WO2023005679A1 - 资源分配方法、通信装置以及通信设备 - Google Patents

资源分配方法、通信装置以及通信设备 Download PDF

Info

Publication number
WO2023005679A1
WO2023005679A1 PCT/CN2022/105768 CN2022105768W WO2023005679A1 WO 2023005679 A1 WO2023005679 A1 WO 2023005679A1 CN 2022105768 W CN2022105768 W CN 2022105768W WO 2023005679 A1 WO2023005679 A1 WO 2023005679A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
uplink control
control channel
resources
time range
Prior art date
Application number
PCT/CN2022/105768
Other languages
English (en)
French (fr)
Inventor
陈宝军
张涵
杨双千
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023005679A1 publication Critical patent/WO2023005679A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies

Definitions

  • the present application relates to the communication field, and more specifically, to a resource allocation method, a communication device, and a communication device.
  • uplink control channel In a mobile communication system, physical uplink control channel (PUCCH) resources are used to carry uplink control information (uplink control channel, UCI), such as UCI can include hybrid automatic repeat request (hybrid automatic repeat request, HARQ) , channel state information (channel state information, CSI) or scheduling request (scheduling request, SR), etc.
  • uplink control channel UCI
  • HARQ hybrid automatic repeat request
  • CSI channel state information
  • scheduling request scheduling request
  • the network device may configure a dedicated symbol area of the PUCCH resource for the terminal device. If too many symbols are configured in the dedicated symbol area of the PUCCH, resources will be wasted. If the number of symbols in the configured PUCCH symbol region is too small, the UCI will not be able to be transmitted in time.
  • the current PUCCH resource allocation method has a problem of low resource utilization.
  • the present application provides a resource allocation method, a communication device, and a communication device, which can improve resource utilization.
  • a resource allocation method is provided, which can be executed by a network device or a module (such as a chip) configured on the network device.
  • the method includes: sending configuration information, where the configuration information is used to configure multiple uplink control channel resources; sending first information, where the first information is used to schedule a first uplink shared channel resource, and the first uplink shared channel resource includes the multiple uplink shared channel resources Part of the resources in the uplink control channel resources; receive uplink data on the first uplink shared channel resources.
  • the network device can schedule some resources in the configured PUCCH resources for data transmission according to the demand.
  • the terminal device will transmit data on the scheduled resources in response to the scheduling of the network device, such as the network device scheduling PUCCH resources
  • the terminal device transmits UCI on the scheduled PUCCH resource. If the network device schedules the PUSCH resource to transmit data, and the PUSCH resource includes part of the PUCCH resource, the terminal device still transmits data on the scheduled resource based on scheduling. This enables the network device to schedule part of the PUCCH resource for data transmission when the UCI transmission requirement is small or when the data transmission requirement is large, which can improve resource utilization and uplink transmission rate.
  • the network device does not need to reconfigure PUCCH resources for the terminal device through RRC signaling, and the terminal device only needs to respond to the scheduling of the network device to transmit uplink data or UCI.
  • the terminal device and the network device can reach a consensus, which can reduce signaling overhead and further improve resource utilization.
  • the method further includes: determining one or more first uplink control channel resources among the plurality of uplink control channel resources according to the first resource demand degree, the The first resource demand degree is the demand degree of uplink resources within the first time range; the second information is sent within the second time range, and the second information is used to schedule the uplink control in the one or more first uplink control channel resources Channel resources, wherein the first information is sent within the second time range, and the first uplink shared channel resource includes resources other than the first uplink control channel resource among the plurality of uplink control channel resources.
  • the network device can determine the candidate PUCCH resources that can be used to bear UCI in the next period of time according to the demand for uplink resources within a period of time, that is, the first uplink control channel resources.
  • the network device only schedules the first uplink control channel resource to bear UCI in the next period of time, and other uplink control channel resources except the first uplink control channel resource among the configured uplink control channel resources can be used to bear uplink data. In this way, resource utilization and uplink transmission rate can be improved.
  • the multiple uplink control channel resources occupy a first resource set
  • the first resource set includes one or more resource units, where the resource units are time domain resources and /or frequency domain resources
  • the one or more first uplink control channel resources are uplink control channel resources belonging to a second resource set among the multiple uplink control channel resources
  • the second resource set is a subset of the first resource set set.
  • the network device determines the second resource set (or resource range) for selecting PUCCH resources according to the first resource demand degree, and uses the configured PUCCH resources included in the resource set as the available PUCCH resources within the second time range.
  • a candidate PUCCH resource for transmitting UCI is a candidate PUCCH resource for transmitting UCI.
  • the determining one or more first uplink control channel resources among the plurality of uplink control channel resources according to the first resource demand degree includes: according to the first resource requirement A resource demand degree and a corresponding relationship, determining a first quantity of the resource unit corresponding to the first resource demand degree, wherein the correspondence relationship includes a correspondence relationship between multiple resource demand degrees and multiple resource unit quantities, the The plurality of resource requirement levels include the first resource requirement level; according to the first quantity, the second resource set is determined in the first resource set, and the second resource set includes the first quantity of the resource units.
  • the network device firstly determines the quantity of resource units contained in the second resource set based on the first resource demand degree and the corresponding relationship, and then determines the second resource set. Determining the second resource set based on the correspondence can reduce implementation complexity.
  • the method further includes: taking the first time range as a period, periodically determining among the plurality of uplink control channels a period for carrying uplink control information The uplink control channel resource, wherein, the duration of the first time range is equal to the duration of the second time range, and the second time range is a next period of the first time range.
  • the network device can periodically adjust the candidate PUCCH resources available for UCI transmission within a period, dynamically adjust the PUCCH resources available for UCI transmission, and avoid power consumption caused by frequent adjustments.
  • the first resource requirement level includes one or more of the following:
  • Uplink control channel resource allocation success rate Uplink control channel resource allocation failure rate, uplink control channel resource usage rate, uplink shared channel resource usage rate, number of users establishing radio resource control connections or proportion of first-type users,
  • the first type of user is a user whose uplink signal quality is lower than a signal quality threshold.
  • one or more of the above parameters can reflect the use of uplink resources within a period of time or the system's demand for uplink resources, so that the candidate PUCCH in the second time range can be more reasonably determined resources to achieve the purpose of improving resource utilization.
  • the first resource requirement degree includes the uplink control channel resource allocation success rate or the uplink control channel resource allocation failure rate, and the uplink control channel resource allocation success rate is Determined according to the number of times of successfully allocating uplink control channel resources and the number of times of requesting uplink control channel resources within the first time range; the failure rate of uplink control channel resource allocation is based on the number of times of failure to allocate uplink control channel resources within the first time range It is determined by the number of requests for uplink control channel resources.
  • the first resource requirement level includes the uplink control channel resource usage rate
  • the uplink control channel resource used to bear UCI in the first time range is at least one first Two uplink control channel resources
  • the plurality of uplink control channel resources include the at least one second uplink control channel resource
  • the at least one second uplink control channel resource occupies a third resource set
  • the uplink control channel resource usage rate It is determined according to the resource size of the second uplink control channel resource carrying uplink control information within the first time range and the resource size included in the third resource set.
  • the first resource demand degree includes an uplink shared channel resource usage rate
  • the uplink shared channel resource usage rate is based on the scheduled uplink shared channel resource usage rate within the first time range.
  • the channel resource size and the total resource size of uplink shared channel resources within the first time range are determined.
  • the first resource demand degree includes the proportion of the first type of users within the first time range, wherein the proportion of the first type of users is based on the first time range The number of users whose signal quality is lower than the signal quality threshold within the range and the total number of users establishing radio resource control connections within the first time range are determined.
  • a resource allocation method is provided, which can be executed by a terminal device or a module (such as a chip) configured in the terminal device.
  • the method includes: receiving configuration information, where the configuration information is used to configure multiple uplink control channel resources; receiving first information, where the first information is used to schedule a first uplink shared channel resource, where the first uplink shared channel resource includes the multiple uplink shared channel resources Part of the resources in the uplink control channel resources; send data on the first uplink shared channel resources.
  • the terminal device can determine the location of the scheduled PUCCH resource according to the configuration information, and the terminal device transmits the corresponding uplink information on the corresponding resource in response to the scheduling of the network device. For example, the network device schedules the PUSCH resource to transmit uplink data, even if the The PUSCH resource includes the PUCCH resource, and the terminal device will also send uplink data on the PUSCH resource in response to the scheduling of the network device. This enables the network device to schedule PUCCH resources to transmit data when UCI transmission requirements are small or data transmission requirements are large, which can improve resource utilization and uplink transmission rates.
  • the method further includes: receiving second information within a second time range, where the second information is used to schedule first uplink control channel resources, where the first A piece of information is received within the second time range, and the uplink shared channel resource includes resources other than the first uplink control channel resource among the plurality of uplink control channel resources.
  • a communication device which includes: a processing unit, configured to determine multiple uplink control channel resources; a transceiver unit, configured to send configuration information, and the configuration information is used to configure multiple uplink control channel resources; The transceiver unit is also used to send first information, and the first information is used to schedule a first uplink shared channel resource, and the first uplink shared channel resource includes some resources in the plurality of uplink control channel resources; the transceiver unit also uses Uplink data is received on the first uplink shared channel resource.
  • the processing unit is further configured to determine one or more first uplink control channel resources among the plurality of uplink control channel resources according to the first resource demand degree,
  • the first resource demand degree is the demand degree of uplink resources within the first time range;
  • the transceiver unit is further configured to send second information within the second time range, and the second information is used to schedule the one or more first An uplink control channel resource among the uplink control channel resources, wherein the first information is sent within the second time range, and the first uplink shared channel resource includes all the multiple uplink control channel resources except the first uplink control channel resource. Resources other than channel resources.
  • the multiple uplink control channel resources occupy a first resource set
  • the first resource set includes one or more resource units, where the resource units are time domain resources and /or frequency domain resources
  • the one or more first uplink control channel resources are uplink control channel resources belonging to a second resource set among the multiple uplink control channel resources
  • the second resource set is a subset of the first resource set set.
  • the processing unit is specifically used for:
  • the first resource demand degree and the corresponding relationship determine the first quantity of the resource unit corresponding to the first resource demand degree, wherein the correspondence relationship includes the correspondence between multiple resource demand degrees and multiple resource unit quantities relationship, the multiple resource demand degrees include the first resource demand degree;
  • the second resource set is determined in the first resource set, and the second resource set includes the first quantity of the resource units.
  • the processing unit is specifically configured to use the first time range as a period to periodically determine, among the plurality of uplink control channels, a period for carrying uplink control channels within a period.
  • the uplink control channel resources of the information wherein, the duration of the first time range is equal to the duration of the second time range, and the second time range is the next cycle of the first time range.
  • the first resource requirement includes one or more of the following:
  • Uplink control channel resource allocation success rate Uplink control channel resource allocation failure rate, uplink control channel resource usage rate, uplink shared channel resource usage rate, number of users establishing radio resource control connections or proportion of first-type users,
  • the first type of user is a user whose uplink signal quality is lower than a signal quality threshold.
  • a communication device in a fourth aspect, includes: a transceiver unit, configured to receive configuration information, and the configuration information is used to configure multiple uplink control channel resources; the transceiver unit is also configured to receive first information, the The first information is used to schedule a first uplink shared channel resource, and the first uplink shared channel resource includes some resources in the multiple uplink control channel resources; a processing unit is used to determine to send data on the first uplink shared channel resource ; The transceiver unit is also used to send data on the first uplink shared channel resource.
  • the method further includes: the transceiver unit is further configured to receive second information within the second time range, the second information is used to schedule the first uplink control Channel resources, wherein the first information is received within the second time range, and the uplink shared channel resources include resources other than the first uplink control channel resource among the plurality of uplink control channel resources.
  • a communication device including a processor.
  • the processor may implement the first aspect and the method in any possible implementation manner of the first aspect.
  • the communication device further includes a memory, and the processor is coupled to the memory, and can be used to execute instructions in the memory, so as to implement the above first aspect and the method in any possible implementation manner of the first aspect.
  • the communication device further includes a communication interface, and the processor is coupled to the communication interface.
  • the communication interface may be a transceiver, a pin, a circuit, a bus, a module or other types of communication interfaces, without limitation.
  • the communication device is a network device.
  • the communication interface may be a transceiver, or an input/output interface.
  • the communication device is a chip configured in a network device.
  • the communication interface may be an input/output interface
  • the processor may be a logic circuit.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a communication device including a processor.
  • the processor may implement the second aspect and the method in any possible implementation manner of the second aspect.
  • the communication device further includes a memory, and the processor is coupled to the memory, and can be used to execute instructions in the memory, so as to implement the above second aspect and the method in any possible implementation manner of the second aspect.
  • the communication device further includes a communication interface, and the processor is coupled to the communication interface.
  • the communication interface may be a transceiver, a pin, a circuit, a bus, a module or other types of communication interfaces, without limitation.
  • the communication device is a terminal device.
  • the communication interface may be a transceiver, or an input/output interface.
  • the communication device is a chip configured in a terminal device.
  • the communication interface may be an input/output interface
  • the processor may be a logic circuit.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a processor including: an input circuit, an output circuit, and a processing circuit.
  • the processing circuit is configured to receive a signal through the input circuit and transmit a signal through the output circuit, so that the processor executes the method in the first aspect or the second aspect and any possible implementation manner of the first aspect or the second aspect .
  • the above-mentioned processor can be one or more chips
  • the input circuit can be an input pin
  • the output circuit can be an output pin
  • the processing circuit can be a transistor, a gate circuit, a flip-flop and various logic circuits, etc. .
  • the input signal received by the input circuit may be received and input by, for example but not limited to, the receiver
  • the output signal of the output circuit may be, for example but not limited to, output to the transmitter and transmitted by the transmitter
  • the circuit may be the same circuit, which is used as an input circuit and an output circuit respectively at different times.
  • the embodiment of the present application does not limit the specific implementation manners of the processor and various circuits.
  • a computer program product includes: a computer program (also referred to as code, or an instruction), which, when the computer program is executed, causes the computer to perform the above-mentioned first aspect or the second aspect And the method in any possible implementation of the first aspect or the second aspect.
  • a computer program also referred to as code, or an instruction
  • a computer-readable storage medium stores a computer program (also referred to as code, or an instruction) which, when run on a computer, causes the computer to perform the above-mentioned first aspect or The second aspect and the method in any possible implementation manner of the first aspect or the second aspect.
  • a computer program also referred to as code, or an instruction
  • a communication system including the foregoing at least one network device and the foregoing at least one terminal device.
  • FIG. 1 is a schematic architecture of a communication system applicable to an embodiment of the present application
  • FIG. 2 is a schematic flowchart of a resource allocation method provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of multiple control channel resources provided by an embodiment of the present application.
  • FIG. 4 is another schematic diagram of multiple control channel resources provided by the embodiment of the present application.
  • Fig. 5 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • UMTS universal mobile telecommunications system
  • WiMAX worldwide interoperability for microwave access
  • 5G fifth generation
  • 5G new wireless
  • NR new radio
  • Fig. 1 is a schematic structural diagram of a communication system applicable to this application.
  • the communication system 100 may include at least one network device, such as network device 101 in FIG. 1 ; the communication system 100 may also include at least one terminal device, such as terminal devices 102 to 107 in FIG. 1 . Wherein, the terminal devices 102 to 107 may be mobile or fixed. Each of the network device 101 and one or more of the terminal devices 102 to 107 may communicate via a wireless link.
  • the resource allocation method provided by the embodiment of the present application may be used for communication between the network device and the terminal device.
  • the terminal equipment in the embodiment of the present application may also be referred to as user equipment (user equipment, UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal , wireless communication device, user agent, or user device.
  • user equipment user equipment
  • UE user equipment
  • access terminal subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal , wireless communication device, user agent, or user device.
  • the terminal device in the embodiment of the present application may be a mobile phone, a tablet computer, a computer with a wireless transceiver function, a virtual reality (virtual reality, VR) terminal device, an augmented reality (augmented reality, AR) terminal device, a wireless Terminals, wireless terminals in autonomous driving, wireless terminals in telemedicine, wireless terminals in smart grid, wireless terminals in transportation security, wireless terminals in smart cities, wireless terminals in smart homes, cellular phones, cordless phones , session initiation protocol (session initiation protocol, SIP) telephone, wireless local loop (wireless local loop, WLL) station, personal digital assistant (personal digital assistant, PDA), handheld device with wireless communication function, computing device, vehicle-mounted device , wearable devices, terminal devices in the 5G network or terminal devices in the future evolved public land mobile network (PLMN), etc.
  • PLMN public land mobile network
  • the network device in this embodiment of the present application may be a device in an access network that has a wireless transceiver function.
  • the equipment includes but is not limited to: base station, evolved node B (evolved node B, eNB), radio network controller (radio network controller, RNC), node B (node B, NB), base station controller (base station controller, BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved nodeB, or home node B, HNB), baseband unit (baseband unit, BBU), wireless fidelity (wireless fidelity, WIFI) system Access point (access point, AP), wireless relay node, wireless backhaul node, transmission point (transmission point, TP) or transmission and reception point (transmission and reception point, TRP), etc.
  • base station evolved node B (evolved node B, eNB), radio network controller (radio network controller, RNC), node B (node B, NB), base station
  • the device may also be a network node constituting a gNB or a transmission point, such as a baseband unit (BBU), or a distributed unit (distributed unit, DU). It should be understood that the present application does not limit the specific form of the network device.
  • a network node constituting a gNB or a transmission point, such as a baseband unit (BBU), or a distributed unit (distributed unit, DU).
  • BBU baseband unit
  • DU distributed unit
  • the network device can configure one or more PUCCH resource sets for the terminal device through radio resource control (radio resource control, RRC) signaling, and each PUCCH resource set includes one or more PUCCH resources.
  • Each PUCCH resource adopts one of the five PUCCH formats (PUCCH format) shown in Table 1, that is, format 0 to format 4.
  • PUCCH format corresponds to a time-domain length range of a PUCCH resource (indicated by a value range of the number of OFDM symbols) and a range of bits that can be carried by the PUCCH resource.
  • the network device indicates the number of OFDM symbols occupied by the time domain of each PUCCH resource.
  • the network device will specify in the configuration information that the PUCCH resources of PUCCH format 0 occupy 1 OFDM symbol or 2 OFDM symbols.
  • the terminal device sends UCI on the PUCCH resource, the length of the UCI to be sent is not greater than 2 bits.
  • PUCCH format Length number of bits 0 1-2 ⁇ 2 1 4-14 ⁇ 2 2 1-2 >2 3 4-14 >2 4 4-14 >2
  • the set of OFDM symbols occupied by one or more PUCCH resources configured by the network device for the terminal device may be called a PUCCH dedicated symbol region, and resources in the PUCCH dedicated symbol region are only used to bear UCI.
  • the terminal device Before the network device reconfigures (or updates) the PUCCH resource set for the terminal device, the terminal device transmits UCI on the PUCCH resources in the one or more PUCCH resource sets.
  • the network device needs to update the PUCCH symbol region through RRC reconfiguration, and notify the terminal device of the updated symbol region and the PUCCH resources therein.
  • the RRC reconfiguration interval is relatively long.
  • the network device Before the network device reconfigures the PUCCH symbol region for the terminal device, if the number of symbols in the PUCCH symbol region configured by the network device is too large, resources will be wasted. Moreover, uplink resources are limited. When the number of symbols in the PUCCH symbol area is too large, physical uplink shared channel (PUSCH) resources used to transmit data will be reduced, reducing the transmission rate of uplink data. If the number of symbols in the PUCCH symbol area is too small to meet the UCI transmission requirements, the UCI cannot be transmitted in time.
  • PUSCH physical uplink shared channel
  • the terminal The device transmits UCI on the scheduled PUCCH resource. If the network device schedules the PUSCH resource to transmit data, and the PUSCH resource includes some resources in the configured PUCCH resource, the terminal device still transmits data on the corresponding resource based on the scheduling of the network device.
  • This enables the network device to schedule PUCCH resources to transmit data when UCI transmission requirements are small or data transmission requirements are large, which can improve resource utilization and uplink transmission rates.
  • the network device does not need to reconfigure PUCCH resources for the terminal device through RRC signaling, and the terminal device only needs to respond to the scheduling of the network device for uplink information transmission.
  • the terminal device and the network device can reach a consensus, which can reduce signaling overhead and further improve resource utilization.
  • FIG. 2 is a schematic flowchart of a resource allocation method 200 provided by an embodiment of the present application.
  • the uplink control channel resource is PUCCH in the mobile communication system
  • the uplink control information is UCI in the mobile communication system as an example for illustration, it should be understood that the application is not limited thereto.
  • the solution provided in this application can also be applied to other communication systems.
  • the network device sends configuration information, where the configuration information is used to configure multiple PUCCH resources.
  • the network device configures multiple PUCCH resources, and the network device may notify one or more terminal devices of the PUCCH resources configured by the network device for each terminal device through one or more pieces of configuration information.
  • the one or more terminal devices may be terminal devices establishing a communication connection with a network device.
  • the terminal device receives configuration information from the network device. After receiving the configuration information, the terminal device may determine the PUCCH resources configured by the network device for the terminal device according to the configuration information.
  • the time domain resources and/or frequency domain resources occupied by the multiple PUCCH resources are different.
  • the network device can provide multiple PUCCH resources with different time domain resources and/or different frequency domain resources, so that the network device can subsequently select the PUCCH resources actually used to carry UCI within a period of time from among the multiple PUCCH resources according to transmission requirements , to improve resource utilization.
  • the multiple PUCCH resources are PUCCH resources within one uplink time unit, and the multiple PUCCH resources are applicable to each uplink time unit.
  • the uplink time unit may be the maximum time granularity of the uplink scheduling of the network device, such as the uplink time unit may be an OFDM symbol group, a sub-slot (mini-slot), a time slot (slot), a subframe ( subframe) or frame (frame).
  • the network device sends first information to the terminal device, where the first information is used to schedule a first PUSCH resource, where the first PUSCH resource includes part of the multiple PUCCH resources.
  • the terminal device receives the first information from the network device, and can determine to send uplink data on the first PUSCH resource according to the first information.
  • the network device may schedule part of the resources included in the multiple PUSCH resources to transmit data according to transmission requirements.
  • the network device may determine one or more first PUCCH resources among multiple PUCCH resources configured by the network device according to the first resource requirement degree.
  • the first resource demand degree is the demand degree of uplink resources in the first time range
  • the one or more first PUCCH resources are used as candidate PUCCH resources for bearing UCI in the second time range.
  • the second time range is after the first time range.
  • Each time range (such as the first time range and the second time range) includes at least one uplink time unit.
  • the network device selects a PUCCH resource for bearing UCI from the one or more first PUCCH resources. For example, the network device sends second information within the second time range, where the second information is used to schedule a first PUCCH resource in the one or more first PUCCH resources.
  • the terminal device receives the second information from the network device, and sends UCI on the first PUCCH resource scheduled by the second information.
  • the network device will not schedule resources other than the first PUCCH resource among the configured multiple PUCCH resources to bear UCI within the second time range. That is to say, resources other than the first PUCCH resource among the multiple PUCCH resources are not used to bear UCI within the second time range, but may be scheduled by the network device as PUSCH resources to bear uplink data.
  • the above-mentioned first information may be sent within the second time range, and the first PUCCH resource includes resources other than the first PUCCH resource among the multiple PUCCH resources. According to the solution, resource waste can be reduced, and resource utilization and uplink transmission rate can be improved.
  • the network device may periodically determine a candidate PUCCH resource for bearing UCI in a next period by using the first time range as a cycle, where the duration of the first time range is equal to the duration of the second time range, And the second time range is the next cycle of the first time range.
  • the multiple PUCCH resources occupy a first resource set, and the first resource set includes one or more resource units, where the resource units are time domain resources and/or frequency domain resources, and the one or more first PUCCH resources
  • the resource is a PUCCH resource belonging to a second resource set among the configured multiple PUCCH resources, where the second resource set is a subset of the first resource set.
  • the resource unit is a time domain resource.
  • the resource units may be time domain symbols.
  • the symbols occupied by the multiple PUCCH resources configured by the network device in the time domain form a first symbol set.
  • a second symbol set is determined in the second symbol set, the second symbol set includes at least one PUCCH resource among the configured multiple PUCCH resources, and the network device uses the PUCCH resources included in the second symbol set as candidates within the second time range
  • the PUCCH resource is the first PUCCH resource.
  • the network device may configure 8 PUCCH resources, and the 8 PUCCH resources occupy the last 4 orthogonal frequency division multiplexing (orthogonal frequency division multiplexing, OFDM) symbols in one uplink time unit in the time domain.
  • OFDM orthogonal frequency division multiplexing
  • the network device determines the candidate PUCCH resources in the second time range according to the first resource demand degree in the first time range.
  • the network device can determine to reduce the candidate PUCCH resources in the second time range based on the first uplink resource demand degree.
  • Symbol for resource usage For example, the candidate PUCCH resources in the first time range are the 8 PUCCH resources configured by the network device, then the network device can reduce the symbols occupied by 1 PUCCH resource, and use symbols 11 to 13 as the second symbol set.
  • the two-symbol set includes 6 PUCCHs from R2 to R7, and the 6 PUCCH resources are the first PUCCH resources, that is, the candidate PUCCH resources in the second time range.
  • the network device schedules the PUCCH resources among the six PUCCH resources to bear UCI within the second time range, but does not schedule R0 and R1 to bear UCI.
  • symbols 10 can be scheduled to transmit data according to demand within the second time range, which can reduce unnecessary PUCCH resource overhead within the second time range, increase available resources for data transmission, and increase the uplink data transmission rate.
  • the eight PUCCH resources may also be one or more of the time domain positions, frequency domain positions, or resource sizes of the eight PUCCH resources allocated by the network device to the terminal device (R0 to R7 in Figure 4) as shown in FIG.
  • the items can be different, for example, R0 occupies 4 symbols in the time domain, R3 and R6 occupy 3 symbols in the time domain, R4 and R5 occupy 2 symbols in the time domain, and R2 and R7 occupy 1 symbol in the time domain.
  • the frequency domain resources occupied by R0 are larger than the frequency domain resources occupied by other PUCCH resources.
  • the 8 PUCCH resources may partially overlap each other, such as R2 and R3.
  • a PUCCH resource may also include another PUCCH resource, such as R0 and R1. This application does not limit this.
  • the network device can determine that the second symbol set includes symbol 12 and symbol 13, and symbol 12 and symbol 13 include four PUCCH resources of R1, R2, R5 and R7, then the The 4 PUCCH resources are candidate PUCCH resources in the second time range.
  • the network device schedules PUCCH resources among the 4 PUCCH resources to bear UCI within the second time range, and PUCCH resources other than the 4 PUCCH resources among the 8 PUCCH resources are not used to bear UCI within the second time range. Available resources for data transmission can be increased, and the uplink data transmission rate can be increased.
  • the network device may specifically determine the first quantity of resource units corresponding to the first resource demand degree according to the first resource demand degree and the correspondence relationship, where the correspondence relationship includes a plurality of resource demand degrees and resource units Correspondence among multiple quantities, where the multiple resource demand degrees include the first resource demand degree.
  • the network device determines a second resource set in the first resource set according to the first quantity, and the second symbol set includes the first quantity of resource units.
  • the resource unit is a time-domain resource, for example, the resource unit is a time-domain symbol
  • the first number is the first number of symbols corresponding to the first resource demand degree
  • the corresponding relationship includes multiple resource demand degrees and multiple Correspondence between symbols.
  • the network device determines to determine a second symbol set in the first symbol set according to the first symbol number, and the second symbol set includes symbols of the first symbol number.
  • multiple value ranges of the uplink resource demand degree P correspond to multiple symbol numbers, and the corresponding relationship can be shown in Table 2.
  • the three value ranges of the uplink resource demand degree P correspond to three symbol numbers.
  • the first uplink resource demand degree within a time range is P1, and if P1 ⁇ A1, the network device may determine that the second symbol set includes M1 symbols.
  • the network device may determine the specific position of the M1 symbols in the first symbol set according to a preset rule.
  • the preset rule may stipulate that after determining the number of symbols, select the last corresponding symbol in the first symbol set number symbol.
  • the network device may determine that the second symbol set includes the last M1 symbols in the first symbol set, and the network device then determines at least one PUCCH resource contained in the last M1 symbols in the first symbol set, and the at least one PUCCH resource is the second Candidate PUCCH resources (or available PUCCH resources) within the time range.
  • selecting the last continuous symbol when determining the second symbol set can make the unselected symbols in the first symbol set form continuous resources with the symbol resources other than the first symbol set in the time unit , used to carry data.
  • the symbols in the second symbol set may also be discontinuous or M1 symbols starting from the starting moment in the first symbol set.
  • the network device when configuring PUCCH resources, the network device needs to configure at least one PUCCH resource in each possible second resource set. For example, the network device can configure the second symbol set corresponding to each possible number of symbols according to the corresponding relationship. Configure at least one PUCCH resource in .
  • the corresponding relationship may be as shown in Table 3, and the number of symbols included in the second symbol set may be based on the first uplink resource demand degree P1 within the first time range and symbols occupied by alternative resources of PUCCH resources within the first time range
  • the number M is determined.
  • the candidate PUCCH resource used to bear UCI within the first time range is at least one second PUCCH resource among the configured multiple PUCCH resources
  • the set of symbols occupied by the at least one second PUCCH resource is the third set of symbols.
  • the third set of symbols includes M symbols. If P1 ⁇ A1, the network device can determine that the number of symbols contained in the second symbol set needs to be reduced by one symbol compared with the number M of symbols contained in the third symbol set according to the correspondence shown in Table 3.
  • the uplink time unit within the time range includes at least one PUCCH resource symbol that can transmit UCI, so the number of symbols included in the second symbol set can be the maximum value between M-1 and 1, ie max(M-1, 1).
  • the network device may determine that the number of symbols included in the candidate PUCCH symbol set within the second time range may remain unchanged, that is, the number of symbols included in the second symbol set is M. If A2 ⁇ P1, the network device can determine the number M of symbols contained in the third symbol set according to the corresponding relationship, and the number of symbols contained in the second symbol set needs to be increased by one symbol.
  • the number of symbols included in the second symbol set is the minimum value of M+1 and the number of symbols M max included in the first symbol set, that is, min(M+1, M max ).
  • the network device determines the second symbol set according to the number of symbols, and determines that the PUCCH resources included in the second symbol set are candidate PUCCH resources within the second time range.
  • max(X, Y) means to take the maximum value of X and Y
  • min(X, Y) means to take the minimum value of X and Y.
  • the corresponding relationship includes the corresponding relationship between multiple value ranges of the uplink resource demand degree and multiple level identifiers, and the corresponding relationship between multiple level identifiers and multiple symbol numbers.
  • the network device may first determine the value range to which the uplink resource utilization rate P1 within the first time range belongs according to the correspondence between multiple value ranges and multiple level identifiers, and the level identifier corresponding to the value range, and then According to the correspondence between the multiple level identifiers and the multiple symbol numbers, it is determined that the number of symbols corresponding to the level identifier is the number of symbols included in the second symbol set.
  • the network device determines the second symbol set according to the number of symbols, and uses the PUCCH resources contained in the second symbol set as candidate PUCCH resources for bearing UCI within the second time range.
  • the resource demand degree can be divided into three levels: high, medium, and low, and the three value ranges of the resource demand degree can be determined by two threshold values.
  • the two thresholds The values are Th high and Th low respectively. If P1 ⁇ Th low , the level of resource demand is low; if Th low ⁇ P1 ⁇ Th high , the level of resource demand is medium; if Th high ⁇ P1, the level of resource demand is The grade is high.
  • the number of symbols included in the second symbol set may be max(M-2,1), where M is the number of symbols included in the third symbol set.
  • the number of symbols included in the second symbol set may be M; when the level of resource demand is high, the number of symbols included in the second symbol set may be min(M+1, M max ), where M max is the number of symbols contained in the first symbol set.
  • M max is the number of symbols contained in the first symbol set.
  • the resource unit is a frequency domain resource.
  • the granularity of frequency domain resources included in the frequency domain resource set may be resource block (resource block, RB), subcarrier or subcarrier group.
  • the multiple PUCCH resources configured by the network device occupy a first set of frequency domain resources in the frequency domain resources, and the network device according to the resource demand degree of the uplink resource within the first time range (that is, the first resource demand degree), in the first
  • the second frequency domain resource set is determined in the frequency domain resource set.
  • the network device uses the PUCCH resource included in the second frequency domain resource set as a candidate PUCCH resource resource within the second time range, that is, the first PUCCH resource.
  • the implementation mode when the resource unit is a frequency domain resource is similar to the implementation mode in which the resource unit is a time domain resource. Only the resource type of the resource unit contained in the resource set is different. You can refer to the above description of the implementation mode in which the resource unit is a time domain resource. For the sake of brevity, details are not repeated here.
  • the network device determines the second symbol set and the second frequency domain resource set, it determines the intersection time of the second symbol set (instant domain resource set) and the second frequency domain resource set. frequency resources, and use the PUCCH resources included in the time-frequency resources as candidate PUCCH resources in the second time range.
  • the network device determines a time-frequency resource set according to the resource demand degree of uplink resources in the first time range, and uses the PUCCH resources included in the time-frequency resource set as candidate PUCCH resources in the second time range.
  • the resource requirement includes one or more of the following:
  • Uplink control channel resource allocation success rate Uplink control channel resource allocation failure rate, uplink control channel resource usage rate, uplink shared channel resource usage rate, number of users establishing radio resource control connections or proportion of first-type users.
  • the first type of user is a user whose uplink signal quality is lower than a signal quality threshold.
  • the resource requirement degree includes the success rate of PUCCH resource allocation.
  • the PUCCH resource allocation success rate is determined according to the times of successfully allocating PUCCH resources and the times of requesting PUCCH resources within the first time range.
  • the network device When the downlink data of a terminal device arrives at the network device, the network device needs to allocate a data channel resource carrying the data, for example, the data channel resource may be a physical downlink shared channel (PDSCH) resource.
  • the network device also needs to allocate (or request) the PUCCH resource corresponding to the PDSCH for the terminal device to carry the feedback information of the data from the terminal device.
  • the feedback information is a kind of UCI, and the feedback information may be hybrid automatic repeat request (hybrid automatic repeat request, HARQ) information.
  • the network device After the network device allocates the PDSCH resource for the data, if the PUCCH resource corresponding to the PDSCH resource is successfully requested, the network device sends the downlink data to the terminal device, and instructs to schedule the corresponding PUCCH resource to carry the HARQ information of the downlink data; if not If a PUCCH resource is requested, it is considered that the allocation of the PUCCH fails, and the network device needs to re-allocate the PDSCH resource for the data and the corresponding PUCCH resource.
  • the network device allocates the corresponding PUCCH resources for the data in the first uplink time unit after the data of the terminal device arrives, it is considered as a successful request for PUCCH resources once, or if the network device receives the data from the terminal device If the corresponding PUCCH resource is not allocated for the data in the first uplink time unit after that, it is considered as one failure to request the PUCCH resource.
  • the above description is made by taking the network device requesting the PUCCH for HARQ information as an example.
  • the network device may also send CSI to request the PUCCH resource for the terminal device, which is not limited in this application.
  • the network device counts the total number K of requests for PUCCH resources within the first time range, and the number of times K Succ of which PUCCH resources are successfully requested, and determines the number of times PUCCH resources are successfully allocated within the first time range.
  • the ratio of the times of requesting the PUCCH resource within the range is the success rate of PUCCH resource allocation within the first time range.
  • the network device may determine a candidate PUCCH resource that can be used to bear UCI within the second time range according to the success rate of PUCCH resource allocation within the first time range.
  • multiple value ranges of the allocation success rate of PUCCH resources correspond to multiple numbers of resource units (that is, the corresponding relationship between the allocation success rate and the number of resource units), and the network device can determine the value to which P Succ belongs according to the corresponding relationship. value range, so that the number of symbols corresponding to the value range is determined as the number of resource units included in the second resource set. And determine that the PUCCH resources included in the second resource set are candidate PUCCH resources that can be used to bear UCI within the second time range.
  • the network device performs a threshold value judgment according to the PUCCH resource allocation success rate P Succ within the first time range to obtain the allocation success rate level L Succ . like:
  • the resource unit is a time-domain symbol
  • the network device determines that the number of symbols corresponding to the allocation success rate level L Succ is the number of symbols in the second symbol set according to the correspondence between multiple levels of allocation success rates and multiple symbol numbers, so that Determine that the PUCCH resources included in the second symbol set are candidate PUCCH resources within the second time range.
  • the resource requirement degree includes the allocation failure rate of PUCCH resources.
  • the PUCCH resource allocation success rate is determined according to the number of PUCCH resource allocation failures and the number of PUCCH resource requests within the first time range.
  • the network device counts the total number of times K of PUCCH resources in the first time range, and the number of times K Fail of requesting PUCCH resources fails, and determines that the number of times of failure to allocate PUCCH resources in the first time range is in the number of times of requesting PUCCH resources in the first time range
  • the proportion of is the failure rate of PUCCH resource allocation within the first time range.
  • the network device may determine a candidate PUCCH resource that can be used to bear UCI within the second time range according to the allocation failure rate of the PUCCH resource within the first time range.
  • the network device when the first time range ends, performs a threshold value judgment according to the PUCCH resource allocation failure rate P Fail within the first time range to obtain the allocation success rate level L Fail . like:
  • the network device can determine that the number of symbols corresponding to L Fail is the number of symbols in the second symbol set according to the correspondence between the allocation failure rate level and the number of symbols, so as to determine the number of symbols that can be used for bearer in the second time range Candidate PUCCH resources for UCI.
  • the value range of the allocation success rate or allocation failure rate of the above-mentioned PUCCH resources may directly correspond to the number of resource units, and the network device determines the range according to the range to which the allocation success rate or allocation failure rate of the PUCCH resources within the first time range belongs.
  • the number of resource units corresponding to the range is the number of resource units included in the second resource set.
  • the resource demand degree includes the usage rate of PUCCH resources.
  • the utilization rate of the PUCCH resource is determined according to the total number of resource units occupied by the alternative PUCCH resource within the first time range according to the number of resource units occupied by the second PUCCH resource bearing UCI within the first time range of.
  • the second PUCCH resource is a candidate PUCCH resource within the first time range.
  • the network device may calculate the usage rate of the PUCCH resource of each uplink time unit within the first time range, and the usage rate of the PUCCH resource of the uplink time unit is occupied by the second PUCCH resource carrying UCI in one time unit
  • the third resource set is a set of symbols occupied by candidate resources of the PUCCH resource within the first time range.
  • the network device calculates the average value of the usage rates of the PUCCH resources of all uplink time units within the first time range to be the usage rate of the PUCCH resources within the first time range.
  • the network device may determine a candidate PUCCH resource available for bearing UCI within the second time range according to the usage rate of the PUCCH resource within the first time range.
  • multiple value ranges of the usage rate of PUCCH resources P used correspond to multiple numbers of resource units (that is, the corresponding relationship between the usage rate of PUCCH resources and the number of resource units), and the network device can determine the first The value range to which the usage rate P used of the PUCCH resource in the time range belongs, so that the number of symbols corresponding to the value range is determined to be the number of resource units included in the second resource set. And determine that the PUCCH resources included in the second resource set are candidate PUCCH resources that can be used to bear UCI within the second time range.
  • the network device obtains the resource usage level L used according to the usage rate of the PUCCH resource within the first time range. like:
  • the network device may determine that the number of symbols corresponding to L used is the number of symbols in the second symbol set according to the correspondence between the resource usage level and the number of symbols, so as to determine the number of symbols available for bearer in the second time range Candidate PUCCH resources for UCI.
  • the value range of the usage rate of the PUCCH resource may directly correspond to the number of resource units, and the network device determines that the number of resource units corresponding to the range is the second according to the range to which the usage rate of the PUCCH resource in the first time range belongs. The number of resource units contained in the resource collection. Therefore, candidate PUCCH resources within the second time range are determined.
  • the resource requirement level includes an unused rate of PUCCH resources.
  • the unused rate of the PUCCH resources is determined according to the number of resource units occupied by the second uplink control channel resources not bearing UCI and the number of resource units occupied by the candidate PUCCH resources within the first time range.
  • the resource demand degree includes the usage rate of PUSCH resources.
  • the usage rate of the PUSCH resource is determined according to the size of the scheduled PUSCH resource and the total resource size of the PUSCH resource in the first time range.
  • the resource requirement degree includes an unused rate of PUSCH resources.
  • the unused rate of the PUSCH resources is determined according to the size of the unscheduled PUSCH resources within the first time range and the total resource size of the PUSCH resources.
  • the size of the PUSCH resource can be determined according to the number of resource units occupied by the PUSCH.
  • the size of the PUSCH resource can be determined according to the number of RBs occupied by the PUSCH resource, or determined according to the number of symbols occupied by the PUSCH resource, or determined according to the number of RBs occupied by the PUSCH resource.
  • the number of occupied RBs and the number of symbols are jointly determined.
  • the network device determines the unused rate of PUCCH resources within the first time range, the usage rate of PUSCH resources, or the unused rate, reference may be made to the description of the network device determining the usage rate of PUCCH within the first time range. For brevity, I won't repeat them here.
  • the resource requirement includes the number of users establishing RRC connections with the network.
  • the number of users who establish RRC connections with the network within a time range can be used to characterize the resource demand within the time range.
  • the network device may determine a candidate PUCCH resource within the second time range according to the number of users establishing RRC connections with the network within the first time range.
  • the network device may determine the second resource set by the number of users establishing RRC connections with the network within the first time range, and then determine that the PUCCH resources included in the second resource set are candidate PUCCH resources within the second time range.
  • multiple value ranges of the number of users may correspond to multiple numbers of resource units, or, multiple value ranges of the number of users may correspond to multiple levels of the number of users, and the multiple levels of the number of users correspond to the number of resource units quantity.
  • the network device performs a threshold judgment based on the number N user of users establishing RRC connections with the network within the first time range, to obtain the resource requirement level L user . like:
  • the resource unit is a time-domain symbol
  • the network device can determine the number of symbols corresponding to L user as the number of symbols of the second symbol set according to the corresponding relationship between the number of users establishing an RRC connection with the network and the number of symbols, thereby determining the second time range Candidate PUCCH resources that can be used to bear UCI.
  • the resource demand degree includes the proportion of the first type of users.
  • the first type of user is a user whose uplink signal quality is lower than a signal quality threshold.
  • the network device performs a threshold value judgment according to the proportion of users of the first type within the first time range P SINR_low to obtain the resource demand level L SINR_low .
  • the network device may determine the number of symbols corresponding to L SINR_low as the number of symbols in the second symbol set according to the correspondence between the allocation success rate level and the number of symbols, thereby determining the candidate PUCCH resources available for bearing UCI within the second time range.
  • the resource requirement degree may include multiple items in the following parameters:
  • PUCCH resource allocation success rate PUCCH resource allocation failure rate, PUCCH resource usage rate, PUSCH resource usage rate, number of users establishing radio resource control connections or proportion of users of the first type.
  • the resource requirement degree may include PUCCH resource allocation success rate P Succ and the number N user of users establishing radio resource control connections.
  • the network device can allocate success rate P Succ and PUSCH utilization rate according to the PUCCH resource allocation within the first time range A candidate PUCCH resource that can be used to bear UCI within the second time range is determined.
  • the network device may determine the allocation success rate level L Succ based on the PUCCH resource allocation success rate P Succ in the first time range, and the PUSCH utilization rate Determined Resource Requirement Level Determine candidate PUCCH resources within the second time range.
  • the resource unit is a time-domain symbol
  • different value combinations of the allocation success rate level L Succ and the resource requirement level L user may correspond to a number of symbols, and the number of symbols may be based on the occupation of candidate PUCCH resources in the first time range
  • the symbol number M is determined.
  • the network device can determine that the number of symbols occupied by the candidate PUCCH resource in the second time range is higher than that of the first PUCCH resource based on the corresponding relationship.
  • the number of symbols occupied by the candidate PUCCH resources within the time range is one more symbol, and cannot exceed the total number of symbols M max contained in the first symbol set, that is, the network device can determine that the number of symbols contained in the second symbol set is min(M +1,M max ), and determine that the PUCCH resources included in the second symbol set are candidate PUCCH resources that can be used to bear UCI within the second time range.
  • the network device receives uplink data on the first PUSCH resource.
  • the terminal device sends uplink data on the first PUSCH resource.
  • the first PUSCH resources include part of the configured PUCCH resources.
  • the network device can rewrite resource usage through scheduling information (such as first information) according to requirements. Even if the first PUSCH resource includes some or all of the PUCCH resources configured by the network device, the terminal device can consider that the network device has rewritten the use of the resource, and the terminal device responds to the scheduling of the network device by sending uplink on the first PUSCH resource. data.
  • scheduling information such as first information
  • the network device can schedule PUCCH resources to transmit data when the UCI transmission demand is small or the data transmission demand is large, which can improve resource utilization and uplink transmission rate.
  • the network device can adjust the actually used PUCCH resource without reconfiguring the PUCCH resource for the terminal device through RRC signaling.
  • the terminal device only needs to transmit uplink information in response to the scheduling of the network device.
  • the terminal device and the network device can reach a consensus, which can reduce signaling overhead and further improve resource utilization.
  • each network element may include a hardware structure and/or a software module, and implement the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module. Whether one of the above-mentioned functions is executed in the form of a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraints of the technical solution.
  • Fig. 5 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • the communication device 500 may include a transceiver unit 520 .
  • the communication device 500 may correspond to the terminal device in the above method embodiments, or a chip configured in (or used in) the terminal device, or other devices capable of implementing the method of the terminal device, modules, circuits or units etc.
  • the communication apparatus 500 may correspond to the terminal device in the method 200 according to the embodiment of the present application, and the communication apparatus 500 may include a unit for performing the method performed by the terminal device in the method 200 in FIG. 2 . Moreover, each unit in the communication device 500 and the above-mentioned other operations and/or functions are respectively intended to implement a corresponding flow of the method 200 in FIG. 2 .
  • the communication device 500 may further include a processing unit 510, and the processing unit 510 may be configured to process instructions or data to implement corresponding operations.
  • the transceiver unit 520 in the communication device 500 may be an input/output interface or circuit of the chip, and the processing in the communication device 500 Unit 510 may be a processor in a chip.
  • the communication device 500 may further include a storage unit 530, which may be used to store instructions or data, and the processing unit 510 may execute the instructions or data stored in the storage unit, so that the communication device realizes corresponding operations .
  • a storage unit 530 which may be used to store instructions or data
  • the processing unit 510 may execute the instructions or data stored in the storage unit, so that the communication device realizes corresponding operations .
  • the transceiver unit 520 in the communication device 500 can be implemented through a communication interface (such as a transceiver or an input/output interface), for example, it can correspond to the transceiver 610 in the terminal device 600 shown in FIG. 6 .
  • the processing unit 510 in the communication apparatus 500 may be implemented by at least one processor, for example, may correspond to the processor 620 in the terminal device 600 shown in FIG. 6 .
  • the processing unit 510 in the communication device 500 may also be implemented by at least one logic circuit.
  • the storage unit 530 in the communication device 500 may correspond to the memory in the terminal device 600 shown in FIG. 6 .
  • the communication device 500 may correspond to the network device in the above method embodiment, for example, a chip configured (or used) in the network device, or other methods capable of realizing the network device device, module, circuit or unit etc.
  • the communication device 500 may correspond to the network device in the method 200 according to the embodiment of the present application, and the communication device 500 may include a unit for performing the method performed by the network device in the method 200 in FIG. 2 . Moreover, each unit in the communication device 500 and the above-mentioned other operations and/or functions are respectively intended to implement a corresponding flow of the method 200 in FIG. 2 .
  • the communication device 500 may further include a processing unit 510, and the processing unit 510 may be configured to process instructions or data to implement corresponding operations.
  • the transceiver unit 520 in the communication device 500 may be an input/output interface or circuit of the chip, and the processing in the communication device 500 Unit 510 may be a processor in a chip.
  • the communication device 500 may further include a storage unit 530, which may be used to store instructions or data, and the processing unit 510 may execute the instructions or data stored in the storage unit, so that the communication device realizes corresponding operations .
  • a storage unit 530 which may be used to store instructions or data
  • the processing unit 510 may execute the instructions or data stored in the storage unit, so that the communication device realizes corresponding operations .
  • the transceiver unit 520 in the communication device 500 can be implemented through a communication interface (such as a transceiver or an input/output interface), for example, it can correspond to the network device shown in FIG. 7 Transceiver 710 in 700.
  • the processing unit 510 in the communication device 500 can be implemented by at least one processor, for example, it can correspond to the processor 720 in the network device 700 shown in FIG. circuit implementation.
  • FIG. 6 is a schematic structural diagram of a terminal device 600 provided in an embodiment of the present application.
  • the terminal device 600 may be applied to the system shown in FIG. 1 to execute the functions of the terminal device in the foregoing method embodiments.
  • the terminal device 600 includes a processor 620 and a transceiver 610 .
  • the terminal device 600 further includes a memory.
  • the processor 620, the transceiver 610, and the memory may communicate with each other through an internal connection path, and transmit control and/or data signals.
  • the memory is used to store computer programs, and the processor 620 is used to execute the computer programs in the memory to control the transceiver 610 to send and receive signals.
  • the processor 620 and the memory may be combined into a processing device, and the processor 620 is configured to execute the program codes stored in the memory to realize the above functions.
  • the memory may also be integrated in the processor 620, or be independent of the processor 620.
  • the processor 620 may correspond to the processing unit in FIG. 5 .
  • the above-mentioned transceiver 610 may correspond to the transceiver unit in FIG. 5 .
  • the transceiver 610 may include a receiver (or called a receiver, a receiving circuit) and a transmitter (or called a transmitter, a transmitting circuit). Among them, the receiver is used to receive signals, and the transmitter is used to transmit signals.
  • the terminal device 600 shown in FIG. 6 can implement the process involving the terminal device in the method embodiment shown in FIG. 2 .
  • the operations and/or functions of the various modules in the terminal device 600 are respectively for implementing the corresponding processes in the foregoing method embodiments.
  • the above-mentioned processor 620 can be used to execute the actions implemented by the terminal device described in the previous method embodiments, and the transceiver 610 can be used to execute the actions described in the previous method embodiments sent by the terminal device to the network device or received from the network device. action.
  • the transceiver 610 can be used to execute the actions described in the previous method embodiments sent by the terminal device to the network device or received from the network device. action.
  • the terminal device 600 may further include a power supply, configured to provide power to various devices or circuits in the terminal device.
  • the terminal equipment 600 may also include input and output devices, such as including one or more of an input unit, a display unit, an audio circuit, a camera, and a sensor.
  • the circuitry may also include speakers, microphones, and the like.
  • FIG. 7 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • the network device 700 can be applied to the system shown in FIG. 1 to perform the functions of the network device in the foregoing method embodiments.
  • the network device 700 includes a processor 720 and a transceiver 710 .
  • the network device 700 also includes a memory.
  • the processor 720, the transceiver 710, and the memory may communicate with each other through an internal connection path, and transmit control and/or data signals.
  • the memory is used to store computer programs, and the processor 720 is used to execute the computer programs in the memory to control the transceiver 710 to send and receive signals.
  • the processor 720 and the memory may be combined into a processing device, and the processor 720 is configured to execute the program codes stored in the memory to realize the above functions.
  • the memory may also be integrated in the processor 620, or be independent of the processor 720.
  • the processor 720 may correspond to the processing unit in FIG. 5 .
  • the above-mentioned transceiver 710 may correspond to the transceiver unit in FIG. 5 .
  • the transceiver 710 may include a receiver (or receiver, receiving circuit) and a transmitter (or transmitter, transmitting circuit). Among them, the receiver is used to receive signals, and the transmitter is used to transmit signals.
  • the network device 700 shown in FIG. 7 can implement various processes related to the network device in the method embodiment shown in FIG. 2 .
  • the operations and/or functions of the various modules in the network device 700 are respectively for implementing the corresponding processes in the foregoing method embodiments.
  • the network device 700 shown in FIG. 7 may be an eNB or a gNB.
  • the network device includes network devices such as CU, DU, and AAU.
  • the CU can be specifically divided into CU-CP and CU-CP. UP.
  • the present application does not limit the specific architecture of the network device.
  • the network device 700 shown in FIG. 7 may be a CU node or a CU-CP node.
  • the above-mentioned processor 720 can be used to execute the actions implemented by the network device described in the previous method embodiments, and the transceiver 710 can be used to execute the actions described in the previous method embodiments sent by the network device to the terminal device or received from the terminal device. action.
  • the transceiver 710 can be used to execute the actions described in the previous method embodiments sent by the network device to the terminal device or received from the terminal device. action.
  • the embodiment of the present application also provides a processing device, including a processor and a (communication) interface; the processor is configured to execute the method in any one of the above method embodiments.
  • the above processing device may be one or more chips.
  • the processing device may be a field programmable gate array (field programmable gate array, FPGA), an application specific integrated circuit (ASIC), or a system chip (system on chip, SoC). It can be a central processor unit (CPU), a network processor (network processor, NP), a digital signal processing circuit (digital signal processor, DSP), or a microcontroller (micro controller unit) , MCU), can also be a programmable controller (programmable logic device, PLD) or other integrated chips.
  • CPU central processor unit
  • NP network processor
  • DSP digital signal processor
  • microcontroller micro controller unit
  • PLD programmable logic device
  • the present application also provides a computer program product, the computer program product comprising: computer program code, when the computer program code is executed by one or more processors, the The device executes the method in the embodiment shown in FIG. 2 .
  • the technical solutions provided by the embodiments of the present application may be fully or partially implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer may be a general computer, a dedicated computer, a computer network, a network device, a terminal device, a core network device, a machine learning device or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Transmission to another website site, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, or a magnetic tape), an optical medium (for example, a digital video disc (digital video disc, DVD)), or a semiconductor medium.
  • the present application also provides a computer-readable storage medium, the computer-readable storage medium stores program code, and when the program code is run by one or more processors, the processing includes the The apparatus of the controller executes the method in the embodiment shown in FIG. 2 .
  • the present application further provides a system, which includes the aforementioned one or more network devices.
  • the system may further include the aforementioned one or more terminal devices.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种资源分配方法、通信装置以及通信设备。该方法包括:网络设备发送配置信息,该配置信息用于配置多个上行控制信道资源;网络设备发送第一信息,该第一信息用于调度第一上行共享信道资源,该第一上行共享信道资源包括该多个上行控制信道资源中的部分资源;网络设备在该第一上行共享信道资源上接收上行数据。能够提高资源利用率。

Description

资源分配方法、通信装置以及通信设备
本申请要求于2021年07月30日提交中国国家知识产权局、申请号为202110876266.2、申请名称为“资源分配方法、通信装置以及通信设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种资源分配方法、通信装置以及通信设备。
背景技术
在移动通信系统中,物理上行控制信道(physical uplink control channel,PUCCH)资源用于承载上行控制信息(uplink control channel,UCI),如UCI可以包括混合自动重传请求(hybrid automatic repeat request,HARQ)、信道状态信息(channel state information,CSI)或调度请求(scheduling request,SR)等。
网络设备可以为终端设备配置PUCCH资源的专用符号区域,若配置的PUCCH的专用符号区域的符号数过多,将造成资源浪费。若配置的PUCCH符号区域的符号数过少,UCI将无法及时传输。目前的PUCCH资源配置方式存在资源利用率较低的问题。
发明内容
本申请提供了一种资源分配方法、通信装置以及通信设备,能够提高资源利用率。
第一方面,提供了一种资源分配方法,该方法可以由网络设备或配置于网络设备的模块(如芯片)执行。
该方法包括:发送配置信息,该配置信息用于配置多个上行控制信道资源;发送第一信息,该第一信息用于调度第一上行共享信道资源,该第一上行共享信道资源包括该多个上行控制信道资源中的部分资源;在该第一上行共享信道资源上接收上行数据。
根据上述方案,网络设备可以根据需求调度配置的PUCCH资源中的部分资源用于数据传输,相应地,终端设备将响应于网络设备的调度在被调度的资源上传输数据,如网络设备调度PUCCH资源传输UCI时,终端设备在被调度的PUCCH资源上传输UCI,若网络设备调度PUSCH资源传输数据,而该PUSCH资源包含PUCCH资源的部分资源,终端设备依然基于调度在被调度的资源上传输数据。这使得网络设备可以在UCI传输需求较小时或数据传输需求较大时,调度PUCCH资源的部分资源传输数据,能够提高资源利用率以及上行传输速率。另一方面,网络设备无需通过RRC信令为终端设备重配置PUCCH资源,终端设备仅需要响应网络设备的调度进行上行数据或UCI的传输。终端设备与网络设备能够达成共识,能够减小信令开销,进一步提高了资源利用率。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:根据第一资源需求度,在该多个上行控制信道资源中确定一个或多个第一上行控制信道资源,该第一资源需求度为第一时间范围内上行资源的需求度;在第二时间范围内发送第二信息,该第二信息用于调度该一个或多个第一上行控制信道资源中的上行控制信道资源,其中,该第一信息是在 该第二时间范围内发送的,该第一上行共享信道资源包括该多个上行控制信道资源中除该第一上行控制信道资源以外的资源。
根据上述方案,网络设备可以根据一段时间段内上行资源的需求度,确定接下来的一段时间内可用于承载UCI的备选PUCCH资源,即第一上行控制信道资源。而网络设备在接下来的一段时间内仅调度第一上行控制信道资源承载UCI,而配置的上行控制信道资源中除第一上行控制信道资源以外的其他上行控制信道资源可以用于承载上行数据。通过该方式能够实现提高资源利用率以及上行传输速率。
结合第一方面,在第一方面的某些实现方式中,该多个上行控制信道资源占用第一资源集合,该第一资源集合包括一个或多个资源单元,该资源单元为时域资源和/或频域资源,该一个或多个第一上行控制信道资源为该多个上行控制信道资源中属于第二资源集合的上行控制信道资源,该第二资源集合为该第一资源集合的子集。
根据上述方案,网络设备根据第一资源需求度,确定选择PUCCH资源的第二资源集合(或者可以称为资源范围),将该资源集合包含的配置的PUCCH资源作为第二时间范围内的可用于传输UCI的备选PUCCH资源。
结合第一方面,在第一方面的某些实现方式中,该根据第一资源需求度,在该多个上行控制信道资源中确定一个或多个第一上行控制信道资源,包括:根据该第一资源需求度和对应关系,确定该第一资源需求度对应的该资源单元的第一数量,其中,该对应关系包括多个资源需求度与资源单元的多个数量之间的对应关系,该多个资源需求度包括该第一资源需求度;根据该第一数量,在该第一资源集合中确定该第二资源集合,该第二资源集合包括该第一数量的该资源单元。
根据上述方案,网络设备基于第一资源需求度和对应关系,首选确定第二资源集合包含的资源单元的数量,再确定第二资源集合。基于对应关系确定第二资源集合能够减小实现的复杂度。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:以第一时间范围为周期,周期性地在该多个上行控制信道中确定一个周期内用于承载上行控制信息的上行控制信道资源,其中,该第一时间范围的时长与该第二时间范围的时长相等,且该第二时间范围为该第一时间范围的下一个周期。
根据上述方案,网络设备可以周期性地调整一个周期内可用于传输UCI的备选PUCCH资源,能够动态地调整可用于传输UCI的PUCCH资源,又避免频繁调整带来的功率消耗。
结合第一方面,在第一方面的某些实现方式中,该第一资源需求度包括以下一项或多项:
上行控制信道资源分配成功率、上行控制信道资源分配失败率、上行控制信道资源使用率、上行共享信道资源使用率、建立无线资源控制连接的用户数或第一类型用户比例,
其中,该第一类型用户是上行信号质量低于信号质量阈值的用户。
根据上述方案,可以根据以上参数中的一项或多项体现一段时间内的上行资源的使用情况或者说系统对上行资源的需求程度,从而能够更合理地确定第二时间范围内的备选PUCCH资源,达到提高资源利用率的目的。
结合第一方面,在第一方面的某些实现方式中,该第一资源需求度包括该上行控制信道资源分配成功率或该上行控制信道资源分配失败率,该上行控制信道资源分配成功率是 根据该第一时间范围内成功分配上行控制信道资源的次数和请求上行控制信道资源的次数确定的;该上行控制信道资源分配失败率是根据该第一时间范围内分配上行控制信道资源失败的次数和请求上行控制信道资源的次数确定的。
结合第一方面,在第一方面的某些实现方式中,该第一资源需求度包括该上行控制信道资源使用率,该第一时间范围中用于承载UCI的上行控制信道资源为至少一个第二上行控制信道资源,所述多个上行控制信道资源中的包括所述至少一个第二上行控制信道资源,该至少一个第二上行控制信道资源占用第三资源集合,该上行控制信道资源使用率是根据该第一时间范围内承载了上行控制信息的该第二上行控制信道资源的资源大小和该第三资源集合包含的资源大小确定的。
结合第一方面,在第一方面的某些实现方式中,该第一资源需求度包括上行共享信道资源使用率,该上行共享信道资源使用率是根据该第一时间范围内被调度的上行共享信道资源大小和该第一时间范围内上行共享信道资源的总资源大小确定的。
结合第一方面,在第一方面的某些实现方式中,该第一资源需求度包括该第一时间范围内该第一类型用户比例,其中,该第一类型用户比例是根据该第一时间范围内信号质量低于信号质量阈值的用户数和该第一时间范围内建立无线资源控制连接的用户总数确定的。
第二方面,提供了一种资源分配方法,该方法可以由终端设备或配置于终端设备的模块(如芯片)执行。
该方法包括:接收配置信息,该配置信息用于配置多个上行控制信道资源;接收第一信息,该第一信息用于调度第一上行共享信道资源,该第一上行共享信道资源包括该多个上行控制信道资源中的部分资源;在该第一上行共享信道资源上发送数据。
根据上述方案,终端设备可以根据配置信息确定被调度的PUCCH资源的位置,而终端设备响应网络设备的调度在相应的资源上传输相应的上行信息,如网络设备调度PUSCH资源传输上行数据,即使该PUSCH资源包含PUCCH资源,该终端设备也会响应于网络设备的调度在该PUSCH资源上发送上行数据。这使得网络设备可以在UCI传输需求较小时或数据传输需求较大时,调度PUCCH资源传输数据,能够提高资源利用率以及上行传输速率。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:在第二时间范围内接收第二信息,该第二信息用于调度第一上行控制信道资源,其中,该第一信息是在该第二时间范围内接收到的,该上行共享信道资源包括该多个上行控制信道资源中除该第一上行控制信道资源以外的资源。
第三方面,提供了一种通信装置,该装置包括:处理单元,用于确定多个上行控制信道资源;收发单元,用于发送配置信息,该配置信息用于配置多个上行控制信道资源;该收发单元还用于发送第一信息,该第一信息用于调度第一上行共享信道资源,该第一上行共享信道资源包括该多个上行控制信道资源中的部分资源;该收发单元还用于在该第一上行共享信道资源上接收上行数据。
结合第三方面,在第三方面的某些实现方式中,该处理单元还用于根据第一资源需求度,在该多个上行控制信道资源中确定一个或多个第一上行控制信道资源,该第一资源需求度为第一时间范围内上行资源的需求度;该收发单元还用于在该第二时间范围内发送第二信息,该第二信息用于调度该一个或多个第一上行控制信道资源中的上行控制信道资源, 其中,该第一信息是在该第二时间范围内发送的,该第一上行共享信道资源包括该多个上行控制信道资源中除该第一上行控制信道资源以外的资源。
结合第三方面,在第三方面的某些实现方式中,该多个上行控制信道资源占用第一资源集合,该第一资源集合包括一个或多个资源单元,该资源单元为时域资源和/或频域资源,该一个或多个第一上行控制信道资源为该多个上行控制信道资源中属于第二资源集合的上行控制信道资源,该第二资源集合为该第一资源集合的子集。
结合第三方面,在第三方面的某些实现方式中,该处理单元具体用于:
根据该第一资源需求度和对应关系,确定该第一资源需求度对应的该资源单元的第一数量,其中,该对应关系包括多个资源需求度与资源单元的多个数量之间的对应关系,该多个资源需求度包括该第一资源需求度;
根据该第一数量,在该第一资源集合中确定该第二资源集合,该第二资源集合包括该第一数量的该资源单元。
结合第三方面,在第三方面的某些实现方式中,该处理单元具体用于以第一时间范围为周期,周期性地在该多个上行控制信道中确定一个周期内用于承载上行控制信息的上行控制信道资源,其中,该第一时间范围的时长与该第二时间范围的时长相等,且该第二时间范围为该第一时间范围的下一个周期。
结合第三方面,在第三方面的某些实现方式中,该第一资源需求度包括以下一项或多项:
上行控制信道资源分配成功率、上行控制信道资源分配失败率、上行控制信道资源使用率、上行共享信道资源使用率、建立无线资源控制连接的用户数或第一类型用户比例,
其中,该第一类型用户是上行信号质量低于信号质量阈值的用户。
第一资源需求度包括的上述参数可以参考第一方面的描述,为了简要,在此不再赘述。
第四方面,提供了一种通信装置,该装置包括:收发单元,用于接收配置信息,该配置信息用于配置多个上行控制信道资源;该收发单元,还用于接收第一信息,该第一信息用于调度第一上行共享信道资源,该第一上行共享信道资源包括该多个上行控制信道资源中的部分资源;处理单元,用于确定在该第一上行共享信道资源上发送数据;该收发单元还用于在该第一上行共享信道资源上发送数据。
结合第四方面,在第四方面的某些实现方式中,该方法还包括:该收发单元还用于在该第二时间范围内接收第二信息,该第二信息用于调度第一上行控制信道资源,其中,该第一信息是在该第二时间范围内接收到的,该上行共享信道资源包括该多个上行控制信道资源中除该第一上行控制信道资源以外的资源。
第五方面,提供了一种通信装置,包括处理器。该处理器可以实现上述第一方面以及第一方面中任一种可能实现方式中的方法。可选地,该通信装置还包括存储器,该处理器与该存储器耦合,可用于执行存储器中的指令,以实现上述第一方面以及第一方面中任一种可能实现方式中的方法。可选地,该通信装置还包括通信接口,处理器与通信接口耦合。本申请实施例中,通信接口可以是收发器、管脚、电路、总线、模块或其它类型的通信接口,不予限制。
在一种实现方式中,该通信装置为网络设备。当该通信装置为网络设备时,该通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该通信装置为配置于网络设备中的芯片。当该通信装置为配置 于网络设备中的芯片时,该通信接口可以是输入/输出接口,该处理器可以是逻辑电路。
可选地,该收发器可以为收发电路。可选地,该输入/输出接口可以为输入/输出电路。
第六方面,提供了一种通信装置,包括处理器。该处理器可以实现上述第二方面以及第二方面中任一种可能实现方式中的方法。可选地,该通信装置还包括存储器,该处理器与该存储器耦合,可用于执行存储器中的指令,以实现上述第二方面以及第二方面中任一种可能实现方式中的方法。可选地,该通信装置还包括通信接口,处理器与通信接口耦合。本申请实施例中,通信接口可以是收发器、管脚、电路、总线、模块或其它类型的通信接口,不予限制。
在一种实现方式中,该通信装置为终端设备。当该通信装置为终端设备时,该通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该通信装置为配置于终端设备中的芯片。当该通信装置为配置于终端设备中的芯片时,该通信接口可以是输入/输出接口,该处理器可以是逻辑电路。
可选地,该收发器可以为收发电路。可选地,该输入/输出接口可以为输入/输出电路。
第七方面,提供了一种处理器,包括:输入电路、输出电路和处理电路。该处理电路用于通过该输入电路接收信号,并通过该输出电路发射信号,使得该处理器执行第一方面或第二方面以及第一方面或第二方面中任一种可能实现方式中的方法。
在具体实现过程中,上述处理器可以为一个或多个芯片,输入电路可以为输入管脚,输出电路可以为输出管脚,处理电路可以为晶体管、门电路、触发器和各种逻辑电路等。输入电路所接收的输入的信号可以是由例如但不限于接收器接收并输入的,输出电路所输出的信号可以是例如但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是同一电路,该电路在不同的时刻分别用作输入电路和输出电路。本申请实施例对处理器及各种电路的具体实现方式不做限定。
第八方面,提供了一种计算机程序产品,该计算机程序产品包括:计算机程序(也可以称为代码,或指令),当该计算机程序被运行时,使得计算机执行上述第一方面或第二方面以及第一方面或第二方面中任一种可能实现方式中的方法。
第九方面,提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述第一方面或第二方面以及第一方面或第二方面中任一种可能实现方式中的方法。
第十方面,提供了一种通信系统,包括前述的至少一个网络设备和前述的至少一个终端设备。
附图说明
图1是适用于本申请实施例的通信系统的一个示意性架构;
图2是本申请实施例提供的资源分配方法的示意性流程图;
图3是本申请实施例提供的多个控制信道资源的一个示意图;
图4是本申请实施例提供的多个控制信道资源的另一个示意图;
图5是本申请实施例提供的通信装置的示意性框图;
图6是本申请实施例提供的终端设备的示意性结构图;
图7是本申请实施例提供的网络设备的示意性结构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的说明书、权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunications system,UMTS)、全球微波接入互操作性(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5th generation,5G)系统或新无线(new radio,NR)以及未来的通信系统,如第六代移动通信系统等。本申请对此不作限定。
图1为适用于本申请的通信系统的示意性结构图。
如图1所示,该通信系统100可以包括至少一个网络设备,如图1中的网络设备101;该通信系统100还可以包括至少一个终端设备,如图1中的终端设备102至107。其中,该终端设备102至107可以是移动的或固定的。网络设备101和终端设备102至107中的一个或多个均可以通过无线链路通信。网络设备与终端设备之间可以采用本申请实施例提供的资源分配方法进行通信。
本申请实施例中的终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机、平板电脑、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制中的无线终端、无人驾驶中的无线终端、远程医疗中的无线终端、智能电网中的无线终端、运输安全中的无线终端、智慧城市中的无线终端、智慧家庭中的无线终端、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备、车载设备、可穿戴设备,5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等。应理解,本申请对于终端设备的具体形式不作限定。
本申请实施例中的网络设备可以是接入网中具有无线收发功能的设备。该设备包括但不限于:基站、演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved nodeB,或 home node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等。该设备还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。应理解,本申请对于网络设备的具体形式不作限定。
网络设备可以通过无线资源控制(radio resource control,RRC)信令为终端设备配置一个或多个PUCCH资源集合,每个PUCCH资源集合中包括一个或多个PUCCH资源。每个PUCCH资源采用表1所示的5种PUCCH格式(PUCCH format)即格式0至格式4中的一种格式。其中,每一种PUCCH格式对应一个PUCCH资源的时域长度范围(通过OFDM符号个数的取值范围表示)和PUCCH资源能够承载的比特数范围。网络设备配置PUCCH资源集合时指示每个PUCCH资源的时域占用的OFDM符号个数。例如,若网络设备为终端设备配置的PUCCH资源集合中包括PUCCH格式0的PUCCH资源,网络设备将在配置信息中指定该PUCCH格式0的PUCCH资源占用1个OFDM符号或2个OFDM符号。而终端设备在该PUCCH资源上发送UCI时,发送的UCI的长度不大于2比特。
表1
PUCCH格式 长度(OFDM符号个数) 比特数
0 1-2 ≤2
1 4-14 ≤2
2 1-2 >2
3 4-14 >2
4 4-14 >2
网络设备为终端设备配置的一个或多个PUCCH资源占用的OFDM符号集合可以称为PUCCH专属符号区域,该PUCCH专属符号区域中的资源仅用于承载UCI。在网络设备为终端设备重配置(或者称为更新)PUCCH资源集合之前,终端设备在该一个或多个PUCCH资源集合中的PUCCH资源上传输UCI。网络设备需要通过RRC重配置更新PUCCH符号区域,通知终端设备更新后的符号区域以及其中的PUCCH资源。而RRC重配置的间隔时间较长,在网络设备为终端设备重配置PUCCH符号区域之前,若网络设备配置的PUCCH符号区域的符号数过多,将造成资源浪费。并且上行资源有限,当PUCCH符号区域的符号数过多时,用于传输数据的物理上行共享信道(physical uplink shared channel,PUSCH)资源将减少,降低了上行数据的传输速率。若PUCCH符号区域的符号数过少,无法满足UCI传输需求时将使得UCI无法及时传输。本申请提出网络设备可以根据需求调度配置的PUCCH资源中的部分资源用于数据传输,终端设备基于网络设备的调度在被调度的资源上传输上行数据,如网络设备调度PUCCH资源传输UCI时,终端设备在被调度的PUCCH资源上传输UCI,若网络设备调度PUSCH资源传输数据,而该PUSCH资源包含配置的PUCCH资源中的部分资源,终端设备依然基于网络设备的调度在相应的资源上传输数据。这使得网络设备可以在UCI传输需求较小时或数据传输需求较大时,调度PUCCH资源传输数据,能够提高资源利用率以及上行传输速率。另一方面,网络设备无需通过RRC信令为终端设备重配置PUCCH资源,终端设备仅需要响应网络设备的调度进行上行信息传输。终端设备与网络设备能够达成共识,能够减小信令开销,进一步提高了资源利用率。
下面结合附图对本申请实施例提供的资源分配方法进行说明。
图2是本申请实施例提供的资源分配方法200的一个示意性流程图。本申请下文中以上行控制信道资源为移动通信系统中的PUCCH,上行控制信息为以移动通信系统中的UCI为例进行说明,应理解本申请并不限于此。本申请提供的方案还可以应用于其他通信系统中。
S210,网络设备发送配置信息,该配置信息用于配置多个PUCCH资源。
网络设备配置了多个PUCCH资源,网络设备可以通过一个或多个配置信息通知一个或多个终端设备网络设备为每个终端设备配置的PUCCH资源。该一个或多个终端设备可以是与网络设备建立通信连接的终端设备。
相应地,终端设备接收来自该网络设备的配置信息。终端设备接收到配置信息后,可以根据该配置信息确定网络设备为该终端设备配置的PUCCH资源。
该多个PUCCH资源占用的时域资源和/或频域资源不同。网络设备可以为多个时域资源不同和/或频域资源不同的PUCCH资源,以便网络设备可以在后续根据传输需求在该多个PUCCH资源中选择在一段时间内实际用于承载UCI的PUCCH资源,来提高资源利用率。
需要说明的是,该多个PUCCH资源为一个上行时间单元内的PUCCH资源,且该多个PUCCH资源适用于每个上行时间单元。作为示例非限定,该上行时间单元可以是网络设备的上行调度的最大时间粒度,如该上行时间单元可以是OFDM符号组、子时隙(mini-slot)、时隙(slot)、子帧(subframe)或帧(frame)。
S220,网络设备向终端设备发送第一信息,该第一信息用于调度第一PUSCH资源,该第一PUSCH资源包括该多个PUCCH资源中的部分资源。
相应地,该终端设备接收来自该网络设备的该第一信息,根据该第一信息可以确定在第一PUSCH资源上发送上行数据。
网络设备可以根据传输需求调度该多个PUSCH资源包含的部分资源传输数据。
可选地,网络设备可以根据第一资源需求度,在网络设备配置的多个PUCCH资源中确定一个或多个第一PUCCH资源。其中,该第一资源需求度为第一时间范围内上行资源的需求度,该一个或多个第一PUCCH资源作为第二时间范围内的用于承载UCI的备选PUCCH资源。第二时间范围在第一时间范围之后。每个时间范围(如第一时间范围、第二时间范围)包括至少一个上行时间单元。
在第二时间范围内,网络设备在该一个或多个第一PUCCH资源中选择用于承载UCI的PUCCH资源。例如,网络设备在该第二时间范围内发送第二信息,该第二信息用于调度该一个或多个第一PUCCH资源中的一个第一PUCCH资源。相应地,终端设备接收来自网络设备的该第二信息,并在该第二信息调度的第一PUCCH资源上发送UCI。
在第二时间范围内,网络设备将在第二时间范围内不调度配置的多个PUCCH资源中除第一PUCCH资源以外的资源承载UCI。也就是说,该多个PUCCH资源中除第一PUCCH资源以外的资源在第二时间范围内不用于承载UCI,而可以被网络设备调度作为PUSCH资源承载上行数据。
其中,上述第一信息可以是在该第二时间范围内发送的,该第一PUCCH资源包括该多个PUCCH资源中除该第一PUCCH资源以外的资源。根据该方案,能够减少资源浪费,提高资源利用率以及上行传输速率。
可选地,网络设备可以是以第一时间范围为周期周期性地确定下一个周期内用于承载UCI的备选PUCCH资源,其中,第一时间范围的时长与第二时间范围的时长相等,且第二时间范围为第一时间范围的下一个周期。
下面介绍网络设备根据第一时间范围内的第一资源需求度,在配置的多个PUCCH资源中确定一个或多个第一PUCCH资源的可选实施方式。
可选地,该多个PUCCH资源占用第一资源集合,该第一资源集合包括一个或多个资源单元,该资源单元为时域资源和/或频域资源,该一个或多个第一PUCCH资源为配置的多个PUCCH资源中属于第二资源集合的PUCCH资源,其中,该第二资源集合为该第一资源集合的子集。
一种实施方式中,该资源单元为时域资源。
例如,该资源单元可以是时域符号。网络设备配置的该多个PUCCH资源在时域上占用的符号组成第一符号集合,网络设备根据第一时间范围内上行资源的资源需求度(即第一资源需求度),在第一符号集合中确定第二符号集合,该第二符号集合中包含配置的多个PUCCH资源中的至少一个PUCCH资源,该网络设备将该第二符号集合中包含的PUCCH资源作为第二时间范围内的备选PUCCH资源,即第一PUCCH资源。
例如,网络设备可以配置8个PUCCH资源,该8个PUCCH资源在时域占用了一个上行时间单元中的最后4个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号。
该8个PUCCH资源可以如图3所示,网络设备为终端设备配置的8个PUCCH资源分别为PUCCH资源0至PUCCH资源7(记作Ri,i=0,…,7,例如,PUCCH资源0记作R0),该8个PUCCH资源在时域上占用了一个上行时间单元的14个符号(即符号0至符号13)中的最后4个OFDM符号(即符号10至符号13),则该最后4个OFDM符号为第一符号集合。网络设备根据第一时间范围内第一资源需求度,确定第二时间范围内的备选PUCCH资源,如网络设备基于第一上行资源需求度,可以确定减少在第二时间范围内的备选PUCCH资源占用的符号。例如,第一时间范围内的备选PUCCH资源即为网络设备配置的该8个PUCCH资源,则网络设备可以减少1个PUCCH资源占用的符号,将符号11至符号13作为第二符号集合,第二符号集合包含R2至R7共6个PUCCH,则该6个PUCCH资源为第一PUCCH资源,即第二时间范围内的备选PUCCH资源。网络设备在第二时间范围内调度该6个PUCCH资源中的PUCCH资源承载UCI,而不调度R0和R1承载UCI。另外,符号10可以在第二时间范围内根据需求被调度传输数据,能够在第二时间范围内减少不必要的PUCCH资源开销,另外增加了传输数据的可用资源,能够提高上行数据传输速率。
该8个PUCCH资源还可以如图4所示,网络设备为终端设备分配的8个PUCCH资源(如图4中的R0至R7)的时域位置、频域位置或资源大小中的一项或多项可以不同,如R0时域占用4个符号、R3、R6在时域占用3个符号,R4、R5时域占用2个符号,R2、R7时域占用1个符号。R0占用的频域资源大小大于其他PUCCH资源占用的频域资源大小。8个PUCCH资源相互之间可以部分重叠,如R2和R3。一个PUCCH资源还可以包含另一个PUCCH资源,如R0和R1。本申请对此不做限定。网络设备根据第一时间范围内的第一资源需求度,可以确定第二符号集合包括符号12和符号13,而符号12和符号13包含R1、R2、R5和R7共4个PUCCH资源,则该4个PUCCH资源为第二时间范围 内的备选PUCCH资源。网络设备在第二时间范围内调度该4个PUCCH资源中的PUCCH资源承载UCI,而该8个PUCCH资源中除该4个PUCCH资源以外的PUCCH资源在第二时间范围内不用于承载UCI。能够增加传输数据的可用资源,能够提高上行数据传输速率。
可选地,网络设备具体可以根据该第一资源需求度和对应关系,确定该第一资源需求度对应的资源单元的第一数量,其中,该对应关系包括多个资源需求度与资源单元的多个数量之间的对应关系,该多个资源需求度包括第一资源需求度。网络设备根据第一数量,在第一资源集合中确定第二资源集合,该第二符号集合包括第一数量的资源单元。
在本实施方式中,资源单元为时域资源,例如资源单元为时域符号,则第一数量为第一资源需求度对应的第一符号数,该对应关系包括多个资源需求度与多个符号数之间的对应关系。网络设备根据该第一符号数,确定在第一符号集合中确定第二符号集合,第二符号集合包括第一符号数的符号。
例如,上行资源需求度P的多个取值范围对应多个符号数,对应关系可以如表2所示,上行资源需求度P的3个取值范围对应3个符号数,如网络设备确定第一时间范围内的第一上行资源需求度为P1,若P1<A1,则网络设备可以确定第二符号集合包括M1个符号。可选地,网络设备可以根据预设规则确定该M1个符号在第一符号集合中具体位置,例如,预设规则可以规定在确定符号数后,选择在第一符号集合中最后连续的相应符号数的符号。则该网络设备可以确定第二符号集合包括第一符号集合中的最后M1个符号,网络设备再确定第一符号集合中最后M1个符号包含的至少一个PUCCH资源,该至少一个PUCCH资源为第二时间范围内的备选PUCCH资源(或者说可用PUCCH资源)。如图3或图4所示,当确定第二符号集合时选择最后连续的符号可以使得第一符号集合中未被选择的符号与该时间单元中第一符号集合以外的符号资源形成连续的资源,用于承载数据。但本申请不限于此。该第二符号集合中的符号也可以是不连续的或第一符号集合中起始时刻开始的M1个符号。
表2
资源需求度P 符号数
P<A1 M1
A1≤P<A2 M2
A2≤P M3
需要说明的是,网络设备需要在配置PUCCH资源时,在每种可能的第二资源集合中配置至少一个PUCCH资源,例如网络设备可以根据对应关系在每种可能的符号数对应的第二符号集合中配置至少一个PUCCH资源。
再例如,对应关系可以如表3所示,第二符号集合包含的符号数可以基于第一时间范围内的第一上行资源需求度P1以及第一时间范围内PUCCH资源的备选资源占用的符号数M确定。例如,第一时间范围内用于承载UCI的备选PUCCH资源为配置的多个PUCCH资源中的至少一个第二PUCCH资源,该至少一个第二PUCCH资源占用的符号集合为第三符号集合,该第三符号集合包括M个符号。若P1<A1,网络设备可以根据表3所示的对应关系确定第二符号集合包含的符号个数相较于第三符号集合包含的符号个数M需要减少1个符号,另外需要保证第二时间范围内的上行时间单元至少包含一个PUCCH资源 的符号可以传输UCI,因此第二符号集合包含的符号个数可以是M-1与1中的最大值,即max(M-1,1)。若A1≤P1<A2,网络设备可以确定在第二时间范围内的备选PUCCH符号集合包含的符号数可以保持不变,即第二符号集合包含的符号个数为M。若A2≤P1,网络设备可以根据对应关系确定相对于第三符号集合包含的符号个数M,第二符号集合包含的符号数需要增加1个符号,另外由于第一符号集合以外的符号不包括PUCCH资源,因此,第二符号集合包含的符号数为M+1和第一符号集合包含的符号数M max中的最小值,即min(M+1,M max)。网络设备根据符号数确定第二符号集合,并确定第二符号集合包含的PUCCH资源为第二时间范围内的备选PUCCH资源。
表3
资源需求度P 符号数
P<A1 max(M-1,1)
A1≤P<A2 M
A2≤P min(M+1,M max)
其中,max(X,Y)表示取X,Y中的最大值,min(X,Y)表示取X,Y中的最小值。
再例如,对应关系包括上行资源需求度的多个取值范围与多个等级标识的对应关系,以及多个等级标识与多个符号数之间的对应关系。网络设备可以先根据多个取值范围与多个等级标识的对应关系,确定第一时间范围内的上行资源的利用率P1所属的取值范围,以及与该取值范围对应的等级标识,再根据多个等级标识与多个符号数之间的对应关系,确定与该等级标识对应的符号数即为第二符号集合包含的符号数。网络设备根据符号数确定第二符号集合,并将第二符号集合包含的PUCCH资源作为第二时间范围内用于承载UCI的备选PUCCH资源。
在一个具体示例中,资源需求度可以划分为高、中、低3个等级,可以通过两个门限值确定资源需求度的3个取值范围,例如表4所示,该两个门限值分别为Th high和Th low,若P1<Th low,资源需求度的等级为低;若Th low≤P1<Th high,资源需求度的等级为中;若Th high≤P1,资源需求度的等级为高。当资源需求度的等级为低时,第二符号集合包含的符号数可以为max(M-2,1),其中M为第三符号集合包含的符号数。当资源需求度的等级为中时,第二符号集合包含的符号数可以为M;当资源需求度的等级为高时,第二符号集合包含的符号数可以为min(M+1,M max),其中M max第一符号集合包含的符号数。但本申请不限于此。
表4
资源需求度P 等级 符号数
P<Th low max(M-1,1)
Th low≤P<Th high M
Th high≤P min(M+1,M max)
另一种实施方式中,该资源单元为频域资源。
可选地,频域资源集合包括的频域资源的粒度可以是资源块(resource block,RB)、子载波或子载波组。
例如,网络设备配置的该多个PUCCH资源占用频域资源内的第一频域资源集合,网 络设备根据第一时间范围内上行资源的资源需求度(即第一资源需求度),在第一频域资源集合中确定第二频域资源集合。该网络设备将该第二频域资源集合中包含的PUCCH资源作为第二时间范围内的备选PUCCH资源资源,即第一PUCCH资源。
资源单元为频域资源时的实施方式与资源单元为时域资源的实施方式类似,仅资源集合包含的资源单元的资源类型不同,可以参考上述对资源单元为时域资源的实施方式的描述,为了简要,在此不再赘述。
可选地,以上两种实施方式可以结合实施,网络设备确定第二符号集合与第二频域资源集合后,确定第二符号集合(即时域资源集合)与第二频域资源集合相交的时频资源,并将该时频资源中包含的PUCCH资源作为第二时间范围内的备选PUCCH资源。
或者说,网络设备根据第一时间范围内上行资源的资源需求度,确定时频资源集合,并将该时频资源集合包含的PUCCH资源作为第二时间范围内的备选PUCCH资源。
可选地,该资源需求度包括以下一项或多项:
上行控制信道资源分配成功率、上行控制信道资源的分配失败率、上行控制信道资源使用率、上行共享信道资源使用率、建立无线资源控制连接的用户数或第一类型用户比例。
其中,该第一类型用户是上行信号质量低于信号质量阈值的用户。
一个示例中,该资源需求度包括PUCCH资源的分配成功率。该PUCCH资源的分配成功率是根据第一时间范围内成功分配PUCCH资源的次数和请求PUCCH资源的次数确定的。
当一个终端设备的下行数据到达网络设备时,网络设备需要分配承载该数据的数据信道资源,例如数据信道资源可以是物理下行共享信道(physical downlink shared channel,PDSCH)资源。另外,网络设备还需要为终端设备分配(或者说请求)与该PDSCH相应的PUCCH资源,用于承载终端设备对该数据的反馈信息。其中,反馈信息为UCI的一种,反馈信息可以是混合自动重传请求(hybrid automatic repeat request,HARQ)信息。网络设备为数据分配了PDSCH资源后,若成功请求到与该PDSCH资源相应的PUCCH资源,网络设备向终端设备发送该下行数据,并指示调度相应的PUCCH资源承载该下行数据的HARQ信息;若未请求到PUCCH资源,则认为分配PUCCH失败,网络设备需要重新为该数据分配PDSCH资源,以及分配相应的PUCCH资源。
例如,网络设备在终端设备的数据到来后的第一个上行时间单元为该数据分配到相应的PUCCH资源,则认为是请求PUCCH资源的成功1次,或者,若网络设备在终端设备的数据到来后的第一个上行时间单元没有为该数据分配到相应的PUCCH资源,则认为是请求PUCCH资源的失败1次。
以上以网络设备为HARQ信息请求PUCCH为例进行说明,网络设备还可以为终端设备发送CSI请求PUCCH资源,本申请对此不做限定。
在本示例中,网络设备统计第一时间范围内请求PUCCH资源的总次数K,和其中成功请求到PUCCH资源的次数K Succ,确定第一时间范围内为成功分配PUCCH资源的次数在第一时间范围内请求PUCCH资源的次数中的占比,即为第一时间范围内的PUCCH资源的分配成功率。PUCCH资源的分配成功率P Succ可以记作:P Succ=K Succ/K。网络设备可以根据第一时间范围内PUCCH资源的分配成功率,确定第二时间范围内可用于承载UCI的备选PUCCH资源。
可选地,PUCCH资源的分配成功率的多个取值范围对应资源单元的多个数量(即分 配成功率与资源单元数量的对应关系),网络设备可以根据该对应关系确定P Succ所属的取值范围,从而确定该取值范围对应的符号数为第二资源集合包含的资源单元的数量。并确定第二资源集合包含的PUCCH资源为第二时间范围内可用于承载UCI的备选PUCCH资源。
例如,网络设备在第一时间范围结束时,根据第一时间范围内PUCCH资源的分配成功率P Succ进行门限值判决,得到分配成功率等级L Succ。如:
Figure PCTCN2022105768-appb-000001
分配成功率等级L Succ为高;否则,
Figure PCTCN2022105768-appb-000002
分配成功率等级L Succ为低;否则,
Figure PCTCN2022105768-appb-000003
分配成功率等级L Succ为中。
比如资源单元为时域符号,网络设备根据分配成功率的多个等级与多个符号数的对应关系,确定与该分配成功率等级L Succ对应的符号数为第二符号集合的符号数,从而确定第二符号集合包含的PUCCH资源为第二时间范围内的备选PUCCH资源。
另一个示例中,资源需求度包括PUCCH资源的分配失败率。该PUCCH资源的分配成功率是根据第一时间范围内分配PUCCH资源失败的次数和请求PUCCH资源的次数确定的。
网络设备统计第一时间范围内PUCCH资源的总次数K,和其中请求PUCCH资源失败的次数K Fail,确定第一时间范围内分配PUCCH资源失败的次数在第一时间范围内请求PUCCH资源的次数中的占比,即为第一时间范围内PUCCH资源的分配失败率。PUCCH资源的分配失败率P Fail可以记作:P Fail=K Fail/K。网络设备可以根据第一时间范围内PUCCH资源的分配失败率,确定第二时间范围内可用于承载UCI的备选PUCCH资源。
例如,网络设备在第一时间范围结束时,根据第一时间范围内PUCCH资源的分配失败率P Fail进行门限值判决,得到分配成功率等级L Fail。如:
Figure PCTCN2022105768-appb-000004
分配成功率等级L Fail为低;否则,
Figure PCTCN2022105768-appb-000005
分配成功率等级L Fail为高;否则,
Figure PCTCN2022105768-appb-000006
分配成功率等级L Fail为中。
比如资源单元为时域符号,网络设备在根据分配失败率等级与符号数的对应关系,可以确定L Fail对应的符号数为第二符号集合的符号数,从而确定第二时间范围内可用于承载UCI的备选PUCCH资源。
或者,上述PUCCH资源的分配成功率或分配失败率的取值范围可以直接对应资源单元的数量,网络设备根据第一时间范围内的PUCCH资源的分配成功率或分配失败率所属的范围,确定该范围对应的资源单元的数量为第二资源集合包含的资源单元的数量。
另一个示例中,资源需求度包括PUCCH资源的使用率。
一种实施方式中,PUCCH资源的使用率是根据第一时间范围内承载了UCI的第二PUCCH资源占用的资源单元的个数在第一时间范围内备选PUCCH资源占用的资源单元的总数确定的。其中,第二PUCCH资源为第一时间范围内的备选PUCCH资源。
另一种实施方式中,网络设备可以计算第一时间范围内每个上行时间单元的PUCCH资源的使用率,上行时间单元的PUCCH资源的使用率为一个时间单元承载了UCI的第二 PUCCH资源占用的资源单元的个数M occupied(即第三资源集合包含的符号个数)在该上行时间单元中包含的备选PUCCH资源占用的资源单元的个数M total的占比,即P unit=M occupied/M total。其中,第三资源集合为第一时间范围内PUCCH资源的备选资源占用的符号的集合。网络设备再计算该第一时间范围内所有上行时间单元的PUCCH资源的使用率的平均值即为第一时间范围内PUCCH资源的使用率。
网络设备可以根据第一时间范围内PUCCH资源的使用率,确定第二时间范围内可用于承载UCI的备选PUCCH资源。
可选地,PUCCH资源的使用率P used的多个取值范围对应资源单元的多个数量(即PUCCH资源的使用率与资源单元数量的对应关系),网络设备可以根据该对应关系确定第一时间范围内的PUCCH资源的使用率P used所属的取值范围,从而确定该取值范围对应的符号数为第二资源集合包含的资源单元的数量。并确定第二资源集合包含的PUCCH资源为第二时间范围内可用于承载UCI的备选PUCCH资源。
例如,网络设备在第一时间范围结束时,根据第一时间范围内PUCCH资源的使用率,得到资源使用率等级L used。如:
Figure PCTCN2022105768-appb-000007
资源使用率L used为高;否则,
Figure PCTCN2022105768-appb-000008
资源使用率L used为低;否则,
Figure PCTCN2022105768-appb-000009
资源使用率L used为中。
比如资源单元为时域符号,网络设备在根据资源使用率等级与符号数的对应关系,可以确定L used对应的符号数为第二符号集合的符号数,从而确定第二时间范围内可用于承载UCI的备选PUCCH资源。
或者,上述PUCCH资源的使用率的取值范围可以直接对应资源单元的数量,网络设备根据第一时间范围内的PUCCH资源的使用率所属的范围,确定该范围对应的资源单元的数量为第二资源集合包含的资源单元的数量。从而确定第二时间范围内备选PUCCH资源。
另一个示例中,资源需求度包括PUCCH资源的未使用率。PUCCH资源的未使用率是根据第一时间范围内未承载了UCI的第二上行控制信道资源占用的资源单元的个数和备选PUCCH资源占用的资源单元的个数确定的。
另一个示例中,资源需求度包括PUSCH资源的使用率。PUSCH资源的使用率是根据第一时间范围内被调度的PUSCH资源大小和PUSCH资源的总资源大小确定的。
另一个示例中,资源需求度包括PUSCH资源的未使用率。PUSCH资源的未使用率是根据第一时间范围内未被调度的PUSCH资源大小和PUSCH资源的总资源大小确定的。
可选地,PUSCH资源大小可以根据PUSCH占用的资源单元的个数确定,例如,PUSCH资源大小可以根据PUSCH资源占用的RB个数确定,或者根据PUSCH资源占用的符号个数确定,或者根据PUSCH资源占用的RB个数以及符号个数共同确定。
网络设备确定第一时间范围内PUCCH资源的未使用率、PUSCH资源的使用率或未使用率的具体实施方式可以参考上述网络设备确定第一时间范围内的PUCCH的使用率的描述,为了简要,在此不再赘述。
另一个示例中,资源需求度包括与网络建立RRC连接的用户数。或者说,一个时间 范围内与网络建立RRC连接的用户数可以用于表征该时间范围内的资源需求度。
网络设备可以根据第一时间范围内与网络建立RRC连接的用户数,确定第二时间范围内备选PUCCH资源。可选地,网络设备可以第一时间范围内与网络建立RRC连接的用户数,确定第二资源集合,再确定第二资源集合包含的PUCCH资源为第二时间范围内的备选PUCCH资源。
可选地,用户数的多个取值范围可以对应资源单元的多个数量,或者,用户数的多个取值范围可以对应多个用户数等级,该多个用户数等级对应资源单元的多个数量。
例如,网络设备在第一时间范围结束时,根据第一时间范围内与网络建立RRC连接的用户数N user进行门限值判决,得到资源需求等级L user。如:
Figure PCTCN2022105768-appb-000010
资源需求等级L user为高;否则,
Figure PCTCN2022105768-appb-000011
资源需求等级L user为低;否则,
Figure PCTCN2022105768-appb-000012
资源需求等级L user为中。
比如资源单元为时域符号,网络设备再根据与网络建立RRC连接的用户数与符号数的对应关系,可以确定L user对应的符号数为第二符号集合的符号数,从而确定第二时间范围内可用于承载UCI的备选PUCCH资源。
另一个示例中,资源需求度包括第一类型用户比例。其中,该第一类型用户是上行信号质量低于信号质量阈值的用户。第一时间范围内第一类型用户比例是根据第一时间范围内信号质量低于信号质量阈值的用户数N SINR_low和第一时间范围内建立无线资源控制连接的用户总数N user确定的。如第一类型用户比例P SINR_low=N SINR_low/N user
例如,网络设备在第一时间范围结束时,根据第一时间范围内第一类型用户比例P SINR_low进行门限值判决,得到资源需求等级L SINR_low。网络设备再根据分配成功率等级与符号数的对应关系,可以确定L SINR_low对应的符号数为第二符号集合的符号数,从而确定第二时间范围内可用于承载UCI的备选PUCCH资源。
可选地,上述示例可以相互结合实施,也就是说,资源需求度可以包括以下参数中的多项:
PUCCH资源分配成功率、PUCCH资源的分配失败率、PUCCH资源使用率、PUSCH资源使用率、建立无线资源控制连接的用户数或第一类型用户比例。
一个示例中,资源需求度可以包括PUCCH资源分配成功率P Succ和建立无线资源控制连接的用户数N user。网络设备可以根据第一时间范围内的PUCCH资源分配成功率P Succ和PUSCH的使用率
Figure PCTCN2022105768-appb-000013
确定第二时间范围内的可用于承载UCI的备选PUCCH资源。
可选地,网络设备可以根据基于第一时间范围内基于PUCCH资源分配成功率P Succ确定的分配成功率等级L Succ,以及基于PUSCH的使用率
Figure PCTCN2022105768-appb-000014
确定的资源需求等级
Figure PCTCN2022105768-appb-000015
确定第二时间范围内的备选PUCCH资源。
例如,资源单元为时域符号,分配成功率等级L Succ和资源需求等级L user的不同取值组合可以对应一个符号数量,该符号数量可以是基于第一时间范围内的备选PUCCH资源占用的符号数M确定的。如表5所示,若分配成功率等级L Succ为低,资源需求等级L user为中,则网络设备可以基于对应关系确定第二时间范围内备选PUCCH资源占用的符号数相较于第一时间范围内备选PUCCH资源占用的符号数多1个符号,且不能超过第一符号集 合包含的符号总数M max,也就是说,网络设备可以确定第二符号集合包含的符号数为min(M+1,M max),并确定该第二符号集合包含的PUCCH资源为第二时间范围内可用于承载UCI的备选PUCCH资源。
表5
Figure PCTCN2022105768-appb-000016
S230,网络设备在第一PUSCH资源上接收上行数据。
相应地,终端设备在该第一PUSCH资源上发送上行数据。该第一PUSCH资源包括配置的PUCCH资源的部分资源。
也就是说,网络设备根据需求可以通过调度信息(如第一信息)改写资源的用途。即使第一PUSCH资源中包括网络设备配置的PUCCH资源的部分或全部资源,终端设备可以认为是网络设备对资源的用途进行了改写,终端设备响应于网络设备的调度在第一PUSCH资源上发送上行数据。
根据本申请的方案,网络设备可以在UCI传输需求较小时或数据传输需求较大时,调度PUCCH资源传输数据,能够提高资源利用率以及上行传输速率。另一方面,网络设备无需通过RRC信令为终端设备重配置PUCCH资源,即可以调整实际使用的PUCCH资源。终端设备仅需要响应网络设备的调度进行上行信息传输。终端设备与网络设备能够达成共识,能够减小信令开销,进一步提高了资源利用率。
以上,结合图2至图4详细说明了本申请实施例提供的方法。以下,结合图5至图7详细说明本申请实施例提供的通信装置和通信设备。为了实现上述本申请实施例提供的方法中的各功能,各网元可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
图5是本申请实施例提供的通信装置的示意性框图。如图5所示,该通信装置500可以包括收发单元520。
在一种可能的设计中,该通信装置500可对应于上文方法实施例中的终端设备,或者配置于(或用于)终端设备中的芯片,或者其他能够实现终端设备的方法的装置、模块、电路或单元等。
应理解,该通信装置500可对应于根据本申请实施例的方法200中的终端设备,该通信装置500可以包括用于执行图2中的方法200中终端设备执行的方法的单元。并且,该通信装置500中的各单元和上述其他操作和/或功能分别为了实现图2中的方法200的相应流程。
可选地,通信装置500还可以包括处理单元510,该处理单元510可以用于处理指令或者数据,以实现相应的操作。
还应理解,该通信装置500为配置于(或用于)终端设备中的芯片时,该通信装置500中的收发单元520可以为芯片的输入/输出接口或电路,该通信装置500中的处理单元510可以为芯片中的处理器。
可选地,通信装置500还可以包括存储单元530,该存储单元530可以用于存储指令或者数据,处理单元510可以执行该存储单元中存储的指令或者数据,以使该通信装置实现相应的操作。
应理解,该通信装置500中的收发单元520为可通过通信接口(如收发器或输入/输出接口)实现,例如可对应于图6中示出的终端设备600中的收发器610。该通信装置500中的处理单元510可通过至少一个处理器实现,例如可对应于图6中示出的终端设备600中的处理器620。该通信装置500中的处理单元510还可以通过至少一个逻辑电路实现。该通信装置500中的存储单元530可对应于图6中示出的终端设备600中的存储器。
还应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
在另一种可能的设计中,该通信装置500可对应于上文方法实施例中的网络设备,例如,或者配置于(或用于)网络设备中的芯片,或者其他能够实现网络设备的方法的装置、模块、电路或单元等。
应理解,该通信装置500可对应于根据本申请实施例的方法200中的网络设备,该通信装置500可以包括用于执行图2中的方法200中网络设备执行的方法的单元。并且,该通信装置500中的各单元和上述其他操作和/或功能分别为了实现图2中的方法200的相应流程。
可选地,通信装置500还可以包括处理单元510,该处理单元510可以用于处理指令或者数据,以实现相应的操作。
还应理解,该通信装置500为配置于(或用于)网络设备中的芯片时,该通信装置500中的收发单元520可以为芯片的输入/输出接口或电路,该通信装置500中的处理单元510可以为芯片中的处理器。
可选地,通信装置500还可以包括存储单元530,该存储单元530可以用于存储指令或者数据,处理单元510可以执行该存储单元中存储的指令或者数据,以使该通信装置实现相应的操作。
应理解,该通信装置500为网络设备时,该通信装置500中的收发单元520为可通过通信接口(如收发器或输入/输出接口)实现,例如可对应于图7中示出的网络设备700中的收发器710。该通信装置500中的处理单元510可通过至少一个处理器实现,例如可对应于图7中示出的网络设备700中的处理器720,该通信装置500中的处理单元510可通过至少一个逻辑电路实现。
还应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
图6是本申请实施例提供的终端设备600的结构示意图。该终端设备600可应用于如图1所示的系统中,执行上述方法实施例中终端设备的功能。如图所示,该终端设备600包括处理器620和收发器610。可选地,该终端设备600还包括存储器。其中,处理器620、收发器610和存储器之间可以通过内部连接通路互相通信,传递控制和/或数据信号。该存储器用于存储计算机程序,该处理器620用于执行该存储器中的该计算机程序,以控制该 收发器610收发信号。
上述处理器620可以和存储器可以合成一个处理装置,处理器620用于执行存储器中存储的程序代码来实现上述功能。具体实现时,该存储器也可以集成在处理器620中,或者独立于处理器620。该处理器620可以与图5中的处理单元对应。
上述收发器610可以与图5中的收发单元对应。收发器610可以包括接收器(或称接收机、接收电路)和发射器(或称发射机、发射电路)。其中,接收器用于接收信号,发射器用于发射信号。
应理解,图6所示的终端设备600能够实现图2所示方法实施例中涉及终端设备的过程。终端设备600中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详细描述。
上述处理器620可以用于执行前面方法实施例中描述的由终端设备内部实现的动作,而收发器610可以用于执行前面方法实施例中描述的终端设备向网络设备发送或从网络设备接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
可选地,上述终端设备600还可以包括电源,用于给终端设备中的各种器件或电路提供电源。
除此之外,为了使得终端设备的功能更加完善,该终端设备600还可以包括输入输出装置,如包括输入单元、显示单元、音频电路、摄像头和传感器等中的一个或多个,所述音频电路还可以包括扬声器、麦克风等。
图7是本申请实施例提供的网络设备的结构示意图,该网络设备700可应用于如图1所示的系统中,执行上述方法实施例中网络设备的功能。如图7所示,该网络设备700包括处理器720和收发器710。可选地,该网络设备700还包括存储器。其中,处理器720、收发器710和存储器之间可以通过内部连接通路互相通信,传递控制和/或数据信号。该存储器用于存储计算机程序,该处理器720用于执行该存储器中的该计算机程序,以控制该收发器710收发信号。
上述处理器720可以和存储器可以合成一个处理装置,处理器720用于执行存储器中存储的程序代码来实现上述功能。具体实现时,该存储器也可以集成在处理器620中,或者独立于处理器720。该处理器720可以与图5中的处理单元对应。
上述收发器710可以与图5中的收发单元对应。收发器710可以包括接收器(或称接收机、接收电路)和发射器(或称发射机、发射电路)。其中,接收器用于接收信号,发射器用于发射信号。
应理解,图7所示的网络设备700能够实现图2所示方法实施例中涉及网络设备的各个过程。网络设备700中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详细描述。
应理解,图7所示出的网络设备700可以是eNB或gNB,可选地,网络设备包含CU、DU和AAU的网络设备等,可选地,CU可以具体分为CU-CP和CU-UP。本申请对于网络设备的具体架构不作限定。
应理解,图7所示出的网络设备700可以是CU节点或CU-CP节点。
上述处理器720可以用于执行前面方法实施例中描述的由网络设备内部实现的动作,而收发器710可以用于执行前面方法实施例中描述的网络设备向终端设备发送或从终端设备接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
本申请实施例还提供了一种处理装置,包括处理器和(通信)接口;所述处理器用于执行上述任一方法实施例中的方法。
应理解,上述处理装置可以是一个或多个芯片。例如,该处理装置可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码由一个或多个处理器执行时,使得包括该处理器的装置执行图2所示实施例中的方法。
本申请实施例提供的技术方案可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、终端设备、核心网设备、机器学习设备或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机可以存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,DVD))、或者半导体介质等。
根据本申请实施例提供的方法,本申请还提供一种计算机可读存储介质,该计算机可读存储介质存储有程序代码,当该程序代码由一个或多个处理器运行时,使得包括该处理器的装置执行图2所示实施例中的方法。
根据本申请实施例提供的方法,本申请还提供一种系统,其包括前述的一个或多个网络设备。还系统还可以进一步包括前述的一个或多个终端设备。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟 悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (30)

  1. 一种资源分配方法,其特征在于,包括:
    发送配置信息,该配置信息用于配置多个上行控制信道资源;
    发送第一信息,所述第一信息用于调度第一上行共享信道资源,所述第一上行共享信道资源包括所述多个上行控制信道资源中的部分资源;
    在所述第一上行共享信道资源上接收上行数据。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    根据第一资源需求度,在所述多个上行控制信道资源中确定一个或多个第一上行控制信道资源,所述第一资源需求度为第一时间范围内上行资源的需求度;
    在第二时间范围内发送第二信息,所述第二信息用于调度所述一个或多个第一上行控制信道资源中的上行控制信道资源,
    其中,所述第一信息是在所述第二时间范围内发送的,所述第一上行共享信道资源包括所述多个上行控制信道资源中除所述第一上行控制信道资源以外的资源。
  3. 根据权利要求2所述的方法,其特征在于,所述多个上行控制信道资源占用第一资源集合,所述第一资源集合包括一个或多个资源单元,所述资源单元为时域资源和/或频域资源,
    所述一个或多个第一上行控制信道资源为所述多个上行控制信道资源中属于第二资源集合的上行控制信道资源,所述第二资源集合为所述第一资源集合的子集。
  4. 根据权利要求3所述的方法,其特征在于,所述根据第一资源需求度,在所述多个上行控制信道资源中确定一个或多个第一上行控制信道资源,包括:
    根据所述第一资源需求度和对应关系,确定所述第一资源需求度对应的所述资源单元的第一数量,其中,所述对应关系包括多个资源需求度与资源单元的多个数量之间的对应关系,所述多个资源需求度包括所述第一资源需求度;
    根据所述第一数量,在所述第一资源集合中确定所述第二资源集合,所述第二资源集合包括所述第一数量的所述资源单元。
  5. 根据权利要求2至4中任一项所述的方法,其特征在于,所述方法还包括:
    以第一时间范围为周期,周期性地在所述多个上行控制信道中确定一个周期内用于承载上行控制信息的上行控制信道资源,
    其中,所述第一时间范围的时长与所述第二时间范围的时长相等,且所述第二时间范围为所述第一时间范围的下一个周期。
  6. 根据权利要求2至5中任一项所述的方法,其特征在于,所述第一资源需求度包括以下一项或多项:
    上行控制信道资源分配成功率、上行控制信道资源分配失败率、上行控制信道资源使用率、上行共享信道资源使用率、建立无线资源控制连接的用户数或第一类型用户比例,
    其中,所述第一类型用户是上行信号质量低于信号质量阈值的用户。
  7. 根据权利要求6所述的方法,其特征在于,所述第一资源需求度包括所述上行控制信道资源分配成功率或所述上行控制信道资源分配失败率,
    所述上行控制信道资源分配成功率是根据所述第一时间范围内成功分配上行控制信道资源的次数和请求上行控制信道资源的次数确定的;
    所述上行控制信道资源分配失败率是根据所述第一时间范围内分配上行控制信道资源失败的次数和请求上行控制信道资源的次数确定的。
  8. 根据权利要求6或7所述的方法,其特征在于,所述第一资源需求度包括所述上行控制信道资源使用率,
    所述第一时间范围中用于承载上行控制信息的上行控制信道资源为至少一个第二上行控制信道资源,所述多个上行控制信道资源中的包括所述至少一个第二上行控制信道资源,所述至少一个第二上行控制信道资源占用第三资源集合,所述上行控制信道资源使用率是根据所述第一时间范围内承载了上行控制信息的所述第二上行控制信道资源的资源大小和所述第三资源集合包含的资源大小确定的。
  9. 根据权利要求6至8中任一项所述的方法,其特征在于,所述第一资源需求度包括上行共享信道资源使用率,
    所述上行共享信道资源使用率是根据所述第一时间范围内被调度的上行共享信道资源大小和所述第一时间范围内上行共享信道资源的总资源大小确定的。
  10. 根据权利要求6至8中任一项所述的方法,其特征在于,所述第一资源需求度包括所述第一时间范围内所述第一类型用户比例,
    其中,所述第一类型用户比例是根据所述第一时间范围内信号质量低于信号质量阈值的用户数和所述第一时间范围内建立无线资源控制连接的用户总数确定的。
  11. 一种资源分配方法,其特征在于,包括:
    接收配置信息,该配置信息用于配置多个上行控制信道资源;
    接收第一信息,所述第一信息用于调度第一上行共享信道资源,所述第一上行共享信道资源包括所述多个上行控制信道资源中的部分资源;
    在所述第一上行共享信道资源上发送数据。
  12. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    在第二时间范围内接收第二信息,所述第二信息用于调度第一上行控制信道资源,
    其中,所述第一信息是在所述第二时间范围内接收到的,所述上行共享信道资源包括所述多个上行控制信道资源中除所述第一上行控制信道资源以外的资源。
  13. 一种通信装置,其特征在于,包括:
    收发单元,用于发送配置信息,该配置信息用于配置多个上行控制信道资源;
    处理单元,用于确定第一信息,所述第一信息用于调度第一上行共享信道资源,所述第一上行共享信道资源包括所述多个上行控制信道资源中的部分资源;
    所述收发单元还用于发送所述第一信息;
    所述收发单元还用于在所述第一上行共享信道资源上接收上行数据。
  14. 根据权利要求13所述的装置,其特征在于,
    所述处理单元还用于根据第一资源需求度,在所述多个上行控制信道资源中确定一个或多个第一上行控制信道资源,所述第一资源需求度为第一时间范围内上行资源的需求度;
    所述收发单元还用于在第二时间范围内发送第二信息,所述第二信息用于调度所述一个或多个第一上行控制信道资源中的上行控制信道资源,
    其中,所述第一信息是在所述第二时间范围内发送的,所述第一上行共享信道资源包括所述多个上行控制信道资源中除所述第一上行控制信道资源以外的资源。
  15. 根据权利要求14所述的装置,其特征在于,所述多个上行控制信道资源占用第一 资源集合,所述第一资源集合包括一个或多个资源单元,所述资源单元为时域资源和/或频域资源,
    所述一个或多个第一上行控制信道资源为所述多个上行控制信道资源中属于第二资源集合的上行控制信道资源,所述第二资源集合为所述第一资源集合的子集。
  16. 根据权利要求15所述的装置,其特征在于,
    所述处理单元具体用于根据所述第一资源需求度和对应关系,确定所述第一资源需求度对应的所述资源单元的第一数量,其中,所述对应关系包括多个资源需求度与资源单元的多个数量之间的对应关系,所述多个资源需求度包括所述第一资源需求度;
    根据所述第一数量,在所述第一资源集合中确定所述第二资源集合,所述第二资源集合包括所述第一数量的所述资源单元。
  17. 根据权利要求14至16中任一项所述的装置,其特征在于,
    所述处理单元还用于以第一时间范围为周期,周期性地在所述多个上行控制信道中确定一个周期内用于承载上行控制信息的上行控制信道资源,
    其中,所述第一时间范围的时长与所述第二时间范围的时长相等,且所述第二时间范围为所述第一时间范围的下一个周期。
  18. 根据权利要求14至17中任一项所述的装置,其特征在于,所述第一资源需求度包括以下一项或多项:
    上行控制信道资源分配成功率、上行控制信道资源分配失败率、上行控制信道资源使用率、上行共享信道资源使用率、建立无线资源控制连接的用户数或第一类型用户比例,
    其中,所述第一类型用户是上行信号质量低于信号质量阈值的用户。
  19. 根据权利要求18所述的装置,其特征在于,所述第一资源需求度包括所述上行控制信道资源分配成功率或所述上行控制信道资源分配失败率,
    所述上行控制信道资源分配成功率是根据所述第一时间范围内成功分配上行控制信道资源的次数和请求上行控制信道资源的次数确定的;
    所述上行控制信道资源分配失败率是根据所述第一时间范围内分配上行控制信道资源失败的次数和请求上行控制信道资源的次数确定的。
  20. 根据权利要求18或19所述的装置,其特征在于,所述第一资源需求度包括所述上行控制信道资源使用率,
    所述第一时间范围中用于承载上行控制信息的上行控制信道资源为至少一个第二上行控制信道资源,所述多个上行控制信道资源中的包括所述至少一个第二上行控制信道资源,所述至少一个第二上行控制信道资源占用第三资源集合,所述上行控制信道资源使用率是根据所述第一时间范围内承载了上行控制信息的所述第二上行控制信道资源的资源大小和所述第三资源集合包含的资源大小确定的。
  21. 根据权利要求18至20中任一项所述的装置,其特征在于,所述第一资源需求度包括上行共享信道资源使用率,
    所述上行共享信道资源使用率是根据所述第一时间范围内被调度的上行共享信道资源大小和所述第一时间范围内上行共享信道资源的总资源大小确定的。
  22. 根据权利要求18至20中任一项所述的装置,其特征在于,所述第一资源需求度包括所述第一时间范围内所述第一类型用户比例,
    其中,所述第一类型用户比例是根据所述第一时间范围内信号质量低于信号质量阈值 的用户数和所述第一时间范围内建立无线资源控制连接的用户总数确定的。
  23. 一种资源分配装置,其特征在于,包括:
    收发单元,用于接收配置信息,该配置信息用于配置多个上行控制信道资源;
    所述收发单元还用于接收第一信息,所述第一信息用于调度第一上行共享信道资源,所述第一上行共享信道资源包括所述多个上行控制信道资源中的部分资源;
    处理单元,用于根据第一信息,确定所述第一上行共享信道资源;
    所述收发单元还用于在所述第一上行共享信道资源上发送数据。
  24. 根据权利要求23所述的装置,其特征在于,
    所述收发单元还用于在第二时间范围内接收第二信息,所述第二信息用于调度第一上行控制信道资源,
    其中,所述第一信息是在所述第二时间范围内接收到的,所述上行共享信道资源包括所述多个上行控制信道资源中除所述第一上行控制信道资源以外的资源。
  25. 一种通信装置,其特征在于,包括至少一个处理器,与存储器耦合;
    所述存储器用于存储程序或指令;所述至少一个处理器用于执行所述程序或指令,以使所述装置实现如权利要求1至10中任一项所述的方法。
  26. 一种通信装置,其特征在于,包括至少一个处理器,与存储器耦合;
    所述存储器用于存储程序或指令;所述至少一个处理器用于执行所述程序或指令,以使所述装置实现如权利要求11至12中任一项所述的方法。
  27. 一种通信系统,其特征在于,
    包括权利要求13至22任一项所述的装置和权利要求23至24任一项所述的装置;或者,
    包括权利要求25所述的装置和权利要求26所述的装置。
  28. 一种芯片,其特征在于,包括至少一个处理器和通信接口;
    所述通信接口用于接收输入所述芯片的信号或从所述芯片输出的信号,所述处理器与所述通信接口通信且通过逻辑电路或执行代码指令实现如权利要求1至12中任一项所述的方法。
  29. 一种计算机可读存储介质,其特征在于,存储有指令,当所述指令在计算机上运行时,使得所述计算机执行如权利要求1至12中任一项所述的方法。
  30. 一种计算机程序产品,其特征在于,包括指令,当所述指令在计算机上运行时,使得计算机执行如权利要求1至12中任一项所述的方法。
PCT/CN2022/105768 2021-07-30 2022-07-14 资源分配方法、通信装置以及通信设备 WO2023005679A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110876266.2A CN115701195A (zh) 2021-07-30 2021-07-30 资源分配方法、通信装置以及通信设备
CN202110876266.2 2021-07-30

Publications (1)

Publication Number Publication Date
WO2023005679A1 true WO2023005679A1 (zh) 2023-02-02

Family

ID=85086244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/105768 WO2023005679A1 (zh) 2021-07-30 2022-07-14 资源分配方法、通信装置以及通信设备

Country Status (2)

Country Link
CN (1) CN115701195A (zh)
WO (1) WO2023005679A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115964184B (zh) * 2023-03-16 2023-06-13 北京大学 确定算力资源的方法,装置及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110198565A (zh) * 2018-02-26 2019-09-03 普天信息技术有限公司 一种小带宽系统中上行资源的分配方法及装置
CN110447258A (zh) * 2017-03-23 2019-11-12 华为技术有限公司 一种上行控制信道的资源映射方法及装置
CN110463098A (zh) * 2017-10-02 2019-11-15 联发科技股份有限公司 物理信道中控制信息的编码和资源分配
US20210050944A1 (en) * 2017-09-30 2021-02-18 Zte Corporation Method and device for determining time frequency resources
CN112655262A (zh) * 2019-01-04 2021-04-13 Oppo广东移动通信有限公司 资源分配的方法、终端设备和网络设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110447258A (zh) * 2017-03-23 2019-11-12 华为技术有限公司 一种上行控制信道的资源映射方法及装置
US20210050944A1 (en) * 2017-09-30 2021-02-18 Zte Corporation Method and device for determining time frequency resources
CN110463098A (zh) * 2017-10-02 2019-11-15 联发科技股份有限公司 物理信道中控制信息的编码和资源分配
CN110198565A (zh) * 2018-02-26 2019-09-03 普天信息技术有限公司 一种小带宽系统中上行资源的分配方法及装置
CN112655262A (zh) * 2019-01-04 2021-04-13 Oppo广东移动通信有限公司 资源分配的方法、终端设备和网络设备

Also Published As

Publication number Publication date
CN115701195A (zh) 2023-02-07

Similar Documents

Publication Publication Date Title
US11329792B2 (en) Method and apparatus for determining resource block group size
JP7249405B2 (ja) V2xトラフィックに対応するための制御チャネル構造設計
US20210084650A1 (en) Communication method and communications apparatus
WO2018228500A1 (zh) 一种调度信息传输方法及装置
TWI809373B (zh) 調度方法、終端和網路側設備
WO2020113996A1 (zh) 配置授权的确认方法、终端和网络侧设备
WO2022028311A1 (zh) 一种物理下行控制信道增强方法、通信装置及系统
WO2020088395A1 (zh) 资源配置方法及装置
US20230209540A1 (en) Method of allocating uplink data packet resource and user equipment
WO2015067197A1 (zh) D2d发现信号的发送方法和发送装置
WO2020216314A1 (zh) 通信方法和通信装置
CN110971349B (zh) 一种重复传输方法、终端和网络侧设备
WO2021027551A1 (zh) 一种通信方法及装置
WO2021017765A1 (zh) 通信方法和通信装置
WO2018228501A1 (zh) 通信方法及装置
WO2018171461A1 (zh) 信息传输方法、装置及系统
WO2023005679A1 (zh) 资源分配方法、通信装置以及通信设备
WO2019129253A1 (zh) 一种通信方法及装置
WO2019029306A1 (zh) 传输下行控制信息的方法、装置和系统
WO2023207919A1 (zh) 资源调度方法和通信装置
WO2021072610A1 (zh) 一种激活和释放非动态调度传输的方法及装置
WO2023040582A1 (zh) 一种动态指示ecp时隙的方法、基站及存储介质
WO2022077351A1 (zh) 通信方法和通信装置
WO2019023912A1 (zh) 一种应答反馈方法、终端及网络设备
WO2021056585A1 (zh) 一种混合自动重传请求反馈方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22848284

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE