WO2022033329A1 - Câble optique non métallique totalement sec ignifuge et résistant au feu - Google Patents
Câble optique non métallique totalement sec ignifuge et résistant au feu Download PDFInfo
- Publication number
- WO2022033329A1 WO2022033329A1 PCT/CN2021/109657 CN2021109657W WO2022033329A1 WO 2022033329 A1 WO2022033329 A1 WO 2022033329A1 CN 2021109657 W CN2021109657 W CN 2021109657W WO 2022033329 A1 WO2022033329 A1 WO 2022033329A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- fire
- retardant
- optical cable
- flame
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/44—Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
Definitions
- the present application relates to the field of optical communication cables, in particular to a fully dry non-metallic flame-retardant and fire-resistant optical cable.
- mica tapes and low-smoke halogen-free sheath materials are generally used in the industry as conventional materials for flame-retardant and fire-resistant optical cables.
- This method has certain fire-resistant properties, but the fire-resistant grade is very low; Fire-resistant communication optical cables have been used.
- the heat-resistant layer of ceramized polyolefin is extruded as an inner protective material to wrap the outer layer of the optical unit.
- the main mechanism is that under the condition of flame combustion, the ceramized polyolefin forms a dense layer.
- the oxygen barrier layer of the ceramic shell can not only prevent the flame from damaging the internal structure of the cable core, ensure the integrity of the cable core, but also reduce the volatilization of the combustible gas inside the cable core, thereby reducing the corresponding combustion temperature.
- the embodiment of the present application provides an all-dry non-metallic flame-retardant and fire-resistant optical cable, so as to solve the problem of simply using ceramicized polyolefin material in the sheath layer in the related art, and the loose tube material of the optical unit is still in the continuous combustion process.
- Combustion and carbonization at high temperature will cause the combustion residue of the outer layer of the optical fiber to collapse inward, thus affecting the transmission performance of the optical fiber, and even the problem of fiber breakage; and during the cooling process after the end of the optical cable combustion test, due to the thermal expansion and cooling of the outer layer material of the optical fiber If the fiber shrinks, it will release the stress on the outer layer of the fiber, squeeze the inner layer of the fiber, and cause the problem of fiber breakage.
- an all-dry non-metallic flame-retardant and fire-resistant optical cable which includes:
- the armoring layer is formed with an optical fiber channel, and the armoring layer is made of ceramic glass fiber material;
- the flame retardant layer is coated on the outside of the armoring layer.
- the light unit includes:
- a plurality of optical fiber units are evenly distributed along the outer circumferential direction of the central reinforcing member; the optical fiber units include a loose tube and a plurality of optical fibers embedded in the loose tube.
- the optical fiber unit further includes a first thermal insulation layer, and the first thermal insulation layer covers the loose tube.
- the first heat insulating layer is made of ceramized polyolefin or ceramic vulcanized silicone rubber.
- the all-dry non-metal flame-retardant fire-resistant optical cable further includes a second thermal insulation layer, and the second thermal insulation layer is provided between the optical unit and the armor layer.
- the second heat insulating layer is made of glass fiber or carbon fiber.
- the all-dry non-metal flame-retardant fire-resistant optical fiber cable further includes a third thermal insulation layer, and the third thermal insulation layer is provided between the armor layer and the flame-retardant layer.
- the third thermal insulation layer is made of ceramized polyolefin or ceramic vulcanized silicone rubber.
- the all-dry non-metal flame-retardant fire-resistant optical cable further includes a fourth thermal insulation layer, and the fourth thermal insulation layer is provided between the third thermal insulation layer and the flame-retardant layer.
- the fourth thermal insulation layer is made of one of mica tape, polyimide composite tape, basalt fiber reinforced tape and vulcanized silicone rubber composite tape.
- the beneficial effects brought by the technical solutions provided by the present application include: since the optical fiber channel is formed by the armor layer, the armor layer is the refractory layer closest to the optical unit, and because the armor layer is made of ceramic glass fiber material, When the optical cable is burned, the ceramic coating in the glass yarn is cured together with the glass fiber to form a strong and dense armor layer reinforced by glass fiber, which can isolate all the burning residues on the outer layer of the armor layer.
- the armor layer can form a solid barrier layer on the outer layer of the optical unit, even if the thermal expansion and contraction of the outer layer material of the armor layer produce stress release, the hard armor
- the packaging layer will not shrink under the extrusion of the outer layer material, so the optical fiber of the optical unit will not be squeezed, resulting in fiber breakage.
- the solid and dense armor layer can block part of the oxygen from entering the light unit and play a role in hindering the combustion of the light unit.
- the embodiment of the present application provides an all-dry non-metal flame-retardant fire-resistant optical cable. Since the optical fiber channel of the embodiment of the present application is formed by the armor layer, the armor layer is the fire-resistant layer closest to the optical unit, and because the armor layer is the fire-resistant layer closest to the optical unit.
- the sheathing layer is made of ceramic fiberglass material. When the optical cable is burned by fire, the ceramic coating in the glass yarn is cured together with the glass fiber to form a solid and dense armoring layer reinforced by glass fiber.
- the armor layer of the embodiment can isolate all the burning residues in its outer layer, preventing the residue from collapsing into the optical unit; and during the cooling process of the optical cable, the armor layer can form a solid barrier layer on the outer layer of the optical unit, even if The thermal expansion and contraction of the outer layer material of the armor layer produces stress release, and the hard armor layer will not shrink under the extrusion of the outer layer material, so it will not squeeze the optical fiber of the optical unit, resulting in fiber breakage. Moreover, the solid and dense armor layer can block part of the oxygen from entering the light unit, which plays a role in hindering the combustion of the light unit.
- FIG. 1 is a schematic structural diagram of a fully dry non-metallic flame-retardant fire-resistant optical cable provided by an embodiment of the application;
- FIG. 2 is a schematic structural diagram of an optical unit provided by an embodiment of the present application.
- FIG. 3 is a schematic structural diagram of an optical fiber unit provided by an embodiment of the present application.
- optical unit 10
- reinforcement 11
- optical fiber unit 110
- loose tube 111
- optical fiber 112
- first thermal insulation layer 2
- armor layer 20, optical fiber channel; 3
- resistance 4.
- the second insulating layer 5.
- the third insulating layer 6.
- the fourth insulating layer 7.
- an embodiment of the present application provides a fully dry non-metal flame-retardant and fire-resistant optical cable, which includes an optical unit 1, an armoring layer 2 and a flame-retardant layer 3 sequentially distributed along the radial direction of the optical cable.
- the armoring layer 2 is formed with an optical fiber channel 20, and the armoring layer 2 is made of ceramic glass fiber material; the optical unit 1 is arranged in the optical fiber channel 20; the flame retardant layer 3 is wrapped outside the armoring layer 2.
- the flame-retardant layer 3 is a low-smoke halogen-free flame-retardant layer, which plays an effective flame-retardant role.
- the armoring layer 2 is the refractory layer closest to the optical unit 1, and since the armoring layer 2 is made of ceramic glass fiber material, the optical cable When burning in a fire, the ceramic coating in the glass yarn is solidified together with the glass fiber to form a solid and dense armoring layer 2 reinforced by glass fiber, which can isolate all the burning residues on the outer layer of the armoring layer 2.
- the armor layer 2 can form a solid barrier layer on the outer layer of the optical unit 1, even if the thermal expansion and contraction of the outer layer material of the armor layer 2 produce stress release, hard The armoring layer 2 will not shrink under the extrusion of the outer layer material, so the optical fiber of the optical unit 1 will not be squeezed, resulting in fiber breakage. Moreover, the solid and dense armoring layer 2 can block part of the oxygen from entering the light unit 1 , thereby preventing the burning of the light unit 1 .
- the optical unit 1 includes a central reinforcing member 10 and a plurality of optical fiber units 11 , and the plurality of optical fiber units 11 are evenly spaced along the outer circumferential direction of the central reinforcing member 10 ; the optical fiber units 11 include The loose tube 110 and the plurality of optical fibers 111 embedded in the loose tube 110 .
- the optical fiber 111 can be loosely placed, and is a polypropylene or nylon tube that protects the optical fiber 111 from internal stress and external side pressure.
- the loose tube 110 is filled with a water blocking material, and the water blocking material adopts water blocking yarn or water blocking powder to prevent longitudinal water seepage in the loose tube 110 .
- the optical fiber unit 11 further includes a first thermal insulation layer 112 , and the first thermal insulation layer 112 covers the loose tube 110 .
- the first thermal insulation layer 112 effectively thermally insulates the loose tube 110 from high heat carbonization.
- the first heat insulating layer 112 is made of ceramicized polyolefin or ceramic vulcanized silicone rubber. Both the ceramified polyolefin and the ceramic vulcanized silicone rubber are solidified into porcelain during combustion to form a hard shell, which effectively isolates the heat of the outer layer of the first heat insulating layer 112 and has the effect of effective heat insulation.
- a layer of ceramicized polyolefin material is coated on the outside of the loose tube 110 by means of extrusion or separate extrusion, which effectively isolates the heat of the outer layer and prevents the loose tube 110 from being melted and carbonized.
- the first heat insulating layer 112 in the embodiment of the present application is made of ceramized polyolefin material, and the first heat insulating layer 112 and the armoring layer 2 together form two solid
- the outer shell and the armoring layer 2 can insulate the heat of the outer layer, prevent the first heat insulating layer 112 from falling off after being burned at a high temperature, and form an effective protection for the light unit 1 .
- the fully dry non-metal flame-retardant fire-resistant optical cable further includes a second heat insulation layer 4 , and the second heat insulation layer 4 is provided between the light unit 1 and the armor layer 2 .
- the second insulating layer 4 is made of glass fiber or carbon fiber with low thermal conductivity. Due to its low thermal conductivity, glass fiber or carbon fiber can effectively insulate heat, and to a certain extent, it can be used as a heat insulating material to prevent the combustion temperature from entering the light unit 1, Since the armoring layer 2 burns to produce a very small amount of residue, the second heat insulating layer 4 can also play a role of isolating the burning residue of the armoring layer 2 from entering the light unit 1 .
- the all-dry non-metallic flame-retardant and fire-resistant optical cable further includes a third thermal insulation layer 5 , and the third thermal insulation layer 5 is provided between the armoring layer 2 and the flame-retardant layer 3 .
- the third heat insulating layer 5 is used to block the heat outside the armoring layer 2, so as to prevent the armoring layer 2 from being directly burned by high heat, and the effect of optimally protecting the optical fiber 111 cannot be exerted.
- the third heat insulating layer 5 is made of ceramicized polyolefin or ceramic vulcanized silicone rubber. Both the ceramicized polyolefin and the ceramic vulcanized silicone rubber are solidified into porcelain during combustion to form a hard shell, which can effectively isolate the heat of the outer layer of the third thermal insulation layer 5 and achieve an effective thermal insulation effect. Due to the high cost and complicated process of ceramic vulcanized silicone rubber, the first heat insulating layer 112 in the embodiment of the present application is made of ceramized polyolefin material, and the third heat insulating layer 5 can effectively protect the armoring layer 2 .
- the fully dry non-metal flame-retardant fire-resistant optical cable further includes a fourth heat-insulating layer 6 , and the fourth heat-insulating layer 6 is arranged between the third heat-insulating layer 5 and the flame-retardant layer 3 .
- the fourth heat insulating layer 6 effectively blocks heat and protects the third heat insulating layer 5 .
- the fourth thermal insulation layer 6 is made of one of mica tape, polyimide composite tape, basalt fiber reinforced tape and vulcanized silicone rubber composite tape, mica tape, polyimide composite tape, basalt fiber reinforced tape. And the vulcanized silicone rubber composite belt can meet the fire resistance temperature above 1000 °C, and can effectively heat insulation.
- the outermost low-smoke halogen-free flame retardant layer 3 can effectively flame retardant.
- the fourth thermal insulation layer 6 can meet the fire resistance temperature of more than 1000 ° C, effectively insulate, and become a flame retardant.
- the third thermal insulation layer 5 is made of ceramicized polyolefin or ceramic vulcanized silicone rubber. When burning, the ceramic solidifies to form a hard shell, which effectively isolates the heat of the outer protection and becomes the second layer of fire-resistant protection for the optical cable.
- the armoring layer 2 It is made of ceramicized glass fiber material, which is cured after being heated to form a solid and dense armor layer reinforced by glass fiber, forming a third layer of fire-resistant protection.
- the second insulating layer 4 of the inner layer of the armoring layer 2 is made of glass fiber or carbon fiber. Due to the low thermal conductivity of glass fiber and carbon fiber, it can effectively insulate heat, and to a certain extent, it can be used as a heat insulating material to prevent the combustion temperature from entering the light unit. 1.
- the optical fiber jacket of the optical unit 1 is provided with a loose tube 110
- the loose tube 110 is covered with a first thermal insulation layer 112, and the first thermal insulation layer 112 is made of ceramified polyolefin or ceramic vulcanized silicone rubber. , form a hard shell, effectively isolate the heat of the outer protection, and form the fifth layer of protection in the innermost layer.
- the optical cable of the embodiment of the present application forms a multi-layer fire-resistant protective layer from the outside to the inside along the radial direction, and has high flame retardancy and fire resistance, which satisfies that at 750 degrees Celsius, the flame continues to burn for 90 minutes, and after the flame is extinguished, wait for 15 minutes, and the optical power of the optical fiber The change is still less than the industry standard of 1db.
- the optical cable of the embodiment of the present application has a fully dry non-metallic all-dielectric structure, no fiber paste, low smoke generation during the combustion process, and good light transmittance during the combustion process, which can meet the needs of special industries such as electric power.
- the terms “installed”, “connected” and “connected” should be understood in a broad sense, for example, it may be a fixed connection, a detachable connection, or an integral connection; it may be a mechanical connection, It can also be an electrical connection; it can be a direct connection, an indirect connection through an intermediate medium, or an internal connection between two components.
- installed should be understood in a broad sense, for example, it may be a fixed connection, a detachable connection, or an integral connection; it may be a mechanical connection, It can also be an electrical connection; it can be a direct connection, an indirect connection through an intermediate medium, or an internal connection between two components.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
Abstract
L'invention concerne un câble optique non métallique totalement sec ignifuge et résistant au feu, qui se rapporte au domaine des câbles de communication optique, et qui comprend une unité optique (1), une couche de blindage (2) et une couche ignifuge (3). Un canal de fibre optique (20) est formé dans la couche de blindage (2), et la couche de blindage (2) est constituée d'un matériau de fibre de verre céramique. L'unité optique (1) est disposée dans le canal de fibre optique (20). La couche ignifuge (3) recouvre l'extérieur de la couche de blindage (2). Comme le canal de fibre optique (20) est formé par la couche de blindage (2), la couche de blindage (2) est une couche résistante au feu la plus proche de l'unité optique (1). De plus, étant donné que la couche de blindage (2) est constituée d'un matériau de fibre de verre céramique, lorsque le câble optique s'accroche sur le feu et les brûlures, un revêtement céramique dans le fil de verre et les fibres de verre sont durcis ensemble pour former une couche de blindage résistante et dense (2) renforcée par une couche de la fibre de verre, qui est capable d'isoler tous les résidus de combustion sur la couche externe de la couche de blindage (2) ; et pendant le processus de refroidissement du câble optique, même si l'expansion thermique et la contraction du matériau de couche externe de la couche de blindage (2) générent une libération de contrainte, la couche de blindage dur (2) ne se rétracte pas sous l'écrasement du matériau de couche externe. Par conséquent, la fibre optique de l'unité optique (1) ne sera pas comprimée pour conduire à une rupture de fibre.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202021679927.X | 2020-08-12 | ||
CN202021679927.XU CN212723479U (zh) | 2020-08-12 | 2020-08-12 | 一种全干式非金属阻燃耐火光缆 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022033329A1 true WO2022033329A1 (fr) | 2022-02-17 |
Family
ID=74921293
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/109657 WO2022033329A1 (fr) | 2020-08-12 | 2021-07-30 | Câble optique non métallique totalement sec ignifuge et résistant au feu |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN212723479U (fr) |
WO (1) | WO2022033329A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116500738A (zh) * | 2023-06-27 | 2023-07-28 | 西安西古光通信有限公司 | 一种环保型光缆及其制备方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN212723479U (zh) * | 2020-08-12 | 2021-03-16 | 烽火通信科技股份有限公司 | 一种全干式非金属阻燃耐火光缆 |
CN113568119B (zh) * | 2021-07-14 | 2023-04-07 | 烽火通信科技股份有限公司 | 一种干式全介质耐火光缆及其制造方法 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6701047B1 (en) * | 1999-03-31 | 2004-03-02 | Corning Cable Systems Llc | Fiber optic buffer unit and cables including the same |
CN202693882U (zh) * | 2012-08-01 | 2013-01-23 | 江苏宏图高科技股份有限公司 | 非金属耐火光缆 |
CN103064163A (zh) * | 2013-01-18 | 2013-04-24 | 长飞光纤光缆有限公司 | 一种阻燃耐火光缆 |
CN203849471U (zh) * | 2014-05-20 | 2014-09-24 | 江苏南方天宏通信科技有限公司 | 全干式非金属特种微型光缆 |
CN204613464U (zh) * | 2015-03-30 | 2015-09-02 | 河北光城通信科技有限公司 | 耐火光缆 |
CN106019502A (zh) * | 2016-06-13 | 2016-10-12 | 江苏通光信息有限公司 | 一种耐火高阻燃光缆 |
CN205787285U (zh) * | 2016-06-13 | 2016-12-07 | 江苏通光信息有限公司 | 一种耐火高阻燃光缆 |
CN206020743U (zh) * | 2016-08-17 | 2017-03-15 | 深圳市特发信息股份有限公司 | 一种全非金属耐火光缆 |
WO2019086103A1 (fr) * | 2017-10-30 | 2019-05-09 | Prysmian S.P.A. | Câble optique ignifuge |
CN110727070A (zh) * | 2019-10-24 | 2020-01-24 | 江苏华脉光电科技有限公司 | 一种全干式非金属耐火光缆 |
CN212723479U (zh) * | 2020-08-12 | 2021-03-16 | 烽火通信科技股份有限公司 | 一种全干式非金属阻燃耐火光缆 |
-
2020
- 2020-08-12 CN CN202021679927.XU patent/CN212723479U/zh active Active
-
2021
- 2021-07-30 WO PCT/CN2021/109657 patent/WO2022033329A1/fr active Application Filing
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6701047B1 (en) * | 1999-03-31 | 2004-03-02 | Corning Cable Systems Llc | Fiber optic buffer unit and cables including the same |
CN202693882U (zh) * | 2012-08-01 | 2013-01-23 | 江苏宏图高科技股份有限公司 | 非金属耐火光缆 |
CN103064163A (zh) * | 2013-01-18 | 2013-04-24 | 长飞光纤光缆有限公司 | 一种阻燃耐火光缆 |
CN203849471U (zh) * | 2014-05-20 | 2014-09-24 | 江苏南方天宏通信科技有限公司 | 全干式非金属特种微型光缆 |
CN204613464U (zh) * | 2015-03-30 | 2015-09-02 | 河北光城通信科技有限公司 | 耐火光缆 |
CN106019502A (zh) * | 2016-06-13 | 2016-10-12 | 江苏通光信息有限公司 | 一种耐火高阻燃光缆 |
CN205787285U (zh) * | 2016-06-13 | 2016-12-07 | 江苏通光信息有限公司 | 一种耐火高阻燃光缆 |
CN206020743U (zh) * | 2016-08-17 | 2017-03-15 | 深圳市特发信息股份有限公司 | 一种全非金属耐火光缆 |
WO2019086103A1 (fr) * | 2017-10-30 | 2019-05-09 | Prysmian S.P.A. | Câble optique ignifuge |
CN110727070A (zh) * | 2019-10-24 | 2020-01-24 | 江苏华脉光电科技有限公司 | 一种全干式非金属耐火光缆 |
CN212723479U (zh) * | 2020-08-12 | 2021-03-16 | 烽火通信科技股份有限公司 | 一种全干式非金属阻燃耐火光缆 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116500738A (zh) * | 2023-06-27 | 2023-07-28 | 西安西古光通信有限公司 | 一种环保型光缆及其制备方法 |
CN116500738B (zh) * | 2023-06-27 | 2023-09-01 | 西安西古光通信有限公司 | 一种环保型光缆及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN212723479U (zh) | 2021-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022033329A1 (fr) | Câble optique non métallique totalement sec ignifuge et résistant au feu | |
WO2022257682A1 (fr) | Câble spécial ignifuge à charge minérale et à isolation ignifuge pour bâtiments modernes | |
WO2020093440A1 (fr) | Câble ignifuge composite à fibre optique et dispositif de communication d'avertissement précoce intelligent | |
CN112908526B (zh) | 一种环保型防火电缆 | |
CN202796113U (zh) | 隔火型无卤低烟耐火电缆 | |
JPH0421284B2 (fr) | ||
CN209607493U (zh) | 轻型电力通信防火电缆 | |
CN217280178U (zh) | 中压耐火电缆 | |
CN215183170U (zh) | 一种复合防火电缆 | |
CN214753078U (zh) | 一种阻燃耐高温电缆 | |
CN109061824A (zh) | 一种耐火光缆 | |
CN208459657U (zh) | 一种耐火光缆 | |
CN210667880U (zh) | 一种柔性矿物绝缘防火电缆 | |
CN209912575U (zh) | 环保耐高温防火控制电缆 | |
CN209843282U (zh) | 一种陶瓷化阻燃光电缆 | |
CN209880216U (zh) | 一种高强防潮防火电力电缆 | |
CN208752274U (zh) | 一种耐火光缆 | |
CN112700921A (zh) | 一种绝缘防爆防火电缆及其防爆防火的方法 | |
CN213339723U (zh) | 一种高强度超柔性防火电缆 | |
CN211319791U (zh) | 一种环保型高阻燃耐火特种软电缆 | |
CN220439300U (zh) | 一种耐火电缆 | |
CN110649559A (zh) | 耐高温柔性防火电缆中间接头 | |
CN204884665U (zh) | 一种复合线缆 | |
CN217485108U (zh) | 一种低烟低卤阻燃柔性防火高屏蔽中压电力电缆 | |
CN218939302U (zh) | 一种非铠装型阻燃b1级耐火控制电缆 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21855382 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21855382 Country of ref document: EP Kind code of ref document: A1 |