18 ⁇ m was prepared, the first surface of the prepreg was in contact with the glass epoxy substrate 2, and the holes of the prepreg were filled with a conductive material.
  • a glass epoxy substrate 2 was laminated on the prepreg so that the paste and the pattern of the glass epoxy substrate 2 were connected.
  • a vacuum press was used to press under the following pressure and temperature conditions to cure the conductive paste and produce a circuit board.
  • the surface pressure was increased from 0 kg/cm 2 to 10 kg/cm 2 over 17 minutes and maintained for 10 minutes. Next, the surface pressure was increased to 30 kg/cm 2 over 24 minutes, maintained for 60 minutes, and then decreased to 0 kg/cm 2 over 23 minutes.
  • the temperature was raised from 30°C to 120°C over 17 minutes and held for 10 minutes. Next, the temperature was raised to 180° C. over 24 minutes, maintained for 60 minutes, and then cooled to 30° C. over 23 minutes.
  • ⁇ Initial resistance value> A resistance value of the circuit board was measured using a milliohm tester. By subtracting the wiring resistance from the resistance value and dividing by the number of holes, the resistance value per hole was obtained. When the initial resistance value was 15 m ⁇ /via or less, the conductivity was evaluated to be excellent. The wiring resistance was measured using a circuit board of the same design without holes.
  • Comparative Example 1 is an example in which silver particles are used as high-melting-point metal particles, but it can be seen that long-term reliability 1 and 2 are inferior.
  • Comparative Example 2 is an example in which silver-coated copper particles are used as high-melting-point metal particles, but it can be seen that long-term reliability 1 and 2 are inferior.
  • Comparative Example 3 is an example that does not contain an acrylate compound, but it can be seen that long-term reliability 1 and 2 are inferior.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Conductive Materials (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Abstract

Provided is a conductive paste that exhibits an excellent conductivity and an excellent long-term reliability. This conductive paste comprises, per 100 parts by mass of a binder component containing an acrylate compound and an epoxy compound, 600-1200 parts by mass of high melting point metal particles comprising silver-coated copper alloy particles, 900-1500 parts by mass of low melting point metal particles having a melting point not greater than 180°C, 0.5-30 parts by mass of a curing agent, and 1-100 parts by mass of a flux.

Description

導電性ペースト、及びこれを用いた多層基板Conductive paste and multilayer substrate using the same
 本発明は、導電性ペースト、及びこれを用いた多層基板に関するものである。 The present invention relates to a conductive paste and a multilayer substrate using the same.
 基板のホール充填に用いられる導電性ペーストとして、例えば、特許文献1では、(A)アクリレート樹脂及びエポキシ樹脂を含む樹脂成分100質量部に対し、(B)融点180℃以下の低融点金属少なくとも1種と融点800℃以上の高融点金属少なくとも1種とを含む、2種以上の金属からなる金属粉200~1800重量部、(C)フェノール系硬化剤0.3~35重量部を含む硬化剤0.5~40重量部、及び(D)フラックス0.3~80重量部を含有してなるものが挙げられている。 As a conductive paste used for filling holes in a substrate, for example, in Patent Document 1, (B) at least 1 low melting point metal having a melting point of 180 ° C. or less is added to 100 parts by mass of a resin component containing (A) an acrylate resin and an epoxy resin. 200 to 1800 parts by weight of metal powder composed of two or more metals containing seeds and at least one high melting point metal having a melting point of 800° C. or higher, and (C) a curing agent containing 0.3 to 35 parts by weight of a phenolic curing agent. 0.5 to 40 parts by weight, and (D) 0.3 to 80 parts by weight of flux.
 このような導電性ペーストには、高融点金属として銀粉や銀被覆銅粉が用いられ、特許文献1の実施例でも、高融点金属として銀粉が使用されている。しかしながら、高融点金属としてこれらの金属粉を用いた場合、優れた導電性が得られるものの、長期信頼性について改善の余地があった。 In such a conductive paste, silver powder or silver-coated copper powder is used as the high-melting-point metal, and silver powder is used as the high-melting-point metal in the examples of Patent Document 1 as well. However, when these metal powders are used as the high-melting-point metal, although excellent electrical conductivity is obtained, there is room for improvement in terms of long-term reliability.
国際公開第2003/105160号WO2003/105160
 本発明は上記に鑑みてなされたものであり、導電性と、長期信頼性に優れた導電性ペーストを提供することを目的とする。 The present invention has been made in view of the above, and aims to provide a conductive paste that is excellent in conductivity and long-term reliability.
 本発明は上記課題を解決するために、以下に示される実施形態を含む。
[1]アクリレート化合物及びエポキシ化合物を含むバインダー成分100質量部に対し、銀被覆銅合金粒子を含む高融点金属粒子を600~1200質量部、融点180℃以下の低融点金属粒子を900~1500質量部、硬化剤を0.5~30質量部、フラックスを1~100質量部含有する、導電性ペースト。
[2]上記銀被覆銅合金粒子が、銅合金粒子と、銅合金粒子の少なくとも一部を被覆する銀含有層とを有し、上記銅合金粒子は亜鉛0.5~25質量%及び/又はニッケル0.5~30質量%を含有し、上記銀被覆銅合金粒子における上記銀含有層の含有割合が4~24質量%である、[1]に記載の導電性ペースト。
[3]上記低融点金属粒子が、インジウム単独、及び/又は、錫、鉛、ビスマス及びインジウムからなる群から選択された2種以上の合金からなる、[1]又は[2]に記載の導電性ペースト。
[4]上記高融点金属粒子と上記低融点金属粒子の含有割合(低融点金属粒子/高融点金属粒子)が、質量比で0.75~2.50である、[1]~[3]のいずれか1項に記載の導電性ペースト。
[5]上記硬化剤が、カチオン系硬化剤、及びフェノール系硬化剤からなる群から選択された1種又は2種以上である、[1]~[4]のいずれか1項に記載の導電性ペースト。
[6]複数の導電層とこれら複数の導電層間に介在する絶縁層とからなり、少なくとも1つの上記絶縁層を貫通するビアが形成され、上記ビアに、[1]~[5]のいずれか1項に記載の導電性ペーストが充填され、この導電性ペーストの硬化物を介して、上記ビアの両端に位置する上記導電層同士が相互に導通している、多層基板。
[7]上記導電性ペーストの硬化物が、上記低融点金属粒子が融解し、上記高融点金属粒子と相互に一体化している、[6]に記載の多層基板。
In order to solve the above problems, the present invention includes embodiments shown below.
[1] 600 to 1,200 parts by mass of high-melting metal particles containing silver-coated copper alloy particles and 900 to 1,500 parts by mass of low-melting metal particles having a melting point of 180°C or less per 100 parts by mass of a binder component containing an acrylate compound and an epoxy compound. parts, 0.5 to 30 parts by mass of a curing agent, and 1 to 100 parts by mass of a flux.
[2] The silver-coated copper alloy particles have copper alloy particles and a silver-containing layer covering at least a portion of the copper alloy particles, and the copper alloy particles contain 0.5 to 25% by mass of zinc and/or The conductive paste according to [1], which contains 0.5 to 30% by mass of nickel, and the content of the silver-containing layer in the silver-coated copper alloy particles is 4 to 24% by mass.
[3] The conductive material according to [1] or [2], wherein the low-melting-point metal particles consist of indium alone and/or an alloy of two or more selected from the group consisting of tin, lead, bismuth and indium. sex paste.
[4] The content ratio of the high melting point metal particles and the low melting point metal particles (low melting point metal particles/high melting point metal particles) is 0.75 to 2.50 in mass ratio [1] to [3] Conductive paste according to any one of.
[5] The conductive agent according to any one of [1] to [4], wherein the curing agent is one or more selected from the group consisting of cationic curing agents and phenolic curing agents. sex paste.
[6] Consisting of a plurality of conductive layers and an insulating layer interposed between the plurality of conductive layers, a via penetrating at least one of the insulating layers is formed, and the via includes any one of [1] to [5]. A multilayer substrate filled with the conductive paste according to item 1, wherein the conductive layers located at both ends of the via are electrically connected to each other through a cured product of the conductive paste.
[7] The multilayer substrate according to [6], wherein the hardened conductive paste melts the low-melting-point metal particles and integrates them with the high-melting-point metal particles.
 本発明に係る導電性ペーストによれば、優れた導電性、及び長期信頼性が得られる。 According to the conductive paste of the present invention, excellent conductivity and long-term reliability can be obtained.
本発明の一実施形態に係る多層基板の製造方法を示す模式断面図。1A to 1C are schematic cross-sectional views showing a method for manufacturing a multilayer substrate according to one embodiment of the present invention; 本発明の一実施形態に係る多層基板の別の製造方法を示す模式断面図。FIG. 4 is a schematic cross-sectional view showing another method for manufacturing a multilayer substrate according to one embodiment of the present invention;
 以下、本発明の実施の形態を、より具体的に説明する。 Embodiments of the present invention will be described more specifically below.
 本実施形態に係る導電性ペーストは、アクリレート化合物及びエポキシ化合物を含むバインダー成分100質量部に対し、銀被覆銅合金粒子を含む高融点金属粒子を600~1200質量部、融点180℃以下の低融点金属粒子を900~1500質量部、硬化剤を0.5~30質量部、フラックスを1~100質量部含有するものとする。 The conductive paste according to the present embodiment contains 600 to 1200 parts by mass of high melting point metal particles containing silver-coated copper alloy particles per 100 parts by mass of a binder component containing an acrylate compound and an epoxy compound, and a low melting point of 180°C or less. It contains 900 to 1,500 parts by mass of metal particles, 0.5 to 30 parts by mass of a curing agent, and 1 to 100 parts by mass of flux.
 本発明の導電性ペーストにおけるアクリレート化合物及びエポキシ化合物を含むバインダー成分は、アクリレート化合物及びエポキシ化合物のみからなるものであってもよく、あるいは、アルキド樹脂、メラミン樹脂又はキシレン樹脂のうちの1種以上をアクリレート化合物及びエポキシ化合物にブレンドしたものであってもよい。 The binder component containing an acrylate compound and an epoxy compound in the conductive paste of the present invention may consist only of an acrylate compound and an epoxy compound, or may contain one or more of alkyd resin, melamine resin and xylene resin. It may be blended with an acrylate compound and an epoxy compound.
 本発明で使用するアクリレート化合物とは、分子内に次の構造式Iで示される反応基を1又は2個以上有するものであればよく、モノマーであっても、オリゴマーであっても、ポリマーであってもよい。また、これらを2種以上併用することもできる。 The acrylate compound used in the present invention may have one or more reactive groups represented by the following structural formula I in the molecule, and may be a monomer, an oligomer, or a polymer. There may be. Moreover, these can also be used together 2 or more types.
Figure JPOXMLDOC01-appb-C000001
 
Figure JPOXMLDOC01-appb-C000001
 
 式(I)中、RはH又はアルキル基を示し、アルキル基の炭素数は特に限定されないが、通常は1~3個である。 In formula (I), R represents H or an alkyl group, and although the number of carbon atoms in the alkyl group is not particularly limited, it is usually 1 to 3.
 アクリレート化合物の具体例としては、イソアミルアクリレート、ネオペンチルグリコールジアクリレート、トリメチロールプロパントリアクリレート、ジトリメチロールプロパンテトラアクリレート、ペンタエリスリトールトリアクリレート、2-ヒドロキシ-3-アクリロイロキシプロピルメタクリレート、フェニルグリシジルエーテルアクリレートヘキサメチレンジイソシアネートウレタンプレポリマー、ビスフェノールAジグリシジルエーテルアクリル酸付加物、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート等が挙げられる。 Specific examples of acrylate compounds include isoamyl acrylate, neopentyl glycol diacrylate, trimethylolpropane triacrylate, ditrimethylolpropane tetraacrylate, pentaerythritol triacrylate, 2-hydroxy-3-acryloyloxypropyl methacrylate, and phenyl glycidyl ether acrylate. hexamethylene diisocyanate urethane prepolymer, bisphenol A diglycidyl ether acrylic acid adduct, ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, and the like.
 また、エポキシ化合物は、分子内にエポキシ基を1個以上有するものであればよく、モノマーであっても、オリゴマーであっても、ポリマーであってもよい。また、これらを2種以上併用することもできる。具体例としては、アルキルアルコールグリシジルエーテル、ビスフェノールA型エポキシ樹脂、臭素化エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ノボラック型エポキシ樹脂、脂環式エポキシ樹脂、グリシジルアミン型エポキシ樹脂、グリシジルエーテル型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、複素環式エポキシ樹脂等が挙げられる。 In addition, the epoxy compound may be one having one or more epoxy groups in the molecule, and may be a monomer, an oligomer, or a polymer. Moreover, these can also be used together 2 or more types. Specific examples include alkyl alcohol glycidyl ether, bisphenol A type epoxy resin, brominated epoxy resin, bisphenol F type epoxy resin, novolak type epoxy resin, alicyclic epoxy resin, glycidylamine type epoxy resin, glycidyl ether type epoxy resin, Examples include glycidyl ester type epoxy resins, heterocyclic epoxy resins, and the like.
 また、アルキド樹脂、メラミン樹脂、キシレン樹脂はそれぞれ樹脂改質剤として用いられるものであり、その目的を達成できるものであれば特に限定されない。 Alkyd resins, melamine resins, and xylene resins are each used as a resin modifier, and are not particularly limited as long as they can achieve their purpose.
 上記アクリレート化合物及びエポキシ化合物に、アルキド樹脂、メラミン樹脂、キシレン樹脂のうちの1種以上をブレンドする場合の配合比は、バインダー成分100質量部中のアクリレート化合物及びエポキシ化合物の割合が、60質量部以上であることが好ましく、90質量部以上であることがより好ましい。すなわち、改質剤としてブレンドするそれ以外の樹脂の割合は40質量部以下であることが好ましく、10質量部以下であることがより好ましい。 When one or more of alkyd resin, melamine resin, and xylene resin are blended with the acrylate compound and epoxy compound, the ratio of the acrylate compound and epoxy compound in 100 parts by mass of the binder component is 60 parts by mass. It is preferably 90 parts by mass or more, more preferably 90 parts by mass or more. That is, the ratio of other resins blended as modifiers is preferably 40 parts by mass or less, more preferably 10 parts by mass or less.
 また、アクリレート化合物とエポキシ化合物との配合比率(アクリレート化合物:エポキシ化合物)は、質量比で5:95~95:5であることが好ましく、20:80~80:20であることがより好ましい。アクリレート化合物は5質量%以上である場合、粘度変化を抑制しやすく、95質量%以下である場合、硬化後の物性が良好になりやすい。 In addition, the mixing ratio of the acrylate compound and the epoxy compound (acrylate compound:epoxy compound) is preferably 5:95 to 95:5, more preferably 20:80 to 80:20 in mass ratio. When the content of the acrylate compound is 5% by mass or more, the change in viscosity tends to be suppressed, and when it is 95% by mass or less, the physical properties after curing tend to be good.
 次に、本発明における銀被覆銅合金粒子は、銅合金粒子と、銅合金粒子の少なくとも一部を被覆する銀含有層と有するものであれば特に限定されないが、銅合金粒子は亜鉛0.5~25質量%及び/又はニッケル0.5~30質量%を含有し、残部が銅からなり、残部の銅は不可避不純物を含んでいてもよい。銀被覆銅合金粒子における銀含有層の含有割合は特に限定されないが、4~24質量%であることが好ましい。銀含有層における銀の含有量は特に限定されないが90~100質量%であることが好ましい。 Next, the silver-coated copper alloy particles in the present invention are not particularly limited as long as they have copper alloy particles and a silver-containing layer covering at least a part of the copper alloy particles. It may contain up to 25% by mass and/or 0.5 to 30% by mass of nickel, the balance being made of copper, and the balance of copper containing unavoidable impurities. Although the content of the silver-containing layer in the silver-coated copper alloy particles is not particularly limited, it is preferably 4 to 24% by mass. Although the silver content in the silver-containing layer is not particularly limited, it is preferably 90 to 100% by mass.
 高融点金属粒子の含有量は、バインダー成分100質量部に対して600~1200質量部であれば特に限定されないが、650~1150質量部であることが好ましく、700~1100質量部であることがより好ましい。 The content of the high melting point metal particles is not particularly limited as long as it is 600 to 1,200 parts by mass with respect to 100 parts by mass of the binder component, but it is preferably 650 to 1,150 parts by mass, and more preferably 700 to 1,100 parts by mass. more preferred.
 高融点金属粒子における銀被覆銅合金粒子の含有割合は、特に限定されないが、50~100質量%であることが好ましく、70~100質量%であることがより好ましく、90~100質量%であることがさらに好ましい。 The content of the silver-coated copper alloy particles in the high melting point metal particles is not particularly limited, but is preferably 50 to 100% by mass, more preferably 70 to 100% by mass, and 90 to 100% by mass. is more preferred.
 高融点金属粒子の平均粒子径は、特に限定されないが、0.5~30μmであることが好ましく、1~10μmであることがより好ましい。ここで本明細書において、「平均粒子径」とは、レーザー回折散乱法により得られた粒度分布における積算値50%での粒径(一次粒子径)を意味する。 Although the average particle size of the high-melting-point metal particles is not particularly limited, it is preferably 0.5 to 30 μm, more preferably 1 to 10 μm. As used herein, the term "average particle size" means a particle size (primary particle size) at an integrated value of 50% in a particle size distribution obtained by a laser diffraction scattering method.
 高融点金属粒子の形状は、特に限定されず、樹枝状、球状、リン片状等の従来から用いられているものが使用できる。 The shape of the high-melting-point metal particles is not particularly limited, and those conventionally used such as dendritic, spherical, and scaly can be used.
 低融点金属粒子は、融点が180℃以下であれば特に限定されないが、例えばインジウム(融点:156℃)単独、及び/又は、錫(融点:231℃)、鉛(融点:327℃)、ビスマス(融点:271℃)、及びインジウムからなる群から選択された2種以上の合金からなるものを使用することができる。 The low-melting-point metal particles are not particularly limited as long as they have a melting point of 180° C. or lower. (melting point: 271° C.), and two or more alloys selected from the group consisting of indium.
 低融点金属粒子の含有量は、バインダー成分100質量部に対して900~1500質量部であれば特に限定されないが、950~1400質量部であることが好ましく、1000~1350質量部であることがより好ましい。 The content of the low-melting-point metal particles is not particularly limited as long as it is 900 to 1,500 parts by mass with respect to 100 parts by mass of the binder component, but is preferably 950 to 1,400 parts by mass, and more preferably 1,000 to 1,350 parts by mass. more preferred.
 上記低融点金属粒子の平均粒子径は、特に限定されないが、0.5~30μmであることが好ましく、1~15μmであることがより好ましい。 Although the average particle size of the low-melting-point metal particles is not particularly limited, it is preferably 0.5 to 30 μm, more preferably 1 to 15 μm.
 低融点金属粒子の形状は、特に限定されず、樹枝状、球状、リン片状等の従来から用いられているものが使用できる。 The shape of the low-melting-point metal particles is not particularly limited, and conventionally used ones such as dendritic, spherical, and scaly can be used.
 高融点金属粒子と低融点金属粒子の含有割合(低融点金属粒子/高融点金属粒子)は、特に限定されないが、質量比で0.75~2.50であることが好ましく、1.00~1.50であることがより好ましい。 The content ratio of the high-melting-point metal particles and the low-melting-point metal particles (low-melting-point metal particles/high-melting-point metal particles) is not particularly limited; 1.50 is more preferred.
 硬化剤としては、特に限定されないが、カチオン系硬化剤、フェノール系硬化剤を使用することができる。 The curing agent is not particularly limited, but cationic curing agents and phenolic curing agents can be used.
 カチオン系硬化剤としては、例えば、三フッ化ホウ素のアミン塩、P-メトキシベンゼンジアゾニウムへキサフルオロホスフェート、ジフェニルイオドニウムへキサフルオロホスフェート、トリフェニルスルホニウム、トリ-n-オクチルホスフィンオキサイド、テトラ-n-ブチルホスホニウムテトラフェニルボレート、テトラ-n-ブチルホスホニウムベンゾトリアゾレート、テトラ-n-ブチルホスホニウム-o,o-ジエチルホスホロジチオエート等に代表されるオニウム系化合物が挙げられる。 Examples of cationic curing agents include amine salts of boron trifluoride, p-methoxybenzenediazonium hexafluorophosphate, diphenyliodonium hexafluorophosphate, triphenylsulfonium, tri-n-octylphosphine oxide, tetra- Onium compounds typified by n-butylphosphonium tetraphenylborate, tetra-n-butylphosphonium benzotriazolate, tetra-n-butylphosphonium-o,o-diethylphosphorodithioate and the like can be mentioned.
 フェノール系硬化剤としては、例えば、ノボラックフェノール、ナフトール系化合物等が挙げられる。 Examples of phenol-based curing agents include novolac phenol and naphthol-based compounds.
 硬化剤の含有量は、バインダー成分100質量部に対して0.5~30質量部であれば特に限定されないが、1~20質量部であることが好ましく、3~15質量部であることがより好ましい。 The content of the curing agent is not particularly limited as long as it is 0.5 to 30 parts by mass with respect to 100 parts by mass of the binder component, preferably 1 to 20 parts by mass, and more preferably 3 to 15 parts by mass. more preferred.
 フラックスは、低融点金属粒子が融解し、高融点金属粒子と相互に一体化するのを促進するものである。フラックスとしては、例えば、塩化亜鉛、乳酸、クェン酸、オレイン酸、ステアリン酸、グルタミン酸、安息香酸、シュウ酸、グルタミン酸塩酸塩、アニリン塩酸塩、臭化セチルビリジン、尿素、トリエタノールアミン、グリセリン、ヒドラジン、ロジン等が挙げられる。 Flux promotes melting of low-melting metal particles and mutual integration with high-melting metal particles. Examples of fluxes include zinc chloride, lactic acid, citric acid, oleic acid, stearic acid, glutamic acid, benzoic acid, oxalic acid, glutamic hydrochloride, aniline hydrochloride, cetylpyridine bromide, urea, triethanolamine, glycerin, hydrazine, rosin and the like.
 フラックスの含有量は、バインダー成分100質量部に対して1~100質量部であれば特に限定されないが、10~80質量部であることが好ましく、20~60質量部であることがより好ましい。フラックスの含有量が上記範囲内である場合、低融点金属粒子と高融点金属粒子との一体化が得られやすい。 The content of the flux is not particularly limited as long as it is 1 to 100 parts by mass with respect to 100 parts by mass of the binder component, but it is preferably 10 to 80 parts by mass, more preferably 20 to 60 parts by mass. When the content of the flux is within the above range, the low-melting-point metal particles and the high-melting-point metal particles are easily integrated.
 本発明の導電性ペーストは、上記した各成分を所定量配合して十分混合することにより得られる。 The conductive paste of the present invention can be obtained by blending a predetermined amount of each component described above and thoroughly mixing them.
 なお、本発明の導電性ペーストには、従来から同種の導電性ペーストに添加されることのあった添加剤を、本発明の目的から外れない範囲内で添加することもできる。その例としては、消泡剤、増粘剤、粘着付与剤、酸化防止剤、可塑剤、紫外線吸収剤、充填剤、難燃剤等が挙げられる。 It should be noted that the conductive paste of the present invention can also contain additives that have conventionally been added to the same type of conductive paste within a range that does not deviate from the purpose of the present invention. Examples thereof include antifoaming agents, thickeners, tackifiers, antioxidants, plasticizers, ultraviolet absorbers, fillers, flame retardants and the like.
 本発明の導電性ペーストの粘度は、目安としては、50~300Pa・sであることが好ましく、100~250Pa・sであることがより好ましい。ここで、本明細書において、「粘度」とは、B型粘度計を用いて、ローターNo.7、回転数10rpm、測定温度25℃の条件で測定した測定開始1分後の値とする。 As a guideline, the viscosity of the conductive paste of the present invention is preferably 50 to 300 Pa·s, more preferably 100 to 250 Pa·s. Here, in the present specification, "viscosity" means rotor No. 7. A value measured 1 minute after the start of measurement under conditions of a rotation speed of 10 rpm and a measurement temperature of 25°C.
 本発明の一実施形態に係る多層基板の製造方法は特に限定されないが、例えば、次の方法により製造できる。まず、図1(a)に示すように、スルーホール2が形成された基板1にプリプレグ3を積層し、その上に、PETフィルム4を積層する。図1(b)に示すように、COレーザーを照射し、PETフィルム4とプリプレグ3に貫通するビア5を形成する。図1(c)に示すように、ビア5を形成したプリプレグ3にプラズマ処理を施す。図1(d)に示すように、ビア5に導電性ペースト6を充填する。図1(e)に示すように、PETフィルム4を剥がす。図1(f)に示すように、プリプレグ3に基板1を積層し、矢印の方向にホットプレスを施すことで多層基板8が得られる。 Although the method for manufacturing the multilayer substrate according to one embodiment of the present invention is not particularly limited, it can be manufactured, for example, by the following method. First, as shown in FIG. 1A, a prepreg 3 is laminated on a substrate 1 having through holes 2 formed therein, and a PET film 4 is laminated thereon. As shown in FIG. 1B, a CO 2 laser is irradiated to form a via 5 penetrating the PET film 4 and the prepreg 3 . As shown in FIG. 1(c), the prepreg 3 with the vias 5 formed therein is subjected to plasma treatment. As shown in FIG. 1(d), the via 5 is filled with a conductive paste 6. Then, as shown in FIG. As shown in FIG. 1(e), the PET film 4 is peeled off. As shown in FIG. 1(f), a multilayer substrate 8 is obtained by laminating a substrate 1 on a prepreg 3 and applying hot press in the direction of the arrow.
 本発明の一実施形態に係る多層基板は、次の方法でも製造できる。図2(a)に示すように、プリプレグ3の両面にPETフィルム4を積層する。図2(b)に示すように、COレーザーを照射し、PETフィルム4とプリプレグ3に貫通するビア5を形成する。図2(c)に示すように、クリーンルーム用無塵紙7の上に、ビア5を形成したプリプレグを置き、ビア5に導電性ペースト6を充填する(この際、クリーンルーム用無塵紙の下から吸引しても良い)。図2(d)に示すように、PETフィルム4を剥がす。図2(e)に示すように、2つの基板1でプリプレグ3を挟むように積層し、矢印の方向にホットプレスを施すことで多層基板8が得られる。 A multilayer substrate according to one embodiment of the present invention can also be manufactured by the following method. As shown in FIG. 2( a ), PET films 4 are laminated on both sides of the prepreg 3 . As shown in FIG. 2(b), a CO 2 laser is irradiated to form a via 5 penetrating the PET film 4 and the prepreg 3. As shown in FIG. As shown in FIG. 2(c), a prepreg having vias 5 formed thereon is placed on clean room dust-free paper 7, and the vias 5 are filled with conductive paste 6 (at this time, suction is applied from below the clean room dust-free paper). can be done). As shown in FIG. 2(d), the PET film 4 is peeled off. As shown in FIG. 2(e), the multilayer substrate 8 is obtained by laminating the prepreg 3 between the two substrates 1 and applying hot press in the direction of the arrow.
 以下に本発明の実施例を示すが、本発明は以下の実施例によって限定されるものではない。なお、以下において配合割合等は、特にことわらない限り質量基準とする。 Examples of the present invention are shown below, but the present invention is not limited by the following examples. In the following, unless otherwise specified, the mixing ratio and the like are based on mass.
 下記表1に示す配合に従い、各成分を混合し、導電性ペーストを調製した。 A conductive paste was prepared by mixing each component according to the formulation shown in Table 1 below.
・アクリレート化合物1:トリメチロールプロパントリアクリレート
・アクリレート化合物2:ペンタエリスリトールトリアクリレート
・アクリレート化合物3:2-ヒドロキシ-3-アクリロイロキシプロピルメタクリレート
・エポキシ化合物1:アルキル(C10,12)アルコールグリシジルエーテル
・エポキシ化合物2:ビスフェノールA型エポキシ樹脂
・カチオン系硬化剤1:テトラブチルホスホニウムテトラフェニルボレート
・カチオン系硬化剤2:テトラブチルホスホニウムベンゾトリアゾレート
・カチオン系硬化剤3:トリ-n-オクチルホスフィンオキサイド
・フェノール系硬化剤1:フェノール・2-ナフトール・パラキシリレン重縮合物
・フェノール系硬化剤2:ナフトール・クレゾール・ホルムアルデヒド樹脂
・イミダゾール系硬化剤:1-ベンジル-2-フェニルイミダゾール
・アクリル系消泡剤:共栄社化学株式会社製「ポリフローNo.85HF」
・フラックス:トリエタノールアミン
・高融点金属粒子1:銀被覆銅合金粒子、平均粒子径=4μm、銅合金粒子は亜鉛10質量%、ニッケル5質量%の割合で含む、銀含有層の割合=10質量%、銀含有層における銀の含有割合=100質量%
・高融点金属粒子2:銀被覆銅合金粒子、平均粒子径=4μm、銅合金粒子はニッケルを5質量%の割合で含む、銀含有層の割合=10質量%、銀含有層における銀の含有割合=100質量%
・高融点金属粒子3:銀被覆銅合金粒子、平均粒子径=4μm、銅合金粒子は亜鉛を10質量%の割合で含む、銀含有層の割合=10質量%、銀含有層における銀の含有割合=100質量%
・高融点金属粒子4:銀被覆銅粒子、平均粒子径=4μm、銀含有層の割合=10質量%、銀含有層における銀の含有割合=100質量%
・高融点金属粒子5:銀粒子、平均粒子径=4μm、融点=961℃
・低融点金属粒子1:Sn-Bi合金(Sn:Bi=80:20)、融点=139℃、平均粒子径=10μm
・低融点金属粒子2:Sn-Bi合金(Sn:Bi=72:28)、融点=139℃、平均粒子径=10μm
・低融点金属粒子3:Sn-Bi合金(Sn:Bi=42:58)、融点=139℃、平均粒子径=10μm
・Acrylate compound 1: trimethylolpropane triacrylate ・Acrylate compound 2: pentaerythritol triacrylate ・Acrylate compound 3: 2-hydroxy-3-acryloyloxypropyl methacrylate ・Epoxy compound 1: Alkyl (C10,12) alcohol glycidyl ether ・Epoxy compound 2: bisphenol A type epoxy resin, cationic curing agent 1: tetrabutylphosphonium tetraphenylborate, cationic curing agent 2: tetrabutylphosphonium benzotriazolate, cationic curing agent 3: tri-n-octylphosphine oxide・Phenolic curing agent 1: phenol/2-naphthol/paraxylylene polycondensate ・Phenolic curing agent 2: naphthol/cresol/formaldehyde resin ・Imidazole curing agent: 1-benzyl-2-phenylimidazole/acrylic antifoaming agent : "Polyflow No. 85HF" manufactured by Kyoeisha Chemical Co., Ltd.
・Flux: triethanolamine ・High-melting-point metal particles 1: silver-coated copper alloy particles, average particle size = 4 µm, copper alloy particles containing 10% by mass of zinc and 5% by mass of nickel, proportion of silver-containing layer = 10 % by mass, silver content in silver-containing layer = 100% by mass
High melting point metal particles 2: silver-coated copper alloy particles, average particle size = 4 μm, copper alloy particles contain nickel at a rate of 5% by mass, proportion of silver-containing layer = 10% by mass, silver content in silver-containing layer Proportion = 100% by mass
High melting point metal particles 3: silver-coated copper alloy particles, average particle size = 4 μm, copper alloy particles contain zinc at a rate of 10% by mass, proportion of silver-containing layer = 10% by mass, silver content in silver-containing layer Proportion = 100% by mass
High-melting-point metal particles 4: silver-coated copper particles, average particle size = 4 μm, proportion of silver-containing layer = 10% by mass, proportion of silver in silver-containing layer = 100% by mass
・High melting point metal particles 5: silver particles, average particle size = 4 µm, melting point = 961°C
・Low melting point metal particles 1: Sn—Bi alloy (Sn:Bi=80:20), melting point=139° C., average particle size=10 μm
・Low melting point metal particles 2: Sn—Bi alloy (Sn:Bi=72:28), melting point=139° C., average particle size=10 μm
・Low melting point metal particles 3: Sn—Bi alloy (Sn:Bi=42:58), melting point=139° C., average particle size=10 μm
 得られた導電性ペーストの初期抵抗値、及び長期信頼性1,2を測定し、結果を表1に示した。測定方法は以下に示す通りである。 The initial resistance value and long- term reliability 1 and 2 of the obtained conductive paste were measured, and the results are shown in Table 1. The measuring method is as shown below.
<回路基板の作製>
 厚さ約60μmのプリプレグ(昭和電工マテリアルズ(株)製、「GEA-679FG」)の両面に、厚さ約25μmのPETフィルムを貼りつけ、プリプレグに800μmのピッチでCOレーザーを900箇所に照射し、孔を形成した。ここで、COレーザーを照射した面を第1面、反対側の面を第2面とすると、第1面の孔径は120μmであり、第2面の孔径は100μmであった。印刷法により孔内に導電性ペーストを充填した後、PETフィルムを剥離した。厚さ38μmの銅箔により形成されたパターンを有するガラスエポキシ基板1(FR-4)を用意し、プリプレグの第2面がガラスエポキシ基板1と接し、プリプレグの孔内に充填した導電性ペーストとガラスエポキシ基板1のパターンとが接続するように、プリプレグをガラスエポキシ基板1の上に積層した。さらに、厚さ18μmの銅箔により形成されたパターンを有するガラスエポキシ基板2(FR-4)を用意し、プリプレグの第1面がガラスエポキシ基板2と接し、プリプレグの孔内に充填した導電性ペーストとガラスエポキシ基板2のパターンとが接続するように、プリプレグの上にガラスエポキシ基板2を積層した。真空プレス機を用いて次の圧力条件および温度条件でプレスを行うことで導電性ペーストを硬化させて回路基板を作製した。
<Production of circuit board>
A PET film with a thickness of about 25 μm was attached to both sides of a prepreg with a thickness of about 60 μm ("GEA-679FG" manufactured by Showa Denko Materials Co., Ltd.), and a CO 2 laser was applied to 900 locations on the prepreg at a pitch of 800 μm. Irradiated to form holes. Assuming that the surface irradiated with the CO 2 laser was the first surface and the opposite surface was the second surface, the hole diameter of the first surface was 120 μm and the hole diameter of the second surface was 100 μm. After filling the holes with a conductive paste by printing, the PET film was peeled off. A glass epoxy substrate 1 (FR-4) having a pattern formed of copper foil with a thickness of 38 μm was prepared, the second surface of the prepreg was in contact with the glass epoxy substrate 1, and the holes of the prepreg were filled with a conductive paste. The prepreg was laminated on the glass epoxy substrate 1 so that the pattern of the glass epoxy substrate 1 was connected. Furthermore, a glass epoxy substrate 2 (FR-4) having a pattern formed of copper foil with a thickness of 18 μm was prepared, the first surface of the prepreg was in contact with the glass epoxy substrate 2, and the holes of the prepreg were filled with a conductive material. A glass epoxy substrate 2 was laminated on the prepreg so that the paste and the pattern of the glass epoxy substrate 2 were connected. A vacuum press was used to press under the following pressure and temperature conditions to cure the conductive paste and produce a circuit board.
 圧力:0kg/cmから17分間かけて面圧10kg/cmまで昇圧し、そのまま10分間保持した。次いで、24分間かけて面圧30kg/cmまで昇圧し、そのまま60分間保持した後、23分間かけて0kg/cmまで減圧した。 Pressure: The surface pressure was increased from 0 kg/cm 2 to 10 kg/cm 2 over 17 minutes and maintained for 10 minutes. Next, the surface pressure was increased to 30 kg/cm 2 over 24 minutes, maintained for 60 minutes, and then decreased to 0 kg/cm 2 over 23 minutes.
 温度:30℃から17分間かけて120℃まで昇温し、そのまま10分間保持した。次いで、24分間かけて180℃まで昇温し、そのまま60分間保持した後、23分間かけて30℃まで冷却した。 Temperature: The temperature was raised from 30°C to 120°C over 17 minutes and held for 10 minutes. Next, the temperature was raised to 180° C. over 24 minutes, maintained for 60 minutes, and then cooled to 30° C. over 23 minutes.
<初期抵抗値>
 ミリオームテスターを用いて、回路基板の抵抗値を測定した。その抵抗値から配線抵抗を引き、孔数で割ることで、1孔当たりの抵抗値を求めた。初期抵抗値が15mΩ/via以下である場合、導電性に優れているものと評価した。なお、配線抵抗は、孔がない同デザインの回路基板で抵抗値を測定した。
<Initial resistance value>
A resistance value of the circuit board was measured using a milliohm tester. By subtracting the wiring resistance from the resistance value and dividing by the number of holes, the resistance value per hole was obtained. When the initial resistance value was 15 mΩ/via or less, the conductivity was evaluated to be excellent. The wiring resistance was measured using a circuit board of the same design without holes.
<長期信頼性1(ヒートサイクル(HC)試験前後の抵抗値の変化率)>
 ヒートサイクル試験として、上記で得られた回路基板について、-65℃で30分間、125℃で30分間のヒートサイクルを1000サイクル行った。ヒートサイクル試験の後に初期抵抗値と同様に抵抗値を測定した。
<Long-term reliability 1 (change rate of resistance value before and after heat cycle (HC) test)>
As a heat cycle test, the circuit board obtained above was subjected to 1000 cycles of heat cycles of −65° C. for 30 minutes and 125° C. for 30 minutes. After the heat cycle test, the resistance value was measured in the same manner as the initial resistance value.
 ヒートサイクル試験前後の抵抗値の変化率を、初期抵抗値をa、試験後に測定した抵抗値をbとして、次式により求めた。抵抗値変化率が±20%以内であれば、信頼性に優れているものと評価した。
   抵抗値変化率(%)=(b-a)×100/a
The rate of change in resistance value before and after the heat cycle test was determined by the following equation, where a is the initial resistance value and b is the resistance value measured after the test. If the rate of change in resistance value was within ±20%, it was evaluated as having excellent reliability.
Resistance value change rate (%) = (ba) x 100/a
<長期信頼性2(耐熱試験前後の抵抗値の変化率)>
 耐熱性試験として、上記で得られた回路基板を環境温度150℃で1000時間静置した。耐熱試験前後の抵抗値の変化率を、ヒートサイクル試験と同様にして測定した。
<Long-term reliability 2 (change rate of resistance value before and after heat resistance test)>
As a heat resistance test, the circuit board obtained above was allowed to stand at an ambient temperature of 150° C. for 1000 hours. The rate of change in resistance value before and after the heat resistance test was measured in the same manner as in the heat cycle test.
Figure JPOXMLDOC01-appb-T000002
 
 
Figure JPOXMLDOC01-appb-T000002
 
 
 表1に示す結果から、実施例1~11は、いずれも導電性、及び長期信頼性1,2に優れていることがわかる。 From the results shown in Table 1, it can be seen that Examples 1 to 11 are all excellent in conductivity and long- term reliability 1 and 2.
 比較例1は、高融点金属粒子として銀粒子を使用した例であるが、長期信頼性1,2が劣っていることがわかる。 Comparative Example 1 is an example in which silver particles are used as high-melting-point metal particles, but it can be seen that long- term reliability 1 and 2 are inferior.
 比較例2は、高融点金属粒子として銀被覆銅粒子を使用した例であるが、長期信頼性1,2が劣っていることがわかる。 Comparative Example 2 is an example in which silver-coated copper particles are used as high-melting-point metal particles, but it can be seen that long- term reliability 1 and 2 are inferior.
 比較例3は、アクリレート化合物を含有しない例であるが、長期信頼性1,2が劣っていることがわかる。 Comparative Example 3 is an example that does not contain an acrylate compound, but it can be seen that long- term reliability 1 and 2 are inferior.
1・・・基板
2・・・スルーホール
3・・・プリプレグ
4・・・PETフィルム
5・・・ビア
6・・・導電性ペースト
7・・・クリーンルーム用無塵紙
8・・・多層基板
Reference Signs List 1 Substrate 2 Through hole 3 Prepreg 4 PET film 5 Via 6 Conductive paste 7 Dust-free paper for clean room 8 Multilayer substrate

Claims (7)

  1.  アクリレート化合物及びエポキシ化合物を含むバインダー成分100質量部に対し、
     銀被覆銅合金粒子を含む高融点金属粒子を600~1200質量部、
     融点180℃以下の低融点金属粒子を900~1500質量部、
     硬化剤を0.5~30質量部、
     フラックスを1~100質量部含有する、導電性ペースト。
    For 100 parts by mass of the binder component containing an acrylate compound and an epoxy compound,
    600 to 1200 parts by mass of refractory metal particles containing silver-coated copper alloy particles,
    900 to 1,500 parts by mass of low-melting metal particles having a melting point of 180° C. or less,
    0.5 to 30 parts by mass of a curing agent,
    A conductive paste containing 1 to 100 parts by mass of flux.
  2.  前記銀被覆銅合金粒子が、銅合金粒子と、銅合金粒子の少なくとも一部を被覆する銀含有層とを有し、前記銅合金粒子は亜鉛0.5~25質量%及び/又はニッケル0.5~30質量%を含有し、前記銀被覆銅合金粒子における前記銀含有層の含有割合が4~24質量%である、請求項1に記載の導電性ペースト。 The silver-coated copper alloy particles have copper alloy particles and a silver-containing layer covering at least part of the copper alloy particles, and the copper alloy particles contain 0.5 to 25% by mass of zinc and/or 0.5% by mass of nickel. 5 to 30% by mass, and the content of the silver-containing layer in the silver-coated copper alloy particles is 4 to 24% by mass.
  3.  前記低融点金属粒子が、インジウム単独、及び/又は、錫、鉛、ビスマス及びインジウムからなる群から選択された2種以上の合金からなる、請求項1又は2に記載の導電性ペースト。 The conductive paste according to claim 1 or 2, wherein the low melting point metal particles are composed of indium alone and/or an alloy of two or more selected from the group consisting of tin, lead, bismuth and indium.
  4.  前記高融点金属粒子と前記低融点金属粒子の含有割合(低融点金属粒子/高融点金属粒子)が、質量比で0.75~2.50である、請求項1又は2に記載の導電性ペースト。 3. The conductivity according to claim 1, wherein the content ratio of the high melting point metal particles and the low melting point metal particles (low melting point metal particles/high melting point metal particles) is 0.75 to 2.50 by mass. paste.
  5.  前記硬化剤が、カチオン系硬化剤、及びフェノール系硬化剤からなる群から選択された1種又は2種以上である、請求項1又は2に記載の導電性ペースト。 The conductive paste according to claim 1 or 2, wherein the curing agent is one or more selected from the group consisting of cationic curing agents and phenolic curing agents.
  6.  複数の導電層とこれら複数の導電層間に介在する絶縁層とからなり、
     少なくとも一つの前記絶縁層を貫通するビアが形成され、
     前記ビアに請求項1又は2に記載の導電性ペーストが充填され、
     この導電性ペーストの硬化物を介して、前記ビアの両端に位置する前記導電層同士が相互に導通している、多層基板。
    Consisting of a plurality of conductive layers and an insulating layer interposed between the plurality of conductive layers,
    forming a via through at least one of the insulating layers;
    The via is filled with the conductive paste according to claim 1 or 2,
    A multilayer substrate in which the conductive layers located at both ends of the via are electrically connected to each other through the cured conductive paste.
  7.  前記導電性ペーストの硬化物は、前記低融点金属粒子が融解し、前記高融点金属粒子と相互に一体化している、請求項6に記載の多層基板。 7. The multilayer substrate according to claim 6, wherein in the cured conductive paste, the low-melting-point metal particles are melted and integrated with the high-melting-point metal particles.
PCT/JP2022/027127 2021-07-09 2022-07-08 Conductive paste and multilayer substrate using same WO2023282351A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023533202A JPWO2023282351A1 (en) 2021-07-09 2022-07-08

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021114524 2021-07-09
JP2021-114524 2021-07-09

Publications (1)

Publication Number Publication Date
WO2023282351A1 true WO2023282351A1 (en) 2023-01-12

Family

ID=84800776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/027127 WO2023282351A1 (en) 2021-07-09 2022-07-08 Conductive paste and multilayer substrate using same

Country Status (3)

Country Link
JP (1) JPWO2023282351A1 (en)
TW (1) TW202322153A (en)
WO (1) WO2023282351A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003105160A1 (en) * 2002-05-31 2003-12-18 タツタ電線株式会社 Conductive paste, multilayer board including the conductive paste and process for producing the same
JP2020152778A (en) * 2019-03-19 2020-09-24 タツタ電線株式会社 Conductive composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003105160A1 (en) * 2002-05-31 2003-12-18 タツタ電線株式会社 Conductive paste, multilayer board including the conductive paste and process for producing the same
JP2020152778A (en) * 2019-03-19 2020-09-24 タツタ電線株式会社 Conductive composition

Also Published As

Publication number Publication date
TW202322153A (en) 2023-06-01
JPWO2023282351A1 (en) 2023-01-12

Similar Documents

Publication Publication Date Title
KR101225497B1 (en) Conductive paste and the manufacturing method thereof and the electric device comprising thereof
JP4191678B2 (en) Conductive paste, multilayer substrate using the same, and manufacturing method thereof
KR100832628B1 (en) Conductive paste
JP4949802B2 (en) Conductive paste and multilayer substrate using the same
JPWO2002028574A1 (en) Functional alloy particles
JP4235887B2 (en) Conductive paste
WO2016136204A1 (en) Conductive paste and multilayer substrate using same
JP6962480B2 (en) Magnetic paste
TWI419633B (en) A multilayer wiring board, and a multilayer wiring board obtained
JP7125907B2 (en) conductive composition
WO2022034696A1 (en) Electroconductive composition
WO2023282351A1 (en) Conductive paste and multilayer substrate using same
JP4224771B2 (en) Conductive paste
JP5346363B2 (en) Laminated body
JP2004055543A (en) Conductive paste
JP4481734B2 (en) Conductive paste composition for multilayer wiring board
JP2020180216A (en) Resin composition and electronic component structure
US20230328897A1 (en) Member for forming wiring, method for forming wiring layer using member for forming wiring, and wiring forming member
WO2023095917A1 (en) Wiring-forming member, wiring layer forming method using wiring-forming member, and wiring-formed member
WO2023153445A1 (en) Member for forming wiring, method for forming wiring layer using member for forming wiring, and formed wiring member
JP5691450B2 (en) Conductive resin composition for bump formation
TW202207387A (en) Conductive composition including a thermosetting compound, metal particles and a fluorosurfactant
JP2017130357A (en) Conductive paste and method for manufacturing cured body of conductive paste
JP2017130356A (en) Method for manufacturing cured body of conductive paste
WO2022250073A1 (en) Conductive paste and multilayer substrate using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22837765

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023533202

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE