WO2022033540A1 - 数据传输处理方法、装置及设备 - Google Patents

数据传输处理方法、装置及设备 Download PDF

Info

Publication number
WO2022033540A1
WO2022033540A1 PCT/CN2021/112186 CN2021112186W WO2022033540A1 WO 2022033540 A1 WO2022033540 A1 WO 2022033540A1 CN 2021112186 W CN2021112186 W CN 2021112186W WO 2022033540 A1 WO2022033540 A1 WO 2022033540A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
uplink transmission
transmission resources
configuration information
transmitted
Prior art date
Application number
PCT/CN2021/112186
Other languages
English (en)
French (fr)
Inventor
吴昱民
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2022033540A1 publication Critical patent/WO2022033540A1/zh
Priority to US18/107,500 priority Critical patent/US20230189061A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0289Congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0278Traffic management, e.g. flow control or congestion control using buffer status reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria

Definitions

  • the present application belongs to the field of communication technologies, and in particular relates to a data transmission processing method, device and device.
  • the terminal can directly send data to the network side device in the idle IDLE state or activate the INACTIVE state.
  • the purpose of the embodiments of the present application is to provide a data transmission processing method, apparatus and device, which can solve the problem of data transmission delay of SDT.
  • an embodiment of the present application provides a data transmission processing method, applied to a terminal, including:
  • the configuration information includes: the number N of uplink transmission resources, where N is greater than 1;
  • the embodiments of the present application provide a data transmission processing method, which is applied to a network side device, including:
  • the configuration information includes: the number N of uplink transmission resources, where N is greater than 1.
  • an embodiment of the present application also provides a data transmission processing device, including:
  • an obtaining module configured to obtain configuration information of direct data transmission; wherein, the configuration information includes: the number N of uplink transmission resources, where N is greater than 1;
  • the first processing module is configured to determine whether to trigger direct data transmission according to the configuration information.
  • an embodiment of the present application further provides a data transmission processing device, including:
  • the sending module is used to send the configuration information of direct data transmission; wherein,
  • the configuration information includes: the number N of uplink transmission resources, where N is greater than 1.
  • an embodiment of the present application further provides a communication device, the communication device includes a processor, a memory, and a program or instruction stored on the memory and executable on the processor, the program or instruction When executed by the processor, the method as described in the first aspect is implemented, or the steps of the method as described in the second aspect are implemented.
  • an embodiment of the present application further provides a readable storage medium, where a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, the method according to the first aspect is implemented, Or implement the steps of the method as described in the second aspect.
  • an embodiment of the present application provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is configured to run a program or an instruction, and implement the first aspect the method, or implement the method according to the second aspect.
  • an embodiment of the present application provides a program product, the program product is stored in a non-volatile storage medium, and the program product is executed by at least one processor to implement the method according to the first aspect , or implement the steps of the method described in the second aspect.
  • the direct data transmission after the configuration information of the direct data transmission is obtained, the direct data transmission can be triggered or not triggered according to the number N of uplink transmission resources in the configuration information, and since N is greater than 1, the direct data transmission is not triggered. It can be carried out through multiple uplink transmission resources, supports larger data transmission volume, meets data transmission requirements, and reduces the delay of data transmission.
  • 1 is a block diagram of a wireless communication system
  • FIG. 2 is a flowchart of a method applied to a terminal according to an embodiment of the present application
  • FIG. 3 is a flowchart of a method applied to a network side device according to an embodiment of the present application
  • Fig. 4 is the apparatus structure diagram corresponding to the method of Fig. 2;
  • Fig. 5 is the apparatus structure diagram corresponding to the method of Fig. 3;
  • FIG. 6 is a structural diagram of a communication device according to an embodiment of the application.
  • FIG. 7 is a structural diagram of a terminal according to an embodiment of the present application.
  • FIG. 8 is a structural diagram of a network side device according to an embodiment of the present application.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technology can be used not only for the above-mentioned systems and radio technologies, but also for other systems and radio technologies.
  • NR New Radio
  • NR terminology is used in most of the following description, although these techniques are also applicable to applications other than NR system applications, such as 6th generation ( 6th Generation, 6G) communication system.
  • FIG. 1 shows a block diagram of a wireless communication system to which the embodiments of the present application can be applied.
  • the wireless communication system includes a terminal 11 and a network-side device 12 .
  • the terminal 11 may also be called a terminal device or a user terminal (User Equipment, UE), and the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital computer Assistant (Personal Digital Assistant, PDA), handheld computer, netbook, ultra-mobile personal computer (ultra-mobile personal computer, UMPC), mobile Internet device (Mobile Internet Device, MID), wearable device (Wearable Device) or vehicle-mounted device (Vehicle User Equipment, VUE), pedestrian terminal (Pedestrian User Equipment, PUE) and other terminal-side devices, wearable devices include: bracelets, headphones, glasses, etc.
  • the network side device 12 may be a base station or a core network, wherein the base station may be referred to as a Node B, an evolved Node B, an access point, a Base Transceiver Station (BTS), a radio base station, a radio transceiver, a basic service Set (Basic Service Set, BSS), Extended Service Set (Extended Service Set, ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolved Node B, WLAN Access Point, WiFi Node, Send Transmitting Receiving Point (TRP) or some other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical terms.
  • the base station in the NR system is taken as an example, but the specific type of the base station is not limited.
  • UE user equipment
  • UE may refer to an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, or a mobile device.
  • user terminal wireless communication device, user agent or user equipment.
  • the terminal may also be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), a wireless communication function handheld devices, computing devices, or other processing devices connected to wireless modems, in-vehicle devices, wearable devices.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • a data transmission processing method provided by an embodiment of the present application, applied to a terminal includes:
  • Step 201 Obtain configuration information of direct data transmission; wherein, the configuration information includes: the number N of uplink transmission resources, where N is greater than 1.
  • the configuration information is used for direct data transmission, which includes the number N of uplink transmission resources, and N is greater than 1, indicating that the terminal UE can perform direct data transmission through multiple uplink transmission resources.
  • Step 202 Determine whether to trigger direct data transmission according to the configuration information.
  • the direct data transmission may or may not be triggered according to the configuration information.
  • the terminal can trigger or not trigger direct data transmission according to the number N of uplink transmission resources in the configuration information, and because N is greater than 1, the direct data transmission is not triggered.
  • Data transmission can be performed through multiple uplink transmission resources, which supports larger data transmission volume, meets data transmission requirements, and reduces the delay of data transmission.
  • the configuration of N can also prevent data transmission from occupying too many resources.
  • the configuration information of the direct data transmission may be predefined (such as a protocol agreement), pre-configured, or configured by a network-side device.
  • RRC Radio Resource Control
  • information such as the time domain location or frequency domain location of the N uplink transmission resources can also be indicated by the configuration information of the SDT, for example, the uplink transmission resource (pur-Config) is configured for the INACTIVE UE in the RRC Release message.
  • the information of the uplink transmission resources is predefined, the information of the N uplink transmission resources can also be determined by the N value included in the configuration information of the SDT, such as any N uplink transmission resources, the first N uplink transmission resources, the last N uplink transmission resources and so on.
  • Dedicated PUSCH resources configured by the network.
  • the configuration information further includes:
  • the data volume threshold is the total data volume allowed to be transmitted by the N uplink transmission resources, and/or the data volume allowed to be transmitted by each uplink transmission resource in the N row transmission resources.
  • the data volume threshold corresponding to the N uplink transmission resources that is, the total amount of data allowed to be transmitted by the N uplink transmission resources, and/or the amount of data allowed to be transmitted by each of the N uplink transmission resources. Then, the capability of direct data transmission can be known, and whether the data to be transmitted can trigger direct data transmission can be judged more effectively.
  • the amount of data can be the Transport Block Size (TBS).
  • the configuration information of the SDT also includes the total amount of data allowed to be transmitted by the two uplink transmission resources. It can be known that the direct data transmission of the UE can use two dedicated PUSCH resources. The total amount of data transferred. If the configuration information of the SDT also includes the amount of data allowed to be transmitted by each uplink transmission resource, it is also possible to know the amount of data allowed to be transmitted by each dedicated PUSCH resource when the two dedicated PUSCH resources are used.
  • step 202 includes:
  • the configuration information it is determined whether the first data satisfies the first preset condition, and if the first preset condition is met, the direct data transmission is triggered; if the first preset condition is not met, the direct data transmission is not triggered transmission; wherein, the first data is the target data of this direct data transmission;
  • the first preset condition includes at least one of the following:
  • the number M of uplink transmission resources used by the first data is less than or equal to the N;
  • the total data volume of the first data is less than or equal to the total data volume allowed to be transmitted by the N uplink transmission resources;
  • the data volume of each uplink transmission resource is less than or equal to the data volume allowed to be transmitted by each uplink transmission resource in the N row transmission resources.
  • the first preset condition is determined based on the configuration information of the SDT acquired in step 201, corresponding to the configuration of N, the first preset condition limits the number M of uplink transmission resources used by the first data; corresponding to N uplink transmission resources For the configuration of the total amount of data allowed to be transmitted by the transmission resources, the first preset condition limits the total amount of data of the first data; for the configuration of the amount of data allowed to be transmitted for each of the N uplink transmission resources, the first preset The condition limits the data amount of each uplink transmission resource in the M uplink transmission resources used by the first data.
  • the target data that is, the first data
  • the first data includes data that is transmitted in segments on the M uplink transmission resources, and/or data that is not transmitted in segments on the M uplink transmission resources.
  • PDCP PDU Packet Data Convergence Data Unit
  • processing may be performed on whether the data can be transmitted in segments on multiple uplink transmission resources.
  • fragmentation refers to sending a packet over multiple resources.
  • the number M of uplink transmission resources used by the first data, the total data volume, and the data volume of each uplink transmission resource can be divided according to the data. Segment transmission is calculated; if the first data includes data that is not transmitted in segments on the M uplink transmission resources, then the number M of uplink transmission resources used by the first data, the total data volume, and the data volume of each uplink transmission resource, It can be calculated according to the fact that the data cannot be transmitted in segments; if the first data includes the data transmitted in segments on the M uplink transmission resources and the data transmitted in non-segmented transmissions on the M uplink transmission resources, the uplink transmission used by the first data The number M of resources, the total data amount, and the data amount of each uplink transmission resource are determined after calculating separately for different data.
  • data transmission in addition to valid data (such as application layer data packet SDAP SDU), data transmission also includes packet header and possibly control signaling. And, for a data packet segment, an extra header will be added after the segment. Specifically, one extra header will be added for one segment: Radio Link Control (RLC) header and Media Access Control (Media Access Control, MAC) header.
  • RLC Radio Link Control
  • MAC Media Access Control
  • the total data volume of the first data includes valid data, or, the valid data and at least one of the following:
  • the data amount of each uplink transmission resource includes valid data, or the valid data and at least one of the following:
  • the total data volume of the first data and the data volume of each uplink transmission resource in the M uplink transmission resources used by the first data may be calculated only for valid data, or for valid data and other information, where the other information includes At least one of the following: packet header of original data; packet header of segmented data; control signaling.
  • the valid data includes DRB and/or signaling radio bearer (Signaling Radio Bearer, SRB) data.
  • SRB Signaling Radio Bearer
  • control signaling includes at least one of medium access control unit MAC CE signaling, RLC control packet, PDCP control packet and SDAP control packet.
  • the packet header includes at least one of the following:
  • packet headers other than the aforementioned packet headers may also be used, which will not be listed one by one here.
  • control signaling includes at least one of the following:
  • the MAC CE signaling including the BSR is used to assist the network-side equipment to determine whether the terminal is in the connected state; the MAC CE signaling including the PHR is used to assist the network-side equipment in the uplink transmission power. Adjustment.
  • the information items included in the control signaling are not limited to BSR and/or PHR, and may also include other information items, which will not be listed one by one here.
  • step 202 it further includes:
  • stop direct data transmission After the first data transmission is completed, stop direct data transmission
  • the second preset condition includes at least one of the following:
  • the number K of uplink transmission resources used by the second data is less than or equal to the N;
  • the total data volume of the second data is less than or equal to the total data volume allowed to be transmitted by the N uplink transmission resources;
  • the data volume of each uplink transmission resource is less than or equal to the data volume allowed to be transmitted by each uplink transmission resource in the N row transmission resources.
  • the second data will be used as the object of judgment to determine the direct data transmission trigger again in response to the situation that new data to be transmitted is found: if the second preset condition is satisfied , then continue direct data transmission; if the second preset condition is not met, perform at least one of the following: after the first data transmission is completed, stop direct data transmission; trigger connection establishment or recovery.
  • the second preset condition is also determined based on the configuration information of the SDT obtained in step 201, corresponding to the configuration of N, the second preset condition limits the number K of uplink transmission resources used by the second data; corresponding to N The configuration of the total amount of data allowed to be transmitted by the uplink transmission resources, the second preset condition limits the total amount of data of the second data; corresponding to the configuration of the amount of data allowed to be transmitted in each of the N uplink transmission resources, the second preset A condition is set to limit the data amount of each uplink transmission resource in the K uplink transmission resources used by the second data.
  • the second data is the first data and the new data; or, the second data is the untransmitted remaining data and the new data in the first data.
  • the second data including the first data and the new data is used as the judgment basis; or, the second data including the new data and the untransmitted data in the first data is used as the judgment basis.
  • the data volume of each uplink transmission resource is 20 bytes
  • the amount of data allowed to be sent by each uplink transmission resource is 50 bytes.
  • the UE triggers
  • the data volume of each uplink transmission resource is 20 bytes
  • the amount of data allowed to be sent by each uplink transmission resource is 50 bytes.
  • the UE triggers direct data transmission.
  • Step 1 The network side device configures the UE with a direct data transmission process, that is, a direct data transmission process.
  • the network side configures pur-Config for the INACTIVE UE in the RRC Release message, and the configuration includes the PUSCH uplink transmission resources dedicated to the INACTIVE UE to send uplink data, and the amount of data that each PUSCH uplink transmission resource can accommodate (for example, Transport Block Size (TBS)).
  • TBS Transport Block Size
  • the "direct data sending process” includes any one of the following:
  • Dedicated uplink PUSCH resources configured by the network.
  • the direct data sending process of the UE may use N uplink sending resources.
  • N is an integer greater than 1.
  • the network-side device configures the UE with dedicated uplink PUSCH resources for DRB-1 data transmission, and configures the UE to use two dedicated uplink PUSCH resources for the direct data transmission process.
  • the network side device configures the threshold value of the amount of data sent by the UE (the amount of data corresponding to the N uplink transmission resources (that is, the uplink transmission resources) when the UE uses N uplink transmission resources to perform the direct data transmission process. threshold).
  • the network side configures the UE with dedicated uplink PUSCH resources for DRB-1 data transmission, and configures the UE to use 2 dedicated uplink PUSCH resources in the direct data transmission process, and configures the total of the two dedicated uplink PUSCH resources for transmission. The amount of data.
  • the "threshold value of the amount of data to be sent" includes any of the following:
  • the threshold value of the amount of transmitted data for each uplink data transmission resource of the N uplink transmission resources is the threshold value of the amount of transmitted data for each uplink data transmission resource of the N uplink transmission resources.
  • Step 2 According to the configuration information in Step 1, the UE determines that the conditions for using the direct data transmission process include at least one of the following:
  • the number of uplink resources used by the UE in the "direct data transmission process" is M, where M is less than or equal to N. (For example, the UE has 2 data packets to send, these 2 data packets need to be sent through 2 uplink transmission resources, and the network side allows the UE to use 3 uplink transmission resources. Then, the UE can use the "direct data transmission process”.)
  • the total amount of uplink data transmitted by the UE using the "direct data transmission process" is less than or equal to the amount of data allowed to be transmitted by the N uplink transmission resources. (For example, the total amount of data to be sent by the UE is 100 bytes, and the total amount of data allowed to be sent by the three uplink transmission resources is 120 bytes. Then, the UE can use the "direct data transmission process".)
  • the number of uplink resources used by the UE in the "direct data transmission process" is M, and the amount of data sent by each uplink of the UE is less than or equal to the amount of data allowed to be sent by each of the N uplink transmission resources. .
  • the UE has 2 data packets to send, these 2 data packets need to be sent through 2 uplink transmission resources, and the data volume of each uplink transmission is 20 bytes.
  • the network side allows the UE to use 3 uplink transmission resources, each The amount of data allowed to be sent by one uplink transmission resource is 50 bytes. Then, the UE can use the "direct data transmission process".
  • the uplink data sent by the M uplink resources can (or cannot) be segmented.
  • the meaning of this segmentation refers to that after segmenting the data packet (such as PDCP PDU) sent upstream in a single uplink transmission, only part of the data of the data packet is sent in the single uplink transmission. That is, The UE sends 1 data packet on multiple uplink transmission resources.
  • the total amount of uplink data sent is the total amount of uplink data sent by calculation in the case of being able to (or unable) to perform segmentation.
  • the total amount of uplink data sent is increased by 1 additional RLC and MAC header.
  • condition 3 it can be further limited that "every 1 uplink sent data" can be (or cannot) be segmented.
  • the calculation of the data amount includes at least the data amount of the data that does not carry the packet header (for example, only includes SDAP SDU).
  • the calculation of the data amount may also include at least one of the following packet headers:
  • the calculation of the data amount may also include specifying the data amount of the MAC CE that can be sent (or triggered to send).
  • the "specifying a MAC CE capable of sending (or triggering sending)” includes at least one of the following:
  • Step 3 After the UE determines the direct data transmission process using N uplink transmission resources. During the direct data transmission process, the UE has new data arriving, and the UE determines whether to continue to use the "direct data transmission process of N uplink transmission resources".
  • the conditions include any of the following:
  • condition 1 For example, the UE has 2 data packets to send, these 2 data packets need to be sent through 2 uplink transmission resources, and the network side allows the UE to use 3 uplink transmission resources. Then, the UE adopts the "direct data transmission process" After a new data packet arrives, the three data packets need to be sent through three uplink transmission resources.
  • condition 2 For example, the total amount of data to be sent by the UE is 100 bytes, the total amount of data allowed to be sent by the three uplink transmission resources is 120 bytes. Then, after the UE adopts the "direct data transmission process", the newly arrived data amount is 10 bytes, and the total data amount is 110 bytes directly. Then, the UE continues to use the "direct data transmission process”.
  • condition 3 For example, the UE has 2 data packets to send, these 2 data packets need to be sent through 2 uplink transmission resources, and the amount of data sent by each uplink is 20 bytes.
  • the network side allows the UE to use 3 uplink transmission resources, and the amount of data allowed to be sent by each uplink transmission resource is 50 bytes. Then, after the UE adopts the "direct data transmission process", a new packet arrives, Then these three data packets need to be sent through three uplink transmission resources, and the amount of data sent in each uplink is 20 bytes. Then, the UE continues to use the "direct data transmission process”.
  • the amount of data sent by each uplink is 20 bytes.
  • the network side allows the UE to use 3 uplink transmission resources, and the amount of data allowed to be sent by each uplink transmission resource is 50 bytes. Then, After the UE uses the "direct data transmission process" to send a 20-byte data packet, and a new 20-byte data packet arrives, the remaining 2 data packets need to be sent through 2 uplink transmission resources.
  • the amount of data sent by each uplink is 20 bytes (equal to the remaining 2 times of sending, and the amount of data sent each time is less than the number of allowed sending). Then, the UE continues to use the "direct data sending process".)
  • the behavior of the UE includes at least one of the following:
  • the UE stops the direct data sending process after completing the previous data sending.
  • the UE triggers the connection establishment or recovery procedure.
  • the UE triggers a normal random access procedure for connection establishment or recovery. During this random access procedure, the UE does not send data in the DRB.
  • the method of the embodiment of the present application can trigger or not trigger the direct data transmission according to the number N of uplink transmission resources in the configuration information, and since N is greater than 1, This enables direct data transmission to be performed through multiple uplink transmission resources, supports larger data transmission volume, meets data transmission requirements, and reduces data transmission delay.
  • the embodiment of the present application also provides a data transmission processing method, applied to the network side equipment, including:
  • Step 301 sending configuration information of direct data transmission;
  • the configuration information includes: the number N of uplink transmission resources, where N is greater than 1.
  • the network side device applying the method configures and sends the configuration information of direct data transmission to the terminal, so that after the terminal obtains the configuration information of direct data transmission, it can trigger or not according to the number N of uplink transmission resources in the configuration information.
  • Direct data transmission is triggered, and since N is greater than 1, direct data transmission can be performed through multiple uplink transmission resources, supporting larger data transmission volume, meeting data transmission requirements, and reducing data transmission delay.
  • the configuration information further includes:
  • the data volume threshold is the total data volume allowed to be transmitted by the N uplink transmission resources, and/or the data volume allowed to be transmitted by each uplink transmission resource in the N row transmission resources.
  • the execution body may be a data transmission processing apparatus, or a control module in the data transmission processing apparatus for executing the loading data transmission processing method.
  • the data transmission processing method provided by the embodiment of the present application is described by taking the data transmission processing apparatus executing the loaded data transmission processing method as an example.
  • an embodiment of the present application provides a data transmission processing device, including:
  • the obtaining module 410 is configured to obtain configuration information of direct data transmission; wherein, the configuration information includes: the number N of uplink transmission resources, where N is greater than 1;
  • the first processing module 420 is configured to determine whether to trigger direct data transmission according to the configuration information.
  • the configuration information further includes:
  • the data volume threshold is the total data volume allowed to be transmitted by the N uplink transmission resources, and/or the data volume allowed to be transmitted by each uplink transmission resource in the N row transmission resources.
  • the first processing module is also used for:
  • the configuration information it is determined whether the first data satisfies the first preset condition, and if the first preset condition is met, the direct data transmission is triggered; if the first preset condition is not met, the direct data transmission is not triggered transmission; wherein, the first data is the target data of this direct data transmission;
  • the first preset condition includes at least one of the following:
  • the number M of uplink transmission resources used by the first data is less than or equal to the N;
  • the total data volume of the first data is less than or equal to the total data volume allowed to be transmitted by the N uplink transmission resources;
  • the data volume of each uplink transmission resource is less than or equal to the data volume allowed to be transmitted by each uplink transmission resource in the N row transmission resources.
  • the first data includes data that is transmitted in segments on the M uplink transmission resources, and/or data that is not transmitted in segments on the M uplink transmission resources.
  • the total data volume of the first data includes valid data, or, the valid data and at least one of the following:
  • the data amount of each uplink transmission resource includes valid data, or the valid data and at least one of the following:
  • the packet header includes at least one of the following:
  • control signaling includes at least one of the following:
  • the device further includes:
  • the second processing module is configured to determine whether the second data satisfies the second preset condition when it is found that there is new data to be transmitted, and if the second preset condition is met, continue the direct data transmission; If the second preset condition is mentioned above, perform at least one of the following:
  • stop direct data transmission After the first data transmission is completed, stop direct data transmission
  • the second preset condition includes at least one of the following:
  • the number K of uplink transmission resources used by the second data is less than or equal to the N;
  • the total data volume of the second data is less than or equal to the total data volume allowed to be transmitted by the N uplink transmission resources;
  • the data volume of each uplink transmission resource is less than or equal to the data volume allowed to be transmitted by each uplink transmission resource in the N row transmission resources.
  • the second data is the first data and the new data; or, the second data is the untransmitted remaining data and the new data in the first data.
  • the device After acquiring the configuration information of the direct data transmission, the device can trigger or not trigger the direct data transmission according to the number N of uplink transmission resources in the configuration information. Since N is greater than 1, the direct data transmission can be transmitted through multiple uplink transmissions. resources, support a larger amount of data transmission, meet the data transmission requirements, and reduce the delay of data transmission.
  • the data transmission processing apparatus in this embodiment of the present application may be a device, or may be a component, an integrated circuit, or a chip in a terminal.
  • the apparatus may be a mobile electronic device or a non-mobile electronic device.
  • the mobile electronic device may be a mobile phone, a tablet computer, a notebook computer, a palmtop computer, an in-vehicle electronic device, a wearable device, an ultra-mobile personal computer (UMPC), a netbook, or a personal digital assistant (personal digital assistant).
  • UMPC ultra-mobile personal computer
  • netbook or a personal digital assistant
  • non-mobile electronic devices can be servers, network attached storage (Network Attached Storage, NAS), personal computer (personal computer, PC), television (television, TV), teller machine or self-service machine, etc., this application Examples are not specifically limited.
  • Network Attached Storage NAS
  • personal computer personal computer, PC
  • television television
  • teller machine or self-service machine etc.
  • the data transmission processing apparatus in this embodiment of the present application may be an apparatus having an operating system.
  • the operating system may be an Android (Android) operating system, an ios operating system, or other possible operating systems, which are not specifically limited in the embodiments of the present application.
  • the data transmission processing apparatus provided in the embodiment of the present application can implement each process implemented by the terminal in the method embodiment of FIG. 2 , and to avoid repetition, details are not repeated here.
  • an embodiment of the present application further provides a data transmission processing device, including:
  • a sending module 510 configured to send configuration information of direct data transmission;
  • the configuration information includes: the number N of uplink transmission resources, where N is greater than 1.
  • the configuration information further includes:
  • the data volume threshold is the total data volume allowed to be transmitted by the N uplink transmission resources, and/or the data volume allowed to be transmitted by each uplink transmission resource in the N row transmission resources.
  • the device configures and sends the configuration information of the direct data transmission to the terminal, so that after the terminal obtains the configuration information of the direct data transmission, it can trigger or not trigger the direct data transmission according to the number N of uplink transmission resources in the configuration information, and Since N is greater than 1, direct data transmission can be performed through multiple uplink transmission resources, which supports larger data transmission volume, meets data transmission requirements, and reduces data transmission delay.
  • the data transmission processing apparatus provided in the embodiment of the present application can implement each process implemented by the network side device in the method embodiment of FIG. 3 , and to avoid repetition, details are not repeated here.
  • an embodiment of the present application further provides a communication device, including a processor 601, a memory 602, a program or instruction stored in the memory 602 and executable on the processor 601, such as , when the communication device 600 is a terminal, when the program or instruction is executed by the processor 601, each process of the above-mentioned embodiment of the data transmission processing method applied to the terminal is implemented, and the same technical effect can be achieved.
  • the communication device 600 is a network-side device
  • the program or instruction is executed by the processor 601
  • each process of the above-mentioned embodiments of the data transmission processing method applied to the network-side device can be achieved, and the same technical effect can be achieved. In order to avoid repetition, I won't go into details here.
  • FIG. 7 is a schematic diagram of a hardware structure of a terminal implementing various embodiments of the present application.
  • the terminal 700 includes but is not limited to: a radio frequency unit 701, a network module 702, an audio output unit 703, an input unit 704, a sensor 705, a display unit 706, a user input unit 707, an interface unit 708, a memory 709, a processor 710 and other components .
  • the terminal 700 may also include a power source (such as a battery) for supplying power to various components, and the power source may be logically connected to the processor 710 through a power management system, so as to manage charging, discharging, and power consumption through the power management system management and other functions.
  • a power source such as a battery
  • the terminal structure shown in FIG. 7 does not constitute a limitation on the terminal, and the terminal may include more or less components than shown, or combine some components, or arrange different components, which will not be repeated here.
  • the input unit 704 may include a graphics processor (Graphics Processing Unit, GPU) 7041 and a microphone 7042. Such as camera) to obtain still pictures or video image data for processing.
  • the display unit 706 may include a display panel 7061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 707 includes a touch panel 7071 and other input devices 7072 .
  • the touch panel 7071 is also called a touch screen.
  • the touch panel 7071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 7072 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be repeated here.
  • the radio frequency unit 701 receives the downlink data from the network side device, and then processes it to the processor 710; in addition, sends the uplink data to the network side device.
  • the radio frequency unit 701 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • Memory 709 may be used to store software programs or instructions as well as various data.
  • the memory 709 may mainly include a storage program or instruction area and a storage data area, wherein the storage program or instruction area may store an operating system, an application program or instruction required for at least one function (such as a sound playback function, an image playback function, etc.) and the like.
  • the memory 709 may include a high-speed random access memory, and may also include a non-volatile memory, wherein the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM) , PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • PROM erasable programmable read-only memory
  • Erasable PROM Erasable PROM
  • EPROM electrically erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory for example at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • the processor 710 may include one or more processing units; optionally, the processor 710 may integrate an application processor and a modem processor, wherein the application processor mainly processes the operating system, user interface, application programs or instructions, etc., Modem processors mainly deal with wireless communications, such as baseband processors. It can be understood that, the above-mentioned modulation and demodulation processor may not be integrated into the processor 710.
  • the processor 710 is configured to obtain configuration information of direct data transmission; wherein, the configuration information includes: the number N of uplink transmission resources, where N is greater than 1;
  • the terminal After acquiring the configuration information of the direct data transmission, the terminal can trigger or not trigger the direct data transmission according to the number N of uplink transmission resources in the configuration information. Since N is greater than 1, the direct data transmission can be transmitted through multiple uplink transmissions. resources, support a larger amount of data transmission, meet the data transmission requirements, and reduce the delay of data transmission.
  • the network device 800 includes: an antenna 801 , a radio frequency device 802 , and a baseband device 803 .
  • the antenna 801 is connected to the radio frequency device 802 .
  • the radio frequency device 802 receives information through the antenna 801, and sends the received information to the baseband device 803 for processing.
  • the baseband device 803 processes the information to be sent and sends it to the radio frequency device 802
  • the radio frequency device 802 processes the received information and sends it out through the antenna 801 .
  • the above-mentioned frequency band processing apparatus may be located in the baseband apparatus 803 , and the method performed by the network side device in the above embodiments may be implemented in the baseband apparatus 803 .
  • the baseband apparatus 803 includes a processor 804 and a memory 805 .
  • the baseband device 803 may include, for example, at least one baseband board on which multiple chips are arranged. As shown in FIG. 8 , one of the chips is, for example, the processor 804 , which is connected to the memory 805 to call the program in the memory 805 to execute The network devices shown in the above method embodiments operate.
  • the baseband device 803 may further include a network interface 806 for exchanging information with the radio frequency device 802, and the interface is, for example, a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the network-side device in the embodiment of the present invention further includes: an instruction or program stored in the memory 805 and executable on the processor 804, and the processor 804 invokes the instruction or program in the memory 805 to execute each module shown in FIG. 3
  • Embodiments of the present application further provide a readable storage medium, where a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, the above-mentioned data transmission processing method applied to a terminal is implemented, or the above-mentioned application in
  • the various processes of the embodiments of the data transmission processing method of the network side device can achieve the same technical effect, and in order to avoid repetition, details are not repeated here.
  • the processor is the processor in the electronic device described in the foregoing embodiments.
  • the readable storage medium includes a computer-readable storage medium, such as a computer read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk or an optical disk, and the like.
  • An embodiment of the present application further provides a chip, where the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used for running a program or an instruction to realize the above-mentioned data transmission applied to a terminal
  • the processing method or each process of the above-mentioned embodiments of the data transmission processing method applied to the network side device can be achieved, and the same technical effect can be achieved. To avoid repetition, details are not repeated here.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip, or the like.
  • the method of the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course can also be implemented by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of a software product in essence or in a part that contributes to the prior art, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, CD-ROM), including several instructions to make a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the methods described in the various embodiments of this application.
  • a storage medium such as ROM/RAM, magnetic disk, CD-ROM

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种数据传输处理方法、装置及设备。该方法包括:获取直接数据传输的配置信息;其中,所述配置信息包括:上行传输资源的数目N,N大于1;根据所述配置信息,确定是否触发直接数据传输。

Description

数据传输处理方法、装置及设备
相关申请的交叉引用
本申请主张在2020年8月13日在中国提交的中国专利申请号No.202010814178.5的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种数据传输处理方法、装置及设备。
背景技术
在直接数据传输(Small Data Transmission,SDT)技术中,终端能够在空闲IDLE态或激活INACTIVE态,将数据直接发送给网络侧设备。
然而,目前配置的直接数据传输资源只有一个。因此,在具有较多数据需要进行SDT的场景,数据的传输不可避免地会存在延迟,而造成数据无法及时送达。
发明内容
本申请实施例的目的是提供一种数据传输处理方法、装置及设备,能够解决SDT的数据传输延迟的问题。
为了解决上述技术问题,本申请是这样实现的:
第一方面,本申请的实施例提供了一种数据传输处理方法,应用于终端,包括:
获取直接数据传输的配置信息;其中,所述配置信息包括:上行传输资源的数目N,N大于1;
根据所述配置信息,确定是否触发直接数据传输。
第二方面,本申请的实施例提供了一种数据传输处理方法,应用于网络侧设备,包括:
发送直接数据传输的配置信息;其中,
所述配置信息包括:上行传输资源的数目N,N大于1。
第三方面,本申请实施例还提供了一种数据传输处理装置,包括:
获取模块,用于获取直接数据传输的配置信息;其中,所述配置信息包括:上行传输资源的数目N,N大于1;
第一处理模块,用于根据所述配置信息,确定是否触发直接数据传输。
第四方面,本申请实施例还提供了一种数据传输处理装置,包括:
发送模块,用于发送直接数据传输的配置信息;其中,
所述配置信息包括:上行传输资源的数目N,N大于1。
第五方面,本申请实施例还提供了一种通信设备,该通信设备包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法,或者实现如第二方面所述的方法的步骤。
第六方面,本申请实施例还提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法,或者实现如第二方面所述的方法的步骤。
第七方面,本申请实施例提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法,或者实现如第二方面所述的方法。
第八方面,本申请实施例提供了一种程序产品,所述程序产品被存储在非易失的存储介质中,所述程序产品被至少一个处理器执行以实现如第一方面所述的方法,或者实现如第二方面所述的方法的步骤。
这样,本申请实施例中,在获取到直接数据传输的配置信息后,能够根据该配置信息中上行传输资源的数目N,触发或不触发直接数据传输,而由于N大于1,使得直接数据传输可通过多个上行传输资源来进行,支持更大的数据传输量,满足数据的传输需求,并减少了数据传输的延时。
附图说明
图1为无线通信系统的框图;
图2为本申请实施例应用于终端的方法流程图;
图3为本申请实施例应用于网络侧设备的方法流程图;
图4为图2方法对应的装置结构图;
图5为图3方法对应的装置结构图;
图6为本申请实施例的通信设备的结构图;
图7为本申请实施例的终端的结构图;
图8为本申请实施例的网络侧设备的结构图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”,一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。然而,以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,尽管这些技术也可应用于NR系统应用以外的应用,如第6代(6th  Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11也可以称作终端设备或者用户终端(User Equipment,UE),终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备(Vehicle User Equipment,VUE)、行人终端(Pedestrian User Equipment,PUE)等终端侧设备,可穿戴式设备包括:手环、耳机、眼镜等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以是基站或核心网,其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、WLAN接入点、WiFi节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例,但是并不限定基站的具体类型。
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的数据传输处理方法进行详细地说明。
本申请实施例的方法应用于终端,也可以称为用户设备(user equipment,UE),UE可以指接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、无线通信设备、用户代理或用户装置。终端还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备。
如图2所示,本申请实施例提供的一种数据传输处理方法,应用于终端,包括:
步骤201,获取直接数据传输的配置信息;其中,所述配置信息包括:上行传输资源的数目N,N大于1。
这里,配置信息是用于直接数据传输的,其包括上行传输资源的数目N,且N大于1,表示终端UE可以通过多个上行传输资源进行直接数据传输。
步骤202,根据所述配置信息,确定是否触发直接数据传输。
本步骤中,在经步骤201获取到该配置信息后,可根据该配置信息,触发直接数据传输或者不触发直接数据传输。
这样,按照步骤201和步骤202,终端在获取到直接数据传输的配置信息后,能够根据该配置信息中上行传输资源的数目N,触发或不触发直接数据传输,而由于N大于1,使得直接数据传输可通过多个上行传输资源来进行,支持更大的数据传输量,满足数据的传输需求,并减少了数据传输的延时。
另外,N的配置,也能够避免数据传输占用过多资源。
可选地,直接数据传输的配置信息可以是预定义(如协议约定)、预配置的或者网络侧设备配置的。例如,假设网络侧设备给UE配置了专属物理上行共享信道(Physical Uplink Shared Channel,PUSCH)资源用于数据无线承载(Data Radio Bearer,DRB)-1的数据发送,网络侧设备在无线资源控制(Radio Resource Control,RRC)释放(Release)消息中给INACTIVE态UE配置SDT的配置信息,该配置信息包括N=2,即UE的直接数据传输可以使用2个专属PUSCH资源。
此外,该实施例中,N个上行传输资源的时域位置或频域位置等信息,也可由SDT的配置信息指示,如RRC Release消息中给INACTIVE态UE配置上行传输资源(pur-Config)。当然,若上行传输资源的信息预先定义,通过SDT的配置信息包括的N值,也可确定该N个上行传输资源的信息,如任意N个上行传输资源,前N个上行传输资源,后N个上行传输资源等等。
应该知道的是,直接数据传输通过以下之一:
初始接入的4步随机接入过程的消息3(Msg3);
初始接入的2步随机接入过程的消息A(MsgA);
网络配置的专属PUSCH资源。
可选地,该实施例中,所述配置信息还包括:
与N个上行传输资源对应的数据量门限;其中,
所述数据量门限为所述N个上行传输资源允许传输的总数据量,和/或,所述N个行传输资源中每个上行传输资源允许传输的数据量。
如此,通过配置与N个上行传输资源对应的数据量门限,即N个上行传输资源允许传输的总数据量,和/或,N个行传输资源中每个上行传输资源允许传输的数据量,则能够获知直接数据传输的能力,对待传输数据是否能够触发直接数据传输进行更为有效地判断。数据量可以是传输块大小(Transport Block Size,TBS)。
例如,上述示例中,SDT的配置信息除包括N=2外,还包括了2个上行传输资源允许传输的总数据量,则可以知道的是,UE的直接数据传输可以使用2个专属PUSCH资源传输的总数据量。若SDT的配置信息还包括了每个上行传输资源允许传输的数据量,则还可以知道使用这2个专属PUSCH资源时,每个专属PUSCH资源允许传输的数据量。
可选地,步骤202包括:
根据所述配置信息,判断第一数据是否满足第一预设条件,若满足所述第一预设条件,则触发直接数据传输;若不满足所述第一预设条件,则不触发直接数据传输;其中,所述第一数据为本次直接数据传输的目标数据;
所述第一预设条件包括以下至少一项:
第一数据使用的上行传输资源的数目M小于或等于所述N;
第一数据的总数据量小于或等于所述N个上行传输资源允许传输的总数据量;
第一数据使用的M个上行传输资源中,每个上行传输资源的数据量小于或等于所述N个行传输资源中每个上行传输资源允许传输的数据量。
这里,第一预设条件是基于步骤201获取到的SDT的配置信息而确定的,对应N的配置,第一预设条件限制了第一数据使用的上行传输资源的数目M;对应N个上行传输资源允许传输的总数据量的配置,第一预设条件限制了第一数据的总数据量;对应N个上行传输资源中每个上行传输资源允许传输的数据量的配置,第一预设条件限制了第一数据使用的M个上行传输资源中每个上行传输资源的数据量。
故,针对本次直接数据传输的目标数据(即第一数据),需要根据步骤201获取的配置信息,来判断该第一数据是否满足对应的第一预设条件,从而触发或不触发直接数据传输。
例如,UE有2个数据包待发送,这2个数据包需要通过2个上行传输资源发送(即M=2);网络侧设备配置3个上行传输资源(即N=3)。则UE可以触发直接数据传输。
又如,UE待发送的总数据量为100字节;网络侧配置3个上行传输资源(即N=3)允许传输的总数据量为120字节。则UE可以触发直接数据传输。
又如,UE有2个数据包待发送,这2个数据包需要通过2个上行传输资源发送(即M=2),且每个上行传输资源的数据量为20字节;网络侧设备配置3个上行传输资源(即N=3),且每个上行传输资源允许发送的数据量为50字节。则UE可以触发直接数据传输。
考虑到同一条数据(如一个数据包数据,分组数据汇聚数据单元(PDCP PDU))是否可在不同的资源上传输,会影响使用的上行传输资源数目以及数据量的计算,所以,该实施例中,可选地,所述第一数据包括在所述M个上行传输资源上分段传输的数据,和/或,在所述M个上行传输资源上非分段传输的数据。
如此,在判断是否满足第一预设条件时,可针对数据是否能够在多个上行传输资源上分段传输进行处理。这里,分段是指在多个资源上发送一个数据包。
若第一数据包括在M个上行传输资源上分段传输的数据,则第一数据使用的上行传输资源的数目M、总数据量、每个上行传输资源的数据量,都可按照数据可分段传输进行计算;若第一数据包括在M个上行传输资源上非分段传输的数据,则第一数据使用的上行传输资源的数目M、总数据量、每个上行传输资源的数据量,都可按照数据不可分段传输进行计算;若第一数据包括在M个上行传输资源上分段传输的数据和在M个上行传输资源上非分段传输的数据,第一数据使用的上行传输资源的数目M、总数据量、每个上行传输资源的数据量,在针对不同数据分别计算后再确定。
一般而言,数据传输中除有效数据(如应用层数据包SDAP SDU)外, 还包括包头,可能还会有控制信令。并且,对于一个数据包分段,分段后会增加额外的包头,具体的,1次分段将增加1次额外的包头:无线链路控制(Radio Link Control,RLC)包头和媒体接入控制(Media Access Control,MAC)包头。
所以,可选地,该实施例中,所述第一数据的总数据量包括有效数据,或者,所述有效数据和以下至少一项:
原数据的包头;
分段数据的包头;
控制信令。
可选地,所述第一数据的使用的M个上行传输资源中,每个上行传输资源的数据量包括有效数据,或者,所述有效数据和以下至少一项:
原数据的包头;
分段数据的包头;
控制信令。
这样,计算第一数据的总数据量以及第一数据使用的M个上行传输资源中每个上行传输资源的数据量,可仅针对有效数据,也可针对有效数据以及其他信息,该其他信息包括以下至少一项:原数据的包头;分段数据的包头;控制信令。
其中,有效数据包括DRB和/或信令无线承载(Signaling Radio Bearer,SRB)的数据。
其中,控制信令包括媒体接入控制单元MAC CE信令、RLC控制包、PDCP控制包和SDAP控制包中的至少一个。
可选地,所述包头包括以下至少一项:
服务数据适配SDAP包头;
包数据汇聚PDCP包头;
无线链路控制RLC包头;
媒体接入控制MAC包头。
当然,也可以为上述包头之外的其它包头,在此不再一一列举。
可选地,所述控制信令包括以下至少一项:
状态缓存报告BSR;
功率余量报告PHR。
这里,以MAC CE信令为例,包括BSR的MAC CE信令,用于辅助网络侧设备判断终端是否为连接态;包括PHR的MAC CE信令,用于辅助网络侧设备对上行发送功率进行调整。当然,控制信令包括的信息项不限于BSR和/或PHR,还可以包括其它信息项,在此不再一一列举。
还应该知道的是,基于使用需求,在直接数据传输的过程中,会发生新数据待传输的情况,因此,该实施例中,步骤202之后,还包括:
在发现存在新数据待传输的情况下,判断第二数据是否满足第二预设条件,若满足所述第二预设条件,则继续直接数据传输;若不满足所述第二预设条件,则执行以下至少一项:
在所述第一数据传输完成后,停止直接数据传输;
触发连接建立或恢复;
其中,所述第二预设条件包括以下至少一项:
第二数据使用的上行传输资源的数目K小于或等于所述N;
第二数据的总数据量小于或等于所述N个上行传输资源允许传输的总数据量;
第二数据使用的K个上行传输资源中,每个上行传输资源的数据量小于或等于所述N个行传输资源中每个上行传输资源允许传输的数据量。
这样,在触发了第一数据的直接数据传输之后,会针对发现存在新数据待传输的情况,以第二数据作为判断的对象,重新进行直接数据传输触发的确定:若满足第二预设条件,则继续直接数据传输;若不满足第二预设条件,则执行以下至少一项:在所述第一数据传输完成后,停止直接数据传输;触发连接建立或恢复。
其中,是第二预设条件也基于步骤201获取到的SDT的配置信息而确定的,对应N的配置,第二预设条件限制了第二数据使用的上行传输资源的数目K;对应N个上行传输资源允许传输的总数据量的配置,第二预设条件限制了第二数据的总数据量;对应N个上行传输资源中每个上行传输资源允许传输的数据量的配置,第二预设条件限制了第二数据使用的K个上行传输资 源中每个上行传输资源的数据量。
可选地,所述第二数据为所述第一数据和所述新数据;或者,所述第二数据为所述第一数据中未传输的剩余数据和所述新数据。
即,将包括该第一数据和该新数据的第二数据作为判断的基础;又或者,将包括该新数据和该第一数据中未传输数据的第二数据作为判断的基础。
以第二数据包括第一数据和新数据为例:
a、若UE有2个数据包待发送,这2个数据包需要通过2个上行传输资源发送(即M=2);网络侧设备配置3个上行传输资源(即N=3)。则UE触发直接数据传输。之后,新到达1个数据包待发送,则共有3个数据包待发送(即K=3),因K小于N,UE可以继续直接数据传输。
b、若UE待发送的总数据量为100字节;网络侧配置3个上行传输资源(即N=3)允许传输的总数据量为120字节。则UE触发直接数据传输。之后,新到达数据的数据量为10字节,则总数据量共有110字节,小于120字节,UE可以继续直接数据传输。
c、若UE有2个数据包待发送,这2个数据包需要通过2个上行传输资源发送(即M=2),且每个上行传输资源的数据量为20字节;网络侧设备配置3个上行传输资源(即N=3),且每个上行传输资源允许发送的数据量为50字节。则UE触发直接数据传输。之后,新到达1个数据包待发送,数据量为10字节,则共需要2个上行传输资源发送(即M=2),且每个上行传输资源的数据量为25,字节,小于50字节,UE可以继续直接数据传输。
以第二数据包括第一数据中未传输的剩余数据和新数据为例:
a、若UE有2个数据包待发送,这2个数据包需要通过2个上行传输资源发送(即M=2);网络侧设备配置3个上行传输资源(即N=3)。则UE触发直接数据传输,在使用1个上行传输资源发送了1个数据包之后,新到达1个数据包待发送,则剩余2个数据包(即K=2)需要通过2个上行传输资源发送,因N-1=2,UE可以继续直接数据传输。
b、若UE待发送的总数据量为100字节;网络侧配置3个上行传输资源(即N=3)允许传输的总数据量为120字节。则UE触发直接数据传输,在使用1个上行传输资源发送了50字节的数据之后,新到达数据的数据量为10 字节,则剩余的总数据量为60字节,因120-50=60,UE可以继续直接数据传输。
c、若UE有2个数据包待发送,这2个数据包需要通过2个上行传输资源发送(即M=2),且每个上行传输资源的数据量为20字节;网络侧设备配置3个上行传输资源(即N=3),且每个上行传输资源允许发送的数据量为50字节。则UE触发直接数据传输,在发送了1个20字节的数据包之后,新到达1个数据包待发送,数据量为20字节,则剩余2个数据包,且每个上行传输资源的数据量小于50字节,UE可以继续直接数据传输。
下面以具体实施例进行说明:
步骤1:网络侧设备给UE配置直接数据发送过程,即直接数据传输过程。(如,网络侧在RRC Release消息中给INACTIVE态UE配置pur-Config,该配置包括了INACTIVE UE发送上行数据专属的PUSCH上行发送资源,以及每个PUSCH上行发送资源可以容纳的数据量(如,传输块大小(Transport Block Size,TBS))。)
其中,该“直接数据发送过程”包括以下任意一种:
初始接入的4步随机接入过程的Msg3;
初始接入的2步随机接入过程的MsgA;
网络配置的专属上行PUSCH资源。
可选的,网络侧设备配置或协议约定,UE的直接数据发送过程可以使用N个上行发送资源。其中,N为大于1的整数。(如,网络侧设备给UE配置专属上行PUSCH资源用于DRB-1的数据发送,并配置UE的直接数据发送过程可以使用2个专属上行PUSCH资源。)
可选的,网络侧设备配置当UE采用N个上行发送资源进行直接数据发送过程的时候,UE的发送数据量的门限值(与N个上行发送资源(即上行传输资源)对应的数据量门限)。(如,网络侧给UE配置专属上行PUSCH资源用于DRB-1的数据发送,并配置UE的直接数据发送过程可以使用2个专属上行PUSCH资源,并且配置2个专属上行PUSCH资源发送的总的数据量。)
其中,该“发送数据量的门限值”包括以下任意一项:
N个上行发送资源的总的发送数据量的门限值;
N个上行发送资源的每1个上行数据发送资源的发送数据量的门限值。
步骤2:根据步骤1中的配置信息,UE判断使用直接数据发送过程的条件包括以下至少一项:
条件1:UE采用“直接数据发送过程”使用的上行资源的数量为M,其中M小于或等于N。(如,UE有2个数据包发送,这2个数据包需要通过2个上行发送资源发送,网络侧允许UE使用3个上行发送资源。则,UE可以采用“直接数据发送过程”。)
条件2:UE采用“直接数据发送过程”的上行发送数据总量小于或等于N个上行发送资源允许发送的数据量。(如,UE待发送的总数据量为100字节,3个上行发送资源允许发送的总数据量为120字节。则,UE可以采用“直接数据发送过程”。)
条件3:UE采用“直接数据发送过程”使用的上行资源的数量为M,UE的每1个上行发送的数据量小于或等于N个上行发送资源中每1个上行发送资源允许发送的数据量。(如,UE有2个数据包发送,这2个数据包需要通过2个上行发送资源发送,每1个上行发送的数据量为20字节。网络侧允许UE使用3个上行发送资源,每1个上行发送资源允许发送的数据量为50字节。则,UE可以采用“直接数据发送过程”。)
其中,对于条件1,更进一步的可以限定,该M个上行资源发送的上行数据能(或不能)进行分段。(该分段的含义指的是,在单个上行发送中对于上行发送的数据包(如,PDCP PDU)进行分段后,在该单个上行发送中只发送该数据包的部分数据。也即,UE在多个上行发送资源发送1个数据包。)
其中,对于条件2,更进一步的可以限定,该“上行发送数据总量”为能(或不能)进行分段的情况计算得到的上行数据发送总量。(如,对于数据包1,如果进行1次分段后,包括了1次额外的RLC和MAC包头,则上行数据的发送总量增加了1次额外的RLC和MAC包头。)
其中,对于条件3,更进一步的可以限定,“每1个上行发送的数据”为能(或不能)进行分段。
其中,对于条件2和条件3,更进一步的可以限定该数据量的计算至少包括不携带包头的数据的数据量(如,仅包括SDAP SDU)。
可选的,对于条件2和条件3,该数据量的计算还可以包括以下包头中的至少一项:
SDAP包头;
PDCP包头;
RLC包头;
MAC包头。
可选的,对于条件2和条件3,该数据量的计算还可以包括指定能够发送(或触发发送)的MAC CE的数据量。
其中,该“指定能够发送(或触发发送)的MAC CE”包括以下至少一项:
BSR;
PHR。
步骤3:当UE判断使用N个上行发送资源的直接数据发送过程后。在该直接数据发送过程中,UE又有新的数据到达,则UE判断是否仍然继续使用该“N个上行发送资源的直接数据发送过程”的条件包括以下任意一种:
如果该新到达的数据加上“触发直接数据发送过程前的数据”仍然满足步骤2中的条件,则UE继续使用该“直接数据发送过程”。(如条件1:如,UE有2个数据包发送,这2个数据包需要通过2个上行发送资源发送,网络侧允许UE使用3个上行发送资源。则,UE采用“直接数据发送过程”后新到达1个数据包,则3个数据包需要通过3个上行发送资源发送。则,UE继续采用“直接数据发送过程”。)(如条件2:如,UE待发送的总数据量为100字节,3个上行发送资源允许发送的总数据量为120字节。则,UE采用“直接数据发送过程”后新到达的数据量为10字节,则总的数据量为110直接。则,UE继续采用“直接数据发送过程”。)(如条件3:如,UE有2个数据包发送,这2个数据包需要通过2个上行发送资源发送,每1个上行发送的数据量为20字节。网络侧允许UE使用3个上行发送资源,每1个上行发送资源允许发送的数据量为50字节。则,UE采用“直接数据发送过程”后新到达1个数包,则这3个数据包需要通过3个上行发送资源发送,每1个上行发送的数据量为20字节。则,UE继续采用“直接数据发送过程”。)
对于N个上行发送资源的剩余发送资源,如果该新到达的数据加上还没有发送的数据仍然满足步骤2中的条件,则UE继续使用该“直接数据发送过程”。(如条件1:如,UE有2个数据包发送,这2个数据包需要通过2个上行发送资源发送,网络侧允许UE使用3个上行发送资源。则,UE采用“直接数据发送过程”后采用1个上行资源发送了1个数据包后,新到达1个数据包,则剩余2个数据包需要通过2个上行发送资源发送(等于(3-1=2)个剩余允许的发送次数)。则,UE继续采用“直接数据发送过程”。)(如条件2:如,UE待发送的总数据量为100字节,3个上行发送资源允许发送的总数据量为120字节。则,UE采用“直接数据发送过程”后使用1个上行发送资源发送的数据量为50字节,新到达的数据量为10字节,则剩余的总数据量为60字节(小于(120–50=70)字节的剩余允许发送的数据量)。则,UE继续采用“直接数据发送过程”。)(如条件3:如,UE有2个数据包发送,这2个数据包需要通过2个上行发送资源发送,每1个上行发送的数据量为20字节。网络侧允许UE使用3个上行发送资源,每1个上行发送资源允许发送的数据量为50字节。则,UE采用“直接数据发送过程”后发送了1个20字节的数据包后,新到达1个20字节的数包,则剩余的2个数据包需要通过2个上行发送资源发送,每1个上行发送的数据量为20字节(等于剩余的2个发送次数,且每次发送的数据量小于允许发送的数量)。则,UE继续采用“直接数据发送过程”。)
其中,如果UE判断不使用该“N个上行发送资源的直接数据发送过程”,则UE的行为包括以下至少一项:
UE将之前的数据发送完成后再停止该直接数据发送过程。
UE触发连接建立或恢复过程。(如,UE触发普通的随机接入过程用于连接建立或恢复。在该随机接入过程中,UE不发送DRB中的数据。)
综上所述,本申请实施例的方法,在获取到直接数据传输的配置信息后,能够根据该配置信息中上行传输资源的数目N,触发或不触发直接数据传输,而由于N大于1,使得直接数据传输可通过多个上行传输资源来进行,支持更大的数据传输量,满足数据的传输需求,并减少了数据传输的延时。
如图3所示,本申请实施例还提供了一种数据传输处理方法,应用于网 络侧设备,包括:
步骤301,发送直接数据传输的配置信息;其中,
所述配置信息包括:上行传输资源的数目N,N大于1。
应用该方法的网络侧设备,配置并发送直接数据传输的配置信息至终端,以使终端在获取到直接数据传输的配置信息后,能够根据该配置信息中上行传输资源的数目N,触发或不触发直接数据传输,而由于N大于1,使得直接数据传输可通过多个上行传输资源来进行,支持更大的数据传输量,满足数据的传输需求,并减少了数据传输的延时。
可选地,所述配置信息还包括:
与N个上行传输资源对应的数据量门限;其中,
所述数据量门限为所述N个上行传输资源允许传输的总数据量,和/或,所述N个行传输资源中每个上行传输资源允许传输的数据量。
需要说明的是,该方法与上述应用于终端的方法配合,实现直接数据传输的,上述应用于终端的方法的实施例的实现方式适用于该方法,也能达到相同的技术效果。
需要说明的是,本申请实施例提供的数据传输处理方法,执行主体可以为数据传输处理装置,或者该数据传输处理装置中的用于执行加载数据传输处理方法的控制模块。本申请实施例中以数据传输处理装置执行加载数据传输处理方法为例,说明本申请实施例提供的数据传输处理方法。
如图4所示,本申请实施例提供一种数据传输处理装置,包括:
获取模块410,用于获取直接数据传输的配置信息;其中,所述配置信息包括:上行传输资源的数目N,N大于1;
第一处理模块420,用于根据所述配置信息,确定是否触发直接数据传输。
可选地,所述配置信息还包括:
与N个上行传输资源对应的数据量门限;其中,
所述数据量门限为所述N个上行传输资源允许传输的总数据量,和/或,所述N个行传输资源中每个上行传输资源允许传输的数据量。
可选地,所述第一处理模块还用于:
根据所述配置信息,判断第一数据是否满足第一预设条件,若满足所述第一预设条件,则触发直接数据传输;若不满足所述第一预设条件,则不触发直接数据传输;其中,所述第一数据为本次直接数据传输的目标数据;
所述第一预设条件包括以下至少一项:
第一数据使用的上行传输资源的数目M小于或等于所述N;
第一数据的总数据量小于或等于所述N个上行传输资源允许传输的总数据量;
第一数据使用的M个上行传输资源中,每个上行传输资源的数据量小于或等于所述N个行传输资源中每个上行传输资源允许传输的数据量。
可选地,所述第一数据包括在所述M个上行传输资源上分段传输的数据,和/或,在所述M个上行传输资源上非分段传输的数据。
可选地,所述第一数据的总数据量包括有效数据,或者,所述有效数据和以下至少一项:
原数据的包头;
分段数据的包头;
控制信令。
可选地,所述第一数据的使用的M个上行传输资源中,每个上行传输资源的数据量包括有效数据,或者,所述有效数据和以下至少一项:
原数据的包头;
分段数据的包头;
控制信令。
可选地,所述包头包括以下至少一项:
服务数据适配SDAP包头;
包数据汇聚PDCP包头;
无线链路控制RLC包头;
媒体接入控制MAC包头。
可选地,所述控制信令包括以下至少一项:
状态缓存报告BSR;
功率余量报告PHR。
可选地,所述装置还包括:
第二处理模块,用于在发现存在新数据待传输的情况下,判断第二数据是否满足第二预设条件,若满足所述第二预设条件,则继续直接数据传输;若不满足所述第二预设条件,则执行以下至少一项:
在所述第一数据传输完成后,停止直接数据传输;
触发连接建立或恢复;
其中,所述第二预设条件包括以下至少一项:
第二数据使用的上行传输资源的数目K小于或等于所述N;
第二数据的总数据量小于或等于所述N个上行传输资源允许传输的总数据量;
第二数据使用的K个上行传输资源中,每个上行传输资源的数据量小于或等于所述N个行传输资源中每个上行传输资源允许传输的数据量。
可选地,所述第二数据为所述第一数据和所述新数据;或者,所述第二数据为所述第一数据中未传输的剩余数据和所述新数据。
该装置在获取到直接数据传输的配置信息后,能够根据该配置信息中上行传输资源的数目N,触发或不触发直接数据传输,而由于N大于1,使得直接数据传输可通过多个上行传输资源来进行,支持更大的数据传输量,满足数据的传输需求,并减少了数据传输的延时。
本申请实施例中的数据传输处理装置可以是装置,也可以是终端中的部件、集成电路、或芯片。该装置可以是移动电子设备,也可以为非移动电子设备。示例性的,移动电子设备可以为手机、平板电脑、笔记本电脑、掌上电脑、车载电子设备、可穿戴设备、超级移动个人计算机(ultra-mobile personal computer,UMPC)、上网本或者个人数字助理(personal digital assistant,PDA)等,非移动电子设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例中的数据传输处理装置可以为具有操作系统的装置。该操作系统可以为安卓(Android)操作系统,可以为ios操作系统,还可以为其他可能的操作系统,本申请实施例不作具体限定。
本申请实施例提供的数据传输处理装置能够实现图2的方法实施例中终端所实现的各个过程,为避免重复,这里不再赘述。
如图5所示,本申请的实施例还提供一种数据传输处理装置,包括:
发送模块510,用于发送直接数据传输的配置信息;其中,
所述配置信息包括:上行传输资源的数目N,N大于1。
可选地,所述配置信息还包括:
与N个上行传输资源对应的数据量门限;其中,
所述数据量门限为所述N个上行传输资源允许传输的总数据量,和/或,所述N个行传输资源中每个上行传输资源允许传输的数据量。
该装置配置并发送直接数据传输的配置信息至终端,以使终端在获取到直接数据传输的配置信息后,能够根据该配置信息中上行传输资源的数目N,触发或不触发直接数据传输,而由于N大于1,使得直接数据传输可通过多个上行传输资源来进行,支持更大的数据传输量,满足数据的传输需求,并减少了数据传输的延时。
本申请实施例提供的数据传输处理装置能够实现图3的方法实施例中网络侧设备所实现的各个过程,为避免重复,这里不再赘述。
可选的,如图6所示,本申请实施例还提供一种通信设备,包括处理器601,存储器602,存储在存储器602上并可在所述处理器601上运行的程序或指令,例如,该通信设备600为终端时,该程序或指令被处理器601执行时实现上述应用于终端的数据传输处理方法实施例的各个过程,且能达到相同的技术效果。该通信设备600为网络侧设备时,该程序或指令被处理器601执行时实现上述应用于网络侧设备的数据传输处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
图7为实现本申请各个实施例的一种终端的硬件结构示意图。
该终端700包括但不限于:射频单元701、网络模块702、音频输出单元703、输入单元704、传感器705、显示单元706、用户输入单元707、接口单元708、存储器709、以及处理器710等部件。
本领域技术人员可以理解,终端700还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器710逻辑相连,从而通过 电源管理系统实现管理充电、放电、以及功耗管理等功能。图7中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元704可以包括图形处理器(Graphics Processing Unit,GPU)7041和麦克风7042,图形处理器7041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元706可包括显示面板7061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板7061。用户输入单元707包括触控面板7071以及其他输入设备7072。触控面板7071,也称为触摸屏。触控面板7071可包括触摸检测装置和触摸控制器两个部分。其他输入设备7072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元701将来自网络侧设备的下行数据接收后,给处理器710处理;另外,将上行的数据发送给网络侧设备。通常,射频单元701包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器709可用于存储软件程序或指令以及各种数据。存储器709可主要包括存储程序或指令区和存储数据区,其中,存储程序或指令区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器709可以包括高速随机存取存储器,还可以包括非易失性存储器,其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
处理器710可包括一个或多个处理单元;可选的,处理器710可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序或指令等,调制解调处理器主要处理无线通信,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器710中。
其中,处理器710,用于获取直接数据传输的配置信息;其中,所述配置信息包括:上行传输资源的数目N,N大于1;
根据所述配置信息,确定是否触发直接数据传输。
该终端在获取到直接数据传输的配置信息后,能够根据该配置信息中上行传输资源的数目N,触发或不触发直接数据传输,而由于N大于1,使得直接数据传输可通过多个上行传输资源来进行,支持更大的数据传输量,满足数据的传输需求,并减少了数据传输的延时。
具体地,本申请实施例还提供了一种网络侧设备。如图8所示,该网络设备800包括:天线801、射频装置802、基带装置803。天线801与射频装置802连接。在上行方向上,射频装置802通过天线801接收信息,将接收的信息发送给基带装置803进行处理。在下行方向上,基带装置803对要发送的信息进行处理,并发送给射频装置802,射频装置802对收到的信息进行处理后经过天线801发送出去。
上述频带处理装置可以位于基带装置803中,以上实施例中网络侧设备执行的方法可以在基带装置803中实现,该基带装置803包括处理器804和存储器805。
基带装置803例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图8所示,其中一个芯片例如为处理器804,与存储器805连接,以调用存储器805中的程序,执行以上方法实施例中所示的网络设备操作。
该基带装置803还可以包括网络接口806,用于与射频装置802交互信息,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本发明实施例的网络侧设备还包括:存储在存储器805上并可在处理器804上运行的指令或程序,处理器804调用存储器805中的指令或程序执行图3所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储程序或指令,该程序或指令被处理器执行时实现上述应用于终端的数据传输处理方法,或者实现上述应用于网络侧设备的数据传输处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的电子设备中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述应用于终端的数据传输处理方法,或者实现上述应用于网络侧设备的数据传输处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片、系统芯片、芯片系统或片上系统芯片等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上 述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (29)

  1. 一种数据传输处理方法,应用于终端,包括:
    获取直接数据传输的配置信息;其中,所述配置信息包括:上行传输资源的数目N,N大于1;
    根据所述配置信息,确定是否触发直接数据传输。
  2. 根据权利要求1所述的方法,其中,所述配置信息还包括:
    与N个上行传输资源对应的数据量门限;其中,
    所述数据量门限为所述N个上行传输资源允许传输的总数据量,和/或,所述N个行传输资源中每个上行传输资源允许传输的数据量。
  3. 根据权利要求2所述的方法,其中,所述根据所述配置信息,确定是否触发直接数据传输,包括:
    根据所述配置信息,判断第一数据是否满足第一预设条件,若满足所述第一预设条件,则触发直接数据传输;若不满足所述第一预设条件,则不触发直接数据传输;其中,所述第一数据为本次直接数据传输的目标数据;
    所述第一预设条件包括以下至少一项:
    第一数据使用的上行传输资源的数目M小于或等于所述N;
    第一数据的总数据量小于或等于所述N个上行传输资源允许传输的总数据量;
    第一数据使用的M个上行传输资源中,每个上行传输资源的数据量小于或等于所述N个行传输资源中每个上行传输资源允许传输的数据量。
  4. 根据权利要求3所述的方法,其中,所述第一数据包括在所述M个上行传输资源上分段传输的数据,和/或,在所述M个上行传输资源上非分段传输的数据。
  5. 根据权利要求3所述的方法,其中,所述第一数据的总数据量包括有效数据,或者,所述有效数据和以下至少一项:
    原数据的包头;
    分段数据的包头;
    控制信令。
  6. 根据权利要求3所述的方法,其中,所述第一数据的使用的M个上行传输资源中,每个上行传输资源的数据量包括有效数据,或者,所述有效数据和以下至少一项:
    原数据的包头;
    分段数据的包头;
    控制信令。
  7. 根据权利要求5或6所述的方法,其中,所述包头包括以下至少一项:
    服务数据适配SDAP包头;
    包数据汇聚PDCP包头;
    无线链路控制RLC包头;
    媒体接入控制MAC包头。
  8. 根据权利要求5或6所述的方法,其中,所述控制信令包括以下至少一项:
    状态缓存报告BSR;
    功率余量报告PHR。
  9. 根据权利要求3所述的方法,其中,所述根据所述配置信息,确定是否触发直接数据传输之后,还包括:
    在发现存在新数据待传输的情况下,判断第二数据是否满足第二预设条件,若满足所述第二预设条件,则继续直接数据传输;若不满足所述第二预设条件,则执行以下至少一项:
    在所述第一数据传输完成后,停止直接数据传输;
    触发连接建立或恢复;
    其中,所述第二预设条件包括以下至少一项:
    第二数据使用的上行传输资源的数目K小于或等于所述N;
    第二数据的总数据量小于或等于所述N个上行传输资源允许传输的总数据量;
    第二数据使用的K个上行传输资源中,每个上行传输资源的数据量小于或等于所述N个行传输资源中每个上行传输资源允许传输的数据量。
  10. 根据权利要求9所述的方法,其中,所述第二数据为所述第一数据和 所述新数据;或者,所述第二数据为所述第一数据中未传输的剩余数据和所述新数据。
  11. 一种数据传输处理方法,应用于网络侧设备,包括:
    发送直接数据传输的配置信息;其中,
    所述配置信息包括:上行传输资源的数目N,N大于1。
  12. 根据权利要求11所述的方法,其中,所述配置信息还包括:
    与N个上行传输资源对应的数据量门限;其中,
    所述数据量门限为所述N个上行传输资源允许传输的总数据量,和/或,所述N个行传输资源中每个上行传输资源允许传输的数据量。
  13. 一种数据传输处理装置,包括:
    获取模块,用于获取直接数据传输的配置信息;其中,所述配置信息包括:上行传输资源的数目N,N大于1;
    第一处理模块,用于根据所述配置信息,确定是否触发直接数据传输。
  14. 根据权利要求13所述的装置,其中,所述配置信息还包括:
    与N个上行传输资源对应的数据量门限;其中,
    所述数据量门限为所述N个上行传输资源允许传输的总数据量,和/或,所述N个行传输资源中每个上行传输资源允许传输的数据量。
  15. 根据权利要求14所述的装置,其中,所述第一处理模块还用于:
    根据所述配置信息,判断第一数据是否满足第一预设条件,若满足所述第一预设条件,则触发直接数据传输;若不满足所述第一预设条件,则不触发直接数据传输;其中,所述第一数据为本次直接数据传输的目标数据;
    所述第一预设条件包括以下至少一项:
    第一数据使用的上行传输资源的数目M小于或等于所述N;
    第一数据的总数据量小于或等于所述N个上行传输资源允许传输的总数据量;
    第一数据使用的M个上行传输资源中,每个上行传输资源的数据量小于或等于所述N个行传输资源中每个上行传输资源允许传输的数据量。
  16. 根据权利要求15所述的装置,其中,所述第一数据包括在所述M个上行传输资源上分段传输的数据,和/或,在所述M个上行传输资源上非分段 传输的数据。
  17. 根据权利要求15所述的装置,其中,所述第一数据的总数据量包括有效数据,或者,所述有效数据和以下至少一项:
    原数据的包头;
    分段数据的包头;
    控制信令。
  18. 根据权利要求15所述的装置,其中,所述第一数据的使用的M个上行传输资源中,每个上行传输资源的数据量包括有效数据,或者,所述有效数据和以下至少一项:
    原数据的包头;
    分段数据的包头;
    控制信令。
  19. 根据权利要求17或18所述的装置,其中,所述包头包括以下至少一项:
    服务数据适配SDAP包头;
    包数据汇聚PDCP包头;
    无线链路控制RLC包头;
    媒体接入控制MAC包头。
  20. 根据权利要求17或18所述的装置,其中,所述控制信令包括以下至少一项:
    状态缓存报告BSR;
    功率余量报告PHR。
  21. 根据权利要求15所述的装置,还包括:
    第二处理模块,用于在发现存在新数据待传输的情况下,判断第二数据是否满足第二预设条件,若满足所述第二预设条件,则继续直接数据传输;若不满足所述第二预设条件,则执行以下至少一项:
    在所述第一数据传输完成后,停止直接数据传输;
    触发连接建立或恢复;
    其中,所述第二预设条件包括以下至少一项:
    第二数据使用的上行传输资源的数目K小于或等于所述N;
    第二数据的总数据量小于或等于所述N个上行传输资源允许传输的总数据量;
    第二数据使用的K个上行传输资源中,每个上行传输资源的数据量小于或等于所述N个行传输资源中每个上行传输资源允许传输的数据量。
  22. 根据权利要求21所述的装置,其中,所述第二数据为所述第一数据和所述新数据;或者,所述第二数据为所述第一数据中未传输的剩余数据和所述新数据。
  23. 一种数据传输处理装置,包括:
    发送模块,用于发送直接数据传输的配置信息;其中,
    所述配置信息包括:上行传输资源的数目N,N大于1。
  24. 根据权利要求23所述的装置,其中,所述配置信息还包括:
    与N个上行传输资源对应的数据量门限;其中,
    所述数据量门限为所述N个上行传输资源允许传输的总数据量,和/或,所述N个行传输资源中每个上行传输资源允许传输的数据量。
  25. 一种通信设备,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至10中任一项所述的数据传输处理方法,或者实现如权利要求11或12所述的数据传输处理方法的步骤。
  26. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至10中任一项所述的数据传输处理方法,或者实现如权利要求11或12所述的数据传输处理方法的步骤。
  27. 一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如权利要求1至12中任一项所述的数据传输处理方法的步骤。
  28. 一种程序产品,所述程序产品被至少一个处理器执行以实现如权利要求1至12中任一项所述的数据传输处理方法的步骤。
  29. 一种通信设备,被配置成用于执行如权利要求1至12中任一项所述的数据传输处理方法的步骤。
PCT/CN2021/112186 2020-08-13 2021-08-12 数据传输处理方法、装置及设备 WO2022033540A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/107,500 US20230189061A1 (en) 2020-08-13 2023-02-08 Data transmission processing method and apparatus, and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010814178.5 2020-08-13
CN202010814178.5A CN114079936A (zh) 2020-08-13 2020-08-13 数据传输处理方法、装置及设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/107,500 Continuation US20230189061A1 (en) 2020-08-13 2023-02-08 Data transmission processing method and apparatus, and device

Publications (1)

Publication Number Publication Date
WO2022033540A1 true WO2022033540A1 (zh) 2022-02-17

Family

ID=80246988

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/112186 WO2022033540A1 (zh) 2020-08-13 2021-08-12 数据传输处理方法、装置及设备

Country Status (3)

Country Link
US (1) US20230189061A1 (zh)
CN (1) CN114079936A (zh)
WO (1) WO2022033540A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102857319A (zh) * 2011-06-28 2013-01-02 中兴通讯股份有限公司 一种数据传输方法和系统
US20170171837A1 (en) * 2014-01-29 2017-06-15 Zte Corporation A resource allocation method, apparatus, system and computer storage medium
US20180027565A1 (en) * 2014-08-08 2018-01-25 Innovative Technology Lab Co., Ltd. Method and apparatus for transmitting buffer status report in wireless communication system supporting device to device communication
CN109691209A (zh) * 2017-11-07 2019-04-26 Oppo广东移动通信有限公司 配置无线资源的方法、终端设备和网络设备
CN110547024A (zh) * 2017-05-10 2019-12-06 黑莓有限公司 在多网络环境中对直接传输的资源配置和调度

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110519856B (zh) * 2018-05-21 2021-08-17 中国移动通信集团有限公司 一种NB-IoT的数据传输方法及终端和基站
CN111132371B (zh) * 2018-11-01 2022-03-11 维沃移动通信有限公司 副链路连接建立、资源分配方法、终端及网络侧设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102857319A (zh) * 2011-06-28 2013-01-02 中兴通讯股份有限公司 一种数据传输方法和系统
US20170171837A1 (en) * 2014-01-29 2017-06-15 Zte Corporation A resource allocation method, apparatus, system and computer storage medium
US20180027565A1 (en) * 2014-08-08 2018-01-25 Innovative Technology Lab Co., Ltd. Method and apparatus for transmitting buffer status report in wireless communication system supporting device to device communication
CN110547024A (zh) * 2017-05-10 2019-12-06 黑莓有限公司 在多网络环境中对直接传输的资源配置和调度
CN109691209A (zh) * 2017-11-07 2019-04-26 Oppo广东移动通信有限公司 配置无线资源的方法、终端设备和网络设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "On Type 1 D2D Discovery Resource Allocation", 3GPP DRAFT; R1-141162_INTEL_TYPE 1 RA, vol. RAN WG1, 22 March 2014 (2014-03-22), Shenzhen, China, pages 1 - 5, XP050813664 *

Also Published As

Publication number Publication date
US20230189061A1 (en) 2023-06-15
CN114079936A (zh) 2022-02-22

Similar Documents

Publication Publication Date Title
EP4239928A1 (en) Method for configuring, activating or deactivating pdcp duplication and terminal
WO2022068790A1 (zh) 执行目标操作的方法、装置和终端设备
US20220141824A1 (en) Carrier aggregation parameter configuration method, device, and system
WO2022017472A1 (zh) 辅助信息发送方法、接收方法、装置、终端及网络侧设备
WO2022022698A1 (zh) 端到端QoS需求信息的拆分方法、终端及网络侧设备
US20230189352A1 (en) Service Collision Handling Method and Apparatus, and Terminal
US20230109276A1 (en) Access procedure processing method, apparatus and communications device
WO2021026746A1 (zh) 建立会话的方法和装置
WO2022033540A1 (zh) 数据传输处理方法、装置及设备
WO2022017409A1 (zh) 上行传输方法、装置及相关设备
WO2022068813A1 (zh) 拥塞控制方法、装置、终端及网络侧设备
WO2022028603A1 (zh) 数据传输方法、装置及电子设备
WO2022012613A1 (zh) 上行传输方法、接收方法、装置、设备和存储介质
WO2023066106A1 (zh) 数据丢弃方法、装置、终端及网络侧设备
WO2022206664A1 (zh) 信息传输方法、装置及通信设备
WO2022083630A1 (zh) 寻呼方法、装置、终端、网络侧设备及可读存储介质
WO2022228331A1 (zh) Rrc连接维护方法、相关设备及可读存储介质
WO2023246615A1 (zh) 共享信道的方法、设备及可读存储介质
WO2022228446A1 (zh) 无线链路失败的处理方法、装置、设备及可读存储介质
WO2022237678A1 (zh) 带宽部分处理方法、装置及终端
WO2022052938A1 (zh) 数据传输方法、装置及通信设备
WO2022188836A1 (zh) Cot确定方法、上行传输方法和设备
WO2023246619A1 (zh) 共享信道的方法、设备及可读存储介质
WO2022152240A1 (zh) 非周期srs的传输方法和设备
WO2022017480A1 (zh) 管理目标业务的方法、装置和通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21855590

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21855590

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02/08/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21855590

Country of ref document: EP

Kind code of ref document: A1