WO2022033599A1 - 一种聚合物分散液晶和制备方法以及应用 - Google Patents

一种聚合物分散液晶和制备方法以及应用 Download PDF

Info

Publication number
WO2022033599A1
WO2022033599A1 PCT/CN2021/115948 CN2021115948W WO2022033599A1 WO 2022033599 A1 WO2022033599 A1 WO 2022033599A1 CN 2021115948 W CN2021115948 W CN 2021115948W WO 2022033599 A1 WO2022033599 A1 WO 2022033599A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
polymer
dispersed liquid
silver
nano
Prior art date
Application number
PCT/CN2021/115948
Other languages
English (en)
French (fr)
Inventor
曹明轩
杜大明
王颖
张彦军
王志文
乐庆胜
Original Assignee
五邑大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 五邑大学 filed Critical 五邑大学
Publication of WO2022033599A1 publication Critical patent/WO2022033599A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/06Pretreated ingredients and ingredients covered by the main groups C08K3/00 - C08K7/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/315Compounds containing carbon-to-nitrogen triple bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/12Adsorbed ingredients, e.g. ingredients on carriers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/12Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
    • C09K19/126Compounds containing at least one asymmetric carbon atom
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/102Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the active medium, e.g. by controlling the processes or apparatus for excitation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • C08K2003/3009Sulfides
    • C08K2003/3036Sulfides of zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/12Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
    • C09K2019/121Compounds containing phenylene-1,4-diyl (-Ph-)
    • C09K2019/122Ph-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/12Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
    • C09K2019/121Compounds containing phenylene-1,4-diyl (-Ph-)
    • C09K2019/123Ph-Ph-Ph

Definitions

  • the invention belongs to the field of quantum dots, and in particular relates to a polymer dispersed liquid crystal and a preparation method and application.
  • Random lasers use strongly scattering, disordered, and aperiodic media as resonators, and have the characteristics of low threshold, small size, no resonator structure, simple process, short preparation period and low cost, making them suitable for photonic integration. It has broad application prospects in optical sensing, optical fiber communication, tumor detection, wearable devices, etc.
  • Dye is a common laser gain medium, and the corresponding dispersed liquid crystal structure formed is a dye-doped polymer dispersed liquid crystal structure.
  • the disadvantages of random lasers of dye-doped polymer-dispersed liquid crystals are: high laser emission threshold, large full width at half maximum, poor photostability, complex synthesis process, difficult to change the emission band, long production cycle and high cost; in the polymer-dispersed liquid crystal structure At dispersible concentrations, it is inconvenient to prepare random lasers.
  • Polymer-dispersed liquid crystal is a mixture of low-molecular-weight liquid crystals and prepolymers, and polymerized under certain conditions to form micron-sized liquid crystal droplets that are uniformly dispersed in the polymer network, and then use the medium of liquid crystal molecules. Electrical anisotropy obtains materials with electro-optical response characteristics, which are often used in random lasers, called random lasers of polymer-dispersed liquid crystals.
  • Random lasers with polymer dispersed liquid crystal structure generally use dispersed liquid crystal as a laser scattering medium and a specific material as a laser gain medium (working medium) to work.
  • the invention of graphene laid the foundation for the research of two-dimensional materials, and its scalability and bendability have attracted great interest in realizing low-scale wearable optoelectronic devices. Due to the complex and peculiar optical properties of noble metal surface plasmons, it has been widely used in many fields such as biosensing, miniature optoelectronic devices, etc., and recent studies have shown that metal surface plasmons are also used in random laser fields. It has huge application value. Due to the collective resonance of free electrons in surface plasmons, noble metal nanoparticles have much larger optical scattering cross-sections than ordinary nanoparticles. Therefore, nano-silver-loaded graphene will have unique properties.
  • the essence of nano-silver-loaded graphene is a hybrid heating method.
  • the acetate of graphene and metallic silver is mixed with manual or mechanical ball milling, and then heated in sections, when the temperature reaches the acetate decomposition temperature of metallic silver, the temperature is kept constant for a period of time, and the acetate of metallic silver is heated.
  • the properties of decomposition form metallic silver nanoparticles on the surface of graphene.
  • the present invention aims to improve the defects of the prior art, and provides a polymer dispersed liquid crystal including semiconductor quantum dots.
  • the polymer-dispersed liquid crystal disclosed in the present invention is used in a random laser, and the obtained random laser has the characteristics of short preparation period, low production cost, simple preparation process, easy regulation and control of emission wavelength, higher emission light intensity and low threshold value. It has broad potential application prospects in integration, optical sensing, optical fiber communication, tumor detection, wearable devices, etc.
  • average lateral dimension refers to the average size dimension in the horizontal direction.
  • average longitudinal dimension refers to the average size dimension in the vertical direction.
  • An object of the present invention is to provide a polymer dispersed liquid crystal, which is achieved by the following techniques.
  • a polymer dispersed liquid crystal prepared from the following ingredients:
  • the silver content of the nano-silver-loaded graphene is ⁇ 45 wt %
  • the average lateral dimension is ⁇ 5 ⁇ m
  • the average longitudinal dimension is 0.8-1.2 ⁇ m.
  • the semiconductor quantum dots are selected from ZnCdSeS/ZnS semiconductor quantum dots or perovskite semiconductor quantum dots, the perovskite semiconductor quantum dots are CsPbX 3 , and X is selected from Cl, Br or I.
  • the photosensitive polymer is selected from polymethyl methacrylate, polymethyl acrylate, polyethyl acrylate, polyamino acrylate, polyhydroxypropyl acrylate or urethane acrylate;
  • the photoinitiator is selected from phenylbis(2,4,6-trimethylbenzoyl)phosphine oxide, 2-hydroxy-methylphenylpropan-1 ketone, 1-hydroxycyclohexyl phenyl ketone, benzoin One or more of dimethyl ether, 2-phenylbenzyl-2-dimethylamine-1-(4-morpholinebenzylphenyl)butanone or 2-isopropylthioxanthone.
  • nematic liquid crystal molecules include the following components in parts by mass:
  • Another object of the present invention is to provide the preparation method of the above-mentioned polymer dispersed liquid crystal, which comprises the following steps:
  • ultrasonic dispersion is first performed for 1-2 hours, and then mechanical stirring is performed for 1-3 hours.
  • the wavelength of the ultraviolet light is 200-365 nm.
  • UV curing time is ⁇ 5 seconds.
  • steps (1) and (2) are implemented in a dark environment.
  • Another object of the present invention is to provide the application of the above-mentioned polymer dispersed liquid crystal in random lasers.
  • the present invention provides a polymer dispersed liquid crystal and a preparation method thereof.
  • the raw materials used are common chemicals, which are simple and easy to obtain; the preparation process is simple, the cost is low, the required preparation conditions are not harsh, and the method has broad commercialization prospects. .
  • the present invention provides a random laser containing the polymer dispersed liquid crystal formed by the co-doping of the above-mentioned nano-silver-loaded graphene and quantum dots, which overcomes the random laser light laser emission of the dispersed liquid crystal in the general dye-doped polymer.
  • the problem of high threshold value and large full width at half maximum; the random laser disclosed in the present invention has the characteristics of short preparation period, low production cost, simple preparation process, easy regulation of emission wavelength, higher emission light intensity and low threshold value. It has broad potential application prospects in optical sensing, optical fiber communication, tumor detection, wearable devices, etc.
  • FIG. 1 is a schematic view of the microstructure of the polymer dispersed liquid crystal prepared in Example 1.
  • FIG. 1 is a schematic view of the microstructure of the polymer dispersed liquid crystal prepared in Example 1.
  • FIG. 2 is an optical microscope image of the polymer dispersed liquid crystal prepared in Example 1.
  • FIG. 3 is an optical microscope image of the polymer dispersed liquid crystal prepared in Example 2.
  • FIG. 4 is an optical microscope image of the polymer dispersed liquid crystal prepared in Example 3.
  • FIG. 5 is an optical microscope image of the polymer dispersed liquid crystal prepared in Comparative Example 1.
  • FIG. 6 is a schematic structural diagram of the random laser of the polymer dispersed liquid crystal in Example 4.
  • FIG. 6 is a schematic structural diagram of the random laser of the polymer dispersed liquid crystal in Example 4.
  • FIG. 7 is a comparison test chart of the emission intensity of random lasers of Example 1, dye R6G doped polymer dispersed liquid crystal, ZnCdSeS/ZnS semiconductor quantum dots and CsPbBr 3 perovskite semiconductor quantum dot doped polymer dispersed liquid crystal random lasers in the test example.
  • Nano-silver-loaded graphene was purchased from Huahui, model GRSP50;
  • the components in the nematic liquid crystal are purchased from Jiangsu Hecheng Chemical Materials Co., Ltd.;
  • ZnCdSeS/ZnS semiconductor quantum dots and CsPbBr 3 perovskite semiconductor quantum dots were purchased from Guangdong Pujiafu Optoelectronics Technology Co., Ltd.
  • a polymer dispersed liquid crystal prepared from the following ingredients:
  • the nematic liquid crystal includes the following components by mass:
  • the silver content of the nano-silver-loaded graphene is 45wt%, the average lateral dimension is 5 ⁇ m, and the average longitudinal dimension is 0.8 ⁇ m;
  • the above-mentioned polymer dispersed liquid crystal is prepared by the following method:
  • Figure 1 shows a schematic diagram of the polymer dispersed liquid crystal prepared in Example 1;
  • 1-ITO glass 2-photopolymer; 3-ZnCdSeS/ZnS semiconductor quantum dots; 4-nematic liquid crystal;
  • the above components together constitute a polymer dispersed liquid crystal structure in which nano-silver-supported graphene and quantum dots are co-doped.
  • Figure 2 shows the optical microscope image of the prepared polymer dispersed liquid crystal, which shows that when the nano-silver-supported graphene is doped at 0.5 phr, the nano-silver-supported graphene of the nano-silver-supported graphene and the semiconductor quantum dots co-exist
  • the doped polymer-dispersed liquid crystal can form a good structural framework, and the nano-silver-loaded graphene can be well dispersed.
  • a polymer dispersed liquid crystal prepared from the following ingredients:
  • the nematic liquid crystal includes the following components by mass:
  • the silver content of the nano-silver-loaded graphene is 35wt%, the average lateral size is 6 ⁇ m, and the average longitudinal size is 0.9 ⁇ m;
  • the above-mentioned polymer dispersed liquid crystal is prepared by the following method:
  • Figure 3 shows the optical microscope image of the prepared polymer dispersed liquid crystal, which shows that when the nano-silver-supported graphene is doped as 1 part, the nano-silver-supported graphene of the nano-silver-supported graphene is co-doped with quantum dots
  • the heterogeneous polymer dispersed liquid crystal can form a better structural framework, and the nano-silver-loaded graphene can be dispersed relatively well, but the dispersion state of the polymer-dispersed liquid crystal is relatively sparse at this time, indicating that the doped nano-silver-loaded graphene The amount affects the formation of polymer dispersed liquid crystal structures.
  • a polymer dispersed liquid crystal prepared from the following ingredients:
  • the nematic liquid crystal includes the following components by mass:
  • the silver content of the nano-silver-loaded graphene is 30wt%, the average lateral size is 6 ⁇ m, and the average longitudinal size is 1.1 ⁇ m;
  • the above-mentioned polymer dispersed liquid crystal is prepared by the following method:
  • Figure 4 shows the optical microscope image of the prepared polymer dispersed liquid crystal, which shows that the nano-silver-supported graphene of the nano-silver-supported graphene is co-doped with quantum dots when the doping of the nano-silver-supported graphene is 1.5 phr
  • Heteropolymer-dispersed liquid crystals can form larger sizes of dispersed liquid crystals in the structural framework, and nano-silver-loaded graphene appears to cluster in the polymer matrix.
  • composition, mass fraction and preparation method of the polymer-dispersed liquid crystal in Comparative Example 1 are the same as those in Example 1, and the only difference is that the polymer-dispersed liquid crystal in Comparative Example 1 does not contain nano-silver supported graphene.
  • Figure 5 shows the optical microscope image of the polymer dispersed liquid crystal of Comparative Example 1, which shows that no nano-silver-supported graphene is added to the quantum-dot co-doped polymer-dispersed liquid crystal, compared to the nano-silver-supported graphene doped with 1 5 , the quantum dot co-doped polymer dispersed liquid crystal formed in Figure 5 is very poor, which further highlights that the nano-silver-loaded graphene is conducive to the formation of a better structural framework for the polymer-dispersed liquid crystal, and compared with the nano-silver When the doping of nano-silver-loaded graphene is 1 part, the nano-silver-loaded graphene can be dispersed relatively well, and there is no clustering phenomenon, indicating that the doping of nano-silver-loaded graphene will affect the formation of the polymer dispersed liquid crystal structure.
  • This example relates to the application of the polymer dispersed liquid crystal prepared in Example 1 in a random laser.
  • FIG. 6 shows the structure of the random laser of the polymer dispersed liquid crystal prepared in Example 4.
  • FIG. 6 The components of the random laser and the functions of each component are as follows:
  • Working medium and resonant cavity (2) Proper working medium must be selected for the generation of laser, which can be gas, liquid, solid or semiconductor. Population inversion can be achieved in this medium to create the necessary conditions for obtaining laser light. Scattering intensity of polymers containing graphene co-doped with quantum dots.
  • Graphene and quantum dot co-doped polymers serve as resonant cavities.
  • Spectrometer (3) and spectrometer probe (4) collect spectral information of the outgoing laser light.
  • Sample exit light (5) The light source collected by the spectrometer.
  • Focusing lens (6) its function is to focus the emission spot, so that the light energy irradiated on the surface of the polymer containing nano-silver-supported graphene and quantum dots co-doped is more concentrated.
  • the pump source causes the particle number inversion in the working medium, and a certain method must be used to excite the atomic system to increase the number of particles in the upper energy level and generate laser radiation.
  • a pulsed light source is used as a pumping source to illuminate the working medium, and the pumping process is also called "pumping".
  • the pulsed laser acts as a pump source here.
  • the pump laser source is an ultraviolet pulse laser
  • the pulse frequency is 1Hz-1000Hz
  • the pulse energy is >1 ⁇ J.
  • the semiconductor quantum dots emit fluorescence.
  • the fluorescence is strongly scattered by the polymer to form a random closed resonant cavity, and after reaching the laser threshold, random laser radiation is generated.
  • Nano-silver-loaded graphene acts as a scatterer to enhance random laser radiation intensity.
  • the test principle is: after the laser emitted by the pump source passes through the focusing lens, the energy is more concentrated, and then irradiated to the sample to cause the particle number inversion in the working medium to generate laser radiation, and the data can be collected by the spectrometer. .
  • Example 1 ZnCdSeS/ZnS semiconductor quantum dot-doped polymer dispersed liquid crystal (comparative sample 1), dye-doped polymer dispersed liquid crystal (comparative sample 2), and perovskite were respectively tested by the random laser tester shown in FIG. 6 .
  • Comparative Sample 1 does not contain the nano-silver-supported graphene described in Example 1.
  • the types of ingredients, the mass fractions of ingredients and the preparation method of the comparative sample 2 and Example 1 are all the same, and the difference between the two is that in the comparative sample 2, the ZnCdSeS/ZnS quantum described in Example 1 is replaced by the dye R6G of the same mass fraction. point, and does not contain nano-silver supported graphene.
  • Comparative sample 3 and Example 2 have the same component types, mass fractions and preparation methods. The difference between the two is that Comparative Sample 3 does not contain the nano-silver-supported graphene described in Example 2.
  • Fig. 7 is the emission intensity contrast test chart of the random laser of embodiment 1, comparative sample 1, comparative sample 2 and comparative sample 3 in the test example;
  • Fig. 8 is the embodiment 1, comparative sample 1, comparative sample 2 and contrast of the test example Comparison test chart of emission intensity of random laser of sample 3.
  • Table 1 shows random lasing threshold and emitted light intensity data for the four samples.
  • Example 1 is significantly better than Comparative Samples 1-3 in the two performance parameters of random laser threshold and emission light intensity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明涉及一种聚合物分散液晶,由以下质量份数的成分制得:纳米银负载石墨烯0.5-1.5份;半导体量子点1-5份;光敏聚合物20-74份;向列型液晶20-78份;光引发剂1-5份;其中,所述纳米银负载石墨烯的银含量为≤45wt%,平均横向尺寸为≥5μm,平均纵向尺寸为0.8-1.2μm。本发明还涉及聚合物分散液晶的制备方法,以及在随机激光器中的应用。本发明的聚合物分散液晶具有原料简单易得,成本低廉的特点;并且所得的随机激光器具有制备周期短,制备过程简单,发射波长易于调控,生产费用低,发射光强度更高以及阈值低等优点,具有广阔的商业化应用前景。

Description

一种聚合物分散液晶和制备方法以及应用 技术领域
本发明属于量子点领域,具体涉及一种聚合物分散液晶和制备方法以及应用。
背景技术
激光技术已经在工业,医疗和通信等众多领域取得了广泛应用。随机激光器核心部件包括泵浦源,工作介质和谐振腔三要素。由谐振腔选择频率一定、方向一致的光作最优先的放大,而抑制其他频率和方向的光,形成驻波振荡,最终以激光的形式出射。随机激光器以强散射的、无序的、非周期性的介质作为谐振腔,具有阈值低,尺寸小,无谐振腔结构,工艺简单,制备周期短以及造价低廉等特点,使其在光子集成,光学传感,光纤通信,肿瘤检测,可穿戴器件等方面具有广阔的应用前景。
染料是常见的激光增益介质,所形成的相应分散液晶结构为染料掺杂聚合物分散液晶结构。染料掺杂聚合物分散液晶的随机激光器缺点在于:激光发射阈值高、半峰全宽大、光稳定性差、合成工艺复杂、发光波段不易变化、生产周期长且费用高;在聚合物分散液晶结构中可分散的浓度下,不便于制备随机激光器。
因此亟需找到一种能克服上述随机激光器缺陷的新的技术。
发明内容
聚合物分散型液晶(PDLC)是将低分子液晶与预聚物相混合,在一定条件下经聚合反应,形成微米级的液晶微滴均匀地分散在高分子网络中,再利用液晶分子的介电各向异性获得具有电光响应特性的材料,常应用于随机激光器中,称为聚合物分散液晶的随机激光器。现有的聚合物分散液晶结构随机激光器一般是利用分散液晶作为激光散射介质、特定材料作为激光增益介质(工作介质)进行工作。
石墨烯的发明奠定了二维材料研究的基础,并且其可伸缩性和可弯曲性在实现低尺寸可穿戴光电设备方面引起了极大的兴趣。由于贵金属表面等离激元有着复杂而又奇特的光学特性,它已经在生物传感,微型光电器件等诸多领域有广泛的应用,并且最近的研究表明金属表面等离激元在随机激光领域也潜藏着巨大的应用价值。由于在表面等离激元中自由电子的集体共振,使得贵金属纳米粒子具有比普通纳米颗粒大得多的光学散射截面,这种强散射特性正是随机激光产生时对无序散射介质的要求,所以纳米银负载石墨烯会有着独特性质。纳米银负载石墨烯其实质就是混合加热法。将石墨烯与金属银的醋酸盐以手动或者机械球磨的方式进行混合,进而分段加热,当温度达到金属银的醋酸盐分解温度时, 恒温一段时间,利用金属银的醋酸盐受热分解的特性在石墨烯表面形成金属银纳米粒子。
本发明旨在改进现有技术的缺陷,提供了一种聚合物分散液晶,其包括半导体量子点。将本发明公开的聚合物分散液晶用于随机激光器,所得的随机激光器,具有制备周期短、生产费用低、制备过程简单、发射波长易于调控、发射光强度更高以及阈值低的特点,在光子集成、光学传感、光纤通信、肿瘤检测、可穿戴器件等方面具有广阔的潜在应用前景。
本发明中,
术语“平均横向尺寸”是指在水平方向上的平均大小尺寸。
术语“平均纵向尺寸”是指在垂直方向上的平均大小尺寸。
本发明的一个目的为提供一种聚合物分散液晶,其通过以下技术得以实现。
一种聚合物分散液晶,其由以下成分制得:
Figure PCTCN2021115948-appb-000001
其中,所述纳米银负载石墨烯的银含量为≤45wt%,平均横向尺寸为≥5μm,平均纵向尺寸为0.8-1.2μm。
进一步地,所述半导体量子点选自ZnCdSeS/ZnS半导体量子点或钙钛矿半导体量子点,所述钙钛矿半导体量子点为CsPbX 3,X选自Cl、Br或I。
进一步地,所述光敏聚合物选自聚甲基丙烯酸甲酯、聚丙烯酸甲酯、聚丙烯酸乙酯、聚氨基丙烯酸酯、聚羟丙基丙烯酸酯或聚氨酯丙烯酸酯;
所述光引发剂选自苯基双(2,4,6-三甲基苯甲酰基)氧化膦、2-羟基-甲基苯基丙烷-1酮、1-羟基环己基苯基酮、安息香双甲醚、2-苯基苄-2-二甲基胺-1-(4-吗啉苄苯基)丁酮或2-异丙基硫杂蒽酮的一种或几种。
进一步地,所述向列型液晶分子包括如下质量份数的成分:
Figure PCTCN2021115948-appb-000002
Figure PCTCN2021115948-appb-000003
本发明的另一个目的为提供上述聚合物分散液晶的制备方法,其包括如下步骤:
(1)将光引发剂、向列型液晶、光敏聚合物与半导体量子点共混形成混合溶液;
(2)将纳米银负载石墨烯加入混合溶液中,进行搅拌,得到溶液A;
(3)对步骤(2)中溶液A进行紫外光固化,使得液晶分子析出形成液晶微滴并分散在溶液A中。
进一步地,纳米银负载石墨烯加入混合溶液中后,先进行超声分散,时间为1-2h,然后再进行机械搅拌,时间为1-3h。
进一步地,所述紫外光的波长为200-365nm。
进一步地,所述紫外光固化时间≥5秒。
进一步地,所述步骤(1)和(2)在避光环境下实施。
本发明另一个目的在于提供上述聚合物分散液晶在随机激光器中的应用。
本发明具有以下有益效果:
1.本发明提供了一种聚合物分散液晶及其制备方法,所采用的原料为常见化学品,简单易得;制备工艺简单,成本低廉,要求的制备条件不苛刻,具有广阔的商业化前景。
2.本发明提供了一种含有上述纳米银负载石墨烯与量子点共掺杂所形成的聚合物分散液晶的随机激光器,其克服了一般染料掺杂聚合物中分散液晶的随机激光器光激光发射阈值高、半峰全宽大的问题;本发明公开的随机激光器,具有制备周期短、生产费用低、制备过程简单、发射波长易于调控、发射光强度更高以及阈值低的特点,在光子集成、光学传感、光纤通信、肿瘤检测、可穿戴器件等方面具有广阔的潜在应用前景。
附图说明
图1为实施例1中,所制得的聚合物分散液晶的微观结构示意图。
图2为实施例1中,所制得的聚合物分散液晶的光学显微镜图。
图3为实施例2中,所制得的聚合物分散液晶的光学显微镜图。
图4为实施例3中,所制得的聚合物分散液晶的光学显微镜图。
图5为对比例1中,所制得的聚合物分散液晶的光学显微镜图。
图6为实施例4中,聚合物分散液晶的随机激光器的结构示意图。
图7为测试例中实施例1、染料R6G掺杂聚合物分散液晶、ZnCdSeS/ZnS半导体量子点和CsPbBr 3钙钛矿半导体量子点掺杂聚合物分散液晶的随机激光器的发射强度对比测试图。
附图中的标号所对应的结构为:
1-泵浦激光;2-工作介质和谐振腔;3-光谱仪;4-光谱仪探头;5-随机激光;6-聚焦透镜;7-泵浦源。
具体实施方式
以下结合具体实施例对本发明中聚合物分散液晶及其制备方法,以及相关随机激光器结构作具体说明。但本发明所要求的保护范围并不局限于本发明实施例所涉及的范围。除非特别提及,否则本专利公开的实施例中所提及的溶剂和测试方法均为本领域技术人员所知的常规方法。
本发明所述实施例中,
纳米银负载石墨烯采购自化学慧,型号为GRSP50;
向列相型液晶中的成分均采购自江苏和成化学材料有限公司;
ZnCdSeS/ZnS半导体量子点与CsPbBr 3钙钛矿半导体量子点均采购自广东普加福光电科技有限公司。
实施例1
一种聚合物分散液晶,其由以下成分制得:
Figure PCTCN2021115948-appb-000004
其中,向列型液晶包括如下质量份数的成分:
Figure PCTCN2021115948-appb-000005
Figure PCTCN2021115948-appb-000006
其中,所述纳米银负载石墨烯的银含量为45wt%,平均横向尺寸为5μm,平均纵向尺寸为0.8μm;
上述聚合物分散液晶是通过以下方法制备而成的:
(1)将上述向列型液晶、光敏聚合物聚甲基丙烯酸甲酯、ZnCdSeS/ZnS半导体量子点和光引发剂苯基双(2,4,6-三甲基苯甲酰基)氧化膦在50℃下避光搅拌5min,形成混合溶液。
(2)将纳米银负载石墨烯加入到混合溶液中后,先进行1.5h的超声分散,然后在50℃下避光的条件下,机械搅拌2h,得到溶液A。
(3)将上述溶液A利用毛细作用灌入厚度为50μm液晶盒中。
(4)使用强度为1mW/cm 2、波长为200nm的紫外光,对溶液A进行紫外光固化,紫外光固化时间为5秒,使得液晶分子析出形成液晶微滴并分散在溶液A中,形成为分散液晶微滴,从而获得含有纳米银负载石墨烯的纳米银负载石墨烯与量子点共掺杂的聚合物分散液晶。
图1示出了实施例1中所制得的聚合物分散液晶的示意图;其中
1-ITO玻璃;2-光敏聚合物;3-ZnCdSeS/ZnS半导体量子点;4-向列型液晶;
5-纳米银负载石墨烯。
在紫外光的固化情况下,上述成分共同构成纳米银负载石墨烯与量子点共掺杂的聚合物分散液晶结构。
图2示出了所制得的聚合物分散液晶的光学显微镜图,其表明了在纳米银负载石墨烯掺杂为0.5份时,纳米银负载石墨烯的纳米银负载石墨烯与半导体量子点共掺杂的聚合物分散液晶能形成好的结构框架,并且纳米银负载石墨烯能够很好地分散。
实施例2
一种聚合物分散液晶,其由以下成分制得:
Figure PCTCN2021115948-appb-000007
其中,向列型液晶包括如下质量份数的成分:
Figure PCTCN2021115948-appb-000008
其中,所述纳米银负载石墨烯的银含量为35wt%,平均横向尺寸为6μm,平均纵向尺寸为0.9μm;
上述聚合物分散液晶是通过以下方法制备而成的:
(1)将上述向列型液晶、光敏聚合物聚丙烯酸甲酯、CsPbBr 3钙钛矿半导体量子点和光引发剂2-羟基-甲基苯基丙烷-1酮在50℃下避光搅拌5min,形成混合溶液。
(2)将纳米银负载石墨烯加入到混合溶液中后,先进行1h的超声分散,然后在50℃下避光的条件下,机械搅拌1h,得到溶液A。
(3)将上述溶液A利用毛细作用灌入厚度为50μm液晶盒中。
(4)使用强度为1mW/cm 2、波长为365nm的紫外光,对溶液A进行紫外光固化,紫外光固化时间为5秒,使得液晶分子析出形成液晶微滴并分散在溶液A中,形成为分散液晶微滴,从而获得含有纳米银负载石墨烯的纳米银负载石墨烯与量子点共掺杂的聚合物分散液晶。
图3示出了所制得的聚合物分散液晶的光学显微镜图,其表明了在纳米银负载石墨烯掺杂为1份时,纳米银负载石墨烯的纳米银负载石墨烯与量子点共掺杂的聚合物分散液晶能形成比较好的结构框架,并且纳米银负载石墨烯能够比较好地分散,但是此时看到聚合物分散液晶分散状态较为稀疏,表明纳米银负载石墨烯的掺杂的量会影响聚合物分散液晶结构的形成。
实施例3
一种聚合物分散液晶,其由以下成分制得:
Figure PCTCN2021115948-appb-000009
Figure PCTCN2021115948-appb-000010
其中,向列型液晶包括如下质量份数的成分:
Figure PCTCN2021115948-appb-000011
其中,所述纳米银负载石墨烯的银含量为30wt%,平均横向尺寸为6μm,平均纵向尺寸为1.1μm;
上述聚合物分散液晶是通过以下方法制备而成的:
(1)将上述向列型液晶、光敏聚合物聚氨基丙烯酸酯、ZnCdSeS/ZnS半导体量子点和光引发剂安息香双甲醚在50℃下避光搅拌5min,形成混合溶液。
(2)将纳米银负载石墨烯加入到混合溶液中后,先进行1h的超声分散,然后在50℃下避光的条件下,机械搅拌2h,得到溶液A。
(3)将上述溶液A利用毛细作用灌入厚度为50μm液晶盒中。
(4)使用强度为1mW/cm 2、波长为300nm的紫外光,对溶液A进行紫外光固化,紫外光固化时间为5秒,使得液晶分子析出形成液晶微滴并分散在溶液A中,形成为分散液晶微滴,从而获得含有纳米银负载石墨烯的纳米银负载石墨烯与量子点共掺杂的聚合物分散液晶
图4示出了所制得的聚合物分散液晶的光学显微镜图,其表明了在纳米银负载石墨烯掺杂为1.5份时,纳米银负载石墨烯的纳米银负载石墨烯与量子点共掺杂的聚合物分散液晶能形成结构框架中分散液晶形成的尺寸较大,纳米银负载石墨烯在聚合物基体中出现团簇现象。
对比例1
对比例1中的聚合物分散液晶的成分、质量份数和制备方法与实施例1相同,唯一区 别在于对比例1中的聚合物分散液晶不含纳米银负载石墨烯。
图5示出了对比例1的聚合物分散液晶光学显微镜图,其表明了在量子点共掺杂的聚合物分散液晶中没有加入纳米银负载石墨烯对比于纳米银负载石墨烯掺杂为1份时,图5形成的量子点共掺杂的聚合物分散液晶是十分差的,进一步突出表明了纳米银负载石墨烯的有利于聚合物分散液晶形成比较好的结构框架,并且对比于纳米银负载石墨烯掺杂为1份时,纳米银负载石墨烯能够比较好地分散,没有出现团簇现象,表明纳米银负载石墨烯的掺杂会影响聚合物分散液晶结构的形成。
实施例4
本实施例涉及实施例1中所制得的聚合物分散液晶在随机激光器中的应用。
图6示出了实施例4中所制得的聚合物分散液晶的随机激光器的结构。所述随机激光器组成部件及各个部件作用如下所述:
泵浦出射激光(1):提供泵浦样品所需的能量。
工作介质和谐振腔(2):激光的产生必须选择合适的工作介质,可以是气体、液体、固体或半导体。在这种介质中可以实现粒子数反转,以制造获得激光的必要条件。含有石墨烯与量子点共掺杂的聚合物的散射强度。
石墨烯与量子点共掺杂的聚合物作为谐振腔。
光谱仪(3)和光谱仪探头(4):采集出射激光的光谱信息。
样品出射光(5):光谱仪收集的光源。
聚焦透镜(6):其作用为聚焦发射光斑,使得照射到含有纳米银负载石墨烯与量子点共掺杂的聚合物表面的光能量更集中。
泵浦源(7):泵浦源使工作介质中出现粒子数反转,必须用一定的方法去激励原子体系,使处于上能级的粒子数增加,产生激光辐射。这里使用脉冲光源作为泵浦源来照射工作介质,泵浦过程又称“抽运”。脉冲激光器在此起到了泵浦源的作用。
随机激光器工作原理为:泵浦激光源为紫外脉冲激光器,脉冲频率为1Hz-1000Hz,脉冲能量>1μJ。通过泵浦激光的抽运作用,半导体量子点发出荧光。荧光经过聚合物的强烈散射,形成随机的闭合谐振腔,达到激光阈值后,产生随机激光辐射。纳米银负载石墨烯作为散射体增强随机激光辐射强度。
相关测试
测试原理为:泵浦源出射的激光经过聚焦透镜后,能量更加集中,然后照射到样品上使工作介质中出现粒子数反转,产生激光辐射,经过光谱仪采集数据就可以进行数据分析,得到结论。
利用图6示出的随机激光测试器分别对实施例1、ZnCdSeS/ZnS半导体量子点掺杂聚合物分散液晶(对比样品1)、染料掺杂聚合物分散液晶(对比样品2),和钙钛矿半导体量子点掺杂聚合物分散液晶(对比样品3)的四个样品进行测试。
其中,对比样品1和实施例1的成分种类、成分的质量份数和制备方法均相同,二者区别在于,对比样品1中不含有实施例1所述的纳米银负载石墨烯。
对比样品2和实施例1的成分种类、成分的质量份数和制备方法均相同,二者区别在于,对比样品2中以等质量份数的染料R6G替代实施例1所述的ZnCdSeS/ZnS量子点,并且不含有纳米银负载石墨烯。
对比样品3和实施例2的成分种类、成分的质量份数和制备方法均相同,二者区别在于,对比样品3中不含有实施例2所述的纳米银负载石墨烯。
图7为测试例中实施例1、对比样品1、对比样品2和对比样品3的随机激光器的发射强度对比测试图;图8为测试例中实施例1、对比样品1、对比样品2和对比样品3的随机激光器的发射强度对比测试图。
表1示出了四个样品的随机激光阈值和发射光强度数据。
表1四个样品的随机激光阈值和发射光强度数据
Figure PCTCN2021115948-appb-000012
从上表可以看出,实施例1在随机激光阈值和发射光强度两个性能参数上,显著优于对比样品1-3。

Claims (10)

  1. 一种聚合物分散液晶,其特征在于,所述聚合物分散液晶由以下成分制得:
    Figure PCTCN2021115948-appb-100001
    其中,所述纳米银负载石墨烯的银含量为≤45wt%,平均横向尺寸为≥5μm,平均纵向尺寸为0.8-1.2μm。
  2. 根据权利要求1所述聚合物分散液晶,其特征在于,所述半导体量子点选自ZnCdSeS/ZnS半导体量子点或钙钛矿半导体量子点,所述钙钛矿半导体量子点为CsPbX 3,X选自Cl、Br或I。
  3. 根据权利要求1所述聚合物分散液晶,其特征在于,所述光敏聚合物选自聚甲基丙烯酸甲酯、聚丙烯酸甲酯、聚丙烯酸乙酯、聚氨基丙烯酸酯、聚羟丙基丙烯酸酯或聚氨酯丙烯酸酯;
    所述光引发剂选自苯基双(2,4,6-三甲基苯甲酰基)氧化膦、2-羟基-甲基苯基丙烷-1酮、1-羟基环己基苯基酮、安息香双甲醚、2-苯基苄-2-二甲基胺-1-(4-吗啉苄苯基)丁酮或2-异丙基硫杂蒽酮的一种或几种。
  4. 根据权利要求1所述聚合物分散液晶,其特征在于,所述向列型液晶分子包括如下质量份数的成分:
    Figure PCTCN2021115948-appb-100002
  5. 根据权利要求1-4任一项所述聚合物分散液晶的制备方法,其特征在于,包括如下步骤:
    (1)将光引发剂、向列型液晶、光敏聚合物与半导体量子点共混形成混合溶液;
    (2)将纳米银负载石墨烯加入混合溶液中,进行搅拌,得到溶液A;
    (3)对步骤(2)中溶液A进行紫外光固化。
  6. 根据权利要求5所述聚合物分散液晶的制备方法,其特征在于,纳米银负载石墨烯加入混合溶液中后,先进行超声分散,时间为1-2h,然后再进行机械搅拌,时间为1-3h。
  7. 根据权利要求5所述聚合物分散液晶的制备方法,其特征在于,所述紫外光的波长为200-365nm。
  8. 根据权利要求5所述聚合物分散液晶的制备方法,其特征在于,所述紫外光固化时间≥5秒。
  9. 根据权利要求5所述聚合物分散液晶的制备方法,其特征在于,所述步骤(1)和(2)在避光环境下实施。
  10. 根据权利要求1-4任一项所述聚合物分散液晶在随机激光器中的应用。
PCT/CN2021/115948 2020-08-11 2021-09-01 一种聚合物分散液晶和制备方法以及应用 WO2022033599A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010801315.1 2020-08-11
CN202010801315.1A CN111995836B (zh) 2020-08-11 2020-08-11 一种聚合物分散液晶和制备方法以及应用

Publications (1)

Publication Number Publication Date
WO2022033599A1 true WO2022033599A1 (zh) 2022-02-17

Family

ID=73463794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/115948 WO2022033599A1 (zh) 2020-08-11 2021-09-01 一种聚合物分散液晶和制备方法以及应用

Country Status (2)

Country Link
CN (1) CN111995836B (zh)
WO (1) WO2022033599A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113105708B (zh) * 2020-08-11 2022-03-08 五邑大学 一种石墨烯与量子点共掺杂的聚合物和制备方法以及应用
CN111995836B (zh) * 2020-08-11 2022-11-08 五邑大学 一种聚合物分散液晶和制备方法以及应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120242927A1 (en) * 2011-03-23 2012-09-27 Samsung Electronics Co., Ltd. Active optical device and display apparatus including the same
CN104698668A (zh) * 2015-03-30 2015-06-10 北京三五九投资有限公司 一种掺纳米导电粒子的pdlc薄膜及其制备方法
CN105242437A (zh) * 2015-11-09 2016-01-13 深圳市华星光电技术有限公司 Pdlc显示装置的制作方法及pdlc显示装置
CN110643373A (zh) * 2019-09-04 2020-01-03 五邑大学 钙钛矿量子点掺杂聚合物分散液晶及其制备方法和应用
CN110932083A (zh) * 2019-11-25 2020-03-27 五邑大学 一种含有Ag纳米颗粒的半导体量子点掺杂聚合物分散液晶
CN111995836A (zh) * 2020-08-11 2020-11-27 五邑大学 一种聚合物分散液晶和制备方法以及应用
CN113105707A (zh) * 2020-08-11 2021-07-13 五邑大学 一种纳米银负载石墨烯与量子点共掺杂的聚合物及应用
CN113234433A (zh) * 2020-08-11 2021-08-10 五邑大学 一种石墨烯与量子点共掺杂的聚合物分散液晶及其应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102615290B (zh) * 2011-12-12 2016-04-06 湖南理工学院 一种Ag/石墨烯纳米复合材料的制备方法
KR102202689B1 (ko) * 2015-11-17 2021-01-14 한국전자통신연구원 표시 장치 및 이를 구동하는 방법
CN107286958A (zh) * 2016-04-01 2017-10-24 北京八亿时空液晶科技股份有限公司 宽视角型聚合物分散液晶组合物、显示器件及制备方法
KR101986438B1 (ko) * 2017-12-19 2019-06-07 한국과학기술원 히터가 구비된 스마트 윈도우, 스마트 윈도우용 히터 및 그 제조방법
CN110964217A (zh) * 2019-12-03 2020-04-07 珠海兴业新材料科技有限公司 一种含纳米银线的pdlc混合物和液晶调光膜及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120242927A1 (en) * 2011-03-23 2012-09-27 Samsung Electronics Co., Ltd. Active optical device and display apparatus including the same
CN104698668A (zh) * 2015-03-30 2015-06-10 北京三五九投资有限公司 一种掺纳米导电粒子的pdlc薄膜及其制备方法
CN105242437A (zh) * 2015-11-09 2016-01-13 深圳市华星光电技术有限公司 Pdlc显示装置的制作方法及pdlc显示装置
CN110643373A (zh) * 2019-09-04 2020-01-03 五邑大学 钙钛矿量子点掺杂聚合物分散液晶及其制备方法和应用
CN110932083A (zh) * 2019-11-25 2020-03-27 五邑大学 一种含有Ag纳米颗粒的半导体量子点掺杂聚合物分散液晶
CN111995836A (zh) * 2020-08-11 2020-11-27 五邑大学 一种聚合物分散液晶和制备方法以及应用
CN113105707A (zh) * 2020-08-11 2021-07-13 五邑大学 一种纳米银负载石墨烯与量子点共掺杂的聚合物及应用
CN113234433A (zh) * 2020-08-11 2021-08-10 五邑大学 一种石墨烯与量子点共掺杂的聚合物分散液晶及其应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHUNYE WEN; MINGWANG SHAO; SHUJUAN ZHUO; ZHANGQING LIN; ZHENHUI KANG;: "Silver/graphene nanocomposite: Thermal decomposition preparation and its catalytic performance", MATERIALS CHEMISTRY AND PHYSICS, ELSEVIER SA, SWITZERLAND, TAIWAN, REPUBLIC OF CHINA, vol. 135, no. 2, 19 May 2012 (2012-05-19), Switzerland, Taiwan, Republic of China , pages 780 - 785, XP028414823, ISSN: 0254-0584, DOI: 10.1016/j.matchemphys.2012.05.058 *
WANG SUZHAN, HE WEI;DENG YUMIN;ZHENG YIN;SHI ZHEN;HU SHENG: "Research progress on preparation and application of graphene / nanosiliver composite materials", HUAXUE YANJIU - CHEMICAL RESEARCHES, GAI KAN BIANJIBU, KAIFENG, CN, vol. 28, no. 6, 25 November 2017 (2017-11-25), CN , pages 775 - 780, XP055900278, ISSN: 1008-1011, DOI: 10.14002/j.hxya.2017.06.019 *
XU PENG, QIU HANXUN;SONG LINGZHI;YAN TINGLONG;LI XINGJUAN: "Preparation of Graphene/Metal Nanocomposites and Its Research Progress", NONFERROUS METAL MATERIALS AND ENGINEERING, vol. 38, no. 3, 30 June 2017 (2017-06-30), pages 177 - 184, XP055900284, ISSN: 2096-2983, DOI: 10.13258/j.cnki.nmme.2017.03.010 *

Also Published As

Publication number Publication date
CN111995836A (zh) 2020-11-27
CN111995836B (zh) 2022-11-08

Similar Documents

Publication Publication Date Title
CN110932083B (zh) 一种含有Ag纳米颗粒的半导体量子点掺杂聚合物分散液晶
WO2022033599A1 (zh) 一种聚合物分散液晶和制备方法以及应用
Gottardo et al. Resonance-driven random lasing
Wang et al. Highly efficient avalanche multiphoton luminescence from coupled Au nanowires in the visible region
CN110643373A (zh) 钙钛矿量子点掺杂聚合物分散液晶及其制备方法和应用
Malko et al. Interplay between optical gain and photoinduced absorption in CdSe nanocrystals
Meng et al. Metal–dielectric core–shell nanoparticles: advanced plasmonic architectures towards multiple control of random lasers
Zhai et al. Enhancement of 1.53 μm emission band in NaYF 4: Er 3+, Yb 3+, Ce 3+ nanocrystals for polymer-based optical waveguide amplifiers
Barnes et al. On− Off Blinking and Multiple Bright States of Single Europium Ions in Eu3+: Y2O3 Nanocrystals
Wang et al. Electrically controllable plasmonic enhanced coherent random lasing from dye-doped nematic liquid crystals containing Au nanoparticles
Jiang et al. Study of Electron− Phonon coupling dynamics in Au nanorods by transient depolarization measurements
He et al. Ultrafast and large third-order nonlinear optical properties of CdS nanocrystals in polymeric film
Bian et al. Programmable Random Lasing Pulses Based on Waveguide‐Assisted Random Scattering Feedback
Castro et al. Optical characterization of carbon quantum dots in colloidal suspensions
Chen et al. Low loss nanostructured polymers for chip-scale waveguide amplifiers
CN113234433B (zh) 一种石墨烯与量子点共掺杂的聚合物分散液晶及其应用
CN113105707B (zh) 一种纳米银负载石墨烯与量子点共掺杂的聚合物及应用
Wawrzynczyk et al. Third-order nonlinear optical properties of infrared emitting PbS and PbSe quantum dots
Schäfer et al. Synthesis and characterization of upconversion fluorescent yb3+, er3+ doped rby2f7 nano-and microcrystals
Fu et al. Nonlinear optical properties of Ag nanoplates plasmon resonance and applications in ultrafast photonics
Leménager et al. Size-dependent trapping behavior and optical emission study of NaYF4 nanorods in optical fiber tip tweezers
Lin et al. Characterization and photoluminescence properties of Tb-doped SiO2 nanowires as a novel green-emitting phosphor
WO2022033600A1 (zh) 一种石墨烯与量子点共掺杂的聚合物和制备方法以及应用
Baker et al. Nanoparticle doping for improved Er-doped fiber lasers
Shen et al. Random laser emission from dye-doped polymer films enhanced by SiC nanowires

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21855649

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21855649

Country of ref document: EP

Kind code of ref document: A1