WO2022033263A1 - 数据传输方法及装置 - Google Patents

数据传输方法及装置 Download PDF

Info

Publication number
WO2022033263A1
WO2022033263A1 PCT/CN2021/106311 CN2021106311W WO2022033263A1 WO 2022033263 A1 WO2022033263 A1 WO 2022033263A1 CN 2021106311 W CN2021106311 W CN 2021106311W WO 2022033263 A1 WO2022033263 A1 WO 2022033263A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection
data
terminal device
receiving
receiving beam
Prior art date
Application number
PCT/CN2021/106311
Other languages
English (en)
French (fr)
Inventor
王俊伟
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Publication of WO2022033263A1 publication Critical patent/WO2022033263A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to communication technologies, and in particular, to a data transmission method and apparatus.
  • terminal equipment receives relevant data sent by network equipment through beams, such as channel state information reference signal (CSI-RS) beams and synchronization signal block (Synchronization Signal and PBCH block, SSB) beams .
  • CSI-RS channel state information reference signal
  • SSB synchronization signal block
  • FIG. 1 is a schematic diagram of a terminal device detecting a control channel based on a DRX cycle in the prior art.
  • the terminal device continuously detects the control channel corresponding to the data transmitted by the beam within the detection interval (on Duration) of the DRX cycle. If no valid scheduling signaling is detected at other times in the DRX cycle, the terminal device enters the sleep state, thus achieving the saving of energy. purpose of electricity.
  • the network device configures multiple receiving beams for the terminal device, and each beam is configured with an independent wake up signal (wake up signal, WUS).
  • WUS wake up signal
  • FIG. 2 is a schematic diagram of a configuration relationship between a beam and a WUS in the prior art.
  • the WUS corresponding to each receive beam is sent independently and configured with a separate direction.
  • the network device sends WUS1 (in the beam direction X) to instruct the terminal device to detect the control channel of the data of the beam corresponding to WUS1.
  • WUS1 in the beam direction X
  • the terminal device will not detect the control channel, so as to save power.
  • the terminal device regardless of whether the network device transmits data, the terminal device needs to detect the control channel within the detection interval in the DRX cycle, so the terminal device still consumes power.
  • the terminal equipment since the WUS of each beam is consistent, the terminal equipment will receive the corresponding WUS of each beam, and then the corresponding control channel detection will be performed on the beam without data scheduling, thereby increasing the power consumption of the terminal equipment.
  • Embodiments of the present application provide a data transmission method and apparatus, which can save power consumption of terminal equipment during data transmission and improve user experience.
  • an embodiment of the present application provides a data transmission method, which is applied to a terminal device, and the method includes:
  • the control channel corresponding to the data of the receiving beam is detected.
  • an embodiment of the present application provides a data transmission method, which is applied to a network device, and the method includes:
  • the above-mentioned indication information is sent, where the above-mentioned indication information is used for each terminal device in the terminal device group to determine the detection timing of the corresponding receive beam.
  • an embodiment of the present application provides a terminal device, including a memory, a transceiver, and a processor:
  • the memory is configured to store a computer program; the transceiver is configured to send and receive data under the control of the processor; the processor is configured to read the computer program in the memory and execute the method provided in the first aspect.
  • an embodiment of the present application provides a network device, including a memory, a transceiver, and a processor:
  • a memory configured to store a computer program
  • a transceiver configured to send and receive data under the control of the above-mentioned processor
  • the processor configured to read the computer program in the above-mentioned memory and execute the method provided by the above-mentioned second aspect
  • an embodiment of the present application provides a data transmission device, the device comprising:
  • a receiving unit configured to receive indication information for determining the detection timing of the receiving beam
  • a first determining unit configured to determine, according to the above-mentioned indication information, the detection timing of the receiving beam corresponding to the above-mentioned terminal device;
  • the detection unit is configured to detect the control channel corresponding to the data of the reception beam based on the detection timing of the reception beam corresponding to the terminal device.
  • an embodiment of the present application provides a data transmission device, the device comprising:
  • a second determination unit configured to determine indication information for determining the detection timing of the receiving beam
  • the sending unit is configured to send the above-mentioned indication information, where the above-mentioned indication information is used for each terminal device in the terminal device group to determine the detection timing of the corresponding receive beam.
  • an embodiment of the present application provides a processor-readable storage medium, where the processor-readable storage medium stores a computer program, and the computer program is used to cause the processor to execute the first aspect and/or the second aspect method provided by the aspect.
  • the terminal device can determine the detection timing of the receiving beams within the coverage of the terminal device through the indication information, which can reduce the function caused by the terminal device detecting the control channels corresponding to the data of all the receiving beams. consume consumption. Further, the terminal equipment can detect the control channel corresponding to the data of the receiving beam at the corresponding detection timing based on the detection timing of the receiving beam corresponding to the terminal equipment, which can effectively save the power consumption of the terminal equipment during data transmission and improve the user experience.
  • FIG. 1 is a schematic diagram of a terminal device detecting a control channel based on a DRX cycle in the prior art
  • FIG. 2 is a schematic diagram of the configuration relationship between a beam and a WUS in the prior art
  • FIG. 3 is a schematic diagram of a communication network architecture provided by an embodiment of the present application.
  • FIG. 4 is a schematic time sequence diagram of a data transmission method provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of the distribution of detection timings within a detection cycle provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a scenario for determining a detection timing of a receiving beam provided by an embodiment of the present application
  • FIG. 7 is a schematic diagram of another scenario for determining the detection timing of a receiving beam provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a scenario for determining a detection start time and a detection end time provided by an embodiment of the present application
  • FIG. 9 is a schematic diagram of a scenario of a WUS multiplexing relationship provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a scenario of a multiplexing relationship of a control channel provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a scenario of a scheduling state of DCI indication data provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a data transmission apparatus provided by an embodiment of the present application.
  • FIG. 15 is another schematic structural diagram of a data transmission apparatus provided by an embodiment of the present application.
  • the term “plurality” refers to two or more than two, and other quantifiers are similar.
  • Embodiments of the present application provide a data transmission method and apparatus, which can save power consumption of terminal equipment during data transmission and improve user experience.
  • the method and the device are conceived based on the same application. Since the principles of the method and the device for solving the problem are similar, the implementation of the device and the method can be referred to each other, and repeated descriptions will not be repeated here.
  • the applicable system may be a global system of mobile communication (GSM) system, a code division multiple access (CDMA) system, a wideband code division multiple access (Wideband Code Division Multiple Access, WCDMA) general packet Wireless service (general packet radio service, GPRS) system, long term evolution (long term evolution, LTE) system, LTE frequency division duplex (frequency division duplex, FDD) system, LTE time division duplex (time division duplex, TDD) system, Long term evolution advanced (LTE-A) system, universal mobile telecommunication system (UMTS), worldwide interoperability for microwave access (WiMAX) system, 5G New Radio (New Radio, NR) system, etc.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband Code Division Multiple Access
  • General packet Wireless service general packet Radio service
  • GPRS general packet Wireless service
  • LTE long term evolution
  • LTE frequency division duplex frequency division duplex
  • time division duplex time division duplex
  • TDD Time division duplex
  • the terminal device involved in the embodiments of the present application may be a device that provides voice and/or data connectivity to a user, a handheld device with a wireless connection function, or other processing device connected to a wireless modem.
  • the name of the terminal device may be different.
  • the terminal device may be called user equipment (User Equipment, UE).
  • Wireless terminal equipment can communicate with one or more core networks (Core Network, CN) via a radio access network (Radio Access Network, RAN).
  • RAN Radio Access Network
  • "telephone) and computers with mobile terminal equipment eg portable, pocket-sized, hand-held, computer-built or vehicle-mounted mobile devices, which exchange language and/or data with the radio access network.
  • Wireless terminal equipment may also be referred to as system, subscriber unit, subscriber station, mobile station, mobile station, remote station, access point , a remote terminal device (remote terminal), an access terminal device (access terminal), a user terminal device (user terminal), a user agent (user agent), and a user device (user device), which are not limited in the embodiments of the present application.
  • the network device involved in the embodiments of the present application may be a base station, and the base station may include a plurality of cells that provide services for terminal devices.
  • the base station may also be called an access point, or may be a device in the access network that communicates with wireless terminal equipment through one or more sectors on the air interface, or other names.
  • the network device can be used to exchange received air frames with Internet Protocol (IP) packets, and act as a router between the wireless terminal device and the rest of the access network, which can include the Internet. Protocol (IP) communication network.
  • IP Internet Protocol
  • the network devices may also coordinate attribute management for the air interface.
  • the network device involved in the embodiments of the present application may be a network device (Base Transceiver Station, BTS) in GSM or CDMA, a network device (NodeB) in WCDMA, or an evolved network device ( evolutional Node B, eNB or e-NodeB), 5G base station (gNB) in 5G network architecture (next generation system), it can also be Home evolved Node B (HeNB), relay node (relay node), A home base station (femto), a pico base station (pico), etc., are not limited in the embodiments of the present application.
  • a network device may include a centralized unit (CU) node and a distributed unit (DU) node, and the centralized unit and the distributed unit may also be geographically separated.
  • MIMO transmission can be single-user MIMO (Single User MIMO, SU-MIMO) or multi-user MIMO. (Multiple User MIMO, MU-MIMO). According to the form and number of root antenna combinations, MIMO transmission can be 2D-MIMO, 3D-MIMO, FD-MIMO, or massive-MIMO, or diversity transmission, precoding transmission, or beamforming transmission.
  • FIG. 3 is a schematic diagram of a communication network architecture provided by an embodiment of the present application.
  • the network device 110 may first determine the indication information for indicating the detection timing of the receiving beam, and send the indication information to the terminal device group.
  • the terminal device group may include multiple terminal devices, such as the terminal device 120 , the terminal device 130 and the terminal device 140 in FIG. 3 .
  • the terminal device 120 can determine the detection timing of the receiving beam corresponding to the terminal device 120 according to the indication information.
  • the 120 corresponds to the detection opportunity, detects the control channel corresponding to the data of the receiving beam, so as to receive and demodulate and/or decode the channel corresponding to the data after the data is detected, such as the corresponding physical downlink shared channel (physical downlink shared channel, PDSCH).
  • the detected channel in the embodiment of the application itself may be a physical downlink control channel (Physical Downlink Control Channel, PDCCH) that bears the data of the beam.
  • PDCCH Physical Downlink Control Channel
  • FIG. 4 is a schematic time sequence diagram of a data transmission method provided by an embodiment of the present application.
  • the data transmission method shown in Figure 4 includes the following steps:
  • Step S1 determining the indication information for determining the detection timing of the receiving beam.
  • the result is sent to the terminal device group as indication information, which is used by any terminal device to determine the data corresponding to the receiving beam corresponding to the terminal device according to the indication information. detection timing.
  • the network device first determines the detection period of the control channel detection corresponding to the data of the receiving beam, and further determines the detection timing of each receiving beam within the detection period.
  • the above detection period may be a period in which each receiving beam detects a control channel corresponding to one type of data, or may be a period in which data of all receiving beams in the cell where the terminal device is located corresponds to the same detection period, which is not limited here.
  • the above detection period can also be the longest time that can be represented by the system frame number. For example, if the range indicated by the system frame number is 0 to 1024, the duration of the above detection period is the time length of 1024 wireless frames. .
  • the above-mentioned receiving beams include SSB beams and CSI-RS beams.
  • the data of the receiving beam may be broadcast multicast service data
  • the receiving beam is a CSI-RS beam
  • the data of the receiving beam may be related data corresponding to the CSI-RS signal.
  • the above data may also be paging messages, system broadcast messages and data received by other terminal equipment groups, which are not limited herein.
  • the network device determines the detection timings of all the receiving beams in each detection period, and then allocates all the detection timings to each receiving beam. In each detection period, the network device first determines a time slot in which the detection timing of the receiving beam can be configured, and then determines the position and number of the detection timing in the time slot. There may be one or more detection opportunities for receiving beams in a time slot, and the positions of the detection opportunities in the time slot are not limited here.
  • the invalid detection timing may be a detection symbol that cannot be used as a control channel in the system, such as being defined as an uplink symbol, or defined as a flexible symbol (the specific uplink symbol or downlink symbol is notified by dedicated signaling). That is, a valid detection opportunity in each detection period can be regarded as a valid control channel detection opportunity only when one or more of its corresponding symbols are all downlink symbols.
  • FIG. 5 is a schematic diagram of distribution of detection timings within a detection period provided by an embodiment of the present application.
  • the network device determines that a detection period (T_cell) is 10ms, and the offset (T_offset) is 1ms.
  • T_cell a detection period
  • T_offset the offset
  • the number of time slots in the detection period is the detection of the receiving beam number of times.
  • the subcarrier spacing (SCS) corresponding to the time slot in Figure 5 is 60KHz, then the length of each time slot is 0.25ms, that is, there are 4 time slots in every 1ms.
  • the detection period There are a total of 40 detection timings.
  • the number of timeslots per unit time (1ms) is determined by the corresponding subcarrier spacing.
  • the subcarrier spacing is 15KHz, there is 1 timeslot per unit time, and the length of the timeslot is 1ms; when the subcarrier spacing is 15KHz
  • the interval is 30KHz, there are 2 time slots per unit time, and the time slot length is 0.5ms; when the subcarrier interval is 60KHz, there are 4 time slots per unit time, and the time slot length is 0.25ms; when the subcarrier interval is 60KHz, there are 4 time slots per unit time.
  • the interval is 120KHz, there are 8 time slots per unit time, and the time slot length is 0.125ms; when the subcarrier interval is 240KHz, there are 16 time slots per unit time, and the time slot length is 0.0625ms.
  • the network device may allocate the detection opportunities in each detection period to each receive beam. Wherein, when allocating a detection opportunity to each receiving beam, the network device may determine it based on any one of the following methods:
  • the detection timing of the data of each receiving beam is discontinuous, and the detection timing of the data of each receiving beam is rotated in the time domain;
  • the detection timing of the data of each receiving beam is continuous
  • the detection timing of the data of each receive beam is allocated according to the duration.
  • the detection timings of the data of each receiving beam are discontinuous, and the detection timings of the data of each receiving beam are rotated in the time domain. Receive beam detection timing. Further according to the same sequence, one detection opportunity is sequentially allocated to each receiving beam in turn, until all the detection opportunities in the detection period are allocated.
  • the detection timing of the data of each receiving beam can be specifically determined by the following expression:
  • x represents the index number of the receiving beam
  • M is the number of receiving beams
  • S(x) is the numbered set of detection occasions of the data of the receiving beam whose index number is x
  • N is the total number of detection occasions for data of all received beams in one detection period.
  • FIG. 6 is a schematic diagram of a scenario of determining a detection timing of a receiving beam provided by an embodiment of the present application.
  • the receiving beam is an SSB beam
  • the number of SSB beams is 4
  • each SSB beam is SSB-0, SSB-1, SSB-2 and SSB-3 respectively
  • the detection period is also 10ms
  • the SCS is 60KHz.
  • There is only one detection opportunity of the SSB beam and the number of all detection opportunities in one detection period is 40 (the numbers of each detection opportunity are 0, 1, 2, 3, . . . , 39 in sequence).
  • each SSB beam can be sequentially allocated a detection opportunity within the detection period. Further in the same order, one detection opportunity is sequentially allocated to each SSB beam in turn, until all the detection opportunities in the detection period are allocated.
  • the numbers of the detection timings of the SSB-0 beam are 0, 4, 8, 12...36; the numbers of the detection timings of the SSB-1 beam are: 1, 5, 9, 13...37; the detection timing of the SSB-2 beam The numbers of the timings are: 2, 6, 10, 14...38; the numbers of the detection timings of the SSB-3 beam are 3, 7, 11, 15...39, respectively.
  • the detection timings of the data of each receiving beam are continuous. Specifically, within the detection period, according to a certain order, R detection timings are sequentially allocated to each receiving beam, and then in the same order, each receiving beam is sequentially allocated R detection timings. The beams are allocated R detection occasions until all the detection occasions are allocated.
  • the detection timing corresponding to each receive beam can be determined based on the following expression:
  • x represents the index number of the receiving beam
  • M is the number of receiving beams
  • S(x) is the numbered set of detection occasions for the data of the receiving beam with index number x
  • R is the detection occasion occupied by each receiving beam continuously
  • Q is the total number of detection opportunities continuously occupied by M receiving beams
  • N is the total number of detection occasions for data of all received beams in one detection period.
  • FIG. 7 is a schematic diagram of another scenario for determining the detection timing of a receiving beam provided by an embodiment of the present application.
  • the receiving beam is an SSB beam
  • the number of SSB beams is 4
  • each SSB beam is SSB-0, SSB-1, SSB-2 and SSB-3
  • the detection period is also 10ms
  • SCS is 60KHz
  • each time slot There is only one detection timing of the SSB beam in , and the number of all detection timings in one detection period is 40 (the numbers of each detection timing are 0, 1, 2, 3, . . . , 39 in sequence).
  • each SSB beam can be sequentially allocated a detection opportunity within the detection period. Further, according to the same sequence, one detection opportunity is sequentially allocated to each SSB beam in turn, until all the detection opportunities in the detection period are allocated.
  • the detection timing numbers of the SSB-0 beam are 0, 1, 2, 3, 16, 17, 18, 19; the detection timing numbers of the SSB-1 beam are: 4, 5, 6, 7, 20, 21, 22, 23; SSB-2 beam detection timing numbers are: 8, 9, 10, 11, 24, 25, 26, 27; SSB-3 beam detection timing numbers are 12, 13, 14 ,15,28,29,30,31.
  • the above order includes, but is not limited to, the receiving beams are sorted according to the beam number from large to small, the order from small to large, and the order of receiving beams obtained based on other sorting methods, which are not limited here.
  • the detection timing of the data of each receiving beam is allocated according to the duration, specifically determining the detection duration interval of each receiving beam within the detection period; for each receiving beam, among the detection timings of all the receiving beams in the detection period, the The detection timing in the detection time interval corresponding to the receiving beam is determined as the detection timing of the receiving beam. That is, in the detection period, each receiving beam is allocated a detection time interval, and all the detection opportunities in the detection time interval are the detection opportunities of the corresponding receiving beam.
  • the detection period is 10ms, and the interval length of the detection duration interval is 2.5ms.
  • the receiving beam is an SSB beam, and the number of SSB beams is 4, the SSB beams are SSB-0, SSB-1, SSB-2 and SSB-3 respectively, the SCS is 60KHz, and there is only one SSB in each time slot.
  • the number of all detection timings in one detection period is 40 (the numbers of the detection timings are 0, 1, 2, 3, . . . , 39 in sequence).
  • the detection time interval corresponding to the SSB-0 beam is 0ms-2.5ms
  • the detection time interval corresponding to the SSB-1 beam is 2.5ms-5ms
  • the detection time interval corresponding to the SSB-2 beam is 5ms-7.5ms
  • the SSB The detection time interval corresponding to the -3 beam is 7.5ms-10ms.
  • the numbers of the detection timings corresponding to the SSB-0 beam are 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9, respectively
  • the numbers of the detection timings corresponding to the SSB-1 beam are 10, 11, respectively.
  • the numbers of detection timings corresponding to SSB-2 beams are 20, 21, 22, 23, 24, 25, 26, 27, 28, 29; SSB
  • the numbers of the detection timings corresponding to the -3 beams are 30, 31, 32, 33, 34, 35, 36, 37, 38, and 39, respectively.
  • the detection period is also 10ms
  • the SCS is 60KHz
  • the number of all detection opportunities in the detection period is an integer multiple of all receiving beams, all detection opportunities in the detection period can be evenly distributed to each receiving beam. If the number of all detection opportunities in the detection period is not an integral multiple of the number of all receive beams, based on any of the above allocation methods, after evenly distributing part of the detection opportunities in the detection period to each receive beam, the remaining receive beams
  • the detection timing of the beam is allocated.
  • the detection timings of the remaining receiving beams may not be allocated to any receiving beam, that is, the detection timings of the remaining receiving beams in the detection period are not used as the detection timings of any receiving beam.
  • the detection timing of the remaining receiving beams is used as a common detection timing, that is, the terminal device detects the control channel corresponding to the data of the receiving beam corresponding to the terminal device based on the common detection timing within the coverage area of any receiving beam.
  • the network device may send data based on any received beam at a common detection opportunity.
  • the detection timings of the remaining receive beams are allocated to any one or more receive beams, and the specific allocation manner and the determination manner of the receive beams participating in the allocation of the detection timing are not limited herein.
  • the detection timing of each receiving beam is continuous, that is, when the detection timing of the receiving beam is determined based on the following expression:
  • the above expression may reduce the number of detection occasions continuously occupied by each receive beam (ie, reduce R in the above expression to R 0 ), and based on the reduced number of detection occasions R 0 continuously occupied by each receive beam, and The above expression reassigns the remaining detection opportunities.
  • the second remaining detection timings can be allocated by repeating any of the above-mentioned allocation methods of remaining detection timings. Repeat.
  • the detection timing corresponding to each receiving beam can be associated with the control channel corresponding to the corresponding data, so as to avoid the situation of detecting the control channel corresponding to the data of another receiving beam based on the detection timing corresponding to one receiving beam .
  • the network device determines the detection timing of each receiving beam based on the above method, it sends the result as indication information to the terminal equipment group, so that any terminal device can determine the detection timing of each receiving beam according to the indication information.
  • the network device may also use the foregoing detection period and the detection timings of all receiving beams in one detection period as relevant information for determining the detection timings of each receiving beam. Further, the network device sends the related information as indication information to the terminal device group, for any terminal device to determine the detection timing of each receiving beam based on the related information and any of the above-mentioned detection timing determination methods.
  • the network device may also specify the detection timing corresponding to each receiving beam, and send it to the terminal device group as indication information.
  • Step S2 sending indication information.
  • the network device sends the above-mentioned indication information to the terminal device group, for any terminal device to determine the detection timing of each receiving beam based on the indication information.
  • the specific sending manner of the above-mentioned indication information may be determined based on the requirements of the actual application scenario, which is not limited herein.
  • Step S3 according to the indication information, determine the detection timing of the receiving beam corresponding to the terminal device.
  • the terminal device is based on the detection period and the detection timings of all received beams in a detection period, and the determination method of the detection timing in step S1, Determine the detection timing for each receive beam.
  • the terminal equipment when the above-mentioned indication information is the result information (that is, the detection opportunity of each receiving beam) after the network device allocates all the detection opportunities in a detection period based on the determination method of the detection timing in step S1, the terminal equipment The detection timing of each receive beam can be determined directly based on the above-mentioned indication information.
  • the terminal device may determine the detection timing of the corresponding receiving beam based on the indication information and the detection timing corresponding to each receiving beam designated by the network device.
  • Step S4 based on the detection timing of the receiving beam corresponding to the terminal device, detect the control channel corresponding to the data of the receiving beam.
  • the network equipment may send DRX parameters to the terminal equipment group, the parameters including the DRX cycle and the detection interval in the DRX cycle, wherein the detection interval in the DRX is the terminal device The time interval during which the device detects the control channel.
  • the detection interval in the DRX may include one or more detection periods, so that the terminal device can periodically detect the data corresponding to the receiving beam based on the detection timing of the receiving beam corresponding to the terminal equipment in the detection interval in the DRX period. control channel.
  • the cycle length of the DRX cycle can be specified by the network device as a fixed duration, or by the network device as a fixed number of detection opportunities, and the time interval corresponding to the fixed number of detection opportunities is used as the DRX cycle length, which is not limited here. .
  • the terminal device may determine the time corresponding to the first detection opportunity in the detection opportunity of a receiving beam corresponding to the terminal device in the detection interval in the DRX cycle as the detection start time of the receiving beam corresponding to the terminal device, and the The time corresponding to the last detection opportunity of the receiving beam is determined as the detection end time of the receiving beam corresponding to the terminal device. Therefore, in the detection interval in the DRX cycle, the terminal device detects the control channel corresponding to the data of the receiving beam based on the detection timing corresponding to the receiving beam within the time interval from the detection start time to the detection end time.
  • each receive beam has an independent detection start time and detection end time
  • the terminal device starts from the detection start time of each receive beam to the detection end time of the receive beam, based on the detection timing of each receive beam
  • the control channel corresponding to the data of the corresponding beam is detected.
  • the detection interval in the DRX cycle includes multiple detection cycles, for any receiving beam, it has a detection start time and a detection end time in each detection cycle, or the receiving beam is The time corresponding to the first detection timing in the first detection period is used as the detection start time, and the time corresponding to the last detection timing in the last detection period is used as the detection end time, which can be determined based on the actual application scenario. make restrictions.
  • FIG. 8 is a schematic diagram of a scenario for determining a detection start time and a detection end time provided by an embodiment of the present application.
  • the receiving beam is an SSB beam
  • the number of SSB beams is 4
  • each SSB beam is SSB-0, SSB-1, SSB-2 and SSB-3
  • the DRX cycle is 40ms
  • the detection in the DRX cycle The interval is 10ms
  • the detection interval includes only one detection period.
  • the detection period is also 10ms
  • the SCS is 60KHz.
  • the detection start time and detection end time of each SSB beam within the DRX cycle can be determined.
  • the detection start time of the SSB-0 beam is the time of the detection timing numbered 0, and the detection end time is the time of the detection timing numbered 36;
  • the detection start time of the SSB-1 beam is the detection timing numbered 1.
  • the detection end time is the time of the detection timing numbered 37;
  • the detection start time of the SSB-0 beam is the time of the detection timing numbered 2, and the detection end time is the time of the detection timing numbered 38. ;
  • the detection start time of the SSB-0 beam is the time of the detection opportunity numbered 3
  • the detection end time is the time of the detection opportunity numbered 39.
  • the terminal equipment detects the control channel corresponding to the data of the SSB-0 beam based on the detection timing of the SSB-0 beam within the time interval from the detection timing numbered 0 to the detection timing numbered 36; During the time interval from the detection timing numbered 1 to the detection timing numbered 37, the control channel corresponding to the data of the SSB-0 beam is detected based on the detection timing of the SSB-1 beam; In the time interval of the detection timing numbered 38, the control channel corresponding to the data of the SSB-0 beam is detected based on the detection timing of the SSB-2 beam; the terminal equipment is from the detection timing numbered 3 to the detection timing numbered 39. During the time interval, the control channel corresponding to the data of the SSB-0 beam is detected based on the detection timing of the SSB-3 beam.
  • the detection timing of each receiving beam can be associated with the DRX cycle, that is, the terminal equipment performs control channel detection in the detection interval based on the DRX cycle, and further in the detection interval of the DRX cycle.
  • the detection start time and detection end time corresponding to the beam are used as more accurate detection timings, so as to achieve better power saving effect.
  • the network device before the start of the DRX cycle, the network device will send the first sequence when there is data scheduling, indicating that the terminal device needs to detect the control channel corresponding to the data of the receiving beam based on the detection timing of the receiving beam .
  • the second sequence will be sent, indicating that the terminal does not need to detect the control channel corresponding to the data of the receiving beam.
  • the above-mentioned first sequence and second sequence may be sent to the terminal device as channel detection indication information.
  • the terminal device After receiving the channel detection indication information, the terminal device determines whether the channel detection indication information is the first sequence or the second sequence according to the posterior probability. When it is determined that the channel detection finger information is the first sequence, the terminal device determines the control channel corresponding to the data of the detected receiving beam, and then detects the control channel corresponding to the data of the receiving beam based on the detection timing of the receiving beam corresponding to the terminal device.
  • the network device may send wake-up information for indicating whether to detect the control channel to the terminal device group.
  • the terminal device may, based on the wake-up information, and the detection timing of the receiving beam corresponding to the terminal device, to detect the control channel corresponding to the data of the receiving beam.
  • the above wake-up information is any one of a wake-up signal (wake up signal, WUS) or downlink control information (Downlink Control Information, DCI).
  • the network device can instruct the terminal device whether to perform control channel detection in the DRX cycle, thereby avoiding unnecessary power consumption caused by the terminal device performing control channel detection in the DRX cycle without data scheduling.
  • each receiving beam corresponds to its own WUS, and the direction of each receiving beam is the same as the direction of the corresponding WUS.
  • the WUS signal is a sequence signal, and is determined according to the DRX cycle corresponding to the terminal device and the cell number of the cell where the terminal device is located.
  • the WUS corresponding to each receive beam is determined according to the following expression:
  • x is the index number of the receiving beam
  • M is the number of receiving beams
  • w x (m) is the WUS corresponding to the receiving beam with the index number x
  • s is the length threshold of the WUS
  • n f is the frame number of the infinite frame where the start position of the DRX cycle corresponding to the terminal device is located
  • ns is the time slot number of the first time slot where the start position of the DRX cycle is located.
  • the initialization value of the above scrambling sequence is determined by the following expression:
  • c init is the initialization value of the scrambling sequence.
  • FIG. 9 is a schematic diagram of a scenario of a WUS multiplexing relationship provided by an embodiment of the present application. Assuming that the receiving beam is an SSB beam, the WUS corresponding to each SSB beam adopts a time division multiplexing method and is mapped on consecutive symbols.
  • the WUS corresponding to the SSB-0 beam is mapped to the symbol 2
  • the WUS corresponding to the SSB-1 beam is mapped to the symbol 3
  • the WUS corresponding to the SSB-2 beam is mapped to the symbol 4
  • the WUS corresponding to the SSB-3 beam is mapped to symbol 5.
  • the WUS with the same sequence length is mapped on 2 symbols
  • the WUS corresponding to the SSB-0 beam is mapped to the symbol 2/3
  • the WUS corresponding to the SSB-1 beam is mapped to the symbol 4/5
  • the SSB-2 beam is mapped to the symbol 4/5.
  • the corresponding WUS is mapped to symbols 6/7
  • the WUS corresponding to the SSB-3 beam is mapped to symbols 8/9.
  • the WUS corresponding to each receiving beam may be intercepted from a sequence signal, and sequentially intercepting a sequence of a fixed sequence length from the sequence signal to obtain the WUS corresponding to each receiving beam.
  • the specific interception method can be determined based on the following expression:
  • x represents the index number of the receiving beam
  • S(x)_WUS is the WUS corresponding to the receiving beam with the index number x
  • s is the length threshold of the WUS, that is, the sequence length of each WUS.
  • the terminal device detects the WUS corresponding to the receiving beam within its coverage, it detects the control channel corresponding to the data of the receiving beam based on the detection timing corresponding to the receiving beam. That is, the terminal device can only detect the WUS of the receiving beam within its coverage, or detect the WUS of all the receiving beams, and when detecting the WUS of the receiving beam within its coverage, based on the corresponding detection of the receiving beam When the timing is right, the control channel corresponding to the data of the receiving beam is detected.
  • each receiving beam corresponds to the WUS in the same direction, and each WUS is placed on consecutive symbols in the time domain, or is used for beam switching at an interval of an integer number of symbols, which can provide higher performance gains.
  • each receiving beam corresponds to its own DCI, and the content of the DCI corresponding to each receiving beam is the same, the number of symbols of each control channel carrying DCI is the same, and the control channel carrying DCI adopts time division multiplexing.
  • the method used is mapped on consecutive symbols. That is to say, each receive beam corresponds to a control channel for carrying its DCI, and the terminal equipment can perform combined reception processing on the control channels carrying each DCI.
  • FIG. 10 is a schematic diagram of a scenario of a multiplexing relationship of a control channel provided by an embodiment of the present application. It is assumed that the receiving beam is an SSB beam, and the control channel corresponding to each SSB beam adopts a time-division multiplexing method and is mapped on consecutive symbols.
  • the control channel carrying DCI occupies one symbol
  • the control channel corresponding to the SSB-0 beam is mapped to symbol 2
  • the control channel corresponding to the SSB-1 beam is mapped to symbol 3
  • the control channel corresponding to the SSB-2 beam is mapped to On symbol 4
  • the control channel corresponding to the SSB-3 beam is mapped on symbol 5.
  • the WUS PDCCH of SSB-0 is mapped to symbol 2/3
  • the control channel corresponding to SSB-1 beam is mapped to symbol 4/5
  • the control channel corresponding to SSB-2 beam The channel is mapped to symbols 6/7
  • the control channel corresponding to the SSB-3 beam is mapped to symbols 8/9.
  • the DCI may indicate the scheduling status of the data of the receiving beam, that is, which data is scheduled and which data is not scheduled on one or more carriers in the DRX cycle.
  • the data indicated by different bits in the DCI are different, and one bit indicates the scheduling status of at least one data.
  • the value of each bit in the DCI represents the scheduling status of the corresponding data. For example, when any one bit is 0, it indicates that the corresponding data is not scheduled; when the value of the bit is 1, it indicates that the corresponding data is scheduled; or when the bit is 1, it indicates that the corresponding data is not scheduled. When the value of the bit is 0, it indicates that the corresponding data is scheduled, which is not limited here.
  • each bit represents the scheduling status of one or more data. For example, when the value of any bit is 0, it means that one or more data is not scheduled. The value of this bit When it is 1, it means that one or more data are scheduled in the corresponding data, or when the bit is 1, it means that one or more data is not scheduled. When the value of this bit is 0, it means that there are corresponding data. One or more pieces of data are scheduled.
  • the terminal device may determine the detection timing of the receiving beam corresponding to the scheduled data (the terminal device is within its coverage), and detect the control channel of the scheduled data based on the detection timing of the receiving beam.
  • the terminal device can select the detection timing of the receiving beam corresponding to the data of interest (the terminal device is within its coverage) to detect the control channel of the data of interest.
  • FIG. 11 is a schematic diagram of a scenario of a scheduling state of DCI indication data provided by an embodiment of the present application.
  • the network device configures H multicast services (Multicast Broadcast Service, MBS) on one carrier through high-level signaling.
  • MBS Multicast Broadcast Service
  • N 6
  • H 5
  • each MBS corresponds to a bit on the DCI, such as MBS(0) corresponds to the 0th bit, such as MBS(1) corresponds to the 1st bit, etc.
  • Spare bits not used to indicate the scheduling status of any broadcast multicast.
  • MBS (0) can be broadcast multicast control channel (MBMS Control Channel, MCCH) data
  • MBS is the service data of each broadcast multicast
  • each bit in the DCI can indicate a broadcast group The scheduling status of the broadcast.
  • one bit on the DCI corresponds to one or more MBSs, such as MBS(0) corresponds to the 0th bit, such as MBS(1) and MBS(7) corresponds to the 1st bit etc.
  • MBS(4) corresponds to the 4th bit.
  • the first bit if the value is 1, it indicates that MBS is scheduled, it can indicate that any one of MBS(1) and MBS(7) is scheduled or both of them are scheduled; if the value is 0, it indicates that the MBS is scheduled. No MBS is scheduled, then it may indicate that neither MBS (1) nor MBS (7) are scheduled.
  • the corresponding relationship between the data and each bit in the DCI is not limited here.
  • the service identification number and the minimum identification number of the corresponding control channel data are sorted, and then with Each bit in the DCI establishes a corresponding relationship, or based on other arrangements, the data indicated by each bit in the DCI is different, which is not limited herein.
  • the terminal device can determine whether to detect the control channel corresponding to the data of the receiving beam based on the DCI corresponding to any beam. channel.
  • the terminal device may perform combined reception processing on each control channel carrying the DCI to obtain the DCI corresponding to each receive beam, and then determine whether to detect the control channel corresponding to the data of the receive beam based on any DCI.
  • the network device determines that the priority of the wake-up information is lower than or equal to the priority of other signals, the network device cancels Send the above wakeup message.
  • the terminal device when the terminal device does not receive the wake-up information, that is, it does not receive the wake-up information sent by the network device when the wake-up information is received, the terminal device can directly detect the timing based on the corresponding receiving beam. , and detect the control channel corresponding to the data of the receiving beam.
  • the signals or channels that can conflict with the resources corresponding to the wake-up information include signals or channels dynamically scheduled by the network device, periodic downlink channels or signals configured by the network device, and the like.
  • the signal or signal dynamically scheduled by the network device may be a dynamic CSI-RS signal, a physical downlink shared channel PDSCH, and a physical downlink control channel PDCCH detected by the network device.
  • the periodic downlink channel or signal configured by the network device may be the physical downlink control channel PDSCH based on semi-persistent scheduling, periodic CSI-RS signal.
  • the terminal device determines that the wake-up information corresponds to The resources corresponding to other signals or channels conflict with the resources corresponding to other signals or channels, and the control channel corresponding to the data of the beam is detected directly based on the detection timing of the corresponding beam.
  • the terminal device can determine the detection timing of the receiving beams within the coverage of the terminal device through the indication information, which can reduce the function caused by the terminal device detecting the control channels corresponding to the data of all the receiving beams. consume consumption. Further, the terminal device can be based on the detection timing of the receiving beam corresponding to the terminal device, and the detection start time and detection end time of each receiving beam, so that the terminal device has better power saving effect and lower signaling overhead.
  • the terminal device by associating the detection timing of each receiving beam with the DRX cycle, that is, the terminal device performs control channel detection in the detection interval based on the DRX cycle, and further in the detection interval of the DRX cycle.
  • the detection start time and detection end time corresponding to the beam are used as more accurate detection timings, so as to achieve better power saving effect.
  • FIG. 12 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • the terminal device provided by this embodiment of the present application includes a memory 1220 , a transceiver 1200 , and a processor 1210 .
  • the transceiver 1200 is configured to receive and transmit data under the control of the processor 1210, the memory 1220 is configured to store a computer program, and the processor 1210 is configured to read the computer program in the memory 1220 to achieve:
  • the control channel corresponding to the data of the receiving beam is detected.
  • the above-mentioned processor 1210 is configured to:
  • the DRX parameters include a DRX cycle and a detection interval within the DRX cycle, and the detection interval is a time interval during which the terminal device detects the control channel;
  • the control channel corresponding to the data of the reception beam is detected.
  • the above-mentioned processor 1210 is configured to:
  • the time corresponding to the first detection opportunity in the detection opportunities of the receiving beam corresponding to the above-mentioned terminal equipment is determined as the detection start time of the receiving beam corresponding to the above-mentioned terminal equipment, and the last detection opportunity corresponds to The time is determined as the detection end time of the receiving beam corresponding to the above-mentioned terminal device.
  • the above-mentioned processor 1210 is configured to:
  • channel detection indication information sent by the network device, where the channel detection indication information is used to determine whether the terminal device detects the control channel corresponding to the data of the receive beam;
  • control channel corresponding to the data of the receiving beam is determined based on the channel detection indication information
  • control channel corresponding to the data of the receiving beam is detected based on the detection timing of the receiving beam corresponding to the terminal device.
  • the above-mentioned processor 1210 is configured to:
  • the control channel corresponding to the data of the above-mentioned receiving beam is detected based on the above-mentioned wake-up information and the detection timing of the receiving beam corresponding to the above-mentioned terminal device;
  • the above wake-up information includes any one of the wake-up signal WUS or the downlink control information DCI.
  • the above-mentioned processor 1210 is configured to:
  • the control channel corresponding to the data of the above-mentioned receiving beam is detected based on the detection timing of the receiving beam corresponding to the above-mentioned terminal device.
  • the above-mentioned DCI is used to indicate the scheduling state of data of each receiving beam; when the above-mentioned wake-up information includes the above-mentioned DCI, the above-mentioned processor 1210 is configured to:
  • the data corresponding to the scheduled data of the receiving beam corresponding to the terminal device is detected. control channel.
  • the data indicated by different bits in the DCI are different, and one bit indicates the scheduling status of at least one piece of data.
  • control channel used to carry the above-mentioned DCI is mapped on consecutive symbols in a time-division multiplexing manner.
  • the above-mentioned WUS is a sequence signal, and the above-mentioned WUS is determined by the DRX cycle and the cell number corresponding to the above-mentioned terminal equipment.
  • each of the above-mentioned receiving beams corresponds to a respective WUS, and the direction of each of the above-mentioned receiving beams is the same as the direction of the corresponding WUS.
  • the lengths of the WUSs corresponding to each of the foregoing receive beams are the same.
  • the above-mentioned indication information includes any of the following:
  • the relevant information used to determine the detection timing of the data of each receiving beam includes the detection period and the detection timing of the data of all the receiving beams in one detection period.
  • the detection timing of the data of each of the above receiving beams satisfies any one of the following:
  • the detection timings of the data of each of the above-mentioned receiving beams are discontinuous, and the detection timings of the data of each of the above-mentioned receiving beams are rotated in the time domain;
  • the detection timing of the data of each of the above receiving beams is continuous
  • the detection timing of the data of each of the above receiving beams is allocated according to the duration.
  • the detection timings of the data of each of the receiving beams are discontinuous, and the detection timings of the data of each of the receiving beams are rotated in the time domain, the detection timings of the data of each of the receiving beams are not continuous. Determined by the following expression:
  • x represents the index number of the receiving beam
  • M is the number of receiving beams
  • S(x) is the numbered set of detection occasions of the data of the receiving beam whose index number is x
  • N is the total number of detection occasions of the data of all received beams in a detection period
  • the detection timing of the data of each of the above-mentioned receiving beams is determined by the following expression:
  • x represents the index number of the receiving beam
  • M is the number of receiving beams
  • S(x) is the numbered set of detection occasions of the data of the receiving beam whose index number is x
  • R is the detection time continuously occupied by each of the above receiving beams
  • the number of opportunities, Q is the total number of detection opportunities continuously occupied by M receive beams
  • N is the total number of detection occasions of the data of all received beams in the above detection period
  • the above-mentioned indication information is the above-mentioned related information
  • the above-mentioned determining the detection timing of the receiving beam corresponding to the above-mentioned terminal device according to the above-mentioned indication information includes:
  • the detection timings in the detection time interval corresponding to the receiving beams are determined as the detection timings of the data of the receiving beams corresponding to the above-mentioned terminal equipment. .
  • the number of detection opportunities for data of all receiving beams is not an integer multiple of the number of all receiving beams, after the detection opportunities for data of all receiving beams are evenly distributed, the remaining data is detected. Opportunities are handled in any of the following ways:
  • the detection timing of the remaining data is not allocated to any receiving beam
  • the data detection timings of each of the above-mentioned receiving beams are consecutive, after each of the above-mentioned receiving beams is allocated the data detection timings of the first value, the data detection timings of the second value are allocated to each of the above-mentioned receiving beams, wherein the above-mentioned The first value is greater than the second value described above.
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by processor 1210 and various circuits of memory represented by memory 1220 are linked together.
  • the bus architecture may also link together various other circuits, such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be described further herein.
  • the bus interface provides the interface.
  • Transceiver 1200 may be a number of elements, including a transmitter and a receiver, providing means for communicating with various other devices over transmission media including wireless channels, wired channels, fiber optic cables, and the like Transmission medium.
  • the user interface 1230 may also be an interface capable of externally connecting a desired device, and the connected devices include but are not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 1210 is responsible for managing the bus architecture and general processing, and the memory 1220 may store data used by the processor 1210 in performing operations.
  • the processor 1210 may be a CPU (central processor), an ASIC (Application Specific Integrated Circuit, an application-specific integrated circuit), an FPGA (Field-Programmable Gate Array, a field programmable gate array) or a CPLD (Complex Programmable Logic Device) , complex programmable logic devices), the processor can also use a multi-core architecture.
  • CPU central processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • CPLD Complex Programmable Logic Device
  • complex programmable logic devices complex programmable logic devices
  • the processor is configured to execute any of the foregoing methods provided by the embodiments of the present application according to the obtained executable instructions by invoking the computer program stored in the memory.
  • the processor and memory may also be physically separated.
  • terminal device provided by the embodiment of the present application can implement all the method steps implemented by the above method embodiment, and can achieve the same technical effect, and the same as the method embodiment in this embodiment is not repeated here.
  • the parts and beneficial effects will be described in detail.
  • FIG. 13 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • the network device provided by this embodiment of the present application includes a memory 1320 , a transceiver 1300 , and a processor 1310 .
  • the transceiver 1300 is configured to receive and transmit data under the control of the processor 1310, the memory 1320 is configured to store a computer program, and the processor 1310 is configured to read the computer program in the memory 1320 to achieve:
  • the above-mentioned indication information is sent, where the above-mentioned indication information is used for each terminal device in the terminal device group to determine the detection timing of the corresponding receive beam.
  • the above-mentioned processor 1310 is further configured to:
  • the DRX parameters are used for each of the above-mentioned terminal equipment to determine the detection start time and detection end time of the receiving beam corresponding to the terminal equipment based on the above-mentioned DRX parameters and the detection timing of the receiving beam corresponding to the terminal equipment, the above-mentioned DRX parameters It includes the DRX cycle and the detection interval in the above-mentioned DRX cycle.
  • the above-mentioned processor 1310 is further configured to:
  • the above wake-up information includes any one of WUS or DCI.
  • the above-mentioned processor 1310 is further configured to:
  • the sending of the wake-up information is canceled.
  • the above-mentioned processor 1310 is further configured to:
  • Sending channel detection indication information is used for each of the above-mentioned terminal equipment to detect the control channel corresponding to the data of the above-mentioned receiving beam based on the above-mentioned channel detection indication information, based on the detection timing of the receiving beam corresponding to the terminal equipment, to detect the above-mentioned receiving beam.
  • the above-mentioned channel detection indication information is used to determine whether each of the above-mentioned terminal equipment detects the control channel corresponding to the data of the above-mentioned receiving beam.
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by processor 1310 and various circuits of memory represented by memory 1320 are linked together.
  • the bus architecture may also link together various other circuits, such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be described further herein.
  • the bus interface provides the interface.
  • Transceiver 1300 may be multiple elements, ie, including a transmitter and a receiver, providing means for communicating with various other devices over transmission media including wireless channels, wired channels, fiber optic cables, and the like.
  • the processor 1310 is responsible for managing the bus architecture and general processing, and the memory 1320 may store data used by the processor 1310 in performing operations.
  • the processor 1310 can be a central processor (CPU), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or a complex programmable logic device (Comple13 Programmable Logic Device). , CPLD), the processor can also use a multi-core architecture.
  • CPU central processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • CPLD complex programmable logic device
  • the network device provided by the embodiment of the present application can implement all the method steps implemented by the above method embodiment, and can achieve the same technical effect, and the same as the method embodiment in this embodiment is not repeated here.
  • the parts and beneficial effects will be described in detail.
  • FIG. 14 is a schematic structural diagram of a data transmission apparatus provided by an embodiment of the present application.
  • the data transmission device 14 provided in the embodiment of the present application includes:
  • a receiving unit 141 configured to receive indication information for determining the detection timing of the receiving beam
  • the first determining unit 142 is configured to determine, according to the above-mentioned indication information, the detection timing of the receiving beam corresponding to the above-mentioned terminal device;
  • the detection unit 143 is configured to detect the control channel corresponding to the data of the reception beam based on the detection timing of the reception beam corresponding to the terminal device.
  • the above-mentioned detection unit 143 is configured to:
  • the DRX parameters include a DRX cycle and a detection interval in the DRX cycle, and the detection interval is a time interval during which the terminal device detects the control channel;
  • the control channel corresponding to the data of the reception beam is detected.
  • the above-mentioned detection unit 143 is configured to:
  • the time corresponding to the first detection opportunity in the detection opportunities of the receiving beam corresponding to the above-mentioned terminal equipment is determined as the detection start time of the receiving beam corresponding to the above-mentioned terminal equipment, and the last detection opportunity corresponds to The time is determined as the detection end time of the receiving beam corresponding to the above-mentioned terminal device.
  • the above receiving unit 141 is configured to:
  • channel detection indication information sent by a network device, where the channel detection indication information is used to determine whether the terminal device detects a control channel corresponding to the data of the receive beam;
  • the above detection unit 143 is configured as:
  • control channel corresponding to the data of the receiving beam is determined based on the channel detection indication information
  • control channel corresponding to the data of the receiving beam is detected based on the detection timing of the receiving beam corresponding to the terminal device.
  • the above-mentioned detection unit 143 is configured to:
  • the control channel corresponding to the data of the receiving beam is detected
  • the above wake-up information includes any one of the wake-up signal WUS or the downlink control information DCI.
  • the above-mentioned detection unit 143 is configured to:
  • the control channel corresponding to the data of the above-mentioned receiving beam is detected based on the detection timing of the receiving beam corresponding to the above-mentioned terminal device
  • the above-mentioned DCI is used to indicate the scheduling state of data of each receiving beam; when the above-mentioned wake-up information includes the above-mentioned DCI, the above-mentioned detection unit 143 is configured to:
  • the data corresponding to the scheduled data of the receiving beam corresponding to the terminal device is detected. control channel.
  • the data indicated by different bits in the DCI are different, and one bit indicates the scheduling status of at least one piece of data.
  • control channel used to carry the above-mentioned DCI is mapped on consecutive symbols in a time-division multiplexing manner.
  • the above WUS is a sequence signal, and is determined according to the DRX cycle and the cell number corresponding to the above terminal equipment.
  • each of the above-mentioned receive beams corresponds to a respective WUS, and the direction of each of the above-mentioned receive beams is the same as the direction of the corresponding WUS.
  • the lengths of the WUSs corresponding to each of the foregoing receive beams are the same.
  • the above-mentioned indication information includes any of the following:
  • the relevant information used to determine the detection timing of the data of each receiving beam includes the detection period and the detection timings of the data of all the receiving beams within one detection period.
  • the detection timing of the data of each of the above receiving beams satisfies any one of the following:
  • the detection timings of the data of each of the above-mentioned receiving beams are discontinuous, and the detection timings of the data of each of the above-mentioned receiving beams are rotated in the time domain;
  • the detection timing of the data of each of the above receiving beams is continuous
  • the detection timing of the data of each of the above-mentioned receiving beams is allocated according to the duration.
  • the detection timing of the data of each of the receiving beams is discontinuous, and the detection timing of the data of each of the receiving beams is rotated in the time domain, the detection timing of the data of each of the receiving beams is not continuous. Determined by the following expression:
  • x represents the index number of the receiving beam
  • M is the number of receiving beams
  • S(x) is the numbered set of detection occasions of the data of the receiving beam whose index number is x
  • N is the total number of detection occasions of the data of all received beams in a detection period
  • the detection timing of the data of each of the above-mentioned receiving beams is determined by the following expression:
  • x represents the index number of the receiving beam
  • M is the number of receiving beams
  • S(x) is the numbered set of detection occasions of the data of the receiving beam whose index number is x
  • R is the detection time continuously occupied by each of the above receiving beams
  • the number of opportunities, Q is the total number of detection opportunities continuously occupied by M receive beams
  • N is the total number of detection occasions of the data of all received beams in the above detection period
  • the above-mentioned indication information is the above-mentioned related information
  • the above-mentioned determining the detection timing of the receiving beam corresponding to the above-mentioned terminal device according to the above-mentioned indication information includes:
  • the detection timings in the detection time interval corresponding to the receiving beams are determined as the detection timings of the data of the receiving beams corresponding to the above-mentioned terminal equipment. .
  • the number of detection opportunities for data of all receiving beams is not an integer multiple of the number of all receiving beams, after the detection opportunities for data of all receiving beams are evenly distributed, the remaining data is detected. Opportunities are handled in any of the following ways:
  • the detection timing of the remaining data is not allocated to any receiving beam
  • the data detection timings of each of the above-mentioned receiving beams are consecutive, after each of the above-mentioned receiving beams is allocated the data detection timings of the first value, the data detection timings of the second value are allocated to each of the above-mentioned receiving beams, wherein the above-mentioned The first value is greater than the second value described above.
  • FIG. 15 is another schematic structural diagram of a data transmission apparatus provided by an embodiment of the present application.
  • the data transmission device 15 provided in the embodiment of the present application includes:
  • the second determining unit 151 is configured to determine the indication information for determining the detection timing of the receiving beam
  • the sending unit 152 is configured to send the above-mentioned indication information, where the above-mentioned indication information is used for each terminal device in the terminal device group to determine the detection timing of the corresponding receive beam.
  • the above-mentioned sending unit 152 is further configured to:
  • the above DRX parameters are used for each above-mentioned terminal equipment to determine the detection start time and detection end time of the receiving beams corresponding to the terminal equipment based on the above-mentioned DRX parameters and the detection timing of the receiving beams corresponding to the terminal equipment, the above-mentioned DRX parameters It includes the DRX cycle and the detection interval in the above-mentioned DRX cycle.
  • the above-mentioned sending unit 152 is further configured to:
  • the above wake-up information includes any one of WUS or DCI.
  • the above-mentioned sending unit 152 is further configured to:
  • the sending of the wake-up information is canceled.
  • the above-mentioned sending unit 152 is further configured to:
  • Sending channel detection indication information is used for each of the above-mentioned terminal equipment to detect the control channel corresponding to the data of the above-mentioned receiving beam based on the above-mentioned channel detection indication information, based on the detection timing of the receiving beam corresponding to the terminal equipment, to detect the above-mentioned receiving beam.
  • the above-mentioned channel detection indication information is used to determine whether each of the above-mentioned terminal equipment detects the control channel corresponding to the data of the above-mentioned receiving beam.
  • the data transmission device 15 provided in this embodiment of the present application can implement all the method steps implemented by the above method embodiments, and can achieve the same technical effect, and the method in this embodiment will not be implemented here. The same parts and beneficial effects of the examples will be described in detail.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the above-mentioned integrated units are implemented in the form of software functional units and sold or used as independent products, they may be stored in a processor-readable storage medium.
  • the technical solutions of the present application can be embodied in the form of software products in essence, or the parts that contribute to the prior art, or all or part of the technical solutions, and the computer software products are stored in a storage medium , which includes several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor (processor) to execute all or part of the steps of the foregoing methods in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .
  • the processor-readable storage medium described above may be any available medium or data storage device that can be accessed by a processor, including but not limited to magnetic storage (eg, floppy disk, hard disk, magnetic tape, magneto-optical disk (MO)) etc.), optical memory (such as CD, DVD, BD, HVD, etc.), and semiconductor memory (such as ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid-state drive (SSD)), etc.
  • magnetic storage eg, floppy disk, hard disk, magnetic tape, magneto-optical disk (MO)
  • optical memory such as CD, DVD, BD, HVD, etc.
  • semiconductor memory such as ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid-state drive (SSD)
  • the embodiments of the present application may be provided as a method, a system, or a computer program product. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media having computer-usable program code embodied therein, including but not limited to disk storage, optical storage, and the like.
  • processor-executable instructions may also be stored in a processor-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a particular manner, such that the instructions stored in the processor-readable memory result in the manufacture of means including the instructions product, the instruction means implements the functions specified in the flow or flow of the flowchart and/or the block or blocks of the block diagram.
  • processor-executable instructions can also be loaded onto a computer or other programmable data processing device to cause a series of operational steps to be performed on the computer or other programmable device to produce a computer-implemented process that Execution of the instructions provides steps for implementing the functions specified in the flowchart or blocks and/or the block or blocks of the block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种数据传输方法及装置。该方法包括:接收用于确定接收波束的检测时机的指示信息;根据指示信息,确定终端设备对应的接收波束的检测时机;以及基于终端设备对应的接收波束的检测时机,检测接收波束的数据对应的控制信道。采用本申请实施例,可在数据传输中节省终端设备电能消耗,提升用户体验。

Description

数据传输方法及装置
相关申请的交叉引用
本申请要求于2020年8月14日在中国国家知识产权局提交的中国专利申请No.202010819607.8的优先权,其公开内容通过引用整体并入本文。
技术领域
本申请涉及通信技术,尤其涉及一种数据传输方法及装置。
背景技术
在通信技术领域,终端设备通过波束接收网络设备发送的相关数据,如信道状态信息参考信号(Channel-state information reference signal,CSI-RS)波束以及同步信号块(Synchronization Signal and PBCH block,SSB)波束。
与此同时,为了延长终端设备接收数据的电池使用时长,在现有技术1中,网络设备配置非连续接收(Discontinuous reception,DRX)周期。如图1所示,图1是现有技术中终端设备基于DRX周期检测控制信道的示意图。终端设备在DRX周期内的检测区间(on Duration)内连续检测波束传输的数据对应的控制信道,在DRX周期内的其他时间如果没有检测到有效调度信令,终端设备进入休眠状态,从而达到省电的目的。
在现有技术2中,网络设备为终端设备配置多个接收波束,每个波束配置独立的唤醒信号(wake up signal,WUS)。如图2所示,图2是现有技术中波束与WUS的配置关系示意图。每个接收波束对应的WUS是独立发送的,且配置有单独的方向。网络设备发送WUS1(在波束方向X),以指示终端设备对WUS1对应的波束的数据的控制信道进行检测。当网络设备不发送任何WUS时,终端设备将不会对控制信道进行检测,从而达到省点电的目的。
但是,在现有技术1中,无论网络设备是否有数据发送,终端设备均需要在DRX周期内的检测区间内进行检测控制信道,因此终端设备仍然会有功耗消耗。在现有技术2中,由于各波束的WUS具有一致性,终端设备会 接收到各波束对应的WUS,进而会对无数据调度的波束进行对应的控制信道检测,从而增加终端设备的功耗。
因此,如何使终端设备在数据传输过程中有效节电,成为亟需解决的问题。
发明内容
本申请实施例提供了一种数据传输方法及装置,可在数据传输中节省终端设备电能消耗,提升用户体验高。
第一方面,本申请实施例提供了一种数据传输方法,应用于终端设备,该方法包括:
接收用于确定接收波束的检测时机的指示信息;
根据上述指示信息,确定上述终端设备对应的接收波束的检测时机;以及
基于上述终端设备对应的接收波束的检测时机,检测上述接收波束的数据对应的控制信道。
第二方面,本申请实施例提供了一种数据传输方法,应用于网络设备,该方法包括:
确定用于确定接收波束的检测时机的指示信息;以及
发送上述指示信息,上述指示信息用于终端设备组中每个终端设备确定相对应的接收波束的检测时机。
第三方面,本申请实施例提供了一种终端设备,包括存储器,收发机,处理器:
存储器,被配置为存储计算机程序;收发机,被配置为在上述处理器的控制下收发数据;处理器,被配置为读取上述存储器中的计算机程序并执行上述第一方面所提供的方法。
第四方面,本申请实施例提供了一种网络设备,包括存储器,收发机,处理器:
存储器,被配置为存储计算机程序;收发机,被配置为在上述处理器的控制下收发数据;处理器,被配置为读取上述存储器中的计算机程序并执行上述第二方面所提供的方法
第五方面,本申请实施例提供了一种数据传输装置,该装置包括:
接收单元,被配置为接收用于确定接收波束的检测时机的指示信息;
第一确定单元,被配置为根据上述指示信息,确定上述终端设备对应的接收波束的检测时机;以及
检测单元,被配置为基于上述终端设备对应的接收波束的检测时机,检测上述接收波束的数据对应的控制信道。
第六方面,本申请实施例提供了一种数据传输装置,该装置包括:
第二确定单元,被配置为确定用于确定接收波束的检测时机的指示信息;以及
发送单元,被配置为发送上述指示信息,上述指示信息用于终端设备组中每个终端设备确定相对应的接收波束的检测时机。
第七方面,本申请实施例提供了一种处理器可读存储介质,上述处理器可读存储介质存储有计算机程序,上述计算机程序用于使上述处理器执行上述第一方面和/或第二方面所提供的方法。
在本申请实施例中,终端设备通过指示信息,可确定终端设备在其覆盖范围内的接收波束的检测时机,可减少终端设备对所有接收波束的数据对应的控制信道进行检测所带来的功耗消耗。进一步的,终端设备可基于终端设备对应的接收波束的检测时机,在对应的检测时机检测该接收波束的数据对应的控制信道,有效节省数据传输中终端设备电能消耗,提升用户体验。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是现有技术中终端设备基于DRX周期检测控制信道的示意图;
图2是现有技术中波束与WUS的配置关系示意图;
图3是本申请实施例提供的一种通信网络架构示意图;
图4是本申请实施例提供的数据的传输方法的时序示意图;
图5是本申请实施例提供的检测周期内检测时机的分布示意图;
图6是本申请实施例提供的确定接收波束的检测时机的一场景示意图;
图7是本申请实施例提供的确定接收波束的检测时机的另一场景示意图;
图8是本申请实施例提供的确定检测开始时间和检测结束时间的场景示意图;
图9是本申请实施例提供的WUS的复用关系的场景示意图;
图10是本申请实施例提供的控制信道的复用关系的场景示意图;
图11是本申请实施例提供的DCI指示数据的调度状态的场景示意图;
图12是本申请实施例提供的终端设备的结构示意图;
图13是本申请实施例提供的网络设备的结构示意图;
图14是本申请实施例提供的数据传输装置的一结构示意图;以及
图15是本申请实施例提供的数据传输装置的另一结构示意图;
具体实施方式
本申请实施例中术语“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
本申请实施例中术语“多个”是指两个或两个以上,其它量词与之类似。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,并不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例提供了一种数据传输方法及装置,可在数据传输中节省终端设备电能消耗,提升用户体验。
其中,方法和装置是基于同一申请构思的,由于方法和装置解决问题的原理相似,因此装置和方法的实施可以相互参见,重复之处不再赘述。
本申请实施例提供的技术方案可以适用于多种系统,尤其是5G系统。例如适用的系统可以是全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)通用分组无线业务(general packet radio service,GPRS)系统、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时 分双工(time division duplex,TDD)系统、高级长期演进(long term evolution advanced,LTE-A)系统、通用移动系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)系统、5G新空口(New Radio,NR)系统等。这多种系统中均包括终端设备和网络设备。系统中还可以包括核心网部分,例如演进的分组系统(Evolved Packet System,EPS)、5G系统(5GS)等。
本申请实施例涉及的终端设备,可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备等。在不同的系统中,终端设备的名称可能也不相同,例如在5G系统中,终端设备可以称为用户设备(User Equipment,UE)。无线终端设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网(Core Network,CN)进行通信,无线终端设备可以是移动终端设备,如移动电话(或称为“蜂窝”电话)和具有移动终端设备的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiated Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端设备也可以称为系统、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、用户装置(user device),本申请实施例中并不限定。
本申请实施例涉及的网络设备,可以是基站,该基站可以包括多个为终端设备提供服务的小区。根据具体应用场合不同,基站又可以称为接入点,或者可以是接入网中在空中接口上通过一个或多个扇区与无线终端设备通信的设备,或者其它名称。网络设备可用于将收到的空中帧与网际协议(Internet Protocol,IP)分组进行相互更换,作为无线终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)通信网络。网络设备还可协调对空中接口的属性管理。例如,本申请实施例涉及的网络设备可以是GSM或CDMA中的网络设备(Base Transceiver Station,BTS),也 可以是WCDMA中的网络设备(NodeB),还可以LTE系统中的演进型网络设备(evolutional Node B,eNB或e-NodeB)、5G网络架构(next generation system)中的5G基站(gNB),也可以是家庭演进基站(Home evolved Node B,HeNB)、中继节点(relay node)、家庭基站(femto)、微微基站(pico)等,本申请实施例中并不限定。在一些网络结构中,网络设备可以包括集中单元(centralized unit,CU)节点和分布单元(distributed unit,DU)节点,集中单元和分布单元也可以地理上分开布置。
网络设备与终端设备之间可以各自使用一或多根天线进行多输入多输出(Multi Input Multi Output,MIMO)传输,MIMO传输可以是单用户MIMO(Single User MIMO,SU-MIMO)或多用户MIMO(Multiple User MIMO,MU-MIMO)。根据根天线组合的形态和数量,MIMO传输可以是2D-MIMO、3D-MIMO、FD-MIMO或massive-MIMO,也可以是分集传输或预编码传输或波束赋形传输等。
参见图3,图3是本申请实施例提供的一种通信网络架构示意图。在图3中,网络设备110可先确定用于指示接收波束的检测时机的指示信息,并将该指示信息发送至终端设备组。其中,终端设备组可包括多个终端设备,如图3中的终端设备120、终端设备130以及终端设备140。对于终端设备组中的任一终端设备(以终端设备120为例),终端设备120在接收到上述指示信息之后,可根据指示信息确定终端设备120对应的接收波束的检测时机,从而基于终端设备120对应的检测时机,检测接收波束的数据对应的控制信道,从而在检测到数据之后接收并解调和/或译码数据对应的信道,如相对应的物理下行共享信道(physical downlink shared channel,PDSCH)。其中,本身申请实施例中被检测的信道可以为承载波束的数据的物理下行控制信道(Physical Downlink Control Channel,PDCCH)。
参见图4,图4是本申请实施例提供的数据的传输方法的时序示意图。图4所示的数据的传输方法包括以下步骤:
步骤S1,确定用于确定接收波束的检测时机的指示信息。
在一些可行的实施方式中,网络设备确定各接收波束的检测时机之后,将结果作为指示信息发送至终端设备组,用于任一终端设备根据指示信息确定终端设备对应的接收波束的数据对应的检测时机。
具体的,网络设备先确定接收波束的数据对应的控制信道检测的检测周 期,进一步在检测周期内确定各接收波束的检测时机。其中,上述检测周期可以是各接收波束对一种数据对应的控制信道进行检测的周期,也可以是终端设备所在小区内所有接收波束的数据对应于同一个检测周期,在此不做限制。
需要特别说明的是,上述检测周期还可以是系统帧号所能表示的最长的时间,如系统帧号表示的范围是0到1024,则上述检测周期的时长为1024个无线帧的时间长度。
其中,上述接收波束包括SSB波束以及CSI-RS波束。当接收波束为SSB波束时,接收波束的数据可以为广播组播业务数据,当接收波束为CSI-RS波束时,接收波束的数据可以是CSI-RS信号所对应的相关数据。其中,上述数据还可以为寻呼消息、系统广播消息以及其它终端设备组接收的数据,在此不做限制。
进一步的,网络设备确定每个检测周期内所有接收波束的检测时机,进而将所有检测时机分配给各接收波束。网络设备先在每个检测周期内,确定可配置接收波束的检测时机的时隙,进而确定检测时机在该时隙中的位置和个数。其中,一个时隙可以存在一个或者多个接收波束的检测时机,检测时机在时隙中的位置在此不做限制。
其中,在确定每个检测周期内的所有的检测时机时,需要扣除掉无效的检测时机。无效的检测时机可以为在系统中不能作为控制信道的检测符号,如被定义为上行符号,或者被定义为灵活符号(具体上行符号或者下行符号由专用信令通知)。即每个检测周期内的有效检测时机,只有其对应的1个或者多个符号全部是下行符号时,才算将其作为一个有效的控制信道检测时机。
如图5所示,图5是本申请实施例提供的检测周期内检测时机的分布示意图。在图5中,网络设备确定一个检测周期(T_cell)为10ms,偏移量(T_offset)为1ms。在一个时隙中只存在一个接收波束的检测时机,且每个时隙中的检测时机在该时隙的符号0上的情况下,该检测周期内时隙的个数即为接收波束的检测时机的数量。图5中时隙对应的子载波间隔(subcarrier spacing,SCS)为60KHz,则每个时隙长度为0.25ms,即每1ms中存在4个时隙,对于10ms的检测周期来说,该检测周期内一共存在40个检测时机。
其中,每单位时间(1ms)中的时隙个数由相对应的子载波间隔确定, 当子载波间隔为15KHz时,每单位时间内存在1个时隙,时隙长度为1ms;当子载波间隔为30KHz时,每单位时间内存在2个时隙,时隙长度为0.5ms;当子载波间隔为60KHz时,每单位时间内存在4个时隙,时隙长度为0.25ms;当子载波间隔为120KHz时,每单位时间内存在8个时隙,时隙长度为0.125ms;当子载波间隔为240KHz时,每单位时间内存在16个时隙,时隙长度为0.0625ms。
进一步的,网络设备在确定每个检测周期内的检测时机的数量之后,可将每个检测周期内的检测时机分配至每个接收波束。其中,网络设备在为每个接收波束分配检测时机时,可基于以下任一项方式进行确定:
每个接收波束的数据的检测时机不连续,且每个接收波束的数据的检测时机在时域轮替;
每个接收波束的数据的检测时机连续;
每个接收波束的数据的检测时机按照时长分配。
具体的,每个接收波束的数据的检测时机不连续,且每个接收波束的数据的检测时机在时域轮替,具体为在检测周期内,按照一定的顺序为每个接收波束依次分配一个接收波束的检测时机。进一步按照相同的顺序,依次再为每个接收波束依次分配一个检测时机,直至将检测周期内所有的检测时机分配完毕。每个接收波束的数据的检测时机具体可通过以下表达式确定:
S(x)={x,1*M+x,2*M+x,…,k 0*M+x};
Figure PCTCN2021106311-appb-000001
x=0,1,…,M-1;
其中,x表示接收波束的索引号,M为接收波束的数量,S(x)为索引号为x的接收波束的数据的检测时机的编号集合,
Figure PCTCN2021106311-appb-000002
为向下取整,N为一个检测周期内所有接收波束的数据的检测时机的总数量。
参见图6,图6是本申请实施例提供的确定接收波束的检测时机的一场景示意图。假设接收波束为SSB波束,SSB波束的数量为4,各SSB波束分别为SSB-0、SSB-1、SSB-2以及SSB-3,检测周期同样为10ms,SCS为60KHz,每个时隙中只存在一个SSB波束的检测时机,一个检测周期内所有检测时机的数量为40(各检测时机的编号依次为0,1,2,3,…,39)。基于上述表达式可在该检测周期内,为每个SSB波束依次分配一个检测时机。进一步按照相同的 顺序,依次再为每个SSB波束依次分配一个检测时机,直至将检测周期内所有的检测时机分配完毕。
如SSB-0波束的检测时机的编号分别为0,4,8,12…36;SSB-1波束的检测时机的编号分别为:1,5,9,13…37;SSB-2波束的检测时机的编号分别为:2,6,10,14…38;SSB-3波束的检测时机的编号分别为3,7,11,15…39。
具体的,每个接收波束的数据的检测时机连续,具体为在检测周期内,按照一定的顺序,依次为每个接收波束分配R个检测时机,然后再按照相同的顺序,依次为每个接收波束分配R个检测时机,直至将所有的检测时机分配完毕。每个接收波束对应的检测时机可基于以下表达式确定:
S(x)={x*M*R+k 2,(x+1)*M*R+k 2,(x+2)*M*R+
k 2,…,k 1*M*R+k 2};
Figure PCTCN2021106311-appb-000003
Q=M*R;
x=0,1,…,M-1;
k 2=0,1,…,R-1;
其中,x表示接收波束的索引号,M为接收波束的数量,S(x)为索引号为x的接收波束的数据的检测时机的编号集合,R为每个接收波束所连续占用的检测时机的数量,Q为M个接收波束所连续占用的检测时机的总数量,
Figure PCTCN2021106311-appb-000004
为向下取整,N为一个检测周期内所有接收波束的数据的检测时机的总数量。
参见图7,图7是本申请实施例提供的确定接收波束的检测时机的另一场景示意图。同样假设接收波束为SSB波束,SSB波束的数量为4,各SSB波束分别为SSB-0、SSB-1、SSB-2以及SSB-3,检测周期同样为10ms,SCS为60KHz,每个时隙中只存在一个SSB波束的检测时机,一个检测周期内所有检测时机的数量为40(各检测时机的编号依次为0,1,2,3,…,39)。基于上述公式可在该检测周期内,为每个SSB波束依次分配一个检测时机。进一步按照相同的顺序,依次再为每个SSB波束依次分配一个检测时机,直至将检测周期内所有的检测时机分配完毕。
如SSB-0波束的检测时机的编号分别为0,1,2,3,16,17,18,19;SSB-1波束的检测时机的编号分别为:4,5,6,7,20,21,22,23;SSB-2波束的检测时机的编号分别为:8,9,10,11,24,25,26,27;SSB-3波束的检测时机的编号分别为12,13,14,15,28,29,30,31。
其中,上述顺序包括但不限于各接收波束按照波束编号从大到小排序,从小到大排序以及基于其他排序方式得到的接收波束顺序,在此不做限制。
具体的,每个接收波束的数据的检测时机按照时长分配,具体为确定各接收波束在检测周期内的检测时长区间;对于每个接收波束,将检测周期内所有接收波束的检测时机中,该接收波束对应的检测时长区间内的检测时机,确定为该接收波束的检测时机。即在检测周期内,为每个接收波束分配一个检测时长区间,该检测时长区间内的所有检测时机均为与之对应的接收波束的检测时机。
如检测周期为10ms,检测时长区间的区间长度为2.5ms。同样假设接收波束为SSB波束,且SSB波束的数量为4,各SSB波束分别为SSB-0、SSB-1、SSB-2以及SSB-3,SCS为60KHz,每个时隙中只存在一个SSB波束的检测时机,一个检测周期内所有检测时机的数量为40(各检测时机的编号依次为0,1,2,3,…,39)。基于上述方式,SSB-0波束对应的检测时长区间为0ms-2.5ms,SSB-1波束对应的检测时长区间为2.5ms-5ms,SSB-2波束对应的检测时长区间为5ms-7.5ms,SSB-3波束对应的检测时长区间为7.5ms-10ms。此时,SSB-0波束对应的检测时机的编号分别为0,1,2,3,4,5,6,7,8,9;SSB-1波束对应的检测时机的编号分别为10,11,12,13,14,15,16,17,18,19;SSB-2波束对应的检测时机的编号分别为20,21,22,23,24,25,26,27,28,29;SSB-3波束对应的检测时机的编号分别为30,31,32,33,34,35,36,37,38,39。
进一步的,在基于上述假设场景下(如假设接收波束的数量为4,检测周期同样为10ms,SCS为60KHz,每个时隙中只存在一个接收波束的检测时机,一个检测周期内所有检测时机的数量为40),即一个检测周期内所有的检测时机的数量为所有接收波束的整数倍时,检测周期内的所有检测时机可均匀分配给各接收波束。若检测周期内所有的检测时机的数量不是所有接收波束的数量的整数倍时,可基于上述任一种分配方式,将检测周期内的部分 检测时机均匀分配给各接收波束之后,对剩余的接收波束的检测时机进行分配。
可选的,可将剩余的接收波束的检测时机不分配给任一接收波束,即检测周期内剩余的接收波束的检测时机不作为任一接收波束的检测时机。
可选的,将剩余的接收波束的检测时机作为公共检测时机,即终端设备在任一接收波束的覆盖区域内,基于公共检测时机检测终端设备对应的接收波束的数据对应的控制信道。此时网络设备可在公共检测时机上,基于任一接收波束发送数据。
可选的,将剩余的接收波束的检测时机分配给任意一个或者多个接收波束,具体分配方式和参与检测时机分配的接收波束的确定方式在此不做限制。
可选的,如果每个接收波束的检测时机连续,即接收波束的检测时机是基于以下表达式确定时:
S(x)={x*M*R+k 2,(x+1)*M*R+k 2,(x+2)*M*R+
k 2,…,k 1*M*R+k 2};
Figure PCTCN2021106311-appb-000005
Q=M*R;
x=0,1,…,M-1;
k 2=0,1,…,R-1;
可减少每个接收波束所连续占用的检测时机的数量(即将上述表达式中的R减小为R 0),并基于减少后的每个接收波束所连续占用的检测时机的数量R 0,以及上述表达式重新对剩余的检测时机进行分配。
若基于R 0以及上述表达式剩余的检测时机进行分配后,仍然剩余检测时机,此时可将第二次剩余的检测时机,重复上述任一种剩余检测时机的分配方式进行分配,在此不再赘述。
在一些可行的实施方式中,在将检测周期内的检测时机分配给各接收波束之后,为基于各接收波束对应的检测时机检测该接收波束的数据对应的控制信道,可在接收波束的数据对应的控制信道中增加波束识别号,不同接收波束对应的不同的波束识别号,或者在控制信道上采用不同的扰码,不同接收波束的数据对应的控制信道采用的扰码不同。基于上述方式,可将每个接 收波束对应的检测时机与相对应的数据对应的控制信道建立关联关系,避免出现基于一接收波束对应的检测时机检测另一接收波束的数据对应的控制信道的情况。
进一步的,当网络设备基于上述方式确定各接收波束的检测时机之后,将结果作为指示信息发送至终端设备组,用于任一终端设备根据指示信息确定各接收波束的检测时机。
可选的,网络设备还可将上述检测周期以及一个检测周期内所有接收波束的检测时机,作为用于确定各接收波束的检测时机的相关信息。进一步的,网络设备将该相关信息作为指示信息发送至终端设备组,用于任一终端设备基于该相关信息,以及上述任一种检测时机的确定方式,确定各接收波束的检测时机。
可选的,网络设备还可指定各接收波束对应的检测时机,并将其作为指示信息发送至终端设备组。
基于上述方式,可在每个检测周期内确定更为精确的检测开始时间和检测结束时间,从而使得终端设备的节电效果更好,同时信令开销更小。
步骤S2,发送指示信息。
具体的,网络设备将上述指示信息发送至终端设备组,用于任一终端设备基于指示信息确定各接收波束的检测时机。其中,上述指示信息的具体发送方式可基于实际应用场景需求确定,在此不做限制。
步骤S3,根据指示信息,确定终端设备对应的接收波束的检测时机。
具体的,当上述指示信息包括检测周期和一个检测周期内所有接收波束的检测时机时,终端设备基于检测周期和一个检周期内所有接收波束的检测时机,以及步骤S1中检测时机的确定方式,确定每个接收波束的检测时机。
可选的,当上述指示信息为网络设备基于步骤S1中检测时机的确定方式,对一个检测周期内所有的检测时机进行分配后的结果信息(即每个接收波束的检测时机)时,终端设备可直接基于上述指示信息确定每个接收波束的检测时机。
可选的,终端设备可基于指示信息,基于网络设备指定的各接收波束对应的检测时机,确定其对应的接收波束的检测时机。
步骤S4,基于终端设备对应的接收波束的检测时机,检测接收波束的数 据对应的控制信道。
在一些可行的实施方式中,为进一步节省终端设备的电能消耗,网络设备可向终端设备组发送DRX参数,该参数包括DRX周期以及DRX周期内的检测区间,其中,DRX内的检测区间为终端设备检测控制信道的时间区间。并且,DRX内的检测区间可包含一个或者多个检测周期,从而终端设备可在DRX周期内的检测区间内,周期性地基于终端设备对应的接收波束的检测时机,检测接收波束的数据对应的控制信道。
其中,DRX周期的周期长度可以由网络设备指定固定时长,也可以由网络设备指定固定个数的检测时机,将固定个数的检测时机对应的时间区间作为DRX的周期长度,在此不做限制。
进一步的,终端设备可将DRX周期内的检测区间中,终端设备对应的一个接收波束的检测时机中第一个检测时机对应的时间,确定为终端设备对应的接收波束的检测开始时间,将该接收波束的最后一个检测时机对应的时间,确定为终端设备对应的该接收波束的检测结束时间。从而终端设备在DRX周期内的检测区间中,在检测开始时间至检测结束时间的时间区间内,基于该接收波束对应的检测时机,对该接收波束的数据对应的控制信道进行检测。也就是说,每个接收波束具有独立的检测开始时间和检测结束时间,终端设备从每个接收波束的检测开始时间开始,至该接收波束的检测结束时间为止,基于每个接收波束的检测时机对相对应的波束的数据对应的控制信道进行检测。
可选的,当DRX周期内的检测区间内包含多个检测周期时,对于任意一个接收波束,其在每个检测周期内均具有一个检测开始时间和检测结束时间,或者,将该接收波束在第一个检测周期内的第一个检测时机对应的时间作为检测开始时间,将最后一个检测周期内的最后一个检测时机对应的时间作为检测结束时间,具体可基于实际应用场景确定,在此不做限制。
参见图8,图8是本申请实施例提供的确定检测开始时间和检测结束时间的场景示意图。在图8中,假设接收波束为SSB波束,SSB波束的数量为4,各SSB波束分别为SSB-0、SSB-1、SSB-2以及SSB-3,DRX周期为40ms,DRX周期内的检测区间为10ms,且该检测区间只包含一个检测周期。检测周期同样为10ms,SCS为60KHz,每个时隙中只存在一个SSB波束的检测时机,一个检测周期内所有检测时机的数量为40(各检测时机的编号依次为 0,1,2,3,…,39),且各SSB波束的检测时机如图所示分布。基于上述实现方式,可确定每个SSB波束在该DRX周期内的检测开始时间和检测结束时间。
其中,SSB-0波束的检测开始时间为编号为0的检测时机所在的时间,检测结束时间为编号为36的检测时机所在的时间;SSB-1波束的检测开始时间为编号为1的检测时机所在的时间,检测结束时间为编号为37的检测时机所在的时间;SSB-0波束的检测开始时间为编号为2的检测时机所在的时间,检测结束时间为编号为38的检测时机所在的时间;SSB-0波束的检测开始时间为编号为3的检测时机所在的时间,检测结束时间为编号为39的检测时机所在的时间。
也就是说,终端设备在编号为0的检测时机至编号为36的检测时机的时间区间内,基于SSB-0波束的检测时机对SSB-0波束的数据对应的控制信道进行检测;终端设备在编号为1的检测时机至编号为37的检测时机的时间区间内,基于SSB-1波束的检测时机对SSB-0波束的数据对应的控制信道进行检测;终端设备在编号为2的检测时机至编号为38的检测时机的时间区间内,基于SSB-2波束的检测时机对SSB-0波束的数据对应的控制信道进行检测;终端设备在编号为3的检测时机至编号为39的检测时机的时间区间内,基于SSB-3波束的检测时机对SSB-0波束的数据对应的控制信道进行检测。
基于上述方式,可将各接收波束的检测时机与DRX周期相关联,即终端设备在基于DRX周期的检测区间内进行控制信道检测的基础之上,进一步在DRX周期的检测区间内,以各接收波束对应的检测开始时间和检测结束时间作为更为精确的检测时机,从而达到更好的节电效果。
在一些可行的实施方式中,网络设备在DRX周期开始之前,网络设备在有数据调度的情况下会发送第一序列,表示终端设备需要基于接收波束的检测时机检测接收波束的数据对应的控制信道。在没有数据调度的情况下会发送第二序列,表示终端不需要检测接收波束的数据对应的控制信道。其中,上述第一序列和第二序列可作为信道检测指示信息发送至终端设备。
对于终端设备而言,终端设备接收到信道检测指示信息之后,根据后验概率确定信道检测指示信息为第一序列还是第二序列。当确定信道检测指信息为第一序列时,终端设备确定检测接收波束的数据对应的控制信道,进而基于终端设备对应的接收波束的检测时机,检测接收波束的数据对应的控制信道。
在一些可行的实施方式中,网络设备可向终端设备组发送用于指示是否检测控制信道的唤醒信息,对于任意一个终端设备而言,该终端设备在接收到唤醒信息之后,可基于唤醒信息,以及该终端设备对应的接收波束的检测时机,检测该接收波束的数据对应的控制信道。其中,上述唤醒信息为唤醒信号(wake up signal,WUS)或者下行控制信息(Downlink Control Information,DCI)中的任意一项。
基于唤醒信息,网络设备可指示终端设备是否在DRX周期内进行控制信道检测,从而避免终端设备在无数据调度的情况下,在DRX周内进行控制信道检测所带来的不必要的功耗。
当上述唤醒信息为WUS时,每个接收波束对应各自的WUS,并且每个接收波束的方向与相对应的WUS的方向相同。其中,WUS信号为序列信号,且根据终端设备对应的DRX周期以及所在的小区的小区号确定。
具体的,每个接收波束对应的WUS根据以下表达式确定:
Figure PCTCN2021106311-appb-000006
m′=m+sx;
m=0,1,…,s-1;
x=0,1,…,M-1;
Figure PCTCN2021106311-appb-000007
Figure PCTCN2021106311-appb-000008
其中,x为接收波束的索引号,M为接收波束的数量,w x(m)为索引号为x的接收波束对应的WUS,s为WUS的长度阈值,
Figure PCTCN2021106311-appb-000009
为小区号,
Figure PCTCN2021106311-appb-000010
为加扰序列,n f为终端设备对应的DRX周期的开始位置所在的无限帧的帧号,n s为DRX周期的开始位置所在的第一个时隙的时隙号。
其中,上述加扰序列的初始化值通过以下表达式确定:
Figure PCTCN2021106311-appb-000011
其中,c init为加扰序列的初始化值。
基于上述表达式,可得到每个接收波束对应的WUS,并且每个接收波束对应的WUS的序列长度均相同,不同接收波束对应的WUS映射于不同的符号上。如图9所示,图9是本申请实施例提供的WUS的复用关系的场景示意图。假设接收波束为SSB波束,各SSB波束对应的WUS采用时分复用方式,映射在连续的符号上。当每个序列长度一致的WUS映射在一个符号上时,SSB-0波束对应的WUS映射到符号2上,SSB-1波束对应的WUS映射到符号3上,SSB-2对应的WUS映射到符号4上,SSB-3波束对应的WUS映射到符号5上。当每个序列长度一致的WUS映射在2个符号上时,SSB-0波束对应的WUS映射到符号2/3上,SSB-1波束对应的WUS映射到符号4/5上,SSB-2波束对应的WUS映射到符号6/7上,SSB-3波束对应的WUS映射到符号8/9上。
可选的,每个接收波束对应的WUS可从一个序列信号中截取,从该序列信号中依次截取固定序列长度的序列得到各接收波束对应的WUS。具体截取方式可基于以下表达式确定:
S(x)_WUS={x*s,x*s+1,x*s+2,…,x*s+s-1};
x表示接收波束的索引号,S(x)_WUS为索引号为x的接收波束对应的WUS,s为WUS的长度阈值,即每个WUS的序列长度。
进一步的,终端设备在检测到其所处覆盖范围内的接收波束对应的WUS时,基于该接收波束对应的检测时机,检测该接收波束的数据对应的控制信道。即终端设备可只检测其所处覆盖范围内的接收波束的WUS,或者检测所有接收波束的WUS,并在检测到其所处覆盖范围内的接收波束的WUS时,基于该接收波束对应的检测时机,检测该接收波束的数据对应的控制信道。
基于上述方式,各接收波束的对应各自同方向的WUS,各WUS在时域上放置在连续的符号上,或者间隔整数个符号用于做波束切换,能够提供较高的性能增益。
当上述唤醒信息为DCI时,每个接收波束分别对应各自的DCI且每个接收波束对应的DCI的内容相同,承载DCI的每个控制信道的符号数相同,且承载DCI的控制信道采用时分复用的方式映射在连续的符号上。也就是说,每个接收波束均对应一个用于承载其DCI的控制信道,终端设备可对承载每个DCI的控制信道做合并接收处理。
参见图10,图10是本申请实施例提供的控制信道的复用关系的场景示意图。假设接收波束为SSB波束,各SSB波束对应的控制信道采用时分复用方式,映射在连续的符号上。当承载DCI的控制信道占用1个符号时,SSB-0波束对应的控制信道映射到符号2上,SSB-1波束对应的控制信道映射到符号3上,SSB-2波束对应的控制信道映射到符号4上,SSB-3波束对应的控制信道映射到符号5上。当承载DCI的控制信道占用2个符号上时,SSB-0的WUS PDCCH映射到符号2/3上,SSB-1波束对应的控制信道映射到符号4/5上,SSB-2波束对应的控制信道映射到符号6/7上,SSB-3波束对应的控制信道映射到符号8/9上。
进一步的,DCI可指示接收波束的数据的调度状态,即在DRX周期内一个或者多个载波有哪些数据被调度,哪些数据没有被调度。其中,DCI中不同比特位所指示的数据不同,一个比特位指示至少一个数据的调度状态。
当数据的数量小于或者等于DCI的最大承载比特数时,DCI中的每比特位的值表示对应的数据的调度状态。如任意一比特位为0时表示相对应的数据不被调度,该比特位的值为1时表示相对应的数据被调度,或者该比特位为1时表示相对应的数据不被调度,该比特位的值为0时表示相对应的数据被调度,在此不做限制。
当数据的数量大于DCI的最大承载比特数时,每比特位表示一个或者多个数据的调度状态,如任意比特位的值为0时表示一个或者多个数据不被调度,该比特位的值为1时表示相对应的数据中有一个或者多个数据被调度,或者该比特位为1时表示一个或者多个数据不被调度,该比特位的值为0时表示相对应的数据中有一个或者多个数据被调度。
进一步的,终端设备可确定被调度的数据对应的接收波束(终端设备在其覆盖范围内)的检测时机,并基于该接收波束的检测时机检测被调度的数据的控制信道。或者,终端设备基于DCI确定被调度的数据之后,可选择其感兴趣的数据对应的接收波束的检测时机(终端设备在其覆盖范围内),检测其感兴趣的数据的控制信道。
如图11所示,图11是本申请实施例提供的DCI指示数据的调度状态的场景示意图。以广播组播为例,当DCI的最大承载比特数为N,网络设备通过高层信令在一个载波上配置了H个广播组播业务(Multicast Broadcast Service,MBS)。当N=6,H=5时,每个MBS对应于DCI上的一个比特位, 如MBS(0)对应第0位比特,如MBS(1)对应第1位比特等,此时DCI上有空余比特,不用于指示任何广播组播的调度状态。其中,MBS(0)可以为广播组播控制信道(MBMS Control Channel,MCCH)数据,其他MBS为各广播组播的业务数据,基于上述实现方式,DCI中的每一比特位可指示一个广播组播的调度状态。
当N=6,H=10时,DCI上的一个比特位对应于一个或者多个MBS,如MBS(0)对应第0位比特,如MBS(1)和MBS(7)对应第1位比特等,MBS(4)对应第4位比特。对于第1位比特来说,若值为1表示有MBS被调度,则其可指示MBS(1)和MBS(7)中的任意一个MBS被调度或者二者同时被调度;若值为0表示无MBS被调度,则其可指示MBS(1)和MBS(7)均不被调度。
需要特别说明的是,数据与DCI中每个比特位的对应关系在此不做限制,如按照广播组播业务按照业务识别号,及其对应的控制信道数据的最小识别号进行排序,进而与DCI中各比特建立对应关系,或者基于其他排列方式使得DCI中的每一个比特位所指示的数据均不相同,在此不做限制。
由于各接收波束对应的DCI内容相同,所使用频域资源相同(即相同的控制信道聚合等级,聚合位置),因此终端设备可基于任一波束对应的DCI确定是否检测接收波束的数据对应的控制信道。或者,终端设备可对各承载DCI的控制信道做合并接收处理,以获取各接收波束对应的DCI,进而基于任一DCI确定是否检测接收波束的数据对应的控制信道。
在一些可行的实施方式中,当上述唤醒信息对应的资源与其他信号或者信道对应的资源冲突时,若网络设备确定上述唤醒信息的优先级低于或者等于其他信号的优先级时,网络设备取消发送上述唤醒信息。其中,对于终端设备而言,当终端设备未接收到唤醒信息时,即在该接收到唤醒信息时并未接收到网络设备发送的唤醒信息,则终端设备可直接基于对应的接收波束的检测时机,检测接收波束的数据对应的控制信道。
其中,能够和唤醒信息对应的资源冲突的信号或者信道有包括网络设备动态调度的信号或者信道、网络设备配置的周期性下行信道或者信号等。其中,网络设备动态调度的信号或者信号可以为动态CSI-RS信号,物理下行共享信道PDSCH以及网络设备检测到的物理下行控制信道PDCCH。其中,网络设备配置的周期性下行信道或者信号可以为基于半持续调度的物理下行 控制信道PDSCH,周期性CSI-RS信号。另一方面,当终端设备接收到其它高优先级业务资源抢占指示,或者终端设备无法接收唤醒信息时,如网络设备配置有用于测量其它频点或者小区的测量间隙时,终端设备确定唤醒信息对应的资源与其他信号或者信道对应的资源冲突,则直接基于其对应的波束的检测时机,检测波束的数据对应的控制信道。
在本申请实施例中,终端设备通过指示信息,可确定终端设备在其覆盖范围内的接收波束的检测时机,可减少终端设备对所有接收波束的数据对应的控制信道进行检测所带来的功耗消耗。进一步的,终端设备可基于终端设备对应的接收波束的检测时机,以及每个接收波束的检测开始时间和检测结束时间,从而使得终端设备的节电效果更好,同时信令开销更小。与此同时,通过将各接收波束的检测时机与DRX周期相关联,即终端设备在基于DRX周期的检测区间内进行控制信道检测的基础之上,进一步在DRX周期的检测区间内,以各接收波束对应的检测开始时间和检测结束时间作为更为精确的检测时机,从而达到更好的节电效果。
参见图12,图12是本申请实施例提供的终端设备的结构示意图。本申请实施例提供的终端设备,包括存储器1220,收发机1200以及处理器1210。
收发机1200被配置为在处理器1210的控制下接收和发送数据,存储器1220被配置为存储计算机程序,处理器1210被配置为读取存储器1220中的计算机程序,以实现:
接收用于确定接收波束的检测时机的指示信息;
根据上述指示信息,确定上述终端设备对应的接收波束的检测时机;
基于上述终端设备对应的接收波束的检测时机,检测上述接收波束的数据对应的控制信道。
在一些可行的实施方式中,上述处理器1210,被配置为:
接收网络设备发送的非连续接收DRX参数,上述DRX参数包括DRX周期以及上述DRX周期内的检测区间,上述检测区间为上述终端设备检测控制信道的时间区间;
基于上述DRX参数和上述终端设备对应的接收波束的检测时机,确定上述终端设备对应的接收波束的检测开始时间和检测结束时间;
基于上述检测开始时间和上述检测结束时间,检测上述接收波束的数据对应的控制信道。
在一些可行的实施方式中,上述处理器1210,被配置为:
将上述DRX周期内的检测区间中,上述终端设备对应的接收波束的检测时机中第一个检测时机对应的时间,确定为上述终端设备对应的接收波束的检测开始时间,将最后一个检测时机对应的时间,确定为上述终端设备对应的接收波束的检测结束时间。
在一些可行的实施方式中,上述处理器1210,被配置为:
接收网络设备发送的信道检测指示信息,上述信道检测指示信息用于确定上述终端设备是否检测上述接收波束的数据对应的控制信道;
在基于上述信道检测指示信息确定检测上述接收波束的数据对应的控制信道时,基于上述终端设备对应的接收波束的检测时机,检测上述接收波束的数据对应的控制信道。
在一些可行的实施方式中,上述处理器1210,被配置为:
接收用于指示是否检测控制信道的唤醒信息;
若接收到上述唤醒信息,则基于上述唤醒信息,以及上述终端设备对应的接收波束的检测时机,检测上述接收波束的数据对应的控制信道;
上述唤醒信息包括唤醒信号WUS或者下行控制信息DCI中的任一项。
在一些可行的实施方式中,上述处理器1210,被配置为:
若未接收到上述唤醒信息,则基于上述终端设备对应的接收波束的检测时机,检测上述接收波束的数据对应的控制信道。
在一些可行的实施方式中,上述DCI用于指示各接收波束的数据的调度状态;当上述唤醒信息包括上述DCI时,上述处理器1210,被配置为:
若基于上述DCI确定上述终端设备对应的接收波束的数据中,存在被调度的数据,则基于上述终端设备对应的接收波束的检测时机,检测上述终端设备对应的接收波束的被调度的数据对应的控制信道。
在一些可行的实施方式中,上述DCI中不同比特位所指示的数据不同,一个比特位指示至少一个数据的调度状态。
在一些可行的实施方式中,用于承载上述DCI的控制信道采用时分复用方式映射在连续的符号上。
在一些可行的实施方式中,上述WUS为序列信号,且上述WUS由上述终端设备对应的DRX周期以及小区号确定。
在一些可行的实施方式中,每个上述接收波束对应各自的WUS,且每个上述接收波束的方向与相对应的WUS的方向相同。
在一些可行的实施方式中,每个上述接收波束对应的WUS的长度相同。
在一些可行的实施方式中,上述指示信息包括以下任一项:
各接收波束的数据的检测时机;
用于确定上述各接收波束的数据的检测时机的相关信息,上述相关信息包括检测周期,以及一个上述检测周期内所有接收波束的数据的检测时机。
在一些可行的实施方式中,每个上述接收波束的数据的检测时机满足以下任一项:
每个上述接收波束的数据的检测时机不连续,且每个上述接收波束的数据的检测时机在时域轮替;
每个上述接收波束的数据的检测时机连续;
每个上述接收波束的数据的检测时机按照时长分配。
在一些可行的实施方式中,当每个上述接收波束的数据的检测时机不连续,且每个上述接收波束的数据的检测时机在时域轮替时,每个上述接收波束的数据的检测时机通过以下表达式确定:
S(x)={x,1*M+x,2*M+x,…,k 0*M+x};
Figure PCTCN2021106311-appb-000012
x=0,1,…,M-1;
其中,x表示接收波束的索引号,M为接收波束的数量,S(x)为索引号为x的接收波束的数据的检测时机的编号集合,
Figure PCTCN2021106311-appb-000013
为向下取整,N为一个检测周期内所有接收波束的数据的检测时机的总数量;
或者,
当每个上述接收波束的数据的检测时机连续时,上述各接收波束的数据的检测时机通过以下表达式确定:
S(x)={x*M*R+k 2,(x+1)*M*R+k 2,(x+2)*M*R+
k 2,…,k 1*M*R+k 2};
Figure PCTCN2021106311-appb-000014
Q=M*R;
x=0,1,…,M-1;
k 2=0,1,…,R-1;
其中,x表示接收波束的索引号,M为接收波束的数量,S(x)为索引号为x的接收波束的数据的检测时机的编号集合,R为每个上述接收波束所连续占用的检测时机的数量,Q为M个接收波束所连续占用的检测时机的总数量,
Figure PCTCN2021106311-appb-000015
为向下取整,N为一个上述检测周期内所有接收波束的数据的检测时机的总数量;
或者,
当每个上述接收波束的数据的检测时机按照时长分配时,上述指示信息为上述相关信息,上述根据上述指示信息,确定上述终端设备对应的接收波束的检测时机,包括:
确定上述各接收波束在一个上述检测周期内的检测时长区间;
对于每个上述接收波束,将一个上述检测周期内所有接收波束的数据的检测时机中,该接收波束对应的检测时长区间内的检测时机,确定为上述终端设备对应的接收波束的数据的检测时机。
在一些可行的实施方式中,若所有接收波束的数据的检测时机的数量不是上述所有接收波束的数量的整数倍时,将所有上述接收波束的数据的检测时机均匀分配后,剩余的数据的检测时机采用以下方式中的任一项进行处理:
将上述剩余的数据的检测时机不分配给任一接收波束;
将上述剩余的数据的检测时机作为公共检测时机;
将上述剩余的数据的检测时机分配给任意一个或者多个接收波束;
若每个上述接收波束的数据的检测时机连续,则为每个上述接收波束分配第一值的数据的检测时机之后,为每个上述接收波束分配第二值的数据的检测时机,其中,上述第一值大于上述第二值。
其中,在图12中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1210代表的一个或多个处理器和存储器1220代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1200可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元,这些传输介质包括,这些传输介质包括无线信道、有线信道、光缆等传输介质。针对不同的终端设备,用户接口1230还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器1210负责管理总线架构和通常的处理,存储器1220可以存储处理器1210在执行操作时所使用的数据。
可选的,处理器1210可以是CPU(中央处埋器)、ASIC(Application Specific Integrated Circuit,专用集成电路)、FPGA(Field-Programmable Gate Array,现场可编程门阵列)或CPLD(Complex Programmable Logic Device,复杂可编程逻辑器件),处理器也可以采用多核架构。
处理器通过调用存储器存储的计算机程序,用于按照获得的可执行指令执行本申请实施例提供的任一上述方法。处理器与存储器也可以物理上分开布置。
在此需要说明的是,本申请实施例提供的终端设备,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
参见图13,图13是本申请实施例提供的网络设备的结构示意图。本申请实施例提供的网络设备,包括存储器1320,收发机1300以及处理器1310。
收发机1300被配置为在处理器1310的控制下接收和发送数据,存储器1320被配置为存储计算机程序,处理器1310被配置为读取存储器1320中的计算机程序,以实现:
确定用于确定接收波束的检测时机的指示信息;
发送上述指示信息,上述指示信息用于终端设备组中每个终端设备确定相对应的接收波束的检测时机。
在一些可行的实施方式中,上述处理器1310,还被配置为:
发送DRX参数,上述DRX参数用于每个上述终端设备基于上述DRX参数和该终端设备对应的接收波束的检测时机,确定该终端设备对应的接收波束的检测开始时间和检测结束时间,上述DRX参数包括DRX周期以及上述DRX周期内的检测区间。
在一些可行的实施方式中,上述处理器1310,还被配置为:
发送用于指示是否检测控制信道的唤醒信息,用于每个上述终端设备基于上述唤醒信息,以及该终端设备对应的接收波束的检测时机,检测上述接收波束的数据对应的控制信道;
上述唤醒信息包括WUS或者DCI中的任一项。
在一些可行的实施方式中,上述处理器1310,还被配置为:
若上述唤醒信息对应的资源与其他信号对应的资源冲突,且上述唤醒信息的优先级低于或等于上述其他信号的优先级,则取消发送上述唤醒信息。
在一些可行的实施方式中,上述处理器1310,还被配置为:
发送信道检测指示信息,用于每个上述终端设备在基于上述信道检测指示信息确定检测上述接收波束的数据对应的控制信道时,基于该终端设备对应的接收波束的检测时机,检测上述接收波束的数据对应的控制信道;
上述信道检测指示信息用于确定每个上述终端设备是否检测上述接收波束的数据对应的控制信道。
其中,在图13中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1310代表的一个或多个处理器和存储器1320代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1300可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元,这些传输介质包括无线信道、有线信道、光缆等传输介质。处理器1310负责管理总线架构和通常的处理,存储器1320可以存储处理器1310在执行操作时所使用的数据。
处理器1310可以是中央处埋器(CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Comple13 Programmable Logic Device,CPLD),处理器也可以采用多核架构。
在此需要说明的是,本申请实施例提供的网络设备,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
参见图14,图14是本申请实施例提供的数据传输装置的一结构示意图。本申请实施例提供的数据传输装置14包括:
接收单元141,被配置为接收用于确定接收波束的检测时机的指示信息;
第一确定单元142,被配置为根据上述指示信息,确定上述终端设备对应的接收波束的检测时机;
检测单元143,被配置为基于上述终端设备对应的接收波束的检测时机,检测上述接收波束的数据对应的控制信道。
在一些可行的实施方式中,上述检测单元143,被配置为:
接收网络设备发送的非连续接收DRX参数,上述DRX参数包括DRX周期以及上述DRX周期内的检测区间,上述检测区间为上述终端设备检测控制信道的时间区间;
基于上述DRX参数和上述终端设备对应的接收波束的检测时机,确定上述终端设备对应的接收波束的检测开始时间和检测结束时间;
基于上述检测开始时间和上述检测结束时间,检测上述接收波束的数据对应的控制信道。
在一些可行的实施方式中,上述检测单元143,被配置为:
将上述DRX周期内的检测区间中,上述终端设备对应的接收波束的检测时机中第一个检测时机对应的时间,确定为上述终端设备对应的接收波束的检测开始时间,将最后一个检测时机对应的时间,确定为上述终端设备对应的接收波束的检测结束时间。
在一些可行的实施方式中,上述接收单元141,被配置为:
接收网络设备发送的信道检测指示信息,上述信道检测指示信息用于确定上述终端设备是否检测上述接收波束的数据对应的控制信道;
上述检测单元143,被配置为:
在基于上述信道检测指示信息确定检测上述接收波束的数据对应的控制信道时,基于上述终端设备对应的接收波束的检测时机,检测上述接收波束的数据对应的控制信道。
在一些可行的实施方式中,上述检测单元143,被配置为:
接收用于指示是否检测控制信道的唤醒信息;
若接收到所述唤醒信息,则基于上述唤醒信息,以及上述终端设备对应的接收波束的检测时机,检测上述接收波束的数据对应的控制信道;
上述唤醒信息包括唤醒信号WUS或者下行控制信息DCI中的任一项。
在一些可行的实施方式中,上述检测单元143,被配置为:
若未接收到上述唤醒信息,则基于上述终端设备对应的接收波束的检测时机,检测上述接收波束的数据对应的控制信道
在一些可行的实施方式中,上述DCI用于指示各接收波束的数据的调度状态;当上述唤醒信息包括上述DCI时,上述检测单元143,被配置为:
若基于上述DCI确定上述终端设备对应的接收波束的数据中,存在被调度的数据,则基于上述终端设备对应的接收波束的检测时机,检测上述终端设备对应的接收波束的被调度的数据对应的控制信道。
在一些可行的实施方式中,上述DCI中不同位比特所指示的数据不同,一个比特位指示至少一个数据的调度状态。
在一些可行的实施方式中,用于承载上述DCI的控制信道采用时分复用方式映射在连续的符号上。
在一些可行的实施方式中,上述WUS为序列信号,且根据上述终端设备对应的DRX周期以及小区号确定。
在一些可行的实施方式中,每个上述接收波束对应各自的WUS,且每个上述接收波束的方向与相对应的WUS的方向相同。
在一些可行的实施方式中,每个上述接收波束对应的WUS的长度相同。
在一些可行的实施方式中,上述指示信息包括以下任一项:
各接收波束的数据的检测时机;
用于确定上述各接收波束的数据的检测时机的相关信息,上述相关信息包括检测周期,以及一个上述检测周期内所有接收波束的数据的检测时机。
在一些可行的实施方式中,每个上述接收波束的数据的检测时机满足以下任一项:
每个上述接收波束的数据的检测时机不连续,且每个上述接收波束的数据的检测时机在时域轮替;
每个上述接收波束的数据的检测时机连续;
每个上述接收波束的数据的检测时机按照时长分配。
在一些可行的实施方式中,当每个上述接收波束的数据的检测时机不连续,且每个上述接收波束的数据的检测时机在时域轮替时,每个上述接收波束的数据的检测时机通过以下表达式确定:
S(x)={x,1*M+x,2*M+x,…,k 0*M+x};
Figure PCTCN2021106311-appb-000016
x=0,1,…,M-1;
其中,x表示接收波束的索引号,M为接收波束的数量,S(x)为索引号为x的接收波束的数据的检测时机的编号集合,
Figure PCTCN2021106311-appb-000017
为向下取整,N为一个检测周期内所有接收波束的数据的检测时机的总数量;
或者,
当每个上述接收波束的数据的检测时机连续时,上述各接收波束的数据的检测时机通过以下表达式确定:
S(x)={x*M*R+k 2,(x+1)*M*R+k 2,(x+2)*M*R+
k 2,…,k 1*M*R+k 2};
Figure PCTCN2021106311-appb-000018
Q=M*R;
x=0,1,…,M-1;
k 2=0,1,…,R-1;
其中,x表示接收波束的索引号,M为接收波束的数量,S(x)为索引号为x的接收波束的数据的检测时机的编号集合,R为每个上述接收波束所连续占用的检测时机的数量,Q为M个接收波束所连续占用的检测时机的总数量,
Figure PCTCN2021106311-appb-000019
为向下取整,N为一个上述检测周期内所有接收波束的数据的检测时机的总数量;
或者,
当每个上述接收波束的数据的检测时机按照时长分配时,上述指示信息为上述相关信息,上述根据上述指示信息,确定上述终端设备对应的接收波束的检测时机,包括:
确定上述各接收波束在一个上述检测周期内的检测时长区间;
对于每个上述接收波束,将一个上述检测周期内所有接收波束的数据的检测时机中,该接收波束对应的检测时长区间内的检测时机,确定为上述终端设备对应的接收波束的数据的检测时机。
在一些可行的实施方式中,若所有接收波束的数据的检测时机的数量不是上述所有接收波束的数量的整数倍时,将所有上述接收波束的数据的检测时机均匀分配后,剩余的数据的检测时机采用以下方式中的任一项进行处理:
将上述剩余的数据的检测时机不分配给任一接收波束;
将上述剩余的数据的检测时机作为公共检测时机;
将上述剩余的数据的检测时机分配给任意一个或者多个接收波束;
若每个上述接收波束的数据的检测时机连续,则为每个上述接收波束分配第一值的数据的检测时机之后,为每个上述接收波束分配第二值的数据的检测时机,其中,上述第一值大于上述第二值。
在此需要说明的是,本申请实施例提供的上述数据传输装置14,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
参见图15,图15是本申请实施例提供的数据传输装置的另一结构示意图。本申请实施例提供的数据传输装置15包括:
第二确定单元151,被配置为确定用于确定接收波束的检测时机的指示信息;
发送单元152,被配置为发送上述指示信息,上述指示信息用于终端设备组中每个终端设备确定相对应的接收波束的检测时机。
在一些可行的实施方式中,上述发送单元152,还被配置为:
发送DRX参数,上述DRX参数用于每个上述终端设备基于上述DRX参数和该终端设备对应的接收波束的检测时机,确定该终端设备对应的接收 波束的检测开始时间和检测结束时间,上述DRX参数包括DRX周期以及上述DRX周期内的检测区间。
在一些可行的实施方式中,上述发送单元152,还被配置为:
发送用于指示是否检测控制信道的唤醒信息,用于每个上述终端设备基于上述唤醒信息,以及该终端设备对应的接收波束的检测时机,检测上述接收波束的数据对应的控制信道;
上述唤醒信息包括WUS或者DCI中的任一项。
在一些可行的实施方式中,上述发送单元152,还被配置为:
若上述唤醒信息对应的资源与其他信号对应的资源冲突,且上述唤醒信息的优先级低于或等于上述其他信号的优先级,则取消发送上述唤醒信息。
在一些可行的实施方式中,上述发送单元152,还被配置为:
发送信道检测指示信息,用于每个上述终端设备在基于上述信道检测指示信息确定检测上述接收波束的数据对应的控制信道时,基于该终端设备对应的接收波束的检测时机,检测上述接收波束的数据对应的控制信道;
上述信道检测指示信息用于确定每个上述终端设备是否检测上述接收波束的数据对应的控制信道。
在此需要说明的是,本申请实施例提供的数据传输装置15,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
上述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个处理器可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机、服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例上 述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
在一些可行的实施方式中,上述处理器可读存储介质可以是处理器能够存取的任何可用介质或数据存储设备,包括但不限于磁性存储器(例如软盘、硬盘、磁带、磁光盘(MO)等)、光学存储器(例如CD、DVD、BD、HVD等)、以及半导体存储器(例如ROM、EPROM、EEPROM、非易失性存储器(NAND FLASH)、固态硬盘(SSD))等。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机可执行指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机可执行指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些处理器可执行指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的处理器可读存储器中,使得存储在该处理器可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些处理器可执行指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要 求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (36)

  1. 一种数据传输方法,应用于终端设备,所述方法包括:
    接收用于确定接收波束的检测时机的指示信息;
    根据所述指示信息,确定所述终端设备对应的接收波束的检测时机;以及
    基于所述终端设备对应的接收波束的检测时机,检测所述接收波束的数据对应的控制信道。
  2. 根据权利要求1所述的方法,其中,所述基于所述终端设备对应的接收波束的检测时机,检测所述接收波束的数据对应的控制信道,包括:
    接收网络设备发送的非连续接收DRX参数,所述DRX参数包括DRX周期以及所述DRX周期内的检测区间,所述检测区间为所述终端设备检测控制信道的时间区间;
    基于所述DRX参数和所述终端设备对应的接收波束的检测时机,确定所述终端设备对应的接收波束的检测开始时间和检测结束时间;以及
    基于所述检测开始时间和所述检测结束时间,检测所述接收波束的数据对应的控制信道。
  3. 根据权利要求2所述的方法,其中,所述基于所述DRX参数和所述终端设备对应的接收波束的检测时机,确定所述终端设备对应的接收波束的检测开始时间和检测结束时间,包括:
    将所述DRX周期内的检测区间中,所述终端设备对应的接收波束的检测时机中第一个检测时机对应的时间,确定为所述终端设备对应的接收波束的检测开始时间,将最后一个检测时机对应的时间,确定为所述终端设备对应的接收波束的检测结束时间。
  4. 根据权利要求1所述的方法,其中,所述方法还包括:
    接收网络设备发送的信道检测指示信息,所述信道检测指示信息用于确定所述终端设备是否检测所述接收波束的数据对应的控制信道;
    所述基于所述终端设备对应的接收波束的检测时机,检测所述接收波束的数据对应的控制信道,包括:
    在基于所述信道检测指示信息确定检测所述接收波束的数据对应的控制信道时,基于所述终端设备对应的接收波束的检测时机,检测所述接收波束的数据对应的控制信道。
  5. 根据权利要求1所述的方法,其中,所述基于所述终端设备对应的接收波束的检测时机,检测所述接收波束的数据对应的控制信道,包括:
    接收用于指示是否检测控制信道的唤醒信息;
    若接收到所述唤醒信息,则基于所述唤醒信息,以及所述终端设备对应的接收波束的检测时机,检测所述接收波束的数据对应的控制信道;以及
    所述唤醒信息包括唤醒信号WUS或者下行控制信息DCI中的任一项。
  6. 根据权利要求5所述的方法,其中,所述方法还包括:
    若未接收到所述唤醒信息,则基于所述终端设备对应的接收波束的检测时机,检测所述接收波束的数据对应的控制信道。
  7. 根据权利要求5所述的方法,其中,所述DCI用于指示各接收波束的数据的调度状态;当所述唤醒信息包括所述DCI时,所述基于所述唤醒信息,以及所述终端设备对应的接收波束的检测时机,检测所述接收波束的数据对应的控制信道,包括:
    若基于所述DCI确定所述终端设备对应的接收波束的数据中,存在被调度的数据,则基于所述终端设备对应的接收波束的检测时机,检测所述终端设备对应的接收波束的被调度的数据对应的控制信道。
  8. 根据权利要求7所述的方法,其中,所述DCI中不同比特位所指示的数据不同,一个比特位指示至少一个数据的调度状态。
  9. 根据权利要求5所述的方法,其中,用于承载所述DCI的控制信道采用时分复用方式映射在连续的符号上。
  10. 根据权利要求5所述的方法,其中,所述WUS为序列信号,且所述WUS由所述终端设备对应的DRX周期以及小区号确定。
  11. 根据权利要求10所述的方法,其中,每个所述接收波束对应各自的WUS,且每个所述接收波束的方向与相对应的WUS的方向相同。
  12. 根据权利要求11所述的方法,每个所述接收波束对应的WUS的长度相同。
  13. 根据权利要求1至12任一项所述的方法,其中,所述指示信息包括以下任一项:
    各接收波束的数据的检测时机;以及
    用于确定所述各接收波束的数据的检测时机的相关信息,所述相关信息包括检测周期,以及一个所述检测周期内所有接收波束的数据的检测时机。
  14. 根据权利要求13所述的方法,其中,每个所述接收波束的数据的检测时机满足以下任一项:
    每个所述接收波束的数据的检测时机不连续,且每个所述接收波束的数据的检测时机在时域轮替;
    每个所述接收波束的数据的检测时机连续;以及
    每个所述接收波束的数据的检测时机按照时长分配。
  15. 根据权利要求14所述的方法,其中,当每个所述接收波束的数据的检测时机不连续,且每个所述接收波束的数据的检测时机在时域轮替时,每个所述接收波束的数据的检测时机通过以下表达式确定:
    S(x)={x,1*M+x,2*M+x,…,k 0*M+x};
    Figure PCTCN2021106311-appb-100001
    x=0,1,…,M-1;
    其中,x表示接收波束的索引号,M为接收波束的数量,S(x)为索引号为x的接收波束的数据的检测时机的编号集合,
    Figure PCTCN2021106311-appb-100002
    为向下取整,N为一个检测周期内所有接收波束的数据的检测时机的总数量;
    或者,
    当每个所述接收波束的数据的检测时机连续时,所述各接收波束的数据的检测时机通过以下表达式确定:
    S(x)={x*M*R+k 2,(x+1)*M*R+k 2,(x+2)*M*R+k 2,…,k 1*M*R+k 2};
    Figure PCTCN2021106311-appb-100003
    Q=M*R;
    x=0,1,…,M-1;
    k 2=0,1,…,R-1;
    其中,x表示接收波束的索引号,M为接收波束的数量,S(x)为索引号为x的接收波束的数据的检测时机的编号集合,R为每个所述接收波束所连续占用的检测时机的数量,Q为M个所述接收波束所连续占用的检测时机的总数量,
    Figure PCTCN2021106311-appb-100004
    为向下取整,N为一个所述检测周期内所有接收波束的数据的检测时机的总数量;
    或者,
    当每个所述接收波束的数据的检测时机按照时长分配时,所述指示信息为所述相关信息,所述根据所述指示信息,确定所述终端设备对应的接收波束的检测时机,包括:
    确定所述各接收波束在一个所述检测周期内的检测时长区间;
    对于每个所述接收波束,将一个所述检测周期内所有接收波束的数据的检测时机中,该接收波束对应的检测时长区间内的检测时机,确定为所述终端设备对应的接收波束的数据的检测时机。
  16. 根据权利要求15所述的方法,其中,若所有接收波束的数据的检测时机的数量不是所述所有接收波束的数量的整数倍时,将所有所述接收波束的数据的检测时机均匀分配后,剩余的数据的检测时机采用以下方式中的任一项进行处理:
    将所述剩余的数据的检测时机不分配给任一接收波束;
    将所述剩余的数据的检测时机作为公共检测时机;
    将所述剩余的数据的检测时机分配给任意一个或者多个接收波束;以及
    若每个所述接收波束的数据的检测时机连续,则为每个所述接收波束分配第一值的数据的检测时机之后,为每个所述接收波束分配第二值的数据的检测时机,其中,所述第一值大于所述第二值。
  17. 一种数据的传输方法,应用于网络设备,所述方法包括:
    确定用于确定接收波束的检测时机的指示信息;以及
    发送所述指示信息,所述指示信息用于终端设备组中每个终端设备确定相对应的接收波束的检测时机。
  18. 根据权利要求17所述的方法,其中,所述方法还包括:
    发送DRX参数,所述DRX参数用于每个所述终端设备基于所述DRX参数和该终端设备对应的接收波束的检测时机,确定该终端设备对应的接收波束的检测开始时间和检测结束时间,所述DRX参数包括DRX周期以及所述DRX周期内的检测区间。
  19. 根据权利要求18所述的方法,其中,所述方法还包括:
    发送用于指示是否检测控制信道的唤醒信息,用于每个所述终端设备基于所述唤醒信息,以及该终端设备对应的接收波束的检测时机,检测所述接收波束的数据对应的控制信道;以及
    所述唤醒信息包括WUS或者DCI中的任一项。
  20. 根据权利要求19所述的方法,其中,所述方法还包括:
    若所述唤醒信息对应的资源与其他信号对应的资源冲突,且所述唤醒信息的优先级低于或等于所述其他信号的优先级,则取消发送所述唤醒信息。
  21. 根据权利要求17所述的方法,其中,所述方法还包括:
    发送信道检测指示信息,用于每个所述终端设备在基于所述信道检测指示信息确定检测所述接收波束的数据对应的控制信道时,基于该终端设备对应的接收波束的检测时机,检测所述接收波束的数据对应的控制信道;以及
    所述信道检测指示信息用于确定每个所述终端设备是否检测所述接收波束的数据对应的控制信道。
  22. 一种终端设备,包括存储器,收发机,处理器:
    所述存储器,被配置为存储计算机程序;所述收发机,被配置为在所述处理器的控制下收发数据;所述处理器,被配置为读取所述存储器中的计算机程序并执行以下操作:
    接收用于确定接收波束的检测时机的指示信息;
    根据所述指示信息,确定所述终端设备对应的接收波束的检测时机;以及
    基于所述终端设备对应的接收波束的检测时机,检测所述接收波束的数据对应的控制信道。
  23. 根据权利要求22所述的终端设备,其中,所述基于所述终端设备对应的接收波束的检测时机,检测所述接收波束的数据对应的控制信道,具体包括:
    接收网络设备发送的非连续接收DRX参数,所述DRX参数包括DRX周期以及所述DRX周期内的检测区间,所述检测区间为所述终端设备检测控制信道的时间区间;
    基于所述DRX参数和所述终端设备对应的接收波束的检测时机,确定所述终端设备对应的接收波束的检测开始时间和检测结束时间;以及
    基于所述检测开始时间和所述检测结束时间,检测所述接收波束的数据对应的控制信道。
  24. 根据权利要求23所述的终端设备,其中,所述基于所述DRX参数和所述终端设备对应的接收波束的检测时机,确定所述终端设备对应的接收波束的检测开始时间和检测结束时间,具体包括:
    将所述DRX周期内的检测区间中,所述终端设备对应的接收波束的检测时机中第一个检测时机对应的时间,确定为所述终端设备对应的接收波束的检测开始时间,将最后一个检测时机对应的时间,确定为所述终端设备对应的接收波束的检测结束时间。
  25. 根据权利要求22所述的终端设备,其中,所述处理器还被配置为执行以下操作:
    接收网络设备发送的信道检测指示信息,所述信道检测指示信息用于确定所述终端设备是否检测所述接收波束的数据对应的控制信道;
    所述基于所述终端设备对应的接收波束的检测时机,检测所述接收波束的数据对应的控制信道,包括:
    在基于所述信道检测指示信息确定检测所述接收波束的数据对应的控制信道时,基于所述终端设备对应的接收波束的检测时机,检测所述接收波束的数据对应的控制信道。
  26. 根据权利要求22所述的终端设备,其中,所述基于所述终端设备对应的接收波束的检测时机,检测所述接收波束的数据对应的控制信道,具体包括:
    接收用于指示是否检测控制信道的唤醒信息;
    若接收到所述唤醒信息,则基于所述唤醒信息,以及所述终端设备对应的接收波束的检测时机,检测所述接收波束的数据对应的控制信道;以及
    所述唤醒信息包括唤醒信号WUS或者下行控制信息DCI中的任一项。
  27. 根据权利要求26所述的终端设备,其中,所述处理器还被配置为执行以下操作:
    若未接收到所述唤醒信息,则基于所述终端设备对应的接收波束的检测时机,检测所述接收波束的数据对应的控制信道。
  28. 根据权利要求26所述的终端设备,其中,所述DCI用于指示各接收波束的数据的调度状态;当所述唤醒信息包括所述DCI时,所述基于所述唤醒信息,以及所述终端设备对应的接收波束的检测时机,检测所述接收波束的数据对应的控制信道,具体包括:
    若基于所述DCI确定所述终端设备对应的接收波束的数据中,存在被调度的数据,则基于所述终端设备对应的接收波束的检测时机,检测所述终端设备对应的接收波束的被调度的数据对应的控制信道。
  29. 一种网络设备,包括存储器,收发机,处理器:
    所述存储器,被配置为存储计算机程序;所述收发机,被配置为在所述处理器的控制下收发数据;所述处理器,被配置为读取所述存储器中的计算机程序并执行以下操作:
    确定用于确定接收波束的检测时机的指示信息;以及
    发送所述指示信息,所述指示信息用于终端设备组中每个终端设备确定相对应的接收波束的检测时机。
  30. 根据权利要求29所述的网络设备,其中,所述处理器还被配置为执行以下操作:
    发送DRX参数,所述DRX参数用于每个所述终端设备基于所述DRX参数和该终端设备对应的接收波束的检测时机,确定该终端设备对应的接收波束的检测开始时间和检测结束时间,所述DRX参数包括DRX周期以及所述DRX周期内的检测区间。
  31. 根据权利要求30所述的网络设备,其中,所述处理器还被配置为执行以下操作:
    发送用于指示是否检测控制信道的唤醒信息,用于每个所述终端设备基于所述唤醒信息,以及该终端设备对应的接收波束的检测时机,检测所述接收波束的数据对应的控制信道;以及
    所述唤醒信息包括WUS或者DCI中的任一项。
  32. 根据权利要求31所述的网络设备,其中,所述处理器还被配置为执行以下操作:
    若所述唤醒信息对应的资源与其他信号对应的资源冲突,且所述唤醒信息的优先级低于或等于所述其他信号的优先级,则取消发送所述唤醒信息。
  33. 根据权利要求29所述的网络设备,其中,所述处理器还被配置为执行以下操作:
    发送信道检测指示信息,用于每个所述终端设备在基于所述信道检测指示信息确定检测所述接收波束的数据对应的控制信道时,基于该终端设备对应的接收波束的检测时机,检测所述接收波束的数据对应的控制信道;以及
    所述信道检测指示信息用于确定每个所述终端设备是否检测所述接收波束的数据对应的控制信道。
  34. 一种数据传输装置,包括:
    接收单元,被配置为接收用于确定接收波束的检测时机的指示信息;
    第一确定单元,被配置为根据所述指示信息,确定所述终端设备对应的接收波束的检测时机;以及
    检测单元,被配置为基于所述终端设备对应的接收波束的检测时机,检测所述接收波束的数据对应的控制信道。
  35. 一种数据传输装置,包括:
    第二确定单元,被配置为确定用于确定接收波束的检测时机的指示信息;以及
    发送单元,被配置为发送所述指示信息,所述指示信息用于终端设备组中每个终端设备确定相对应的接收波束的检测时机。
  36. 一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行权利要求1至16任一项所述的方法或者执行权利要求17至21所述的方法。
PCT/CN2021/106311 2020-08-14 2021-07-14 数据传输方法及装置 WO2022033263A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010819607.8 2020-08-14
CN202010819607.8A CN114080008B (zh) 2020-08-14 2020-08-14 数据传输方法及装置

Publications (1)

Publication Number Publication Date
WO2022033263A1 true WO2022033263A1 (zh) 2022-02-17

Family

ID=80246834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/106311 WO2022033263A1 (zh) 2020-08-14 2021-07-14 数据传输方法及装置

Country Status (2)

Country Link
CN (1) CN114080008B (zh)
WO (1) WO2022033263A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023178623A1 (zh) * 2022-03-24 2023-09-28 北京小米移动软件有限公司 一种监听唤醒信号的方法、装置及可读存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110087258A (zh) * 2018-01-25 2019-08-02 普天信息技术有限公司 一种用户的接入方法
US20200163059A1 (en) * 2017-05-05 2020-05-21 Zte Corporation Signal transmission method and system, and control information transmission method and device
CN111225433A (zh) * 2018-11-26 2020-06-02 华为技术有限公司 一种信息处理方法及信息处理装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2016432415B2 (en) * 2016-12-13 2022-03-03 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Signal transmission method, terminal device and network device
CN110300444B (zh) * 2018-03-23 2021-02-09 维沃移动通信有限公司 信息传输方法、终端及网络设备
US11291073B2 (en) * 2018-07-20 2022-03-29 Qualcomm Incorporated Wake-up beam management for connected-mode discontinuous reception (C-DRX) operation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200163059A1 (en) * 2017-05-05 2020-05-21 Zte Corporation Signal transmission method and system, and control information transmission method and device
CN110087258A (zh) * 2018-01-25 2019-08-02 普天信息技术有限公司 一种用户的接入方法
CN111225433A (zh) * 2018-11-26 2020-06-02 华为技术有限公司 一种信息处理方法及信息处理装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Multi-beam transmission for DL control channel", 3GPP DRAFT; R1-1715586, vol. RAN WG1, 9 September 2017 (2017-09-09), Nagoya, Japan, pages 1 - 3, XP051329005 *

Also Published As

Publication number Publication date
CN114080008B (zh) 2024-03-01
CN114080008A (zh) 2022-02-22

Similar Documents

Publication Publication Date Title
CN109699054B (zh) 一种检测下行控制信息的方法、终端设备和网络设备
US10461975B2 (en) Dynamic cyclic prefix (CP) length in wireless communication
CN105991271B (zh) 无线通信的装置、方法和存储介质
WO2020248918A1 (zh) 一种通信方法和装置
WO2020143727A1 (zh) 一种通信方法及装置
WO2018137675A1 (zh) 通信方法和网络设备
CN109963308B (zh) 无线通信系统中的资源调度方法及装置
WO2021239064A1 (zh) 通信方法及装置
WO2022033263A1 (zh) 数据传输方法及装置
CN110831130B (zh) 数据传输方法及装置
WO2023005679A1 (zh) 资源分配方法、通信装置以及通信设备
CN113543229B (zh) 一种通信方法及装置
CN113615276A (zh) 一种通信方法及设备
CN111066355A (zh) 一种通信方法及设备
WO2020088455A1 (zh) 通信方法和通信装置
EP4223022A1 (en) Adaptive tracking loop updates in user equipment
CN111867013B (zh) 一种节能及其控制方法及装置
WO2024012595A1 (zh) 物理下行控制信道检测方法、装置及通信设备
WO2024022517A1 (zh) 发送节能信号的方法、配置方法、装置及设备
WO2024088174A1 (zh) 保护间隔的确定方法及装置
WO2023051689A1 (zh) 上行信息发送方法、接收方法、终端和网络设备
WO2023024935A1 (zh) 一种通信方法及装置
WO2022206594A1 (zh) 一种信号传输方法、装置及可读存储介质
WO2024093917A1 (zh) 时域信息的指示方法及装置
WO2023134575A1 (zh) 物理下行控制信道pdcch监听方法、装置、设备以及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21855316

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21855316

Country of ref document: EP

Kind code of ref document: A1